WO2024113278A1 - 显示面板和显示装置 - Google Patents

显示面板和显示装置 Download PDF

Info

Publication number
WO2024113278A1
WO2024113278A1 PCT/CN2022/135698 CN2022135698W WO2024113278A1 WO 2024113278 A1 WO2024113278 A1 WO 2024113278A1 CN 2022135698 W CN2022135698 W CN 2022135698W WO 2024113278 A1 WO2024113278 A1 WO 2024113278A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
hole
main
light shielding
array substrate
Prior art date
Application number
PCT/CN2022/135698
Other languages
English (en)
French (fr)
Inventor
杨杰
臧远生
许晨
胡凌霄
郭晖
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/135698 priority Critical patent/WO2024113278A1/zh
Publication of WO2024113278A1 publication Critical patent/WO2024113278A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements

Definitions

  • the present invention belongs to the field of display technology, and in particular relates to a display panel and a display device.
  • CG cover glass
  • the purpose of the present application is to provide a display panel and a display device, which can realize a lightweight design of the display device while controlling costs, and at the same time improve the yield of the product.
  • a display panel comprising: an array substrate, a color filter substrate, a driving chip and a backlight structure;
  • the driving chip is electrically connected to the array substrate and is used to control the voltage signal on the array substrate.
  • the driving chip is arranged on the inner side of the array substrate, and the color filter substrate is located between the array substrate and the backlight structure.
  • the display panel is configured to be located above the camera module, the display panel includes a functional area, and the camera module is located below the functional area;
  • the backlight structure is away from the functional area.
  • the display panel is configured to be located above the camera module, the display panel includes a functional area, and the camera module is located below the functional area;
  • the array substrate and the color filter substrate both cover the functional area.
  • the display panel includes a first light shielding layer and a second light shielding layer; the first light shielding layer is formed on the inner side of the color filter substrate, and a first main through hole is opened on the first light shielding layer; the second light shielding layer is formed on the outer side of the array substrate, and a second main through hole is opened on the second light shielding layer;
  • the first main through hole and the second main through hole are both located in the functional area and both face the camera module; along the thickness direction, the projection of the second main through hole covers the projection of the first main through hole.
  • first main through hole and the second main through hole are concentrically arranged.
  • the minimum distance from the outer contour of the first main through hole to the outer contour of the second main through hole is taken as the first distance; along the thickness direction, the minimum distance from the end surface of the first light shielding layer facing the backlight structure to the end surface of the second light shielding layer facing the backlight structure is taken as the second distance;
  • the first distance is smaller than the second distance.
  • a second auxiliary through hole is provided on the second light shielding layer
  • the first shading layer includes a shielding part and a filtering part, the shielding part is configured to block the passage of light, and the first main through hole is opened in the shielding part; the filtering part is configured to allow light of a specific wavelength band to pass through, and at least part of the filtering part is exposed through the second auxiliary through hole.
  • the display panel is configured to be located above the camera module, the display panel includes a functional area, and the camera module is located below the functional area;
  • the array substrate covers the functional area, and the color filter substrate is away from the functional area.
  • the display panel includes a second light shielding layer and a third light shielding layer
  • the second light shielding layer is formed on the outer side of the array substrate, and a penetrating functional through hole is opened in a portion of the second light shielding layer located in the functional area;
  • the third light shielding layer is formed on the inner side of the array substrate.
  • the third light-shielding layer is located in the functional area and is configured to allow light of a specific wavelength band to pass through, and at least a portion of the structure of the third light-shielding layer is exposed through the functional through hole.
  • the second light shielding layer is provided with a second main through hole
  • the third light shielding layer is provided with a third main through hole
  • the second main through hole and the third main through hole are both located in the functional area and both face the camera module; along the thickness direction, the projection of the second main through hole covers the projection of the third main through hole.
  • the second main through hole and the third main through hole are arranged concentrically; and/or,
  • the minimum distance from the outer contour of the second main through hole to the outer contour of the third main through hole is taken as the third distance; along the thickness direction, the minimum distance from the end face of the second shading layer facing the backlight structure to the end face of the third shading layer facing the backlight structure is taken as the fourth distance; the third distance is smaller than the fourth distance.
  • the third light shielding layer includes a functional filter block configured to allow light of a specific wavelength band to pass through;
  • the positions of the functional filter block and the functional through hole correspond to each other, and the projection of the functional filter block along the thickness direction covers the projection of the functional through hole along the thickness direction.
  • the second light shielding layer is formed by an inkjet printing process; and/or,
  • the third light shielding layer is formed by screen printing process.
  • the display panel also includes a supporting structure, and the supporting structure is arranged between the color film substrate and the array substrate.
  • the display panel is configured to be located above the camera module, the display panel includes a functional area, the camera module is located below the functional area, the supporting structure is located in the functional area, and/or at least a portion of the supporting structure surrounds the functional area.
  • the support structure includes a support column and a support block, and the cross-sectional area of the support block in the horizontal direction is larger than the cross-sectional area of the support column in the horizontal direction;
  • the support block is farther away from the center of the functional area than the support column.
  • the array substrate includes a first glass substrate and a metal film layer
  • the metal film layer includes a single layer or multiple layers of metal wiring structure
  • the support column faces the single layer of the metal wiring structure
  • the support block faces the multiple layers of the metal wiring structure
  • a cutting line is provided on the display panel, and a minimum distance L1 between the support structure and the cutting line is greater than or equal to 50 micrometers and less than or equal to 200 micrometers; and/or,
  • the display panel is configured to be located above the camera module, and includes a first light shielding layer, which is formed on the inner side of the color film substrate and has a first main through hole facing the camera module; the minimum distance between the support structure and the first main through hole is greater than or equal to 30 microns and less than or equal to 200 microns; and/or,
  • the display panel also includes a frame-sealing glue, which is arranged between the color film substrate and the array substrate.
  • the minimum distance from the support structure to the frame-sealing glue is greater than or equal to 50 microns and less than or equal to 200 microns.
  • one end of the support structure is located at one of the color filter substrate and the array substrate;
  • the other end of the support structure When the display panel is not subjected to extrusion force, the other end of the support structure is spaced apart from the color filter substrate and the other of the array substrates; when the display panel is subjected to extrusion force, the other end of the support structure abuts against the other of the color filter substrate and the array substrate.
  • a display device wherein the display panel comprises a camera module and the above-mentioned display panel, and the display panel is located above the camera module.
  • the display panel and display device provided by the present application adopt a structure in which the array substrate covers the outer side of the color filter substrate, and the array substrate can be used to protect the structure located on the inner side of the array substrate.
  • the array substrate located on the outer side can also improve the flatness of the outer surface of the display panel to achieve an integrated design of the display panel. Furthermore, by using the design in which the array substrate is located on the outer side, it is possible to omit the need to attach a glass cover plate to the outer side of the display panel, thereby simplifying the process steps, improving the product yield, and reducing the overall thickness of the display device.
  • FIG1 is a schematic cross-sectional view of a display panel of a design
  • FIG2 is a schematic structural diagram of a display device according to an embodiment of the present invention.
  • FIG3 is a schematic cross-sectional view of a display panel according to an embodiment of the present invention.
  • FIG4 is a schematic cross-sectional view of a display panel according to another embodiment of the present invention.
  • FIG5 is another schematic cross-sectional view of a display panel according to an embodiment of the present invention.
  • FIG6 is another schematic cross-sectional view of a display panel according to another embodiment of the present invention.
  • FIG7 is another schematic cross-sectional view of a display panel according to an embodiment of the present invention.
  • FIG. 8 is another schematic structural diagram of a display panel according to an embodiment of the present invention.
  • the third light shielding layer 830 is the third light shielding layer 830
  • the present application provides a display panel and a display device.
  • the display device includes a camera module and a display panel, and the display panel is located above the camera module.
  • the display panel includes an array substrate, a color film substrate, a driving chip and a backlight structure.
  • the driving chip is electrically connected to the array substrate and is used to control the voltage signal on the array substrate.
  • the color film substrate is located between the array substrate and the backlight structure.
  • the above structure adopts a structure in which the array substrate covers the outer side of the color film substrate and the driving chip.
  • the array substrate can be used to protect the structure located on the inner side of the array substrate.
  • the array substrate located on the outer side can also improve the flatness of the outer surface of the display panel to achieve an integrated design of the display panel.
  • the display panel described in the present application may be an LCD (Liquid Crystal Display) display device, which can be applied to products or components with display functions such as laptops, tablet computers, televisions, mobile phones, watches, etc., as a display panel for products or components with display functions such as laptops, tablet computers, televisions, mobile phones, watches, etc.
  • LCD Liquid Crystal Display
  • the display panel 10 and the display device 1 provided in the present application are described in detail below with reference to FIGS. 2 to 8 .
  • the present application provides a display device 1.
  • the display device 1 includes a display panel 10, a camera module 20, a back shell 30 and a middle frame 40.
  • the display panel 10 is covered on the end of the camera away from the back shell 30 to enhance the degree of integration of the display device 1 facing the user.
  • the display panel 10 and the camera module 20 are located in the receiving hole on the middle frame 40 and are fixedly connected to the back shell 30, and the middle frame 40 plays a supporting role.
  • the display panel 10 and the camera module 20 can also be fixed to the back shell 30 through the middle frame 40.
  • the display panel 10 includes an array substrate 100, a light deflection layer 200, a color film substrate 300, a driving chip 400, a backlight structure 500, a first polarizer 600 and a second polarizer 700.
  • the display panel 10 further includes a display area 11 and a non-display area 12.
  • the camera module 20 is disposed below the non-display area 12.
  • the array substrate 100 extends and covers the top of the camera module 20.
  • the light deflection layer 200 is a liquid crystal layer.
  • the backlight structure 500 is arranged on the side of the display panel 10 away from the user.
  • the display panel 10 also includes a light-emitting structure.
  • the light-emitting structure is located on the side of the display panel 10, which is used to emit white light.
  • the backlight structure 500 includes a backlight plate 510 and a filter component 520.
  • the backlight plate 510 can conduct the white light emitted by the light-emitting structure and improve the uniformity of the white light distribution.
  • the filter component 520 can filter the light transmitted from the backlight plate 510 to obtain a target light with better uniformity.
  • the filter component 520 can include a prism sheet, a diffuser sheet and other films.
  • the light transmitted and filtered by the backlight structure 500 first passes through the first polarizer 600 to preliminarily screen the light. After that, it passes through the color film substrate 300 to present light of different colors.
  • the liquid crystal layer is sandwiched between the array substrate 100 and the color filter substrate 300.
