WO2024109592A1 - 反渗透膜的制备方法和由其制备的反渗透膜 - Google Patents

反渗透膜的制备方法和由其制备的反渗透膜 Download PDF

Info

Publication number
WO2024109592A1
WO2024109592A1 PCT/CN2023/131570 CN2023131570W WO2024109592A1 WO 2024109592 A1 WO2024109592 A1 WO 2024109592A1 CN 2023131570 W CN2023131570 W CN 2023131570W WO 2024109592 A1 WO2024109592 A1 WO 2024109592A1
Authority
WO
WIPO (PCT)
Prior art keywords
reverse osmosis
preparation
osmosis membrane
solution
chloride
Prior art date
Application number
PCT/CN2023/131570
Other languages
English (en)
French (fr)
Inventor
杨兴胜
梁永红
胡利杰
梁松苗
肖剑
Original Assignee
沃顿科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沃顿科技股份有限公司 filed Critical 沃顿科技股份有限公司
Publication of WO2024109592A1 publication Critical patent/WO2024109592A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/42Polymers of nitriles, e.g. polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/72Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of the groups B01D71/46 - B01D71/70 and B01D71/701 - B01D71/702
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present disclosure relates to the technical field of water treatment membranes, more specifically to the technical field of reverse osmosis membranes, and in particular to a method for preparing an anti-scaling reverse osmosis membrane and a reverse osmosis membrane prepared thereby.
  • Freshwater shortage is one of the most pressing challenges today, with up to 4 billion people living under water shortage conditions for at least one month each year, a problem that is expected to worsen in the future due to climate change and population growth.
  • desalination has evolved as an alternative water supply to address the growing freshwater shortage. Given that seawater is virtually unlimited and is not affected by time, space or climate, desalination is the only sustainable solution to freshwater shortages to meet our growing water needs.
  • membrane fouling is a major challenge that deteriorates membrane performance, reduces membrane life, and inevitably leads to higher operating costs and capital investment.
  • Membrane fouling is mainly divided into organic fouling, inorganic fouling, colloidal fouling, and biological fouling.
  • MF low-pressure microfiltration
  • UF ultrafiltration
  • MF/UF pretreatment can effectively reduce organic pollution, colloidal pollution and biological pollution of reverse osmosis membranes, it is basically ineffective in preventing inorganic pollution. Therefore, scale inhibitors are added in existing seawater desalination plants to reduce inorganic salt scaling pollution. However, the large-scale use of scale inhibitors not only leads to increased operating costs, but also may cause secondary pollution of water bodies.
  • anti-pollution membrane materials have also been developing and improving, such as the preparation of anti-pollution reverse osmosis membrane materials containing silver nanowires, composite metal oxides, multi-walled carbon nanotubes, amphiphilic ions and other materials (see US8875906B2, EP2722101A2, M.Son et al., Chem. Eng. J. 2015, 266, pp. 376-384; R.Yang et al., Adv. Mater., 2014, 26, pp.
  • the present disclosure aims to provide a method for preparing an anti-scaling reverse osmosis membrane and a reverse osmosis membrane prepared therefrom for seawater desalination, which can significantly improve the anti-inorganic scaling ability while ensuring a high desalination rate of the reverse osmosis membrane, thereby greatly reducing the capital investment and operating costs of reverse osmosis membrane-based seawater desalination.
  • the inventors of the present disclosure have found through in-depth research that by Two-dimensional nanomaterials with atomically smooth surfaces are introduced into the desalination layer (also called the functional layer) to modify the surface physical and chemical properties of the reverse osmosis membrane.
  • the surface energy wrinkles caused by the polar bonds within the two-dimensional nanomaterial molecules and the lattice constants of the two-dimensional nanomaterial molecules and water molecules are of comparable size, so that a strong interaction occurs between the two-dimensional nanomaterial molecules and the water molecules to form a dense water layer on the surface of the desalination layer, thereby hindering the attachment and growth of mineral ions on the surface of the desalination layer and reducing the degree of concentration polarization on the surface of the desalination layer.
  • This can significantly improve the resistance to inorganic scaling while ensuring a high desalination rate and high flux of the reverse osmosis membrane.
  • One aspect of the present disclosure relates to a method for preparing a reverse osmosis membrane, comprising the following steps:
  • the base film is immersed in an aqueous solution and an organic solution in sequence, wherein the aqueous solution contains an amine compound as an aqueous monomer, and the organic solution contains a two-dimensional nanomaterial and an acyl chloride compound as an organic monomer, wherein the two-dimensional nanomaterial has an atomically smooth surface;
  • the polymer is at least one of bisphenol A type PSF, polyaryl sulfone, polyether sulfone, sulfonated polyether sulfone, polynaphthylidene ether sulfone ketone, polyaryl ether sulfone ketone, polyaryl ether nitrile ketone and polyacrylonitrile; preferably, based on the total weight of the casting solution, the content of the polymer is preferably 18.0wt% to 22.0wt%.
  • the solvent is at least one of N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, and dimethyl sulfoxide;
  • the supporting material is any one of polypropylene (PP) non-woven fabric, polyester (PET) non-woven fabric, acrylic (PAN) non-woven fabric, and polyvinyl chloride (PVC) non-woven fabric, preferably polyester (PET) non-woven fabric.
  • the casting solution further comprises a hydrophilic pore former, preferably, the hydrophilic pore former is at least one of polyvinyl pyrrolidone, polyethylene glycol 200, polyethylene glycol 400, polyethylene glycol 800, polyethylene glycol 2000, polyethylene glycol 6000, polyethylene glycol 10000, and polyvinyl alcohol; preferably, based on the total weight of the casting solution, the content of the hydrophilic pore former is 0.1wt% to 5.0wt%.
  • the hydrophilic pore former is at least one of polyvinyl pyrrolidone, polyethylene glycol 200, polyethylene glycol 400, polyethylene glycol 800, polyethylene glycol 2000, polyethylene glycol 6000, polyethylene glycol 10000, and polyvinyl alcohol; preferably, based on the total weight of the casting solution, the content of the hydrophilic pore former is 0.1wt% to 5.0wt%.
  • the amine compound is m-phenylenediamine, o-phenylenediamine At least one of amine, p-phenylenediamine, mesitylenetriamine, ethylenediamine, piperazine, and 3-aminopiperazine; preferably, based on the total weight of the aqueous phase solution, the content of the amine compound is 1.0wt% to 5.0wt%.
  • the aqueous phase solution further comprises a surfactant and an acid binding agent; preferably, based on the total weight of the aqueous phase solution, the content of the surfactant is greater than 0.01 wt% and less than 0.5 wt%, and the content of the acid binding agent is 0.5 wt% to 5.0 wt%.
  • the two-dimensional nanomaterial is hexagonal boron nitride; preferably, based on the total weight of the organic phase solution, the content of the two-dimensional nanomaterial is 0.01 wt% to 0.1 wt%.
  • the acyl chloride compound is at least one of trimesoyl chloride, pyromellitoyl chloride, terephthaloyl chloride, isophthaloyl chloride, phthaloyl chloride, and biphenyltetrachloride; preferably, based on the total weight of the organic phase solution, the content of the acyl chloride compound is 0.1wt% to 0.5wt%.
  • the organic phase solution further comprises an organic solvent, preferably, the organic solvent is at least one of n-hexane, cyclohexane, n-heptane, toluene, and Isopar G.
  • Another aspect of the present disclosure relates to a reverse osmosis membrane prepared according to the method for preparing a reverse osmosis membrane of the present disclosure, wherein the reverse osmosis membrane is suitable for seawater desalination.
  • the present invention has the following advantages: adding a two-dimensional nanomaterial with an atomically smooth surface to an organic phase solution improves the smoothness of the reverse osmosis membrane surface, reduces nucleation sites, and reduces the bonding strength between the crystal and the desalination layer surface; on the other hand, a dense water layer is formed on the surface of the desalination layer to hinder the attachment and growth of mineral ions on the surface of the desalination layer.
  • the preparation method of the reverse osmosis membrane for seawater desalination modified by the two-dimensional nanomaterial with an atomically smooth surface is simple to operate and low in cost.
  • the word “may” includes both performing a certain process and not performing a certain process.
  • references to “some specific/preferred embodiments”, “other specific/preferred embodiments”, “embodiments”, etc. mean that the specific elements (e.g., features, structures, properties and/or characteristics) described in connection with the embodiments are included in at least one embodiment described herein, and may or may not exist in other embodiments.
  • the elements may be combined in various embodiments in any suitable manner.
  • the numerical range expressed using "a numerical value A to a numerical value B" means a range including the endpoints numerical values A and B.
