WO2024108808A1 - 用于清洗工艺腔室的方法及其应用 - Google Patents

用于清洗工艺腔室的方法及其应用 Download PDF

Info

Publication number
WO2024108808A1
WO2024108808A1 PCT/CN2023/080573 CN2023080573W WO2024108808A1 WO 2024108808 A1 WO2024108808 A1 WO 2024108808A1 CN 2023080573 W CN2023080573 W CN 2023080573W WO 2024108808 A1 WO2024108808 A1 WO 2024108808A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
process chamber
remote plasma
gas
plasma system
Prior art date
Application number
PCT/CN2023/080573
Other languages
English (en)
French (fr)
Inventor
屈庆源
何学勇
周剑
闻二成
房现飞
王登志
Original Assignee
苏州迈为科技股份有限公司
苏州迈正科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州迈为科技股份有限公司, 苏州迈正科技有限公司 filed Critical 苏州迈为科技股份有限公司
Publication of WO2024108808A1 publication Critical patent/WO2024108808A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application belongs to the technical field of vacuum coating production equipment, and specifically relates to a method for cleaning a process chamber and its application.
  • CVD chemical vapor deposition
  • PECVD plasma enhanced chemical vapor deposition
  • ALD atomic layer deposition
  • PEALD plasma enhanced atomic layer deposition
  • cleaning of the inside of the vacuum chamber and the coating sample carrier is a necessary operation to ensure the cleanliness of the inside of the vacuum chamber.
  • a remote plasma system for the cleaning of the vacuum coating chamber, a remote plasma system (RPS) is usually used to excite the cleaning gas into a plasma state, which is transmitted to the coating chamber through a pipeline, and the plasma reacts chemically with the film layer or particulate impurities in the chamber.
  • RPS remote plasma system
  • the present invention aims to solve at least one of the technical problems in the related art to a certain extent.
  • the present invention provides a method for cleaning a process chamber and its application, which can alleviate the problems of slow etching rate, narrow etching range or incomplete coverage in the current cleaning method. Helps improve cleaning and etching efficiency and rate.
  • the present invention provides a method for cleaning a process chamber, the method comprising the following steps:
  • the cleaning process gas includes a purge gas and a cleaning gas
  • the step (a) includes:
  • pre-treating comprises purging the inner chamber, gas delivery pipeline and process chamber of the remote plasma system with the purge gas, and then starting the remote plasma system;
  • a cleaning gas is introduced to supply the plasma generated by the remote plasma system to the process chamber.
  • the purge gas includes at least one of Ar, He, N2 , or H2 .
  • the flow rate of the cleaning gas in the cleaning process gas is gradually increased so that the cleaning gas and the purge gas reach a certain ratio, wherein the ratio of the flow rate of the cleaning gas to the flow rate of the purge gas is gradually increased or increased in a step-by-step manner.
  • the cleaning gas includes a corrosive gas
  • the corrosive gas includes at least one of NF 3 , CF 4 , SF 6 , C 2 F 6 , F 2 , C 3 F 8 , CHF 3 , HF, Cl 2 or HCl.
  • the remote plasma system includes an inductive coil coupled discharge structure, and the remote plasma system uses an alternating current power supply with a frequency of 100 KHz to 13.56 MHz.
  • step (b) when the remote plasma system is turned on for 5 to 150 seconds and its working state reaches a stable state, the RF power supply system is turned on.
  • the operating parameters of the RF power system include:
  • the frequency range of the radio frequency power source is 2 MHz to 100 MHz; and/or,
  • the power range of the radio frequency power supply is 500W to 90000W; and/or,
  • the discharge spacing of the radio frequency power source ranges from 5 mm to 50 mm; and/or,
  • the working gas pressure during the cleaning process chamber is 0.01 Torr to 10 Torr.
  • step (d) further comprises:
  • the present application also provides an application of the aforementioned method for cleaning a process chamber in a vacuum coating process equipment, wherein the vacuum coating process equipment includes a chemical vapor deposition equipment or an atomic layer deposition equipment.
  • the method for cleaning the process chamber adopts a remote plasma system combined with a radio frequency power system in the process chamber for cleaning, and during the cleaning time period During the process, the remote plasma system and the radio frequency power supply system are used to work together to clean the process chamber.
  • the radio frequency power supply system After the plasma generated by the remote plasma system is excited and transmitted to the process chamber, it is excited and enhanced by the radio frequency power supply system again, which increases the input power, increases the etching rate, increases the plasma power, makes more gas molecules in an excited state, strengthens ionization, and increases the plasma density, which can fully cover the entire plasma coating equipment process chamber, thereby greatly improving the cleaning and etching efficiency and rate.
  • the method of the present invention limits the opening and closing sequence or time limit of the remote plasma system and the radio frequency power supply system, which can ensure the cleaning quality, shorten the cleaning time, provide sufficient plasma, enhance the cleaning and etching effect, and reduce or avoid damage to the components in the chamber.
  • FIG1 is a schematic flow chart of a method for cleaning a process chamber provided in some exemplary embodiments of the present application.
  • FIG. 2 is another schematic flow chart of a method for cleaning a process chamber provided in some exemplary embodiments of the present application
  • FIG. 3 is a schematic diagram of the structure of semiconductor process equipment provided by some exemplary embodiments of the present application.
  • 100-RF power system 200-remote plasma system; 300-upper plate; 400-carrier plate; 500-heating plate.
  • a single remote cleaning system is usually used to clean the process chamber of a plasma coating device.
  • RPS remote plasma source
  • RF power supply a single RF power supply.
  • using a single RPS remote plasma source system or an RF power flat-plate discharge system has a narrow etching range inside the vacuum chamber and cannot fully cover a large plasma coating chamber.
  • the remote plasma undergoes a recombination phenomenon before reaching the process chamber, which reduces the overall cleaning effect.
  • a single plasma excitation method increases the consumption of cleaning gas and has a poor cleaning effect.
  • an RF power supply system to in-situ excite plasma for cleaning, there are problems such as slow etching rate, narrow etching range, and inability to fully cover. Therefore, the cleaning method in the prior art needs to be further improved.
  • the technical solution of the embodiment of the present application provides a method for cleaning a process chamber and its application.
  • the technical solution of the embodiment of the present application can alleviate the problems of slow etching rate, narrow etching range, and incomplete coverage in etching cleaning in existing large-scale plasma coating equipment.
  • the specific technical solution is described below.
  • a method for cleaning a process chamber comprising the following steps:
  • the process chamber is cleaned only by plasma excited by a remote plasma system.
  • the remote plasma undergoes a recombination phenomenon before reaching the process chamber, that is, the number of dissociated particles after reaching the process chamber is less than the number of dissociated particles excited by the remote plasma system. Therefore, the cleaning method provided in this embodiment adopts a method combining a remote plasma source with a radio frequency power supply. The cleaning is carried out in a manner, and a combination of remote plasma and RF in-situ excited plasma is used to clean the process chamber. That is, during the cleaning period, the remote plasma system and the RF power supply system are used together to clean the process chamber.
  • the RF power supply is added on the basis of RPS in cleaning and etching, the input power is increased, the etching rate is increased, the power in the plasma is increased, more gas molecules are in an excited state, the ionization is enhanced, and the plasma density is increased, which can fully cover the process chamber of the plasma coating equipment, thereby greatly improving the cleaning and etching efficiency and rate.
