WO2020051809A1 - 液晶显示面板、液晶显示屏及电子设备 - Google Patents

液晶显示面板、液晶显示屏及电子设备 Download PDF

Info

Publication number
WO2020051809A1
WO2020051809A1 PCT/CN2018/105297 CN2018105297W WO2020051809A1 WO 2020051809 A1 WO2020051809 A1 WO 2020051809A1 CN 2018105297 W CN2018105297 W CN 2018105297W WO 2020051809 A1 WO2020051809 A1 WO 2020051809A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
liquid crystal
transmitting
substrate
Prior art date
Application number
PCT/CN2018/105297
Other languages
English (en)
French (fr)
Inventor
马磊
王鹏
肖广楠
张峰
许哲睿
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/105297 priority Critical patent/WO2020051809A1/zh
Priority to CN201880097275.8A priority patent/CN112654916B/zh
Priority to EP18933115.0A priority patent/EP3828624A4/en
Publication of WO2020051809A1 publication Critical patent/WO2020051809A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133371Cells with varying thickness of the liquid crystal layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0264Details of the structure or mounting of specific components for a camera module assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0266Details of the structure or mounting of specific components for a display module assembly
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13312Circuits comprising photodetectors for purposes other than feedback
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133776Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers having structures locally influencing the alignment, e.g. unevenness