  • the driving chip 400 is electrically connected to the array substrate 100 and is used to control the voltage signal on the array substrate 100, thereby controlling the voltage applied to the liquid crystal layer.
  • the deflection angle of the light emitted from the color filter substrate 300 and passing through the liquid crystal layer will change, thereby realizing the presentation of light of different colors.
  • the light is finally screened by the second polarizer 700 and emitted to the user.
  • the light deflection layer 200 can still be a liquid crystal layer or just a vacuum layer.
  • the backlight structure 500 is far away from the non-display area 12, and at the same time, the light blocking structure 800 located in the non-display area 12 can block the light entering the non-display area 12.
  • the structure of the light deflection layer 200 is not shown in FIG. 3 and FIG. 4.
  • the light deflection layer 200 is sandwiched between the color filter substrate 300 and the array substrate 100 (see FIG. 5).
  • FIG. 5 in the actual production process, it is necessary to set a sealant 210 between the color filter substrate 300 and the array substrate 100, and fill the liquid crystal in the space surrounded by the sealant 210.
  • the driver chip 400 is arranged on the peripheral side of the color filter substrate 300 and is arranged in the non-display area 12.
  • the array substrate 100 is located on the side of the color filter substrate 300 and the driver chip 400 away from the backlight structure 500. At this time, there is a certain step difference and spacing between the driver chip 400 and the color filter substrate 300.
  • the array substrate 100 is covered on the top of the driver chip 400 and the color filter substrate 300, and the array substrate 100 is used to protect the structure located on the inner side of the array substrate 100.
  • the array substrate 100 located on the outer side can also improve the flatness of the outer surface of the display panel 10, so as to realize the integrated design of the display panel 10.
  • the driver chip 400 may not be arranged on the peripheral side of the color filter substrate 300, but connected to the array substrate 100 through a circuit board, and at least part of the structure of the circuit board is arranged on the peripheral side of the color filter substrate 300.
  • the driver chip 400 is located on the inner side of the array substrate 100.
  • the array substrate 100 is covered on the top of the driving chip 400 and the color film substrate 300, which can also protect the structure located on the inner side of the array substrate 100.
  • the array substrate 100 located on the outside can also improve the flatness of the outer surface of the display panel 10 to achieve an integrated design of the display panel 10.
  • the color film substrate 300 is usually arranged on the side away from the backlight structure 500, and the driving chip 400 and the color film substrate 300 are arranged on the side of the color film substrate 300 away from the backlight structure 500.
  • the surfaces of the driving chip 400 and the color film substrate 300 with the step difference and the gap are exposed to the outside, and a glass cover plate 15 needs to be covered thereon to improve the flatness of the outer surface of the display panel 10.
  • the technical solution of the present application can not only improve the flatness of the outer surface of the display panel 10, but also eliminate the need to attach a glass cover plate to the outer side of the display panel 10, thereby simplifying the process steps, improving the product yield, and reducing the overall thickness of the display device 1.
  • a functional area 13 is also provided in the non-display area 12, and the camera module 20 is provided below the functional area 13.
  • a functional module 50 can be added below the functional area 13 according to design requirements. In other words, external light needs to enter the functional area 13 to be captured by the camera module 20 and other functional modules 50 located below the functional area 13; or, the light emitted by a specific functional module 50 located below the functional area 13 needs to be emitted outward through the functional area 13.
  • the backlight structure 500 is away from the functional area 13 to avoid the white light emitted by the backlight structure 500 affecting the camera module 20 and other functional modules 50 to collect external light, and at the same time, to avoid the white light emitted by the backlight structure 500 affecting the light emitted outward by other functional modules 50.
  • the display panel 10 also includes a light blocking structure 800.
  • the light blocking structure 800 is disposed in the non-display area 12 and is used to block light in a specific area to prevent external light from entering the interior of the display device 1, thereby preventing the user from seeing the internal structure of the display device 1 through the non-display area 12.
  • the light blocking structure 800 includes a first light shielding layer 810 and a second light shielding layer 820.
  • the first light shielding layer 810 is formed on the inner side of the color filter substrate 300, and the second light shielding layer 820 is formed on the outer side of the array substrate 100.
  • the first light shielding layer 810 is formed by a photolithography process and is a black matrix layer, which has a good light shielding effect.
  • the second light shielding layer 820 is formed by an inkjet printing process, and the material is black ink. Although its light shielding effect is not as good as that of the black matrix, the shape and position of the second light shielding layer 820 can be adjusted by adjusting the software program, and the operation is flexible.
  • the temperature of the black matrix is relatively high during the molding process, but the performance of the array substrate is greatly affected by the temperature. If a black matrix layer is formed on the array substrate 100, its formation will be destroyed. Therefore, the black matrix layer is formed on the color filter substrate 300, and the black ink layer is formed on the array substrate 100.
  • a decorative through hole can be formed on the second light shielding layer 820, and a reflective or luminous material can be filled in the decorative through hole so that the user can observe the decorative through hole from the outside.
  • a display effect can be achieved. For example, a brand logo can be displayed.
  • the array substrate 100 and the color film substrate 300 both cover the functional area 13.
  • the array substrate 100 and the color film substrate 300 both cover the functional area 13 to improve the integration of the surface of the display device 1 facing the user, and at the same time, the camera module 20 and other functional modules 50 located below the functional area 13 can also be protected.
  • the color filter substrate 300, the first light shielding layer 810 located above the color filter substrate 300, and the first polarizer 600 are all away from the functional area 13.
  • the array substrate 100 is arranged above the functional area 13 to shield and protect the camera module 20 and other functional modules 50 located below the functional area 13.
  • the installation position of the display panel 10 can be moved downward as a whole, and the overall thickness of the display device 1 is reduced, which is conducive to the miniaturization design of the display device 1.
  • the viewing angle of the camera module 20 can only be adjusted by the second light shielding layer 820.
  • the thickness of the color filter substrate 300 is usually between 0.1 mm and 0.5 mm, and the color filter substrate is set to the structure shown in the figure, that is, away from the functional area 13, and the array substrate 100 is moved downward as a whole, which can reduce the thickness by 0.1 mm to 0.5 mm relative to the structure shown in FIG. 3.
  • the thickness of the color filter substrate 300 is preferably controlled between 0.2 mm and 0.4 mm.
  • a first main through hole 811 is provided on the first light shielding layer 810.
  • a second main through hole 821 is provided on the second light shielding layer 820.
  • the first main through hole 811 and the second main through hole 821 are both located in the functional area 13 and both face the camera module 20.
  • the light blocking structure 800 can not only prevent the user from seeing the internal structure of the display device 1 through the non-display area 12; at the same time, by providing the first main through hole 811 and the second main through hole 821, external light can enter the bottom of the non-display area 12 through the first main through hole 811 and the second main through hole 821, and be captured by the camera module 20.
  • the projection of the second main through hole 821 covers the projection of the first main through hole 811.
  • the second light shielding layer 820 is prevented from blocking the lens of the camera module 20, thereby forming a viewing angle.
  • the first main through hole 811 and the second main through hole 821 are concentrically arranged.
  • the distance between the outer contour of the first main through hole 811 and the outer contour of the second main through hole 821 needs to be controlled within a suitable range. When the distance is too large, the user can easily see the first light shielding layer 810 through the second main through hole 821 on the second light shielding layer 820.
  • the inventor found through a large number of experiments that when the minimum distance from the outer contour of the first main through hole 811 to the outer contour of the second main through hole is greater than or equal to 0.05 mm, and less than or equal to 0.13 mm, the above problems can be better balanced.
  • the sizes of the first main through hole 811 and the second main through hole 821 will affect the size of the viewing angle.
  • the inventor found through a large number of experiments that the minimum distance from the outer contour of the first main through hole 811 to the outer contour of the second main through hole is the first distance d1, and the minimum distance from the end surface of the first light shielding layer 810 facing the backlight structure 500 to the end surface of the second light shielding layer 820 facing the backlight structure 500 is the second distance d2, and the first distance d1 is less than the second distance d2.
  • the first light shielding layer 810 and the second light shielding layer 820 screen the range of light entering the camera module 20 to maintain consistency, and at the same time, the external light can enter the camera module 20 through the viewing angle to the greatest extent.
  • the second distance d2 is the thickness of the array substrate 100.
  • the shapes of the first main through hole 811 and the second main through hole 821 are both circular, and the first distance d1 is the difference between the radii of the first main through hole 811 and the second main through hole 821.
  • the diameter of the first main through hole 811 is taken as a
  • the diameter of the second main through hole 821 is taken as b.
  • the required viewing angle c is also reduced.
  • the viewing angle c of the camera module 20 is adjusted, while preventing the user from seeing too much of the internal structure of the display device 1 located below the functional area 13 through the first main through hole 811 and the second main through hole 821.
  • the difference between a and b is 0.2 mm, and half of the difference between a and b is less than the thickness of the array substrate 100.
  • the absolute value of the difference between the values of a and b must be greater than 1.0 mm and less than 3.0 mm. If the absolute value of the difference between the values of a and b is too large, the user can easily see the first light shielding layer 810 through the second main through hole 821 on the second light shielding layer 820. Although the first light shielding layer 810 is easily made of light shielding material, there is still a slight difference in brightness and/or grayscale. At the same time, if the absolute value of the difference between the values of a and b is too small, it is not conducive to the adjustment of the viewing angle of the camera module 20. In this embodiment, the absolute value of the difference between the values of a and b is greater than 1.5 mm and less than 2.5 mm.
  • the display panel 10 further includes a support structure 900.
  • the support structure 900 is disposed in the non-display area 12, and the support structure 900 is disposed between the color filter substrate 300 and the array substrate 100 to play a supporting role.
  • the two ends of the support structure 900 are used to abut against the color filter substrate 300 and the array substrate 100 respectively.
  • the backlight structure 500 is far away from the non-display area 12, resulting in a relatively low structural strength of the non-display area 12.
  • the support structure 900 is located in the functional area 13, and at least part of the support structure 900 surrounds the functional area 13.
  • a first main through hole 811 is opened on the first light shielding layer 810, which reduces the strength of the overall structure.
  • the support structure 900 includes a support column 910 and a support block 920, and the cross-sectional area of the support block 920 in the horizontal direction is larger than the cross-sectional area of the support column 910 in the horizontal direction.
  • the support block 920 is farther away from the center of the functional area 13 than the support column 910.
  • the support column 910 with a smaller cross-sectional area is arranged around the first main through hole 811 and the second main through hole 821, and the support block 920 with a larger cross-sectional area is arranged around the support column 910.
  • the display panel 10 is prevented from having a sudden change in structural strength near the functional area 13, thereby ensuring the stability of the overall structure.
  • the array substrate 100 includes a first glass substrate 110, an insulating film layer 120, and a metal film layer 130.
  • the insulating film layer 120 and the metal film layer 130 are arranged on the side of the first glass substrate 110 facing the color filter substrate 300, and the insulating film layer 120 covers the peripheral side of the metal film layer 130.