  • the method of the present invention can further improve the cleaning and etching efficiency and rate, shorten the cleaning time, and has a better cleaning effect, a simple process, and convenient operation. That is, compared with the existing remote plasma cleaning and radio frequency plasma cleaning methods, the present invention uses a radio frequency power supply system to re-excite and enhance the plasma in the process chamber, and uses the re-excited and enhanced plasma to clean the process chamber.
  • the gas between the upper plate and the lower plate in the process chamber can be fully dissociated to produce a plasma discharge effect, and the dissociation rate of the gas is greatly improved, thereby enhancing the etching effect and increasing the cleaning effect of the entire chamber; and during the cleaning period, the remote plasma system and the radio frequency power supply system are used together to clean the process chamber. Since the active particles in the plasma react with the pollutants to generate volatile substances, the purpose of removing surface stains is achieved. In order to ensure the cleaning quality and shorten the cleaning time, the plasma is continuously introduced through the remote plasma system, which can provide a sufficient amount of plasma, thereby improving the cleaning efficiency and the cleaning effect.
  • the method of the present invention limits the opening and closing sequence or time limit of the remote plasma system and the RF power supply system.
  • the remote plasma system is started first, and when the remote plasma system reaches a stable state, the RF power supply system is turned on. In this way, the start time of the RF power supply system is later than the start time of the RPS.
  • the purpose is to make the RF power supply work in a more stable state, and the plasma cleaning effect transmitted by the RPS system to the process chamber is the best, thereby helping to enhance the cleaning and etching effect and improve the cleaning and etching efficiency.
  • the RF power supply system in the process chamber is turned off first, and then the RPS system is turned off. This can prevent the gas atmosphere in the chamber from changing after the RPS is turned off. Unstable RF power supply parameters may easily damage the RF power supply and matching system, or may also cause abnormal discharge inside the cavity and damage the accessories inside the cavity. It has good safety and stability.
  • the RF power supply system includes a RF power supply and a matcher.
  • the specific structure and working principle of the RF power supply system can refer to the prior art, and the embodiment of the present invention is not limited to this.
  • the cleaning method of this embodiment can be applied in the fields of photovoltaic production equipment or semiconductor device production equipment, such as in large-scale plasma vacuum coating equipment, for cleaning the process chamber in the vacuum coating equipment.
  • the vacuum coating equipment can be a chemical vapor deposition (CVD) device, an atomic layer deposition (ALD) device, etc., which is not limited in this embodiment.
  • the CVD equipment can include a plasma enhanced chemical vapor deposition (PECVD) device or a normal pressure chemical vapor deposition device, etc.
  • the ALD equipment can include a plasma enhanced atomic layer deposition (PEALD) device, etc.
  • the process chamber can be used to perform CVD, or to perform PECVD, or to perform ALD, etc.
  • the process chamber is a plasma reaction chamber.
  • the method for cleaning a process chamber of the present invention is described in detail below by taking the coating equipment as a PECVD coating equipment as an example. However, it should be understood that when the method is applied to other related equipment, it has the same or similar principles and will not be repeated here.
  • the PECVD coating equipment includes a process chamber, a RF power system 100 and a remote plasma system 200, wherein the RF power system 100 is installed in the process chamber, and the remote plasma system 200 is connected to the process chamber, or the remote plasma system 200 is coupled to the process chamber and the RF power system 100.
  • the PECVD coating device further includes an upper plate 300, a carrier plate 400 and a heating plate 500, wherein the carrier plate 400 or the heating plate 500 can be used as a lower plate. 500 are all disposed in the process chamber.
  • the upper plate 300 may include a showerhead for introducing and distributing the process gas and the cleaning gas.
  • the upper plate 300 may include a conductive plate, and the process gas may be introduced in another manner.
  • the RF power system 100 generates and outputs RF power to one of the upper plate 300 and the lower plate, and the other of the upper plate 300 and the lower plate can be DC grounded, AC grounded, or floating.
  • the input end of the remote plasma system 200 is connected to a gas input pipeline, and the output end of the remote plasma system 200 is connected to the process chamber.
  • the gas input pipeline can be used to transport cleaning gas or purge gas.
  • the method for cleaning a process chamber includes the following steps:
  • a cleaning process gas is introduced into a remote plasma system, the remote plasma system is started, the gas is excited into plasma, and the remote plasma is supplied to the process chamber.
  • step (a) includes:
  • Pre-treating the inner chamber, gas delivery pipeline and process chamber of the remote plasma system wherein the pre-treating comprises purging the inner chamber, gas delivery pipeline and process chamber of the remote plasma system with a purge gas, and then starting the remote plasma system.
  • the purge gas includes at least one of Ar, He, N2 or H2 .
  • the purge gas may be Ar, He, N2 , H2 , etc.
  • the purge gas is Ar, which has a wide range of sources, low cost, and can achieve better purge effects.
  • the remote plasma system is connected to a gas delivery pipeline, and the purge gas is supplied to the process chamber through the gas delivery pipeline and the unoperated remote plasma system.
  • a remote plasma system is used to enter the process chamber to fully purge the process chamber.
  • the chamber Before etching and cleaning the process chamber, the chamber needs to be fully purged, usually using Ar as the purge gas, which can flow into the process chamber through the remote plasma system that is not working. In this way, the gas in the process chamber is fully replaced to reduce or avoid the impact on the subsequent cleaning and etching process, so as to ensure the etching and cleaning effect.
  • a cleaning gas is introduced to supply the plasma generated by the remote plasma system to the process chamber.
  • a cleaning gas to the remote plasma system such as supplying the cleaning gas to the remote plasma system through a gas delivery pipeline; starting the remote plasma system can excite the cleaning gas (also called cleaning gas) flowing through it into a plasma state, and the plasma cleaning gas enters the cavity, that is, supplying RPS plasma to the process chamber.
  • cleaning gas also called cleaning gas
  • the purge gas is present in the gas delivery pipeline; during the process of cleaning the process chamber, the cleaning gas is gradually input into the gas delivery pipeline.
  • the flow rate of the cleaning gas is gradually increased, and the ratio of the flow rate of the cleaning gas to the flow rate of the purge gas is gradually increased or increased in a stepwise manner.
  • the flow rate of the cleaning gas in the cleaning process gas is gradually increased so that the cleaning gas and the purge gas reach a certain ratio, wherein the ratio of the flow rate of the cleaning gas to the flow rate of the purge gas is gradually increased or increased in a stepwise manner.
  • the purge gas needs to be used for excitation. If the purge gas is directly switched to the cleaning gas, the cleaning gas introduced into the remote plasma system cannot be excited and is likely to damage the equipment.
  • the gas delivery pipeline contains a purge gas such as Ar.
  • a purge gas such as Ar.
  • Ar is delivered through the gas delivery pipeline and the remote plasma system that is not in operation to enter the process chamber for purge.