Definitions

  • the present application relates to the technical field of display devices, and in particular, to a liquid crystal display panel, a liquid crystal display screen, and an electronic device.
  • the embodiments of the present application provide a liquid crystal display panel, a liquid crystal display screen, and an electronic device capable of increasing the screen ratio.
  • an embodiment of the present application provides a liquid crystal display panel.
  • the liquid crystal display panel has a light-transmitting area, a light-shielding area surrounding the periphery of the light-transmitting area, and a display area surrounding the periphery of the light-shielding area.
  • the light-shielding region is located between the light-transmitting region and the display region.
  • the light transmitting region allows visible light to pass through.
  • the light-shielding area can block visible light.
  • the display area is used to display an image.
  • the liquid crystal display panel includes a first substrate, a first film group, a first alignment layer, a liquid crystal layer, a second alignment layer, a second film group, and a second substrate that are sequentially stacked.
  • the first film group includes a plurality of film layers.
  • the first film group is formed on the first substrate.
  • the first alignment layer is formed on the first film group.
  • the second film group includes one or more film layers.
  • the second film group is formed on the second substrate.
  • the second alignment layer is formed at least partially on the second film group.
  • Both the first substrate and the second substrate are made of a light-transmitting material, and continuously cover the light-transmitting area, the light-shielding area, and the display area.
  • the first substrate and the second substrate may be made of a glass material.
  • the first substrate and the second substrate are continuous plates on the entire surface, and have sufficient structural strength, so that the overall strength of the liquid crystal display panel is high, and it is not easily broken.
  • the first alignment layer also referred to as an alignment layer
  • the liquid crystal layer liquid crystal layer
  • the second alignment layer are all located in the light-transmitting region, the light-shielding region, and the display region. Both the first alignment layer and the second alignment layer are made of a light-transmitting material.
  • the first alignment layer and the second alignment layer are located on opposite sides of the liquid crystal layer, respectively, and directly contact the liquid crystal layer.
  • the liquid crystal layer is sandwiched between the first alignment layer and the second alignment layer.
  • the first alignment layer and the second alignment layer are used to provide a pretilt angle for the liquid crystal in the liquid crystal layer.
  • the first film group includes a first display portion located in the display area, a first transition portion located in the light shielding area, and a first light transmission portion located in the light transmission area.
  • the first transition portion surrounds the periphery of the first light transmitting portion.
  • the first display portion surrounds the periphery of the first transition portion.
  • the first transition portion connects the first light transmitting portion and the first display portion.
  • the second film group includes a second display portion located in the display area, a second transition portion located in the light shielding area, and a second light transmission portion located in the light transmission area.
  • the second transition portion surrounds the periphery of the second light transmitting portion.
  • the second display portion surrounds the periphery of the second transition portion.
  • the second transition portion connects the second light transmitting portion and the second display portion.
  • the first display portion and the second display portion cooperate to display an image.
  • the first display portion and the second display portion are important components for realizing the image display of the liquid crystal display panel, but not all of the components.
  • the first display portion and the second display portion cooperate to jointly participate in and affect the display action of the liquid crystal display panel.
  • the liquid crystal display panel also needs the cooperation of other structures, such as the liquid crystal layer and the rear portion.
  • the first polarizer and the second polarizer in the text. Both the first light transmitting portion and the second light transmitting portion allow visible light to pass through. At least one of the first transition portion and the second transition portion can block visible light. That is, the first transition portion can block visible light; or the second transition portion can block visible light; or both the first transition portion and the second transition portion can block visible light.
  • both the first substrate and the second substrate are made of a light-transmitting material
  • the first alignment layer and the second alignment layer are made of a light-transmitting material
  • the first film group The first light-transmitting portion located in the light-transmitting area allows visible light to pass, and the second light-transmitting portion of the second film group located in the light-transmitting area allows visible light to pass, so the light-transmitting area allows visible light by.
  • optical devices such as a camera module in the electronic device can be placed under the light-transmitting area of the liquid crystal display panel to transmit visible light through the light-transmitting area.
  • the optical device limits the arrangement space of the liquid crystal display panel, and the light-transmitting area is surrounded by the display area, so that the liquid crystal display panel can set a larger display area to reduce
  • a thickness of the first display portion in a direction from the first substrate to the second substrate (that is, a thickness direction of the liquid crystal display panel), a thickness of the first display portion is larger than that of the first display portion.
  • a thickness of a light transmitting portion, and the first transition portion forms a stepped structure connecting the first display portion and the first light transmitting portion.
  • a top surface of the first transition portion facing away from the first substrate includes one or more stepped surfaces.
  • the alignment layer when the thickness of different portions of the film layer for supporting the alignment layer is greatly different, it is easy to cause the alignment layer to accumulate in the transition region between the smaller thickness portion and the larger thickness portion, thereby causing a liquid crystal display
  • the panel has problems such as display unevenness (mura) and display of different colors.
  • the alignment layer easily accumulates in the edge region of the smaller thickness portion adjacent to the larger thickness portion, and causes the edge region to become yellow or white.
  • the step structure formed by the first transition portion of the liquid crystal display panel can gradually transition the height difference between the first display portion and the first light transmitting portion.
  • the one or more step surfaces of the first transition portion can carry the first alignment layer, thereby reducing the top surface of the first alignment layer on the first light transmitting portion (facing away from the first substrate). (Surface)
  • the risk of stacking at the edges effectively solves the problems of uneven display and discoloration caused by the alignment layers in the light-transmitting area of the liquid crystal display panel, so that the liquid crystal display panel has a better display. quality.
  • the first alignment layer can be more uniformly coated on the top surface of the first light transmitting portion, Therefore, the risk that the light passing through the light-transmitting area generates noise due to foreign objects is small, thereby ensuring the working quality of the optical device.
  • the step structure is also beneficial to improve the arrangement of liquid crystals in the liquid crystal layer, so that the liquid crystal arrangement is more uniform, and the liquid crystal display panel has better display quality.
  • the thickness of the first light-transmitting portion is smaller than the thickness of the first display portion, that is, the thickness of the first light-transmitting portion is small, which is beneficial to improving the light transmittance of the light-transmitting area.
  • the shape, size, number of the light-transmitting area, and the design of the distance from the edge of the liquid crystal display panel are more flexible and diversified. It is beneficial to improve the overall reliability of the electronic equipment.
  • the shape of the light-transmitting area may be a circle, an oval, a polygon, a rounded rectangle, a track shape (including two parallel straight edges and an arc edge connected between the two straight edges), and the like.
  • the number of the light-transmitting regions may be one or more.
  • the multiple light-transmitting regions can respectively provide a light transmission channel for multiple optical devices.
  • the arrangement of multiple light-transmitting regions can be flexibly designed, such as array arrangement, circular arrangement, and so on.
  • one or more of the stepped surfaces are substantially parallel to the first substrate. At this time, one or more of the stepped surfaces are easy to process, and can also better support the first alignment layer.
  • the number of the film layers of the first light transmitting portion is a first value.
  • the number of the film layers of the first display portion is a second value.
  • the first value is smaller than the second value.
  • the number of the film layers of the first transition portion is in a range from the first value to the second value.
  • the range from the first value to the second value refers to a range including the first value and the second value as a minimum value and a maximum value, respectively.
  • different film layers in the first film group may be arranged differently in the light-transmitting area, the light-shielding area, and the display area, so that the first light-transmitting
  • the number of film layers of the portion is different from the number of film layers of the first display portion, and the number of film layers of the first transition portion may be within the range of the first value to the second value.
  • part of the film layer in the first film group may cover the light-transmitting area, the light-shielding area, and the display area at the same time
  • part of the film layer may cover the display area and the light-shielding area at the same time
  • part of the film The layers may individually cover the display area and the like.
  • the first film group can adjust the first light transmitting portion, the first transition portion, and the first display portion by controlling the number of film layers of the first light transmitting portion, the first transition portion, and the first display portion.
  • the thickness of the transition portion and the first display portion is not limited to the first light-transmitting.
  • the first display portion can form a relatively complicated layer structure, thereby satisfying the display of the liquid crystal display panel. region. Since the first value is smaller, that is, the number of the film layers of the first light transmitting portion is smaller, the light transmittance of the first light transmitting portion is higher, and the working quality of the optical device is better.
  • one or more of the stepped surfaces are formed on a top surface of the top film layer facing away from the first substrate.
  • the number of the stepped surfaces is plural, a plurality of the stepped surfaces are formed in the same film layer.
  • one end of one or more film layers facing the first light transmitting portion forms the stepped surface.
  • the number of the stepped surfaces is plural, a plurality of the stepped surfaces are formed in different film layers.
  • the top surface of the first transition portion further includes a plurality of connection surfaces spaced from each other.
  • the step surface is connected between two adjacent connection surfaces.
  • An angle between 120 ° and 135 ° is formed between the stepped surface and the connecting surface that are in contact.
  • the connection surface is inclined with respect to the first substrate.
  • the step surface is substantially perpendicular to the connection surface.
  • the top surface of the first transition portion can include the stepped surface with a larger area to improve the effect of carrying the first alignment layer and reduce the first alignment layer in the light-transmitting region ( That is, the risk of accumulation on the first light transmitting portion.
  • the top surface of the first transition portion further includes a transition surface.
  • the transition surface is connected between a top surface of the first light transmitting portion far from the first substrate and the connection surface.
  • the connection surface is the connection surface closest to the first light transmitting portion among the plurality of connection surfaces.
  • the transition surface is flush with the top surface of the first light transmitting portion. The transition surface and the top surface of the first light-transmitting portion transition smoothly.
  • the first transition portion is provided with the transition surface that is flush with the top surface of the first light transmitting portion, and the transition surface is connected to the top of the first light transmitting portion.
  • the surface is closer to the connecting surface, so even if the first alignment layer is slightly stacked, the first alignment layer will be stacked on the transition surface, which is a part of the top surface of the first light transmitting portion.
  • the first alignment layer is coated uniformly, and no or almost no deposition occurs, which can effectively solve problems such as display unevenness (mura) and display discoloration caused by the alignment layer deposition.
  • the top surface of the first transition portion further includes a second transition surface.
  • the second transition surface is connected between a top surface of the first display portion and the connection surface.
  • the second transition surface is smoothly connected to the top surface of the first display portion.
  • the first alignment layer can be evenly applied to the first transition portion and the first display portion. To ensure the display quality of the liquid crystal display panel.
  • the first film group includes a device array layer.
  • the device array layer includes a plurality of light-transmitting film layers and a plurality of light-shielding film layers arranged in a stack.
  • the plurality of light-transmitting film layers allow visible light to pass through.
  • One or more of the plurality of light-transmitting film layers are patterned film layers.
  • the plurality of light-shielding film layers can block visible light.
  • the plurality of light-shielding film layers are patterned film layers.
  • the first display portion includes a portion where the plurality of light-shielding film layers are located in the display area and a portion where the plurality of light-transmitting film layers are located in the display area.
  • the device array layer forms a plurality of thin film transistors (TFTs) in the display area.
  • TFTs thin film transistors
  • portions of the plurality of light-shielding film layers and portions of the plurality of light-transmitting film layers included in the first display portion collectively form a plurality of thin film transistors.
  • a plurality of thin film transistor arrays are arranged.
  • the first light transmitting portion includes a portion of one or more of the light transmitting film layers located in the light transmitting region.
  • the thickness of the first light-transmitting portion is similar to that of the first display
  • the thickness of the liquid crystal layer is small, and the thickness of the liquid crystal layer in the light-transmitting region is similar to the thickness of the display region.
  • display anomalies such as Newton's rings, etc.
  • the number and / or area of the step surfaces of the first transition portion can also be reduced, and the processing difficulty of the first transition portion can be reduced.
  • the film layer of the first light-transmitting portion and a part of the film layer of the first display portion are the same layer, they can be made in one molding process. It can be integrated into the forming process of the first display portion, thereby simplifying the processing difficulty of the device array layer and improving the processing efficiency of the device array layer.
  • the thin film transistor in the device array layer may adopt a top gate structure, for example:
  • the device array layer includes a shielding layer, a buffer layer, a semiconductor layer, a gate insulation layer, a gate, a first insulation layer, a source, a drain, a second insulation layer, a common electrode, and a third insulation. Layer and pixel electrode.
  • the shielding layer is formed on the first substrate.
  • the buffer layer is formed on the first substrate and covers the shielding layer.
  • the semiconductor layer is located on a side of the buffer layer away from the first substrate and directly faces the shielding layer.
  • the semiconductor layer may be made of low temperature poly-silicon (LTPS) material.
  • the semiconductor layer includes a channel region, two lightly doped regions, and two heavily doped regions. The two lightly doped regions are connected to opposite ends of the channel region, respectively.
  • the heavily doped regions are respectively connected to two ends of the lightly doped regions away from the channel region.
  • the gate insulating layer is located on a side of the buffer layer away from the first substrate and covers the semiconductor layer.
  • the gate insulating layer is provided with a first hole and a second hole respectively facing the two heavily doped regions.
  • the gate is located on a side of the gate insulating layer remote from the buffer layer and is directly opposite to the channel region.
  • the first insulating layer is located on a side of the gate insulating layer remote from the buffer layer and covers the gate.
  • the first insulating layer is provided with a third hole communicating with the first hole and a fourth hole communicating with the second hole.
  • the source electrode and the drain electrode are located on a side of the first insulating layer remote from the gate insulating layer, and the source electrode is connected to one of the heavily doped via the third hole and the first hole.
  • a doped region, the drain is connected to another heavily doped region via the fourth hole and the second hole.
  • the second insulating layer is located on a side of the first insulating layer remote from the gate insulating layer and covers the source electrode and the drain electrode.
  • the second insulating layer is provided with a fifth hole facing the drain (or the source).
  • the common electrode is located on a side of the second insulating layer remote from the first insulating layer.
  • the third insulating layer is located on a side of the second insulating layer remote from the first insulating layer and covers the common electrode.
  • the third insulating layer is provided with a sixth hole communicating with the fifth hole.
  • the pixel electrode is located on a side of the third insulating layer remote from the second insulating layer, and is connected to the drain (or the source) through the sixth hole and the fifth hole.
  • the plurality of light shielding film layers may include the shielding layer, the semiconductor layer, the gate electrode, the source electrode, the drain electrode, and the like.
  • the plurality of light-transmitting film layers may include the buffer layer, the gate insulating layer, the first insulating layer, the second insulating layer, and the third insulating layer.
  • the pixel electrode and the common electrode are made of a light-transmitting material, they may also belong to the plurality of light-transmitting film layers.
  • the thin film transistor in the device array layer may adopt a bottom gate structure, for example:
  • the device array layer includes a gate, a gate insulating layer, a semiconductor layer, a source, a drain, an insulating layer, and a pixel electrode.
  • the gate is formed on the first substrate.
  • the gate insulating layer is formed on the first substrate and covers the gate.
  • the semiconductor layer is located on a side of the gate insulating layer remote from the gate and directly faces the gate.
  • the semiconductor layer may be made of amorphous silicon ( ⁇ -Si) material.
  • the source electrode is located on a side of the gate insulating layer remote from the first substrate and connected to an end of the semiconductor layer.
  • the drain is located on a side of the gate insulating layer away from the first substrate and is connected to the other end of the semiconductor layer.
  • the insulating layer is located on a side of the gate insulating layer remote from the first substrate and covers the source electrode, the semiconductor layer, and the drain electrode.
  • the insulating layer is provided with a through hole facing the drain (or the source).
  • the pixel electrode is located on a side of the insulating layer remote from the gate insulating layer, and is connected to the drain (or the source) through the through hole.
  • the plurality of light-shielding film layers may include the gate, the semiconductor layer, the source, and the drain.
  • the plurality of light-transmitting film layers may include the gate insulating layer and the insulating layer.
  • the pixel electrode is made of a light-transmitting material, it may also belong to the plurality of light-transmitting film layers.
  • the layer structure of the device array layer may be different from the previous two embodiments, that is, the device array layer may have another layer structure.
  • the plurality of light-transmitting film layers and the plurality of light-shielding film layers correspond to other film layers.
  • the first transition portion includes one or more portions of the light-transmitting film layer in the light-shielding region. At this time, the first transition portion allows visible light to pass.
  • the first transition portion includes one or more portions of the light-transmitting film layer in the light-shielding region and one or more portions of the light-transmitting film layer in the light-shielding region. At this time, the first transition portion can block visible light.
  • the first transition portion may implement the step structure by changing the number of film layers at different positions. For example, in the direction of the first display portion toward the first light-transmitting portion, the number of film layers at different positions of the first transition portion decreases, thereby achieving a decrease in thickness to form the stepped structure.
  • the first transition portion may form the step structure by changing a thickness of a film layer of the top insulating layer itself away from the first substrate.
  • the second film group includes a color film layer and a flat layer.
  • the color film layer is also called a color filter (CF), and is used to pass light in a specific wavelength range.
  • the color filter layer is located between the second substrate and the flat layer.
  • the color filter layer includes a black matrix (BM) and a plurality of color color resist blocks arranged alternately with the black matrix.
  • the black matrix is integrated in the color film layer, and the black matrix and the plurality of color color resist blocks multiplex a part of the thickness space of the liquid crystal display panel.
  • the second display portion includes the plurality of color resist blocks arranged in the display area, a part of the black matrix, and a part of the flat layer.
  • the second light transmitting portion is a through hole.
  • the color filter layer and the flat layer are hollowed out in the light transmitting region.
  • the second transition portion includes a part of the black matrix and a part of the flat layer arranged in the light-shielding area. At this time, the second transition portion can block visible light.
  • an end of the black matrix near the second light transmitting portion forms a stepped surface, so that the second transition portion forms a stepped structure.
  • a distance between an end of the flat layer near the second light transmitting portion and the second light transmitting portion is smaller than an end of the black matrix close to the second light transmitting portion and the second light transmitting portion.
  • the space between the light portions is such that a part of the surface of the black matrix near one end of the second light transmitting portion is exposed to form the stepped surface.
  • the second light transmitting portion is a through hole, a portion of the second alignment layer located in the light transmitting region is formed on the second substrate, so the light transmitting region is transparent. Higher luminosity. Since the second transition portion forms a step structure, the step structure can transition the height difference between the second substrate and the second display portion, and the step surface of the second transition portion can carry the second An alignment layer, thereby reducing the risk of the second alignment layer being piled up on the edge of a portion of the second substrate located in the light-transmitting region, and effectively solving the light-transmitting region of the liquid crystal display panel due to the alignment layer Problems such as uneven display and discoloration caused by the stacking make the liquid crystal display panel have better display quality.
  • the first display section can be used to control the deflection direction of the liquid crystal layer in the liquid crystal layer located in the display area, and the second display section can filter light. Therefore, the first display section and the liquid crystal layer When matched with the second display portion, the display area can be displayed.
  • the device array layer is fabricated on the first substrate, and the first film group and the first substrate together form an array substrate.
  • the color film layer is fabricated on the second substrate, and the second film group and the second substrate together form a color film substrate.
  • the first film group may further include a common electrode layer.
  • the common electrode layer is made of a transparent conductive material.
  • the second film group includes a color film layer and a flat layer.
  • the color filter layer is located between the second substrate and the flat layer.
  • the color film layer includes a black matrix and a plurality of color color resist blocks arranged alternately with the black matrix.
  • the black matrix is integrated in the color film layer, and the black matrix and the plurality of color color resist blocks multiplex a part of the thickness space of the liquid crystal display panel.
  • the second display portion includes the plurality of color resist blocks arranged in the display area, a part of the black matrix, and a part of the flat layer.
  • the second transition portion includes a portion of the black matrix and a portion of the flat layer arranged in the light-shielding region.
  • the second light transmitting portion includes a portion of the flat layer arranged in the light transmitting region. In other words, the flat layer continuously covers the display area, the light-shielding area, and the light-transmitting area.
  • the second light transmitting portion since the second light transmitting portion includes a part of the flat layer, the height difference between the second light transmitting portion and the second display portion is small, and even the thickness of the two can be Similarly, the risk that the second alignment layer is piled up on the second light transmitting portion is small.
  • a thickness of a portion of the flat layer located in the light transmitting region may be substantially the same as a thickness of a portion located in the display region. At this time, a height difference between the second light transmitting portion and the second display portion is small.
  • the surface of the flat layer far from the second substrate is a flat surface.
  • the flat layer can provide a flat molding surface, so the second alignment layer can be flat. Film layer, the second alignment layer does not accumulate on the second light transmitting portion, and the molding quality of the second alignment layer is better.
  • the first display section can be used to control the deflection direction of the liquid crystal layer in the liquid crystal layer located in the display area, and the second display section can filter light. Therefore, the first display section and the liquid crystal layer When matched with the second display portion, the display area can be displayed.
  • the device array layer is fabricated on the first substrate, and the first film group and the first substrate together form an array substrate.
  • the color film layer is fabricated on the second substrate, and the second film group and the second substrate together form a color film substrate.
  • the first film group may further include a common electrode layer.
  • the common electrode layer is made of a transparent conductive material.
  • the second film group includes a color film layer.
  • the color filter layer is used to pass light in a specific wavelength range.
  • the color film layer includes a black matrix and a plurality of color color resist blocks arranged alternately with the black matrix.
  • the black matrix is integrated in the color film layer, and the black matrix and the plurality of color color resist blocks multiplex a part of the thickness space of the liquid crystal display panel.
  • the second display portion includes the plurality of color resist blocks and a portion of the black matrix arranged in the display area.
  • the second transition portion includes a portion of the black matrix arranged in the light-shielding region. At this time, the second transition portion can block visible light.
  • the second light transmitting portion is a through hole. In other words, the color film layer is hollowed out in the light transmitting region.
  • the second light transmitting portion is a through hole, and a portion of the second alignment layer located in the light transmitting region is formed on the second substrate. The rate is higher.
  • the first display section can be used to control the deflection direction of the liquid crystal of the liquid crystal layer located in the display area, and the second display section can filter light. Therefore, the first display section, the liquid crystal layer, and the When the second display section cooperates, the display area can be displayed.
  • the device array layer is fabricated on the first substrate, and the first film group and the first substrate together form an array substrate.
  • the color film layer is fabricated on the second substrate, and the second film group and the second substrate together form a color film substrate.
  • the first film group may further include a common electrode layer.
  • the common electrode layer is made of a transparent conductive material.
  • the first film group includes a color film layer and a device array layer.
  • the device array layer is located between the color filter layer and the first substrate.
  • the color filter layer is used to pass light in a specific wavelength range.
  • the color film layer includes a plurality of color color resist blocks.
  • the device array layer includes a plurality of light-transmitting film layers and a plurality of light-shielding film layers arranged in a stack.
  • the plurality of light-transmitting film layers allow visible light to pass through.
  • One or more of the plurality of light-transmitting film layers are patterned film layers.
  • the plurality of light-shielding film layers can block visible light.
  • the plurality of light-shielding film layers are patterned film layers.
  • the first display portion includes the plurality of color resist blocks, a portion of the plurality of light shielding film layers located in the display area, and a portion of the plurality of light transmitting film layers located in the display area.
  • the device array layer forms a plurality of thin film transistors in the display area. In other words, portions of the plurality of light-shielding film layers and portions of the plurality of light-transmitting film layers included in the first display portion collectively form a plurality of thin film transistors. A plurality of thin film transistor arrays are arranged.
  • the first light transmitting portion includes a portion of one or more of the light transmitting film layers located in the light transmitting region.
  • the first display portion can be used to control the deflection direction of the liquid crystal in which the liquid crystal layer is located in the display area, and can also be used to filter light. Therefore, the first display portion and the liquid crystal layer When matched with the second display portion, the display area can be displayed.
  • the device array layer and the color filter layer are sequentially formed on the first substrate to form a color filter (COA) substrate on the array; the second substrate and the first substrate are formed on the first substrate.
  • the second film group on the two substrates collectively forms a box substrate.
  • the thickness of the first light-transmitting portion is similar to that of the first display
  • the thickness of the liquid crystal layer is small, and the thickness of the liquid crystal layer in the light-transmitting region is similar to the thickness of the display region.
  • display anomalies such as Newton's rings, etc.
  • the number and / or area of the step surfaces of the first transition portion can also be reduced, and the processing difficulty of the first transition portion can be reduced.
  • the film layer of the first light-transmitting portion and a part of the film layer of the first display portion are the same layer, they can be made in one molding process, so the molding process of the first light-transmitting portion It can be integrated into the forming process of the first display portion, thereby simplifying the processing difficulty of the device array layer and improving the processing efficiency of the device array layer.
  • the first transition portion includes one or more portions of the light-transmitting film layer in the light-shielding region. At this time, the first transition portion allows visible light to pass.
  • the first transition portion includes one or more portions of the light-transmitting film layer in the light-shielding region and one or more portions of the light-transmitting film layer in the light-shielding region. At this time, the first transition portion can block visible light.
  • the first transition portion may implement the step structure by changing the number of film layers at different positions. For example, in the direction of the first display portion toward the first light-transmitting portion, the number of film layers at different positions of the first transition portion decreases, thereby achieving a decrease in thickness to form the stepped structure.
  • the first transition portion may form the step structure by changing a thickness of a film layer of the top insulating layer itself away from the first substrate.
  • the second film group includes a black matrix and a flat layer.
  • the black matrix is located between the second substrate and the flat layer.
  • the black matrix is independent of the color filter layer.
  • the second film group and the second substrate form a box substrate of a color filter substrate on the array.
  • the second display portion includes a part of the black matrix and a part of the flat layer arranged in the display area.
  • the flat layer can provide a flat molding surface in the display area, so that the second alignment layer can be evenly coated on the second display portion.
  • the second transition portion includes a part of the black matrix and a part of the flat layer arranged in the light-shielding area.
  • the second light transmitting portion is a through hole.
  • the black matrix and the flat layer are hollowed out in the light transmitting region.
  • the transmittance of the light-transmitting region is high.
  • an end of the black matrix near the second light transmitting portion may form a stepped surface, so that the second transition portion forms a stepped structure.
  • a distance between an end of the flat layer near the second light transmitting portion and the second light transmitting portion is larger than an end of the black matrix close to the second light transmitting portion and the second light transmitting portion.
  • the space between the light portions is such that a part of the surface of the black matrix near one end of the second light transmitting portion is exposed to form the stepped surface.
  • the second light transmitting portion includes a portion of the flat layer arranged in the light transmitting region. At this time, the height difference between the second light transmitting portion and the second display portion is small, and even the thickness of the two can be the same, so that the second alignment layer occurs on the second light transmitting portion. The risk of accumulation is small.
  • the first film group may further include a common electrode layer.
  • the common electrode layer is made of a transparent conductive material.
  • the second film group includes a black matrix and a flat layer.
  • the black matrix is located between the second substrate and the flat layer.
  • the black matrix is independent of the color filter layer.
  • the second film group and the second substrate form a box substrate of a color filter substrate on the array.
  • the second display portion includes a part of the black matrix and a part of the flat layer arranged in the display area.
  • the second transition portion includes a part of the black matrix and a part of the flat layer arranged in the light-shielding area.
  • the second light transmitting portion includes a portion of the flat layer arranged in the light transmitting region. A surface of the flat layer far from the second substrate is a plane.
  • the thicknesses of the second light transmitting portion, the second transition portion, and the second display portion are the same, and the flat layer is in the light transmitting region, the light blocking region, and the display.
  • the area can provide a continuous and flat molding surface, which is helpful to reduce the difficulty of making the second alignment layer, so that the second alignment layer can be more uniformly coated on the second display portion and the second transition.
  • the second light-transmitting portion, the risk of the second alignment layer being deposited is small, and the liquid crystal display panel has better display quality.
  • the liquid crystal display panel further includes a supporting component.
  • the support assembly is located between the first film group and the second film group, and penetrates the liquid crystal layer in a direction from the first substrate to the second substrate to hold the liquid crystal layer. A distance between the first substrate and the second substrate.
  • the supporting component is used to maintain a distance (also called a box gap) between the first substrate and the second substrate, so that the liquid crystal display panel is unlikely to occur during manufacturing or use. Deformation, thereby ensuring the display quality of the liquid crystal display panel.
  • the support assembly includes a plurality of first support posts.
  • the plurality of first support pillars are arranged staggered from the light transmitting region.
  • the plurality of first support columns are arranged at intervals from each other.
  • the plurality of first support pillars are arranged facing the black matrix.
  • the projections of the plurality of first support pillars on the second substrate are covered by the projections of the black matrix on the second substrate.
  • the plurality of first support pillars may be made of a light-transmitting material or an opaque material.
  • the support assembly further includes a second support post, and the second support post is arranged in the light-transmitting area.
  • the second support pillar is made of a light-transmitting material.
  • the second support pillar supports the second substrate and the first substrate located in the light-transmitting area, so that the liquid crystal display panel is in the light-transmitting area. Having the same box gap as the display area to avoid display abnormalities in the display area around the light-transmitting area, so that the liquid crystal display has a higher display quality.
  • the number of the second support posts is plural.
  • a plurality of the second support pillars are arranged on the light-transmitting region at intervals.
  • a plurality of the second support pillars may be arranged at substantially uniform intervals, so that the entire light transmitting area of the liquid crystal display panel has a relatively uniform cell gap.
  • the number of the second support pillars it is necessary to balance support requirements and light transmission requirements, so as to have enough second support pillars to maintain a box gap, and avoid setting too many of the second support pillars.
  • the pillars are supported and the transmittance of the light-transmitting area is too low.
  • a height of the second support pillar is greater than a height of the first support pillar.
  • the height of the second support pillar is designed to be able to support the second substrate and the first substrate reasonably.
  • the shape of the second support pillar can refer to the design of the first support pillar.
  • the second support pillar and the first support pillar may be substantially circular truncated.
  • the second support pillar and the first support pillar may be formed in the same process, or may be formed in two processes.
  • the number of the second support posts is one.
  • An end surface area of the second support pillar facing the first substrate is larger than an end surface area of the first support pillar facing the first substrate.
  • an end surface area of the second support pillar facing the second substrate is larger than an end surface area of the first support pillar facing the second substrate.
  • the second support pillar can provide a larger support area, so that the number of the second support pillars enables the support component to stably support the light-transmitting area.
