WO2024108335A1 - 热管理部件、箱体、电池及用电设备 - Google Patents

热管理部件、箱体、电池及用电设备 Download PDF

Info

Publication number
WO2024108335A1
WO2024108335A1 PCT/CN2022/133241 CN2022133241W WO2024108335A1 WO 2024108335 A1 WO2024108335 A1 WO 2024108335A1 CN 2022133241 W CN2022133241 W CN 2022133241W WO 2024108335 A1 WO2024108335 A1 WO 2024108335A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
flow guide
guide
along
battery cell
Prior art date
Application number
PCT/CN2022/133241
Other languages
English (en)
French (fr)
Inventor
黄银成
李嘉琦
游凯杰
刘琛
沈圳
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/133241 priority Critical patent/WO2024108335A1/zh
Publication of WO2024108335A1 publication Critical patent/WO2024108335A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a thermal management component, a housing, a battery and an electrical device.
  • Vehicles use secondary batteries, such as lithium-ion batteries, sodium-ion batteries, solid-state batteries, etc., which have outstanding advantages such as high energy density and good cycle performance, and are widely used in portable electronic devices, electric vehicles, electric tools, drones, energy storage equipment, etc. With the widespread use of batteries, people have also put forward higher and higher requirements for the energy density of batteries.
  • secondary batteries such as lithium-ion batteries, sodium-ion batteries, solid-state batteries, etc.
  • the embodiments of the present application provide a thermal management component, a housing, a battery, and an electrical device to improve the energy density of the battery.
  • an embodiment of the present application provides a thermal management component, comprising a plurality of first flow guides and at least one second flow guide; the plurality of first flow guides are arranged at intervals along the thickness direction of the first flow guides, a gap for accommodating a battery cell is formed between two adjacent first flow guides, and a first flow channel for accommodating a fluid medium is formed inside each of the first flow guides; the at least one second flow guide is connected to each of the first flow guides, a second flow channel for accommodating a fluid medium is formed inside the second flow guide, and the second flow channel is connected to each of the first flow channels; wherein a length direction of the second flow guide is parallel to a thickness direction of the first flow guide, a surface of the second flow guide along its thickness direction is connected to the first flow guide, and along the thickness direction of the second flow guide, a distance between a surface of the second flow guide farthest from the battery cell and a surface of the outer shell of the battery cell closest to the second flow guide is L, and a cross-sectional area of
  • L/S is less than 0.0074
  • the size of the second flow guide 222 in at least one direction other than the thickness direction reaches the upper limit of the internal space size of the box body 21, and L/S cannot be less than 0.0074
  • L/S is greater than 0.154
  • the size of the overall structure formed by the battery cell and the thermal management component along the thickness direction of the second flow guide is larger.
  • the cross-sectional area S of the second flow channel is constant, the size of the second flow guide in the thickness direction is larger, resulting in that the space inside the box body of the battery with the thermal management component cannot be filled in the space in the thickness direction of the second flow guide.
  • the space inside the box body of the battery with the thermal management component is fully utilized to accommodate battery cells, and the internal space utilization rate of the box body of the battery with the thermal management component is lower than that in the case where the second body guide is a round tube or a square tube, and the wall thickness and the cross-sectional area of the flow channel are the same as those of the second body guide of the present application.
  • the space inside the box body of the battery with the thermal management component is fully utilized to accommodate battery cells, thereby improving the internal space utilization rate of the box body of the battery, and is beneficial to improving the energy density of the battery with the thermal management component.
  • 0.0094 ⁇ L/S ⁇ 0.032 can not only be beneficial to fully utilize the space in the box body of the battery with the thermal management component to accommodate battery cells, increase the internal space utilization rate of the battery box body, and help improve the energy density of the battery with the thermal management component, but also make the heat exchange efficiency of the thermal management component with the second fluid conductor higher, thereby meeting the fast charging rate requirements of the battery.
  • At least one end of the first flow guide along its length direction is connected to the second flow guide.
  • At least one end of the first flow guide along its length direction is connected to the second flow guide, which is conducive to the fluid medium flowing from the second flow channel into the first flow channel along the length direction of the first flow guide, so that the fluid medium can fully exchange heat with the battery cell, improve the heat exchange efficiency, and make the temperature of the battery cell along the length direction of the first flow guide more uniform.
  • both ends of the first flow guide along the length direction are connected to the second flow guide.
  • the first flow guide is connected to the second flow guide at both ends along its length direction, so that the fluid medium can flow from one end of the first flow channel to the other end, so that the fluid medium can fully exchange heat with the battery cell, improve the heat exchange efficiency, and make the temperature of the battery cell along the length direction of the first flow guide more uniform.
  • the first flow guide is connected to the second flow guide on at least one side along the width direction of the first flow guide.
  • the first flow guide is connected to the second flow guide on at least one side along its width direction, which can alleviate the problem of the large size of the thermal management component in the length direction of the first flow guide, thereby facilitating the reasonable and full utilization of the internal space of the battery box body equipped with the thermal management component.
  • the thermal management component includes two second body guides, and the two second body guides are arranged at an interval on the same side of the first body guide along the width direction of the first body guide.
  • the two second flow guides are connected to the same side of the first flow guide along its width direction, which can alleviate the problem of the thermal management component being larger in the width direction of the first flow guide due to connecting the second flow guide to the first flow guide along its width direction.
  • the thermal management component includes two second-body guides, and along the length direction of the first body guide, the two second-body guides are arranged at intervals from the first body guide; the thermal management component also includes a first connecting member and a second connecting member, the first connecting member and the second connecting member respectively connect the two second-body guides, a medium inlet channel is formed inside the first connecting member, and a medium outflow channel is formed inside the second connecting member, and the medium inlet channel and the medium outflow channel are respectively connected to the second flow channels of the two second-body guides.
  • the first connecting member is arranged to provide fluid medium to a second flow channel, and to synchronously provide fluid medium to each first flow channel through the second flow channel.
  • the arrangement of the second connecting member facilitates the fluid medium in each first flow channel to be collected in the second flow channel and then discharged from the medium outflow channel, so that the fluid medium can continuously flow in the first flow channel and the second flow channel, thereby improving the heat exchange efficiency with the battery cell.
  • the first connecting member is connected to one end of one of the two second flow guides along its length direction, and the first connecting member is perpendicular to the second flow guide;
  • the second connecting member is connected to the other end of the two second flow guides along its length direction, and the second connecting member is perpendicular to the second flow guide.
  • the first connector is connected to one end of one of the two second flow guides along its length direction, which is conducive to the fluid medium entering the first flow channel and flowing to the other end of the first flow channel along the length direction of the first flow guide, so that the fluid medium can be distributed to each first flow channel, thereby fully exchanging heat with the battery cell.
  • the first connector is perpendicular to the second flow guide, reducing the risk of interference between the first connector and the second flow guide.
  • the second connector is connected to one end of the other of the two second flow guides along its length direction, which is conducive to the fluid medium in each first flow channel being collected in the second flow channel and then discharged from the medium outflow channel.
  • the second connector is perpendicular to the second flow guide, reducing the risk of interference between the second connector and the second flow guide.
  • the thermal management component further includes a third connector, and the first connector and the second connector are connected via the third connector.
  • the first connecting member and the second connecting member are connected by the third connecting member, which can restrain the first connecting member and the second connecting member, which is beneficial for the first connecting member and the second connecting member to maintain a stable relative position relationship, thereby maintaining a relatively stable position relationship between the two second flow guides.
  • an embodiment of the present application provides a box body, comprising a box body and a thermal management component provided by any embodiment of the first aspect, wherein the box body is formed with a accommodating space, and the thermal management component is accommodated in the accommodating space.
  • the internal space of the box body of the box body equipped with the thermal management component is fully utilized to accommodate the battery cell, thereby improving the internal space utilization rate of the box body, which is beneficial to improving the energy density of the battery in the box body.
  • the box body along the width direction of the first flow guide, has a wall portion arranged opposite to the second flow guide, the second flow guide is arranged on the side of the first flow guide facing the wall portion, and the wall portion is provided with a accommodating portion for accommodating the second flow guide.
  • the wall portion is provided with a accommodating portion for accommodating the second flow conductor, and the second flow conductor can be embedded in the wall portion, which can reduce the occupation of the internal space of the box body by the second flow conductor, that is, save the internal space of the box body, and the interior of the box body can have more space for accommodating battery cells, which is beneficial to improve the energy density of the battery equipped with the box body.
  • an embodiment of the present application provides a battery, comprising a battery cell and the box body provided by any embodiment of the second aspect, wherein the battery cell is accommodated in the gap.
  • the internal space of the battery box body can be fully utilized by the thermal management components and the battery cells, thereby improving the utilization rate of the internal space of the box body, which is beneficial to improving the heat exchange efficiency and the energy density of the battery.
  • At least one end of the first current guide along the length direction is connected to the second current guide; along the width direction of the second current guide, the second current guide covers at least a portion of the battery cell.
  • the second flow guide covers at least part of the battery cell, so that the fluid medium in the second flow guide can also exchange heat with the battery cell, thereby regulating the temperature of the battery cell and improving the temperature regulation efficiency.
  • the second current guide covers all of the battery cells.
  • the second current guide covers the entire battery cell, so that the contact area between the first current guide and the battery cell is larger, which can increase the heat exchange area to improve the heat exchange efficiency, thereby improving the temperature regulation efficiency.
  • the battery cell has an electrode terminal, and along the width direction of the first current conductor, the electrode terminal is located on a side of the battery cell away from the second current conductor.
  • the electrode terminal is located on the side of the battery cell away from the second current guide, which can avoid the risk of interference between the second current guide and the installation position of structures such as the conduit component and the circuit board.
  • the battery cell has an electrode terminal, and along the width direction of the first current conductor, the electrode terminal is located on a side of the battery cell facing the second current conductor.
  • the electrode terminal is located on the side of the battery cell facing the second current guide, which can alleviate the problem that the overall structure formed by the thermal management component and the battery cell is large in the width direction of the first current guide due to the second current guide being connected to the first current guide along its width direction. And the temperature of other structures of the battery arranged on the electrode terminal side can be adjusted.
  • an embodiment of the present application provides an electrical device, comprising the battery provided in any embodiment of the third aspect.
  • FIG1 is a schematic diagram of the structure of a battery in the related art
  • FIG2 is a cross-sectional view of a battery in the related art
  • FIG3 is a schematic diagram of the structure of a vehicle provided in some embodiments of the present application.
  • FIG4 is an exploded view of a battery provided in some embodiments of the present application.
  • FIG5 is an exploded view of a battery cell provided in some embodiments of the present application.
  • FIG6 is an exploded view of a thermal management component provided in some embodiments of the present application.
  • FIG7 is an exploded view of a thermal management component provided in some other embodiments of the present application.
  • FIG8 is a schematic diagram of the volume length, width and height of the box body
  • FIG9 is a schematic diagram of the assembled thermal management component in FIG6 ;
  • FIG10 is a schematic diagram of the assembled thermal management component in FIG7 ;
  • FIG11 is a schematic diagram of the structure of a thermal management component provided in some other embodiments of the present application.