  • at least part of the Ar can be retained in the gas delivery pipeline, so that there is Ar in the gas delivery pipeline when the remote plasma is turned on.
  • a clean gas such as a corrosive gas containing F element can be slowly supplied to the gas delivery pipeline, and as the cleaning process continues, the flow ratio of the clean gas such as a corrosive gas containing F element to the purge gas such as Ar gradually increases or increases in a stepwise manner, and after a certain period of time, the gas delivery pipeline is completely filled with clean gas.
  • the purge gas such as Ar
  • the cleaning gas includes a corrosive gas containing F
  • the corrosive gas containing F includes at least one of NF 3 , CF 4 , SF 6 , C 2 F 6 , F 2 , C 3 F 8 , CHF 3 , and HF
  • the cleaning gas is not limited to the corrosive gas containing F, but other types of corrosive gases, such as Cl 2 , HCl, etc., may also be used.
  • the corrosive gas may be NF 3 , CF 4 , SF 6 , C 2 F 6 , F 2 , C 3 F 8 , CHF 3 , HF , Cl 2 , HCl, or a mixture of any two or more of the above gases.
  • the corrosive gases especially the corrosive gas containing F, as the cleaning gas, the source is wide, the cost is low, and it is helpful to obtain a better cleaning effect.
  • the remote plasma system includes a remote plasma source with an inductive coil coupled discharge structure.
  • the remote plasma system uses an AC power supply with a frequency of 100KHz to 13.56MHz. That is, the RPS uses an inductive coil coupled discharge structure, and the RPS power supply uses an AC power supply with a frequency of 100KHz to 13.56MHz.
  • the RF power system in the process chamber is turned on again to excite an in-situ plasma in the process chamber, and the RF power system re-excites and enhances the plasma in the process chamber, and the process chamber is cleaned using the re-excited and enhanced plasma; and during a cleaning period, the remote plasma system and the RF power system are used together to clean the process chamber.
  • step (b) when the remote plasma system is turned on for 5 to 150 seconds (e.g. The remote plasma system is turned on for 5s, 6s, 7s, 8s, 9s, 10s, 30s, 50s, 100s, 120s, 150s, etc.), and its operating state reaches stability, and then the radio frequency power supply system is turned on. It can be judged whether the remote plasma system reaches a stable operating state according to the time when the remote plasma system is turned on. For example, after the remote plasma system opening time reaches 5s to 150s, it is believed that the remote plasma system has reached a stable operating state. Of course, in other embodiments, other methods can also be used to judge whether the remote plasma system reaches a stable operating state.
  • the RF power system When the remote plasma system reaches a stable state, the RF power system is turned on, and the remote plasma system can supply remote plasma to the process chamber.
  • the RF power is located in the process chamber, and the remote plasma is transmitted to the process chamber and is excited and enhanced again by the RF power system, so that the remote plasma system and the RF power system are used to clean the process chamber at the same time.
  • the RF power system work in a more stable state, reducing or avoiding the instability of the RF power, but also the plasma cleaning effect transmitted by the remote plasma system to the process chamber can be optimized, thereby greatly enhancing the cleaning and etching effect.
  • the frequency range of the RF power supply is 2 MHz to 100 MHz.
  • the frequency range of the RF power supply is 5 to 80 MHz.
  • the frequency range of the RF power supply is 10 to 50 MHz.
  • the RF power supply system can operate at a frequency of 2 MHz, 5 MHz, 10 MHz, 13.56 MHz, 20 MHz, 28.5 MHz, 43.2 MHz, 50 MHz, 75 MHz, 80 MHz, 100 MHz, etc., but other frequencies can also be used.
  • the power range of the RF power source is 500W to 90,000W.
  • the power of the RF power source is 800W to 60,000W.
  • the power of the RF power source is 1,000W to 20,000W.
  • the power of the RF power source may be 500W, 800W, 1,000W, 2,000W, 5,000W, 8,000W, 10,000W, 20,000W, 50,000W, 80,000W, etc., but other RF power levels may also be used.
  • the discharge spacing of the RF power source ranges from 5 mm to 50 mm.
  • the discharge spacing of the RF power source ranges from 8 mm to 30 mm.
  • the discharge spacing of the RF power source ranges from 10 mm to 20 mm.
  • the discharge spacing of the RF power source can be 5 mm, 8 mm, 10 mm, 15 mm, 20 mm, 25 mm, 30 mm, 40 mm, 50 mm, etc., but other discharge spacings can also be used.
  • the working pressure during the cleaning process chamber is 0.01 Torr to 10 Torr.
  • the working pressure during the cleaning process chamber is 0.1 Torr to 8 Torr.
  • the working pressure during the cleaning process chamber is 0.5 Torr to 5.5 Torr.
  • the working pressure during the cleaning process chamber is 0.01 Torr, 0.1 Torr, 0.3 Torr, 0.5 Torr, 1 Torr, 2 Torr, 5 Torr, 8 Torr, 10 Torr, etc.
  • turning on the RF power supply and the matcher after the plasma source is stable can fully dissociate the gas between the upper plate and the lower plate, produce a plasma discharge effect, and greatly improve the gas dissociation rate, thereby enhancing the etching effect and increasing the cleaning effect of the entire chamber; wherein, the two cleaning methods are used at the same time.
  • the active particles in the plasma react with the pollutants to generate volatile substances, the purpose of removing surface stains is achieved.
  • the plasma is continuously introduced through the RPS system to provide a sufficient amount of plasma.
  • the RF power supply and the matching device must be turned on after the RPS system reaches a stable state.
  • the start-up time of the RF power supply and the matching device is later than the start-up time of the RPS.
  • the purpose is to make the RF power supply work in a more stable state. When the plasma cleaning effect transmitted to the cavity by the RPS system is the best, it helps to enhance the cleaning effect and make the whole system run more stably.
  • the cleaning object also includes a carrier, which can be used to hold silicon wafers to be coated during coating. That is, when cleaning the process chamber, not only the environment in the process chamber or the inner wall of the process chamber can be cleaned, but also the components in the process chamber such as the carrier can be cleaned.
  • a carrier which can be used to hold silicon wafers to be coated during coating. That is, when cleaning the process chamber, not only the environment in the process chamber or the inner wall of the process chamber can be cleaned, but also the components in the process chamber such as the carrier can be cleaned.
  • the distance between the upper and lower plates, the power of the RF power supply and the matcher, the flow rate of the cleaning gas, and the gas pressure in the chamber can be adjusted to control the distribution range and intensity of the plasma glow.
  • the temperature of the entire process chamber can be controlled by adjusting the temperature to meet different etching effects.
  • the carrier plate holding the sample to be coated when the carrier plate holding the sample to be coated is in the process chamber, the carrier plate is grounded, the carrier plate is the lower plate, and can be in contact with the heating plate or suspended in the air.
  • the heating plate is the lower plate.
  • the purge gas may be the purge gas described above, such as Ar or the like.
  • the chamber needs to be fully purged, such as by using Ar plasma or Ar. In this way, continuing to purge after cleaning is conducive to removing corrosive particles in the chamber and preventing the subsequent coating process from being affected.
  • an embodiment of the present application further provides an application of the aforementioned method for cleaning a process chamber in a vacuum coating process equipment, wherein the vacuum coating process equipment includes a chemical vapor deposition equipment or an atomic layer deposition equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本申请公开了一种用于清洗工艺腔室的方法及其应用,属于真空镀膜生产设备技术领域。一种用于清洗工艺腔室的方法,包括:(a)启动远程等离子体***,清洗工艺气体被激发成等离子体,远程等离子体供应至工艺腔室;(b)当远程等离子体***工作达到稳定状态后,再开启工艺腔室内的射频电源***,射频电源***对位于工艺腔室中的远程等离子体再次激发增强,在清洗时间段期间使用远程等离子体***和射频电源***两者共同作用清洁工艺腔室;(c)当清洗工艺腔室完毕后,先关闭工艺腔室内的射频电源***;(d)再关闭远程等离子体***。本申请可以缓解当前清洗方式存在的刻蚀速率慢、刻蚀范围窄或不能全面覆盖的问题,可以提升清洗刻蚀效率及速率。