  • the insulating film layer 120 includes a first insulating layer 121 and a second insulating layer 122.
  • the metal film layer 130 includes two layers of metal wiring structures, namely, a first metal layer 131 and a second metal layer 132.
  • the first insulating layer 121 is wrapped around the peripheral side of the first metal layer 131, and the second metal layer 132 is wrapped around the peripheral side of the second metal layer 132.
  • a second metal layer 132 is also provided on the side of a portion of the first metal layer 131 away from the first glass substrate 110 to form a multi-layer metal wiring structure; and only at least a partial structure of the first insulating layer 121 and the second insulating layer 122 are provided on the side of a portion of the first metal layer 131 away from the first glass substrate 110 to form a single-layer metal wiring structure.
  • the projection of at least part of the support structure 900 on the array substrate 100 overlaps with the projection of the metal wiring structure on the array substrate 100.
  • at least part of the support column 910 and the support block 920 face the metal wiring structure.
  • the support column 910 and the support block 920 By facing at least part of the support column 910 and the support block 920 toward the metal wiring structure, when the display panel 10 is subjected to an extrusion and deforms, at least part of the support block 920 and the support column 910 can be against the metal wiring.
  • the strength of the metal wiring structure is greater than that of the first insulating layer 121 and the second insulating layer 122.
  • the support column 910 and the support block 920 are both facing the above-mentioned metal wiring structure.
  • the functional area 13 will produce a large deformation, especially the area with the first main through hole 811 and the second main through hole 821 will produce a large deformation.
  • the deformation amount of the area away from the first main through hole 811 and the second main through hole 821 is small. While each area produces an inwardly concave deformation, it also produces a certain horizontal displacement.
  • the end of the support block 920 and the support column 910 facing the metal wiring structure can be against the metal wiring.
  • the strength of the metal wiring structure is greater than the strength of the first insulating layer 121 and the second insulating layer 122.
  • the support column 910 faces the single-layer metal wiring structure
  • the support block 920 faces the multi-layer metal wiring structure.
  • the support block 920 can be against the multi-layer metal wiring structure, that is, against the second metal layer 132, so that the deformation of the display panel 10 in the area away from the first main through hole 811 and the second main through hole 821 is small;
  • the support column 910 can be against the single-layer metal wiring structure, that is, against the first metal layer 131, so that the deformation of the display panel 10 in the area close to the first main through hole 811 and the second main through hole 821 is large, thereby avoiding the sudden change of the deformation of the display panel 10 near the functional area 13, thereby ensuring the stability of the overall structure.
  • some support columns 910 and some support blocks 920 may not be provided with metal wiring structures on the outside. However, it is necessary to ensure that in the functional area 13, the number of support columns 910 and support blocks 920 provided with metal wiring structures on the outside is greater than the number of support columns 910 and support blocks 920 not provided with metal wiring structures on the outside, so as to ensure that the overall structure has better stability. Of course, in some other embodiments, the number of support columns 910 and support blocks 920 provided with metal wiring structures on the outside can be set according to actual needs.
  • one end of the support structure 900 is located above the color filter substrate 300.
  • a first light shielding layer 810 is provided on the color filter substrate 300
  • a flat layer 310 is provided on the first light shielding layer 810
  • the support structure 900 is formed on one of the array substrates 100 above the flat layer 310.
  • one end of the support structure 900 may be located above the array substrate 100.
  • the end of the support structure 900 away from the array substrate 100 is spaced apart from the color film substrate 300; when the display panel 10 is subjected to a squeezing force, the end of the support structure 900 away from the array substrate 100 abuts against the color film substrate 300.
  • a cutting line 14 is provided on the display panel, and the cutting line 14 is located outside the functional area 13.
  • the factory can cut the area according to the actual needs of the customer.
  • the minimum distance L1 between the support structure 900 and the cutting line 14 is greater than or equal to 50 microns.
  • the distance between the support structure 900 and the cutting line 14 is not too far.
  • the minimum distance L1 needs to be less than or equal to 200 microns to ensure that there is an effective support structure 900 between the array substrate 100 and the color film substrate 300 to ensure the uniformity of the box thickness between the two.
  • the minimum distance L2 between the first main through hole 811 and the support structure 900 needs to be greater than or equal to 30 microns to ensure the normal operation of the camera module 20 and other functional modules 50.
  • the distance between the support structure 900 and the first main through hole 811 is not too far.
  • the minimum distance L2 needs to be greater than or equal to 200 microns to ensure that there is an effective support structure 900 between the array substrate 100 and the color film substrate 300 to ensure the uniformity of the box thickness between the two.
  • the minimum distance L3 between the sealant 210 and the support structure 900 is controlled to be greater than or equal to 50 microns to prevent the sealant 210 from being applied to the surface of the support structure 900, thereby ensuring the uniformity of the overall thickness of the support structure 900, and then ensuring the uniformity of the box thickness of the color film substrate 300 and the array substrate 100.
  • the distance between the support structure 900 and the sealant 210 is not too far.
  • the minimum distance L3 needs to be greater than or equal to 200 microns to ensure that there is an effective support structure 900 between the array substrate 100 and the color film substrate 300 to ensure the uniformity of the box thickness between the two.
  • the color filter substrate 300, the first light shielding layer 810 located above the color filter substrate 300, and the first polarizer 600 are all away from the functional area 13. Only the second light shielding layer 820 is arranged above the functional area 13, and the portion of the second light shielding layer 820 located in the functional area 13 is provided with a functional through hole 822 penetrating therethrough.
  • the light blocking structure 800 further includes a third light shielding layer 830, which is formed on one side of the array substrate 100 close to the backlight structure 500, and at least part of the third light shielding layer 830 is located in the functional area 13.
  • At least part of the structure of the third light shielding layer 830 is exposed through the functional through hole 822, and is configured to absorb light of a certain wavelength band, that is, to allow light of a specific wavelength band to be emitted to the inside of the display device 1 through the third light shielding area, and enter the space below the functional area 13.
  • light of a specific wavelength band is allowed to be emitted to the outside of the display device 1 through the third light shielding area, and enter the outside world.
  • a camera module but also other functional modules 50 are installed below the functional area 13, such as an infrared camera module 51, an infrared light emitting module 52 and a photosensitive module 53.
  • the third light shielding layer 830 includes a functional filter block 831 configured to allow light of a specific wavelength band to pass through.
  • the functional filter block 831 includes at least a first filter block 8311, a second filter block 8312 and a third filter block 8313.
  • the first filter block 8311 is arranged above the infrared camera module 51, and is used to allow infrared light to pass through, so as to facilitate the infrared camera module 51 to obtain infrared light, and then realize infrared imaging.
  • the first filter block 8311 needs to allow more than 80% of infrared light to pass through to ensure normal lighting of the infrared camera module 51.
  • the second filter block 8312 is arranged above the infrared light emitting module 52, and is used to allow infrared light to pass through, so that the light emitted by the infrared light emitting module 52 can be diverged outward, and is used to realize functions such as detection.
  • the second filter block 8312 needs to allow more than 85% of infrared light to pass through to ensure that the infrared light emitting module 52 can emit infrared light that meets the preset brightness.
  • the third filter block 8313 can filter other preset light so that the photosensitive module 53 can collect light of a specific wavelength.
  • the third filter block 8313 needs to allow more than 35% of the light of a specific wavelength to pass through to ensure the accuracy of the detection of the photosensitive module 53.
  • a third main through hole 832 may be formed on the third light shielding layer 830, and the third main through hole 832 is located in the functional area 13 and faces the camera module 20.
  • the second main through hole 821 and the third main through hole 832 are concentrically arranged.
  • the projection of the second main through hole 821 covers the projection of the third main through hole 832.
  • the size of the third main through hole 832 needs to be the same as that of the first main through hole 811 and has the same function.
  • the minimum distance from the outer contour of the second main through hole 821 to the outer contour of the third main through hole 832 is the third distance d3.
  • the minimum distance from the end face of the second light shielding layer 820 facing the backlight structure 500 to the end face of the third light shielding layer 830 facing the backlight structure 500 is the fourth distance d4.
  • the third distance d3 is smaller than the fourth distance d4.
  • the third main through hole 832 is circular in shape, and its diameter d is the same as the diameter c of the first main through hole.
  • the ink with certain functionality can only be formed by screen printing process.
  • the third light shielding layer 830 is formed by screen printing process.
  • the manufacturing process of the display panel 10 is as follows:
  • Step 1000 Provide an array substrate 100 and a color filter substrate 300, and complete the box-matching process.
  • the array substrate 100 includes a first end face 101 and a second end face 102 that are arranged opposite to each other along the thickness direction, and the color filter substrate 300 is located on the second end face 102.
  • the size of the array substrate 100 is larger than that of the color filter substrate 300.
  • the color filter substrate 300 can only cover a part of the second end face 102, and the other part of the second end face 102 is not provided with the color filter substrate 300, and this part is used to correspond to the camera module 20.
  • Step 2000 cutting and grinding to obtain array substrate 100 and color filter substrate 300 units of specific sizes.
  • Step 3000 forming a first light shielding layer 810 on the first end surface of the array substrate 100 by inkjet printing. Functional through holes 822 and decorative through holes are reserved on the first light shielding layer 810.
  • Step 4000 forming a third light shielding layer 830 on a portion of the second end surface of the array substrate 100 away from the color filter substrate 300 by screen printing, and the functional filter blocks 831 of the third light shielding layer 830 are arranged corresponding to the functional through holes 822 .
  • a first light shielding layer 810 is formed on the inner side of the color filter substrate 300, and a second light shielding layer 820 is formed on the outer side of the array substrate 100. At least part of the structure of the first light shielding layer 810 allows light of a specific wavelength band to pass through. Specifically, in addition to the second main through hole 821, the second light shielding layer 820 also has a second auxiliary through hole that penetrates through.
  • the first light shielding layer 810 includes a shielding portion and a filter portion. The shielding portion is configured to block the passage of light, and the first main through hole is opened in the shielding portion and is located on the outer side of the camera module 20.
  • the filter portion is configured to allow light of a specific wavelength band to pass through, and its function is the same as the third light shielding layer 830 in the embodiment of FIG. 4. At least part of the filter portion is exposed through the second auxiliary through hole. Corresponding other functional modules 50 can be arranged below the filter portion.
  • the shielding portion of the third light shielding layer can be formed by a photolithography process, which is at least a partial structure of the black matrix layer.
  • the filter portion is formed by a screen printing process.
  • the first light shielding layer 810 can also be a film layer that allows light of a specific wavelength band to pass through. In this case, the first light shielding layer 810 is formed by screen printing.
  • the first light shielding layer 810 can also be a film layer that only blocks the passage of light. In this case, the first light shielding layer 810 is formed by photolithography and is a black matrix layer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板(10)和显示装置(1),显示面板(10)包括:阵列基板(100)、彩膜基板(300)、驱动芯片(400)和背光结构(500);驱动芯片(400)电性连接阵列基板(100)并用于控制阵列基板(100)上的电压信号,并且驱动芯片(400)设置于阵列基板(100)的内侧,彩膜基板(300)位于阵列基板(100)和背光结构(500)之间。其中,阵列基板(100)可覆盖于彩膜基板(300)和驱动芯片(400)的外侧,从而实现对位于阵列基板(100)内侧的结构的保护,同时,位于外侧的阵列基板(100)还可提升显示面板(10)外表面的平整度,以实现显示面板(10)的一体化设计。再者,利用阵列基板(100)位于外侧的设计,可省去在显示面板(10)的外侧贴附玻璃盖板,从而简化工艺步骤,提升产品良率,减薄显示装置(1)的整体厚度。