  • FIG12 is a schematic diagram of the structure of a thermal management component provided in some other embodiments of the present application.
  • FIG13 is a partial cross-sectional view of a box provided in some embodiments of the present application.
  • FIG14 is an exploded view of batteries provided in yet other embodiments of the present application.
  • FIG15 is an enlarged view of point A in FIG4 ;
  • FIG16 is an exploded view of batteries provided in some other embodiments of the present application.
  • FIG17 is a schematic diagram showing that the second current conductor is disposed on a side of the battery cell away from the electrode terminal;
  • FIG18 is a partial cross-sectional view of the battery shown in FIG14;
  • FIG19 is an exploded view of a battery provided in some other embodiments of the present application.
  • FIG. 20 is a schematic diagram showing that the second current conductor is disposed on the side of the battery cell facing the electrode terminal.
  • Icons 1000-vehicle; 100', 100-battery; 10', 10-battery cell; 11-end cover; 12-housing; 121-opening; 13-electrode assembly; 14-electrode terminal; 15-pressure relief mechanism; 20-box; 21', 21-box body; 211-first part; 212-second part; 213-wall; 214-accommodating part; 22', 22-thermal management component; 221', 221-first flow guide; 2211-first connecting part; 222' , 222-second fluid guide; 2221-second connecting part; 223-first connecting piece; 224-second connecting piece; 225-first adapter; 226-second adapter; 227-third connecting piece; 200-controller; 300-motor; X1-thickness direction of the first fluid guide; Y1-length direction of the first fluid guide; Z1-width direction of the first fluid guide; X2-thickness direction of the second fluid guide; Y2-length direction of the second fluid
  • the indicated orientation or positional relationship is based on the orientation or positional relationship shown in the accompanying drawings, or the orientation or positional relationship in which the product of the application is usually placed when in use, or the orientation or positional relationship commonly understood by those skilled in the art, which is only for the convenience of describing the present application and simplifying the description, and does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation on the present application.
  • the terms “first”, “second”, “third”, etc. are only used to distinguish the description and cannot be understood as indicating or implying relative importance.
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but also widely used in electric vehicles such as electric bicycles, electric motorcycles, electric cars, as well as military equipment and aerospace and other fields. With the continuous expansion of the application field of power batteries, the market demand is also constantly expanding.
  • the thermal management component 22 ′ of the battery 100 ′ includes a plurality of first flow guides 221 ′ and at least one second flow guide 222 ′; the plurality of first flow guides 221 ′ are arranged at intervals along the thickness direction X1 of the first flow guide, and a gap for accommodating the battery cell 10 ′ is formed between two adjacent first flow guides 221 ′, and a first flow channel for accommodating the fluid medium is formed inside each first flow guide 221 ′; the second flow guide 222 ′ connects each first flow guide 221 ′, and a second flow channel for accommodating the fluid medium is formed inside the second flow guide 222 ′, and the second flow channel is connected to each first flow channel, and the length direction Y2 of the second flow guide is parallel to the thickness direction X1 of the first flow guide, and a surface of the second flow guide 222 ′ along its thickness direction is connected to the first flow guide 221 ′.
  • the fluid medium can enter the second flow channel and then be distributed from the second flow channel to each first flow channel.
  • the existing second body guide 222' is a cubic tube or a circular tube.
  • FIG. 2 shows the case where the second body guide 222' is a circular tube. Then, the width and thickness of the second body guide 222' are the same. Under the condition that the second body guide 222' has sufficient flow, the space between the wall of the box body 21' of the battery 100' and the battery cell 10' along the width direction Z2 of the second body guide is not fully utilized.
  • the second body guide 222' occupies too much space between the wall of the box body 21' of the battery 100' and the battery cell 10' along the thickness direction X2 thereof, so that the internal space of the box body 21' has no more space to accommodate the battery cell 10 in the thickness direction X2 of the second body guide, which is not conducive to improving the energy density of the battery 100'.
  • the inventors have designed a thermal management component after in-depth research.
  • the distance between the surface of the second body guide farthest from the battery cell and the surface of the battery cell shell closest to the second body guide is L
  • the cross-sectional area of the second flow channel is S
  • 0.0074 ⁇ L/S ⁇ 0.154 is 0.0074 ⁇ L/S ⁇ 0.154.
  • the dimension of the second body 222 in at least one direction other than its thickness direction reaches the upper limit of the internal space dimension of the box body 21, and L/S cannot be less than 0.0074; if L/S>0.154, the dimension of the overall structure formed by the battery cell and the thermal management component along the thickness direction of the second body 222 is larger, and under the condition that the cross-sectional area S of the second flow channel is constant, the dimension of the second body 222 in the thickness direction is larger, resulting in that the space inside the box body of the battery with the thermal management component in the thickness direction of the second body 222 cannot be fully used to accommodate the battery cell.
  • the internal space utilization rate of the box body of the battery with the thermal management component is lower.
  • the space inside the box body of the battery with the thermal management component is fully utilized to accommodate battery cells, thereby increasing the internal space utilization of the battery box body, which is beneficial to improving the energy density of the battery with the thermal management component.
  • the thermal management component disclosed in the embodiment of the present application can be used in, but not limited to, electrical equipment such as vehicles, ships or aircraft.
  • the power supply system of the electrical equipment can be composed of the battery disclosed in the present application, which is conducive to improving the heat exchange efficiency and the energy density of the battery.
  • the embodiment of the present application provides an electric device using a battery as a power source
  • the electric device may be, but is not limited to, a mobile phone, a tablet, a laptop, an electric toy, an electric tool, a battery car, an electric car, a ship, a spacecraft, etc.
  • the electric toy may include a fixed or mobile electric toy, for example, a game console, an electric car toy, an electric ship toy, an electric airplane toy, etc.
  • the spacecraft may include an airplane, a rocket, a space shuttle, a spacecraft, etc.
  • FIG. 3 is a schematic diagram of the structure of a vehicle 1000 provided in some embodiments of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • a battery 100 is provided inside the vehicle 1000, and the battery 100 may be provided at the bottom, head or tail of the vehicle 1000.
  • the battery 100 may be used to power the vehicle 1000, for example, the battery 100 may be used as an operating power source for the vehicle 1000.
  • the vehicle 1000 may also include a controller 200 and a motor 300, and the controller 200 is used to control the battery 100 to power the motor 300, for example, for starting, navigating and driving the vehicle 1000.
  • the battery 100 can not only serve as an operating power source for the vehicle 1000, but also serve as a driving power source for the vehicle 1000, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000.
  • FIG4 is an exploded view of a battery 100 provided in some embodiments of the present application.
  • the battery 100 includes a battery cell 10 and a box body 20 .
  • the box body 20 includes a box body 21 and a thermal management component 22 .
  • An accommodation space is formed inside the box body 21 .
  • the thermal management component 22 and the battery cell 10 are both accommodated in the accommodation space.
  • the box body 21 can adopt a variety of structures.
  • the box body 21 can include a first part 211 and a second part 212, the first part 211 and the second part 212 cover each other, and the first part 211 and the second part 212 jointly define a storage space for accommodating the thermal management component 22 and the battery cell 10.
  • the second part 212 can be a hollow structure with one end open to form a storage cavity for accommodating the thermal management component 22 and the battery cell 10, and the first part 211 can be a plate-like structure, and the first part 211 covers the open side of the second part 212, so that the first part 211 and the second part 212 jointly define a storage space; the first part 211 and the second part 212 can also be hollow structures with one side open to form a storage cavity for accommodating the thermal management component 22 and the battery cell 10, and the open side of the first part 211 covers the open side of the second part 212.
  • the box body 21 formed by the first part 211 and the second part 212 can be a variety of shapes, such as a cylinder, a cuboid, etc.
  • the thermal management component 22 is used to adjust the temperature of the battery cell 10.
  • the thermal management component 22 can increase the temperature of the battery cell 10. For example, when the ambient temperature is low and the battery cell 10 cannot be charged or discharged normally, the thermal management component 22 is used to increase the temperature of the battery cell 10 so that the battery cell 10 can be charged and discharged normally.
  • the thermal management component 22 can be used to reduce the temperature of the battery cell 10. For example, when the temperature of the battery cell 10 rises during the charging and discharging process of the battery cell 10 or the ambient temperature of the battery cell 10 is too high, the thermal management component 22 is used to cool the battery cell 10 so that the battery cell 10 maintains a normal operating temperature and reduces the possibility of safety accidents.
  • the battery 100 there may be multiple battery cells 10, and the multiple battery cells 10 may be connected in series, in parallel, or in a mixed connection.
  • a mixed connection means that the multiple battery cells 10 are both connected in series and in parallel.
  • the multiple battery cells 10 may be directly connected in series, in parallel, or in a mixed connection, and then the whole formed by the multiple battery cells 10 is accommodated in the box body 21; of course, the battery 100 may also be a battery module formed by connecting multiple battery cells 10 in series, in parallel, or in a mixed connection, and then the multiple battery modules are connected in series, in parallel, or in a mixed connection to form a whole, and accommodated in the box body 21.
  • the battery 100 may also include other structures, for example, the battery 100 may also include a converging component (not shown in the figure) for realizing electrical connection between the multiple battery cells 10.
  • Each battery cell 10 may be a secondary battery 100 or a primary battery 100, or a lithium-sulfur battery 100, a sodium-ion battery 100, or a magnesium-ion battery 100, but is not limited thereto.
  • the battery cell 10 may be cylindrical, flat, rectangular, or in other shapes.
  • FIG. 5 is a schematic diagram of the exploded structure of a battery cell 10 provided in some embodiments of the present application.
  • the battery cell 10 refers to the smallest unit constituting the battery 100.
  • the battery cell 10 includes an end cap 11, a housing 12, an electrode assembly 13 and other functional components.
  • the end cap 11 refers to a component that covers the opening 121 of the shell 12 to isolate the internal environment of the battery cell 10 from the external environment.
  • the end cap 11 and the shell 12 together form the outer shell of the battery cell 10.
  • the shape of the end cap 11 can be adapted to the shape of the shell 12 to match the shell 12.
  • the end cap 11 can be made of a material with a certain hardness and strength (such as aluminum alloy), so that the end cap 11 is not easily deformed when squeezed and collided, so that the battery cell 10 can have a higher structural strength and improved safety performance.
  • Functional components such as electrode terminals 14 can be provided on the end cap 11.
  • the electrode terminal 14 can be used to electrically connect to the electrode assembly 13 for outputting or inputting electrical energy of the battery cell 10.
  • the end cap 11 can also be provided with a pressure relief mechanism 15 for releasing the internal pressure when the internal pressure or temperature of the battery cell 10 reaches a threshold.
  • the material of the end cap 11 can also be various, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which is not particularly limited in the present embodiment.
  • an insulating member can also be provided on the inner side of the end cap 11, and the insulating member can be used to isolate the electrical connection components in the housing 12 from the end cap 11 to reduce the risk of short circuit.