Description

用于清洗工艺腔室的方法及其应用 技术领域
本申请属于真空镀膜生产设备技术领域,具体涉及一种用于清洗工艺腔室的方法及其应用。
背景技术
目前,在大型等离子镀膜设备中,例如化学气相沉积(CVD)设备、等离子体增强化学气相沉积(PECVD)设备、原子层沉积(ALD)设备、等离子体增强原子层沉积(PEALD)设备或其他蚀刻、沉积设备等,其真空腔体内部和镀膜样品载板的清洁是一项必要操作,用来保证真空腔体内部的洁净度。
相关技术中,对于真空镀膜腔体的清洗,通常使用远程等离子体***(RPS)激发清洁气体成等离子体状态,经管道传送至镀膜腔体内,等离子体与腔内的膜层或颗粒杂质发生化学反应来实现。除此之外,也有些不使用RPS装置,而是利用镀膜设备比如PECVD设备本身所具有的平板电容耦合放电结构,通过改变工艺气体如NF3这类腐蚀性清洁气体,由原来的镀膜过程转化成刻蚀清洗,从而达到清洗的效果。然而,通过远程等离子体***激发产生等离子体清洁工艺腔室,在传输过程中,远程等离子体在到达工艺腔室之前发生复合现象,其降低了整体的清洁效果,而传统的平板电容耦合放电结构设备刻蚀清洗存在刻蚀速率慢,刻蚀范围窄,或者不能全面覆盖等问题。因此,在相关技术中需要一种改进的真空镀膜设备的工艺腔室的清洗方法。
发明内容
鉴于存在的上述问题,本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明提供一种用于清洗工艺腔室的方法及其应用,能够缓解当前清洗方式存在的刻蚀速率慢、刻蚀范围窄或不能全面覆盖的问题,有 助于提升清洗刻蚀效率及速率。
为了解决上述技术问题,本申请是这样实现的:
本申请实施例提供了一种用于清洗工艺腔室的方法,所述方法包括以下步骤:
(a)将清洗工艺气体通入远程等离子体***,启动远程等离子体***,气体被激发成等离子体,远程等离子体供应至工艺腔室;
(b)当远程等离子体***工作达到稳定状态后,再开启所述工艺腔室内的射频电源***,所述射频电源***对位于所述工艺腔室中所述远程等离子体再次激发增强,利用再次激发增强后的等离子体对所述工艺腔室进行清洗;并且,
在清洗时间段期间使用所述远程等离子体***和所述射频电源***两者共同作用清洁所述工艺腔室;
(c)当清洗所述工艺腔室完毕后,先关闭所述工艺腔室内的所述射频电源***;
(d)在关闭完所述射频电源***之后,再关闭所述远程等离子体***。另外,根据本申请的用于清洗工艺腔室的方法,还可以具有如下附加的技术特征:
在其中的一些实施方式中,所述清洗工艺气体包括吹扫气体和清洁气体,所述步骤(a)包括:
(a1)对远程等离子体***内腔室、气体输送管道和所述工艺腔室进行预处理,所述预处理包括利用所述吹扫气体对所述远程等离子体***的内腔室、气体输送管道和工艺腔室进行吹扫,再启动远程等离子体***;
(a2)在启动远程等离子体***之后,通入清洁气体,将经远程等离子体***激发产生的等离子体供应至工艺腔室。
在其中的一些实施方式中,所述吹扫气体包括Ar、He、N2或H2中的至少一种。
在其中的一些实施方式中,开启所述工艺腔室内的射频电源***之前,逐渐增加所述清洗工艺气体中所述清洁气体的流量,使得所述清洁气体和所述吹扫气体达到一定比值,其中,所述清洁气体的流量与所述吹扫气体的流量比例逐步增大或阶梯式增大。
在其中的一些实施方式中,所述清洁气体包括腐蚀性气体,所述腐蚀性气体包括NF3、CF4、SF6、C2F6、F2、C3F8、CHF3、HF、Cl2或HCl中的至少一种。
在其中的一些实施方式中,所述远程等离子体***包括电感线圈耦合放电结构,所述远程等离子体***采用频率为100KHz~13.56MHz的交流电源。
在其中的一些实施方式中,所述步骤(b)中,当远程等离子体***开启时间至5~150s,其工作状态达到稳定,再开启所述射频电源***。
在其中的一些实施方式中,所述射频电源***的工作参数包括:
射频电源的频率范围为2MHz~100MHz;和/或,
射频电源的功率范围为500W~90000W;和/或,
射频电源的放电间距范围为5mm~50mm;和/或,
清洁工艺腔室期间的工作气压为0.01Torr~10Torr。
在其中的一些实施方式中,所述步骤(d)进一步包括:
在关闭所述射频电源***之后,且在关闭所述远程等离子体***之前,仅通入吹扫气体,利用远程等离子体***对吹扫气体进行激发,产生等离子体,利用等离子体对工艺腔室进行吹扫。
本申请还提供了一种如前所述的用于清洗工艺腔室的方法在真空镀膜工艺设备中的应用,所述真空镀膜工艺设备包括化学气相沉积设备或原子层沉积设备。
实施本发明的技术方案,至少具有以下有益效果:
在本申请实施例中,所提供的用于清洗工艺腔室的方法,采用远程等离子体***与工艺腔室内的射频电源***相结合的方式进行清洗,并在清洗时间段 期间使用远程等离子体***和射频电源***两者共同作用清洁工艺腔室,经过远程等离子体***激发后产生的等离子体传输到工艺腔室之后,再次被射频电源***激发增强,增加了输入功率,刻蚀速率上升,增加了等离子体功率,使更多的气体分子处于激发态,电离加强,等离子体密度增加,可以全面覆盖整个等离子镀膜设备工艺腔体,进而可以大幅度提升清洗刻蚀效率及速率。同时,本发明方法限定了远程等离子体***、射频电源***的开启和关闭顺序或时限,可以保证清洗质量缩短清洗时间,提供足量的等离子体,增强清洗刻蚀效果,还可以减少或避免对腔体内器件的损坏。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1为本申请示例性的一些实施方式提供的用于清洗工艺腔室的方法的流程示意图;
图2为本申请示例性的一些实施方式提供的用于清洗工艺腔室的方法的另一流程示意图;
图3为本申请示例性的一些实施方式提供的半导体工艺设备的结构示意图。
附图标记:
100-射频电源***;200-远程等离子体***;300-上极板;400-载板;500-加热板。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
相关技术中,对于等离子体镀膜设备中工艺腔室的清洗,通常使用单一远 程等离子体源(RPS)或者单一射频电源进行清洗刻蚀,存在一定的不足之处,例如,使用单一RPS远程等离子体源***或射频电源平板放电***,对真空腔体内部刻蚀范围窄、不能全面覆盖大型等离子体镀膜腔室,而且在传输过程中,远程等离子体在到达工艺腔室之前发生复合现象,其降低了整体的清洁效果;或者,单一等离子体激发方式,清洁气体耗量加大且清洗效果不佳。此外,利用射频电源***原位激发等离子体进行清洗时,其存在刻蚀速率慢、刻蚀范围窄、不能全面覆盖等问题。因此,现有技术中的清洗方式还有待于进一步改进。