  • the second support pillar may be in a circular truncated shape, and two end surfaces of the second support pillar are circular. At this time, the two end surfaces of the second support pillar can cover the light transmitting area as much as possible.
  • the second support pillar is formed on the second substrate, and an end surface of the second support pillar facing the second substrate covers the light transmitting region. At this time, the end surface of the second support pillar facing the first substrate may cover the light-transmitting area or cover a part of the light-transmitting area. Since the second support pillar occupies a large amount or even the entire space of the liquid crystal layer in the light-transmitting region, the liquid crystal layer has little or no liquid crystal in the liquid crystal region.
  • the second support pillar may be made of a highly transparent material to increase the transmittance of the transparent region.
  • the light transmittance of the material used for the second support pillar may be higher than the light transmittance of the liquid crystal material.
  • an end surface of the second support pillar facing the first substrate is annular.
  • the second support pillar has an inner annular surface and an outer annular surface disposed opposite to each other. Liquid crystal is arranged in a space surrounded by the inner torus. The support strength of the second support post having the annular end surface is high.
  • the support assembly further includes one or more third support posts, and the second support posts are disposed around the one or more third support posts.
  • the third supporting pillars by setting one or more of the third supporting pillars, one or more of the third supporting pillars are matched with the second supporting pillars to jointly support the second substrate and the second supporting pillars.
  • the first base material can improve the support reliability of the support component for the liquid crystal display panel in the light transmitting region.
  • the second support post includes a first support block and a second support block.
  • the first support block and the second support block are arranged in a direction in which the first base material faces the second base material and are opposed to each other.
  • one of the first support block and the second support block is formed on the second substrate, and the other is formed on the first substrate.
  • the height of the first support block and the second support block is equal to the height of the second support pillar.
  • dividing one of the second support pillars into the first support block and the second support block is beneficial to reduce the difficulty of forming the second support pillar, so that the second support pillar The molding quality is higher.
  • the end surface area of the first support block facing the second base material is the same as the end surface area of the second support block facing the first base material.
  • the height of the first support block and the height of the second support block may be the same or different.
  • the liquid crystal display panel further includes a plastic frame.
  • the plastic frame is located between the first substrate and the second substrate, and surrounds the periphery of the display area.
  • the light transmitting region is located inside the plastic frame.
  • the light shielding area is located inside the plastic frame.
  • the liquid crystal layer is filled inside the plastic frame.
  • the liquid crystal layer can be filled in the light-transmitting region, the light-shielding region, and the display region at the same time, and there is no need for additional between the light-transmitting region, the light-shielding region, and the display region.
  • the partition structure is provided, thereby simplifying the manufacturing process of the liquid crystal display panel and making the cost of the liquid crystal display panel lower.
  • the liquid crystal display panel further includes a first polarizer and a second polarizer.
  • the first polarizer is located on a side of the first substrate away from the first film group.
  • the second polarizer is located on a side of the second substrate away from the second film group.
  • a polarization axis of the first polarizer is perpendicular to a polarization axis of the second polarizer. At least one of the first polarizer and the second polarizer is hollowed out in the light transmitting region.
  • the first polarizer is hollowed out in the light transmitting area, or the second polarizer is hollowed out in the light transmitting area, or the first polarizer and the second polarizer
  • the light-transmitting regions are all hollowed out. At this time, visible light can pass through the light-transmitting area.
  • the light-transmitting area of the light-transmitting area is higher, which is beneficial to improving the working quality of the optical device.
  • an embodiment of the present application further provides a liquid crystal display (Liquid Crystal Display, LCD).
  • the liquid crystal display includes a backlight module and the liquid crystal display panel.
  • the backlight module is configured to provide a backlight source for the liquid crystal display panel.
  • the backlight module has a light transmitting portion facing the light transmitting region. The light transmitting portion allows visible light to pass through.
  • the liquid crystal display panel of the liquid crystal display has a light transmitting region
  • the light transmitting region allows visible light to pass through
  • the backlight module is provided with light transmitting facing the light transmitting region. Therefore, when the liquid crystal display panel is applied to an electronic device, optical devices such as a camera module in the electronic device can be placed below the light-transmitting area to pass through the light-transmitting area (and the light-transmitting area).
  • Part) transmits visible light, thereby reducing the limitation of the arrangement space of the liquid crystal display by the optical device, and the light transmitting area is surrounded by the display area, so that the liquid crystal display can set a larger display Area to reduce the frame area of the electronic device, increase the display area of the electronic device, and increase the screen ratio of the electronic device.
  • the backlight module further includes a light emitting portion.
  • the light emitting portion is disposed around the light transmitting portion.
  • the light emitting portion corresponds to the display area of the liquid crystal display panel.
  • the light transmitting portion is a through hole.
  • the optical device of the electronic device may be partially or completely accommodated in the through hole, so that the arrangement of the optical device and the liquid crystal display screen is more compact, and both can reuse the space in the thickness direction of the electronic device. It is beneficial to reduce the thickness of the electronic device.
  • an embodiment of the present application further provides an electronic device.
  • the electronic device includes a casing, an optical device, and the liquid crystal display screen.
  • the liquid crystal display is mounted on the casing.
  • the liquid crystal display screen and the casing jointly surround the entire machine cavity.
  • the optical device is housed in the inner cavity of the whole machine and directly faces the light transmitting area.
  • the optical device can transmit light through the light-transmitting area of the liquid crystal display, thereby eliminating the need to occupy the lateral peripheral space of the liquid crystal display, so that the liquid crystal display can design a larger display. Area to increase the screen ratio of the electronic device.
  • the optical device may be a camera module, an ambient light sensor, a proximity light sensor, or an optical fingerprint sensor.
  • the electronic device may include one or more of the optical devices.
  • the liquid crystal display panel may include one or more light transmitting regions.
  • the electronic device further includes a cover plate.
  • the cover is located on a side of the liquid crystal display screen away from the inner cavity of the whole machine.
  • the liquid crystal display screen may be adhered to the cover plate through an adhesive layer to form a screen assembly together.
  • the adhesive layer may be made of a transparent optical adhesive material. The position of the adhesive layer facing the light-transmitting region may be hollowed out.
  • FIG. 1 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an embodiment of a portion of the electronic device at line A-A shown in FIG. 1 in an embodiment
  • FIG. 3 is a partially exploded schematic view of the structure shown in FIG. 2;
  • FIG. 4 is a schematic structural diagram of a part of the electronic device shown in FIG. 1 at the A-A line in another embodiment
  • FIG. 5 is a partially exploded schematic diagram of the structure shown in FIG. 4;
  • FIG. 6 is a schematic structural diagram of the liquid crystal display panel shown in FIG. 3 in the first embodiment
  • FIG. 7 is an enlarged schematic view of the structure at B in FIG. 6;
  • FIG. 8 is a schematic structural diagram of a part of the structure shown in FIG. 7 in an embodiment
  • FIG. 9 is a schematic structural diagram of a part of the structure shown in FIG. 7 in another embodiment.
  • FIG. 10 is a schematic structural diagram of a part of the structure shown in FIG. 7 in still another embodiment
  • FIG. 11 is a schematic structural diagram of the second film layer and the first substrate in FIG. 6 in an embodiment
  • FIG. 12 is a schematic structural diagram of the second film layer and the first substrate in FIG. 6 in another embodiment
  • FIG. 13 is another schematic structural diagram of the liquid crystal display panel shown in FIG. 6;
  • FIG. 14 is a schematic structural diagram of a liquid crystal display panel shown in FIG. 3 in a second embodiment
  • FIG. 15 is a schematic structural diagram of a part of the liquid crystal display panel shown in FIG. 14;
  • FIG. 16 is a schematic structural diagram of a liquid crystal display panel shown in FIG. 3 in a third embodiment
  • FIG. 17 is a schematic structural diagram of a part of the liquid crystal display panel shown in FIG. 16; FIG.
  • FIG. 18 is a schematic structural diagram of a liquid crystal display panel shown in FIG. 3 in a fourth embodiment
  • FIG. 19 is a schematic structural diagram of a part of the liquid crystal display panel shown in FIG. 18;
  • FIG. 20 is a schematic structural diagram of a liquid crystal display panel shown in FIG. 3 in a fifth embodiment
  • FIG. 21 is a schematic structural diagram of a part of the liquid crystal display panel shown in FIG. 20;
  • FIG. 22 is a schematic structural diagram of a liquid crystal display panel shown in FIG. 3 in a sixth embodiment
  • FIG. 23 is a schematic structural diagram of a part of the liquid crystal display panel shown in FIG. 22;
  • FIG. 24 is a schematic structural diagram of a liquid crystal display panel shown in FIG. 3 in a seventh embodiment
  • FIG. 25 is a schematic structural diagram of a part of the liquid crystal display panel shown in FIG. 24;
  • 26 is a schematic structural diagram of a liquid crystal display panel shown in FIG. 3 in an eighth embodiment
  • FIG. 27 is a schematic structural diagram of a liquid crystal display panel shown in FIG. 3 in a ninth embodiment
  • FIG. 28 is a schematic structural diagram of a liquid crystal display panel shown in FIG. 3 in a tenth embodiment
  • FIG. 29 is a schematic structural diagram of a liquid crystal display panel shown in FIG. 3 in an eleventh embodiment
  • FIG. 30 is a schematic structural diagram of a liquid crystal display panel shown in FIG. 3 in a twelfth embodiment.
  • FIG. 1 is a schematic structural diagram of an electronic device 100 according to an embodiment of the present application.
  • FIG. 2 is a partial structure of the electronic device 100 at the AA line shown in FIG.
  • FIG. 3 is a schematic diagram of the structure shown in FIG. 2.
  • the electronic device 100 may be any device having communication and storage functions, such as a tablet computer, a mobile phone, an e-reader, a notebook computer, a vehicle-mounted device, a wearable device, and the like.
  • a tablet computer such as a tablet computer, a mobile phone, an e-reader, a notebook computer, a vehicle-mounted device, a wearable device, and the like.
  • the embodiment shown in FIG. 1 is described by using the electronic device 100 as a mobile phone as an example.
  • the electronic device 100 includes a housing 200, an optical device 300, and a liquid crystal display (LCD) 400.
  • the liquid crystal display 400 is mounted on the casing 200.
  • the case 200 may include a bezel and a back cover.
  • the frame surrounds the periphery of the back cover.
  • the liquid crystal display 400 is disposed on a side of the frame away from the back cover.
  • the liquid crystal display screen 400 and the casing 200 jointly surround the entire machine cavity.
  • the optical device 300 is housed in the inner cavity of the whole machine.
  • the optical device 300 may be a camera module, an ambient light sensor, a proximity light sensor, or an optical fingerprint sensor.
  • the optical device 300 may also be an active light emitting device such as a laser, an infrared remote control lamp (such as an infrared light emitting diode lamp).
  • the structure shown in FIG. 2 is described by taking the optical device 300 as a camera module as an example.
  • the structure shown in FIG. 2 can also be applied to other optical devices 300 that use visible light as the recognition light, such as an ambient light sensor, an optical fingerprint sensor that recognizes visible light, and the like.
  • the liquid crystal display 400 includes a backlight module 500 and a liquid crystal display panel 600.
  • the backlight module 500 is used to provide a backlight source for the liquid crystal display panel 600.
  • the liquid crystal display panel 600 has a light-transmitting region 601, a light-shielding region 602 surrounding the periphery of the light-transmitting region 601, and a display region 603 surrounding the periphery of the light-shielding region 602.
  • the light-shielding region 602 is located between the light-transmitting region 601 and the display region 603.
  • the light transmitting region 601 allows visible light to pass.
  • the light blocking area 602 can block visible light.
  • the display area 603 is used to display an image.
  • the backlight module 500 has a light transmitting portion 501 facing the light transmitting region 601.
  • the light transmitting portion 501 allows visible light to pass through.
  • the optical device 300 is disposed facing the light-transmitting area 601.
  • the liquid crystal display panel 600 of the liquid crystal display 400 has a light transmitting region 601
  • the light transmitting region 601 allows visible light to pass through
  • the backlight module 500 has a light transmitting portion 501 facing the light transmitting region 601. Therefore, the electronic device Optical devices 300 such as the camera module in 100 can be placed under the light-transmitting area 601 to transmit visible light through the light-transmitting area 601 (and the light-transmitting portion 501) without occupying the lateral peripheral space of the liquid crystal display 400, thereby reducing optical
  • the device 300 limits the arrangement space of the liquid crystal display 400, and the light-transmitting area 601 is surrounded by the display area 603, so that the liquid crystal display 400 can set a larger display area 603 to reduce the frame area of the electronic device 100, The display area of the electronic device 100 is increased, and the screen ratio of the electronic device 100 is increased.
  • the backlight module 500 further includes a light emitting portion 502.
  • the light emitting portion 502 is provided around the light transmitting portion 501.
  • the light emitting section 502 corresponds to a display area 603 of the liquid crystal display panel 600.
  • the backlight module 500 further includes a structure portion 503 located between the light-transmitting portion 501 and the light-emitting portion 502.
  • the structure portion 503 can be used to arrange the peripheral structure (such as a light source, a frame, etc.) of the backlight module 500.
  • the structural portion 503 is provided directly opposite the light-shielding region 602.
  • the light-transmitting area of the liquid crystal display panel 400 corresponds to the light-transmitting area 601 of the liquid crystal display panel 600 thereof, and the two overlap.
  • the display area of the liquid crystal display 400 corresponds to the display area 603 of the liquid crystal display panel 600, and the two overlap.
  • the liquid crystal display 400 also forms a light-shielding area between the light-transmitting area and the display area.
  • the transparent portion 501 of the backlight module 500 is a through hole.
  • the optical device 300 of the electronic device 100 may be partially or completely accommodated in the through hole, so that the arrangement of the optical device 300 and the liquid crystal display screen 400 is more compact. Both can reuse the space in the thickness direction Z of the electronic device 100, which is beneficial Thinning of the electronic device 100.
  • the thickness direction Z of the electronic device 100 is substantially perpendicular to the liquid crystal display screen 400.
  • the light transmitting portion 501 of the backlight module 500 may be made of a light guide material.
  • the light guide material may be a transparent material.
  • the optical device 300 is located on a side of the light transmitting portion 501 away from the light transmitting region 601 of the liquid crystal display panel 600.
  • the light transmitting portion 501 and the light transmitting region 601 are used to transmit visible light.
  • the liquid crystal display panel 600 includes a first polarizer 10, a liquid crystal cell 20, and a second polarizer 30 which are sequentially stacked. That is, the first polarizer 10 and the second polarizer 30 are respectively located on opposite sides of the liquid crystal cell 20.
  • the liquid crystal cell 20 allows visible light to pass through a portion of the light transmitting region 601.
  • the portion of the liquid crystal cell 20 in the light blocking area 602 can block visible light.
  • a portion of the liquid crystal cell 20 in the display area 603 is used to display an image.
  • the polarization axis of the first polarizer 10 is perpendicular to the polarization axis of the second polarizer 30. At least one of the first polarizer 10 and the second polarizer 30 is hollowed out in the light transmitting region 601. That is, the first polarizer 10 is hollowed out in the light-transmitting area 601, or the second polarizer 30 is hollowed out in the light-transmitting area 601, or the first polarizer 10 and the second polarizer 30 are in the light-transmitting area 601 Both are skeletonized. At this time, visible light can pass through the light-transmitting area 601.
  • the light-transmitting area 601 has a higher light transmittance, which is beneficial to improving the working quality of the optical device 300.
  • the structure shown in FIG. 2 and FIG. 3 is described by taking the first polarizing plate 10 and the second polarizing plate 30 both hollowed out in the light-transmitting area 601 as an example.
  • the first polarizer 10 may be located between the liquid crystal cell 20 and the backlight module 500, and the second polarizer 30 may be located on a side of the liquid crystal cell 20 away from the backlight module 500. In other embodiments, the positions of the first polarizer 10 and the second polarizer 30 may be reversed.
  • At least one of the first polarizer 10 and the second polarizer 30 may be hollowed out in the light shielding region 602.
  • at least one of the first polarizer 10 and the second polarizer 30 may cover the light-shielding region 602.
  • the electronic device 100 further includes a cover 700.
  • the cover plate 700 is located on a side of the liquid crystal display screen 400 far from the inner cavity of the whole machine.
  • the liquid crystal display screen 400 can be adhered to the cover plate 700 through the adhesive layer 800 to form a screen assembly together.
  • the light-transmitting area 101 of the screen assembly corresponds to the light-transmitting area 601 of the liquid crystal display panel 600 thereof, and the two overlap.
  • the display area 102 of the screen assembly corresponds to the display area 603 of its liquid crystal display panel 600, and the two overlap.
  • the light-shielding area 103 of the panel assembly between the light-transmitting area 101 and the display area 102 corresponds to the light-shielding area 602 of the liquid crystal display panel 600.
  • the adhesive layer 800 may be made of a transparent optical adhesive (Optically Clear Adhesive, OCA) material.
  • OCA Optically Clear Adhesive
  • the positions where the adhesive layer 800 faces the light-transmitting area 601 can be hollowed out to ensure the high light transmittance of the screen component corresponding to the light-transmitting area 601.
  • the adhesive layer 800 may also cover the light-transmitting area 601.
  • the liquid crystal display 400 may integrate a touch function.
  • the liquid crystal display 400 may further include a touch layer.
  • the touch layer may be located between the first polarizer 10 and the liquid crystal cell 20, in the liquid crystal cell 20, or between the liquid crystal cell 20 and the first polarizer 10.
  • a touch film layer may also be provided between the cover plate 700 and the liquid crystal display 400 so that the screen assembly integrates a touch function.
  • FIG. 4 is a schematic structural view of another part of the electronic device 100 at the AA line shown in FIG. 1 in another embodiment
  • FIG. 5 is a partially exploded schematic view of the structure shown in FIG. 4.
  • the structure shown in FIG. 4 is described using the optical device 300 as a proximity light sensor as an example.
  • the structure shown in FIG. 4 can also be applied to other optical devices 300 that use invisible light as identification light, such as an optical fingerprint sensor that recognizes invisible light.
  • films or plates that allow visible light to pass also allow invisible light to pass through.
  • the film layer of the liquid crystal display panel 600 partially located in the light-transmitting region 601 (the specific film structure will be described later) or the material of the plate can be designed by referring to the traditional solution. Visible light passes through, so the portion of the liquid crystal display panel 600 located in the light-transmitting area 601 also allows invisible light to pass through.
  • the transparent portion 501 in the backlight module 500 also allows invisible light to pass through.
  • the optical device 300 using invisible light as the identification light can transmit light through the light transmission area 601 (and the light transmission part 501 of the backlight module 500) of the liquid crystal display panel 600.
  • first polarizer 10 and the second polarizer 30 are hollowed out in the light transmitting region 601.
  • first polarizer 10 covers the display area 603 and staggers the light-transmitting area 601.
  • the second polarizer 30 covers the light-transmitting area 601 and the display area 603. Since the optical device 300 using invisible light as the identification light has a lower requirement on the transmittance, one of the first polarizer 10 and the second polarizer 30 can be opened to meet the device requirements.
  • the adhesive layer 800 between the first polarizer 10 and the cover plate 700 may also cover the light-transmitting area 601 to form a continuous adhesive film layer.
  • both the first polarizer 10 and the second polarizer 30 may be hollowed out in the light-transmitting region 601.
  • the electronic device 100 may include one or more optical devices 300.
  • the liquid crystal display panel 600 may include one or more light-transmitting regions 601, and the light-transmitting portions 501 of the backlight module 500 are disposed corresponding to the light-transmitting regions 601.
  • the electronic device 100 includes a plurality of optical devices 300, and the liquid crystal display panel 600 includes a plurality of light-transmitting regions 601.
  • the plurality of optical devices 300 face the plurality of light-transmitting regions 601, respectively, to transmit light through the plurality of light-transmitting regions 601.
  • one light-transmitting region 601 can provide a light transmission channel for one optical device 300, and can also provide a light transmission channel for multiple optical devices 300 at the same time.
  • FIG. 6 is a schematic structural diagram of the liquid crystal display panel 600 shown in FIG. 3 in the first embodiment.
  • FIG. 7 is an enlarged schematic diagram of the structure at B in FIG. 6. A schematic diagram of a part of the structure in one embodiment is shown.
  • the liquid crystal cell 20 of the liquid crystal display panel 600 includes a first substrate 1, a first film group 2, a first alignment layer 3, a liquid crystal layer 4, a second alignment layer 5, a second film group 6, and a second substrate that are sequentially stacked. ⁇ 7 ⁇ Material 7.
  • the first film group 2 includes a plurality of film layers.
  • the first film group 2 is formed on a first substrate 1.
  • the first alignment layer 3 is formed on the first film group 2.
  • the second film group 6 includes one or more film layers.
  • the second film group 6 is formed on the second substrate 7.
  • the second alignment layer 5 is partially formed on the second film group 6 and partially formed on the second substrate 7.
  • the first polarizer 10 is located on a side of the first substrate 1 away from the first film group 2.
  • the second polarizer 30 is located on a side of the second substrate 7 away from the second film group 6.
  • Both the first substrate 1 and the second substrate 7 are made of a light-transmitting material, and continuously cover the light-transmitting area 601, the light-shielding area 602, and the display area 603.
  • the first substrate 1 and the second substrate 7 can be made of glass materials.
  • the first substrate 1 and the second substrate 7 are continuous plates on the entire surface, and have sufficient structural strength, so that the overall strength of the liquid crystal display panel 600 is high and it is not easy to crack.
  • the first alignment layer 3 (also referred to as an alignment layer), the liquid crystal layer 4 (liquid crystal layer), and the second alignment layer 5 are all located in the light-transmitting region 601, the light-shielding region 602, and the display region 603. Both the first alignment layer 3 and the second alignment layer 5 are made of a light-transmitting material.
  • the first alignment layer 3 and the second alignment layer 5 are respectively located on opposite sides of the liquid crystal layer 4 and directly contact the liquid crystal layer 4.
  • the liquid crystal layer 4 is interposed between the first alignment layer 3 and the second alignment layer 5.
  • the first alignment layer 3 and the second alignment layer 5 are used to provide a pretilt angle for the liquid crystal in the liquid crystal layer 4.
  • the first film group 2 includes a first display portion 23 located in the display area 603, a first transition portion 22 located in the light shielding area 602, and a first light transmitting portion 21 located in the light transmitting area 601.
  • the first transition portion 22 surrounds the periphery of the first light transmitting portion 21.
  • the first display portion 23 surrounds the periphery of the first transition portion 22.
  • the first transition portion 22 connects the first light transmitting portion 21 and the first display portion 23.
  • the second film group 6 includes a second display portion 63 located in the display area 603, a second transition portion 62 located in the light shielding area 602, and a second light transmitting portion 61 located in the light transmitting area 601.
  • the second transition portion 62 surrounds the periphery of the second light transmitting portion 61.
  • the second display portion 63 surrounds the periphery of the second transition portion 62.
  • the second transition portion 62 connects the second light transmitting portion 61 and the second display portion 63.
  • the second light transmitting portion 61 is a through hole, and the second alignment layer 5 is partially located at the second light transmitting portion 61.
  • the second light-transmitting portion 61 may have a portion where one or more film layers are located in the light-transmitting area 601. For details, refer to the following embodiments.
  • the first display section 23 and the second display section 63 cooperate to display an image.
  • the first display portion 23 and the second display portion 63 are important components for realizing the image display of the liquid crystal display panel 600, but they are not all the components.
  • the first display portion 23 and the second display portion 63 cooperate to jointly participate in and affect the display action of the liquid crystal display panel 600.
  • the liquid crystal display panel 600 displays, it also needs the cooperation of other structures, such as the liquid crystal layer 4, the first polarizer 10, and The second polarizer 30 and the like.
  • Each of the first light transmitting portion 21 and the second light transmitting portion 61 allows visible light to pass through.
  • At least one of the first transition portion 22 and the second transition portion 62 can block visible light. That is, the first transition portion 22 can block visible light; or the second transition portion 62 can block visible light; or both the first transition portion 22 and the second transition portion 62 can block visible light.
  • both the first substrate 1 and the second substrate 7 are made of a light-transmitting material
  • the first alignment layer 3 and the second alignment layer 5 are made of a light-transmitting material
  • the first film group 2 is located in the light-transmitting area 601
  • the first light-transmitting portion 21 allows visible light to pass
  • the second light-transmitting portion 61 of the second film group 6 located in the light-transmitting region 601 allows visible light to pass. Therefore, the light-transmitting region 601 allows visible light to pass.
  • optical devices 300 such as a camera module in the electronic device 100 can be placed under the light-transmitting area 601 of the liquid crystal display panel 600 to transmit visible light through the light-transmitting area 601, thereby reducing optical
  • the device 300 limits the arrangement space of the liquid crystal display panel 600, and the light-transmitting area 601 is surrounded by the display area 603, so that the liquid crystal display panel 600 can set a larger display area 603 to reduce the frame area of the electronic device 100, The display area of the electronic device 100 is increased, and the screen ratio of the electronic device 100 is increased.
  • the first display portion The thickness of 23 is greater than the thickness of the first light transmitting portion 21, and the first transition portion 22 forms a step structure connecting the first display portion 23 and the first light transmitting portion 21.
  • the top surface 221 of the first transition portion 22 facing away from the first substrate 1 includes one or more stepped surfaces 222.
  • one or more stepped surfaces 222 are located on the top surface 231 of the first display portion 23 facing away from the first substrate 1 and the first light transmitting portion 21 faces away from the first Between the top surfaces 211 of the substrate 1.
  • the embodiment shown in FIG. 8 schematically illustrates that the top surface 221 of the first transition portion 22 includes three step surfaces 222. In other embodiments, the top surface 221 of the first transition portion 22 may include other number of step surfaces 222, which is not strictly limited in this application.
  • the alignment layer when the thickness of different portions of the film layer for supporting the alignment layer is greatly different, it is easy to cause the alignment layer to accumulate in the transition region between the smaller thickness portion and the larger thickness portion, thereby causing a liquid crystal display
  • the panel has problems such as display unevenness (mura) and display of different colors.
  • the alignment layer easily accumulates in the edge region of the smaller thickness portion adjacent to the larger thickness portion, and causes the edge region to become yellow or white.
  • the step structure formed by the first transition portion 22 of the liquid crystal display panel 600 can gradually transition the height difference between the first display portion 23 and the first light transmitting portion 21.
  • the plurality of step surfaces 222 can carry the first alignment layer 3, thereby reducing the risk of the first alignment layer 3 being piled up on the edge of the top surface 211 (the surface facing away from the first substrate 1) of the first light-transmitting portion 21, effectively solving the problem.
  • the display unevenness and discoloration of the transparent region 601 of the liquid crystal display panel 600 due to the stacking of the alignment layers cause the liquid crystal display panel 600 to have better display quality.
  • the first alignment layer 3 Since the risk of stacking the first alignment layer 3 on the edge of the top surface 211 of the first light-transmitting portion 21 is small, the first alignment layer 3 can be evenly coated on the top surface 211 of the first light-transmitting portion 21, The risk of noise generated by the light in the transparent region 601 due to foreign objects is small, thereby ensuring the working quality of the optical device 300.
  • the step structure is also conducive to improving the arrangement of liquid crystals in the liquid crystal layer 4, making the liquid crystal arrangement more uniform, and the liquid crystal display panel 600 has better display quality.
  • the one or more stepped surfaces 222 are substantially parallel to the first substrate 1. At this time, the one or more stepped surfaces 222 can be easily processed, and can better support the first alignment layer 3.
  • the thickness of the first light-transmitting portion 21 is smaller than the thickness of the first display portion 23, that is, the thickness of the first light-transmitting portion 21 is small, which is beneficial to improving the light transmittance of the light-transmitting region 601.
  • the portions of the first alignment layer 3 and the second alignment layer 5 in the light-transmitting region 601 are beneficial to control the liquid crystal located in the light-transmitting region 601 to maintain a specific angle, so as to reduce the risk of deviation of light during transmission, thereby improving optical performance.
  • the working quality of the device 300 is beneficial to control the liquid crystal located in the light-transmitting region 601 to maintain a specific angle, so as to reduce the risk of deviation of light during transmission, thereby improving optical performance.
  • the shape, size, and number of the light-transmitting regions 601 and the design of the distance from the edges of the liquid crystal display panel 600 are more flexible and diversified, which is conducive to improving electronic equipment. 100 machine reliability.
  • the shape of the light-transmitting region 601 may be a circle, an oval, a polygon, a rounded rectangle, a racetrack shape (including two parallel sides that are parallel to each other and an arc side that is oppositely connected between the two straight sides).
  • the number of the light-transmitting regions 601 may be one or more.
  • the plurality of light-transmitting regions 601 may respectively provide a light transmission channel for the plurality of optical devices 300.
  • the arrangement manner of the plurality of light-transmitting regions 601 can be flexibly designed, such as an array arrangement, a circular arrangement, and the like.
  • the number of the film layers of the first light transmitting portion 21 is a first value.
  • the number of film layers of the first display portion 23 is a second value.
  • the first value is smaller than the second value.
  • the number of film layers of the first transition portion 22 is in a range from a first value to a second value.
  • the range of the first value to the second value refers to a range including the first value and the second value as the minimum value and the maximum value, respectively.
  • different film layers in the first film group 2 are arranged in the light-transmitting area 601, the light-shielding area 602, and the display area 603, so that the number of the film layers of the first light-transmitting portion 21 Different from the number of film layers of the first display portion 23, the number of film layers of the first transition portion 22 may be in a range from a first value to a second value.
  • part of the film layer in the first film group 2 can cover the light-transmitting area 601, the light-shielding area 602, and the display area 603 at the same time. 603 and so on.
  • the first film group 2 can adjust the first light transmitting portion 21, the first transition portion 22, and the first display by controlling the number of film layers of the first light transmitting portion 21, the first transition portion 22, and the first display portion 23.
  • the thickness of the portion 23 is the thickness of the portion 23.
  • the first display portion 23 can form a relatively complicated layer structure, thereby satisfying the display area 603 of the liquid crystal display panel 600. Since the first value is small, that is, the number of the film layers of the first light transmitting portion 21 is small, the light transmittance of the first light transmitting portion 21 is higher, and the working quality of the optical device 300 is better.
  • one or more stepped surfaces 222 are formed on the top surface of the top film layer facing away from the first substrate 1.
  • a plurality of step surfaces 222 are formed in the same film layer.
  • one end of one or more film layers facing the first light transmitting portion 21 forms a stepped surface 222.
  • the plurality of step surfaces 222 are formed in different film layers.
  • the top surface 221 of the first transition portion 22 further includes a plurality of connection surfaces 223 spaced from each other.
  • the step surface 222 is connected between two adjacent connection surfaces 223. In the embodiment shown in FIG. 8, four connecting surfaces 223 are illustrated. In other embodiments, the step surface 222 may also include other numbers of connection surfaces 223. This application does not strictly limit this.
  • the step surface 222 is substantially perpendicular to the connection surface 223.
  • the top surface 221 of the first transition portion 22 can include a stepped surface 222 with a larger area to improve the effect of carrying the first alignment layer 3 and reduce the first alignment layer 3 in the light-transmitting region 601 (ie, the first Risk of accumulation on the light transmitting portion 21).
  • FIG. 9 is a schematic structural diagram of a part of the structure shown in FIG. 7 in another embodiment.
  • An included angle ⁇ between 120 ° and 135 ° is formed between the step surfaces 222 and the connection surface 223 that are in contact.
  • the connection surface 223 is inclined with respect to the first base material 1.
  • the forming difficulty of each film layer in the first transition portion 22 is relatively low, which is beneficial to improving the product yield of the liquid crystal display panel 600.
  • FIG. 10 is a schematic structural diagram of a part of the structure shown in FIG. 7 in still another embodiment.
  • the top surface 221 of the first transition portion 22 further includes a transition surface 224.
  • the transition surface 224 is connected between the top surface 211 and the connection surface 223 of the first light-transmitting portion 21 away from the first substrate 1.
  • the connection surface 223 is a connection surface 223 closest to the first light transmitting portion 21 among the plurality of connection surfaces 223.
  • the transition surface 224 is flush with the top surface 211 of the first light transmitting portion 21.
  • the transition surface 224 makes a smooth transition with the top surface 211 of the first light transmitting portion 21.
  • the first transition portion 22 is provided with a transition surface 224 that is flush with the top surface 211 of the first light transmitting portion 21, and the transition surface 224 is connected to the top surface 211 of the first light transmitting portion 21. It is close to the connection surface 223, so even if the first alignment layer 3 is slightly stacked, the first alignment layer 3 will be stacked on the transition surface 224, and a portion of the first alignment layer 3 on the top surface 211 of the first light transmitting portion 21 is coated It is uniform, and there is no or almost no accumulation, which can effectively solve problems such as display unevenness (mura) and discoloration caused by accumulation of alignment layers.
  • the top surface 221 of the first transition portion 22 further includes a second transition surface 225.
  • the second transition surface 225 is connected between the top surface 231 and the connection surface 223 of the first display portion 23.
  • the second transition surface 225 is smoothly connected to the top surface 231 of the first display portion 23.
  • the first alignment layer 3 can be uniformly applied to the interface area between the first transition portion 22 and the first display portion 23, In order to ensure the display quality of the liquid crystal display panel 600.
  • the liquid crystal display panel 600 further includes a plastic frame 8.
  • the plastic frame 8 is located between the first substrate 1 and the second substrate 7 and surrounds the periphery of the display area 603.
  • the light-transmitting area 601 is located inside the plastic frame 8.
  • the light-shielding area 602 is located inside the plastic frame 8.
  • the liquid crystal layer 4 is filled inside the plastic frame 8.
  • the liquid crystal layer 4 can be filled in the light-transmitting area 601, the light-shielding area 602, and the display area 603 at the same time, and there is no need to provide a partition structure between the light-transmitting area 601, the light-shielding area 602 and the display area 603, thereby simplifying
  • the manufacturing process of the liquid crystal display panel 600 makes the cost of the liquid crystal display panel 600 lower.
  • FIG. 11 is a schematic structural diagram of an embodiment of the second film layer 2 and the first substrate 1 in FIG. 6,