  • the insulating member can be plastic, rubber, etc.
  • the shell 12 is a component used to cooperate with the end cap 11 to form the internal environment of the battery cell 10, wherein the formed internal environment can be used to accommodate the electrode assembly 13, the electrolyte and other components.
  • the shell 12 and the end cap 11 can be independent components, and an opening 121 can be set on the shell 12, and the internal environment of the battery cell 10 is formed by covering the end cap 11 at the opening 121.
  • the end cap 11 and the shell 12 can also be integrated. Specifically, the end cap 11 and the shell 12 can form a common connection surface before other components are put into the shell, and when the interior of the shell 12 needs to be encapsulated, the end cap 11 covers the shell 12.
  • the shell 12 can be of various shapes and sizes, such as a rectangular parallelepiped, a cylindrical shape, a hexagonal prism, etc. Specifically, the shape of the shell 12 can be determined according to the specific shape and size of the battery cell assembly.
  • the material of the shell 12 can be various, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., and the embodiment of the present application does not impose any special restrictions on this.
  • the electrode assembly 13 is a component in the battery cell 10 where electrochemical reactions occur.
  • One or more electrode assemblies 13 may be included in the housing 12.
  • the electrode assembly 13 is mainly formed by winding or stacking positive and negative electrode sheets, and a separator is usually provided between the positive and negative electrode sheets.
  • the parts of the positive and negative electrode sheets with active materials constitute the main body of the battery cell assembly, and the parts of the positive and negative electrode sheets without active materials each constitute a pole ear.
  • the positive pole ear and the negative pole ear may be located together at one end of the main body or respectively at both ends of the main body.
  • the positive active material and the negative active material react with the electrolyte, and the pole ear is connected to the electrode terminal 14 to form a current loop.
  • Two electrode terminals 14 may be provided on the end cover 11, and the two electrode terminals 14 are electrically connected to the positive pole ear and the negative pole ear, respectively.
  • the thermal management component 22 includes a plurality of first flow guides 221 and at least one second flow guide 222; the plurality of first flow guides 221 are arranged at intervals along the thickness direction X1 of the first flow guide, and a gap for accommodating the battery cell 10 is formed between two adjacent first flow guides 221, and a first flow channel for accommodating a fluid medium is formed inside each first flow guide 221 (not shown in the figure); at least one second flow guide 222 is connected to each first flow guide 221, and a second flow channel for accommodating a fluid medium is formed inside the second flow guide 222 (not shown in the figure); 14, 18, 19, and 20), the cross-sectional area of the second flow channel is S, satisfying 0.0074 ⁇ L/S ⁇ 0.154.
  • the outer shell of the battery cell 10 includes an end cap 11 and a shell 12.
  • the shell 12 has an opening.
  • the end cap 11 is used to cover the opening of the shell 12.
  • the shell 12 and the end cap 11 together define a storage space for accommodating an electrode assembly and an electrolyte.
  • the battery cell also includes an electrode terminal 14, which is disposed on the outer shell, such as the end cap 11 or the shell 12 of the outer shell.
  • the electrode terminal 14 is electrically connected to the electrode assembly to output the electrical energy of the battery cell 10 or charge the battery cell 10.
  • the housing 12 may be closest to the second flow conductor 222, and L is the distance between the surface of the housing 12 closest to the second flow conductor 222 and the surface of the second flow conductor 222 farthest from the battery cell 10 (as shown in FIGS. 14 and 18 ).
  • the end cap 11 may be closest to the second current guide 222 , and L is the distance between the surface of the end cap 11 closest to the second current guide 222 and the surface of the second current guide 222 farthest from the battery cell 10 (as shown in FIGS. 19 and 20 ).
  • the fluid medium can be a gas or a liquid.
  • the fluid medium can be air, water, etc.
  • the fluid medium can exchange heat with the battery cell 10, thereby adjusting the temperature of the battery cell 10. If the temperature of the fluid medium is higher than the temperature of the battery cell 10, the battery cell 10 can absorb the heat of the fluid medium, and the battery cell 10 heats up, and the thermal management component 22 increases the temperature of the battery cell 10. If the temperature of the fluid medium is lower than the temperature of the battery cell 10, the fluid medium can absorb the heat of the battery cell 10, and the battery cell 10 cools down.
  • the first flow channel extends along the length direction Y1 of the first flow guide body.
  • the thickness direction X1 of the first flow guide body, the length direction Y1 of the first flow guide body and the width direction Z1 of the first flow guide body are perpendicular to each other.
  • the second flow channel extends along the length direction Y2 of the second flow guide body.
  • the thickness direction X2 of the second flow guide body, the length direction Y2 of the second flow guide body and the width direction Z2 of the second flow guide body are perpendicular to each other.
  • the first flow guide 221 has a first connection portion 2211
  • the second flow guide 222 has a second connection portion 2221.
  • the first connection portion 2211 and the second connection portion 2221 are connected, so that the second flow channel is connected to each first flow channel.
  • Each second flow guide 222 is provided with a plurality of second connection portions 2221, and the plurality of second connection portions 2221 are arranged at intervals along the length direction Y2 of the second flow guide.
  • the second connection portions 2221 of each second flow guide 222 and the first flow guide 221 are arranged one by one in number, so that each first flow guide 221 can be connected to the second flow guide 222.
  • the first connection portion 2211 can be formed by the end of the first flow guide 221, and the first connection portion 2211 can also be a convex portion protruding from the surface of the first flow guide 221 facing the second flow guide 222.
  • the second connection portion 2221 can be a convex portion protruding from the surface of the second flow guide 222 facing the first flow guide 221.
  • L The unit of L is mm
  • S the unit of S is mm 2
  • L/S is m/mm 2
  • L/S can be 0.0094, 0.0096, 0.0098, 0.010, 0.012, 0.015, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, etc.
  • the value range of L can be 2.3mm ⁇ L ⁇ 35mm, such as 2.3mm, 2.5mm, 5mm, 10mm, 15mm, 20mm, 25mm, 30mm, 34mm, etc.
  • 4.3mm ⁇ L ⁇ 9.4mm for example, 4.4mm, 4.5mm, 5.2mm, 5.5mm, 6mm, 6.5mm, 7mm, 7.5mm, 8mm, 8.5mm, 9.3mm, etc.
  • the value range of S can be 12.75mm2 ⁇ S ⁇ 4500mm2 , for example, 100mm2 , 200mm2 , 300mm2 , 500mm2 , 1000mm2 , 1500mm2 , 2000mm2, 2500mm2 , 3500mm2, 4000mm2 , 4400mm2 , etc.
  • the flow rate of the second guide body 222 in the embodiment of the present application is not less than the flow rate when the second guide body 222' in the related art is a round tube (shown in Figures 1 and 2).
  • the wall thickness of the second guide body 222' in the round tube (shown in Figure 2) and the second guide body 222 in the embodiment of the present application are the same.
  • the radius of the second guide body 222' in the round tube is 10mm, and exemplarily, 12.75mm2 ⁇ S ⁇ 4500mm2 is preferred, and 30mm2 ⁇ S ⁇ 4500mm2 is preferred, so as to ensure that the flow rate of the second guide body 222 in the embodiment of the present application is not less than the flow rate when the second guide body 222' in the related art is a round tube (shown in Figures 1 and 2).
  • the data in the above table are obtained by using the following method to calculate the volume utilization rate.
  • the dimension M of the box body 21 along its length direction, the dimension W of the box body 21 along its width direction, and the dimension N of the box body 21 along its height direction are measured.
  • the length direction of the box body 21 can be parallel to the driving direction.
  • the volume utilization rate of the box body 21 ( Vtotal /V)*100%.
  • the volume utilization rate of the box body 21 of the second flow guide 222' of the thermal management component 22' in the related art is 70.3% for reference.
  • the volume utilization rates of the box body 21 are 76.02%, 76.1%, 76.00%, 75.96%, 75.94%, 75.57%, 75.83%, 74.75%, 70.5%, and 70.3%, respectively, which are not less than the second
  • the volume utilization rate of the box body 21 is 70.3%.
  • L/S the size of the second guide body 222 in at least one direction other than its thickness direction has reached the upper limit of the size of the internal space of the box body 21. Therefore, L/S cannot be less than 0.0074.
  • the volume utilization rate of the box body 21 is 70.1%, which is less than the volume utilization rate of 70.3% of the box body 21 when the second guide body 222 is in the form of a circular tube.
  • L/S is less than 0.0074
  • the size of the second current guide 222 in at least one direction other than its thickness direction reaches the upper limit of the internal space size of the box body 21, and L/S cannot be less than 0.0074; if L/S is greater than 0.154, then along the thickness direction X2 of the second current guide, the size of the overall structure formed by the battery cell 10 and the thermal management component 22 is larger. Under the condition that the cross-sectional area S of the second flow channel is constant, the size of the second current guide 222 in the thickness direction is larger, resulting in that the space inside the box body 21 of the battery 100 equipped with the thermal management component 22 in the thickness direction X2 of the second current guide cannot be fully used to accommodate the battery cell 10.
  • the internal space utilization rate of the box body 21 of the battery 100 with the thermal management component 22 is lower.
  • the space inside the box body 21 of the battery 100 with the thermal management component 22 is fully utilized to accommodate the battery cells 10, thereby increasing the internal space utilization rate of the box body 21 of the battery 100, which is beneficial to improving the energy density of the battery 100 with the thermal management component 22.
  • L/S may be 0.0094, 0.0095, 0.0097, 0.0099, 0.011, 0.016, 0.018, 0.022, 0.025, 0.028, 0.030, 0.031, 0.032, etc.
  • C in Table 2 represents the unit of the fast charge rate of the battery 100.
  • the higher the fast charge rate the higher the heat exchange efficiency of the thermal management component 22 for the battery cell 10 is required. Therefore, the heat exchange efficiency of the second flow guide 222' in the form of a round tube in the related art for the battery cell 10 can meet the fast charge rate of 4C, and the volume utilization rate of the box body 21 is 70.3% for reference.
  • the volume utilization rate of the box body 21 is 76.02% and 76.00% respectively, which is greater than the volume utilization rate of the box body 21 when the second flow guide 222 is in the form of a round tube, which is 70.3%, but the thermal management component 22 can only meet the fast charge rate of 2C to 3.5C, which is lower than the fast charge rate that the thermal management component 22 can meet when the second flow guide 222 is in the form of a round tube.
  • the volume utilization rates of the box body 21 are 74.75% and 70.5% respectively, which are both greater than the volume utilization rate of 70.3% of the box body 21 when the second flow guide 222 is in the form of a circular tube.
  • the thermal management component 22 can only meet the fast charging rate of 3C to 3.5C, which is lower than the 4C fast charging rate that the thermal management component 22 can meet when the second flow guide 222 is in the form of a circular tube.