  • the temperature when “normal temperature” or “room temperature” is used, the temperature may be 10-40°C.
  • the present invention provides a method for preparing a reverse osmosis membrane, which comprises the following steps:
  • the base film is immersed in an aqueous solution and an organic solution in sequence, wherein the aqueous solution contains an amine compound as an aqueous monomer, and the organic solution contains a two-dimensional nanomaterial and an acyl chloride compound as an organic monomer;
  • the technical concept of the present disclosure is to introduce two-dimensional nanomaterials with atomically smooth surfaces into the desalination layer (also called the functional layer), modify the surface physical and chemical properties of the reverse osmosis membrane, and utilize the surface energy wrinkles caused by the polar bonds within the two-dimensional nanomaterial molecules and the lattice constants of the two-dimensional nanomaterial molecules and water molecules of comparable size to cause strong interactions between the two-dimensional nanomaterial molecules and the water molecules to form a dense water layer on the surface of the desalination layer, thereby hindering the attachment and growth of mineral ions on the surface of the desalination layer and reducing the degree of concentration polarization on the surface of the desalination layer.
  • This can significantly improve the resistance to inorganic scaling while ensuring a high desalination rate of the reverse osmosis membrane.
  • the polymer is at least one of bisphenol A type PSF, polyaryl sulfone, polyether sulfone, sulfonated polyether sulfone, polynaphthylidene ether sulfone ketone, polyaryl ether sulfone ketone, polyaryl ether nitrile ketone and polyacrylonitrile.
  • the molecular weight of the polymer preferably, the number average molecular weight is between 30,000 and 50,000.
  • the solvent in the casting solution is at least one of N,N-dimethylformamide (DMF), N,N-dimethylacetamide, N-methylpyrrolidone, and dimethyl sulfoxide.
  • DMF N,N-dimethylformamide
  • N,N-dimethylacetamide N-methylpyrrolidone
  • dimethyl sulfoxide dimethyl sulfoxide
  • the supporting material is usually a non-woven fabric, and there is no particular limitation on its specific type. It is preferably any one of polypropylene (PP) non-woven fabric, polyester (PET) non-woven fabric, acrylic (PAN) non-woven fabric and polyvinyl chloride (PVC) non-woven fabric, and more preferably polyester (PET) non-woven fabric.
  • PP polypropylene
  • PET polyester
  • PAN acrylic
  • PVC polyvinyl chloride
  • the amount of the polymer is 18-22wt% based on the weight of the casting solution. If the amount of the polymer is less than 18wt%, the pressure resistance of the prepared membrane will be insufficient, which is not conducive to the application under high pressure conditions of seawater desalination. If the amount of the polymer is higher than 22wt%, the viscosity of the casting solution will be too high, which will cause defects in the base membrane and cause too few pores in the base membrane, which is not conducive to the adsorption of water phase monomers and causes defects in the desalination layer.
  • the casting solution also contains a hydrophilic pore former (also called a hydrophilic porogen), which functions to promote pore formation on the surface of the base membrane and improve the adsorption capacity and uniformity of the aqueous amine monomer on the surface of the base membrane.
  • a hydrophilic pore former also called a hydrophilic porogen
  • the hydrophilic pore-forming agent is at least one of polyvinyl pyrrolidone (PVP), polyethylene glycol 200, polyethylene glycol 400, polyethylene glycol 800, polyethylene glycol 2000, polyethylene glycol 6000, polyethylene glycol 10000, and polyvinyl alcohol.
  • PVP polyvinyl pyrrolidone
  • polyethylene glycol 200 polyethylene glycol 400
  • polyethylene glycol 800 polyethylene glycol 800
  • polyethylene glycol 2000 polyethylene glycol 2000
  • polyethylene glycol 6000 polyethylene glycol 10000
  • polyvinyl alcohol polyvinyl alcohol
  • PVP is used as a hydrophilic pore-forming agent, and the manufactured membrane has more stable chemical properties; the pore size and pore distribution of the membrane can be more effectively controlled, the density of the membrane pores can be increased, the permeability of the membrane can be improved, the hydrophilicity of the membrane surface can be improved, and good biocompatibility can be achieved.
  • the content of the hydrophilic pore-forming agent is 0.1 wt% to 5.0 wt% based on the total weight of the casting solution.
  • the content is lower than 0.1 wt%, the number of pores in the base film is too small, which is not conducive to the adsorption of the aqueous phase monomer; when the content exceeds 5.0 wt%, the casting solution has poor stability and the base film is prone to defects.
  • the method of coating the casting solution on the nonwoven fabric there is no particular limitation on the method of coating the casting solution on the nonwoven fabric, and the coating methods commonly used in the art can be used, such as casting, dipping, blade coating, spin coating, etc., more preferably blade coating. After coating on the nonwoven fabric, it is then immersed in a coagulation bath to coagulate the casting solution into a film.
  • the method for forming the base film is not particularly limited, and preferably the base film is formed by liquid-solid phase conversion method.
  • the phase conversion time is controlled to be 0.5-5 minutes
  • the water bath temperature is 10-20°C
  • the thermal curing water bath temperature is 60-80°C.
  • the preparation process of the base film includes:
  • 0.1wt% to 5.0wt% polyvinyl pyrrolidone and 18 to 22wt% polysulfone are added to DMF in a stirring state for mixing and dispersion, and stirred at 70°C for 6 hours to obtain a homogeneous solution; after vacuum degassing at -80kPa, the solution is filtered and cooled to room temperature; the casting solution is coated on a non-woven fabric substrate and immersed in a coagulation bath for 300s to complete the preparation of the base film.
  • the amine compound is at least one of m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, mesitylenetriamine, ethylenediamine, piperazine, and 3-aminopiperazine.
  • the content of the amine compound is 1.0 wt% to 5.0 wt% based on the total weight of the aqueous solution.
  • the content is lower than 1.0 wt%, the degree of polymerization is low and it is difficult to ensure a high desalination rate; when the content exceeds 5.0 wt%, the flux of the prepared membrane is low.
  • the aqueous phase solution also contains a surfactant and acid binding agents.
  • the surfactant is used to promote the effective adsorption of the amine compound as the aqueous phase monomer on the surface of the base film.
  • the surfactant is at least one of sodium dodecyl sulfate and sodium dodecylbenzene sulfonate.
  • the role of the acid binding agent is to adjust the pH value of the solution to a range of 9 to 12, which is more conducive to the interfacial polymerization reaction.
  • the pH adjusting agent can be at least one selected from sodium hydroxide, potassium hydrogen phosphate, potassium hydroxide, sodium carbonate, triethylamine/camphorsulfonic acid.
  • the combination of triethylamine and camphorsulfonic acid is used to adjust the pH, which can make the reaction relatively mild, and is a common pH adjustment combination in interfacial polymerization reactions.
  • the content of the acid binding agent is 0.5wt% to 5.0wt%.
  • the content of the surfactant is greater than 0.01wt% and less than 0.5wt%.
  • the content exceeds 0.5wt%, it will lead to excessive adsorption capacity, thereby reducing the diffusion of aqueous monomers in interfacial polymerization, which is not conducive to the growth of the polyamide desalting layer.
  • the contact time and temperature between the base film and the aqueous solution are not particularly limited, but are preferably in contact at a temperature range of 20 to 30° C. for 5 to 60 seconds.
  • the two-dimensional nanomaterial is hexagonal boron nitride (hBN for short), and the surface energy wrinkles caused by the B-N polar bonds and the lattice constants of hBN molecules and water molecules of comparable sizes are utilized to cause a strong interaction between the hBN molecules and the water molecules to form a dense water layer on the surface of the desalination layer, thereby hindering the attachment and growth of mineral ions on the surface of the desalination layer and reducing the degree of concentration polarization on the surface of the desalination layer.
  • hBN hexagonal boron nitride
  • the content of the two-dimensional nanomaterial is 0.01 wt% to 0.1 wt% based on the total weight of the organic phase solution.
  • the content is lower than 0.01 wt%, the anti-scaling performance of the membrane is not improved; when the content exceeds 0.1 wt%, the dispersibility in the organic phase solution is poor, resulting in a defective desalination layer.
  • the acyl chloride compound is at least one of trimesoyl chloride, pyromellitoyl chloride, terephthaloyl chloride, isophthaloyl chloride, phthaloyl chloride, and biphenyl tetrachloride; preferably, the content of the acyl chloride compound is 0.1wt% to 0.5wt% based on the total weight of the organic phase solution. When the content is lower than 0.1wt%, the polymerization degree is too low and the desalination rate is poor; when the content is When it exceeds 0.5 wt%, the degree of polymerization is too high resulting in very low flux.