有鉴于此,本申请实施例的技术方案提供了用于清洗工艺腔室的方法及其应用。本申请实施例的技术方案有能够缓解现有的大型等离子镀膜设备中,刻蚀清洗存在的容易出现刻蚀速率慢、刻蚀范围窄、不能全面覆盖等问题。具体技术方案的描述参见下文。
请参阅图1至图3所示,在一些实施例中,提供一种用于清洗工艺腔室的方法,所述方法包括以下步骤:
(a)将清洗工艺气体通入远程等离子体***,启动远程等离子体***,气体被激发成等离子体,远程等离子体供应至工艺腔室;
(b)当远程等离子体***工作达到稳定状态后,再开启工艺腔室内的射频电源***,射频电源***对位于工艺腔室中远程等离子体再次激发增强,利用再次激发增强后的等离子体对工艺腔室进行清洗;并且,
在清洗时间段期间使用远程等离子体***和射频电源***两者共同作用清洁工艺腔室;
(c)当清洗工艺腔室完毕后,先关闭工艺腔室内的射频电源***;
(d)在关闭完射频电源***之后,再关闭远程等离子体***。
现有技术中,仅通过远程等离子体***激发产生的等离子体清洁工艺腔室,在传输过程中,远程等离子体在到达工艺腔室之前发生复合现象,即达工艺腔室之后的解离粒子数量小于远程等离子体***激发产生的解离粒子数量。因此,本实施例提供的清洗方法,采用远程等离子体源与射频电源相结合的方 式进行清洗,并同时采用远程等离子体和射频原位激发等离子体两者结合清洁工艺腔室,也即在清洗时间段期间使用远程等离子体***和射频电源***两者共同作用清洁工艺腔室,经过远程等离子体***激发后产生的等离子体传输到工艺腔室之后,再次被射频电源***激发增强,这样,在清洗刻蚀中RPS的基础上增加射频电源,增加了输入功率,刻蚀速率上升,增加了等离子体中功率,使更多的气体分子处于激发态,电离加强,等离子体密度增加,可以全面覆盖等个等离子镀膜设备工艺腔体,进而可以大幅度提升清洗刻蚀效率及速率。
相较于现有的先采用远程等离子体清洗再采用原位等离子体清洗的方式,本发明方法能够进一步提升清洗刻蚀效率及速率,缩短清洗时间,且清洗效果更佳,流程简单,方便操作。也就是,相较于现有的远程等离子体清洗和射频等离子体清洗的方式,本发明利用射频电源***对位于工艺腔室中等离子体再次激发增强,利用再次激发增强后的等离子体对工艺腔室进行清洗,这样,可以使工艺腔室内上极板和下极板之间的气体充分解离,产生等离子体放电效应,气体的解离率大幅提升,从而增强刻蚀效果,增加整个腔室的清洁效果;并且,在清洗时间段期间使用远程等离子体***和射频电源***两者共同作用清洁工艺腔室,由于等离子体中活性粒子与污染物反应生成易挥发性的物质,从而达到去除表面污渍的目的,为保证清洗质量缩短清洗时间,继续通过远程等离子体***通入等离子体,可以提供足量的等离子体,进而提高清洗效率,提升清洗效果。
同时,本发明方法限定了远程等离子体***、射频电源***的开启和关闭顺序或时限,详细来讲:先启动远程等离子体***,当远程等离子体***工作达到稳定状态后,再开启射频电源***,这样通过使射频电源***的启动时间,晚于RPS启动的时间,目的是让射频电源工作在更稳定的状态,RPS***传送至工艺腔室内的等离子体清洁效果最佳的时候,从而有助于增强清洗刻蚀效果,提高清洗刻蚀效率。进一步,在清洗结束后,先关闭工艺腔室内的射频电源***,再关闭RPS***,这样可以防止RPS关闭后,腔内气体氛围变化, 射频电源参数不稳,容易损坏射频电源及匹配器***,或者也可能造成腔体内部异常放电,损坏腔内配件的现象发生,安全性好,稳定性佳。
值得注意的是,本实施例中,通过使当远程等离子体***工作达到稳定状态后,再开启所述工艺腔室内的射频电源***,不仅能使射频电源***在更稳定的状态进行工作,减少或避免射频电源的不稳定现象,而且能使远程等离子体***传送至工艺腔室内的等离子体清洁效果最佳,提高了远程等离子体的清洁效果,从而极大的增强了清洗刻蚀效果。可选的,射频电源***包括射频电源和匹配器。该射频电源***的具体结构及工作原理可以参照现有技术,本发明实施例对此不作限定。
需要说明的是,本实施例的清洗方法可以应用在光伏生产设备或半导体器件生产设备等领域,如应用在大型等离子真空镀膜设备中,用于对真空镀膜设备中的工艺腔室进行清洗。如,该真空镀膜设备可以为化学气相沉积(CVD)设备、原子层沉积(ALD)设备等,本实施例对此不作限定,进一步,CVD设备可以包括等离子体增强化学气相沉积(PECVD)设备或常压化学气相沉积设备等,ALD设备可以包括等离子体增强原子层沉积(PEALD)设备等。基于镀膜设备的类型,可选的,所述工艺腔室可用于执行CVD,或者用于执行PECVD,或者用于执行ALD等。可选的,所述工艺腔室为等离子体反应腔体。
为了简洁,下面主要以镀膜设备为PECVD镀膜设备为例,对本发明的用于清洗工艺腔室的方法进行详细说明,然而,应当理解的是,将该方法应用于其他相关设备时,具有相同或类似的原理,在此不再赘述。
如图3所示,PECVD镀膜设备包括工艺腔室、射频电源***100和远程等离子体***200,其中工艺腔室内设有射频电源***100,远程等离子体***200与工艺腔室相连通,或者远程等离子体***200与工艺腔室和射频电源***100耦接。
可选的,PECVD镀膜设备还包括上极板300、载板400和加热板500,其中载板400或加热板500可以作为下极板,该上极板300、载板400和加热板 500均设于工艺腔室内。可选的,上极板300可以包括引入和分配工艺气体和清洁气体的喷头。或者,上极板300可以包括导电板,并且工艺气体可以以另一种方式引入。
可选的,射频电源***100生成并输出RF功率到上极板300和下极板中的一个,上极板300和下极板中的另一个可以是DC接地、AC接地或浮动。
可选的,远程等离子体***200的输入端连接气体输入管路,远程等离子体***200的输出端连接工艺腔室,该气体输入管路可用于输送清洁气体或吹扫气体。
参考上述PECVD镀膜设备,下面将对本发明实施例的用于清洗工艺腔室的方法进行详细说明。
在一些具体的实施例中,如图1或图2所示,用于清洗工艺腔室的方法,包括以下步骤:
(a)将清洗工艺气体通入远程等离子体***,启动远程等离子体***,气体被激发成等离子体,远程等离子体供应至工艺腔室。
具体的,步骤(a)包括:
(a1)对远程等离子体***内腔室、气体输送管道和工艺腔室进行预处理,预处理包括利用吹扫气体对远程等离子体***的内腔室、气体输送管道和工艺腔室进行吹扫,再启动远程等离子体***。
可选的,所述吹扫气体包括Ar、He、N2或H2中的至少一种,例如,吹扫气体可以为Ar,可以为He,可以为N2,可以为H2等。较佳的,吹扫气体采用Ar,这样来源广泛,成本较低,且可以获得更佳的吹扫效果。
此外,在其他实施方式中,在满足实际的工艺需求的情况下,还可以采用其他类型的气体作为吹扫气体,在此不再一一列举。