  • 0.0094 ⁇ L/S ⁇ 0.032 can not only be beneficial to fully utilize the space in the box body 21 of the battery 100 with the thermal management component 22 to accommodate the battery cell 10, but also improve the box body of the battery 100
  • the internal volume utilization of the body 21 is beneficial to improving the energy density of the battery 100 having the thermal management component 22, and can also make the heat exchange efficiency of the thermal management component having the second flow conductor 222 higher, thereby meeting the fast charging rate requirements of the battery 100.
  • the dimension of the second flow guide 222 along its thickness direction is H 1 (shown in FIGS. 6 , 7 , 9 - 11 ), and the dimension of the second flow guide 222 along its width direction is H 2 (shown in FIGS. 6 , 7 , 9 - 11 ), and H 1 ⁇ H 2 .
  • the thickness H1 of the second flow guide 222 refers to the dimension of the second flow guide 222 along its thickness direction, and the thickness direction X2 of the second flow guide is the direction in which the second flow guide 222 faces the first flow guide 221.
  • the width H2 of the second flow guide 222 refers to the dimension of the second flow guide 222 along its width direction.
  • the thickness H1 of the second flow guide 222 is smaller than the width H2 of the second flow guide 222. Therefore, the second flow guide 222 can form a flat tube structure after being flattened.
  • the side of the second flow guide 222 away from the first flow guide 221 can be opposite to the wall of the box body 21, or can be opposite to other structures inside the battery 100, such as a converging component, a circuit board, etc.
  • the thickness H1 of the second flow guide 222 and the width H2 of the second flow guide 222 satisfy H1 ⁇ H2 , which is equivalent to reducing the thickness of the second flow guide 222 and increasing the width of the second flow guide 222 while ensuring the flow rate of the second flow channel of the second flow guide 222, thereby ensuring the heat exchange efficiency of the thermal management component 22.
  • This can reduce the waste of space in the width direction Z2 of the second flow guide, which is beneficial to fully utilizing the space in the box body 21 of the battery 100 with the thermal management component 22, improving the internal space utilization rate of the box body 21 of the battery 100, and facilitating improving the energy density of the battery 100 with the thermal management component 22.
  • the relative positional relationship between the first flow guide 221 and the second flow guide 222 can be different.
  • at least one end of the first flow guide 221 along its length direction is connected to the second flow guide 222.
  • the length direction Y1 of the first flow guide is parallel to the thickness direction X2 of the second flow guide.
  • the width direction Z2 of the second flow guide is parallel to the width direction Z1 of the first flow guide.
  • the distance L between the surface of the second current guide 222 farthest from the battery cell 10 along its thickness direction and the battery cell 10 is along the thickness direction X2 of the second current guide (along the length direction Y1 of the first current guide), and the distance between the surface of the second current guide 222 facing away from the first current guide 221 and the surface of the outer shell of the battery cell 10 facing the second current guide 222 (as shown in Figure 14).
  • At least one end of the first flow guide 221 along its length direction forms a first connection portion 2211 of the first flow guide 221.
  • the end of the first flow guide 221 along its length direction is connected to the second connection portion 2221 of the second flow guide 222.
  • At least one end of the first flow guide 221 along its length direction is connected to the second flow guide 222, which is conducive to the fluid medium flowing from the second flow channel into the first flow channel along the length direction Y1 of the first flow guide, so that the fluid medium can fully exchange heat with the battery cell 10, improve the heat exchange efficiency, and make the temperature of the battery cell 10 along the length direction Y1 of the first flow guide more uniform.
  • both ends of the first flow guide 221 along the length direction are connected to the second flow guide 222 .
  • the thermal management component 22 includes two second flow guides 222, which are arranged at intervals along the length direction Y1 of the first flow guide, and the two second flow guides 222 are respectively connected to the two ends of each first flow guide in the length direction Y1.
  • the first flow channel of each first flow guide 221 connects the second flow channels of the two second flow guides 222.
  • the fluid medium in one of the two second flow guides 222 can flow into the first flow channel of each first flow guide 221, and the fluid medium in the first flow channel of each first flow guide 221 can be collected in the other second flow guide 222 of the two second flow guides 222.
  • the fluid medium flows in each first flow channel and each second flow channel, and heat exchanges with the battery cell 10 (shown in FIG. 4).
  • the first flow guide 221 is connected to the second flow guide 222 at both ends along its length direction, so that the fluid medium can flow from one end of the first flow channel to the other end, so that the fluid medium can fully exchange heat with the battery cell 10, improve the heat exchange efficiency, and make the temperature of the battery cell 10 more uniform along the length direction Y1 of the first flow guide.
  • only one end of the first flow guide 221 along its length direction is connected to the second flow guide 222.
  • a plurality of second flow guides 222 may be provided at one end of the first flow guide 221 along its length direction, and the plurality of second flow guides 222 provided at the same end of the first flow guide 221 along its length direction may be arranged spaced apart or closely (i.e., not spaced apart) along the width direction Z1 of the first flow guide.
  • the first flow guide 221 is connected to the second flow guide 222 on at least one side along its width direction.
  • the thickness direction X2 of the second flow guide is parallel to the width direction Z1 of the first flow guide.
  • the width direction Z2 of the second flow guide is parallel to the length direction Y1 of the first flow guide.
  • the distance L between the surface of the second current guide 222 farthest from the battery cell 10 along its thickness direction and the battery cell 10 is along the thickness direction X2 of the second current guide (along the width direction Z1 of the first current guide), and the distance between the surface of the second current guide 222 facing away from the first current guide 221 and the surface of the outer shell of the battery cell 10 facing the second current guide 222 (as shown in Figures 18, 19, and 20).
  • the first connection portion 2211 is a convex portion protruding from the surface of the first flow guide 221 in the width direction thereof facing the second flow guide 222.
  • the first connection portion 2211 is connected to the second connection portion 2221, thereby connecting the second flow guide 222 to one side of the first flow guide in the width direction Z1.
  • the first flow guide 221 is connected to the second flow guide 222 on at least one side along its width direction, which can alleviate the problem of the thermal management component 22 being larger in the length direction Y1 of the first flow guide, thereby facilitating reasonable and full utilization of the internal space of the box body 21 of the battery 100 having the thermal management component 22.
  • the heat management component 22 includes two second flow guides 222 , and the two second flow guides 222 are spaced apart and arranged on the same side of the first flow guide 221 along the width direction thereof.
  • the two second guide bodies 222 are arranged at intervals along the length direction Y1 of the first guide body, and the two second guide bodies 222 are connected to the same side of each first guide body 221 along its width direction.
  • the first flow channel of each first guide body 221 is connected to the second flow channels of the two second guide bodies 222.
  • the fluid medium in the two second guide bodies 222 can flow into the first flow channel of each first guide body 221 along the thickness direction X2 of the second guide body, and the fluid medium in the first flow channel of each first guide body 221 can be gathered into the second flow channels of the two second guide bodies 222.
  • the two second flow guides 222 are connected to the same side of the first flow guide 221 along its width direction, which can alleviate the problem of the thermal management component 22 being larger in the width direction Z1 of the first flow guide due to connecting the second flow guide 222 to the first flow guide 221 along its width direction.
  • the thermal management component 22 includes a plurality of second flow guides 222, where a plurality refers to two or more. A portion of the plurality of second flow guides 222 is connected to one side of the first flow guide 221 along its width direction, and another portion of the plurality of second flow guides 222 is connected to the other side of the first flow guide 221 along its width direction.
  • the thermal management component 22 includes two second flow guides 222, and the two second flow guides 222 are respectively connected to both sides of the first flow guide 221 along its width direction.
  • the projections of the two second flow guides 222 in a plane perpendicular to the width direction Z1 of the first flow guide may not overlap and may be arranged at intervals, so that the fluid medium can flow from a second flow guide 222 to the first flow channel of the first flow guide 221 and then flow in the first flow channel along the length direction Y1 of the first flow guide, filling the entire first flow channel as much as possible, thereby improving the heat exchange efficiency with the battery cell 10.
  • the thermal management component 22 includes two second flow guides 222, and along the length direction Y1 of the first flow guide, the two second flow guides 222 are spaced apart from the first flow guide 221; the thermal management component 22 also includes a first connecting member 223 and a second connecting member 224, the first connecting member 223 and the second connecting member 224 are respectively connected to the two second flow guides 222, a medium inflow channel is formed inside the first connecting member 223, and a medium outflow channel is formed inside the second connecting member 224, and the medium inflow channel and the medium outflow channel are respectively connected to the second flow channels of the two second flow guides 222.
  • the first connecting member 223 is directly connected to one of the two second flow guides 222, so that the medium inflow channel can be directly connected to the second flow channel of the second flow guide 222.
  • the second connecting member 224 is directly connected to the other of the two second flow guides 222, so that the medium outflow channel can be directly connected to the second flow channel of the second flow guide 222.
  • the fluid medium enters the second flow channel directly connected to the medium inlet channel from the medium inlet channel, and then flows into the first flow channel of each first flow guide 221 through the second flow channel.
  • the fluid medium in each first flow channel converges to the second flow channel directly connected to the medium outlet channel, and is discharged from the medium outlet channel through the second flow channel.
  • the first connecting member 223 is provided to facilitate the provision of fluid medium to a second flow channel, and to synchronously provide fluid medium to each first flow channel through the second flow channel.
  • the second connecting member 224 is provided to facilitate the fluid medium in each first flow channel to be discharged from the medium outflow channel after being collected in the second flow channel, so that the fluid medium can continuously flow in the first flow channel and the second flow channel, thereby improving the heat exchange efficiency with the battery cell 10 (shown in Figure 4).
  • the first connector 223 and the second connector 224 can be connected to different positions of the two second flow guides 222. Please continue to refer to Figures 6, 7, 9, and 10.
  • the first connector 223 is connected to one end of one of the two second flow guides 222 along its length direction, and the first connector 223 is perpendicular to the second flow guide 222;
  • the second connector 224 is connected to the other end of the two second flow guides 222 along its length direction, and the second connector 224 is perpendicular to the second flow guide 222.
  • the first connector 223 is connected to one end of the second flow guide 222 in the length direction, and the first connector 223 extends from the second flow guide 222 connected thereto along the length direction Y1 of the first flow guide to the direction close to another second flow guide 222.
  • the first connector 223 is located on one side of all the first flow guides 221 and is stacked with the first flow guide 221 at the end along the thickness direction X1 of the first flow guide.
  • the first connector 223 is arranged with a relative spacing from the first flow guide 221 at the end, and the spacing between the first connector and the first flow guide 221 at the end can be used to accommodate the battery cell 10 (shown in FIG4). In this case, the first connector 223 can also contact the battery cell 10 (shown in FIG4), so that the fluid medium can also exchange heat with the battery cell 10 when the first connector 223 is in contact with the battery cell 10, thereby increasing the heat exchange efficiency.
  • the second connector 224 is connected to one end of the second flow guide 222 in the length direction, and the second connector 224 extends from the second flow guide 222 connected thereto along the length direction Y1 of the first flow guide toward another second flow guide 222.
  • the second connector 224 is located on one side of all the first flow guides 221 and is stacked with the first flow guide 221 at the end along the thickness direction X1 of the first flow guide.