Description

显示面板和显示装置 技术领域
本发明属于显示技术领域,尤其涉及一种显示面板和显示装置。
背景技术
随着显示面板技术的不断发展,用户显示面板的一体化效果要求急剧提升。在液晶显示器(Liquid Crystal Display,简称LCD)中,为了保证表面的平整度,需要在LCD朝向用户将的最外侧贴附玻璃盖板(Cover Glass,简称CG)。然而,由于CG的采用不仅会导致成本增加,在贴附的工艺中还会造成一定良率的损失,同时对产品的轻薄化设计存在障碍。
发明内容
本申请的目的在于提供一种显示面板和显示装置,其可在控制成本的前提下,实现显示装置的轻薄化设计,同时,提升产品的良率。
根据本发明实施例的第一方面,提供一种显示面板,所述显示面板包括:阵列基板、彩膜基板、驱动芯片和背光结构;
所述驱动芯片电性连接所述阵列基板并用于控制所述阵列基板上的电压信号,并且,驱动芯片设置于阵列基板的内侧,所述彩膜基板位于所述阵列基板和背光结构之间。
进一步的,所述显示面板配置为位于摄像头模组的上方,所述显示面板包括功能区,所述摄像头模组位于所述功能区的下方;
所述背光结构远离所述功能区。
进一步的,所述显示面板配置为位于摄像头模组的上方,所述显示面板包括功能区,所述摄像头模组位于所述功能区的下方;
所述阵列基板和所述彩膜基板均覆盖所述功能区。
进一步的,所述显示面板包括第一遮光层和第二遮光层;所述第一遮光层形成 于所述彩膜基板的内侧,并且,其上开设有第一主通孔;所述第二遮光层形成于所述阵列基板的外侧,并且,其上开设有第二主通孔;
所述第一主通孔和所述第二主通孔均位于所述功能区,并均朝向所述摄像头模组;沿厚度方向,所述第二主通孔的投影覆盖所述第一主通孔的投影。
进一步的,所述第一主通孔和所述第二主通孔同心设置。
进一步的,将第一主通孔的外轮廓至第二主通孔的外轮廓的最小距离最为第一距离;沿厚度方向,将第一遮光层的朝向背光结构的端面至第二遮光层的朝向所述背光结构的端面的最小距离作为第二距离;
所述第一距离小于所述第二距离。
进一步的,第二遮光层上还开设有贯穿的第二辅通孔;
第一遮光层包括遮挡部分和滤光部分,所述遮挡部分配置为阻挡光线的通过,第一主通孔开设于遮挡部分;所述滤光部分配置为允许特定波段光线通过,所述滤光部分的至少部分通过所述第二辅通孔裸露。
进一步的,所述显示面板配置为位于摄像头模组的上方,所述显示面板包括功能区,所述摄像头模组位于所述功能区的下方;
所述阵列基板覆盖所述功能区,所述彩膜基板远离所述功能区。
进一步的,所述显示面板包括第二遮光层和第三遮光层;
所述第二遮光层形成于所述阵列基板的外侧,并且,所述第二遮光层的位于功能区的部分开设有贯穿的功能通孔;
所述第三遮光层形成于所述阵列基板的内侧。
进一步的,所述第三遮光层的至少部分位于所述功能区,并配置为允许特定波段光线通过,所述第三遮光层的至少部分结构通过所述功能通孔裸露。
进一步的,所述第二遮光层上开设有第二主通孔,所述第三遮光层上开设有第三主通孔;
所述第二主通孔和所述第三主通孔均位于所述功能区,并均朝向所述摄像头模组;沿厚度方向,所述第二主通孔的投影覆盖所述第三主通孔的投影。
进一步的,所述第二主通孔和所述第三主通孔同心设置;和/或,
将第二主通孔的外轮廓至第三主通孔的外轮廓的最小距离最为第三距离;沿厚度方向,将第二遮光层的朝向背光结构的端面至第三遮光层的朝向所述背光结构的端面的最小距离作为第四距离;所述第三距离小于第四距离。
进一步的,所述第三遮光层包括配置为允许特定波段光线通过的功能滤光块;
沿厚度方向,所述功能滤光块和所述功能通孔的位置对应,并且,所述功能滤光块沿厚度方向的投影覆盖所述功能通孔沿厚度方向的投影。
进一步的,所述第二遮光层通过喷墨打印工艺形成;和/或,
所述第三遮光层通过网版印刷工艺形成。
进一步的,所述显示面板还包括支撑结构,所述支撑结构设置于所述彩膜基板和所述阵列基板之间。
进一步的,所述显示面板配置为位于摄像头模组的上方,所述显示面板包括功能区,所述摄像头模组位于所述功能区的下方,所述支撑结构位于所述功能区,和/或,所述支撑结构的至少部分结构环绕所述功能区。
进一步的,所述支撑结构包括支撑柱和支撑块,所述支撑块水平方向的横截面积大于所述支撑柱水平方向的横截面积;
所述支撑块相较于所述支撑柱远离所述功能区的中心位置。
进一步的,所述阵列基板包括第一玻璃基板和金属膜层,所述金属膜层包括一层或者多层金属走线结构;沿厚度方向,所述支撑柱朝向单层的所述金属走线结构,和/或,所述支撑块朝向多层的所述金属走线结构;和/或,
自所述功能区的中心向外的方向,所述支撑柱和支撑块的横截面积之和逐渐增加。
进一步的,显示面板上设有切割线,所述支撑结构至所述切割线之间的最小距离L1大于等于50微米,并且,小于等于200微米;和/或,
所述显示面板配置为位于摄像头模组的上方,其包括第一遮光层,所述第一遮光层形成于所述彩膜基板的内侧,并且,其上开设有朝向所述摄像头模组的第一主通孔;所述支撑结构至所述第一主通孔之间的最小距离大于等于30微米,并且,小于等于200微米;和/或,
所述显示面板还包括封框胶,所述封框胶设置于所述彩膜基板和所述阵列基板 之间,所述支撑结构至所述封框胶的最小距离大于等于50微米,并且,小于等于200微米。
进一步的,所述支撑结构的一端位于彩膜基板和所述阵列基板中的一个;
当所述显示面板不受挤压力时,所述支撑结构的另一端与彩膜基板和所述阵列基板中的另一个间隔设置;当所述显示面板受到挤压力时,所述支撑结构的另一端抵接于彩膜基板和所述阵列基板中的另一个。
根据本发明实施例的第二方面,提供一种显示装置,所述显示面板包括摄像头模组和上述的显示面板,所述显示面板位于所述摄像头模组的上方。
本申请提供的上述显示面板和显示装置,采用阵列基板覆盖于彩膜基板外侧的结构,可利用阵列基板对位于阵列基板内侧的结构的保护,同时,位于外侧的阵列基板还可提升显示面板外表面的平整度,以实现显示面板的一体化设计。再者,利用阵列基板位于外侧的设计,可省去在显示面板的外侧贴附玻璃盖板,从而简化工艺步骤,提升产品良率,减薄显示装置的整体厚度。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1为一种设计的显示面板的剖视示意图;
图2为根据本发明实施例示出的显示装置的结构示意图;
图3为根据本发明实施例示出的显示面板的剖视示意图;
图4为根据本发明另一实施例示出的显示面板的剖视示意图;
图5为根据本发明实施例示出的显示面板的另一剖视示意图;
图6为根据本发明另一实施例示出的显示面板的另一剖视示意图;
图7为根据本发明实施例示出的显示面板的又一剖视示意图;
图8为根据本发明实施例示出的显示面板的再一结构示意图。
附图标记说明
显示装置1
显示面板10
显示区11
非显示区12
功能区13
切割线14
玻璃盖板15
摄像头模组20
背壳30
中框40
功能模组50
红外摄像模组51
红外发光模组52
感光模组53
阵列基板100
第一玻璃基板110
绝缘膜层120
第一绝缘层121
第二绝缘层122
金属膜层130
第一金属层131
第二金属层132
光线偏转层200
封框胶210
彩膜基板300
平坦层310
驱动芯片400
背光结构500
背光板510
滤光组件520
第一偏振片600
第二偏振片700
档光结构800
第一遮光层810
第一主通孔811
第二遮光层820
第二主通孔821
功能通孔822
第三遮光层830
功能滤光块831
第一滤光块8311
第二滤光块8312
第三滤光块8313
第三主通孔832
支撑结构900
支撑柱910
支撑块920。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
本申请提供一种显示面板和显示装置。显示装置包括摄像头模组和显示面板,显示面板位于摄像头模组的上方。显示面板包括阵列基板、彩膜基板、驱动芯片和背光结构。所述驱动芯片电性连接所述阵列基板,并用于控制所述阵列基板上的电压信号所述彩膜基板位于所述阵列基板和背光结构之间。上述结构,采用阵列基板覆盖于彩膜基板和所述驱动芯片的外侧的结构,可利用阵列基板对位于阵列基板内侧的结构的保护,同时,位于外侧的阵列基板还可提升显示面板外表面的平整度,以实现显示面板的一体化设计。再者,利用阵列基板位于外侧的设计,可省去在显示面板的外侧贴附玻璃盖板,从而简化工艺步骤,提升产品良率,减薄显示装置的整体厚度。