可选的,所述远程等离子体***连接气体输送管路,所述吹扫气体通过气体输送管路和未工作的所述远程等离子体***供应至所述工艺腔室中。通过向气体输送管路中提供吹扫气体如Ar,并使吹扫气体经由气体输送管路和未工作 的远程等离子体***进入至工艺腔室内,以对工艺腔室进行充分吹扫。
在对工艺腔室进行刻蚀清洗之前,需要充分吹扫腔室,通常采用Ar作为吹扫气体,吹扫气体可通过未工作的远程等离子体***流入工艺腔体内。如此,充分对工艺腔室内气体进行置换,减少或避免对后续清洗刻蚀过程的影响,以保证刻蚀清洗效果。
(a2)在启动远程等离子体***之后,通入清洁气体,将经远程等离子体***激发产生的等离子体供应至工艺腔室。
向远程等离子体***供应清洁气体,如通过气体输送管路向远程等离子体***供应清洁气体;启动远程等离子体***,能够激发流经的清洁气体(也称清洗气体)成为等离子体状态,等离子体清洁气体进入腔体,也即向工艺腔室供应RPS等离子体。
可选的,在启动所述远程等离子体***时,所述气体输送管路内具有所述吹扫气体;在清洁所述工艺腔室过程中,逐渐向所述气体输送管路中输入清洁气体。
可选的,在清洁所述工艺腔室过程中,逐渐增加所述清洁气体的流量,且所述清洁气体的流量与所述吹扫气体的流量比例逐步增大或阶梯式增大。
本实施例中,开启所述工艺腔室内的射频电源***之前,逐渐增加所述清洗工艺气体中所述清洁气体的流量,使得所述清洁气体和所述吹扫气体达到一定比值,其中,所述清洁气体的流量与所述吹扫气体的流量比例逐步增大或阶梯式增大。在远程等离子体***启动时,需要利用吹扫气体进行激发,如果直接将吹扫气体切换成清洁气体,通入到远程等离子体***中的清洁气体不能激发且容易损伤设备。
本实施例中,在远程等离子体***启动时,气体输送管道内为吹扫气体如Ar。如,在启动远程等离子体***之前,通过气体输送管道和未工作的远程等离子体***输送Ar使其进入工艺腔室进行吹扫,在吹扫完成后,气体输送管路中可保留至少部分Ar,以使在远程等离子体开启时气体输送管道中具有Ar。 进一步,在清洁过程中,可以向气体输送管路中慢慢供应清洁气体如含F元素的腐蚀性气体,并且,随着清洁过程的不断进行,清洁气体如含F元素的腐蚀性气体与吹扫气体如Ar的流量比例逐步增大或阶梯式增大,并在一定时间后,使气体输送管路中完全为清洁气体。如此,在RPS***启动的初始阶段保留部分Ar,可以提高清洁气体如含F元素的腐蚀性气体电离的稳定性,减少或避免清洁气体的损失,安全、可靠,稳定性好。
可选的,所述清洁气体包括含F的腐蚀性气体,所述含F的腐蚀性气体包括NF3、CF4、SF6、C2F6、F2、C3F8、CHF3、HF中的至少一种;此外,清洁气体并不限于含F的腐蚀性气体,而是还可以采用其他类型的腐蚀性气体,如Cl2、HCl等。示例性的,腐蚀性气体可以为NF3,可以为CF4,可以为SF6,可以为C2F6,可以为F2,可以为C3F8,可以为CHF3,可以为HF,可以为Cl2,可以为HCl,可以为上述气体中的任意两种或两种以上的混合物。通过采用上述几种腐蚀性气体尤其是含F的腐蚀性气体作为清洁气体,来源广泛,成本较低,并有助于获得更佳的清洁效果。
可选的,所述远程等离子体***包括电感线圈耦合放电结构的远程等离子体源。可选的,所述远程等离子体***采用频率为100KHz~13.56MHz的交流电源。也即,RPS采用电感线圈耦合放电结构,RPS电源采用频率为100KHz~13.56MHz的交流电源。
(b)当远程等离子体***工作达到稳定状态后,再开启工艺腔室内的射频电源***,在工艺腔室中激励原位等离子体,射频电源***对位于工艺腔室中等离子体再次激发增强,利用再次激发增强后的等离子体对工艺腔室进行清洗;并且,在清洗时间段期间使用所述远程等离子体***和所述射频电源***两者共同作用清洁所述工艺腔室。
本实施例中,清洗过程前需根据情况设置合适的工作气压,气体流量,清洗时间,射频电源功率,放电间距,RPS***启动后射频电源开启的延时时间。
可选的,步骤(b)中,当远程等离子体***开启时间达到5~150s(例如 可以为5s、6s、7s、8s、9s、10s、30s、50s、100s、120s、150s等),其工作状态达到稳定,再开启射频电源***。可以根据远程等离子体***开启的时间,来判断远程等离子体***是否达到稳定的工作状态,例如,在远程等离子体***开启时间达到5s至150s后,认为远程等离子体***达到了稳定的工作状态。当然,在其他实施方式中,还可以采用其他的方式来判断远程等离子体***是否达到稳定的工作状态。
当远程等离子体***工作达到稳定状态后,再开启射频电源***,远程等离子体***可以向工艺腔室供应远程等离子体,射频电源位于工艺腔室内,远程等离子体传输到工艺腔室内经射频电源***再次激发增强,从而同时利用远程等离子体***和射频电源***来清洁工艺腔室。这样,不仅能使射频电源***在更稳定的状态进行工作,减少或避免射频电源的不稳定现象,而且能使远程等离子体***传送至工艺腔室内的等离子体清洁效果最佳,从而极大的增强了清洗刻蚀效果。
可选的,射频电源的频率范围为2MHz~100MHz。可选的,射频电源的频率范围为5~80MHz。可选的,射频电源的频率范围为10~50MHz。在一些示例中,射频电源***可以以2MHz、5MHz、10MHz、13.56MHz、20MHz、28.5MHz、43.2MHz、50MHz、75MHz、80MHz、100MHz等频率运行,但也可以使用其他频率。
可选的,射频电源的功率范围为500W~90000W。可选的,射频电源的功率为800W~60000W。可选的,射频电源的功率为1000W~20000W。例如,射频电源的功率可以为500W、800W、1000W、2000W、5000W、8000W、10000W、20000W、50000W、80000W等,但是也可以使用其他RF功率水平。
可选的,射频电源的放电间距范围为5mm~50mm。可选的,射频电源的放电间距为8mm~30mm。可选的,射频电源的放电间距范围为10mm~20mm。在一些示例中,射频电源的放电间距可以为5mm、8mm、10mm、15mm、20mm、25mm、30mm、40mm、50mm等,但也可以使用其他放电间距。
可选的,清洁工艺腔室期间的工作气压为0.01Torr~10Torr。可选的,清洁工艺腔室期间的工作气压为0.1Torr~8Torr。可选的,清洁工艺腔室期间的工作气压为0.5Torr~5.5Torr。例如,清洁工艺腔室期间的工作气压为0.01Torr、0.1Torr、0.3Torr、0.5Torr、1Torr、2Torr、5Torr、8Torr、10Torr等。