  • the organic phase solution also contains an organic solvent.
  • the organic solvent is at least one of n-hexane, cyclohexane, n-heptane, toluene, and Isopar G.
  • the contact time and temperature between the base film and the organic phase solution are not particularly limited, but are preferably in the temperature range of 20 to 25° C. for 5 to 60 seconds.
  • the preparation process of the functional layer includes:
  • the base film is immersed in an aqueous solution containing 1.0wt% to 5.0wt% of m-phenylenediamine, 0.5wt% to 5.0wt% of triethylamine/camphorsulfonic acid, and 0.01wt% to 0.5wt% of sodium dodecyl sulfate for 30s to 60s, and then the aqueous droplets on the surface of the membrane are removed; then the base film is immersed in an organic solution containing 0.01wt% to 0.1wt% of hexagonal boron nitride and 0.1wt% to 0.5wt% of trimesoyl chloride for 30s to 60s, and then the membrane is taken out to remove the residual organic solution.
  • the obtained membrane can be optionally immersed in an aqueous solution containing 2 wt% sodium carbonate for cleaning, followed by a moisture-retaining treatment with an aqueous solution containing 10-20 wt% glycerol, and then dried at a temperature of 50-90° C.
  • the role of sodium carbonate is to clean the residual amine compounds, acyl chloride compounds and oligomers produced by interfacial polymerization.
  • the present disclosure also provides a reverse osmosis membrane prepared according to the above-mentioned preparation method, which not only has excellent desalination rate and high flux, but also significantly improves the anti-scaling ability, reduces the amount of scale inhibitor invested in the reverse osmosis membrane during the seawater desalination process, and prolongs the cleaning cycle, reduces the downtime, and greatly reduces the operating cost of reverse osmosis membrane seawater desalination.
  • the base membrane prepared in (1) is immersed in an aqueous solution containing 4.0wt% m-phenylenediamine, 0.5wt% triethylamine/camphorsulfonic acid, and 0.5wt% sodium dodecyl sulfate for 60s, and then the aqueous phase droplets on the surface of the membrane are removed; then, it is immersed in a cyclohexane solution containing 0.3wt% trimesoyl chloride for 40s, and the membrane is taken out to remove the residual organic phase solution, and then immersed in an aqueous solution with a sodium carbonate concentration of 2.0wt% for washing for 3min, and then immersed in an aqueous solution with a glycerol concentration of 8.0wt% for 5min, and then taken out and placed in an oven at a temperature of 80°C for drying to obtain a SWRO reverse osmosis membrane.
  • the base membrane prepared in (1) is immersed in an aqueous solution containing 4.0wt% m-phenylenediamine, 0.5wt% triethylamine/camphorsulfonic acid, and 0.5wt% sodium dodecyl sulfate for 60s, and then the aqueous phase droplets on the surface of the membrane are removed; then, it is immersed in a cyclohexane solution containing 0.01wt% hexagonal boron nitride and 0.3wt% trimesoyl chloride for 40s, and the membrane is taken out to remove the residual organic phase solution, and then immersed in an aqueous solution with a sodium carbonate concentration of 2.0wt% for washing for 3min, and then immersed in an aqueous solution with a glycerol concentration of 8.0wt% for 5min, and then taken out and placed in an oven at a temperature of 80°C for drying to obtain a SWRO-hBN-2 reverse osmosis membrane
  • 0.1 wt% polyvinyl pyrrolidone and 18.0 wt% poly(phenylene ether nitrile ketone) were added to DMF in a stirring state for mixing and dispersion, and stirred at 70°C for 6 hours to obtain a casting solution; and stirred at -80 kPa. After vacuum degassing, the solution was filtered and cooled to room temperature. The solution was coated on a PET non-woven fabric substrate and immersed in a deionized water coagulation bath at a temperature of 15° C. for 300 seconds to obtain a base film.
  • the base membrane prepared in (1) is immersed in an aqueous solution containing 1.0wt% m-phenylenediamine, 1.5wt% triethylamine/camphorsulfonic acid, and 0.3wt% sodium dodecylbenzenesulfonate for 40s, and then the aqueous phase droplets on the surface of the membrane are removed; then, it is immersed in a cyclohexane solution containing 0.03wt% hexagonal boron nitride and 0.5wt% trimesoyl chloride for 40s, and the membrane is taken out to remove the residual organic phase solution, and then immersed in an aqueous solution with a sodium carbonate concentration of 2.0wt% for washing for 3min, and then immersed in an aqueous solution with a glycerol concentration of 8.0wt% for 5min, and then taken out and placed in an oven at a temperature of 90°C for drying to obtain a SWRO-hBN-2 reverse osmos
  • the base membrane prepared in (1) was immersed in an aqueous solution containing 2.0wt% o-phenylenediamine, 2.0wt% triethylamine/camphorsulfonic acid, and 0.2wt% sodium dodecyl sulfate for 40s, and then the aqueous phase droplets on the surface of the membrane were removed; then, it was immersed in an Isopar G solution containing 0.05wt% hexagonal boron nitride and 0.4wt% pyromellitoyl chloride for 60s, and the membrane was taken out to remove the residual organic phase solution, and then immersed in an aqueous solution with a sodium carbonate concentration of 2.0wt% for 3min, and then immersed in an aqueous solution with a glycerol concentration of 8.0wt% for 5min, and then taken out and dried in an oven at a temperature of 70°C to obtain a SWRO-hBN-3 reverse osmosis membrane.
  • the base membrane prepared in (1) was immersed in an aqueous solution containing 3.0wt% p-phenylenediamine, 3.5wt% triethylamine/camphorsulfonic acid, and 0.1wt% sodium dodecylbenzenesulfonate for 50s, and then the aqueous phase droplets on the surface of the membrane were removed; then, it was immersed in an n-heptane solution containing 0.08wt% hexagonal boron nitride and 0.2wt% biphenyltetrachloride for 30s, and the membrane was taken out to remove the residual organic phase solution, and then immersed in an aqueous solution with a sodium carbonate concentration of 2.0wt% for 3min, and then immersed in an aqueous solution with a glycerol concentration of 8.0wt% for 5min, and then taken out and placed in an oven at a temperature of 60°C for drying to obtain a SWRO-hBN-4 reverse osmos
  • the base membrane prepared in (1) was immersed in an aqueous solution containing 5.0wt% of isophthalic acid, 5.0wt% of triethylamine/camphorsulfonic acid, and 0.05wt% of sodium dodecylbenzenesulfonate for 50s, and then the aqueous phase droplets on the surface of the membrane were removed; then, it was immersed in a cyclohexane solution containing 0.1wt% of hexagonal boron nitride and 0.1wt% of isophthaloyl chloride for 30s, and the membrane was taken out to remove the residual organic phase solution, and then immersed in an aqueous solution with a sodium carbonate concentration of 2.0wt% for washing for 3min, and then immersed in an aqueous solution with a glycerol concentration of 8.0wt% for 5min, and then taken out and placed in an oven at a temperature of 50°C for drying to obtain a SWRO-hBN-5 reverse o
  • the membranes prepared in the comparative example and Examples 1 to 5 were placed on a high-pressure membrane test bench for performance testing. Under the test conditions of an operating pressure of 800 psi, raw water (the raw water was prepared by first preparing a mixed aqueous solution of 500 ppm sodium bicarbonate and 1000 ppm calcium chloride, and then using sodium chloride to adjust the total concentration of the solution to 32000 ppm), a solution temperature of 25°C, and a pH of 8, the membranes were run for different times to test the flux and desalination rate. The results are shown in Table 1 below.
  • F0 is the initial flux after running for 1 hour, L/m 2 ⁇ h
  • F1 is the flux after running for 24 hours, L/m 2 ⁇ h
  • F2 is the flux after washing with a 0.2 wt% hydrochloric acid aqueous solution for 1 hour, L/m 2 ⁇ h.
  • the reverse osmosis membrane prepared according to the method of the present invention not only maintains an extremely high desalination rate, but also significantly improves the initial flux.
  • the flux attenuation resistance is greatly improved, the flux attenuation is greatly reduced, the amount of scale inhibitor is reduced, and the system cleaning cycle is extended, the downtime is reduced, and the operating cost of reverse osmosis membrane desalination is greatly reduced.
  • the flux recovery rate is also significantly improved relative to the reverse osmosis membrane prepared in the comparative example.
  • the preparation method disclosed in the present invention is simple to operate and has low cost. Without affecting the performance of the reverse osmosis membrane (such as desalination rate and flux, etc.), it significantly improves its anti-scaling ability, reduces the amount of scale inhibitors used in the reverse osmosis membrane during seawater desalination, and extends the cleaning cycle and reduces downtime, thereby greatly reducing the operating cost of reverse osmosis membrane seawater desalination.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种反渗透膜的制备方法和由其制备的反渗透膜。所述制备方法通过将具有原子级的光滑表面的二维纳米材料引入脱盐层,改性反渗透膜的表面理化性质,利用二维纳米材料分子内的极性键引起的表面能量褶皱,以及二维纳米材料分子和水分子尺寸相当的晶格常数,使二维纳米材料分子与水分子之间发生强烈的相互作用而在脱盐层表面形成致密的水层,从而阻碍矿物离子在脱盐层表面附着和生长,降低脱盐层表面浓差极化程度,可以在确保反渗透膜的高脱盐率的同时显著提升抗无机结垢能力。