  • FIG. 12 is a schematic structural diagram of the second film layer 2 and the first substrate 1 in another embodiment in FIG. 6.
  • the first film group 2 includes a device array layer 91.
  • the device array layer 91 includes a plurality of light-transmitting film layers 901 and a plurality of light-shielding film layers 902 arranged in a stack.
  • the plurality of light-transmitting film layers 901 allow visible light to pass through.
  • One or more of the plurality of light-transmitting film layers 901 are patterned film layers.
  • the plurality of light-shielding film layers 902 can block visible light.
  • the plurality of light-shielding film layers 902 are patterned film layers.
  • the first display portion 23 includes a portion where a plurality of light-shielding film layers 902 are located in the display area 603 and a portion where a plurality of light-transmitting film layers 901 are located in the display area 603.
  • the device array layer 91 forms a plurality of thin film transistors (TFTs) 90 in the display area 603.
  • TFTs thin film transistors
  • portions of the plurality of light-shielding film layers 902 and portions of the plurality of light-transmitting film layers 901 included in the first display portion 23 collectively form a plurality of thin film transistors 90.
  • a plurality of thin film transistors 90 are arranged in an array.
  • the first light transmitting portion 21 includes a portion of one or more light transmitting film layers 901 located in the light transmitting region 601.
  • the thickness of the first light-transmitting portion 21 is different from the thickness of the first display portion 23.
  • the thickness of the liquid crystal layer 4 in the light-transmitting region 601 is similar to the thickness of the display region 603 in order to reduce the abnormal display of the display region 603 around the light-transmitting region 601 due to the large layer structure difference (such as Newton's ring, etc.). ) Risk, thereby improving the display quality of the liquid crystal display 400.
  • the number and / or area of the step surfaces 222 of the first transition portion 22 can also be reduced, and the processing difficulty of the first transition portion 22 can be reduced.
  • “Quantity and / or area” means the number alone, or the area alone, or both the number and area.
  • the film layer of the first light-transmitting portion 21 and a part of the film layer of the first display portion 23 are the same layer, they can be made in one molding process, so the molding process of the first light-transmitting portion 21 can be integrated in In the forming process of the first display portion 23, the processing difficulty of the device array layer 91 is simplified, and the processing efficiency of the device array layer 91 is improved.
  • the thin film transistor 90 in the device array layer 91 may adopt a top gate structure, for example:
  • the device array layer 91 includes a shielding layer 911, a buffer layer 912, a semiconductor layer 913, a gate insulating layer 914, a gate 915, a first insulating layer 916, a source 917, a drain 918, and a second insulating layer 919, a common electrode 9110, a third insulating layer 9111, and a pixel electrode 9112.
  • the shielding layer 911 is formed on the first substrate 1.
  • the buffer layer 912 is formed on the first substrate 1 and covers the shielding layer 911.
  • the semiconductor layer 913 is located on a side of the buffer layer 912 away from the first substrate 1 and directly faces the shielding layer 911.
  • the semiconductor layer 913 may be made of low temperature poly-silicon (LTPS) material.
  • LTPS low temperature poly-silicon
  • the semiconductor layer 913 includes a channel region, two lightly doped regions, and two heavily doped regions.
  • the two lightly doped regions are respectively connected to opposite ends of the channel region, and the two heavily doped regions are respectively connected to The two lightly doped regions are far from both ends of the channel region.
  • the gate insulating layer 914 is located on a side of the buffer layer 912 away from the first substrate 1 and covers the semiconductor layer 913.
  • the gate insulating layer 914 is provided with a first hole and a second hole respectively facing the two heavily doped regions.
  • the gate 915 is located on a side of the gate insulating layer 914 away from the buffer layer 912 and is directly opposite to the channel region.
  • the first insulating layer 916 is located on a side of the gate insulating layer 914 away from the buffer layer 912 and covers the gate 915.
  • the first insulating layer 916 is provided with a third hole communicating with the first hole and a fourth hole communicating with the second hole.
  • the source electrode 917 and the drain electrode 918 are located on a side of the first insulating layer 916 away from the gate insulating layer 914.
  • the source electrode 917 is connected to one of the heavily doped regions through a third hole and the first hole, and the drain electrode 918 is connected through a fourth hole and
  • the second hole is connected to another heavily doped region.
  • the second insulating layer 919 is located on a side of the first insulating layer 916 away from the gate insulating layer 914 and covers the source electrode 917 and the drain electrode 918.
  • the second insulating layer 919 is provided with a fifth hole facing the drain electrode 918 (or the source electrode 917).
  • the common electrode 9110 is located on a side of the second insulating layer 919 away from the first insulating layer 916.
  • the third insulating layer 9111 is located on a side of the second insulating layer 919 away from the first insulating layer 916 and covers the common electrode 9110.
  • the third insulating layer 9111 is provided with a sixth hole communicating with the fifth hole.
  • the pixel electrode 9112 is located on a side of the third insulating layer 9111 away from the second insulating layer 919, and is connected to the drain electrode 918 (or the source electrode 917) through a sixth hole and a fifth hole.
  • the thin film transistor 90 includes a semiconductor layer 913, a gate 915, a source 917, and a drain 918.
  • the plurality of light shielding film layers 902 may include a shielding layer 911, a semiconductor layer 913, a gate electrode 915, a source electrode 917, a drain electrode 918, and the like.
  • the plurality of light-transmitting film layers 901 may include a buffer layer 912, a gate insulating layer 914, a first insulating layer 916, a second insulating layer 919, and a third insulating layer 9111.
  • the pixel electrode 9112 and the common electrode 9110 are made of a light-transmitting material, they may belong to multiple light-transmitting film layers 901.
  • the thin film transistor 90 in the device array layer 91 may adopt a bottom gate structure, for example:
  • the device array layer 91 includes a gate electrode 915, a gate insulating layer 914, a semiconductor layer 913, a source electrode 917, a drain electrode 918, an insulating layer 9113, and a pixel electrode 9112.
  • the gate 915 is formed on the first substrate 1.
  • the gate insulating layer 914 is formed on the first substrate 1 and covers the gate 915.
  • the semiconductor layer 913 is located on a side of the gate insulating layer 914 away from the gate 915 and directly faces the gate 915.
  • the semiconductor layer 913 may be made of an amorphous silicon ( ⁇ -Si) material.
  • the source electrode 917 is located at a side of the gate insulating layer 914 away from the first substrate 1 and connected to the semiconductor layer 913.
  • the drain electrode 918 is located on one side of the gate insulating layer 914 away from the first substrate 1 and is connected to the other end of the semiconductor layer 913.
  • the insulating layer 9113 is located on a side of the gate insulating layer 914 away from the first substrate 1 and covers the source electrode 917, the semiconductor layer 913, and the drain electrode 918.
  • the insulating layer 9113 is provided with a through hole facing the drain electrode 918 (or the source electrode 917).
  • the pixel electrode 9112 is located on a side of the insulating layer 9113 away from the gate insulating layer 914, and is connected to the drain electrode 918 (or the source electrode 917) through a via.
  • the thin film transistor 90 includes a semiconductor layer 913, a gate 915, a source 917, and a drain 918.
  • the plurality of light shielding film layers 902 may include a gate electrode 915, a semiconductor layer 913, a source electrode 917, and a drain electrode 918.
  • the plurality of light-transmitting film layers 901 may include a gate insulating layer 914 and an insulating layer 9113.
  • the pixel electrode 9112 is made of a light-transmitting material, it may belong to a plurality of light-transmitting film layers 901.
  • the layer structure of the device array layer 91 may be different from the previous two embodiments, that is, the device array layer 91 may have another layer structure.
  • the plurality of light-transmitting film layers 901 and the plurality of light-shielding film layers 902 have other film layers correspondingly.
  • the first transition portion 22 includes a portion of one or more light-transmitting film layers 901 in the light-shielding region 602. At this time, the first transition portion 22 allows visible light to pass.
  • the first transition portion 22 includes a portion of the one or more light-transmitting film layers 901 in the light-shielding region 602 and a portion of the one or more light-shielding film layers 902 in the light-shielding region 602. At this time, the first transition portion 22 can block visible light.
  • the first transition portion 22 may implement a step structure by changing the number of film layers at different positions. For example, in the direction of the first display portion 23 toward the first light-transmitting portion 21, the number of film layers at different positions of the first transition portion 22 decreases, thereby achieving a decrease in thickness to form a stepped structure.
  • the first transition portion 22 may form a stepped structure by changing a thickness of a film layer of the top insulating layer itself away from the first substrate 1.
  • FIG. 13 is another schematic structural diagram of the liquid crystal display panel 600 shown in FIG. 6.
  • the second film group 6 includes a color film layer 92 and a flat layer 93.
  • the color filter layer 92 is also called a color filter (CF), and is used to pass light in a specific wavelength range.
  • the color filter layer 92 is located between the second substrate 7 and the flat layer 93.
  • the color film layer 92 includes a black matrix (BM) 921 and a plurality of color color resist blocks 922 arranged alternately with the black matrix 921.
  • the plurality of color resist blocks 922 include a red (R) resist, a green (G) resist, and a blue (B) resist.
  • the plurality of color resist blocks 922 may further include a white (W) resist block or a yellow (Y) resist block.
  • the black matrix 921 is integrated in the color filter layer 92, and the black matrix 921 and a plurality of color resist blocks 922 multiplex a part of the thickness space of the liquid crystal display panel 600.
  • the second display portion 63 includes a plurality of color resist blocks 922 arranged in the display area 603, a partial black matrix 921, and a partial flat layer 93.
  • the second light transmitting portion 61 is a through hole.
  • the color filter layer 92 and the flat layer 93 are hollowed out in the light transmitting region 601.
  • the second transition portion 62 includes a part of the black matrix 921 and a part of the flat layer 93 arranged in the light-shielding area 602. At this time, the second transition portion 62 can block visible light.
  • an end of the black matrix 921 near the second light transmitting portion 61 forms a stepped surface 622, so that the second transition portion 62 forms a stepped structure.
  • the distance between the end of the flat layer 93 near the second light transmitting portion 61 and the second light transmitting portion 61 is smaller than the distance between the end of the black matrix 921 near the second light transmitting portion 61 and the second light transmitting portion 61. , So that a part of the surface of the black matrix 921 near one end of the second light transmitting portion 61 is exposed to form a stepped surface 622.
  • the second light-transmitting portion 61 is a through hole, a portion of the second alignment layer 5 located in the light-transmitting region 601 is formed on the second substrate 7, so the light-transmitting region 601 has a higher light transmittance.
  • the step structure can transition the height difference between the second substrate 7 and the second display portion 63, and the step surface 622 of the second transition portion 62 can carry the second alignment layer 5, thereby Reducing the risk of the second alignment layer 5 stacking on the edge of the second substrate 7 located in the light-transmitting region 601, and effectively solving the display unevenness and display caused by the alignment layer of the light-transmitting region 601 of the liquid crystal display panel 600 Problems such as different colors make the liquid crystal display panel 600 have better display quality.
  • the first display portion 23 can be used to control the deflection direction of the liquid crystal in the liquid crystal layer 4 located in the display area 603, and the second display portion 63 can filter light. When matched, the display area 603 can display.
  • the device array layer 91 is fabricated on the first substrate 1, and the first film group 2 and the first substrate 1 together form an array substrate.
  • the color film layer 92 is fabricated on the second substrate 7, and the second film group 6 and the second substrate 7 together form a color film substrate.
  • the first film group 2 may further include a common electrode layer.
  • the common electrode layer is made of transparent conductive material.
  • the liquid crystal display panel 600 further includes a supporting component 41.
  • the support assembly 41 is located between the first film group 2 and the second film group 6 and penetrates the liquid crystal layer 4 in a direction from the first substrate 1 to the second substrate 7 to hold the first substrate 1 and the second substrate 1. The spacing between the substrates 7.
  • the supporting component 41 is used to maintain a distance (also called a cell gap) between the second substrate 7 and the first substrate 1, so that the liquid crystal display panel 600 is not easily deformed during manufacture or use, thereby ensuring The display quality of the liquid crystal display panel 600.
  • the support assembly 41 includes a plurality of first support posts 411.
  • the plurality of first support pillars 411 are arranged staggered from the light-transmitting area 601.
  • the plurality of first support posts 411 are arranged at intervals from each other.
  • the plurality of first support pillars 411 are arranged facing the black matrix 921. In other words, the projections of the plurality of first support pillars 411 on the second substrate 7 are covered by the projections of the black matrix 921 on the second substrate 7.
  • the plurality of first support pillars 411 may be made of a light-transmitting material or an opaque material.
  • FIG. 14 is a schematic structural diagram of the liquid crystal display panel 600 shown in FIG. 3 in the second embodiment
  • FIG. 15 is a partial structural schematic diagram of the liquid crystal display panel 600 shown in FIG.
  • the content of most technical solutions that are the same as those of the foregoing embodiment will not be repeated.
  • the second film group 6 includes a color film layer 92 and a flat layer 93.
  • the color filter layer 92 is located between the second substrate 7 and the flat layer 93.
  • the color film layer 92 includes a black matrix 921 and a plurality of color color resist blocks 922 arranged alternately with the black matrix 921.
  • the black matrix 921 is integrated in the color filter layer 92, and the black matrix 921 and a plurality of color resist blocks 922 multiplex a part of the thickness space of the liquid crystal display panel 600.
  • the second display portion 63 includes a plurality of color resist blocks 922 arranged in the display area 603, a partial black matrix 921, and a partial flat layer 93.
  • the second transition portion 62 includes a part of the black matrix 921 and a part of the flat layer 93 arranged in the light-shielding area 602.
  • the second light transmitting portion 61 includes a part of the flat layer 93 arranged on the light transmitting region 601.
  • the flat layer 93 continuously covers the display area 603, the light-shielding area 602, and the light-transmitting area 601.
  • the second light-transmitting portion 61 since the second light-transmitting portion 61 includes a partially flat layer 93, the height difference between the second light-transmitting portion 61 and the second display portion 63 is small, and even the thicknesses of the two can be the same, so that the first The risk that the two alignment layers 5 are deposited on the second light transmitting portion 61 is small.
  • the thickness of a portion of the flat layer 93 located in the light-transmitting region 601 may be substantially the same as the thickness of a portion located in the display region 603. At this time, the height difference between the second light transmitting portion 61 and the second display portion 63 is small.
  • FIG. 16 is a schematic structural diagram of the liquid crystal display panel 600 shown in FIG. 3 in a third embodiment
  • FIG. 17 is a partial structural schematic diagram of the liquid crystal display panel 600 shown in FIG. 16.
  • the content of most technical solutions that are the same as those of the foregoing embodiment will not be repeated.
  • the second display portion 63 includes a plurality of color resist blocks 922 arranged in the display area 603, a partial black matrix 921, and a partial flat layer 93.
  • the second transition portion 62 includes a part of the black matrix 921 and a part of the flat layer 93 arranged in the light-shielding area 602.
  • the second light transmitting portion 61 includes a part of the flat layer 93 arranged on the light transmitting region 601.
  • the main difference between this embodiment and the foregoing embodiment is that the surface 931 of the flat layer 93 away from the second substrate 7 is a flat surface. At this time, the thicknesses of the second transparent portion 61, the second transition portion 62, and the second display portion 63 are the same.
  • the flat layer 93 can provide a flat molding surface. Therefore, the second alignment layer 5 can form a flat film layer. The second alignment layer 5 does not accumulate on the second light transmitting portion 61, and the molding quality of the second alignment layer 5 is better.
  • FIG. 18 is a schematic structural diagram of the liquid crystal display panel 600 shown in FIG. 3 in the fourth embodiment
  • FIG. 19 is a partial structural schematic diagram of the liquid crystal display panel 600 shown in FIG.
  • the content of most technical solutions that are the same as those of the foregoing embodiment will not be repeated.
  • the second film group 6 includes a color film layer 92.
  • the color filter layer 92 is used to pass light in a specific wavelength range.
  • the color film layer 92 includes a black matrix 921 and a plurality of color color resist blocks 922 arranged alternately with the black matrix 921.
  • the black matrix 921 is integrated in the color filter layer 92, and the black matrix 921 and a plurality of color resist blocks 922 multiplex a part of the thickness space of the liquid crystal display panel 600.
  • the second display portion 63 includes a plurality of color resist blocks 922 and a partial black matrix 921 arranged in the display area 603.
  • the second transition portion 62 includes a part of the black matrix 921 arranged in the light-shielding region 602. At this time, the second transition portion 62 can block visible light.
  • the second light transmitting portion 61 is a through hole. In other words, the color filter layer 92 is hollowed out in the light transmitting region 601.
  • the second light-transmitting portion 61 is a through hole, and a portion of the second alignment layer 5 located in the light-transmitting region 601 is formed on the second substrate 7, so the light transmittance of the light-transmitting region 601 is higher.
  • the first film group 2 includes a color film layer 92 and a device array layer 91.
  • the device array layer 91 is located between the color filter layer 92 and the first substrate 1.
  • the color filter layer 92 is used to pass light in a specific wavelength range.
  • the color film layer 92 includes a plurality of color color resist blocks 922.
  • the device array layer 91 includes a plurality of light-transmitting film layers 901 and a plurality of light-shielding film layers 902 arranged in a stack.
  • the plurality of light-transmitting film layers 901 allow visible light to pass through.
  • One or more of the plurality of light-transmitting film layers 901 are patterned film layers.
  • the plurality of light-shielding film layers 902 can block visible light.
  • the plurality of light-shielding film layers 902 are patterned film layers.
  • the first display portion 23 includes a plurality of color resist blocks 922, a portion of the plurality of light shielding film layers 902 located in the display area 603, and a portion of the plurality of light transmitting film layers 901 located in the display area 603.
  • the device array layer 91 forms a plurality of thin film transistors 90 in a display area 603. In other words, portions of the plurality of light-shielding film layers 902 and portions of the plurality of light-transmitting film layers 901 included in the first display portion 23 collectively form a plurality of thin film transistors 90.
  • a plurality of thin film transistors 90 are arranged in an array.
  • the first light transmitting portion 21 includes a portion of one or more light transmitting film layers 901 located in the light transmitting region 601.
  • the first display portion 23 can be used to control the deflection direction of the liquid crystal of the liquid crystal layer 4 in the display area 603, and can also be used to filter light. Therefore, the first display portion 23, the liquid crystal layer 4 and the second display When the portion 63 cooperates, the display area 603 can be displayed.
  • the device array layer 91 and the color filter layer 92 are sequentially formed on the first substrate 1 to form a color filter (COA) substrate on the array; the second substrate 7 and the second substrate 7
  • the second film group 6 collectively forms a box substrate.
  • the thickness of the first light-transmitting portion 21 is different from the thickness of the first display portion 23.
  • the thickness of the liquid crystal layer 4 in the light-transmitting region 601 is similar to the thickness of the display region 603 in order to reduce the abnormal display of the display region 603 around the light-transmitting region 601 due to the large layer structure difference (such as Newton's ring, etc. ) Risk, thereby improving the display quality of the liquid crystal display 400.
  • the number and / or area of the step surfaces 222 of the first transition portion 22 can also be reduced, and the processing difficulty of the first transition portion 22 can be reduced.
  • the film layer of the first light-transmitting portion 21 and a part of the film layer of the first display portion 23 are the same layer, they can be made in one molding process, so the molding process of the first light-transmitting portion 21 can be integrated in In the forming process of the first display portion 23, the processing difficulty of the device array layer 91 is simplified, and the processing efficiency of the device array layer 91 is improved.
  • the first transition portion 22 includes a portion of one or more light-transmitting film layers 901 in the light-shielding region 602. At this time, the first transition portion 22 allows visible light to pass.
  • the first transition portion 22 includes a portion of the one or more light-transmitting film layers 901 in the light-shielding region 602 and a portion of the one or more light-shielding film layers 902 in the light-shielding region 602. At this time, the first transition portion 22 can block visible light.
  • the first transition portion 22 may implement a step structure by changing the number of film layers at different positions. For example, in the direction of the first display portion 23 toward the first light-transmitting portion 21, the number of film layers at different positions of the first transition portion 22 decreases, thereby achieving a decrease in thickness to form a stepped structure.
  • the first transition portion 22 may form a stepped structure by changing a thickness of a film layer of the top insulating layer itself away from the first substrate 1.
  • the first film group 2 further includes a second flat layer 94.
  • the second flat layer 94 is located on a side of the color filter layer 92 facing away from the first substrate 1 and is located on the display area 603.
  • the side of the second flat layer 94 facing away from the color film layer 92 can provide a flat molding surface, so that the first alignment layer 3 can be evenly coated on the first display portion 23, and the display quality of the liquid crystal display panel 600 is high.
  • the second film group 6 includes a black matrix 921 and a flat layer 93.
  • the black matrix 921 is located between the second substrate 7 and the flat layer 93.
  • the black matrix 921 is independent of the color filter layer 92.
  • the second film group 6 and the second substrate 7 form a box substrate for the color film substrate on the array.
  • the second display section 63 includes a part of the black matrix 921 and a part of the flat layer 93 arranged in the display area 603.
  • the flat layer 93 can provide a flat molding surface in the display area 603, so that the second alignment layer 5 can be evenly coated on the second display portion 63.
  • the second transition portion 62 includes a part of the black matrix 921 and a part of the flat layer 93 arranged in the light-shielding area 602.
  • the second light transmitting portion 61 is a through hole.
  • the black matrix 921 and the flat layer 93 are hollowed out in the light transmitting region 601.
  • the transmittance of the light-transmitting region 601 is high.
  • an end of the black matrix 921 near the second light transmitting portion 61 may form a stepped surface 622, so that the second transition portion 62 forms a stepped structure.
  • the distance between the end of the flat layer 93 near the second light transmitting portion 61 and the second light transmitting portion 61 is larger than the distance between the end of the black matrix 921 near the second light transmitting portion 61 and the second light transmitting portion 61. , So that a part of the surface of the black matrix 921 near one end of the second light transmitting portion 61 is exposed to form a stepped surface 622.
  • the first film group 2 may further include a common electrode layer.
  • the common electrode layer is made of transparent conductive material.
  • FIG. 22 is a schematic structural diagram of a liquid crystal display panel 600 shown in FIG. 3 in a sixth embodiment
  • FIG. 23 is a schematic structural diagram of a part of the liquid crystal display panel 600 shown in FIG. 22.
  • the content of most technical solutions that are the same as those of the foregoing embodiment will not be repeated.
  • the second film group 6 includes a black matrix 921 and a flat layer 93.
  • the black matrix 921 is located between the second substrate 7 and the flat layer 93.
  • the second film group 6 and the second substrate 7 form a box substrate for the color film substrate on the array.
  • the second display section 63 includes a part of the black matrix 921 and a part of the flat layer 93 arranged in the display area 603.
  • the flat layer 93 can provide a flat molding surface in the display area 603, so that the second alignment layer 5 can be evenly coated on the second display portion 63.
  • the second transition portion 62 includes a part of the black matrix 921 and a part of the flat layer 93 arranged in the light-shielding area 602.
  • the second light transmitting portion 61 includes a part of the flat layer 93 arranged on the light transmitting region 601. At this time, the height difference between the second light-transmitting portion 61 and the second display portion 63 is small, and even the thicknesses of the two can be the same, so that the second alignment layer 5 risks a build-up phenomenon on the second light-transmitting portion 61 Smaller.
  • FIG. 24 is a schematic structural diagram of the liquid crystal display panel 600 shown in FIG. 3 in the seventh embodiment
  • FIG. 25 is a schematic structural diagram of a part of the liquid crystal display panel 600 shown in FIG. In this embodiment, the content of most technical solutions that are the same as those of the foregoing embodiment will not be repeated.
  • the second film group 6 includes a black matrix 921 and a flat layer 93.
  • the black matrix 921 is located between the second substrate 7 and the flat layer 93.
  • the black matrix 921 is independent of the color filter layer 92.
  • the second film group 6 and the second substrate 7 form a box substrate for the color film substrate on the array.
  • the second display section 63 includes a part of the black matrix 921 and a part of the flat layer 93 arranged in the display area 603.
  • the second transition portion 62 includes a part of the black matrix 921 and a part of the flat layer 93 arranged in the light-shielding area 602.
  • the second light transmitting portion 61 includes a part of the flat layer 93 arranged on the light transmitting region 601.
  • the main difference between this embodiment and the foregoing embodiments is that the surface 931 of the flat layer 93 away from the second substrate 7 is a flat surface.
  • the thicknesses of the second light transmitting portion 61, the second transition portion 62, and the second display portion 63 are the same.
  • the flat layer 93 can provide a continuous flatness in the light transmitting area 601, the light shielding area 602 and the display area 603.
  • the molding surface is conducive to reducing the difficulty of manufacturing the second alignment layer 5, so that the second alignment layer 5 can be more uniformly coated on the second display portion 63, the second transition portion 62, and the second transparent portion 61.
  • the risk of stacking the two alignment layers 5 is small, and the liquid crystal display panel 600 has better display quality.
  • FIG. 26 is a schematic structural diagram of the liquid crystal display panel 600 shown in FIG. 3 in the eighth embodiment.
  • the content of most technical solutions that are the same as those of the foregoing embodiment will not be repeated.
  • the liquid crystal display panel 600 includes a support assembly 41.
  • the support assembly 41 is located between the first film group 2 and the second film group 6 and penetrates the liquid crystal layer 4 in a direction from the first substrate 1 to the second substrate 7 to hold the first substrate 1 and the second substrate 1.
  • the support assembly 41 includes a plurality of first support posts 411.
  • the plurality of first support pillars 411 are arranged staggered from the light-transmitting area 601.
  • the support assembly 41 further includes a second support post 412, and the second support post 412 is arranged in the light-transmitting area 601.
  • the second support post 412 is made of a light-transmitting material.
  • the second support post 412 supports the second substrate 7 and the first substrate 1 located in the light-transmitting region 601, so that the liquid crystal display panel 600 has the same light-transmitting region 601 as the display region 603.
  • the liquid crystal display 400 has a higher display quality.
  • the number of the second supporting posts 412 is multiple.
  • the plurality of second support pillars 412 are arranged at a distance from each other in the light transmitting region 601.
  • the plurality of second support columns 412 may be arranged at substantially uniform intervals, so that the entire light-transmitting area 601 of the liquid crystal display panel 600 has a relatively uniform cell gap.
  • the height of the second support pillar 412 is greater than the height of the first support pillar 411.
  • the height of the second support post 412 is designed to be able to properly support the second substrate 7 and the first substrate 1.
  • the shape of the second support post 412 can be designed with reference to the first support post 411.
  • the second support pillars 412 and the first support pillars 411 may be substantially circular-conical.
  • the second support post 412 and the first support post 411 may be formed in the same process, or may be formed in two processes.
  • FIG. 27 is a schematic structural diagram of a liquid crystal display panel 600 shown in FIG. 3 in a ninth embodiment.
  • the content of most technical solutions that are the same as those of the foregoing embodiment will not be repeated.
  • the liquid crystal display panel 600 includes a support assembly 41.
  • the supporting member 41 is located between the first film group 2 and the second film group 6 and penetrates the liquid crystal layer 4 in a direction from the first substrate 1 to the second substrate 7 to hold the first substrate 1 and the second substrate 1.
  • the support assembly 41 includes a plurality of first support posts 411.
  • the plurality of first support pillars 411 are arranged staggered from the light-transmitting area 601.
  • the support assembly 41 further includes a second support post 412, and the second support post 412 is arranged in the light-transmitting area 601.
  • the main difference between this embodiment and the foregoing embodiment is that the number of the second support posts 412 is one.
  • An end surface area of the second support pillar 412 facing the first base material 1 is larger than an end surface area of the first support pillar 411 facing the first base material 1.
  • the end surface area of the second support post 412 facing the second base material 7 is larger than the end surface area of the first support post 411 facing the second base material 7.
  • the second support pillar 412 can provide a larger support area, so that the number of the second support pillars 412 enables the support component 41 to stably support the light-transmitting area 601.
  • the second support post 412 may have a circular truncated shape, and two end surfaces of the second support post 412 are circular. At this time, the two end surfaces of the second support post 412 can cover the light-transmitting area 601 as much as possible.
  • the second support pillar 412 is formed on the second substrate 7, and the end surface of the second support pillar 412 facing the second substrate 7 covers the light-transmitting region 601. At this time, the end surface of the second support pillar 412 facing the first substrate 1 may cover the light-transmitting area 601 or a part of the light-transmitting area 601. Since the second support pillar 412 occupies a large amount or even the entire space of the liquid crystal layer 4 in the light-transmitting region 601, the liquid crystal layer 4 has little or no liquid crystal in the liquid crystal region.
  • the second support pillar 412 may be made of a highly transparent material to increase the transmittance of the transparent region 601.
  • the light transmittance of the material used for the second support pillar 412 may be higher than that of the liquid crystal material.
  • FIG. 28 is a schematic structural diagram of a liquid crystal display panel 600 shown in FIG. 3 in a tenth embodiment.
  • the content of most technical solutions that are the same as those of the foregoing embodiment will not be repeated.
  • the liquid crystal display panel 600 includes a support assembly 41.
  • the support assembly 41 is located between the first film group 2 and the second film group 6 and penetrates the liquid crystal layer 4 in a direction from the first substrate 1 to the second substrate 7 to hold the first substrate 1 and the second substrate 1.
  • the support assembly 41 includes a plurality of first support posts 411.
  • the plurality of first support pillars 411 are arranged staggered from the light-transmitting area 601.
  • the support assembly 41 further includes a second support post 412, and the second support post 412 is arranged in the light-transmitting area 601.
  • the number of the second support posts 412 is one.
  • An end surface area of the second support pillar 412 facing the first base material 1 is larger than an end surface area of the first support pillar 411 facing the first base material 1.
  • the end surface of the second support post 412 facing the first substrate 1 is annular.
  • the second support post 412 has an inner annular surface and an outer annular surface disposed opposite to each other. Liquid crystals are arranged in the space surrounded by the inner torus. The support strength of the second support post 412 having an annular end surface is high.
  • FIG. 29 is a schematic structural diagram of the liquid crystal display panel 600 shown in FIG. 3 in the eleventh embodiment. In this embodiment, the content of most technical solutions that are the same as those of the foregoing embodiment will not be repeated.
  • the liquid crystal display panel 600 includes a support assembly 41.
  • the support assembly 41 is located between the first film group 2 and the second film group 6 and penetrates the liquid crystal layer 4 in a direction from the first substrate 1 to the second substrate 7 to hold the first substrate 1 and the second substrate 1.
  • the support assembly 41 includes a plurality of first support posts 411.
  • the plurality of first support pillars 411 are arranged staggered from the light-transmitting area 601.
  • the support assembly 41 further includes a second support post 412, and the second support post 412 is arranged in the light-transmitting area 601.
  • the number of the second support posts 412 is one.
  • An end surface area of the second support pillar 412 facing the first base material 1 is larger than an end surface area of the first support pillar 411 facing the first base material 1.
  • the end surface of the second support post 412 facing the first substrate 1 is annular.
  • the support assembly 41 further includes one or more third support columns 413, and the second support column 412 is disposed around the one or more third support columns 413.
  • the support assembly 41 further includes one or more third support columns 413, and the second support column 412 is disposed around the one or more third support columns 413.
  • one or more third support pillars 413 and the second support pillars 412 are matched to jointly support the second substrate 7 and the first substrate 1, It is possible to improve the support reliability of the support assembly 41 for the liquid crystal display panel 600 in the light transmitting region 601 portion.
  • the plurality of third supporting pillars 413 may be arranged in an array.
  • the second supporting pillars 412 are arranged on the light-transmitting area 601.
  • the second support post 412 and the third support post 413 have the same height in the direction Z of the first base material 1 toward the second base material 7.
  • FIG. 30 is a schematic structural diagram of the liquid crystal display panel 600 shown in FIG. 3 in the twelfth embodiment.
  • the content of most technical solutions that are the same as those of the foregoing embodiment will not be repeated.
  • the liquid crystal display panel 600 includes a support assembly 41.
  • the support assembly 41 is located between the first film group 2 and the second film group 6 and penetrates the liquid crystal layer 4 in a direction from the first substrate 1 to the second substrate 7 to hold the first substrate 1 and the second substrate 1.
  • the support assembly 41 includes a plurality of first support posts 411.
  • the plurality of first support pillars 411 are arranged staggered from the light-transmitting area 601.
  • the support assembly 41 further includes a second support post 412, and the second support post 412 is arranged in the light-transmitting area 601.
  • the second support post 412 includes a first support block 4121 and a second support block 4122.
  • the first support block 4121 and the second support block 4122 are arranged in the direction Z of the first base material 1 toward the second base material 7 and resist each other. At this time, one of the first support block 4121 and the second support block 4122 is formed on the second substrate 7, and the other is formed on the first substrate 1.
  • the heights of the first support blocks 4121 and the second support blocks 4122 are equal to the height of the second support pillars 412.
  • dividing a second support post 412 into a first support block 4121 and a second support block 4122 is beneficial to reduce the molding difficulty of the second support post 412 and make the molding quality of the second support post 412 high. .
  • the end surface area of the first support block 4121 facing the first base material 1 is the same as the end surface area of the second support block 4122 facing the second base material 7.
  • the end surface of the first support block 4121 facing the first base material 1 and the end surface of the second support block 4122 facing the second base material 7 may have a larger area and a smaller area. Make the resistance between the two more solid.
  • the area of the end surface of the first support block 4121 facing the second base material 7 is the same as the area of the end surface of the second support block 4122 facing the first base material 1.
  • the height of the first support block 4121 and the height of the second support block 4122 may be the same or different.
  • the method of disassembling the second support post 412 into the first support block 4121 and the second support block 4122 in this embodiment can also be applied to the structures shown in FIGS. 26 to 29.
  • liquid crystal display panel 600 having various structures shown in FIGS. 6 to 30 can be applied to the structures shown in FIGS. 4 and 5.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶显示屏(400)、电子设备(100)以及一种液晶显示面板(600),液晶显示面板(600)具有透光区域(601)、遮光区域(602)及显示区域(603)。液晶显示面板(600)包括依次层叠设置的第一基材(1)、第一膜组(2)、第一取向层(3)、液晶层(4)、第二取向层(5)、第二膜组(6)及第二基材(7)。第一膜组(2)包括位于显示区域(603)的第一显示部(23)、位于遮光区域(602)的第一过渡部(22)及位于透光区域(601)的第一透光部(21)。第二膜组(6)包括位于显示区域(603)的第二显示部(63)、位于遮光区域(602)的第二过渡部(62)及位于透光区域(601)的第二透光部(61)。在第一基材(1)向第二基材(7)的方向上,第一显示部(23)的厚度大于第一透光部(21)的厚度,第一过渡部(22)形成连接第一显示部(23)与第一透光部(21)的台阶结构,第一过渡部(22)背离第一基材(1)的顶面包括一个或多个台阶面。液晶显示面板(600)能够提高屏占比。