由此,基于以上设置,在等离子体源稳定后再开启射频电源及匹配器,可以使上极板和下极板之间的气体充分解离,产生等离子体放电效应,气体的解离率大幅提升,从而增强刻蚀效果,增加整个腔室的清洁效果;其中,两种清洗方式同时使用。由于等离子体中活性粒子与污染物反应生成易挥发性的物质,从而达到去除表面污渍的目的,为保证清洗质量缩短清洗时间,继续通过RPS***通入等离子体,提供足量的等离子体。
值得注意的是,射频电源及匹配器的开启必须在RPS***工作达到稳定状态后再进行开启。射频电源和匹配器的启动时间,晚于RPS的启动时间,目的是让射频电源工作在更稳定的状态,RPS***传送至腔内的等离子体清洁效果最佳之时,有助于增强清洁效果,使整个***更稳定的运行。
可选的,清洁对象还包括载板,载板在镀膜时可用于盛放待镀膜硅片。也就是,在清洁工艺腔室时,不仅可以清洁工艺腔室内的环境或工艺腔室内壁,还可以清洁工艺腔室内的部件如载板等。
可选的,可调节上极板与下极板的间距、射频电源及匹配器的功率、清洗气体的流量、腔内气压来控制等离子体辉光分布范围和强度,可通过调节温度来控制整个工艺腔室的温度,以满足不同的刻蚀效果。
可选的,当盛放待镀膜样品的载板在工艺腔室内时,载板接地,载板即为所述下极板,可以与加热板接触,可以悬空。当载板不在工艺腔室内时,所述热板即为所述下极板。
(c)当清洗工艺腔室完毕后,先关闭工艺腔室内的所述射频电源***。
(d)在关闭所述射频电源***之后,在关闭所述远程等离子体***之前,仅通入吹扫气体,利用远程等离子体***对吹扫气体进行激发,产生等离子体, 利用等离子体对工艺腔室进行吹扫,最后再关闭所述远程等离子体***。
可选的,吹扫气体可以为如前所述的吹扫气体比如Ar等。
本实施例中,在清洗完工艺腔室之后,还需要对腔室充分吹扫,如可以采用Ar等离子体或Ar进行吹扫。这样,在清洗后继续进行吹扫,有利于带走腔内的腐蚀性粒子,防止对后续镀膜工艺产生影响。
值得注意的是,当腐蚀清洗结束,需要先关闭工艺腔室内的射频电源,再关闭RPS***。且关闭RPS***后,继续通入Ar一段时间后再停止清洗工艺。一方面,在操作时,不应该先关闭RPS***,再关闭射频***,这是为了防止RPS关闭后,腔内气体氛围变化,射频电源参数不稳,容易损坏射频电源及匹配器***,也可能造成腔体内部异常放电,损坏腔内配件。另一方面,关闭RPS***后,继续通入一段时间Ar,其作用是采用Ar等离子体或Ar对腔室充分吹扫,以去除残留的腐蚀性粒子,避免对后续镀膜工艺造成影响。
基于同一发明构思,本申请实施例还提供一种如前述的用于清洗工艺腔室的方法在真空镀膜工艺设备中的应用,所述真空镀膜工艺设备包括化学气相沉积设备或原子层沉积设备。
应理解,本实施例的用于清洗工艺腔室的方法在真空镀膜工艺设备中的应用与前述的用于清洗工艺腔室的方法是基于同一发明构思的,因而至少具有用于清洗工艺腔室的方法的所有特征及优势,在此不再赘述。
本发明说明书中未详细说明部分为本领域技术人员公知技术。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种用于清洗工艺腔室的方法,其特征在于,所述方法包括以下步骤:
    (a)将清洗工艺气体通入远程等离子体***,启动远程等离子体***,气体被激发成等离子体,远程等离子体供应至工艺腔室;
    (b)当远程等离子体***工作达到稳定状态后,再开启所述工艺腔室内的射频电源***,所述射频电源***对位于所述工艺腔室中所述远程等离子体再次激发增强,利用再次激发增强后的等离子体对所述工艺腔室进行清洗;并且,
    在清洗时间段期间使用所述远程等离子体***和所述射频电源***两者共同作用清洁所述工艺腔室;
    (c)当清洗所述工艺腔室完毕后,先关闭所述工艺腔室内的所述射频电源***;
    (d)在关闭完所述射频电源***之后,再关闭所述远程等离子体***。
  2. 根据权利要求1所述的用于清洗工艺腔室的方法,其特征在于,所述清洗工艺气体包括吹扫气体和清洁气体,所述步骤(a)包括:
    (a1)对远程等离子体***内腔室、气体输送管道和所述工艺腔室进行预处理,所述预处理包括利用所述吹扫气体对所述远程等离子体***的内腔室、气体输送管道和工艺腔室进行吹扫,再启动远程等离子体***;
    (a2)在启动远程等离子体***之后,通入清洁气体,将经远程等离子体***激发产生的等离子体供应至工艺腔室。
  3. 根据权利要求2所述的用于清洗工艺腔室的方法,其特征在于,所述吹扫气体包括Ar、He、N2或H2中的至少一种。
  4. 根据权利要求2所述的用于清洗工艺腔室的方法,其特征在于,开启所述工艺腔室内的射频电源***之前,逐渐增加所述清洗工艺气体中所述清洁气体的流量,使得所述清洁气体和所述吹扫气体达到一定比值,其中,所述清洁气体的流量与所述吹扫气体的流量比例逐步增大或阶梯式增大。
  5. 根据权利要求2所述的用于清洗工艺腔室的方法,其特征在于,所述清洁气体包括腐蚀性气体,所述腐蚀性气体包括NF3、CF4、SF6、C2F6、F2、C3F8、CHF3、HF、Cl2或HCl中的至少一种。
  6. 根据权利要求1所述的用于清洗工艺腔室的方法,其特征在于,所述远程等离子体***包括电感线圈耦合放电结构,所述远程等离子体***采用频率为100KHz~13.56MHz的交流电源。
  7. 根据权利要求1所述的用于清洗工艺腔室的方法,其特征在于,所述步骤(b)中,当远程等离子体***开启时间至5~150s,其工作状态达到稳定,再开启所述射频电源***。
  8. 根据权利要求1至7任一项所述的用于清洗工艺腔室的方法,其特征在于,所述射频电源***的工作参数包括:
    射频电源的频率范围为2MHz~100MHz;和/或,
    射频电源的功率范围为500W~90000W;和/或,
    射频电源的放电间距范围为5mm~50mm;和/或,
    清洁工艺腔室期间的工作气压为0.01Torr~10Torr。
  9. 根据权利要求1至7任一项所述的用于清洗工艺腔室的方法,其特征在于,所述步骤(d)进一步包括:
    在关闭所述射频电源***之后,且在关闭所述远程等离子体***之前,仅通入吹扫气体,利用远程等离子体***对吹扫气体进行激发,产生等离子体,利用等离子体对工艺腔室进行吹扫。
  10. 如权利要求1至9任一项所述的用于清洗工艺腔室的方法在真空镀膜工艺设备中的应用,其特征在于,所述真空镀膜工艺设备包括化学气相沉积设备或原子层沉积设备。
PCT/CN2023/080573 2022-11-24 2023-03-09 用于清洗工艺腔室的方法及其应用 WO2024108808A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211482170.9A CN115786879A (zh) 2022-11-24 2022-11-24 用于清洗工艺腔室的方法及其应用
CN202211482170.9 2022-11-24