  • the second connector 224 is arranged relative to the first flow guide 221 at the end, and the interval between the second connector and the first flow guide 221 at the end can be used to accommodate the battery cell 10 (shown in FIG. 4). In this case, the second connector 224 can also contact the battery cell 10 (shown in FIG. 4), so that the fluid medium can also exchange heat with the battery cell 10 (shown in FIG. 4) when in the second connector 224, thereby increasing the heat exchange efficiency.
  • the first connector 223 and the second connector 224 can be located on the same side of all the first flow guides 221 as a whole, or the first connector 223 and the second connector 224 can be located on two opposite sides of all the first flow guides 221 as a whole.
  • FIG9 shows a case where the first connector 223 and the second connector 224 can be located on the same side of all the first flow guides 221 as a whole.
  • the first connector 223 is connected to one end of the second flow guide 222 in the length direction, and the first connector 223 extends from the second flow guide 222 connected thereto along the width direction Z1 of the first flow guide to the side of the first flow guide 221 at the end away from the other first flow guides 221.
  • the first connector 223 and the first flow guide 221 at the end closest thereto are stacked along the thickness direction X1 of the first flow guide.
  • the first connector 223 is arranged with a relative spacing from the first flow guide 221 at the end, and the spacing between the first connector and the first flow guide 221 at the end can be used to accommodate the battery cell 10 (shown in FIG. 4). In this case, the first connector 223 can also contact the battery cell 10, so that the fluid medium can also exchange heat with the battery cell 10 when the first connector 223 is in contact with the battery cell 10, thereby increasing the heat exchange efficiency.
  • the second connector 224 is connected to one end of the second flow guide 222 in the length direction.
  • the second connector 224 extends from the second flow guide 222 connected thereto along the width direction Z1 of the first flow guide to the side of the first flow guide 221 at the end portion away from the other first flow guides 221.
  • the second connector 224 and the first flow guide 221 at the end portion closest thereto are stacked along the thickness direction X1 of the first flow guide.
  • the second connector 224 is arranged relative to the first flow guide 221 at the end portion.
  • the interval between the second connector 224 and the first flow guide 221 at the end portion can be used to accommodate the battery cell 10.
  • the second connector 224 can also contact the battery cell 10 (shown in FIG. 4 ) so that the fluid medium can also perform heat exchange with the battery cell 10 (shown in FIG. 4 ) when in the second connector 224, thereby increasing the heat exchange efficiency.
  • the first connection member 223 and the second connection member 224 can be located on the same side of all the first flow guides 221 as a whole, and the first connection member 223 and the second connection member 224 can be located on two opposite sides of all the first flow guides 221 as a whole.
  • FIG10 shows a situation in which two second flow guides 222 are connected to the same side of the first flow guide 221 along its width direction, and the first connection member 223 and the second connection member 224 can be located on the same side of all the first flow guides 221 as a whole.
  • the first connector 223 is connected to one end of one of the two second flow guides 222 along its length direction, which is conducive to the fluid medium entering the first flow channel and flowing to the other end of the first flow channel along the length direction Y1 of the first flow guide, so that the fluid medium can be distributed to each first flow channel, thereby fully exchanging heat with the battery cell 10 (shown in Figure 4).
  • the first connector 223 is perpendicular to the second flow guide 222, reducing the risk of interference between the first connector 223 and the second flow guide 222.
  • the second connector 224 is connected to the other end of the two second flow guides 222 along its length direction, which is conducive to the fluid medium in each first flow channel being collected in the second flow channel and then discharged from the medium outflow channel.
  • the second connector 224 is perpendicular to the second flow guide 222, reducing the risk of interference between the second connector 224 and the second flow guide 222.
  • thermal management component 22 may not be provided with the first connecting member 223 and the second connecting member 224 .
  • the end of the first connecting member 223 that is away from the second flow guide 222 connected thereto can also be connected to a first adapter 225.
  • the first adapter 225 can extend out of the box body 21 and connect to an external supply device that provides a fluid medium, so that the supply device is connected to the medium inflow channel through the first adapter 225.
  • the supply device provides the fluid medium to enter the second flow channel through the first adapter 225 and the first connecting member 223.
  • the end of the second connecting member 224 that is away from the second flow guide 222 connected thereto can also be provided with a second adapter 226.
  • the second adapter 226 can extend out of the box body 21 so that the fluid medium in the thermal management component 22 can be discharged.
  • the thermal management component 22 further includes a third connector 227, and the first connector 223 and the second connector 224 are connected by the third connector 227.
  • the first connector 223 and the second connector 224 can be located on the same side of the first flow guide 221 as a whole.
  • the third connecting member 227 extends along the length direction Y1 of the first flow guide, one end of the third connecting member 227 is connected to the first connection away from one end of the second flow guide 222 connected thereto, and the other end of the third connecting member 227 is connected to the second connection away from one end of the second flow guide 222 connected thereto.
  • the third connecting member 227 extends along the length direction Y1 of the first flow guide, and the two ends of the third connecting member 227 along its extension direction are respectively connected to the first connecting member 223 and the second connecting member 224.
  • the third connection member 227 extends along the width direction Z1 of the first flow guide, and the two ends of the third connection member 227 along its extension direction are respectively connected to the first connection member 223 and the second connection member 224.
  • the third connecting member 227 may be a structure that is not connected to the medium inflow channel and the medium outflow channel.
  • the third connecting member 227 may be a connecting plate, a connecting rope (such as a wooden rope, a steel rope, etc.), etc.
  • the first connecting member 223 and the second connecting member 224 are connected by the third connecting member 227, which can restrain the first connecting member 223 and the second connecting member 224, which is conducive to maintaining a stable relative position relationship between the first connecting member 223 and the second connecting member 224, thereby maintaining a relatively stable position relationship between the two second flow guides 222.
  • the embodiment of the present application further provides a box 20 , which includes a box body 21 and a thermal management component 22 provided in any of the above embodiments.
  • the box body 21 is formed with a receiving space, and the thermal management component 22 is received in the receiving space.
  • the internal space of the box body 21 of the box body 20 having the thermal management component 22 is fully utilized to accommodate the battery cell 10, thereby improving the internal space utilization rate of the box body 21, which is beneficial to improving the energy density of the battery 100 of the box body 20.
  • the box body 21 has a wall portion 213 arranged opposite to the second flow guide 222 , the second flow guide 222 is arranged on the side of the first flow guide 221 facing the wall portion 213 , and the wall portion 213 is provided with a accommodating portion 214 for accommodating the second flow guide 222 .
  • the accommodation portion 214 is a groove provided in the wall portion 213. Along the thickness direction X2 of the second flow guide, the second flow guide 222 may be partially or completely accommodated in the accommodation portion 214.
  • the wall portion 213 of the box body 21 opposite to the second flow guide 222 is the bottom wall of the box body 21, and the receiving portion 214 is disposed on the inner surface of the bottom wall.
  • the second flow guide 222 can also be disposed opposite to other walls of the box body 21.
  • the wall portion 213 is provided with a accommodating portion 214 for accommodating the second flow guide 222, so the second flow guide 222 can be embedded in the wall portion 213, which can reduce the occupation of the internal space of the box body 21 by the second flow guide 222, that is, the internal space of the box body 21 is saved, and the interior of the box body 21 can have more space for accommodating battery cells 10, which is beneficial to improve the energy density of the battery 100 with the box body 20.
  • an embodiment of the present application further provides a battery 100 , which includes a battery cell 10 and a box body 20 provided in any of the above embodiments, and the battery cell 10 is accommodated in the gap.
  • the battery cell 10 is accommodated in the gap formed between two adjacent first current guides 221.
  • the first current guide 221 can not only adjust the temperature of the battery cell 10, but also be equivalent to the beam structure in the battery 100, playing the role of supporting the battery cell 10 and improving the structural strength of the battery 100.
  • the battery 100 may include one or more battery cells 10. In the embodiment where the battery 100 includes multiple battery cells 10, the multiple battery cells 10 can be connected in series, in parallel or in mixed connection through the reflux component.
  • the internal space of the box body 21 of the battery 100 can be fully utilized by the thermal management component 22 and the battery cell 10 , thereby improving the utilization rate of the internal space of the box body 21 , which is beneficial to improving the heat exchange efficiency and the energy density of the battery 100 .
  • the first flow guide 221 is connected to the second flow guide 222 at least at one end along its length direction; along the width direction Z2 of the second flow guide, the second flow guide 222 covers at least a portion of the battery cell 10 .
  • the second fluid guide 222 covers at least part of the battery cell 10. It can be understood that the projections of the second fluid guide 222 and the battery cell 10 closest thereto on the plane perpendicular to the length direction Y1 of the first fluid guide at least partially overlap, and the second fluid guide 222 can contact the battery cell 10 closest thereto, so that the fluid medium in the second fluid guide 222 can also exchange heat with the battery cell 10, thereby adjusting the temperature of the battery cell 10 and improving the temperature regulation efficiency.
  • the second current guide 222 covers the entire battery cell 10 .
  • the projection of the battery cell 10 closest to the second fluid guide 222 on the plane perpendicular to the length direction Y1 of the first fluid guide is located within the projection of the second fluid guide 222 on the plane perpendicular to the length direction Y1 of the first fluid guide, so that the contact area between the first fluid guide 221 and the battery cell 10 is larger, which can increase the heat exchange area to improve the heat exchange efficiency, thereby improving the temperature regulation efficiency.
  • the electrode terminal 14 of the battery cell 10 may extend along the width direction Z2 of the second current conductor, and the size of the battery cell 10 in the width direction Z2 of the second current conductor includes the height of the electrode terminal 14 protruding from the end cover 11 of the battery cell 10 .
  • the size of the second current guide 222 in its width direction may be the same as or different from the size of the battery cell 10 in the second current guide direction Z2.
  • the width direction Z2 of the second current guide may be the direction in which the electrode terminal 14 protrudes from the end cover 11 , or may not be the direction in which the electrode terminal 14 protrudes from the end cover 11 .
  • the dimension of the second guide body 222 along its width direction cannot be greater than the dimension of the internal space of the box body 21 (shown in FIG. 4 ) along the width direction Z2 of the second guide body.
  • the dimension of the second guide body 222 along its thickness direction cannot be greater than the dimension of the internal space of the box body 21 along the thickness direction X2 of the second guide body.
  • the electrode terminal 14 of the battery cell 10 may be located on one side of the battery cell 10 in the width direction Z1 of the first current guide, so that the second current guide 222 may not interfere with the electrode terminal 14 and other structures disposed on the terminal side of the battery 100.
  • the wall portion 213 of the box body 21 opposite to the second current guide 222 in the length direction Y1 of the first current guide is provided with a receiving portion 214, and the second current guide 222 is received in the receiving portion 214.
  • the battery cell 10 has an electrode terminal 14 .
  • the electrode terminal 14 is located on a side of the battery cell 10 away from the second current conductor 222 .
  • the electrode terminal 14 is located at one side of the battery cell 10 along the width direction Z1 of the first current guide.