Description

液晶显示面板、液晶显示屏及电子设备 技术领域
本申请涉及显示设备技术领域,尤其涉及一种液晶显示面板、一种液晶显示屏以及一种电子设备。
背景技术
传统手机需要在手机屏幕的周边放置摄像头模组、环境光传感器等器件,导致手机屏幕的排布空间受到限制,手机的屏占比较小。
发明内容
本申请实施例提供一种能够提高屏占比的液晶显示面板、液晶显示屏及电子设备。
第一方面,本申请实施例提供了一种液晶显示面板。所述液晶显示面板具有透光区域、环绕于所述透光区域周边的遮光区域及环绕于所述遮光区域周边的显示区域。所述遮光区域位于所述透光区域与所述显示区域之间。所述透光区域允许可见光通过。所述遮光区域能够遮挡可见光。所述显示区域用于显示图像。
所述液晶显示面板包括依次层叠设置的第一基材、第一膜组、第一取向层、液晶层、第二取向层、第二膜组及第二基材。所述第一膜组包括多个膜层。所述第一膜组形成在所述第一基材上。所述第一取向层形成在所述第一膜组上。所述第二膜组包括一个或多个膜层。所述第二膜组形成在所述第二基材上。所述第二取向层至少部分形成在所述第二膜组上。
所述第一基材和所述第二基材均采用透光材料,且连续覆盖所述透光区域、所述遮光区域及所述显示区域。所述第一基材和所述第二基材可采用玻璃材料。所述第一基材和所述第二基材为整面连续的板材,具有足够的结构强度,使得所述液晶显示面板的整体强度较高,不易碎裂。
所述第一取向层(alignment layer,又称配向层)、所述液晶层(liquid crystal layer)及所述第二取向层均位于所述透光区域、所述遮光区域及所述显示区域。所述第一取向层和所述第二取向层均采用透光材料。所述第一取向层和所述第二取向层分别位于所述液晶层的相背两侧,且直接接触所述液晶层。所述液晶层夹设在所述第一取向层和所述第二取向层之间。所述第一取向层和所述第二取向层用于为所述液晶层中的液晶提供预倾角。
所述第一膜组包括位于所述显示区域的第一显示部、位于所述遮光区域的第一过渡部及位于所述透光区域的第一透光部。所述第一过渡部环绕于所述第一透光部周边。所述第一显示部环绕于所述第一过渡部周边。所述第一过渡部连接所述第一透光部与所述第一显示部。所述第二膜组包括位于所述显示区域的第二显示部、位于所述遮光区域的第二过渡部及位于所述透光区域的第二透光部。所述第二过渡部环绕于所述第二透光部周边。所述第二显示部环绕于所述第二过渡部周边。所述第二过渡部连接所述第二透光部与所述第二显示部。
所述第一显示部和所述第二显示部相配合以显示图像。其中,所述第一显示部和所述 第二显示部是实现所述液晶显示面板图像显示的重要组成部分,但并不是全部组成部分。所述第一显示部和所述第二显示部相配合以共同参与和影响所述液晶显示面板的显示动作,所述液晶显示面板显示时还需要其他结构的配合,例如所述液晶层及后文中的第一偏光片和第二偏光片等。所述第一透光部和所述第二透光部均允许可见光通过。所述第一过渡部和所述第二过渡部中的至少一者能够遮挡可见光。也即,所述第一过渡部能够遮挡可见光;或者,所述第二过渡部能够遮挡可见光;或者所述第一过渡部和所述第二过渡部均能够遮挡可见光。
在本实施例中,由于所述第一基材和所述第二基材均采用透光材料,所述第一取向层和所述第二取向层采用透光材料,所述第一膜组位于所述透光区域的所述第一透光部允许可见光通过,所述第二膜组位于所述透光区域的所述第二透光部允许可见光通过,因此所述透光区域允许可见光通过。当所述液晶显示面板应用于电子设备时,所述电子设备中的摄像头模组等光学器件能够放置在所述液晶显示面板的所述透光区域下方,以通过所述透光区域传输可见光,从而减少所述光学器件对所述液晶显示面板的排布空间的限制,并且所述透光区域被所述显示区域所环绕,使得所述液晶显示面板能够设置更大的显示区域,以减小所述电子设备的边框面积、增大所述电子设备的显示面积,提高所述电子设备的屏占比。
一种可选实施例中,在所述第一基材向所述第二基材的方向(也即所述液晶显示面板的厚度方向)上,所述第一显示部的厚度大于所述第一透光部的厚度,所述第一过渡部形成连接所述第一显示部与所述第一透光部的台阶结构。所述第一过渡部背离所述第一基材的顶面包括一个或多个台阶面。
在传统液晶显示面板中,当用于承载取向层的膜层的不同部分的厚度存在较大差异时,容易在厚度较小部分与厚度较大部分的过渡区域出现取向层堆积,从而导致液晶显示面板出现显示不均(mura)、显示异色等问题。例如,取向层容易堆积于厚度较小部分的邻接于厚度较大部分的边缘区域,导致边缘区域发黄或发白。
在本实施例中,所述液晶显示面板的所述第一过渡部所形成的所述台阶结构能够逐渐过渡所述第一显示部与所述第一透光部之间的高度差,所述第一过渡部的所述一个或多个台阶面能够承载所述第一取向层,从而降低所述第一取向层在所述第一透光部的顶面(背离所述第一基材的表面)边缘出现堆积现象的风险,有效解决所述液晶显示面板的所述透光区域由于取向层堆积而导致的显示不均、显示异色等问题,使得所述液晶显示面板具有较佳的显示质量。
由于所述第一取向层在所述第一透光部的顶面边缘发生堆积的风险较小,所述第一取向层能够较为均匀地涂布于所述第一透光部的顶面,因此经过所述透光区域的光线因异物产生噪音的风险较小,从而保证所述光学器件的工作质量。
其中,所述台阶结构也有利于改善所述液晶层中液晶的排布情况,使得液晶排布更为均匀,液晶显示面板具有更佳的显示质量。
其中,所述第一透光部的厚度小于所述第一显示部的厚度,也即所述第一透光部的厚度较小,有利于提高所述透光区域的透光率。
本申请中,由于所述液晶显示面板具有较高的强度,因此所述透光区域的形状、大小、 数量及与所述液晶显示面板的边缘之间的间距的设计更为灵活、多样化,有利于提高所述电子设备的整机可靠性。例如,所述透光区域的形状可以为圆形、椭圆形、多边形、圆角矩形、跑道形(包括两条相互平行的直边和相对地连接在两条直边之间的弧边)等。所述透光区域的数量可以为一个或多个。多个透光区域可以分别为多个光学器件提供光线传输通道。多个透光区域的排布方式可以灵活设计,例如阵列排布、环形排列等。
其中,一个或多个所述台阶面大致平行于所述第一基材。此时,一个或多个所述台阶面容易加工,而且也能够更好地承载所述第一取向层。
一种可选实施例中,所述第一透光部的膜层数量为第一值。所述第一显示部的膜层数量为第二值。所述第一值小于所述第二值。所述第一过渡部的膜层数量在所述第一值至所述第二值的范围内。所述第一值至所述第二值的范围是指将所述第一值和所述第二值分别作为最小值及最大值包括在内的范围。
在本实施例中,所述第一膜组中的不同膜层排布在所述透光区域、所述遮光区域及所述显示区域中的情况可以有不同,从而使所述第一透光部的膜层数量与所述第一显示部的膜层数量不同,所述第一过渡部的膜层数量可以在所述第一值至第二值的范围内。例如,所述第一膜组中的部分膜层可以同时覆盖所述透光区域、所述遮光区域及所述显示区域,部分膜层可以同时覆盖所述显示区域和所述遮光区域,部分膜层可以单独覆盖所述显示区域等。所述第一膜组能够通过对所述第一透光部、所述第一过渡部及所述第一显示部的膜层数量的控制,调整所述第一透光部、所述第一过渡部及所述第一显示部的厚度。
其中,由于所述第二值较大,也即所述第一显示部的膜层数量较多,因此所述第一显示部能够形成较为复杂的层结构,从而满足所述液晶显示面板的显示区域。由于所述第一值较小,也即所述第一透光部的膜层数量较少,因此所述第一透光部的透光率更高,所述光学器件的工作质量更好。
一种可选实施例中,在所述第一过渡部中,背离所述第一基材的顶层膜层的顶面形成一个或多个所述台阶面。所述台阶面的数量为多个时,多个所述台阶面形成在同一膜层中。
或者,在所述第一过渡部中,一个或多个膜层朝向所述第一透光部的一端形成所述台阶面。所述台阶面的数量为多个时,多个所述台阶面形成在不同膜层中。
一种可选实施例中,所述第一过渡部的顶面还包括彼此间隔的多个连接面。所述台阶面连接在相邻两个所述连接面之间。相接的所述台阶面与所述连接面之间形成120°至135°的夹角。所述连接面相对所述第一基材倾斜。此时,所述第一过渡部中各膜层的成形难度较低,有利于提高所述液晶显示面板的产品良率。同时,也能够避免因所述台阶面与所述连接面之间的倾斜角度过大,而导致所述台阶面的面积较小、无法有效承载所述第一取向层的问题。
其他实施例中,所述台阶面大致垂直于所述连接面。此时,所述第一过渡部的顶面中能够包括更大面积的所述台阶面,以提高承载所述第一取向层的效果,降低所述第一取向层在所述透光区域(也即所述第一透光部上)堆积的风险。
一种可选实施例中,所述第一过渡部的顶面还包括过渡面。所述过渡面连接在所述第一透光部远离所述第一基材的顶面与所述连接面之间。该所述连接面为所述多个连接面中最靠近所述第一透光部的所述连接面。所述过渡面与所述第一透光部的顶面齐平。所述过 渡面与所述第一透光部的顶面平滑过渡。
在本实施例中,由于所述第一过渡部设有与所述第一透光部的顶面相齐平的所述过渡面,且所述过渡面连接相对所述第一透光部的顶面更靠近所述连接面,因此即使所述第一取向层发生轻微堆积现象,所述第一取向层也会堆积于所述过渡面,位于所述第一透光部的顶面的部分所述第一取向层涂布均匀,不会或几乎不会出现堆积,能够有效解决由于取向层堆积所导致的显示不均(mura)、显示异色等问题。
一种可选实施例中,所述第一过渡部的顶面还包括第二过渡面。所述第二过渡面连接在所述第一显示部的顶面与所述连接面之间。所述第二过渡面平滑连接所述第一显示部的顶面。
在本实施例中,由于所述第二过渡面平滑连接所述第一显示部的顶面,因此所述第一取向层能够均匀涂布于所述第一过渡部与所述第一显示部的过渡区域,以保证所述液晶显示面板的显示质量。
一种可选实施例中,所述第一膜组包括器件阵列层。所述器件阵列层包括层叠设置的多个透光膜层和多个遮光膜层。所述多个透光膜层允许可见光通过。所述多个透光膜层中的一个或多个膜层为图案化的膜层。所述多个遮光膜层能够遮挡可见光。所述多个遮光膜层为图案化的膜层。
所述第一显示部包括所述多个遮光膜层位于所述显示区域的部分和所述多个透光膜层位于所述显示区域的部分。所述器件阵列层在所述显示区域形成多个薄膜晶体管(thin film transistor,TFT)。换言之,所述第一显示部包括的所述多个遮光膜层的部分和所述多个透光膜层的部分共同形成多个薄膜晶体管。多个薄膜晶体管阵列设置。所述第一透光部包括一个或多个所述透光膜层位于所述透光区域的部分。
在本实施例中,由于所述第一透光部包括一个或多个所述透光膜层位于所述透光区域的部分,因此所述第一透光部的厚度与所述第一显示部的厚度差异较小,所述液晶层在所述透光区域部分的厚度与在所述显示区域部分的厚度相近,以降低由于层结构差异过大而导致所述透光区域周围的所述显示区域出现显示异常(如牛顿环等)问题的风险,从而提高所述液晶显示屏的显示质量。同时,也能够减少所述第一过渡部的所述台阶面的数量和/或面积,降低所述第一过渡部的加工难度。
其中,由于所述第一透光部的膜层与所述第一显示部的部分膜层为同层膜层,能够在一道成型工艺中制成,因此所述第一透光部的成型工序能够集成在所述第一显示部的成型工序中,从而简化所述器件阵列层的加工难度,提高所述器件阵列层的加工效率。
其中,所述器件阵列层中的所述薄膜晶体管可采用顶栅结构,例如:
所述器件阵列层包括遮挡层、缓冲层、半导体层、栅极绝缘层(gate insulator layer)、栅极、第一绝缘层、源极、漏极、第二绝缘层、公共电极、第三绝缘层及像素电极。所述遮挡层形成在所述第一基材上。所述缓冲层形成在所述第一基材上且覆盖所述遮挡层。所述半导体层位于所述缓冲层远离所述第一基材的一侧且正对所述遮挡层。所述半导体层可采用低温多晶硅(low temperature poly-silicon,LTPS)材料。所述半导体层包括位于沟道区、两个轻掺杂区和两个重掺杂区,两个所述轻掺杂区分别连接于所述沟道区的相背两端,两个所述重掺杂区分别连接于两个所述轻掺杂区远离所述沟道区的两端。所述栅极 绝缘层位于所述缓冲层远离所述第一基材的一侧且覆盖所述半导体层。所述栅极绝缘层设有分别正对两个所述重掺杂区的第一孔和第二孔。所述栅极位于所述栅极绝缘层远离所述缓冲层的一侧且正对所述沟道区设置。所述第一绝缘层位于所述栅极绝缘层远离所述缓冲层的一侧且覆盖所述栅极。所述第一绝缘层设有连通所述第一孔的第三孔和连通所述第二孔的第四孔。所述源极和所述漏极位于所述第一绝缘层远离所述栅极绝缘层的一侧,所述源极经所述第三孔和所述第一孔连接其中一个所述重掺杂区,所述漏极经所述第四孔和所述第二孔连接另一个所述重掺杂区。所述第二绝缘层位于所述第一绝缘层远离所述栅极绝缘层的一侧且覆盖所述源极和所述漏极。所述第二绝缘层设有正对所述漏极(或所述源极)的第五孔。所述公共电极位于所述第二绝缘层远离所述第一绝缘层的一侧。所述第三绝缘层位于所述第二绝缘层远离所述第一绝缘层的一侧且覆盖所述公共电极。所述第三绝缘层设有连通所述第五孔的第六孔。所述像素电极位于所述第三绝缘层远离所述第二绝缘层的一侧,且通过所述第六孔和所述第五孔连接所述漏极(或所述源极)。
此时,所述多个遮光膜层可以包括所述遮挡层、所述半导体层、所述栅极、所述源极、所述漏极等。所述多个透光膜层可以包括所述缓冲层、所述栅极绝缘层、所述第一绝缘层、所述第二绝缘层及所述第三绝缘层。所述像素电极和所述公共电极采用透光材料时,也可以属于所述多个透光膜层。
或者,所述器件阵列层中的所述薄膜晶体管可采用底栅结构,例如:
所述器件阵列层包括栅极、栅极绝缘层、半导体层、源极、漏极、绝缘层及像素电极。所述栅极形成在所述第一基材上。所述栅极绝缘层形成在所述第一基材上且覆盖所述栅极。所述半导体层位于所述栅极绝缘层远离所述栅极的一侧且正对所述栅极。所述半导体层可采用非晶硅(amorphous silicon,α-Si)材料。所述源极位于所述栅极绝缘层远离所述第一基材的一侧且连接所述半导体层的一端。所述漏极位于所述栅极绝缘层远离所述第一基材的一侧且连接所述半导体层的另一端。所述绝缘层位于所述栅极绝缘层远离所述第一基材的一侧且覆盖所述源极、所述半导体层及所述漏极。所述绝缘层设有正对所述漏极(或所述源极)的通孔。所述像素电极位于所述绝缘层远离所述栅极绝缘层的一侧,且通过所述通孔连接所述漏极(或所述源极)。
此时,所述多个遮光膜层可以包括所述栅极、所述半导体层、所述源极及所述漏极。所述多个透光膜层可以包括所述栅极绝缘层和所述绝缘层。所述像素电极采用透光材料时,也可以属于所述多个透光膜层。
其他实施例中,所述器件阵列层的层结构可以与前面两种实施例有所区别,也即所述器件阵列层可以是其他层结构。所述多个透光膜层和所述多个遮光膜层对应的具有其他膜层。
其中,所述第一过渡部包括一个或多个所述透光膜层在所述遮光区域的部分。此时,所述第一过渡部允许可见光通过。或者,所述第一过渡部包括一个或多个所述透光膜层在所述遮光区域的部分和一个或多个所述遮光膜层在所述遮光区域的部分。此时,所述第一过渡部能够遮挡可见光。
在本实施例中,所述第一过渡部可通过不同位置膜层数量的变化来实现所述台阶结构。例如,在所述第一显示部向所述第一透光部的方向上,所述第一过渡部不同位置的膜层数 量递减,从而实现厚度递减,以形成所述台阶结构。或者,所述第一过渡部可通过背离所述第一基材的顶层绝缘层本身的膜层厚度变化形成所述台阶结构。
一种可选实施例中,所述第二膜组包括彩膜层和平坦层。彩膜层又称彩色滤光层(color filter,CF),用于通过特定波段范围内的光线。所述彩膜层位于所述第二基材与所述平坦层之间。所述彩膜层包括黑色矩阵(black matrix,BM)和与所述黑色矩阵交替设置的多个彩色色阻块。本实施例中,所述黑色矩阵集成在所述彩膜层中,所述黑色矩阵与所述多个彩色色阻块复用所述液晶显示面板的部分厚度空间。
所述第二显示部包括排布于所述显示区域的所述多个彩色色阻块、部分所述黑色矩阵及部分所述平坦层。所述第二透光部为通孔。换言之,所述彩膜层和所述平坦层在所述透光区域镂空设置。所述第二过渡部包括排布于所述遮光区域的部分所述黑色矩阵和部分所述平坦层。此时,所述第二过渡部能够遮挡可见光。
在所述第二过渡部中,所述黑色矩阵靠近所述第二透光部的一端形成台阶面,以使所述第二过渡部形成台阶结构。其中,所述平坦层靠近所述第二透光部的一端与所述第二透光部之间的间距,小于所述黑色矩阵靠近所述第二透光部的一端与所述第二透光部之间的间距,使得所述黑色矩阵靠近所述第二透光部的一端的部分表面露出,以形成所述台阶面。
在本实施例中,由于所述第二透光部为通孔,所述第二取向层位于所述透光区域的部分形成在所述第二基材上,因此所述透光区域的透光率更高。由于所述第二过渡部形成台阶结构,该台阶结构能够过渡所述第二基材与所述第二显示部之间的高度差,所述第二过渡部的台阶面能够承载所述第二取向层,从而降低所述第二取向层在所述第二基材的位于所述透光区域的部分边缘出现堆积现象的风险,有效解决所述液晶显示面板的所述透光区域由于取向层堆积而导致的显示不均、显示异色等问题,使得所述液晶显示面板具有较佳的显示质量。
其中,所述第一显示部能够用于控制所述液晶层的位于所述显示区域的液晶的偏转方向,所述第二显示部能够过滤光线,因此所述第一显示部、所述液晶层及所述第二显示部相配合时,所述显示区域能够实现显示。
其中,所述器件阵列层制作在所述第一基材上,所述第一膜组与所述第一基材共同形成阵列基板。所述彩膜层制作在所述第二基材上,所述第二膜组与所述第二基材共同形成彩膜基板。制作所述液晶显示面板时,先分别形成所述阵列基板和所述彩膜基板,然后对盒所述阵列基板与所述彩膜基板,接着在所述阵列基板与所述彩膜基板之间填充液晶以形成所述液晶层。
其中,所述器件阵列层中的所述薄膜晶体管采用上述底栅结构时,所述第一膜组还可包括公共电极层。所述公共电极层采用透明导电材料。
一种可选实施例中,所述第二膜组包括彩膜层和平坦层。所述彩膜层位于所述第二基材与所述平坦层之间。所述彩膜层包括黑色矩阵和与所述黑色矩阵交替设置的多个彩色色阻块。本实施例中,所述黑色矩阵集成在所述彩膜层中,所述黑色矩阵与所述多个彩色色阻块复用所述液晶显示面板的部分厚度空间。
所述第二显示部包括排布于所述显示区域的所述多个彩色色阻块、部分所述黑色矩阵及部分所述平坦层。所述第二过渡部包括排布于所述遮光区域的部分所述黑色矩阵和部分 所述平坦层。所述第二透光部包括排布于所述透光区域的部分所述平坦层。换言之,所述平坦层连续覆盖所述显示区域、所述遮光区域及所述透光区域。
在本实施例中,由于所述第二透光部包括部分所述平坦层,因此所述第二透光部与所述第二显示部之间的高度差较小,甚至两者的厚度能够相同,使得所述第二取向层在所述第二透光部上发生堆积现象的风险较小。
其中,所述平坦层位于所述透光区域部分的厚度可以与位于所述显示区域的部分的厚度大致相同。此时,所述第二透光部与所述第二显示部之间的高度差较小。
其中,所述平坦层远离所述第二基材的表面为平面。此时,所述第二透光部、所述第二过渡部及所述第二显示部的厚度相同,所述平坦层能够提供一个平整的成型面,因此所述第二取向层能够形成平整的膜层,所述第二取向层不会在所述第二透光部上发生堆积,所述第二取向层的成型质量更佳。
其中,所述第一显示部能够用于控制所述液晶层的位于所述显示区域的液晶的偏转方向,所述第二显示部能够过滤光线,因此所述第一显示部、所述液晶层及所述第二显示部相配合时,所述显示区域能够实现显示。
其中,所述器件阵列层制作在所述第一基材上,所述第一膜组与所述第一基材共同形成阵列基板。所述彩膜层制作在所述第二基材上,所述第二膜组与所述第二基材共同形成彩膜基板。制作所述液晶显示面板时,先分别形成所述阵列基板和所述彩膜基板,然后对盒所述阵列基板与所述彩膜基板,接着在所述阵列基板与所述彩膜基板之间填充液晶以形成所述液晶层。
其中,所述器件阵列层中的所述薄膜晶体管采用上述底栅结构时,所述第一膜组还可包括公共电极层。所述公共电极层采用透明导电材料。
一种可选实施例中,所述第二膜组包括彩膜层。彩膜层用于通过特定波段范围内的光线。所述彩膜层包括黑色矩阵和与所述黑色矩阵交替设置的多个彩色色阻块。本实施例中,所述黑色矩阵集成在所述彩膜层中,所述黑色矩阵与所述多个彩色色阻块复用所述液晶显示面板的部分厚度空间。
所述第二显示部包括排布于所述显示区域的所述多个彩色色阻块和部分所述黑色矩阵。所述第二过渡部包括排布于所述遮光区域的部分所述黑色矩阵。此时,所述第二过渡部能够遮挡可见光。所述第二透光部为通孔。换言之,所述彩膜层在所述透光区域镂空设置。
在本实施例中,所述第二透光部为通孔,所述第二取向层位于所述透光区域的部分形成在所述第二基材上,因此所述透光区域的透光率更高。
所述第一显示部能够用于控制所述液晶层的位于所述显示区域的液晶的偏转方向,所述第二显示部能够过滤光线,因此所述第一显示部、所述液晶层及所述第二显示部相配合时,所述显示区域能够实现显示。
其中,所述器件阵列层制作在所述第一基材上,所述第一膜组与所述第一基材共同形成阵列基板。所述彩膜层制作在所述第二基材上,所述第二膜组与所述第二基材共同形成彩膜基板。制作所述液晶显示面板时,先分别形成所述阵列基板和所述彩膜基板,然后对盒所述阵列基板与所述彩膜基板,接着在所述阵列基板与所述彩膜基板之间填充液晶以形 成所述液晶层。
其中,所述器件阵列层中的所述薄膜晶体管采用上述底栅结构时,所述第一膜组还可包括公共电极层。所述公共电极层采用透明导电材料。
一种可选实施例中,所述第一膜组包括彩膜层和器件阵列层。所述器件阵列层位于所述彩膜层与所述第一基材之间。所述彩膜层用于通过特定波段范围内的光线。所述彩膜层包括多个彩色色阻块。所述器件阵列层包括层叠设置的多个透光膜层和多个遮光膜层。所述多个透光膜层允许可见光通过。所述多个透光膜层中的一个或多个膜层为图案化的膜层。所述多个遮光膜层能够遮挡可见光。所述多个遮光膜层为图案化的膜层。
所述第一显示部包括所述多个彩色色阻块、所述多个遮光膜层位于所述显示区域的部分及所述多个透光膜层位于所述显示区域的部分。所述器件阵列层在所述显示区域形成多个薄膜晶体管。换言之,所述第一显示部包括的所述多个遮光膜层的部分和所述多个透光膜层的部分共同形成多个薄膜晶体管。多个薄膜晶体管阵列设置。所述第一透光部包括一个或多个所述透光膜层位于所述透光区域的部分。
在本实施例中,所述第一显示部能够用于控制所述液晶层位于所述显示区域的液晶的偏转方向,也能够用于过滤光线,因此所述第一显示部、所述液晶层及所述第二显示部相配合时,所述显示区域能够实现显示。
所述器件阵列层和所述彩膜层依次形成在所述第一基材上,以形成阵列上彩膜(color filter on array,COA)基板;所述第二基材及形成在所述第二基材上的第二膜组共同形成对盒基板。制作所述液晶显示面板时,先分别形成所述阵列上彩膜基板和所述对盒基板,然后对盒所述阵列上彩膜基板和所述对盒基板,接着在所述阵列上彩膜基板和所述对盒基板之间填充液晶以形成所述液晶层。由于所述彩膜层形成在所述器件阵列层上,因此能够解决所述液晶显示面板对位要求高的问题,同时也能够提高所述液晶显示面板的开口率。
在本实施例中,由于所述第一透光部包括一个或多个所述透光膜层位于所述透光区域的部分,因此所述第一透光部的厚度与所述第一显示部的厚度差异较小,所述液晶层在所述透光区域部分的厚度与在所述显示区域部分的厚度相近,以降低由于层结构差异过大而导致所述透光区域周围的所述显示区域出现显示异常(如牛顿环等)问题的风险,从而提高所述液晶显示屏的显示质量。同时,也能够减少所述第一过渡部的所述台阶面的数量和/或面积,降低所述第一过渡部的加工难度。
其中,由于所述第一透光部的膜层与所述第一显示部的部分膜层为同层膜层,能够在一道成型工艺中制成,因此所述第一透光部的成型工序能够集成在所述第一显示部的成型工序中,从而简化所述器件阵列层的加工难度,提高所述器件阵列层的加工效率。
其中,所述器件阵列层的层结构可以参阅前述实施例。
其中,所述第一过渡部包括一个或多个所述透光膜层在所述遮光区域的部分。此时,所述第一过渡部允许可见光通过。或者,所述第一过渡部包括一个或多个所述透光膜层在所述遮光区域的部分和一个或多个所述遮光膜层在所述遮光区域的部分。此时,所述第一过渡部能够遮挡可见光。
在本实施例中,所述第一过渡部可通过不同位置膜层数量的变化来实现所述台阶结构。例如,在所述第一显示部向所述第一透光部的方向上,所述第一过渡部不同位置的膜层数 量递减,从而实现厚度递减,以形成所述台阶结构。或者,所述第一过渡部可通过背离所述第一基材的顶层绝缘层本身的膜层厚度变化形成所述台阶结构。
一种可选实施例中,所述第二膜组包括黑色矩阵和平坦层。所述黑色矩阵位于所述第二基材与所述平坦层之间。本实施例中,所述黑色矩阵独立于所述彩膜层。所述第二膜组和所述第二基材形成阵列上彩膜基板的对盒基板。所述第二显示部包括排布于所述显示区域的部分所述黑色矩阵和部分所述平坦层。所述平坦层在所述显示区域能够提供一平整的成型面,使得所述第二取向层能够均匀涂布在所述第二显示部上。所述第二过渡部包括排布于所述遮光区域的部分所述黑色矩阵和部分所述平坦层。
其中,所述第二透光部为通孔。换言之,所述黑色矩阵和所述平坦层在所述透光区域镂空设置。所述透光区域的透过率较高。其中,在所述第二过渡部中,所述黑色矩阵靠近所述第二透光部的一端可以形成台阶面,以使所述第二过渡部形成台阶结构。其中,所述平坦层靠近所述第二透光部的一端与所述第二透光部之间的间距,大于所述黑色矩阵靠近所述第二透光部的一端与所述第二透光部之间的间距,使得所述黑色矩阵靠近所述第二透光部的一端的部分表面露出,以形成所述台阶面。
或者,所述第二透光部包括排布于所述透光区域的部分所述平坦层。此时,所述第二透光部与所述第二显示部之间的高度差较小,甚至两者的厚度能够相同,使得所述第二取向层在所述第二透光部上发生堆积现象的风险较小。
其中,所述器件阵列层中的所述薄膜晶体管采用上述底栅结构时,所述第一膜组还可包括公共电极层。所述公共电极层采用透明导电材料。
一种可选实施例中,所述第二膜组包括黑色矩阵和平坦层。所述黑色矩阵位于所述第二基材与所述平坦层之间。本实施例中,所述黑色矩阵独立于所述彩膜层。所述第二膜组和所述第二基材形成阵列上彩膜基板的对盒基板。所述第二显示部包括排布于所述显示区域的部分所述黑色矩阵和部分所述平坦层。所述第二过渡部包括排布于所述遮光区域的部分所述黑色矩阵和部分所述平坦层。所述第二透光部包括排布于所述透光区域的部分所述平坦层。所述平坦层远离所述第二基材的表面为平面。
在本实施例中,所述第二透光部、所述第二过渡部及所述第二显示部的厚度相同,所述平坦层在所述透光区域、所述遮光区域及所述显示区域能够提供一连续的平整的成型面,有利于降低所述第二取向层的制作难度,使得所述第二取向层能够更均匀地涂布在所述第二显示部、所述第二过渡部及所述第二透光部上,所述第二取向层发生堆积的风险较小,所述液晶显示面板具有更佳的显示质量。
一种可选实施例中,所述液晶显示面板还包括支撑组件。所述支撑组件位于所述第一膜组与所述第二膜组之间,且在所述第一基材向所述第二基材的方向上贯穿所述液晶层,用以保持所述第一基材与所述第二基材之间的间距。
在本申请中,所述支撑组件用于保持所述第一基材与所述第二基材之间的间距(又称盒间隙),使得所述液晶显示面板在制作或使用过程中不易发生形变,从而保证所述液晶显示面板的显示质量。
一种可选实施例中,所述支撑组件包括多个第一支撑柱。所述多个第一支撑柱错开所述透光区域排布。所述多个第一支撑柱彼此间隔排布。所述多个第一支撑柱正对所述黑色 矩阵排布。换言之,所述多个第一支撑柱在所述第二基材上的投影被所述黑色矩阵在所述第二基材上的投影覆盖。所述多个第一支撑柱可采用透光材料或不透光材料。
一种可选实施例中,所述支撑组件还包括第二支撑柱,所述第二支撑柱排布于所述透光区域。所述第二支撑柱采用透光材料。在本实施例中,通过所述第二支撑柱对位于所述透光区域内的所述第二基材和所述第一基材的支撑,使得所述液晶显示面板在所述透光区域与所述显示区域具有相同的盒间隙,以避免在所述透光区域周边的显示区域中发生显示异常,使得所述液晶显示屏具有较高的显示质量。
一种可选实施例中,所述第二支撑柱的数量为多个。多个所述第二支撑柱彼此间隔地排布于所述透光区域。本实施例中,多个所述第二支撑柱可大致均匀地间隔排布,使所述液晶显示面板的整个所述透光区域具有较为均匀的盒间隙。
其中,对所述第二支撑柱的数量进行设计时,要平衡支撑需求和透光需求,以具有足够的所述第二支撑柱用于保持盒间隙,又避免设置过多的所述第二支撑柱而导致所述透光区域的透过率过低。
其中,在所述第一基材向所述第二基材的方向上,所述第二支撑柱的高度大于所述第一支撑柱的高度。所述第二支撑柱的高度以能够合理支撑所述第二基材及所述第一基材为准进行设计。此时,所述第二支撑柱的形状可参考所述第一支撑柱设计。所述第二支撑柱和所述第一支撑柱可以大致呈圆台状。所述第二支撑柱与所述第一支撑柱可以在同一道工序中成型,也可以在两道工序中成型。
一种可选实施例中,所述第二支撑柱的数量为一个。所述第二支撑柱朝向所述第一基材的端面面积大于所述第一支撑柱朝向所述第一基材的端面面积。其中,所述第二支撑柱朝向所述第二基材的端面面积大于所述第一支撑柱朝向所述第二基材的端面面积。
在本实施例中,所述第二支撑柱能够提供更大的支撑面积,从而在所述第二支撑柱的数量的情况下,使得所述支撑组件能够稳定支撑所述透光区域。
一种可选实施例中,所述第二支撑柱可以呈圆台形,所述第二支撑柱的两个端面呈圆形。此时,所述第二支撑柱的两个端面可以尽量覆盖所述透光区域。例如,所述第二支撑柱形成在所述第二基材上,所述第二支撑柱朝向所述第二基材的端面覆盖所述透光区域。此时,所述第二支撑柱朝向所述第一基材的端面可以覆盖所述透光区域或覆盖部分所述透光区域。由于所述第二支撑柱占用了所述液晶层在所述透光区域的大量空间、甚至全部空间,因此所述液晶层在所述液晶区域中的液晶很少、甚至没有。
本实施例中,所述第二支撑柱可采用高透光材料,以提高所述透光区域的透过率。例如,所述第二支撑柱所采用的材料的透光率可高于液晶材料的透光率。
一种可选实施例中,所述第二支撑柱朝向所述第一基材的端面呈环形。此时,所述第二支撑柱具有相背设置的内侧环面和外侧环面。所述内侧环面所环绕出的空间中排布有液晶。具有环形端面的所述第二支撑柱的支撑强度较高。
一种可选实施例中,所述支撑组件还包括一个或多个第三支撑柱,所述第二支撑柱环绕所述一个或多个第三支撑柱设置。本实施例中,通过设置一个或多个所述第三支撑柱,使一个或多个所述第三支撑柱与所述第二支撑柱相配合,共同支撑所述第二基材和所述第一基材,能够提高所述支撑组件对所述液晶显示面板在所述透光区域部分的支撑可靠性。
一种可选实施例中,所述第二支撑柱包括第一支撑块和第二支撑块。所述第一支撑块和所述第二支撑块在所述第一基材向所述第二基材的方向上排布,且彼此抵持。此时,所述第一支撑块和所述第二支撑块中的一者形成在所述第二基材上,另一者形成在所述第一基材上。在所述第二基材向所述第一基材的方向上,所述第一支撑块与所述第二支撑块的高度和等于所述第二支撑柱的高度。在本实施例中,将一个所述第二支撑柱分割成所述第一支撑块和所述第二支撑块,有利于降低所述第二支撑柱的成型难度,使得所述第二支撑柱的成型质量较高。