Description

反渗透膜的制备方法和由其制备的反渗透膜
相关申请的引用
本公开要求2022年11月24日在中国提交的,名称为“反渗透膜的制备方法和由其制备的反渗透膜”、申请号为202211484776.6的发明专利申请的优先权,通过引用的方式将该专利申请的全部内容并入本文。
技术领域
本公开涉及水处理膜技术领域,更具体地涉及反渗透膜技术领域,特别涉及抗结垢型反渗透膜的制备方法和由其制备的反渗透膜。
背景技术
淡水资源短缺是当今最紧迫的挑战之一,每年有多达40亿人至少有一个月生活在缺水条件下,预计未来由于气候变化和人口增长,这一问题将进一步加剧。在过去的40年里,海水淡化已经演变成一种替代水供应,以应对日益严重的淡水短缺。鉴于海水几乎是无限的且不受时空和气候影响,海水淡化是淡水资源短缺唯一可持续的解决方案,以满足我们不断增长的水需求。
在过去的20多年里,海水淡化厂的建设取得了巨大的发展,目前全球约有2万家海水淡化厂,总产量超过1亿立方米/天。反渗透膜法海水淡化技术是最具代表性的海水淡化方法之一,大型反渗透膜海水淡化工厂有著名的有阿联酋Taweelah(909200立方米/天)、沙特***Rabigh 3(60万立方米/天)和以色列Sorek(624000立方米/天)海水淡化厂。
在反渗透膜法海水淡化中,膜污染是一个主要的挑战,它会恶化膜的性能,降低膜的寿命,不可避免地导致运营成本和资金投入升高。膜污染主要分为有机污染、无机污染、胶体污染和生物污染。为了减轻反渗透膜的污染,目前,反渗透膜海水淡化行业采用低压的微滤(简称MF)和超滤(简称UF)膜预处理技术去除原水(海水)中的溶解物和颗粒物后,再进入反渗透阶段。然而, MF/UF预处理虽然可以有效地降低反渗透膜的有机污染、胶体污染和生物污染,但是对于预防无机污染却基本无效,因此,在现行的海水淡化厂中都会投加阻垢剂以降低无机盐结垢污染。但是,阻垢剂的大量使用,一方面导致运营成本升高,同时可能导致水体的二次污染。
因此,一些研究人员提出使用更紧密的海水预处理纳滤膜作为MF/UF预处理的替代方案(参见Y.Song et al.,J.Membr.Sci.,2013,443,第201-209页),通过消除海水的硬度离子(如Ca2+、Mg2+)而降低进入下游反渗透膜的结垢污染。虽然采用NF进行海水预处理似乎是可行的,但是同样会导致相对较高的资金投入和运行成本。
因此,先进的抗污染膜材料也一直在发展改进中,例如制备含有银纳米线、复合金属氧化物、多壁碳纳米管、两亲性离子等材料的抗污染反渗透膜材料(参见US8875906B2,EP2722101A2,M.Son et al.,Chem.Eng.J.2015,266,第376-384页;R.Yang et al.,Adv.Mater.,2014,26,第1711-1718页),一方面降低脱盐层(又称功能层)的粗糙度,另一方面提高脱盐层(又称功能层)的亲水性,降低其对污染物的吸附。因此,如何改进反渗透膜材料,进而通过调节功能层的结构及理化性质来优化膜的性能,在维持高脱盐率的同时大大提高反渗透膜的抗污染性能,是目前反渗透膜法海水淡化亟待解决的重要问题之一。
发明内容
发明要解决的问题
为了解决现有的海水淡化反渗透膜易结垢的问题,本公开旨在提供一种抗结垢型反渗透膜的制备方法及其制备的用于海水淡化的反渗透膜,在确保反渗透膜的高脱盐率的同时显著提升抗无机结垢能力,大大降低反渗透膜法海水淡化的资金投入和运营成本。
用于解决问题的方案
本公开的发明人等为了实现以上目的,通过深入研究发现,通过将具有 原子级的光滑表面的二维纳米材料引入脱盐层(又称功能层),改性反渗透膜的表面理化性质,利用二维纳米材料分子内极性键引起的表面能量褶皱,以及二维纳米材料分子和水分子尺寸相当的晶格常数,使二维纳米材料分子与水分子之间发生强烈的相互作用而在脱盐层表面形成致密的水层,从而阻碍矿物离子在脱盐层表面附着和生长,降低脱盐层表面浓差极化程度,可以在确保反渗透膜的高脱盐率和高通量的同时显著提升抗无机结垢能力。
本公开的一个方面涉及一种反渗透膜的制备方法,其包括以下步骤:
配制铸膜液,使所述铸膜液在支撑材料上固化形成基膜,所述铸膜液包含聚合物、溶剂;
使所述基膜依次浸入水相溶液、有机相溶液,所述水相溶液包含作为水相单体的胺类化合物,所述有机相溶液包含二维纳米材料和作为有机相单体的酰氯类化合物,所述二维纳米材料具有原子级的光滑表面;
经后处理、干燥后得到反渗透膜。
根据本公开所述的制备方法,其中所述聚合物为双酚A型PSF、聚芳砜、聚醚砜、磺化聚醚砜、聚二氮杂萘醚砜酮、聚芳醚砜酮、杂萘联苯聚芳醚腈酮和聚丙烯腈中的至少一种;优选地,以所述铸膜液的总重量计,所述聚合物的含量优选为18.0wt%~22.0wt%。
根据本公开所述的制备方法,其中所述溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮、二甲基亚砜中的至少一种;所述支撑材料为聚丙烯(PP)无纺布、聚酯(PET)无纺布、腈纶(PAN)无纺布和氯纶(PVC)无纺布中的任一种,优选地为聚酯(PET)无纺布。
根据本公开所述的制备方法,其中所述铸膜液还包含亲水性成孔剂,优选地,所述亲水性成孔剂为聚乙烯吡咯烷酮、聚乙二醇200、聚乙二醇400、聚乙二醇800、聚乙二醇2000、聚乙二醇6000、聚乙二醇10000、聚乙烯醇中的至少一种;优选地,以所述铸膜液的总重量计,所述亲水性成孔剂的含量为0.1wt%~5.0wt%。
根据本公开所述的制备方法,其中所述胺类化合物为间苯二胺、邻苯二 胺、对苯二胺、均苯三胺、乙二胺、哌嗪、3-氨基哌嗪中的至少一种;优选地,以所述水相溶液的总重量计,所述胺类化合物的含量为1.0wt%~5.0wt%。
根据本公开所述的制备方法,其中所述水相溶液还包含表面活性剂和缚酸剂;优选地,以所述水相溶液的总重量计,所述表面活性剂的含量为0.01wt%以上至0.5wt%以下,所述缚酸剂的含量为0.5wt%~5.0wt%。