本申请所述的显示面板可为LCD(Liquid Crystal Display)显示器件,其可应用于笔记本电脑、平板电脑、电视机、手机、手表等具有显示功能的产品或部件中,作为笔记本电脑、平板电脑、电视机、手机、手表等具有显示功能的产品或部件的显示面板。
下面结合附图2至图8对本申请所提供的显示面板10和显示装置1进行详细描述。
结合图2-图4所示,本申请提供一种显示装置1。显示装置1包括显示面板10、摄像头模组20、背壳30和中框40。显示面板10盖设于摄像头的远离背壳30的一端,以提升显示装置1朝向用户一侧的一体化程度。显示面板10、摄像头模组20位于中框40上的容纳孔中,并与背壳30固定连接,中框40起到支撑的作用。或者,显示面板10和摄像头模组20也可通过中框40固定于背壳30上。如图5所示,显示面板10 包括阵列基板100、光线偏转层200、彩膜基板300、驱动芯片400、背光结构500、第一偏振片600和第二偏振片700。
显示面板10还包括显示区11和非显示区12。摄像头模组20设置于非显示区12的下方。阵列基板100延伸并覆盖至摄像头模组20的上方。
在显示区11中,光线偏转层200即为液晶层。背光结构500设置于显示面板10的远离用户的一侧。显示面板10还包括发光结构,在本实施例中,发光结构位于显示面板10的侧部,其用于发出白色光。背光结构500包括背光板510和滤光组件520。背光板510可对发光结构发出的白色光进行传导的作用,并提升白色光分布的均匀性。滤光组件520可对背光板510传导来的光线进行过滤作用,以得到均一性更好的目标光线。其中,滤光组件520可包含棱镜片、扩散片等膜片。通过背光结构500传导和过滤得到的光,先通过第一偏振片600,以对光线进行初步筛选。之后,经过彩膜基板300,以呈现不同颜色的光线。液晶层夹设于阵列基板100和彩膜基板300之间,驱动芯片400电性连接于阵列基板100,并用于控制阵列基板100上的电压信号,从而控制施加到液晶层上的电压。当液晶层上的电压的改变,会改变自再彩膜基板300上射出的、经过液晶层的光线的偏转角度,从而实现对不同颜色光线的呈现。光线最后通过第二偏振片700的最终筛选后,向用户发射。
在非显示区12中,无需进行智能显示。此时,光线偏转层200可仍为液晶层,也可仅为真空层。背光结构500远离非显示区12,同时,位于非显示区12的档光结构800可对进入非显示区12中光进行遮挡。
需要说明的是,为了清晰的展现彩膜基板300和阵列基板100的结构和位置关系,在图3和图4中,未将光线偏转层200的结构示出。在实际产品中,光线偏转层200夹设于彩膜基板300和阵列基板100之间(参考图5所示)。如图5所示,在实际生产过程中,需要在彩膜基板300和阵列基板100之间设置封框胶210,并将液晶填充于封框胶210围成的空间中。
结合图3-图5所示,在本实施例中,驱动芯片400设置于彩膜基板300的周侧,并设置于非显示区12。阵列基板100位于彩膜基板300和驱动芯片400的远离背光结构500的一侧。此时,驱动芯片400和彩膜基板300之间存在一定的段差和间距,将阵列基板100盖设于驱动芯片400和彩膜基板300的上方,利用阵列基板100对位于阵列基板100内侧的结构的保护,同时,位于外侧的阵列基板100还可提升显示面板10外表面的平整度,以实现显示面板10的一体化设计。当然,在其他实施例中,驱 动芯片400可不设置于彩膜基板300的周侧,而是通过电路板连接至阵列基板100,电路板的至少部分结构设置于彩膜基板300的周侧。上述两种实施例中,驱动芯片400均是位于阵列基板100的内侧。此时,电路板和彩膜基板300之间存在一定的段差和间距,将阵列基板100盖设于驱动芯片400和彩膜基板300的上方,同样可对对位于阵列基板100内侧的结构的保护,同时,位于外侧的阵列基板100还可提升显示面板10外表面的平整度,以实现显示面板10的一体化设计。如图1所示,在一种设计中,通常会将彩膜基板300设置于远离背光结构500的一侧,并将驱动芯片400和彩膜基板300设置于彩膜基板300的远离背光结构500的一侧,然而,在该设计中,驱动芯片400和彩膜基板300具有段差和间隙的表面便裸露于外侧,则需要在其上覆设玻璃盖板15,以提升显示面板10外表面的平整度。本申请的技术方案与该设计相比,不仅可提升显示面板10外表面的平整度,还可省去在显示面板10的外侧贴附玻璃盖板,从而简化工艺步骤,提升产品良率,减薄显示装置1的整体厚度。
结合图3、图4和图6所示,在非显示区12中,还设置有功能区13,摄像头模组20设置于功能区13的下方。同时,还可根据设计需求,在功能区13的下方增加功能模组50。换言之,外界光线需进入功能区13中,以被位于功能区13下方的摄像头模组20和其他功能模组50捕捉;或者,位于功能区13下方的特定的功能模组50发出的光线需要通过功能区13向外发射。在本申请中,背光结构500远离功能区13,以避免背光结构500发出的白光影响摄像头模组20以及其他功能模组50对外界光线的采集,同时,还避免背光结构500发出的白光影响其他功能模组50向外发出的光线。
显示面板10还包括档光结构800。档光结构800设置于非显示区12,并用于在特定区域对光线进行遮挡,避免外界光线进入显示装置1的内部,从而避免用户通过非显示区12看到显示装置1内部的结构。具体的,档光结构800包括第一遮光层810和第二遮光层820。第一遮光层810形成于彩膜基板300的内侧,第二遮光层820形成于阵列基板100的外侧。
在本实施例中,第一遮光层810通过光刻工艺形成,为黑色矩阵层,其遮光效果佳。然而,光刻工艺中使用掩膜版造价高、结构调整困难。第二遮光层820通过喷墨打印工艺形成,材料为黑色油墨,虽然其遮光效果不及黑色矩阵,但是通过调整软件程序,并可实现对第二遮光层820的形状和位置的调整,操作灵活。同时,黑色矩阵在成型工艺中,温度较高,然而阵列基板的性能受温度影响较大,若在阵列基板100上形成黑色矩阵层,则会破坏其形成,因此,将黑色矩阵层形成于彩膜基板300上, 将黑色油墨层形成于阵列基板100上。
同时,可在第二遮光层820上形成装饰通孔,并在该装饰通孔中填充可进行反光或者发光的材料,以使得用户可在外侧观测到装饰通孔。通过设计装置通孔的形状,可实现展示效果。例如:可对品牌logo进行展示。
如图3所示,在本实施例中,阵列基板100和彩膜基板300均覆盖功能区13。阵列基板100和彩膜基板300均覆盖功能区13,以提升显示装置1的朝向用户一侧表面的一体化程度,同时,还可对位于功能区13下方的摄像头模组20以及其他功能模组50进行保护。
当然,在其他实施例中,如图4所示,彩膜基板300、位于彩膜基板300上方的第一遮光层810和第一偏振片600均远离功能区13。此时,阵列基板100设置于功能区13的上方,以对位于功能区13下方的摄像头模组20和其他功能模组50进行遮挡和保护。显示面板10的安装位置可整体下移,显示装置1的整体厚度减少,从而有利于显示装置1的小型化设计。此时,仅可通过第二遮光层820来调整摄像头模组20的可视角。彩膜基板300的厚度通常在0.1毫米至0.5毫米之间,而将彩膜基板设置为如图所示结构,即远离功能区13,并让阵列基板100整体下移,可相对于图3所示结构减少0.1毫米至0.5毫米的厚度。在本实施例中,为了保证结构强度以及整体轻薄化设计,优选的将彩膜基板300的厚度控制在0.2毫米至0.4毫米之间。
在如图3所示的实施例中,第一遮光层810上开设有第一主通孔811。第二遮光层820上开设有第二主通孔821。第一主通孔811和第二主通孔821均位于功能区13,并均朝向摄像头模组20。在上述结构中,档光结构800不仅可避免用户可通过非显示区12看到显示装置1内部的结构;同时,通过开设第一主通孔811和第二主通孔821,使得外界光线可通过第一主通孔811和第二主通孔821进入到非显示区12的下方,并被摄像头模组20捕捉。