其中,所述第一支撑块朝向所述第二基材的端面面积与所述第二支撑块朝向所述第一基材的端面面积相同。所述第一支撑块的高度与所述第二支撑块的高度可以一致,也可以不一致。
一种可选实施例中,所述液晶显示面板还包括胶框。所述胶框位于所述第一基材与所述第二基材之间,且环绕于所述显示区域周边。所述透光区域位于所述胶框内侧。所述遮光区域位于所述胶框内侧。所述液晶层填充于所述胶框内侧。
在本实施例中,所述液晶层能够同时填充于所述透光区域、所述遮光区域及所述显示区域中,所述透光区域、所述遮光区域及所述显示区域之间无需额外设置隔断结构,从而简化了所述液晶显示面板的制作工艺,使得所述液晶显示面板的成本较低。
一种可选实施例中,所述液晶显示面板还包括第一偏光片和第二偏光片。所述第一偏光片位于所述第一基材远离所述第一膜组的一侧。所述第二偏光片位于所述第二基材远离所述第二膜组的一侧。所述第一偏光片的偏光轴垂直于所述第二偏光片的偏光轴。所述第一偏光片和所述第二偏光片中的至少一者在所述透光区域中镂空设置。也即,所述第一偏光片在所述透光区域中镂空设置,或者所述第二偏光片在所述透光区域中镂空设置,或者所述第一偏光片和所述第二偏光片在所述透光区域中均镂空设置。此时,可见光线可以通过所述透光区域。
其中,所述第一偏光片和所述第二偏光片在所述透光区域中均镂空设置时,所述透光区域的透光率更高,有利于提高所述光学器件的工作质量。
第二方面,本申请实施例还提供了一种液晶显示屏(Liquid Crystal Display,LCD)。所述液晶显示屏包括背光模组(backlight module)和上述液晶显示面板。所述背光模组用于为所述液晶显示面板提供背光源。所述背光模组具有正对所述透光区域的透光部。所述透光部允许可见光通过。
在本实施例中,由于所述液晶显示屏的所述液晶显示面板具有透光区域,所述透光区域允许可见光通过,且所述背光模组设有正对所述透光区域的透光部,因此当所述液晶显示面板应用于电子设备时,所述电子设备中的摄像头模组等光学器件能够放置在所述透光区域下方,以通过所述透光区域(及所述透光部)传输可见光,从而减少所述光学器件对所述液晶显示屏的排布空间的限制,并且所述透光区域被所述显示区域所环绕,使得所述液晶显示屏能够设置更大的显示区域,以减小所述电子设备的边框面积、增大所述电子设备的显示面积,提高所述电子设备的屏占比。
其中,所述背光模组还包括发光部。所述发光部环绕所述透光部设置。所述发光部与所述液晶显示面板的所述显示区域相对应。
一种可选实施例中,所述透光部为通孔。电子设备的光学器件可以部分或全部收容于所述通孔,以使所述光学器件与所述液晶显示屏的排布更为紧凑,两者能够复用所述电子设备厚度方向上的空间,有利于所述电子设备的轻薄化。
第三方面,本申请实施例还提供了一种电子设备。所述电子设备包括壳体、光学器件及上述液晶显示屏。所述液晶显示屏安装于所述壳体。所述液晶显示屏与所述壳体共同围设出整机内腔。所述光学器件收容于所述整机内腔且正对所述透光区域。
在本实施例中,所述光学器件能够通过所述液晶显示屏的透光区域传输光线,从而无需占用所述液晶显示屏的侧向周边空间,使所述液晶显示屏能够设计更大的显示区域,以提高所述电子设备的屏占比。
其中,所述光学器件可以是摄像头模组、环境光传感器、接近光传感器或光学指纹传感器。所述电子设备可以包括一个或多个所述光学器件。所述液晶显示面板可以包括一个或多个透光区域。
其中,所述电子设备还包括盖板。所述盖板位于所述液晶显示屏远离所述整机内腔的一侧。所述液晶显示屏可通过粘接层粘接于所述盖板,以共同形成屏组件。所述粘接层可采用透明光学胶材料。所述粘接层正对所述透光区域的位置可以镂空设置。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种电子设备的结构示意图;
图2是图1所示电子设备在A-A线处的部分结构在一种实施例中的结构示意图;
图3是图2所示结构的部分分解示意图;
图4是图1所示电子设备在A-A线处的部分结构在另一种实施例中的结构示意图;
图5是图4所示结构的部分分解示意图;
图6是图3所示液晶显示面板在第一实施例中的结构示意图;
图7是图6中B处结构的放大示意图;
图8是图7所示结构中的部分结构在一种实施方式中的结构示意图;
图9是图7所示结构中的部分结构在另一实施方式中的结构示意图;
图10是图7所示结构中的部分结构在再一实施方式中的结构示意图;
图11是图6中第二膜层和第一基材在一种实施方式中的结构示意图;
图12是图6中第二膜层和第一基材在另一种实施方式中的结构示意图;
图13是图6所示液晶显示面板的另一结构示意图;
图14是图3所示液晶显示面板在第二实施例中的结构示意图;
图15是图14所示液晶显示面板的部分结构示意图;
图16是图3所示液晶显示面板在第三实施例中的结构示意图;
图17是图16所示液晶显示面板的部分结构示意图;
图18是图3所示液晶显示面板在第四实施例中的结构示意图;
图19是图18所示液晶显示面板的部分结构示意图;
图20是图3所示液晶显示面板在第五实施例中的结构示意图;
图21是图20所示液晶显示面板的部分结构示意图;
图22是图3所示液晶显示面板在第六实施例中的结构示意图;
图23是图22所示液晶显示面板的部分结构示意图;
图24是图3所示液晶显示面板在第七实施例中的结构示意图;
图25是图24所示液晶显示面板的部分结构示意图;
图26是图3所示液晶显示面板在第八实施例中的结构示意图;
图27是图3所示液晶显示面板在第九实施例中的结构示意图;
图28是图3所示液晶显示面板在第十实施例中的结构示意图;
图29是图3所示液晶显示面板在第十一实施例中的结构示意图;
图30是图3所示液晶显示面板在第十二实施例中的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
请一并参阅图1至图3,图1是本申请实施例提供的一种电子设备100的结构示意图,图2是图1所示电子设备100在A-A线处的部分结构在一种实施例中的结构示意图,图3是图2所示结构的部分分解示意图。
电子设备100可以是任何具备通信和存储功能的设备,例如:平板电脑、手机、电子阅读器、笔记本电脑、车载设备、可穿戴设备等。图1所示实施例以电子设备100是手机为例进行说明。
电子设备100包括壳体200、光学器件300及液晶显示屏(liquid crystal display,LCD)400。液晶显示屏400安装于壳体200。壳体200可包括边框和后盖。边框环绕设于后盖的周缘。液晶显示屏400盖设于边框远离后盖的一侧。液晶显示屏400与壳体200共同围设出整机内腔。光学器件300收容于整机内腔。光学器件300可以是摄像头模组、环境光传感器、接近光传感器或光学指纹传感器。光学器件300还可以是激光器、红外遥控灯(例如红外发光二级管灯)等主动发光器件。
图2所示结构以光学器件300为摄像头模组为例进行说明。图2所示结构还可以适用于其他以可见光为识别光线的光学器件300,例如环境光传感器、识别可见光的光学指纹传感器等。
液晶显示屏400包括背光模组500(backlight module)和液晶显示面板600。背光模组500用于为液晶显示面板600提供背光源。液晶显示面板600具有透光区域601、环绕于透光区域601周边的遮光区域602及环绕于遮光区域602周边的显示区域603。遮光区域602位于透光区域601与显示区域603之间。透光区域601允许可见光通过。遮光区域602能够遮挡可见光。显示区域603用于显示图像。背光模组500具有正对透光区域601的透光部501。透光部501允许可见光通过。光学器件300正对透光区域601设置。
在本实施例中,由于液晶显示屏400的液晶显示面板600具有透光区域601,透光区域601允许可见光通过,背光模组500具有正对透光区域601的透光部501,因此电子设备100中的摄像头模组等光学器件300能够放置在透光区域601下方,以通过透光区域601 (及透光部501)传输可见光,无需占用液晶显示屏400的侧向周边空间,从而减少光学器件300对液晶显示屏400的排布空间的限制,并且透光区域601被显示区域603所环绕,使得液晶显示屏400能够设置更大的显示区域603,以减小电子设备100的边框面积、增大电子设备100的显示面积,提高电子设备100的屏占比。
其中,背光模组500还包括发光部502。发光部502环绕透光部501设置。发光部502与液晶显示面板600的显示区域603相对应。背光模组500还包括位于透光部501与发光部502之间的结构部503,该结构部503可用于排布背光模组500的周缘结构(例如光源、边框等)。结构部503正对遮光区域602设置。
本申请中,液晶显示屏400的透光区对应于其液晶显示面板600的透光区域601,两者重合。液晶显示屏400的显示区对应于其液晶显示面板600的显示区域603,两者重合。液晶显示屏400同样会在其透光区与显示区之间形成遮光区。
一种可选实施例中,请一并参阅图2和图3,背光模组500的透光部501为通孔。电子设备100的光学器件300可以部分或全部收容于通孔,以使光学器件300与液晶显示屏400的排布更为紧凑,两者能够复用电子设备100厚度方向Z上的空间,有利于电子设备100的轻薄化。电子设备100的厚度方向Z大致垂直于液晶显示屏400。
其他实施例中,背光模组500的透光部501可以采用导光材料制成。导光材料可以为透明材料。光学器件300位于透光部501远离液晶显示面板600的透光区域601的一侧,透光部501与透光区域601共同用于传输可见光线。
一种可选实施例中,请一并参阅图2和图3,液晶显示面板600包括依次层叠设置的第一偏光片10、液晶盒20及第二偏光片30。也即,第一偏光片10和第二偏光片30分别位于液晶盒20的相背两侧。液晶盒20在透光区域601的部分允许可见光通过。液晶盒20在遮光区域602的部分能够遮挡可见光。液晶盒20在显示区域603的部分用于显示图像。
第一偏光片10的偏光轴垂直于第二偏光片30的偏光轴。第一偏光片10和第二偏光片30中的至少一者在透光区域601中镂空设置。也即,第一偏光片10在透光区域601中镂空设置,或者第二偏光片30在透光区域601中镂空设置,或者第一偏光片10和第二偏光片30在透光区域601中均镂空设置。此时,可见光线可以通过透光区域601。
其中,第一偏光片10和第二偏光片30在透光区域601中均镂空设置时,透光区域601的透光率更高,有利于提高光学器件300的工作质量。图2和图3所示结构以第一偏光片10和第二偏光片30在透光区域601中均镂空设置为例进行说明。
其中,第一偏光片10可位于液晶盒20与背光模组500之间,第二偏光片30位于液晶盒20远离背光模组500的一侧。其他实施例中,第一偏光片10和第二偏光片30的位置可以对调。
其中,第一偏光片10和第二偏光片30中的至少一者可以在遮光区域602中镂空设置。或者,第一偏光片10和第二偏光片30中的至少一者可以覆盖遮光区域602。
一种可选实施例中,请一并参阅图2至图3,电子设备100还包括盖板700。盖板700位于液晶显示屏400远离整机内腔的一侧。液晶显示屏400可通过粘接层800粘接于盖板700,以共同形成屏组件。本申请中,屏组件的透光区101对应于其液晶显示面板600的透光区域601,两者重合。屏组件的显示区102对应于其液晶显示面板600的显示区域603, 两者重合。屏组件的位于透光区101和显示区102之间的遮光区103对应于其液晶显示面板600的遮光区域602。
粘接层800可采用透明光学胶(Optically Clear Adhesive,OCA)材料。粘接层800与透光区域601正对的位置可以镂空设置,以保证屏组件对应于透光区域601部分的高透光率。其他实施例中,粘接层800也可覆盖透光区域601。
可选的,液晶显示屏400可以集成触控功能。例如,液晶显示屏400还可包括触控层。触控层可以位于第一偏光片10与液晶盒20之间、液晶盒20中或液晶盒20与第一偏光片10之间。其他实施例中,也可以在盖板700与液晶显示屏400之间设置触控膜层,以使屏组件集成触控功能。
请一并参阅图4和图5,图4是图1所示电子设备100在A-A线处的部分结构在另一种实施例中的结构示意图,图5是图4所示结构的部分分解示意图。图4所示结构以光学器件300为接近光传感器为例进行说明。图4所示结构还可以适用于其他以不可见光为识别光线的光学器件300,例如识别不可见光的光学指纹传感器。
传统液晶屏中,允许可见光通过的膜层或板材也都允许不可见光通过。本申请中液晶显示面板600部分位于透光区域601的膜层(后文中会介绍具体膜层结构)或板材的材料可参阅传统方案进行设计,由于液晶显示面板600位于透光区域601的部分允许可见光通过,因此液晶显示面板600位于透光区域601的部分同样允许不可见光通过。背光模组500中的透光部501同样允许不可见光通过。本申请中以不可见光为识别光线的光学器件300能够通过液晶显示面板600的透光区域601(及背光模组500的透光部501)传输光线。
本实施例与前述实施例的主要区别是,第一偏光片10和第二偏光片30中的一者在透光区域601镂空设置。例如,第一偏光片10覆盖显示区域603且错开透光区域601。第二偏光片30覆盖透光区域601和显示区域603。由于以不可见光为识别光线的光学器件300对透过率的要求较低,因此第一偏光片10和第二偏光片30中的一者开孔即可满足器件要求。此时,位于第一偏光片10与盖板700之间的粘接层800也可覆盖透光区域601,以形成连续的粘接膜层。当然,在其他实施例中,第一偏光片10和第二偏光片30也可以均在透光区域601中镂空设置。
本申请中,电子设备100可以包括一个或多个光学器件300。液晶显示面板600可以包括一个或多个透光区域601,背光模组500的透光部501与透光区域601对应设置。例如,电子设备100包括多个光学器件300,液晶显示面板600包括多个透光区域601,多个光学器件300分别正对多个透光区域601,以通过多个透光区域601传输光线。其中,一个透光区域601可以为一个光学器件300提供光线传输通道,也可以同时为多个光学器件300提供光线传输通道。
请一并参阅图6至图8,图6是图3所示液晶显示面板600在第一实施例中的结构示意图,图7是图6中B处结构的放大示意图,图8是图7所示结构中的部分结构在一种实施方式中的结构示意图。
液晶显示面板600的液晶盒20包括依次层叠设置的第一基材1、第一膜组2、第一取向层3、液晶层4、第二取向层5、第二膜组6及第二基材7。第一膜组2包括多个膜层。第一膜组2形成在第一基材1上。第一取向层3形成在第一膜组2上。第二膜组6包括一 个或多个膜层。第二膜组6形成在第二基材7上。第二取向层5部分形成在第二膜组6上、部分形成在第二基材7上。第一偏光片10位于第一基材1远离第一膜组2的一侧。第二偏光片30位于第二基材7远离第二膜组6的一侧。
第一基材1和第二基材7均采用透光材料,且连续覆盖透光区域601、遮光区域602及显示区域603。第一基材1和第二基材7可采用玻璃材料。第一基材1和第二基材7为整面连续的板材,具有足够的结构强度,使得液晶显示面板600的整体强度较高,不易碎裂。
第一取向层3(alignment layer,又称配向层)、液晶层4(liquid crystal layer)及第二取向层5均位于透光区域601、遮光区域602及显示区域603。第一取向层3和第二取向层5均采用透光材料。第一取向层3和第二取向层5分别位于液晶层4的相背两侧,且直接接触液晶层4。液晶层4夹设在第一取向层3和第二取向层5之间。第一取向层3和第二取向层5用于为液晶层4中的液晶提供预倾角。
第一膜组2包括位于显示区域603的第一显示部23、位于遮光区域602的第一过渡部22及位于透光区域601的第一透光部21。第一过渡部22环绕于第一透光部21周边。第一显示部23环绕于第一过渡部22周边。第一过渡部22连接第一透光部21与第一显示部23。第二膜组6包括位于显示区域603的第二显示部63、位于遮光区域602的第二过渡部62及位于透光区域601的第二透光部61。第二过渡部62环绕于第二透光部61周边。第二显示部63环绕于第二过渡部62周边。第二过渡部62连接第二透光部61与第二显示部63。其中,图6至图8所示实施例中,第二透光部61为通孔,第二取向层5部分位于第二透光部61。其他实施例中,第二透光部61可具有一个或多个膜层位于透光区域601的部分,详见后文实施例。
第一显示部23和第二显示部63相配合以显示图像。其中,第一显示部23和第二显示部63是实现液晶显示面板600图像显示的重要组成部分,但并不是全部组成部分。第一显示部23和第二显示部63相配合以共同参与和影响液晶显示面板600的显示动作,液晶显示面板600显示时还需要其他结构的配合,例如液晶层4、第一偏光片10和第二偏光片30等。第一透光部21和第二透光部61均允许可见光通过。第一过渡部22和第二过渡部62中的至少一者能够遮挡可见光。也即,第一过渡部22能够遮挡可见光;或者,第二过渡部62能够遮挡可见光;或者第一过渡部22和第二过渡部62均能够遮挡可见光。
在本实施例中,由于第一基材1和第二基材7均采用透光材料,第一取向层3和第二取向层5采用透光材料,第一膜组2位于透光区域601的第一透光部21允许可见光通过,第二膜组6位于透光区域601的第二透光部61允许可见光通过,因此透光区域601允许可见光通过。当液晶显示面板600应用于电子设备100时,电子设备100中的摄像头模组等光学器件300能够放置在液晶显示面板600的透光区域601下方,以通过透光区域601传输可见光,从而减少光学器件300对液晶显示面板600的排布空间的限制,并且透光区域601被显示区域603所环绕,使得液晶显示面板600能够设置更大的显示区域603,以减小电子设备100的边框面积、增大电子设备100的显示面积,提高电子设备100的屏占比。
一种可选实施例中,请一并参阅图6至图8,在第一基材1向第二基材7的方向Z(也即液晶显示面板600的厚度方向)上,第一显示部23的厚度大于第一透光部21的厚度, 第一过渡部22形成连接第一显示部23与第一透光部21的台阶结构。第一过渡部22背离第一基材1的顶面221包括一个或多个台阶面222。在第一基材1向第二基材7的方向Z上,一个或多个台阶面222位于第一显示部23背离第一基材1的顶面231与第一透光部21背离第一基材1的顶面211之间。图8所示实施例中示意出第一过渡部22的顶面221包括三个台阶面222。其他实施例中,第一过渡部22的顶面221可以包括其他数量的台阶面222,本申请对此不做严格限定。
在传统液晶显示面板中,当用于承载取向层的膜层的不同部分的厚度存在较大差异时,容易在厚度较小部分与厚度较大部分的过渡区域出现取向层堆积,从而导致液晶显示面板出现显示不均(mura)、显示异色等问题。例如,取向层容易堆积于厚度较小部分的邻接于厚度较大部分的边缘区域,导致边缘区域发黄或发白。
在本实施例中,液晶显示面板600的第一过渡部22所形成的台阶结构能够逐渐过渡第一显示部23与第一透光部21之间的高度差,第一过渡部22的一个或多个台阶面222能够承载第一取向层3,从而降低第一取向层3在第一透光部21的顶面211(背离第一基材1的表面)边缘出现堆积现象的风险,有效解决液晶显示面板600的透光区域601由于取向层堆积而导致的显示不均、显示异色等问题,使得液晶显示面板600具有较佳的显示质量。
由于第一取向层3在第一透光部21的顶面211边缘发生堆积的风险较小,第一取向层3能够较为均匀地涂布于第一透光部21的顶面211,因此经过透光区域601的光线因异物产生噪音的风险较小,从而保证光学器件300的工作质量。
其中,台阶结构也有利于改善液晶层4中液晶的排布情况,使得液晶排布更为均匀,液晶显示面板600具有更佳的显示质量。
其中,一个或多个台阶面222大致平行于第一基材1。此时,一个或多个台阶面222容易加工,而且也能够更好地承载第一取向层3。
其中,第一透光部21的厚度小于第一显示部23的厚度,也即第一透光部21的厚度较小,有利于提高透光区域601的透光率。
其中,第一取向层3和第二取向层5在透光区域601的部分有利于控制位于透光区域601内的液晶保持特定角度,以减少光线在传输过程中发生偏离的风险,从而提高光学器件300的工作质量。
其中,由于液晶显示面板600具有较高的强度,因此透光区域601的形状、大小、数量及与液晶显示面板600的边缘之间的间距的设计更为灵活、多样化,有利于提高电子设备100的整机可靠性。例如,透光区域601的形状可以为圆形、椭圆形、多边形、圆角矩形、跑道形(包括两条相互平行的直边和相对地连接在两条直边之间的弧边)等。透光区域601的数量可以为一个或多个。多个透光区域601可以分别为多个光学器件300提供光线传输通道。多个透光区域601的排布方式可以灵活设计,例如阵列排布、环形排列等。
一种可选实施例中,第一透光部21的膜层数量为第一值。第一显示部23的膜层数量为第二值。第一值小于第二值。第一过渡部22的膜层数量在第一值至第二值的范围内。第一值至第二值的范围是指将第一值和第二值分别作为最小值及最大值包括在内的范围。
在本实施例中,第一膜组2中的不同膜层排布在透光区域601、遮光区域602及显示区域603中的情况可以有不同,从而使第一透光部21的膜层数量与第一显示部23的膜层 数量不同,第一过渡部22的膜层数量可以在第一值至第二值的范围内。例如,第一膜组2中的部分膜层可以同时覆盖透光区域601、遮光区域602及显示区域603,部分膜层可以同时覆盖显示区域603和遮光区域602,部分膜层可以单独覆盖显示区域603等。第一膜组2能够通过对第一透光部21、第一过渡部22及第一显示部23的膜层数量的控制,调整第一透光部21、第一过渡部22及第一显示部23的厚度。
其中,由于第二值较大,也即第一显示部23的膜层数量较多,因此第一显示部23能够形成较为复杂的层结构,从而满足液晶显示面板600的显示区域603。由于第一值较小,也即第一透光部21的膜层数量较少,因此第一透光部21的透光率更高,光学器件300的工作质量更好。
一种可选实施例中,在第一过渡部22中,背离第一基材1的顶层膜层的顶面形成一个或多个台阶面222。台阶面222的数量为多个时,多个台阶面222形成在同一膜层中。
或者,在第一过渡部22中,一个或多个膜层朝向第一透光部21的一端形成台阶面222。台阶面222的数量为多个时,多个台阶面222形成在不同膜层中。
一种可选实施例中,请一并参阅图7和图8,第一过渡部22的顶面221还包括彼此间隔的多个连接面223。台阶面222连接在相邻两个连接面223之间。图8所示实施例中示意出了四个连接面223。其他实施例中,台阶面222也可以包括其他数量的连接面223。本申请对此不做严格限定。
台阶面222大致垂直于连接面223。此时,第一过渡部22的顶面221中能够包括更大面积的台阶面222,以提高承载第一取向层3的效果,降低第一取向层3在透光区域601(也即第一透光部21上)堆积的风险。
其他实施例中,请参阅图9,图9是图7所示结构中的部分结构在另一实施方式中的结构示意图。相接的台阶面222与连接面223之间形成120°至135°的夹角α。连接面223相对第一基材1倾斜。此时,第一过渡部22中各膜层的成形难度较低,有利于提高液晶显示面板600的产品良率。同时,也能够避免因台阶面222与连接面223之间的倾斜角度过大,而导致台阶面222的面积较小、无法有效承载第一取向层3的问题。
一种可选实施例中,请参阅图10,图10是图7所示结构中的部分结构在再一实施方式中的结构示意图。第一过渡部22的顶面221还包括过渡面224。过渡面224连接在第一透光部21远离第一基材1的顶面211与连接面223之间。该连接面223为多个连接面223中最靠近第一透光部21的连接面223。过渡面224与第一透光部21的顶面211齐平。过渡面224与第一透光部21的顶面211平滑过渡。
在本实施例中,由于第一过渡部22设有与第一透光部21的顶面211相齐平的过渡面224,且过渡面224连接相对第一透光部21的顶面211更靠近连接面223,因此即使第一取向层3发生轻微堆积现象,第一取向层3也会堆积于过渡面224,位于第一透光部21的顶面211的部分第一取向层3涂布均匀,不会或几乎不会出现堆积,能够有效解决由于取向层堆积所导致的显示不均(mura)、显示异色等问题。
一种可选实施例中,请参阅图10,第一过渡部22的顶面221还包括第二过渡面225。第二过渡面225连接在第一显示部23的顶面231与连接面223之间。第二过渡面225平滑连接第一显示部23的顶面231。
在本实施例中,由于第二过渡面225平滑连接第一显示部23的顶面231,因此第一取向层3能够均匀涂布于第一过渡部22与第一显示部23的交接区域,以保证液晶显示面板600的显示质量。
一种可选实施例中,请参阅图6,液晶显示面板600还包括胶框8。胶框8位于第一基材1与第二基材7之间,且环绕于显示区域603周边。透光区域601位于胶框8内侧。遮光区域602位于胶框8内侧。液晶层4填充于胶框8内侧。
在本实施例中,液晶层4能够同时填充于透光区域601、遮光区域602及显示区域603中,透光区域601、遮光区域602及显示区域603之间无需额外设置隔断结构,从而简化了液晶显示面板600的制作工艺,使得液晶显示面板600的成本较低。
一种可选实施例中,请一并参阅图7、图11及图12,图11是图6中第二膜层2和第一基材1在一种实施方式中的结构示意图,图12是图6中第二膜层2和第一基材1在另一种实施方式中的结构示意图。
第一膜组2包括器件阵列层91。器件阵列层91包括层叠设置的多个透光膜层901和多个遮光膜层902。多个透光膜层901允许可见光通过。多个透光膜层901中的一个或多个膜层为图案化的膜层。多个遮光膜层902能够遮挡可见光。多个遮光膜层902为图案化的膜层。
第一显示部23包括多个遮光膜层902位于显示区域603的部分和多个透光膜层901位于显示区域603的部分。器件阵列层91在显示区域603形成多个薄膜晶体管(thin film transistor,TFT)90。换言之,第一显示部23包括的多个遮光膜层902的部分和多个透光膜层901的部分共同形成多个薄膜晶体管90。多个薄膜晶体管90阵列设置。第一透光部21包括一个或多个透光膜层901位于透光区域601的部分。
在本实施例中,由于第一透光部21包括一个或多个透光膜层901位于透光区域601的部分,因此第一透光部21的厚度与第一显示部23的厚度差异较小,液晶层4在透光区域601部分的厚度与在显示区域603部分的厚度相近,以降低由于层结构差异过大而导致透光区域601周围的显示区域603出现显示异常(如牛顿环等)问题的风险,从而提高液晶显示屏400的显示质量。同时,也能够减少第一过渡部22的台阶面222的数量和/或面积,降低第一过渡部22的加工难度。“数量和/或面积”是指单独包括数量、或单独包括面积、或同时包括数量及面积。
其中,由于第一透光部21的膜层与第一显示部23的部分膜层为同层膜层,能够在一道成型工艺中制成,因此第一透光部21的成型工序能够集成在第一显示部23的成型工序中,从而简化器件阵列层91的加工难度,提高器件阵列层91的加工效率。
其中,请参阅图11,器件阵列层91中的薄膜晶体管90可采用顶栅结构,例如:
器件阵列层91包括遮挡层911、缓冲层912、半导体层913、栅极绝缘层(gate insulator layer)914、栅极915、第一绝缘层916、源极917、漏极918、第二绝缘层919、公共电极9110、第三绝缘层9111及像素电极9112。遮挡层911形成在第一基材1上。缓冲层912形成在第一基材1上且覆盖遮挡层911。半导体层913位于缓冲层912远离第一基材1的一侧且正对遮挡层911。半导体层913可采用低温多晶硅(low temperature poly-silicon,LTPS)材料。半导体层913包括位于沟道区、两个轻掺杂区和两个重掺杂区,两个轻掺杂 区分别连接于沟道区的相背两端,两个重掺杂区分别连接于两个轻掺杂区远离沟道区的两端。栅极绝缘层914位于缓冲层912远离第一基材1的一侧且覆盖半导体层913。栅极绝缘层914设有分别正对两个重掺杂区的第一孔和第二孔。栅极915位于栅极绝缘层914远离缓冲层912的一侧且正对沟道区设置。第一绝缘层916位于栅极绝缘层914远离缓冲层912的一侧且覆盖栅极915。第一绝缘层916设有连通第一孔的第三孔和连通第二孔的第四孔。源极917和漏极918位于第一绝缘层916远离栅极绝缘层914的一侧,源极917经第三孔和第一孔连接其中一个重掺杂区,漏极918经第四孔和第二孔连接另一个重掺杂区。第二绝缘层919位于第一绝缘层916远离栅极绝缘层914的一侧且覆盖源极917和漏极918。第二绝缘层919设有正对漏极918(或源极917)的第五孔。公共电极9110位于第二绝缘层919远离第一绝缘层916的一侧。第三绝缘层9111位于第二绝缘层919远离第一绝缘层916的一侧且覆盖公共电极9110。第三绝缘层9111设有连通第五孔的第六孔。像素电极9112位于第三绝缘层9111远离第二绝缘层919的一侧,且通过第六孔和第五孔连接漏极918(或源极917)。薄膜晶体管90包括半导体层913、栅极915、源极917及漏极918。
此时,多个遮光膜层902可以包括遮挡层911、半导体层913、栅极915、源极917、漏极918等。多个透光膜层901可以包括缓冲层912、栅极绝缘层914、第一绝缘层916、第二绝缘层919及第三绝缘层9111。像素电极9112和公共电极9110采用透光材料时,也可以属于多个透光膜层901。
或者,请参阅图12,器件阵列层91中的薄膜晶体管90可采用底栅结构,例如:
器件阵列层91包括栅极915、栅极绝缘层914、半导体层913、源极917、漏极918、绝缘层9113及像素电极9112。栅极915形成在第一基材1上。栅极绝缘层914形成在第一基材1上且覆盖栅极915。半导体层913位于栅极绝缘层914远离栅极915的一侧且正对栅极915。半导体层913可采用非晶硅(amorphous silicon,α-Si)材料。源极917位于栅极绝缘层914远离第一基材1的一侧且连接半导体层913的一端。漏极918位于栅极绝缘层914远离第一基材1的一侧且连接半导体层913的另一端。绝缘层9113位于栅极绝缘层914远离第一基材1的一侧且覆盖源极917、半导体层913及漏极918。绝缘层9113设有正对漏极918(或源极917)的通孔。像素电极9112位于绝缘层9113远离栅极绝缘层914的一侧,且通过通孔连接漏极918(或源极917)。薄膜晶体管90包括半导体层913、栅极915、源极917及漏极918。
此时,多个遮光膜层902可以包括栅极915、半导体层913、源极917及漏极918。多个透光膜层901可以包括栅极绝缘层914和绝缘层9113。像素电极9112采用透光材料时,也可以属于多个透光膜层901。