  • the second current guide 222 is connected to one side of the first current guide 221 along the width direction thereof and is disposed away from the electrode terminal 14 .
  • a circuit board may be provided inside the battery 100, and a pressure collection component, a temperature collection component, etc. may be provided on the circuit board to detect relevant information inside the battery 100 to determine whether the battery 100 is normal, thereby effectively reducing the risk of safety accidents.
  • the circuit board is generally provided close to the electrode terminal 14.
  • the plurality of battery cells 10 may also be connected in series, in parallel, or in hybrid connection via a busbar component, and the busbar component is connected to the electrode terminal 14 .
  • the electrode terminal 14 is located on the side of the battery cell 10 away from the second current guide 222, which can avoid the risk of interference between the second current guide 222 and the installation position of structures such as the conduit component and the circuit board.
  • the wall portion 213 of the box body 21 opposite to the second flow guide 222 in the width direction Z1 of the first flow guide is provided with a accommodating portion 214, and the second flow guide 222 is accommodated in the accommodating portion 214.
  • Figure 17 shows a situation where the bottom wall of the box body 21 is provided with a accommodating portion 214.
  • the battery cell 10 has an electrode terminal 14, and along the width direction Z1 of the first current conduit, the electrode terminal 14 is located on the side of the battery cell 10 facing the second current conduit 222. It can be understood that in the width direction Z1 of the first current conduit, the electrode terminal 14 and the second current conduit 222 are arranged on the same side.
  • the second current conduit 222 can utilize the space of the electrode terminal 14 protruding from the end cover 11. Therefore, along the width direction Z1 of the first current conduit, the electrode terminal 14 is located on the side of the battery cell 10 facing the second current conduit 222. This can alleviate the problem that the overall structure formed by the thermal management component 22 and the battery cell 10 is larger in the width direction Z1 of the first current conduit due to connecting the second current conduit 222 to the first current conduit 221 along its width direction.
  • the battery 100 may be provided with other structures such as a circuit board and a busbar component on the electrode terminal 14 side.
  • the electrode terminal 14 is located on the side of the battery cell 10 facing the second fluid conduit 222, so that the temperature of other structures of the battery 100 arranged on the electrode terminal 14 side can be regulated.
  • a pressure relief mechanism 15 is further provided on the end cover 11.
  • the pressure relief mechanism 15 is used to release the pressure inside the battery cell 10 when the pressure inside the battery cell 10 reaches a threshold value, so as to reduce the risk of safety accidents such as explosion and fire of the battery cell 10.
  • the electrode terminal 14 and the pressure relief mechanism 15 are both provided on the end cover 11, and in the width direction Z1 of the first flow guide, the pressure relief mechanism 15 and the electrode terminal 14 are both located on the side of the battery cell 10 facing the second flow guide 222.
  • a spray structure is provided on the second flow guide 222, and the spray structure is connected to the second flow channel. The fluid medium in the second flow channel can be sprayed out through the spray structure.
  • the spray structure is opened to spray the fluid medium to the pressure relief mechanism 15, thereby reducing the temperature of the gas sprayed from the pressure relief mechanism 15 and the temperature inside the box body 21, and reducing the risk of open flames.
  • An embodiment of the present application further provides an electric device, and the electric device includes the battery 100 provided in any of the above embodiments.
  • the powered device may include one or more batteries 100 to provide power for the powered device to perform related functions.
  • the embodiment of the present application provides a battery 100, which includes a battery cell 10 and a box 20, wherein the box 20 includes a box body 21 and a thermal management component 22, and the thermal management component 22 and the battery cell 10 are both located in the box body 21.
  • the thermal management component 22 includes a plurality of first flow guides 221, two second flow guides 222, a first connector 223, a second connector 224, a first adapter 225, and a second adapter 226. All first flow guides 221 are arranged at intervals along the thickness direction X1 of the first flow guide, and a gap is formed between two adjacent first flow guides 221, and the battery cell 10 is located in the gap.
  • a first flow channel is formed inside each first flow guide 221, and a second flow channel is formed inside each second flow guide 222.
  • Each second flow guide 222 is connected to each first flow guide 221.
  • Each second flow channel is connected to each first flow channel.
  • Two first flow guides 221 are respectively connected to both ends of the first flow guide 221 along its length direction.
  • a medium inflow channel is formed inside the first connecting member 223, and is connected to one end of a second flow guide 222 along its length direction.
  • the first connecting member 223 extends along the length direction Y1 of the first flow guide and extends in a direction close to another second flow guide 222.
  • a medium inflow channel is formed inside the first connecting member 223, and the medium inflow channel is communicated with the second flow channel of the second flow guide 222 connected thereto.
  • a medium outflow channel is formed inside the second connecting member 224, and is connected to one end of another second flow guide 222 along its length direction.
  • the second connecting member 224 extends along the length direction Y1 of the first flow guide and extends in a direction close to another second flow guide 222.
  • a medium outflow channel is formed inside the second connecting member 224, and the medium outflow channel is communicated with the second flow channel of the second flow guide 222 connected thereto.
  • the first connecting member 223, the second connecting member 224, the first adapter 225, and the second adapter 226 are all located on the side of the same first flow guide 221 located at the end away from other first flow guides 221.
  • the first adapter 225 and the second adapter 226 are connected to the first connector 223 and the second connector 224, respectively, and both the first adapter 225 and the second adapter 226 extend out of the box body 21.
  • the electrode terminal 14 of the battery cell 10 is located on one side of the battery cell 10 along the width direction Z1 of the first flow guide.
  • the distance between the surface of the second flow guide 222 farthest from the battery cell 10 along its thickness direction (the thickness direction X2 of the second flow guide) and the battery cell 10 is L, and the cross-sectional area of the second flow channel is S, which satisfies 0.0074 ⁇ L/S ⁇ 0.154, preferably 0.0094 ⁇ L/S ⁇ 0.032.
  • the embodiment of the present application also provides a battery 100, which includes a battery cell 10 and a box 20, wherein the box 20 includes a box body 21 and a thermal management component 22, and the thermal management component 22 and the battery cell 10 are both located in the box body 21.
  • the thermal management component 22 includes a plurality of first flow guides 221, two second flow guides 222, a first connector 223, a second connector 224, a first adapter 225, and a second adapter 226. All first flow guides 221 are arranged at intervals along the thickness direction X1 of the first flow guide, and a gap is formed between two adjacent first flow guides 221, and the battery cell 10 is located in the gap.
  • a first flow channel is formed inside each first flow guide 221, and a second flow channel is formed inside each second flow guide 222.
  • Each second flow guide 222 is connected to each first flow guide 221.
  • Each second flow channel is connected to each first flow channel.
  • Two first flow guides 221 are respectively connected to the same side of the first flow guide 221 along its width direction.
  • the first connecting member 223 has a medium inflow channel formed inside, and is connected to one end of a second flow guide 222 along its length direction.
  • the first connecting member 223 extends along the width direction Z1 of the first flow guide, and a medium inflow channel is formed inside the first connecting member 223, and the medium inflow channel is communicated with the second flow channel of the second flow guide 222 connected thereto.
  • the second connecting member 224 has a medium outflow channel formed inside, and is connected to one end of another second flow guide 222 along its length direction, and the second connecting member 224 extends along the width direction Z1 of the first flow guide, and a medium outflow channel is formed inside the second connecting member 224, and the medium outflow channel is communicated with the second flow channel of the second flow guide 222 connected thereto.
  • the first connecting member 223, the second connecting member 224, the first adapter 225, and the second adapter 226 are all located on the side of the same first flow guide 221 located at the end away from the other first flow guides 221.
  • the first adapter 225 and the second adapter 226 are connected to the first connector 223 and the second connector 224, respectively, and both the first adapter 225 and the second adapter 226 extend out of the box body 21.
  • the electrode terminal 14 of the battery cell 10 is located on the side of the battery cell 10 away from the second current guide 222, and the wall portion 213 of the box body 21 opposite to the second current guide 222 is the bottom wall of the box body 21, and the bottom wall is provided with a receiving portion 214, and the second current guide 222 is received in the receiving portion 214.
  • the electrode terminal 14 of the battery cell 10 is located on the side of the battery cell 10 facing the second current guide 222.