根据本公开所述的制备方法,其中所述二维纳米材料为六方氮化硼;优选地,以所述有机相溶液的总重量计,所述二维纳米材料的含量为0.01wt%~0.1wt%。
根据本公开所述的制备方法,其中所述酰氯类化合物为均苯三甲酰氯、均苯四甲酰氯、对苯二甲酰氯、间苯二甲酰氯、邻苯二甲酰氯、联苯四酰氯中的至少一种;优选地,以所述有机相溶液的总重量计,所述酰氯化合物的含量为0.1wt%~0.5wt%。
根据本公开所述的制备方法,其中所述有机相溶液还包含有机溶剂,优选地,所述有机溶剂为正己烷、环己烷、正庚烷、甲苯、Isopar G中的至少一种。
本公开的另一个方面涉及一种根据本公开的反渗透膜的制备方法制得的反渗透膜,该反渗透膜适用于海水淡化。
发明的效果
与现有技术相比,本公开具有以下优点:在有机相溶液中加入具有原子级的光滑表面的二维纳米材料,一方面提高反渗透膜表面的光滑度,减少成核位点,降低晶体和脱盐层表面的结合强度;另一方面在脱盐层表面形成致密的水层,阻碍矿物离子在脱盐层表面的附着和生长。这种利用具有原子级的光滑表面的二维纳米材料进行改性的用于海水淡化的反渗透膜的制备方法,操作简单且成本低,在不影响反渗透膜的性能(例如脱盐率和通量等)的前提下,显著提升了其抗结垢能力,减少了反渗透膜在用于海水淡化过程中投入的阻垢剂的用量,且延长了清洗周期、减少了停机时间,大大降低了反渗透膜法海水淡化的运营成本。
具体实施方式
以下将详细说明本公开的各种示例性实施例、特征和方面。在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好地说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在另外一些实例中,对于本领域技术人员熟知的方法、手段、器材和步骤未作详细描述,以便于凸显本公开的主旨。
如无特殊声明,本说明书中所使用的单位均为国际标准单位,并且本公开中出现的数值,数值范围,均应当理解为包含了工业生产中所不可避免的***性误差。
本说明书中,使用“可以”表示的含义包括了进行某种处理以及不进行某种处理两方面的含义。
本说明书中,所提及的“一些具体/优选的实施方案”、“另一些具体/优选的实施方案”、“实施方案”等是指所描述的与该实施方案有关的特定要素(例如,特征、结构、性质和/或特性)包括在此处所述的至少一种实施方案中,并且可存在于其它实施方案中或者可不存在于其它实施方案中。另外,应理解,所述要素可以任何合适的方式组合在各种实施方案中。
本说明书中,使用“数值A~数值B”表示的数值范围是指包含端点数值A、B的范围。
本说明书中,使用“常温”、“室温”时,其温度可以是10-40℃。
本公开提供一种反渗透膜的制备方法,其包括以下步骤:
配制铸膜液,使所述铸膜液在支撑材料上固化形成基膜,所述铸膜液包含聚合物、溶剂;
使所述基膜依次浸入水相溶液、有机相溶液,所述水相溶液包含作为水相单体的胺类化合物,所述有机相溶液包含二维纳米材料和作为有机相单体的酰氯类化合物;
经后处理、干燥后得到反渗透膜。
本公开的技术构思在于:将具有原子级的光滑表面的二维纳米材料引入脱盐层(又称功能层),改性反渗透膜的表面理化性质,利用二维纳米材料分子内的极性键引起的表面能量褶皱,以及二维纳米材料分子和水分子尺寸相当的晶格常数,使二维纳米材料分子与水分子之间发生强烈的相互作用而在脱盐层表面形成致密的水层,从而阻碍矿物离子在脱盐层表面附着和生长,降低脱盐层表面浓差极化程度,可以在确保反渗透膜的高脱盐率的同时显著提升抗无机结垢能力。
在本公开所述的制备方法中,所述聚合物为双酚A型PSF、聚芳砜、聚醚砜、磺化聚醚砜、聚二氮杂萘醚砜酮、聚芳醚砜酮、杂萘联苯聚芳醚腈酮和聚丙烯腈中的至少一种。对于聚合物的分子量没有特别限制,优选地,数均分子量在30000~50000之间。
在本公开所述的制备方法中,对于所述铸膜液中的溶剂没有特别限制,只要其能够充分溶解聚合物即可,优选地,所述铸膜液中的溶剂为N,N-二甲基甲酰胺(DMF)、N,N-二甲基乙酰胺、N-甲基吡咯烷酮、二甲基亚砜中的至少一种。
所述支撑材料通常为无纺布,对其具体种类没有特别限制,优选地为聚丙烯(PP)无纺布、聚酯(PET)无纺布、腈纶(PAN)无纺布和氯纶(PVC)无纺布中任一种,更优选地为聚酯(PET)无纺布。
优选地,以所述铸膜液的重量计,所述聚合物的用量为18~22wt%。如果聚合物的用量低于18wt%,会使得制备得到的膜的耐压性能不足,不利于在海水淡化的高压条件下应用。如果聚合物的用量高于22wt%,则会使得铸膜液的粘度过大,会导致基膜容易产生缺陷,且导致基膜孔数过少,不利于水相单体吸附,导致脱盐层缺陷。
在本公开所述的制备方法中,优选地,所述铸膜液还包含亲水性成孔剂(又称亲水性致孔剂),其作用在于促进基膜表面孔形成,提高基膜表面水相胺单体的吸附能力和均匀性。
优选地,所述亲水性成孔剂为聚乙烯吡咯烷酮(PVP)、聚乙二醇200、聚乙二醇400、聚乙二醇800、聚乙二醇2000、聚乙二醇6000、聚乙二醇10000、聚乙烯醇中的至少一种。
更优选地,使用PVP作为亲水性成孔剂,制造的膜具有更稳定的化学性质;能更有效地控制膜的孔径的尺寸和孔的分布,增加膜孔的密度,提高膜的渗透性,改善膜表面的亲水性,并且良好的生物相容性。
优选地,以所述铸膜液的总重量计,所述亲水性成孔剂的含量为0.1wt%~5.0wt%。含量低于0.1wt%时,基膜的孔数过少,不利于水相单体的吸附;含量超过5.0wt%时,铸膜液稳定性差,基膜易产生缺陷。
对于将铸膜液涂覆在无纺布上的方法没有特别限定,可以使用本领域通常使用的涂覆方法,例如流延法、浸涂法、刮涂法、旋转涂覆法等,更优选为刮涂法。涂覆在无纺布上之后接着浸在凝固浴中,使得铸膜液凝固成膜。
在本公开中,形成基膜的方法没有特别限制,优选采用液-固相转化法形成基膜。优选地,相转化发生时间控制为0.5~5min,水浴温度为10~20℃,热固化水浴温度为60~80℃。