进一步的,沿厚度方向,第二主通孔821的投影覆盖第一主通孔811的投影。通过上述设置,以避免第二遮光层820对摄像头模组20的镜头进行遮挡,从而形成可视角。在本实施例中,第一主通孔811和第二主通孔821同心设置。为了保证较佳的摄影效果,第一主通孔811的外轮廓和第二主通孔821的外轮廓之间的距离需要控制在合适范围内,当距离过大时,用户容易透过第二遮光层820上的第二主通孔821看到第一遮光层810。当距离过小时,则不利于摄像头模组20的可视角的调整。发明人通过大量实验发现,当第一主通孔811的外轮廓至第二主通孔的外轮廓的最小距离大 于等于0.05mm,并且,小于等于0.13mm时,可较好的平衡上述问题。
同时,由于第一主通孔811和第二主通孔821的大小均会对可视角的大小造成影响。发明人通过大量实验发现,将第一主通孔811的外轮廓至第二主通孔的外轮廓的最小距离最为第一距离d1,将第一遮光层810的朝向背光结构500的端面至第二遮光层820的朝向背光结构500的端面的最小距离作为第二距离d2,第一距离d1小于第二距离d2。通过上述设置,可保证第一遮光层810和第二遮光层820对进入摄像头模组20的光线范围的筛选保持一致性,同时,使得外界光线可最大程度地通过可视角进入摄像头模组20中。在图3对应的实施例中,第二距离d2即为阵列基板100的厚度。并且,在该实施中,第一主通孔811和第二主通孔821的形状均为圆形,第一距离d1即为一主通孔811和第二主通孔821两者半径的差值。在本实施例中,将第一主通孔811的直径作为a,将第二主通孔821的直径作为b。当摄像头模组20的透镜减小时,其所需的可视角c也会减小。通过控制a和b的数值,调整摄像头模组20的可视角c,同时又能避免用户通过第一主通孔811和第二主通孔821看到过多的、位于功能区13下方的显示装置1的内部结构。在本实施例中,a和b的差值为0.2mm,并且,a和b的差值的一半小于阵列基板100的厚度。
根据上文分析可知,为了保证较佳的摄影效果,a和b的数值之差的绝对值需大于1.0mm,并且,小于3.0mm。若a和b的数值之差的绝对值过大,则用户容易透过第二遮光层820上的第二主通孔821看到第一遮光层810。虽然第一遮光层810易为遮光材料制成,但仍存在一点的亮度和/或灰度的差异。同时,若a和b的数值之差的绝对值过小,则不利于摄像头模组20的可视角的调整。在本实施例中,a和b的数值之差的绝对值大于1.5mm,并且,小于2.5mm。
如图7和图8所示,显示面板10还包括支撑结构900,
支撑结构900设置于非显示区12,并且,支撑结构900设置于彩膜基板300和阵列基板100之间,以起到支撑的作用。其中,当显示面板10受到挤压时,支撑结构900的两端分别用于抵靠彩膜基板300和阵列基板100。背光结构500远离非显示区12,从而导致非显示区12的结构强度较小,通过在彩膜基板300和阵列基板100之间增设支撑结构900,以对整体结构起到支撑和加强的作用。
具体的,支撑结构900位于功能区13,同时,支撑结构900的至少部分结构环绕功能区13。根据上文分析可知,为了保证外界光线可顺利的通过档光结构800进入到摄像头模组20中,在第一遮光层810上开设第一主通孔811,降低了整体结构的强 度。当用户挤压位于功能区13的显示面板10时,显示面板10容易产生向内以及左右的位移。通过将支撑结构900设置于功能区13,可有效减少显示面板10产生过大的位移。
进一步的,支撑结构900包括支撑柱910和支撑块920,支撑块920水平方向的横截面积大于支撑柱910水平方向的横截面积。支撑块920相较于支撑柱910远离功能区13的中心位置。在本实施例中,由横截面积较小的支撑柱910环绕设置于第一主通孔811和第二主通孔821的周侧,再由横截面积较大的支撑块920设置于支撑柱910的周侧。在实际测试过程中,发明人发现,功能区13中开设有第一主通孔811和第二主通孔821位置处的显示面板10的强度较低,在外力作用下,容易产生较大的形变,若直接在功能区13的附近增设大面积的支撑结构900,容易导致功能区13边缘位置的结构强度出现突变,从而导致显示面板10在受到挤压力时候,功能区13边缘位置出现较大段差,不利于整体结构的稳定性。在本申请的上述结构中,通过对支撑柱910和支撑块920的位置的限定,使得自功能区13中心向外的方向,支撑柱910和/或支撑块920所占的面积逐渐增大,及自功能区13的中心向外的方向,支撑柱910和支撑块920的横截面积之和逐渐增加。通过上述设置,避免显示面板10在功能区13附近出现结构强度的突变,从而保证了整体结构的稳定性。
进一步的,如图7所示,阵列基板100包括第一玻璃基板110、绝缘膜层120以及金属膜层130。绝缘膜层120和金属膜层130设置于第一玻璃基板110的朝向彩膜基板300的一侧,同时,绝缘膜层120覆盖于金属膜层130的周侧。在本实施例中,绝缘膜层120包括第一绝缘层121和第二绝缘层122。金属膜层130包括两层金属走线结构,分别为第一金属层131和第二金属层132。第一绝缘层121包裹于第一金属层131的周侧,第二金属层132包裹于第二金属层132的周侧。部分第一金属层131的远离第一玻璃基板110的一侧还设置有第二金属层132,以形成多层金属走线结构;部分第一金属层131的远离第一玻璃基板110的一侧仅设置有第一绝缘层121的至少部分结构和第二绝缘层122,以形成单层金属走线结构。
沿厚度方向H,至少部分支撑结构900在阵列基板100上的投影与金属走线结构在阵列基板100上的投影重叠,换言之,至少部分支撑柱910和支撑块920朝向金属走线结构。通过上述设置,当显示面板10受到挤压力时,功能区13产生较大的形变,特别是开设有第一主通孔811和第二主通孔821的区域会产生较大的形变。远离第一主通孔811和第二主通孔821的区域的形变量较小。各个区域在产生向内凹陷的 形变的同时,还会产生一定的水平位移。将至少部分支撑柱910和支撑块920朝向金属走线结构,可使得当显示面板10收到挤压而产生形变时,至少部分支撑块920和支撑柱910的可抵靠于金属走线上。金属走线结构的强度大于第一绝缘层121和第二绝缘层122的强度,通过抵靠金属走线的方式,不仅可避免显示面板10的部分区域凹陷量过大的问题,还可通过抵靠以增加横向摩擦力的方式来减少或者避免显示面板10局部的横向位移。
进一步的,支撑柱910和支撑块920均朝向上述金属走线结构。在上述结构中,当显示面板10受到挤压力时,功能区13产生较大的形变,特别是开设有第一主通孔811和第二主通孔821的区域会产生较大的形变。远离第一主通孔811和第二主通孔821的区域的形变量较小。各个区域在产生向内凹陷的形变的同时,还会产生一定的水平位移。将支撑块920和支撑柱910朝向金属走线结构,可使得当显示面板10收到挤压而产生形变时,支撑块920和支撑柱910的朝向金属走线结构的一端可抵靠于金属走线上。金属走线结构的强度大于第一绝缘层121和第二绝缘层122的强度,通过抵靠金属走线的方式,不仅可避免显示面板10的部分区域凹陷量过大的问题,还可通过抵靠以增加横向摩擦力的方式来减少或者避免显示面板10局部的横向位移。
同时,支撑柱910朝向单层的金属走线结构,并且,支撑块920朝向多层的金属走线结构。在上述结构中,当显示面板10产生形变时,支撑块920可抵靠于多层金属走线结构上,即抵靠于第二金属层132上,从而实现显示面板10在远离第一主通孔811和第二主通孔821区域的形变量较小;支撑柱910可抵靠于单层金属走线结构上,即抵靠于第一金属层131上,从而实现显示面板10在靠近第一主通孔811和第二主通孔821区域的形变量较大,从而避免显示面板10在功能区13附近出现形变量的突变,从而保证了整体结构的稳定性。
在其他实施例中,部分支撑柱910和部分支撑块920的外侧可不设置有金属走线结构。但需保证在功能区13,外侧设置有金属走线结构的支撑柱910和支撑块920的数量大于外侧不设置有金属走线结构的支撑柱910和支撑块920的数量,以保证整体结构具有较佳的稳定性。当然,在另外的一些实施例中,可根据实际需求设置外侧设置有金属走线结构的支撑柱910和支撑块920的数量。