其他实施例中,器件阵列层91的层结构可以与前面两种实施例有所区别,也即器件阵列层91可以是其他层结构。多个透光膜层901和多个遮光膜层902对应的具有其他膜层。
其中,第一过渡部22包括一个或多个透光膜层901在遮光区域602的部分。此时,第一过渡部22允许可见光通过。或者,第一过渡部22包括一个或多个透光膜层901在遮光区域602的部分和一个或多个遮光膜层902在遮光区域602的部分。此时,第一过渡部22能够遮挡可见光。
在本实施例中,第一过渡部22可通过不同位置膜层数量的变化来实现台阶结构。例如, 在第一显示部23向第一透光部21的方向上,第一过渡部22不同位置的膜层数量递减,从而实现厚度递减,以形成台阶结构。或者,第一过渡部22可通过背离第一基材1的顶层绝缘层本身的膜层厚度变化形成台阶结构。
一种可选实施例中,请一并参阅图7和图13,图13是图6所示液晶显示面板600的另一结构示意图。第二膜组6包括彩膜层92和平坦层93。彩膜层92又称彩色滤光层(color filter,CF),用于通过特定波段范围内的光线。彩膜层92位于第二基材7与平坦层93之间。彩膜层92包括黑色矩阵(black matrix,BM)921和与黑色矩阵921交替设置的多个彩色色阻块922。多个彩色色阻块922包括红色(R)色阻块、绿色(G)色阻块及蓝色(B)色阻块。一种实施例中,多个彩色色阻块922还可包括白色(W)色阻块或黄色(Y)色阻块。
本实施例中,黑色矩阵921集成在彩膜层92中,黑色矩阵921与多个彩色色阻块922复用液晶显示面板600的部分厚度空间。
第二显示部63包括排布于显示区域603的多个彩色色阻块922、部分黑色矩阵921及部分平坦层93。第二透光部61为通孔。换言之,彩膜层92和平坦层93在透光区域601镂空设置。第二过渡部62包括排布于遮光区域602的部分黑色矩阵921和部分平坦层93。此时,第二过渡部62能够遮挡可见光。
在第二过渡部62中,黑色矩阵921靠近第二透光部61的一端形成台阶面622,以使第二过渡部62形成台阶结构。其中,平坦层93靠近第二透光部61的一端与第二透光部61之间的间距,小于黑色矩阵921靠近第二透光部61的一端与第二透光部61之间的间距,使得黑色矩阵921靠近第二透光部61的一端的部分表面露出,以形成台阶面622。
在本实施例中,由于第二透光部61为通孔,第二取向层5位于透光区域601的部分形成在第二基材7上,因此透光区域601的透光率更高。由于第二过渡部62形成台阶结构,该台阶结构能够过渡第二基材7与第二显示部63之间的高度差,第二过渡部62的台阶面622能够承载第二取向层5,从而降低第二取向层5在第二基材7的位于透光区域601的部分边缘出现堆积现象的风险,有效解决液晶显示面板600的透光区域601由于取向层堆积而导致的显示不均、显示异色等问题,使得液晶显示面板600具有较佳的显示质量。
其中,第一显示部23能够用于控制液晶层4的位于显示区域603的液晶的偏转方向,第二显示部63能够过滤光线,因此第一显示部23、液晶层4及第二显示部63相配合时,显示区域603能够实现显示。
其中,器件阵列层91制作在第一基材1上,第一膜组2与第一基材1共同形成阵列基板。彩膜层92制作在第二基材7上,第二膜组6与第二基材7共同形成彩膜基板。制作液晶显示面板600时,先分别形成阵列基板和彩膜基板,然后对盒阵列基板与彩膜基板,接着在阵列基板与彩膜基板之间填充液晶以形成液晶层4。
其中,器件阵列层91中的薄膜晶体管90采用上述底栅结构时,第一膜组2还可包括公共电极层。公共电极层采用透明导电材料。
可选的,请参阅图13,液晶显示面板600还包括支撑组件41。支撑组件41位于第一膜组2与第二膜组6之间,且在第一基材1向第二基材7的方向上贯穿液晶层4,用以保持第一基材1与第二基材7之间的间距。
在本申请中,支撑组件41用于保持第二基材7与第一基材1之间的间距(又称盒间隙),使得液晶显示面板600在制作或使用过程中不易发生形变,从而保证液晶显示面板600的显示质量。
其中,支撑组件41包括多个第一支撑柱411。多个第一支撑柱411错开透光区域601排布。多个第一支撑柱411彼此间隔排布。多个第一支撑柱411正对黑色矩阵921排布。换言之,多个第一支撑柱411在第二基材7上的投影被黑色矩阵921在第二基材7上的投影覆盖。多个第一支撑柱411可采用透光材料或不透光材料。
请一并参阅图14和图15,图14是图3所示液晶显示面板600在第二实施例中的结构示意图,图15是图14所示液晶显示面板600的部分结构示意图。本实施例中与前述实施例相同的大部分技术方案内容不再赘述。
第二膜组6包括彩膜层92和平坦层93。彩膜层92位于第二基材7与平坦层93之间。彩膜层92包括黑色矩阵921和与黑色矩阵921交替设置的多个彩色色阻块922。本实施例中,黑色矩阵921集成在彩膜层92中,黑色矩阵921与多个彩色色阻块922复用液晶显示面板600的部分厚度空间。
第二显示部63包括排布于显示区域603的多个彩色色阻块922、部分黑色矩阵921及部分平坦层93。第二过渡部62包括排布于遮光区域602的部分黑色矩阵921和部分平坦层93。
本实施例与前述实施例的主要区别是:
第二透光部61包括排布于透光区域601的部分平坦层93。换言之,平坦层93连续覆盖显示区域603、遮光区域602及透光区域601。
在本实施例中,由于第二透光部61包括部分平坦层93,因此第二透光部61与第二显示部63之间的高度差较小,甚至两者的厚度能够相同,使得第二取向层5在第二透光部61上发生堆积现象的风险较小。
其中,平坦层93位于透光区域601部分的厚度可以与位于显示区域603的部分的厚度大致相同。此时,第二透光部61与第二显示部63之间的高度差较小。
请一并参阅图16和图17,图16是图3所示液晶显示面板600在第三实施例中的结构示意图,图17是图16所示液晶显示面板600的部分结构示意图。本实施例中与前述实施例相同的大部分技术方案内容不再赘述。
第二显示部63包括排布于显示区域603的多个彩色色阻块922、部分黑色矩阵921及部分平坦层93。第二过渡部62包括排布于遮光区域602的部分黑色矩阵921和部分平坦层93。第二透光部61包括排布于透光区域601的部分平坦层93。
本实施例与前述实施例的主要区别是:平坦层93远离第二基材7的表面931为平面。此时,第二透光部61、第二过渡部62及第二显示部63的厚度相同,平坦层93能够提供一个平整的成型面,因此第二取向层5能够形成平整的膜层,第二取向层5不会在第二透光部61上发生堆积,第二取向层5的成型质量更佳。
请一并参阅图18和图19,图18是图3所示液晶显示面板600在第四实施例中的结构示意图,图19是图18所示液晶显示面板600的部分结构示意图。本实施例中与前述实施例相同的大部分技术方案内容不再赘述。
第二膜组6包括彩膜层92。彩膜层92用于通过特定波段范围内的光线。彩膜层92包括黑色矩阵921和与黑色矩阵921交替设置的多个彩色色阻块922。本实施例中,黑色矩阵921集成在彩膜层92中,黑色矩阵921与多个彩色色阻块922复用液晶显示面板600的部分厚度空间。
第二显示部63包括排布于显示区域603的多个彩色色阻块922和部分黑色矩阵921。第二过渡部62包括排布于遮光区域602的部分黑色矩阵921。此时,第二过渡部62能够遮挡可见光。第二透光部61为通孔。换言之,彩膜层92在透光区域601镂空设置。
在本实施例中,第二透光部61为通孔,第二取向层5位于透光区域601的部分形成在第二基材7上,因此透光区域601的透光率更高。
第一膜组2包括彩膜层92和器件阵列层91。器件阵列层91位于彩膜层92与第一基材1之间。彩膜层92用于通过特定波段范围内的光线。彩膜层92包括多个彩色色阻块922。本实施例中器件阵列层91的层结构可以参阅前述实施例(参阅图11和图12)。器件阵列层91包括层叠设置的多个透光膜层901和多个遮光膜层902。多个透光膜层901允许可见光通过。多个透光膜层901中的一个或多个膜层为图案化的膜层。多个遮光膜层902能够遮挡可见光。多个遮光膜层902为图案化的膜层。
第一显示部23包括多个彩色色阻块922、多个遮光膜层902位于显示区域603的部分及多个透光膜层901位于显示区域603的部分。器件阵列层91在显示区域603形成多个薄膜晶体管90。换言之,第一显示部23包括的多个遮光膜层902的部分和多个透光膜层901的部分共同形成多个薄膜晶体管90。多个薄膜晶体管90阵列设置。第一透光部21包括一个或多个透光膜层901位于透光区域601的部分。
在本实施例中,第一显示部23能够用于控制液晶层4的位于显示区域603的液晶的偏转方向,也能够用于过滤光线,因此第一显示部23、液晶层4及第二显示部63相配合时,显示区域603能够实现显示。
器件阵列层91和彩膜层92依次形成在第一基材1上,以形成阵列上彩膜(color filter on array,COA)基板;第二基材7及形成在第二基材7上的第二膜组6共同形成对盒基板。制作液晶显示面板600时,先分别形成阵列上彩膜基板和对盒基板,然后对盒阵列上彩膜基板和对盒基板,接着在阵列上彩膜基板和对盒基板之间填充液晶以形成液晶层4。由于彩膜层92形成在器件阵列层91上,因此能够解决液晶显示面板600对位要求高的问题,同时也能够提高液晶显示面板600的开口率。
在本实施例中,由于第一透光部21包括一个或多个透光膜层901位于透光区域601的部分,因此第一透光部21的厚度与第一显示部23的厚度差异较小,液晶层4在透光区域601部分的厚度与在显示区域603部分的厚度相近,以降低由于层结构差异过大而导致透光区域601周围的显示区域603出现显示异常(如牛顿环等)问题的风险,从而提高液晶显示屏400的显示质量。同时,也能够减少第一过渡部22的台阶面222的数量和/或面积,降低第一过渡部22的加工难度。
其中,由于第一透光部21的膜层与第一显示部23的部分膜层为同层膜层,能够在一道成型工艺中制成,因此第一透光部21的成型工序能够集成在第一显示部23的成型工序中,从而简化器件阵列层91的加工难度,提高器件阵列层91的加工效率。
其中,第一过渡部22包括一个或多个透光膜层901在遮光区域602的部分。此时,第一过渡部22允许可见光通过。或者,第一过渡部22包括一个或多个透光膜层901在遮光区域602的部分和一个或多个遮光膜层902在遮光区域602的部分。此时,第一过渡部22能够遮挡可见光。
在本实施例中,第一过渡部22可通过不同位置膜层数量的变化来实现台阶结构。例如,在第一显示部23向第一透光部21的方向上,第一过渡部22不同位置的膜层数量递减,从而实现厚度递减,以形成台阶结构。或者,第一过渡部22可通过背离第一基材1的顶层绝缘层本身的膜层厚度变化形成台阶结构。
其中,第一膜组2还包括第二平坦层94。第二平坦层94位于彩膜层92背离第一基材1的一侧且位于覆盖显示区域603。第二平坦层94背离彩膜层92的一侧能够提供一个平整的成型面,使得第一取向层3能够均匀涂布于第一显示部23,使得液晶显示面板600的显示质量较高。
其中,第二膜组6包括黑色矩阵921和平坦层93。黑色矩阵921位于第二基材7与平坦层93之间。本实施例中,黑色矩阵921独立于彩膜层92。第二膜组6和第二基材7形成阵列上彩膜基板的对盒基板。第二显示部63包括排布于显示区域603的部分黑色矩阵921和部分平坦层93。平坦层93在显示区域603能够提供一平整的成型面,使得第二取向层5能够均匀涂布在第二显示部63上。第二过渡部62包括排布于遮光区域602的部分黑色矩阵921和部分平坦层93。
其中,第二透光部61为通孔。换言之,黑色矩阵921和平坦层93在透光区域601镂空设置。透光区域601的透过率较高。其中,在第二过渡部62中,黑色矩阵921靠近第二透光部61的一端可以形成台阶面622,以使第二过渡部62形成台阶结构。其中,平坦层93靠近第二透光部61的一端与第二透光部61之间的间距,大于黑色矩阵921靠近第二透光部61的一端与第二透光部61之间的间距,使得黑色矩阵921靠近第二透光部61的一端的部分表面露出,以形成台阶面622。
其中,器件阵列层91中的薄膜晶体管90采用上述底栅结构时,第一膜组2还可包括公共电极层。公共电极层采用透明导电材料。
请一并参阅图22和图23,图22是图3所示液晶显示面板600在第六实施例中的结构示意图,图23是图22所示液晶显示面板600的部分结构示意图。本实施例中与前述实施例相同的大部分技术方案内容不再赘述。
第二膜组6包括黑色矩阵921和平坦层93。黑色矩阵921位于第二基材7与平坦层93之间。第二膜组6和第二基材7形成阵列上彩膜基板的对盒基板。第二显示部63包括排布于显示区域603的部分黑色矩阵921和部分平坦层93。平坦层93在显示区域603能够提供一平整的成型面,使得第二取向层5能够均匀涂布在第二显示部63上。第二过渡部62包括排布于遮光区域602的部分黑色矩阵921和部分平坦层93。
本实施例与前述实施例的主要区别为:第二透光部61包括排布于透光区域601的部分平坦层93。此时,第二透光部61与第二显示部63之间的高度差较小,甚至两者的厚度能够相同,使得第二取向层5在第二透光部61上发生堆积现象的风险较小。
请一并参阅图24和图25,图24是图3所示液晶显示面板600在第七实施例中的结构 示意图,图25是图24所示液晶显示面板600的部分结构示意图。本实施例中与前述实施例相同的大部分技术方案内容不再赘述。
第二膜组6包括黑色矩阵921和平坦层93。黑色矩阵921位于第二基材7与平坦层93之间。本实施例中,黑色矩阵921独立于彩膜层92。第二膜组6和第二基材7形成阵列上彩膜基板的对盒基板。第二显示部63包括排布于显示区域603的部分黑色矩阵921和部分平坦层93。第二过渡部62包括排布于遮光区域602的部分黑色矩阵921和部分平坦层93。第二透光部61包括排布于透光区域601的部分平坦层93。
本实施例与前述实施例的主要区别为:平坦层93远离第二基材7的表面931为平面。
在本实施例中,第二透光部61、第二过渡部62及第二显示部63的厚度相同,平坦层93在透光区域601、遮光区域602及显示区域603能够提供一连续的平整的成型面,有利于降低第二取向层5的制作难度,使得第二取向层5能够更均匀地涂布在第二显示部63、第二过渡部62及第二透光部61上,第二取向层5发生堆积的风险较小,液晶显示面板600具有更佳的显示质量。
请参阅图26,图26是图3所示液晶显示面板600在第八实施例中的结构示意图。本实施例中与前述实施例相同的大部分技术方案内容不再赘述。
液晶显示面板600包括支撑组件41。支撑组件41位于第一膜组2与第二膜组6之间,且在第一基材1向第二基材7的方向上贯穿液晶层4,用以保持第一基材1与第二基材7之间的间距。支撑组件41包括多个第一支撑柱411。多个第一支撑柱411错开透光区域601排布。
本实施例与前述实施例的主要区别为:支撑组件41还包括第二支撑柱412,第二支撑柱412排布于透光区域601。第二支撑柱412采用透光材料。在本实施例中,通过第二支撑柱412对位于透光区域601内的第二基材7和第一基材1的支撑,使得液晶显示面板600在透光区域601与显示区域603具有相同的盒间隙,以避免在透光区域601周边的显示区域603中发生显示异常,使得液晶显示屏400具有较高的显示质量。
其中,第二支撑柱412的数量为多个。多个第二支撑柱412彼此间隔地排布于透光区域601。本实施例中,多个第二支撑柱412可大致均匀地间隔排布,使液晶显示面板600的整个透光区域601具有较为均匀的盒间隙。
其中,对第二支撑柱412的数量进行设计时,要平衡支撑需求和透光需求,以具有足够的第二支撑柱412用于保持盒间隙,又避免设置过多的第二支撑柱412而导致透光区域601的透过率过低。
其中,在第一基材1向第二基材7的方向Z上,第二支撑柱412的高度大于第一支撑柱411的高度。第二支撑柱412的高度以能够合理支撑第二基材7及第一基材1为准进行设计。此时,第二支撑柱412的形状可参考第一支撑柱411设计。第二支撑柱412和第一支撑柱411可以大致呈圆台状。第二支撑柱412与第一支撑柱411可以在同一道工序中成型,也可以在两道工序中成型。
请参阅图27,图27是图3所示液晶显示面板600在第九实施例中的结构示意图。本实施例中与前述实施例相同的大部分技术方案内容不再赘述。
液晶显示面板600包括支撑组件41。支撑组件41位于第一膜组2与第二膜组6之间, 且在第一基材1向第二基材7的方向上贯穿液晶层4,用以保持第一基材1与第二基材7之间的间距。支撑组件41包括多个第一支撑柱411。多个第一支撑柱411错开透光区域601排布。支撑组件41还包括第二支撑柱412,第二支撑柱412排布于透光区域601。
本实施例与前述实施例的主要区别为:第二支撑柱412的数量为一个。第二支撑柱412朝向第一基材1的端面面积大于第一支撑柱411朝向第一基材1的端面面积。其中,第二支撑柱412朝向第二基材7的端面面积大于第一支撑柱411朝向第二基材7的端面面积。
在本实施例中,第二支撑柱412能够提供更大的支撑面积,从而在第二支撑柱412的数量的情况下,使得支撑组件41能够稳定支撑透光区域601。
其中,第二支撑柱412可以呈圆台形,第二支撑柱412的两个端面呈圆形。此时,第二支撑柱412的两个端面可以尽量覆盖透光区域601。例如,第二支撑柱412形成在第二基材7上,第二支撑柱412朝向第二基材7的端面覆盖透光区域601。此时,第二支撑柱412朝向第一基材1的端面可以覆盖透光区域601或覆盖部分透光区域601。由于第二支撑柱412占用了液晶层4在透光区域601的大量空间、甚至全部空间,因此液晶层4在液晶区域中的液晶很少、甚至没有。
本实施例中,第二支撑柱412可采用高透光材料,以提高透光区域601的透过率。例如,第二支撑柱412所采用的材料的透光率可高于液晶材料的透光率。
请参阅图28,图28是图3所示液晶显示面板600在第十实施例中的结构示意图。本实施例中与前述实施例相同的大部分技术方案内容不再赘述。
液晶显示面板600包括支撑组件41。支撑组件41位于第一膜组2与第二膜组6之间,且在第一基材1向第二基材7的方向上贯穿液晶层4,用以保持第一基材1与第二基材7之间的间距。支撑组件41包括多个第一支撑柱411。多个第一支撑柱411错开透光区域601排布。支撑组件41还包括第二支撑柱412,第二支撑柱412排布于透光区域601。第二支撑柱412的数量为一个。第二支撑柱412朝向第一基材1的端面面积大于第一支撑柱411朝向第一基材1的端面面积。
本实施例与前述实施例的主要区别为:第二支撑柱412朝向第一基材1的端面呈环形。此时,第二支撑柱412具有相背设置的内侧环面和外侧环面。内侧环面所环绕出的空间中排布有液晶。具有环形端面的第二支撑柱412的支撑强度较高。
请参阅图29,图29是图3所示液晶显示面板600在第十一实施例中的结构示意图。本实施例中与前述实施例相同的大部分技术方案内容不再赘述。
液晶显示面板600包括支撑组件41。支撑组件41位于第一膜组2与第二膜组6之间,且在第一基材1向第二基材7的方向上贯穿液晶层4,用以保持第一基材1与第二基材7之间的间距。支撑组件41包括多个第一支撑柱411。多个第一支撑柱411错开透光区域601排布。支撑组件41还包括第二支撑柱412,第二支撑柱412排布于透光区域601。第二支撑柱412的数量为一个。第二支撑柱412朝向第一基材1的端面面积大于第一支撑柱411朝向第一基材1的端面面积。第二支撑柱412朝向第一基材1的端面呈环形。
本实施例与前述实施例的主要区别为:支撑组件41还包括一个或多个第三支撑柱413,第二支撑柱412环绕一个或多个第三支撑柱413设置。本实施例中,通过设置一个或多个第三支撑柱413,使一个或多个第三支撑柱413与第二支撑柱412相配合,共同支撑第二 基材7和第一基材1,能够提高支撑组件41对液晶显示面板600在透光区域601部分的支撑可靠性。
其中,多个第三支撑柱413可阵列排布。第二支撑柱412排布于透光区域601。第二支撑柱412和第三支撑柱413在第一基材1向第二基材7的方向Z上高度相同。
请参阅图30,图30是图3所示液晶显示面板600在第十二实施例中的结构示意图。本实施例中与前述实施例相同的大部分技术方案内容不再赘述。
液晶显示面板600包括支撑组件41。支撑组件41位于第一膜组2与第二膜组6之间,且在第一基材1向第二基材7的方向上贯穿液晶层4,用以保持第一基材1与第二基材7之间的间距。支撑组件41包括多个第一支撑柱411。多个第一支撑柱411错开透光区域601排布。支撑组件41还包括第二支撑柱412,第二支撑柱412排布于透光区域601。
本实施例与前述实施例的主要区别是:
第二支撑柱412包括第一支撑块4121和第二支撑块4122。第一支撑块4121和第二支撑块4122在第一基材1向第二基材7的方向Z上排布,且彼此抵持。此时,第一支撑块4121和第二支撑块4122中的一者形成在第二基材7上,另一者形成在第一基材1上。在第一基材1向第二基材7的方向Z上,第一支撑块4121与第二支撑块4122的高度和等于第二支撑柱412的高度。在本实施例中,将一个第二支撑柱412分割成第一支撑块4121和第二支撑块4122,有利于降低第二支撑柱412的成型难度,使得第二支撑柱412的成型质量较高。
其中,第一支撑块4121朝向第一基材1的端面面积与第二支撑块4122朝向第二基材7的端面面积相同。其他实施例中,第一支撑块4121朝向第一基材1的端面和第二支撑块4122朝向第二基材7的端面中,也可以一者面积较大,另一者面积较小,以使两者之间的抵持更稳固。
其中,第一支撑块4121朝向第二基材7的端面面积与第二支撑块4122朝向第一基材1的端面面积相同。第一支撑块4121的高度与第二支撑块4122的高度可以一致,也可以不一致。
本实施例中将第二支撑柱412拆成第一支撑块4121和第二支撑块4122的方式,也可以应用于图26至图29所示结构中。
在本申请中,图6至图30中所示出的各种结构的液晶显示面板600均可应用于图4和图5所示结构中。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内;在不冲突的情况下,本申请的实施方式及实施方式中的特征可以相互组合。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种液晶显示面板,其特征在于,具有透光区域、环绕于所述透光区域周边的遮光区域及环绕于所述遮光区域周边的显示区域;
    所述液晶显示面板包括依次层叠设置的第一基材、第一膜组、第一取向层、液晶层、第二取向层、第二膜组及第二基材;
    所述第一基材和所述第二基材均采用透光材料,且连续覆盖所述透光区域、所述遮光区域及所述显示区域;
    所述第一取向层、所述液晶层及所述第二取向层均位于所述透光区域、所述遮光区域及所述显示区域;
    所述第一膜组包括位于所述显示区域的第一显示部、位于所述遮光区域的第一过渡部及位于所述透光区域的第一透光部,所述第二膜组包括位于所述显示区域的第二显示部、位于所述遮光区域的第二过渡部及位于所述透光区域的第二透光部,所述第一显示部和所述第二显示部相配合以显示图像,所述第一透光部和所述第二透光部均允许可见光通过,所述第一过渡部和所述第二过渡部中的至少一者能够遮挡可见光;
    在所述第一基材向所述第二基材的方向上,所述第一显示部的厚度大于所述第一透光部的厚度,所述第一过渡部形成连接所述第一显示部与所述第一透光部的台阶结构,所述第一过渡部背离所述第一基材的顶面包括一个或多个台阶面。
  2. 如权利要求1所述的液晶显示面板,其特征在于,所述第一过渡部的顶面还包括彼此间隔的多个连接面,所述台阶面连接在相邻两个所述连接面之间,相接的所述台阶面与所述连接面之间形成120°至135°的夹角。
  3. 如权利要求2所述的液晶显示面板,其特征在于,所述第一过渡部的顶面还包括过渡面,所述过渡面连接在所述第一透光部远离所述第一基材的顶面与所述连接面之间,所述过渡面与所述第一透光部的顶面齐平。
  4. 如权利要求1至3中任意一项所述的液晶显示面板,其特征在于,所述第一膜组包括器件阵列层,所述器件阵列层包括层叠设置的多个透光膜层和多个遮光膜层,所述第一显示部包括所述多个遮光膜层位于所述显示区域的部分和所述多个透光膜层位于所述显示区域的部分,所述器件阵列层在所述显示区域形成多个薄膜晶体管,所述第一透光部包括一个或多个所述透光膜层位于所述透光区域的部分。
  5. 如权利要求4所述的液晶显示面板,其特征在于,所述第一过渡部包括一个或多个所述透光膜层在所述遮光区域的部分;
    或者,所述第一过渡部包括一个或多个所述透光膜层在所述遮光区域的部分和一个或多个所述遮光膜层在所述遮光区域的部分。
  6. 如权利要求4或5所述的液晶显示面板,其特征在于,所述第二膜组包括彩膜层和平坦层,所述彩膜层位于所述第二基材与所述平坦层之间,所述彩膜层包括黑色矩阵和与所述黑色矩阵交替设置的多个彩色色阻块,所述第二显示部包括排布于所述显示区域的所述多个彩色色阻块、部分所述黑色矩阵及部分所述平坦层,所述第二透光部为通孔,所述第二过渡部包括排布于所述遮光区域的部分所述黑色矩阵和部分所述平坦层;
    在所述第二过渡部中,所述黑色矩阵靠近所述第二透光部的一端形成台阶面,以使所述第二过渡部形成台阶结构。
  7. 如权利要求4或5所述的液晶显示面板,其特征在于,所述第二膜组包括彩膜层和平坦层,所述彩膜层位于所述第二基材与所述平坦层之间,所述彩膜层包括黑色矩阵和与所述黑色矩阵交替设置的多个彩色色阻块,所述第二显示部包括排布于所述显示区域的所述多个彩色色阻块、部分所述黑色矩阵及部分所述平坦层,所述第二过渡部包括排布于所述遮光区域的部分所述黑色矩阵和部分所述平坦层,所述第二透光部包括排布于所述透光区域的部分所述平坦层。
  8. 如权利要求7所述的液晶显示面板,其特征在于,所述平坦层远离所述第二基材的表面为平面。
  9. 如权利要求4或5所述的液晶显示面板,其特征在于,所述第二膜组包括彩膜层,所述彩膜层包括黑色矩阵和与所述黑色矩阵交替设置的多个彩色色阻块,所述第二显示部包括排布于所述显示区域的所述多个彩色色阻块和部分所述黑色矩阵,所述第二过渡部包括排布于所述遮光区域的部分所述黑色矩阵,所述第二透光部为通孔。
  10. 如权利要求1至3中任意一项所述的液晶显示面板,其特征在于,所述第一膜组包括彩膜层和器件阵列层,所述器件阵列层位于所述彩膜层与所述第一基材之间,所述彩膜层包括多个彩色色阻块,所述器件阵列层包括层叠设置的多个透光膜层和多个遮光膜层,所述第一显示部包括所述多个彩色色阻块、所述多个遮光膜层位于所述显示区域的部分及所述多个透光膜层位于所述显示区域的部分,所述器件阵列层在所述显示区域形成多个薄膜晶体管,所述第一透光部包括一个或多个所述透光膜层位于所述透光区域的部分。
  11. 如权利要求10所述的液晶显示面板,其特征在于,所述第一过渡部包括一个或多个所述透光膜层在所述遮光区域的部分;
    或者,所述第一过渡部包括一个或多个所述透光膜层在所述遮光区域的部分和一个或多个所述遮光膜层在所述遮光区域的部分。
  12. 如权利要求10或11所述的液晶显示面板,其特征在于,所述第二膜组包括黑色矩阵和平坦层,所述黑色矩阵位于所述第二基材与所述平坦层之间,所述第二显示部包括排布于所述显示区域的部分所述黑色矩阵和部分所述平坦层,所述第二过渡部包括排布于所述遮光区域的部分所述黑色矩阵和部分所述平坦层;
    所述第二透光部为通孔;或者,所述第二透光部包括排布于所述透光区域的部分所述平坦层。
  13. 如权利要求10或11所述的液晶显示面板,其特征在于,所述第二膜组包括黑色矩阵和平坦层,所述黑色矩阵位于所述第二基材与所述平坦层之间,所述第二显示部包括排布于所述显示区域的部分所述黑色矩阵和部分所述平坦层,所述第二过渡部包括排布于所述遮光区域的部分所述黑色矩阵和部分所述平坦层,所述第二透光部包括排布于所述透光区域的部分所述平坦层,所述平坦层远离所述第二基材的表面为平面。
  14. 如权利要求1至13中任意一项所述的液晶显示面板,其特征在于,所述液晶显示面板还包括支撑组件,所述支撑组件位于所述第一膜组与所述第二膜组之间,且在所述第一基材向所述第二基材的方向上贯穿所述液晶层,用以保持所述第一基材与所述第二基材 之间的间距。
  15. 如权利要求14所述的液晶显示面板,其特征在于,所述支撑组件包括多个第一支撑柱,所述多个第一支撑柱错开所述透光区域排布。
  16. 如权利要求15所述的液晶显示面板,其特征在于,所述支撑组件还包括第二支撑柱,所述第二支撑柱排布于所述透光区域。
  17. 如权利要求1至16中任意一项所述的液晶显示面板,其特征在于,所述液晶显示面板还包括胶框,所述胶框位于所述第一基材与所述第二基材之间,且环绕于所述显示区域周边,所述透光区域位于所述胶框内侧,所述液晶层填充于所述胶框内侧。
  18. 如权利要求1至17中任意一项所述的液晶显示面板,其特征在于,所述液晶显示面板还包括第一偏光片和第二偏光片,所述第一偏光片位于所述第一基材远离所述第一膜组的一侧,所述第二偏光片位于所述第二基材远离所述第二膜组的一侧,所述第一偏光片的偏光轴垂直于所述第二偏光片的偏光轴,所述第一偏光片和所述第二偏光片中的至少一者在所述透光区域中镂空设置。
  19. 一种液晶显示屏,其特征在于,包括背光模组和如权利要求1至18中任意一项所述的液晶显示面板,所述背光模组用于为所述液晶显示面板提供背光源,所述背光模组具有正对所述透光区域的透光部。
  20. 一种电子设备,其特征在于,包括壳体、光学器件及如权利要求19所述的液晶显示屏,所述液晶显示屏安装于所述壳体,所述液晶显示屏与所述壳体共同围设出整机内腔,所述光学器件收容于所述整机内腔且正对所述透光区域。
PCT/CN2018/105297 2018-09-12 2018-09-12 液晶显示面板、液晶显示屏及电子设备 WO2020051809A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/105297 WO2020051809A1 (zh) 2018-09-12 2018-09-12 液晶显示面板、液晶显示屏及电子设备
CN201880097275.8A CN112654916B (zh) 2018-09-12 2018-09-12 液晶显示面板、液晶显示屏及电子设备
EP18933115.0A EP3828624A4 (en) 2018-09-12 2018-09-12 LIQUID CRYSTAL DISPLAY PANEL, LIQUID CRYSTAL DISPLAY SCREEN, AND ELECTRONIC DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/105297 WO2020051809A1 (zh) 2018-09-12 2018-09-12 液晶显示面板、液晶显示屏及电子设备