作为一个非限制性的例子,所述基膜的制备工序包括:
将0.1wt%~5.0wt%聚乙烯吡咯烷酮和18~22wt%聚砜(双酚A型PSF、聚芳砜、聚醚砜中的至少一种)加入处于搅拌状态的DMF中进行混合分散,在70℃下搅拌6h,得到均相溶液;在-80kPa下进行真空脱泡处理后过滤,冷却至室温;将该铸膜液涂布在无纺布基材上并浸入凝固浴中处理300s后,完成基膜的制备。
在本公开所述的制备方法中,所述胺类化合物为间苯二胺、邻苯二胺、对苯二胺、均苯三胺、乙二胺、哌嗪、3-氨基哌嗪中的至少一种。
优选地,以所述水相溶液的总重量计,所述胺类化合物的含量为1.0wt%~5.0wt%。含量低于1.0wt%时,聚合度偏低,难以确保高脱盐率;含量超过5.0wt%时,导致所制备的膜的通量低。
在本公开所述的制备方法中,优选地,所述水相溶液还包含表面活性剂 和缚酸剂。
所述表面活性剂的作用在于促进作为水相单体的胺类化合物在基膜表面的有效吸附。对其具体种类没有限制,可以使用本领域常见的表面活性剂,优选地,所述表面活性剂为十二烷基硫酸钠、十二烷基苯磺酸钠中的至少一种。
所述缚酸剂的作用在于将溶液的pH值调节至9~12的范围内,从而更有利于界面聚合反应的进行。所述pH调节剂可以为选自氢氧化钠、磷酸氢钾、氢氧化钾、碳酸钠、三乙胺/樟脑磺酸中的至少一种。其中三乙胺和樟脑磺酸组合使用用于调节pH,这样可以使反应相对温和一些,是界面聚合反应中常见的pH调节搭配。优选地,所述缚酸剂的含量为0.5wt%~5.0wt%。
优选地,以所述水相溶液的总重量计,所述表面活性剂的含量为0.01wt%以上至0.5wt%以下,当含量超过0.5wt%时,会导致吸附能力过强,而降低界面聚合中水相单体的扩散,不利于聚酰胺脱盐层的生长。
对于基膜与水相溶液的接触时间和接触温度没有特别限定,优选在20~30℃的温度范围内接触5~60秒。
在本公开所述的制备方法中,所述二维纳米材料为六方氮化硼(简称hBN),利用B-N极性键引起的表面能量褶皱,以及hBN分子和水分子尺寸相当的晶格常数,使hBN分子与水分子之间发生强烈的相互作用而在脱盐层表面形成致密的水层,阻碍矿物离子在脱盐层表面附着和生长,降低脱盐层表面浓差极化程度。
优选地,以所述有机相溶液的总重量计,所述二维纳米材料的含量为0.01wt%~0.1wt%。当含量低于0.01wt%时,对膜的抗结垢性能无改善;当含量超过0.1wt%时,在有机相溶液中的分散性差,导致脱盐层缺陷。
在本公开所述的制备方法中,所述酰氯类化合物为均苯三甲酰氯、均苯四甲酰氯、对苯二甲酰氯、间苯二甲酰氯、邻苯二甲酰氯、联苯四酰氯中的至少一种;优选地,以所述有机相溶液的总重量计,所述酰氯化合物的含量为0.1wt%~0.5wt%。当含量低于0.1wt%时,聚合度过低,脱盐率差;当含量 超过0.5wt%时,聚合度太高导致通量很低。
在本公开所述的制备方法中,所述有机相溶液还包含有机溶剂,优选地,所述有机溶剂为正己烷、环己烷、正庚烷、甲苯、Isopar G中的至少一种。
对于基膜与有机相溶液的接触时间和接触温度没有特别限定,优选在20~25℃的温度范围内接触5~60秒。
作为一个非限制性的例子,所述功能层(又称脱盐层)的制备工序包括:
将基膜浸入含有1.0wt%~5.0wt%间苯二胺、0.5wt%~5.0wt%三乙胺/樟脑磺酸、0.01wt%~0.5wt%十二烷基硫酸钠的水相溶液接触30s~60s后,去除膜片表面的水相液滴;接着将浸入含有0.01wt%~0.1wt%六方氮化硼、0.1wt%~0.5wt%均苯三甲酰氯的有机相溶液30s~60s后,取出膜片去掉残留的有机相溶液。
所得的膜可以任选地浸入包含2wt%碳酸钠的水溶液中清洗,接着用包含10~20wt%甘油的水溶液进行保湿处理,然后在50~90℃的温度下干燥。碳酸钠的作用是清洗残留的胺类化合物、酰氯类化合物及界面聚合产生的低聚物。
本公开还提供根据上述的制备方法制得的反渗透膜,该反渗透膜不仅具有优异的脱盐率和高的通量,而且显著提升了抗结垢能力,减少了反渗透膜在用于海水淡化过程中投入的阻垢剂的用量,且延长了清洗周期、减少了停机时间,大大降低了反渗透膜法海水淡化的运营成本。
实施例
下面将结合实施例对本公开的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本公开,而不应视为限定本公开的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
对比例
(1)基膜的制备
将3.0wt%聚乙烯吡咯烷酮和20.0wt%双酚A型PSF加入处于搅拌状态的 DMF中进行混合分散,在70℃下搅拌6h,得到铸膜液;在-80kPa下进行真空脱泡处理后过滤,冷却至室温,将该溶液涂布在PET无纺布基材上并浸入温度为15℃的去离子水凝固浴中处理300s后,获得基膜。
(2)反渗透膜的制备
将(1)中制备的基膜浸入含有4.0wt%间苯二胺、0.5wt%三乙胺/樟脑磺酸、0.5wt%十二烷基硫酸钠的水相溶液接触60s后,去除膜片表面的水相液滴;接着浸入含有0.3wt%均苯三甲酰氯的环己烷溶液40s后,取出膜片去掉残留有机相溶液后,浸入碳酸钠浓度为2.0wt%的水溶液中清洗3min,再在甘油浓度为8.0wt%的水溶液中浸润5min,取出放入温度为80℃的烘箱中烘干,即得到SWRO反渗透膜。
实施例1
(1)基膜的制备
将3.0wt%聚乙烯吡咯烷酮和20.0wt%双酚A型PSF加入处于搅拌状态的DMF中进行混合分散,在70℃下搅拌6h,得到铸膜液;在-80kPa下进行真空脱泡处理后过滤,冷却至室温,将该溶液涂布在PET无纺布基材上并浸入温度为15℃的去离子水凝固浴中处理300s后,获得基膜。
(2)反渗透膜的制备