如图7所示,在本实施例中,支撑结构900的一端位于彩膜基板300上方。具体的,彩膜基板300上设置有第一遮光层810,第一遮光层810上设置有平坦层310,支撑结构900形成于平坦层310的上方阵列基板100中的一个。当显示面板10不受挤 压力时,支撑结构900的远离彩膜基板300的一端与阵列基板100间隔设置;当显示面板10受到挤压力时,支撑结构900的远离彩膜基板300的一端抵接于阵列基板100上的金属走线层上。
当然,在其他实施例中,还可以是,支撑结构900的一端位于阵列基板100上方。当显示面板10不受挤压力时,支撑结构900的远离阵列基板100的一端与彩膜基板300间隔设置;当显示面板10受到挤压力时,支撑结构900的远离阵列基板100的一端端抵接于彩膜基板300上。
如图8所示,在显示面板10的制作过程中,显示面板上设置有切割线14,切割线14位于功能区13的外侧。工厂可根据客户实际需求进行区域的切割。为了避免在切割线14处进行切割时,对支撑结构900产生影响,需保证支撑结构900至切割线14之间的最小距离L1大于等于50微米。同时,为了保证阵列基板100和彩膜基板300之间的盒厚的均一性,支撑结构900距离切割线14的距离不易过远。优选的,该最小距离L1需要小于等于200微米,以保证阵列基板100和彩膜基板300之间具有有效的支撑结构900以保证两者之间的盒厚的均一性。
进一步的,若第一主通孔811和支撑结构900之间的距离过近,第一遮光层810无法完全覆盖支撑结构900,背光结构500发出的光照会射至支撑结构900,并由支撑结构900反射,从而影响摄像头模组或者其他功能模组的正常工作。因此,第一主通孔811和支撑结构900之间的最小距离L2需要大于等于30微米,从而保证摄像头模组20和其他功能模组50的正常工作。同时,为了保证阵列基板100和彩膜基板300之间的盒厚的均一性,支撑结构900距离第一主通孔811的距离不易过远。优选的,该最小距离L2需要大于等于200微米,以保证阵列基板100和彩膜基板300之间具有有效的支撑结构900以保证两者之间的盒厚的均一性。
进一步的,若封框胶210距离支撑结构900的距离过近,会出现封框胶210在涂覆的过程中,封框胶210涂覆至支撑结构900的表面,从而导致支撑结构900的厚度不均衡的问题。因此,控制封框胶210至支撑结构900之间的最小距离L3大于等于50微米,以避免封框胶210涂覆至支撑结构900的表面,从而保证支撑结构900整体厚度的均一性,进而保证彩膜基板300和阵列基板100盒厚的均一性。同时,为了保证阵列基板100和彩膜基板300之间的盒厚的均一性,支撑结构900距离封框胶210的距离不易过远。优选的,该最小距离L3需要大于等于200微米,以保证阵列基板100和彩膜基板300之间具有有效的支撑结构900以保证两者之间的盒厚的均一性。
如图4所示,在该实施例中,彩膜基板300、位于彩膜基板300上方的第一遮光层810和第一偏振片600均远离功能区13。功能区13上方仅设置有第二遮光层820,并且,第二遮光层820的位于功能区13的部分开设有贯穿的功能通孔822。档光结构800还包括第三遮光层830,第三遮光层830形成于阵列基板100的靠近背光结构500的一侧,并且,第三遮光层830的至少部分位于功能区13。
第三遮光层830的至少部分结构通过功能通孔822裸露,并配置为吸收部分波段的光线,即允许特定波段光线通过第三遮光区向显示装置1的内部发射,并进入到位于功能区13下方的空间中。或者,允许特定波段光线通过第三遮光区向显示装置1的外部发射,并进入到外界。具体的,如图6所示,功能区13的下方不仅安装有摄像头模块,还安装有其他功能模组50,例如:红外摄像模组51、红外发光模组52和感光模组53。在该实施例中,第三遮光层830包括配置为允许特定波段光线通过的功能滤光块831。沿厚度方向H,功能滤光块831和功能通孔822的位置对应,并且,功能滤光块831沿厚度方向H的投影覆盖功能通孔822沿厚度方向的投影,以最大程度对通过其的光线进行过滤。在该实施例中,功能滤光块831至少包括第一滤光块8311、第二滤光块8312以及第三滤光块8313。其中,第一滤光块8311设置于红外摄像模组51的上方,并用于使得红外光透过,从而有利于红外摄像模组51获取红外光,进而实现红外成像。在本实施例中,第一滤光块8311需允许大于80%以上的红外光透过,以保证红外摄像模组51的正常采光。第二滤光块8312设置于红外发光模组52的上方,并用于使得红外光透过,从而使得红外发光模组52发出的光能够向外发散,并用于实现探距等功能。在本实施例中,第二滤光块8312需允许大于85%以上的红外光透过,以保证红外发光模组52能够向外发出满足预设亮度的红外光。第三滤光块8313可对其他预设光线进行过滤,以使感光模组53可对特定波长的光线进行采集。在本实施例中,第三滤光块8313需允许大于35%以上的特定波长的光透过,以保证感光模组53检测的精准度。进一步的,如图4所示,在该实施例中,第三遮光层830上还可形成有贯穿的第三主通孔832,第三主通孔832,位于功能区13,并朝向摄像头模组20。第二主通孔821和第三主通孔832同心设置。并且,沿厚度方向,第二主通孔821的投影覆盖第三主通孔832的投影。第三主通孔832的尺寸需要与第一主通孔811的尺寸相同且作用相同。具体的,将第二主通孔821的外轮廓至第三主通孔832的外轮廓的最小距离最为第三距离d3。沿厚度方向H,将第二遮光层820的朝向背光结构500的端面至第三遮光层830的朝向背光结构500的端面的最小距离作为第四距离d4。第三距离d3小于第四距离d4。
在图4所示的实施例中,第三主通孔832的形状为圆形,其直径d与第一主通孔的直径c相同。
需要说明的是,由于现有技术的限制,具有一定功能性的油墨仅能通过网版印刷工艺形成。换言之,第三遮光层830通过网版印刷工艺形成。
具体的,该显示面板10的制作工艺如下:
步骤1000:提供阵列基板100和彩膜基板300,并完成对盒工艺。其中,阵列基板100包括沿厚度方向相对设置的第一端面101和第二端面102,彩膜基板300位于第二端面102上。并且,阵列基板100的尺寸大于彩膜基板300,换言之,彩膜基板300仅能覆盖第二端面102的部分位置,第二端面102的另一部分位置未设置有彩膜基板300,该位置用于对应摄像头模组20设置。
步骤2000:切割、研磨得到特定尺寸的阵列基板100和彩膜基板300单元。
步骤3000:在阵列基板100的第一端面通过喷墨打印的工艺形成第一遮光层810。第一遮光层810上预留有功能通孔822和装饰通孔。
步骤4000:在阵列基板100的第二端面的远离彩膜基板300的部分位置上,通过网版印刷工艺形成第三遮光层830,第三遮光层830的功能滤光块831与功能通孔822对应设置。
需要说明的是,参考图3所示,在彩膜基板300的内侧形成第一遮光层810,并在阵列基板100的外侧形成第二遮光层820的技术方案中。第一遮光层810至少部分结构允许特定波段光线通过。具体的,第二遮光层820上出了开设第二主通孔821之外,还开设有贯穿的第二辅通孔。第一遮光层810包括遮挡部分和滤光部分。遮挡部分配置为阻挡光线的通过,第一主通孔开设于遮挡部分,并位于摄像头模组20的外侧。滤光部分配置为允许特定波段光线通过,其作用与图4实施例中的第三遮光层830相同。滤光部分的至少部分通过第二辅通孔裸露。在滤光部分的下方可设置对应的其他功能模组50。此时,第三遮光层的遮挡部分可通过光刻工艺形成,为黑色矩阵层的至少部分结构。滤光部分通过网版印刷工艺形成。当然,第一遮光层810也可均允许特定波段光线通过的膜层,此时,第一遮光层810整体均通过网版印刷工艺形成。又或者,第一遮光层810也可为仅阻挡光线的通过的此时。此时,第一遮光层810通过光刻工艺形成,为黑色矩阵层。
在本申请中,所述结构实施例与方法实施例在不冲突的情况下,可以互为补充。
以上对本公开实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。