  • the distance between the surface of the second flow guide 222 farthest from the battery cell 10 along the thickness direction (thickness direction X2 of the second flow guide) and the battery cell 10 is L, and the cross-sectional area of the second flow channel is S, which satisfies 0.0074 ⁇ L/S ⁇ 0.154, preferably 0.0094 ⁇ L/S ⁇ 0.032.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种热管理部件、箱体、电池及用电设备,热管理部件(22)包括多个第一导流体(221)和至少一个第二导流体(222),多个第一导流体(221)沿第一导流体(221)的厚度方向(X1)间隔排布,第二导流体(222)连接每个第一导流体(221),第二导流体(222)的第二流道与每个第一导流体(221)的第一流道连通,第二导流体(222)的长度方向(Y2)与第一导流体(221)的厚度方向(X1)平行,第二导流体(222)沿其厚度方向(X2)的靠近电池单体(10)的表面连接于第一导流体(221),沿第二导流体(222)的厚度方向(X2),第二导流体(222)最远离电池单体(10)的表面和电池单体(10)外壳最靠近第二导流体(222)的表面之间的距离为L,第二流道的横截面积为S,0.0074≤L/S≤0.154,该热管理部件(22)能够提高箱本体(21)的内部空间利用率。

Description

热管理部件、箱体、电池及用电设备 技术领域
本申请涉及电池技术领域,具体而言,涉及一种热管理部件、箱体、电池及用电设备。
背景技术
车辆使用二次电池,例如锂离子电池、钠离子电池、固态电池等,具备能量密度大、循环性能好等突出优点,并广泛应用于便携式电子设备、电动交通工具、电动工具、无人机、储能设备等领域。随着电池的广泛使用,人们对电池的能量密度也提出了越来越高的要求。
发明内容
本申请实施例提供一种热管理部件、箱体、电池及用电设备,以提高电池的能量密度。
第一方面,本申请实施例提供一种热管理部件,包括多个第一导流体和至少一个第二导流体;多个所述第一导流体沿所述第一导流体的厚度方向间隔排布,相邻的两个所述第一导流体之间形成用于容纳电池单体的间隙,每个所述第一导流体内部形成有用于容纳流体介质的第一流道;所述至少一个第二导流体连接每个所述第一导流体,所述第二导流体内部形成有用于容纳流体介质的第二流道,所述第二流道与每个所述第一流道连通;其中,所述第二导流体的长度方向与所述第一导流体的厚度方向平行,所述第二导流体沿其厚度方向的一表面连接于所述第一导流体,沿所述第二导流体的厚度方向,所述第二导流体最远离所述电池单体的表面和所述电池单体的外壳最靠近所述第二导流体的表面之间的距离为L,所述第二流道的横截面积为S,满足0.0074≤L/S≤0.154。
上述技术方案中,L/S<0.0074,第二导流体222在其厚度方向以外的其他方向中至少一个方向上的尺寸达到了箱本体21的内部空间尺寸的上限值,L/S不能小于0.0074;若是L/S>0.154,则沿第二导流体的厚度方向,电池单体和热管理部件形成的整体结构的尺寸较大,在第二流道的横截面积S一定的条件下,第二导流体在其厚度方向上的尺寸较大,导致具备该热管理部件的电池的箱本体内部的空间在第二导流体的厚度方向上的空间不能被充分用于容纳电池单体,相较于第二导流体为圆管或方管,且壁厚和流道横截面积均与本申请的第二导流体相同的情况,具备该热管理部件的电池的箱体的内空间利用率较低,因此,0.0074≤L/S≤0.154,相较于第二导流体为圆管或方管,且壁厚和流道横截面积均与本申请的第二导流体相同的情况,具备该热管理部件的电池的箱本体内的空间被充分利用于容纳电池单体,提供电池的箱本体的内部空间利用率,有利于提高具备该热管理部件的电池的能量密度。
在本申请第一方面的一些实施例中,0.0094≤L/S≤0.032。
上述技术方案中,若是0.0074≤L/S<0.0094,则不仅具备该热管理部件的电池单体的箱本体的内部空间不能被充分利用,且具备该第二导流体的热管理部件的换热效率还较低,若是0.154>L/S>0.032,虽然具备该热管理部件的电池单体的箱本体的内部空间被充分利用,有利于提高具备该热管理部件的电池的能量密度,但是具备该第二导流体的热管理部件的换热效率较低,因此,0.0094≤L/S≤0.032,既能有利于具备该热管理部件的电池的箱本体内的空间被充分利用于容纳电池单体,提供电池的箱本体的内部空间利用率,有利于提高具备该热管理部件的电池的能量密度,还能使得具备该第二导流体的热管理部件的换热效率较高,满足对电池的快充倍率需求。
在本申请第一方面的一些实施例中,所述第一导流体沿其长度方向的至少一端连接有所述第二导流体。
上述技术方案中,第一导流体沿其长度方向的至少一端连接有第二导流体,则有利于流体介质从第二流道沿第一导流体的长度方向在第一流道内流动,使得流体介质能够与电池单体充分换热,提高换热效率,且能够使得电池单体沿第一导流体的长度方向的温度更加均匀。
在本申请第一方面的一些实施例中,所述第一导流体沿其长度方向的两端均连接有所述第二导流体。
上述技术方案中,第一导流体沿其长度方向的两端均连接有第二导流体,则流体介质能够从第一流道的一端流向另一端,使得流体介质能够与电池单体充分换热,提高换热效率,且能够使得电池单体沿第一导流体的长度方向的温度更加均匀。
在本申请第一方面的一些实施例中,所述第一导流体沿其宽度方向的至少一侧连接有所述第二导流体。
上述技术方案中,第一导流体沿其宽度方向的至少一侧连接有第二导流体,则能够缓解热管理部件在第一导流体的长度方向上尺寸较大的问题,从而有利于具备该热管理部件的电池的箱本体的内部空间被合理、充分利用。
在本申请第一方面的一些实施例中,所述热管理部件包括两个所述第二导流体,两个所述第二导流体间隔设置于所述第一导流体沿其宽度方向的同一侧。
上述技术方案中,两个第二导流体均连接于第一导流体沿其宽度方向的同一侧,则能够缓解因将第二导 流体连接于第一导流体沿其宽度方向而导致热管理部件在第一导流体的宽度方向尺寸较大的问题。
在本申请第一方面的一些实施例中,所述热管理部件包括两个所述第二导流体,沿所述第一导流体的长度方向,两个所述第二导流体间隔设置于所述第一导流体;所述热管理部件还包括第一连接件和第二连接件,所述第一连接件和所述第二连接件分别连接两个所述第二导流体,所述第一连接件内部形成介质流入通道,所述第二连接件内部形成有介质流出通道,所述介质流入通道和所述介质流出通道分别与两个所述第二导流体的第二流道连通。
上述技术方案中,第一连接件设置,便于向一个第二流道提供流体介质,并通过该第二流道向每个第一流道同步提供流体介质,第二连接件的设置,便于每个第一流道内的流体介质汇集在第二流道内后排出介质流出通道,使得流体介质能够在第一流道和第二流道内不断流通,提高与电池单体的换热效率。
在本申请第一方面的一些实施例中,所述第一连接件连接于两个所述第二导流体中的一者沿其长度方向的一端,所述第一连接件与所述第二导流体垂直;所述第二连接件连接于两个所述第二导流体中的另一者沿其长度方向的一端,所述第二连接件与所述第二导流体垂直。
上述技术方案中,第一连接件连接于两个第二导流体中的一者沿其长度方向的一端,有利于流体介质进入第一流道后沿第一导流体的长度方向流向第一流道的另一端,使得流体介质能够被分配至每个第一流道,从而与电池单体充分换热,第一连接件与第二导流体垂直,降低第一连接件和第二导流体干涉的风险。第二连接件连接于两个第二导流体中的另一者沿其长度方向的一端,有利于每个第一流道内的流体介质汇集在第二流道内后从介质流出通道排出,第二连接件与第二导流体垂直,降低第二连接件和第二导流体干涉的风险。
在本申请第一方面的一些实施例中,所述热管理部件还包括第三连接件,所述第一连接件和所述第二连接件通过所述第三连接件连接。
上述技术方案中,第一连接件和第二连接件通过第三连接件连接,能够对第一连接件和第二连接件起到束缚作用,有利于第一连接件和第二连接件保持稳定的相对位置关系,从而使两个第二导流体保持相对稳定的位置关系。
第二方面,本申请实施例提供一种箱体,包括箱本体和第一方面任意实施例提供的热管理部件,所述箱本体形成有容纳空间,所述热管理部件容纳于所述容纳空间内。
上述技术方案中,由于第二导流体沿其厚度方向最远离电池单体的表面和电池单体之间的距离L和第二流道的横截面积S,满足0.0074≤L/S≤0.154,有利于具备该热管理部件的箱体的箱本体的内部空间被充分利用于容纳电池单体,提高箱本体的内部空间利用率,有利于提高箱体的电池的能量密度。
在本申请第二方面的一些实施例中,沿所述第一导流体的宽度方向,所述箱本体具有与所述第二导流体相对设置的壁部,所述第二导流体设置于所述第一导流体面向所述壁部的一侧,所述壁部设置有容纳所述第二导流体的容纳部。
上述技术方案中,壁部设置有容纳第二导流体的容纳部,则第二导流体可以嵌设于壁部内,能够减少第二导流体对箱本体的内部空间的占用,即节省了箱本体的内部空间,则箱本体的内部可以具有更多的用于容纳电池单体的空间,有利于提高具备箱体的电池的能量密度。
第三方面,本申请实施例提供一种电池,包括电池单体和第二方面任意实施例提供的箱体,所述电池单体容纳于所述间隙内。
上述技术方案中,电池的箱本体内部空间能够被热管理部件和电池单体充分利用,从而提高箱本体的内部空间的利用率,有利于提高换热效率和电池的能量密度。
在第三方面的一些实施例中,所述第一导流体沿其长度方向的至少一端连接有所述第二导流体;沿所述第二导流体的宽度方向,所述第二导流体覆盖所述电池单体的至少部分。
上述技术方案中,沿第二导流体的宽度方向,第二导流体覆盖电池单体的至少部分,使得第二导流体内的流体介质也能够与电池单体进行热交换,从而调节电池单体的温度,还能提高温度调节效率。
在第三方面的一些实施例中,沿所述第二导流体的宽度方向,所述第二导流体覆盖所述电池单体的全部。
上述技术方案中,沿第二导流体的宽度方向,第二导流体覆盖电池单体的全部,使得第一导流体和电池单体的接触面积较大,能够增大换热面积,以提高换热效率,从而高温度调节效率。
在第三方面的一些实施例中,所述电池单体具有电极端子,沿所述第一导流体的宽度方向,所述电极端子位于所述电池单体背离所述第二导流体的一侧。
上述技术方案中,沿第一导流体的宽度方向,电极端子位于电池单体背离第二导流体的一侧,能够避免第二导流体与汇流部件、电路板等结构安装位置干涉的风险。
在第三方面的一些实施例中,所述电池单体具有电极端子,沿所述第一导流体的宽度方向,所述电极端子位于所述电池单体面向所述第二导流体的一侧。
上述技术方案中,沿第一导流体的宽度方向,电极端子位于电池单体面向第二导流体的一侧,能够缓解因将第二导流体连接于第一导流体沿其宽度方向而导致热管理部件和电池单体形成的整体结构在第一导流体的宽度方向尺寸较大的问题。且能够对电池的设置于电极端子侧的其他结构进行温度调节。
第四方面,本申请实施例提供一种用电设备,包括第三方面任意实施例提供的电池。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为相关技术中的电池的结构示意图;
图2为相关技术中的电池的剖视图;
图3为本申请一些实施例提供的车辆的结构示意图;
图4为本申请一些实施例提供的电池的分解图;
图5为本申请一些实施例提供的电池单体的分解图;
图6为本申请一些实施例提供的热管理部件的分解图;
图7为本申请另一些实施例提供的热管理部件的分解图;
图8为箱本体的体积长宽高示意图;
图9为图6中的热管理部件的组装后的示意图;
图10为图7中的热管理部件的组装后的示意图;
图11为本申请又一些实施例提供的热管理部件的结构示意图;
图12为本申请再一些实施例提供的热管理部件的结构示意图;
图13为本申请一些实施例提供的箱体的局部剖视图;
图14为本申请再另一些实施例提供的电池的分解图;
图15为图4中A处的放大图;
图16为本申请又一些实施例提供的电池的分解图;
图17为第二导流体设置于电池单体背离电极端子的一侧的示意图;
图18为图14中示出的电池的局部剖视图;
图19为本申请再一些实施例提供的电池的分解图;
图20为第二导流体设置于电池单体面向电极端子的一侧的示意图。