将(1)中制备的基膜浸入含有4.0wt%间苯二胺、0.5wt%三乙胺/樟脑磺酸、0.5wt%十二烷基硫酸钠的水相溶液接触60s后,去除膜片表面的水相液滴;接着浸入含有0.01wt%六方氮化硼、0.3wt%均苯三甲酰氯的环己烷溶液40s后,取出膜片去掉残留有机相溶液后,浸入碳酸钠浓度为2.0wt%的水溶液中清洗3min,再在甘油浓度为8.0wt%的水溶液中浸润5min,取出放入温度为80℃的烘箱中烘干,即得到SWRO-hBN-2反渗透膜。
实施例2
(1)基膜的制备
将0.1wt%聚乙烯吡咯烷酮和18.0wt%杂萘联苯聚芳醚腈酮加入处于搅拌状态的DMF中进行混合分散,在70℃下搅拌6h,得到铸膜液;在-80kPa下进 行真空脱泡处理后过滤,冷却至室温,将该溶液涂布在PET无纺布基材上并浸入温度为15℃的去离子水凝固浴中处理300s后,获得基膜。
(2)反渗透膜的制备
将(1)中制备的基膜浸入含有1.0wt%间苯二胺、1.5wt%三乙胺/樟脑磺酸、0.3wt%十二烷基苯磺酸钠的水相溶液接触40s后,去除膜片表面的水相液滴;接着浸入含有0.03wt%六方氮化硼、0.5wt%均苯三甲酰氯的环己烷溶液40s后,取出膜片去掉残留有机相溶液后,浸入碳酸钠浓度为2.0wt%的水溶液中清洗3min,再在甘油浓度为8.0wt%的水溶液中浸润5min,取出放入温度为90℃的烘箱中烘干,即得到SWRO-hBN-2反渗透膜。
实施例3
(1)基膜的制备
将1.0wt%聚乙烯吡咯烷酮和19.0wt%聚芳砜加入处于搅拌状态的DMF中进行混合分散,在70℃下搅拌6h,得到铸膜液;在-80kPa下进行真空脱泡处理后过滤,冷却至室温,将该溶液涂布在PET无纺布基材上并浸入温度为15℃的去离子水凝固浴中处理300s后,获得基膜。
(2)反渗透膜的制备
将(1)中制备的基膜浸入含有2.0wt%邻苯二胺、2.0wt%三乙胺/樟脑磺酸、0.2wt%十二烷基硫酸钠的水相溶液接触40s后,去除膜片表面的水相液滴;接着浸入含有0.05wt%六方氮化硼、0.4wt%均苯四甲酰氯的Isopar G溶液60s后,取出膜片去掉残留有机相溶液后,浸入碳酸钠浓度为2.0wt%的水溶液中清洗3min,再在甘油浓度为8.0wt%的水溶液中浸润5min,取出放入温度为70℃的烘箱中烘干,即得到SWRO-hBN-3反渗透膜。
实施例4
(1)基膜的制备
将4.0wt%聚乙烯吡咯烷酮和21.0wt%聚芳醚砜酮加入处于搅拌状态的DMF中进行混合分散,在70℃下搅拌6h,得到铸膜液;在-80kPa下进行真空脱泡处理后过滤,冷却至室温,将该溶液涂布在PET无纺布基材上并浸入温 度为15℃的去离子水凝固浴中处理300s后,获得基膜。
(2)反渗透膜的制备
将(1)中制备的基膜浸入含有3.0wt%对苯二胺、3.5wt%三乙胺/樟脑磺酸、0.1wt%十二烷基苯磺酸钠的水相溶液接触50s后,去除膜片表面的水相液滴;接着浸入含有0.08wt%六方氮化硼、0.2wt%联苯四酰氯的正庚烷溶液30s后,取出膜片去掉残留有机相溶液后,浸入碳酸钠浓度为2.0wt%的水溶液中清洗3min,再在甘油浓度为8.0wt%的水溶液中浸润5min,取出放入温度为60℃的烘箱中烘干,即得到SWRO-hBN-4反渗透膜。
实施例5
(1)基膜的制备
将5.0wt%聚乙烯吡咯烷酮和22.0wt%聚醚砜加入处于搅拌状态的DMF中进行混合分散,在70℃下搅拌6h,得到铸膜液;在-80kPa下进行真空脱泡处理后过滤,冷却至室温,将该溶液涂布在PET无纺布基材上并浸入温度为15℃的去离子水凝固浴中处理300s后,获得基膜。
(2)反渗透膜的制备
将(1)中制备的基膜浸入含有5.0wt%均苯三胺、5.0wt%三乙胺/樟脑磺酸、0.05wt%十二烷基苯磺酸钠的水相溶液接触50s后,去除膜片表面的水相液滴;接着浸入含有0.1wt%六方氮化硼、0.1wt%间苯二甲酰氯的环己烷溶液30s后,取出膜片去掉残留有机相溶液后,浸入碳酸钠浓度为2.0wt%的水溶液中清洗3min,再在甘油浓度为8.0wt%的水溶液中浸润5min,取出放入温度为50℃的烘箱中烘干,即得到SWRO-hBN-5反渗透膜。
性能测试与结果
将在对比例及实施例1~5中制备的膜片分别放在高压膜片检测台进行性能测试。在操作压力为800psi,原水(原水的配制方法为:先配制500ppm碳酸氢钠和1000ppm氯化钙的混合水溶液,然后用氯化钠将溶液总浓度配至32000ppm),溶液温度为25℃、pH为8的测试条件下,运行不同时间以测试膜片的通量和脱盐率,结果如下表1所示。
运行24h后,采用盐酸浓度0.2wt%的水溶液清洗1h,再按上述条件进行性能测试,并且按下式计算膜片的通量衰减率和清洗后的通量恢复率,结果如下表1所示。
通量衰减率=(1-F1/F0)*100%
通量恢复率=(F2/F0)*100%
式中F0为运行1h的初始通量,L/m2·h;F1为运行24h的通量,L/m2·h;F2为用盐酸浓度为0.2wt%的水溶液清洗1h后的通量,L/m2·h。
表1
由上表1所显示的数据来看,与对比例制备的反渗透膜相比,按照本公开的方法制备的反渗透膜不仅保持了极高的脱盐率,而且初始通量也显著提高,此外,通量的抗衰减能力有了极大提高,通量衰减量的大幅度降低,减少了阻垢剂的用量,且延长了***清洗周期、减少了停机时间,大大降低了反渗透膜法海水淡化的运营成本,进一步地,本公开的反渗透膜在运行一段时间且被清洗后,通量恢复率也相对于对比例制备的反渗透膜具有显著提高。
需要说明的是,尽管以具体实例介绍了本公开的技术方案,但本领域技术人员能够理解,本公开应不限于此。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性 的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。
产业上的可利用性
本公开的制备方法操作简单且成本低,在不影响反渗透膜的性能(例如脱盐率和通量等)的前提下,显著提升了其抗结垢能力,减少了反渗透膜在用于海水淡化过程中投入的阻垢剂的用量,且延长了清洗周期、减少了停机时间,大大降低了反渗透膜法海水淡化的运营成本。