Claims (21)

  1. 一种显示面板,其特征在于,所述显示面板包括:阵列基板、彩膜基板、驱动芯片和背光结构;
    所述驱动芯片电性连接所述阵列基板并用于控制所述阵列基板上的电压信号,并且,驱动芯片设置于阵列基板的内侧,所述彩膜基板位于所述阵列基板和背光结构之间。
  2. 如权利要求1所述的显示面板,其特征在于,所述显示面板配置为位于摄像头模组的上方,所述显示面板包括功能区,所述摄像头模组位于所述功能区的下方;
    所述背光结构远离所述功能区。
  3. 如权利要求1所述的显示面板,其特征在于,所述显示面板配置为位于摄像头模组的上方,所述显示面板包括功能区,所述摄像头模组位于所述功能区的下方;
    所述阵列基板和所述彩膜基板均覆盖所述功能区。
  4. 如权利要求3所述的显示面板,其特征在于,
    所述显示面板包括第一遮光层和第二遮光层;所述第一遮光层形成于所述彩膜基板的内侧,并且,其上开设有第一主通孔;所述第二遮光层形成于所述阵列基板的外侧,并且,其上开设有第二主通孔;
    所述第一主通孔和所述第二主通孔均位于所述功能区,并均朝向所述摄像头模组;沿厚度方向,所述第二主通孔的投影覆盖所述第一主通孔的投影。
  5. 如权利要求4所述的显示面板,其特征在于,所述第一主通孔和所述第二主通孔同心设置。
  6. 如权利要求4所述的显示面板,其特征在于,将第一主通孔的外轮廓至第二主通孔的外轮廓的最小距离最为第一距离;沿厚度方向,将第一遮光层的朝向背光结构的端面至第二遮光层的朝向所述背光结构的端面的最小距离作为第二距离;
    所述第一距离小于第二距离。
  7. 如权利要求4所述的显示面板,其特征在于,第二遮光层上还开设有贯穿的第二辅通孔;
    第一遮光层包括遮挡部分和滤光部分,所述遮挡部分配置为阻挡光线的通过,第一主通孔开设于遮挡部分;所述滤光部分配置为允许特定波段光线通过,所述滤光部分的至少部分通过所述第二辅通孔裸露。
  8. 如权利要求1所述的显示面板,其特征在于,所述显示面板配置为位于摄像头模组的上方,所述显示面板包括功能区,所述摄像头模组位于所述功能区的下方;
    所述阵列基板覆盖所述功能区,所述彩膜基板远离所述功能区。
  9. 如权利要求8所述的显示面板,其特征在于,
    所述显示面板包括第二遮光层和第三遮光层;
    所述第二遮光层形成于所述阵列基板的外侧,并且,所述第二遮光层的位于功能区的部分开设有贯穿的功能通孔;
    所述第三遮光层形成于所述阵列基板的内侧。
  10. 如权利要求9所述的显示面板,其特征在于,所述第三遮光层的至少部分位于所述功能区,并配置为允许特定波段光线通过,所述第三遮光层的至少部分结构通过所述功能通孔裸露。
  11. 如权利要求9所述的显示面板,其特征在于,所述第二遮光层上开设有第二主通孔,所述第三遮光层上开设有第三主通孔;
    所述第二主通孔和所述第三主通孔均位于所述功能区,并均朝向所述摄像头模组;沿厚度方向,所述第二主通孔的投影覆盖所述第三主通孔的投影。
  12. 如权利要求11所述的显示面板,其特征在于,所述第二主通孔和所述第三主通孔同心设置;和/或,
    将第二主通孔的外轮廓至第三主通孔的外轮廓的最小距离最为第三距离;沿厚度方向,将第二遮光层的朝向背光结构的端面至第三遮光层的朝向所述背光结构的端面的最小距离作为第四距离;所述第三距离小于第四距离。
  13. 如权利要求9所述的显示面板,其特征在于,所述第三遮光层包括配置为允许特定波段光线通过的功能滤光块;
    沿厚度方向,所述功能滤光块和所述功能通孔的位置对应,并且,所述功能滤光块沿厚度方向的投影覆盖所述功能通孔沿厚度方向的投影。
  14. 如权利要求13所述的显示面板,其特征在于,所述第二遮光层通过喷墨打印工艺形成;和/或,
    所述第三遮光层通过网版印刷工艺形成。
  15. 如权利要求1所述的显示面板,其特征在于,所述显示面板还包括支撑结构,所述支撑结构设置于所述彩膜基板和所述阵列基板之间。
  16. 如权利要求15所述的显示面板,其特征在于,所述显示面板配置为位于摄像头模组的上方,所述显示面板包括功能区,所述摄像头模组位于所述功能区的下方,所述支撑结构位于所述功能区,和/或,所述支撑结构的至少部分结构环绕所述功能区。
  17. 如权利要求16所述的显示面板,其特征在于,所述支撑结构包括支撑柱和支 撑块,所述支撑块水平方向的横截面积大于所述支撑柱水平方向的横截面积;
    所述支撑块相较于所述支撑柱远离所述功能区的中心位置。
  18. 如权利要求17所述的显示面板,其特征在于,所述阵列基板包括第一玻璃基板和金属膜层,所述金属膜层包括一层或者多层金属走线结构;沿厚度方向,所述支撑柱朝向单层的所述金属走线结构,和/或,所述支撑块朝向多层的所述金属走线结构;和/或,
    自所述功能区的中心向外的方向,所述支撑柱和支撑块的横截面积之和逐渐增加。
  19. 如权利要求17所述的显示面板,其特征在于,显示面板上设有切割线,所述支撑结构至所述切割线之间的最小距离L1大于等于50微米,并且,小于等于200微米;和/或,
    所述显示面板配置为位于摄像头模组的上方,其包括第一遮光层,所述第一遮光层形成于所述彩膜基板的内侧,并且,其上开设有朝向所述摄像头模组的第一主通孔;所述支撑结构至所述第一主通孔之间的最小距离大于等于30微米,并且,小于等于200微米;和/或,
    所述显示面板还包括封框胶,所述封框胶设置于所述彩膜基板和所述阵列基板之间,所述支撑结构至所述封框胶的最小距离大于等于50微米,并且,小于等于200微米。
  20. 如权利要求15所述的显示面板,其特征在于,所述支撑结构的一端位于彩膜基板和所述阵列基板中的一个;
    当所述显示面板不受挤压力时,所述支撑结构的另一端与彩膜基板和所述阵列基板中的另一个间隔设置;当所述显示面板受到挤压力时,所述支撑结构的另一端抵接于彩膜基板和所述阵列基板中的另一个。
  21. 一种显示装置,其特征在于,所述显示面板包括摄像头模组和如权利要求1-20中任意一项所述的显示面板,所述显示面板位于所述摄像头模组的上方。
PCT/CN2022/135698 2022-11-30 2022-11-30 显示面板和显示装置 WO2024113278A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/135698 WO2024113278A1 (zh) 2022-11-30 2022-11-30 显示面板和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/135698 WO2024113278A1 (zh) 2022-11-30 2022-11-30 显示面板和显示装置

Publications (1)

Publication Number Publication Date
WO2024113278A1 true WO2024113278A1 (zh) 2024-06-06

Family

ID=91322659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135698 WO2024113278A1 (zh) 2022-11-30 2022-11-30 显示面板和显示装置

Country Status (1)

Country Link
WO (1) WO2024113278A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106526943A (zh) * 2017-01-12 2017-03-22 京东方科技集团股份有限公司 一种液晶显示装置
CN107728365A (zh) * 2017-10-31 2018-02-23 武汉华星光电技术有限公司 窄边框显示面板及显示装置
CN109557726A (zh) * 2018-12-28 2019-04-02 厦门天马微电子有限公司 显示面板及其制造方法、显示装置
CN110488522A (zh) * 2019-07-29 2019-11-22 武汉华星光电技术有限公司 一种触控屏及其制备方法
CN111965881A (zh) * 2020-09-08 2020-11-20 厦门天马微电子有限公司 一种显示面板及其制作方法、显示装置
CN114035357A (zh) * 2021-11-23 2022-02-11 厦门天马微电子有限公司 一种显示面板及显示装置
WO2022052816A1 (zh) * 2020-09-11 2022-03-17 京东方科技集团股份有限公司 显示装置及显示装置的制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106526943A (zh) * 2017-01-12 2017-03-22 京东方科技集团股份有限公司 一种液晶显示装置
CN107728365A (zh) * 2017-10-31 2018-02-23 武汉华星光电技术有限公司 窄边框显示面板及显示装置
CN109557726A (zh) * 2018-12-28 2019-04-02 厦门天马微电子有限公司 显示面板及其制造方法、显示装置
CN110488522A (zh) * 2019-07-29 2019-11-22 武汉华星光电技术有限公司 一种触控屏及其制备方法
CN111965881A (zh) * 2020-09-08 2020-11-20 厦门天马微电子有限公司 一种显示面板及其制作方法、显示装置
WO2022052816A1 (zh) * 2020-09-11 2022-03-17 京东方科技集团股份有限公司 显示装置及显示装置的制造方法
CN114035357A (zh) * 2021-11-23 2022-02-11 厦门天马微电子有限公司 一种显示面板及显示装置

Similar Documents

Publication Publication Date Title
TWI719738B (zh) 顯示面板及顯示裝置
US9395569B2 (en) Display apparatus
US20220320368A1 (en) Mini-light emitting diode light board, backlight module, and preparation method thereof
TWI501004B (zh) 顯示設備
US9436051B2 (en) Display device
CN101641634B (zh) 带微透镜阵列的液晶显示面板及其制造方法
WO2014141842A1 (ja) 表示装置およびその製造方法
EP2071391B1 (en) Liquid crystal display panel with microlens array, its manufacturing method, and liquid crystal display device
WO2011074334A1 (ja) 照明装置、表示装置、及びテレビ受信装置
US8542332B2 (en) Liquid crystal display device comprising a protection sheet attached to a reflector and including a protruding part that extends along a first direction from an edge of the protection sheet
JP2008242307A (ja) マイクロレンズアレイ付き液晶表示パネル
KR20170061312A (ko) 백라이트 유닛 및 이를 포함하는 액정 표시 장치
US6888609B2 (en) Liquid crystal display device
US7212261B2 (en) Color filter panel and liquid crystal display including the same
KR102078024B1 (ko) 액정표시장치 및 그의 제조방법
EP2722709B1 (en) Color filter substrate, liquid crystal panel, and liquid crystal display device
WO2024099145A1 (zh) 一种显示面板及其制备方法
WO2020051809A1 (zh) 液晶显示面板、液晶显示屏及电子设备
WO2018223480A1 (zh) 显示面板及其应用的显示装置
WO2024113278A1 (zh) 显示面板和显示装置
KR101660976B1 (ko) 액정표시장치
US20060082704A1 (en) Liquid crystal display
WO2023138354A1 (zh) 显示屏
US7580094B2 (en) Transreflective LCD panel and electronic device using the same
US11175534B1 (en) Liquid crystal display module, display device, and fabricating method thereof