Publications (1)

Publication Number Publication Date
WO2020051809A1 true WO2020051809A1 (zh) 2020-03-19

Family

ID=69776580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105297 WO2020051809A1 (zh) 2018-09-12 2018-09-12 液晶显示面板、液晶显示屏及电子设备

Country Status (3)

Country Link
EP (1) EP3828624A4 (zh)
CN (1) CN112654916B (zh)
WO (1) WO2020051809A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112071888A (zh) * 2020-09-17 2020-12-11 Oppo(重庆)智能科技有限公司 显示屏、显示屏的制备方法及电子设备
CN114047650A (zh) * 2021-11-15 2022-02-15 武汉华星光电技术有限公司 一种显示面板及显示装置
CN114217468A (zh) * 2021-12-28 2022-03-22 厦门天马微电子有限公司 一种显示面板及其制造方法、显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070077502A1 (en) * 2005-09-30 2007-04-05 Dai Nippon Printing Co., Ltd. Color filter, semi-transmissive semi-reflective liquid-crystal display device, method for forming phase difference control layer, and method for manufacturing color filter
CN106526942A (zh) * 2017-01-06 2017-03-22 京东方科技集团股份有限公司 显示面板和显示装置
CN206209240U (zh) * 2016-11-02 2017-05-31 友达光电(昆山)有限公司 一种显示装置
CN106773229A (zh) * 2017-03-10 2017-05-31 京东方科技集团股份有限公司 一种指纹识别显示装置及其驱动方法
CN107402473A (zh) * 2017-09-25 2017-11-28 京东方科技集团股份有限公司 显示模组和显示装置
CN107817629A (zh) * 2017-09-28 2018-03-20 京东方科技集团股份有限公司 一种液晶显示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003167534A (ja) * 2001-09-21 2003-06-13 Seiko Epson Corp 電気光学装置及びその製造方法並びに電子機器
CN101526697B (zh) * 2008-03-06 2011-03-23 北京京东方光电科技有限公司 母板及其制造方法
CN102402070A (zh) * 2011-12-02 2012-04-04 深圳市华星光电技术有限公司 一种液晶显示装置的基板、液晶显示装置及其制造方法
KR101406129B1 (ko) * 2012-03-28 2014-06-13 엘지디스플레이 주식회사 디스플레이 장치
CN103488007B (zh) * 2013-09-30 2015-12-09 合肥京东方光电科技有限公司 阵列基板及其制造方法、显示装置
CN104078470B (zh) * 2014-06-18 2017-02-15 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
CN104849916A (zh) * 2015-05-18 2015-08-19 深圳市华星光电技术有限公司 一种感光间隙子的制造方法及液晶显示面板
CN107229148B (zh) * 2017-05-05 2021-03-09 Oppo广东移动通信有限公司 显示屏、显示装置及移动终端
CN107132710B (zh) * 2017-05-17 2021-01-26 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示面板
CN107277196A (zh) * 2017-05-22 2017-10-20 广东欧珀移动通信有限公司 显示模组及其应用的移动终端
CN107272242B (zh) * 2017-07-28 2020-09-29 维沃移动通信有限公司 一种显示屏制造方法及显示屏
CN107884975B (zh) * 2017-11-22 2019-12-31 Oppo广东移动通信有限公司 电子装置及传感器组件
CN207636882U (zh) * 2018-01-03 2018-07-20 合肥鑫晟光电科技有限公司 液晶显示面板、显示模组及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070077502A1 (en) * 2005-09-30 2007-04-05 Dai Nippon Printing Co., Ltd. Color filter, semi-transmissive semi-reflective liquid-crystal display device, method for forming phase difference control layer, and method for manufacturing color filter
CN206209240U (zh) * 2016-11-02 2017-05-31 友达光电(昆山)有限公司 一种显示装置
CN106526942A (zh) * 2017-01-06 2017-03-22 京东方科技集团股份有限公司 显示面板和显示装置
CN106773229A (zh) * 2017-03-10 2017-05-31 京东方科技集团股份有限公司 一种指纹识别显示装置及其驱动方法
CN107402473A (zh) * 2017-09-25 2017-11-28 京东方科技集团股份有限公司 显示模组和显示装置
CN107817629A (zh) * 2017-09-28 2018-03-20 京东方科技集团股份有限公司 一种液晶显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3828624A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112071888A (zh) * 2020-09-17 2020-12-11 Oppo(重庆)智能科技有限公司 显示屏、显示屏的制备方法及电子设备
CN114047650A (zh) * 2021-11-15 2022-02-15 武汉华星光电技术有限公司 一种显示面板及显示装置
CN114047650B (zh) * 2021-11-15 2023-12-22 武汉华星光电技术有限公司 一种显示面板及显示装置
CN114217468A (zh) * 2021-12-28 2022-03-22 厦门天马微电子有限公司 一种显示面板及其制造方法、显示装置
CN114217468B (zh) * 2021-12-28 2023-09-01 厦门天马微电子有限公司 一种显示面板及其制造方法、显示装置

Also Published As

Publication number Publication date
CN112654916A (zh) 2021-04-13
CN112654916B (zh) 2022-08-09
EP3828624A4 (en) 2021-08-11
EP3828624A1 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
TWI714990B (zh) 顯示裝置
US9395569B2 (en) Display apparatus
WO2020051810A1 (zh) 液晶显示面板、液晶显示屏及电子设备
US10816863B2 (en) Reflective LCD panel including transparent pixel electrode and color filter layer stacked together
US20120327325A1 (en) Display Apparatus
US10025143B2 (en) Array substrate and fabrication method thereof, and display device
US20160202515A1 (en) Display panel
US9817265B2 (en) Display panel and display device
US10866464B2 (en) Liquid crystal display panel and electronic device
US11966124B2 (en) Display panel and display device with particular arrangement of spacers in a photoelectric sensing region
WO2020051809A1 (zh) 液晶显示面板、液晶显示屏及电子设备
US9964820B2 (en) Displays with flipped panel structures
JP2017111327A (ja) 液晶表示装置
US10928684B2 (en) Display device
WO2018223480A1 (zh) 显示面板及其应用的显示装置
US20170003528A1 (en) Liquid crystal display device
US10180536B2 (en) Light guide plate and display device having the same
US8223302B2 (en) Display panel, electro-optical apparatus, and methods for manufacturing the same
US20160041416A1 (en) Display substrate, preparing method thereof, and display device
US20140085565A1 (en) Liquid crystal display device
US20150219963A1 (en) Light unit and display device including the same
WO2021056692A1 (zh) 显示面板及其制备方法、显示装置
KR20160083996A (ko) 액정 표시 장치
KR20200030226A (ko) 타일드 디스플레이 시스템
US20210141263A1 (en) Mold frame, backlight module, and display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933115

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018933115

Country of ref document: EP

Effective date: 20210224

NENP Non-entry into the national phase

Ref country code: DE