Claims (10)

  1. 一种反渗透膜的制备方法,其特征在于,包括以下步骤:
    配制铸膜液,使所述铸膜液在支撑材料上固化形成基膜,所述铸膜液包含聚合物、溶剂;
    使所述基膜依次浸入水相溶液、有机相溶液,所述水相溶液包含作为水相单体的胺类化合物,所述有机相溶液包含二维纳米材料和作为有机相单体的酰氯类化合物,所述二维纳米材料具有原子级的光滑表面;
    经后处理、干燥后得到反渗透膜。
  2. 根据权利要求1所述的制备方法,其特征在于,所述聚合物为双酚A型PSF、聚芳砜、聚醚砜、磺化聚醚砜、聚二氮杂萘醚砜酮、聚芳醚砜酮、杂萘联苯聚芳醚腈酮和聚丙烯腈中的至少一种;优选地,以所述铸膜液的总重量计,所述聚合物的含量为18.0wt%~22.0wt%。
  3. 根据权利要求1或2所述的制备方法,其特征在于,所述溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮、二甲基亚砜中的至少一种;所述支撑材料为聚丙烯(PP)无纺布、聚酯(PET)无纺布、腈纶(PAN)无纺布和氯纶(PVC)无纺布中的任一种,优选地为聚酯(PET)无纺布。
  4. 根据权利要求1或2所述的制备方法,其特征在于,所述铸膜液还包含亲水性成孔剂,优选地,所述亲水性成孔剂为聚乙烯吡咯烷酮、聚乙二醇200、聚乙二醇400、聚乙二醇800、聚乙二醇2000、聚乙二醇6000、聚乙二醇10000、聚乙烯醇中的至少一种;优选地,以所述铸膜液的总重量计,所述亲水性成孔剂的含量为0.1wt%~5.0wt%。
  5. 根据权利要求1或2所述的制备方法,其特征在于,所述胺类化合物为间苯二胺、邻苯二胺、对苯二胺、均苯三胺、乙二胺、哌嗪、3-氨基哌嗪中的至少一种;优选地,以所述水相溶液的总重量计,所述胺类化合物的含量为1.0wt%~5.0wt%。
  6. 根据权利要求1或2所述的制备方法,其特征在于,所述水相溶液还包含表面活性剂和缚酸剂;优选地,以所述水相溶液的总重量计,所述表面活性剂的含量为0.01wt%以上至0.5wt%以下,所述缚酸剂的含量为 0.5wt%~5.0wt%。
  7. 根据权利要求1或2所述的制备方法,其特征在于,所述二维纳米材料为六方氮化硼;优选地,以所述有机相溶液的总重量计,所述二维纳米材料的含量为0.01wt%~0.1wt%。
  8. 根据权利要求1或2所述的制备方法,其特征在于,所述酰氯类化合物为均苯三甲酰氯、均苯四甲酰氯、对苯二甲酰氯、间苯二甲酰氯、邻苯二甲酰氯、联苯四酰氯中的至少一种;优选地,以所述有机相溶液的总重量计,所述酰氯化合物的含量为0.1wt%~0.5wt%。
  9. 根据权利要求1或2所述的制备方法,其特征在于,所述有机相溶液还包含有机溶剂,优选地,所述有机溶剂为正己烷、环己烷、正庚烷、甲苯、Isopar G中的至少一种。
  10. 一种根据权利要求1~9任一项所述的制备方法制得的反渗透膜。
PCT/CN2023/131570 2022-11-24 2023-11-14 反渗透膜的制备方法和由其制备的反渗透膜 WO2024109592A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211484776.6A CN118059696A (zh) 2022-11-24 2022-11-24 反渗透膜的制备方法和由其制备的反渗透膜
CN202211484776.6 2022-11-24

Publications (1)

Publication Number Publication Date
WO2024109592A1 true WO2024109592A1 (zh) 2024-05-30

Family

ID=91096170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/131570 WO2024109592A1 (zh) 2022-11-24 2023-11-14 反渗透膜的制备方法和由其制备的反渗透膜

Country Status (2)

Country Link
CN (1) CN118059696A (zh)
WO (1) WO2024109592A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105879701A (zh) * 2016-05-06 2016-08-24 北京林业大学 一种二维纳米材料嵌层的新型复合正渗透膜及其制备方法
CN108452684A (zh) * 2018-03-20 2018-08-28 时代沃顿科技有限公司 一种金属有机框架反渗透膜及其制备方法
CN110449046A (zh) * 2019-08-07 2019-11-15 恩泰环保科技(常州)有限公司 一种mof改性抗污染复合反渗透膜及其制备方法
CN112023732A (zh) * 2020-08-05 2020-12-04 中国科学院青岛生物能源与过程研究所 一种正渗透复合膜及其制备方法和应用
CN113368688A (zh) * 2020-03-09 2021-09-10 中国科学院城市环境研究所 一种氧化二硫化钼二维纳米复合膜的制备方法
US20220032240A1 (en) * 2020-07-29 2022-02-03 Aspen Products Group, Inc. Separation Membrane and Methods of Preparation Thereof
CN114028947A (zh) * 2021-10-22 2022-02-11 浙江工业大学 一种由氨基功能化ZIFs纳米材料改性的反渗透膜及其制备方法
CN114849474A (zh) * 2022-05-07 2022-08-05 北京理工大学 基于氮化硼改性的聚酰胺复合纳滤膜及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105879701A (zh) * 2016-05-06 2016-08-24 北京林业大学 一种二维纳米材料嵌层的新型复合正渗透膜及其制备方法
CN108452684A (zh) * 2018-03-20 2018-08-28 时代沃顿科技有限公司 一种金属有机框架反渗透膜及其制备方法
CN110449046A (zh) * 2019-08-07 2019-11-15 恩泰环保科技(常州)有限公司 一种mof改性抗污染复合反渗透膜及其制备方法
CN113368688A (zh) * 2020-03-09 2021-09-10 中国科学院城市环境研究所 一种氧化二硫化钼二维纳米复合膜的制备方法
US20220032240A1 (en) * 2020-07-29 2022-02-03 Aspen Products Group, Inc. Separation Membrane and Methods of Preparation Thereof
CN112023732A (zh) * 2020-08-05 2020-12-04 中国科学院青岛生物能源与过程研究所 一种正渗透复合膜及其制备方法和应用
CN114028947A (zh) * 2021-10-22 2022-02-11 浙江工业大学 一种由氨基功能化ZIFs纳米材料改性的反渗透膜及其制备方法
CN114849474A (zh) * 2022-05-07 2022-08-05 北京理工大学 基于氮化硼改性的聚酰胺复合纳滤膜及其制备方法和应用

Also Published As

Publication number Publication date
CN118059696A (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
Shahabi et al. Synthesis and characterization of novel g-C3N4 modified thin film nanocomposite reverse osmosis membranes to enhance desalination performance and fouling resistance
Ghanbari et al. Synthesis and characterization of novel thin film nanocomposite reverse osmosis membranes with improved organic fouling properties for water desalination
Geng et al. Self-cleaning anti-fouling hybrid ultrafiltration membranes via side chain grafting of poly (aryl ether sulfone) and titanium dioxide
Akbari et al. Novel sulfonated polyamide thin-film composite nanofiltration membranes with improved water flux and anti-fouling properties
Zhang et al. Positively charged capillary nanofiltration membrane with high rejection for Mg2+ and Ca2+ and good separation for Mg2+ and Li+
Ang et al. Incorporation of carboxylic monoamines into thin-film composite polyamide membranes to enhance nanofiltration performance
Shockravi et al. A new high performance polyamide as an effective additive for modification of antifouling properties and morphology of asymmetric PES blend ultrafiltration membranes
Emadzadeh et al. Synthesis of thin film nanocomposite forward osmosis membrane with enhancement in water flux without sacrificing salt rejection
Zhan et al. How to understand the effects of heat curing conditions on the morphology and performance of polypiperazine-amide NF membrane
WO2022032730A1 (zh) 一种耐溶剂反渗透复合膜的制备方法
CN109224861A (zh) 一种金属有机骨架改性纳滤/反渗透膜及其应用
Lu et al. Layered double hydroxide nanoparticle modified forward osmosis membranes via polydopamine immobilization with significantly enhanced chlorine and fouling resistance
WO2018201924A1 (zh) 一种复合反渗透膜及其制备方法
CN102114391A (zh) 一种聚间苯二甲酰间苯二胺纳滤膜的制备方法
CN111420563B (zh) 一种杂化复合反渗透/纳滤膜、制备方法及其应用
CN109126480B (zh) 一种金属有机框架纳米片改性正渗透膜及其制备方法和应用
KR20150124952A (ko) 복합 반투막
Yuan et al. Polyamide nanofiltration membrane fine-tuned via mixed matrix ultrafiltration support to maximize the sieving selectivity of Li+/Mg2+ and Cl–/SO42–
Zhang et al. Reconstruction of the polyamide film in nanofiltration membranes via the post-treatment with a ternary mixture of ethanol-water-NaOH: Mechanism and effect
Sun et al. A novel chlorine-resistant polyacrylate nanofiltration membrane constructed from oligomeric phenolic resin
Gao et al. Preparing hydrophilic and antifouling polyethersulfone membrane with metal-polyphenol networks based on reverse thermally induced phase separation method
Yuan et al. Asymmetric polyamide nanofilm with coordinated charge and nanopore, tuned by azlactone-based monomer to facilitate ion separation
CN106413865B (zh) 基于聚苯胺的耐氯性亲水性滤膜
KR101477848B1 (ko) 초친수층을 포함하는 역삼투막 및 그 제조방법
CN112619438B (zh) 一种耐甲醇聚酰胺反渗透膜及其制备方法