Publications (1)

Publication Number Publication Date
WO2024108808A1 true WO2024108808A1 (zh) 2024-05-30

Family

ID=85441040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080573 WO2024108808A1 (zh) 2022-11-24 2023-03-09 用于清洗工艺腔室的方法及其应用

Country Status (2)

Country Link
CN (1) CN115786879A (zh)
WO (1) WO2024108808A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030192568A1 (en) * 2002-04-12 2003-10-16 Applied Materials, Inc. Method for cleaning a process chamber
US8591659B1 (en) * 2009-01-16 2013-11-26 Novellus Systems, Inc. Plasma clean method for deposition chamber
CN109868458A (zh) * 2017-12-05 2019-06-11 北京北方华创微电子装备有限公司 一种半导体设备的清洗***及清洗方法
CN110537241A (zh) * 2017-04-21 2019-12-03 朗姆研究公司 使用同时存在的原位和远程等离子体源进行快速室清洁
CN110894595A (zh) * 2018-09-13 2020-03-20 北京北方华创微电子装备有限公司 气相沉积设备及其清洗方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030192568A1 (en) * 2002-04-12 2003-10-16 Applied Materials, Inc. Method for cleaning a process chamber
US8591659B1 (en) * 2009-01-16 2013-11-26 Novellus Systems, Inc. Plasma clean method for deposition chamber
CN110537241A (zh) * 2017-04-21 2019-12-03 朗姆研究公司 使用同时存在的原位和远程等离子体源进行快速室清洁
CN109868458A (zh) * 2017-12-05 2019-06-11 北京北方华创微电子装备有限公司 一种半导体设备的清洗***及清洗方法
CN110894595A (zh) * 2018-09-13 2020-03-20 北京北方华创微电子装备有限公司 气相沉积设备及其清洗方法

Also Published As

Publication number Publication date
CN115786879A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
US6880561B2 (en) Fluorine process for cleaning semiconductor process chamber
KR100855597B1 (ko) 육불화황 원격 플라즈마 소스 세정
US7435684B1 (en) Resolving of fluorine loading effect in the vacuum chamber
US5882424A (en) Plasma cleaning of a CVD or etch reactor using a low or mixed frequency excitation field
JP4264479B2 (ja) Cvd装置のクリーニング方法
JP2003264186A (ja) Cvd装置処理室のクリーニング方法
US20070107750A1 (en) Method of using NF3 for removing surface deposits from the interior of chemical vapor deposition chambers
WO2016014136A1 (en) Conditioning remote plasma source for enhanced performance having repeatable etch and deposition rates
CN109868458B (zh) 一种半导体设备的清洗***及清洗方法
WO2005001920A1 (ja) プラズマ発生方法、クリーニング方法および基板処理方法
JP2007043205A (ja) Cvdチャンバのクリーニング方法
JPH08241865A (ja) プラズマcvd装置及びその場クリーニング後処理方法
CN100385623C (zh) Cvd设备以及使用cvd设备清洗cvd设备的方法
US20070074662A1 (en) Plasma processing apparatus for forming film containing carbons on object to be deposited
JP4555410B2 (ja) 半導体上に酸化膜を形成する装置及び方法
CN111069192A (zh) 原位清洗装置和半导体处理设备
JPH03120368A (ja) 化学的蒸着装置の洗浄方法
CN101764044A (zh) 等离子装置工艺腔预处理的方法
WO2024108808A1 (zh) 用于清洗工艺腔室的方法及其应用
JP4801709B2 (ja) Cvd装置を用いた成膜方法
JP2013541187A (ja) 分子状フッ素を用いる化学気相成長チャンバのクリーニング
JPH07201738A (ja) 薄膜形成前処理方法および薄膜形成方法
CN101333666B (zh) 等离子产生方法、清洗方法以及衬底处理方法
KR20040069420A (ko) 박막 증착 장치의 챔버 세정방법
US20060054183A1 (en) Method to reduce plasma damage during cleaning of semiconductor wafer processing chamber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23892918

Country of ref document: EP

Kind code of ref document: A1