图标:1000-车辆;100'、100-电池;10'、10-电池单体;11-端盖;12-壳体;121-开口;13-电极组件;14-电极端子;15-泄压机构;20-箱体;21'、21-箱本体;211-第一部分;212-第二部分;213-壁部;214-容纳部;22'、22-热管理部件;221'、221-第一导流体;2211-第一连接部;222'、222-第二导流体;2221-第二连接部;223-第一连接件;224-第二连接件;225-第一转接件;226-第二转接件;227-第三连接件;200-控制器;300-马达;X1-第一导流体的厚度方向;Y1-第一导流体的长度方向;Z1-第一导流体的宽度方向;X2-第二导流体的厚度方向;Y2-第二导流体的长度方向;Z2-第二导流体的宽度方向。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得 的所有其他实施例,都属于本申请保护的范围。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请实施例的描述中,需要说明的是,指示方位或位置关系为基于附图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,或者是本领域技术人员惯常理解的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源***,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
发明人发现,如图1、图2所示,电池100'的热管理部件22'包括多个第一导流体221'和至少一个第二导流体222';多个第一导流体221'沿第一导流体的厚度方向X1间隔排布,相邻的两个第一导流体221'之间形成用于容纳电池单体10'的间隙,每个第一导流体221'内部形成有用于容纳流体介质的第一流道;第二导流体222'连接每个第一导流体221',第二导流体222'内部形成有用于容纳流体介质的第二流道,第二流道与每个第一流道连通,第二导流体的长度方向Y2与第一导流体的厚度方向X1平行,第二导流体222'沿其厚度方向的一表面连接于第一导流体221'。流体介质可以进入第二流道后再从第二流道分配至每个第一流道内。但是现有的第二导流体222'为正方体管或者圆管,图2中示出了第二导流体222'为圆管的情况,则第二导流体222'的宽度和厚度相同,在保证第二导流体222'具有足够的流量的情况下,电池100'的箱本体21'的壁和电池单体10'之间沿第二导流体的宽度方向Z2没有被充分利用,但第二导流体222'沿其厚度方向X2上占用电池100'的箱本体21'的壁和电池单体10'之间太多空间,以使箱本体21'的内部空间在第二导流体的厚度方向X2上没有更多的空间去容纳电池单体10,不利于提高电池100'的能量密度。
基于上述考虑,为了缓解因在第二导流体的厚度方向上,电池的箱本体的壁和电池单体之间的空间不能被充分利用,而导致电池的能量密度较低的问题,发明人经过深入研究,设计了一种热管理部件,沿热管理部件的第二导流体的厚度方向,第二导流体最远离电池单体的表面和电池单体的外壳最靠近第二导流体的表面之间的距离为L,第二流道的横截面积为S,0.0074≤L/S≤0.154。
L/S<0.0074,第二导流体222在其厚度方向以外的其他方向中至少一个方向上的尺寸达到了箱本体21的内部空间尺寸的上限值,L/S不能小于0.0074;若是L/S>0.154,则沿第二导流体的厚度方向,电池单体和热管理部件形成的整体结构的尺寸较大,在第二流道的横截面积S一定的条件下,第二导流体在其厚度方向上的尺寸较大,导致具备该热管理部件的电池的箱本体内部的空间在第二导流体的厚度方向上的空间不能被充分用于容纳电池单体,相较于第二导流体为圆管或方管,且壁厚和流道横截面积均与本申请的第二导流体相同的情况,具备该热管理部件的电池的箱体的内空间利用率较低。
因此,0.0074≤L/S≤0.154,相较于第二导流体为圆管或方管,且壁厚和流道横截面积均与本申请的第二导流体相同的情况,具备该热管理部件的电池的箱本体内的空间被充分利用于容纳电池单体,提供电池的箱本体的内部空间利用率,有利于提高具备该热管理部件的电池的能量密度。
本申请实施例公开的热管理部件可以但不限用于车辆、船舶或飞行器等用电设备中。可以使用具备本申请公开的电池组成该用电设备的电源***,这样,有利于提高换热效率和电池的能量密度。
本申请实施例提供一种使用电池作为电源的用电设备,用电设备可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电设备为车辆1000为例进行说明。
请参照图3,图3为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图4,图4为本申请一些实施例提供的电池100的***图。电池100包括电池单体10和箱体20。
箱体20包括箱本体21和热管理部件22,箱本体21内部形成有容纳空间,热管理部件22和电池单体10均容纳于容纳空间内。
箱本体21可以采用多种结构。在一些实施例中,箱本体21可以包括第一部分211和第二部分212,第一部分211与第二部分212相互盖合,第一部分211和第二部分212共同限定出用于容纳热管理部件22和电池单体10的容纳空间。第二部分212可以为一端开口以形成容纳热管理部件22和电池单体10的容纳腔的空心结构,第一部分211可以为板状结构,第一部分211盖合于第二部分212的开口侧,以使第一部分211与第二部分212共同限定出容纳空间;第一部分211和第二部分212也可以是均为一侧开口以形成容纳热管理部件22和电池单体10的容纳腔的空心结构,第一部分211的开口侧盖合于第二部分212的开口侧。当然,第一部分211和第二部分212形成的箱本体21可以是多种形状,比如,圆柱体、长方体等。
热管理部件22用于调节电池单体10的温度。热管理部件22可以提升电池单体10的温度,比如在环境温度较低而导致电池单体10不能正常充放电时,通过热管理部件22提升电池单体10的温度,以使电池单体10能够正常充放电。热管理部件22可以用于降低电池单体10的温度,比如在电池单体10充放电过程中电池单体10温度升高或者电池单体10所处的环境温度过高,通过热管理部件22对电池单体10降温,以使电池单体10保持正常的工作温度,降低安全事故发生的可能。
在电池100中,电池单体10可以是多个,多个电池单体10之间可串联或并联或混联,混联是指多个电池单体10中既有串联又有并联。多个电池单体10之间可直接串联或并联或混联在一起,再将多个电池单体10构成的整体容纳于箱本体21内;当然,电池100也可以是多个电池单体10先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱本体21内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件(图中未示出),用于实现多个电池单体10之间的电连接。
其中,每个电池单体10可以为二次电池100或一次电池100;还可以是锂硫电池100、钠离子电池100或镁离子电池100,但不局限于此。电池单体10可呈圆柱体、扁平体、长方体或其它形状等。
请参照图5,图5为本申请一些实施例提供的电池单体10的分解结构示意图。电池单体10是指组成电池100的最小单元。电池单体10包括有端盖11、壳体12、电极组件13以及其他的功能性部件。
端盖11是指盖合于壳体12的开口121处以将电池单体10的内部环境隔绝于外部环境的部件。端盖11和壳体12共同形成电池单体10的外壳。不限地,端盖11的形状可以与壳体12的形状相适应以配合壳体12。可选地,端盖11可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖11在受挤压碰撞时就不易发生形变,使电池单体10能够具备更高的结构强度,安全性能也可以有所提高。端盖11上可以设置有如电极端子14等的功能性部件。电极端子14可以用于与电极组件13电连接,以用于输出或输入电池单体10的电能。在一些实施例中,端盖11上还可以设置有用于在电池单体10的内部压力或温度达到阈值时泄放内部压力的泄压机构15。端盖11的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。在一些实施例中,在端盖11的内侧还可以设置有绝缘件,绝缘件可以用于隔离壳体12内的电连接部件与端盖11,以降低短路的风险。示例性的,绝缘件可以是塑料、橡胶等。
壳体12是用于配合端盖11以形成电池单体10的内部环境的组件,其中,形成的内部环境可以用于容纳电极组件13、电解液以及其他部件。壳体12和端盖11可以是独立的部件,可以于壳体12上设置开口121,通过在开口121处使端盖11盖合开口121以形成电池单体10的内部环境。不限地,也可以使端盖11和壳体12一体化,具体地,端盖11和壳体12可以在其他部件入壳前先形成一个共同的连接面,当需要封装壳体12的内部时,再使端盖11盖合壳体12。壳体12可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,壳体12的形状可以根据电芯组件的具体形状和尺寸大小来确定。壳体12的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
电极组件13是电池单体10中发生电化学反应的部件。壳体12内可以包含一个或更多个电极组件13。电极组件13主要由正极片和负极片卷绕或层叠放置形成,并且通常在正极片与负极片之间设有隔膜。正极片和负极片具有活性物质的部分构成电芯组件的主体部,正极片和负极片不具有活性物质的部分各自构成极耳。正极耳和负极耳可以共同位于主体部的一端或是分别位于主体部的两端。在电池100的充放电过程中,正极活性物质和负极活性物质与电解液发生反应,极耳连接电极端子14以形成电流回路。端盖11上可以设置两个电极端子14,两个电极端子14分别与正极耳和负极耳电连接。
如图6、图7所示,在一些实施例中,热管理部件22包括多个第一导流体221和至少一个第二导流体222;多个第一导流体221沿第一导流体的厚度方向X1间隔排布,相邻的两个第一导流体221之间形成用于容纳电池单体10的间隙,每个第一导流体221内部形成有用于容纳流体介质的第一流道(图中未示出);至少一个第二导流体222连接每个第一导流体221,第二导流体222内部形成有用于容纳流体介质的第二流道(图中未示出),第二流道与每个第一流道连通;其中,第二导流体的长度方向Y2与第一导流体的厚度方向X1平行,第二导流体222沿其厚度方向的一表面连接于第一导流体221,沿第二导流体的厚度方向X2,第二导流体222最远离电池单体10的表面和电池单体10的外壳最靠近第二导流体222的表面之间的距离为L(图14、图18、图19、图20中示出),第二流道的横截面积为S,满足0.0074≤L/S≤0.154。
电池单体10的外壳包括端盖11和壳体12,壳体12具有开口,端盖11用于封盖壳体12的开口,壳体12和端盖11共同限定出容纳电极组件和电解液的容纳空间。电池单体还包括电极端子14,电极端子设置于外壳,比如设置于外壳的端盖11或者壳体12。电极端子14与电极组件电连接,以输出电池单体10的电能或者为电池单体10充电。
在另一些实施例中,沿第二导流体的厚度方向X2,壳体12可以最靠近第二导流体222,则L为壳体12的最靠近第二导流体222的表面和第二导流体222最远离电池单体10的表面之间的距离。(图14、图18所示)。
沿第二导流体的厚度方向X2,端盖11可以最靠近第二导流体222,则L为端盖11的最靠近第二导流体222的表面和第二导流体222最远离电池单体10的表面之间的距离(图19、图20所示)。
流体介质可以是气体,也可以是液体。流体介质可以是空气、水等。流体介质能够与电池单体10热交换,从而调节电池单体10的温度。若是流体介质的温度高于电池单体10的温度,则电池单体10能够吸收流体介质的热量,电池单体10升温,则热管理部件22提升电池单体10的温度。若是流体介质的温度低于电池单体10的温度,则流体介质能够吸收电池单体10的热量,电池单体10降温。
第一流道沿第一导流体的长度方向Y1延伸。第一导流体的厚度方向X1、第一导流体的长度方向Y1和第一导流体的宽度方向Z1两两垂直。
第二流道沿第二导流体的长度方向Y2延伸。第二导流体的厚度方向X2、第二导流体的长度方向Y2和第二导流体的宽度方向Z2两两垂直。
第一导流体221具有第一连接部2211,第二导流体222具有第二连接部2221,第一连接部2211和第二连接部2221连接,从而实现都第二流道和每个第一流道连通。每个第二导流体222上设有多个第二连接部2221,多个第二连接部2221沿第二导流体的长度方向Y2间隔布置,每个第二导流体222的第二连接部2221和第一导流体221数量上一一对应设置,以使每个第一导流体221均能够与第二导流体222连接。第一连接部2211可以是由第一导流体221的端部形成,第一连接部2211也可以是凸出于第一导流体221面向第二导流体222的表面的凸部。第二连接部2221可以为凸出于第二导流体222面向第一导流体221的表面的凸部。
L的单位为mm,S的单位为mm 2,L/S的单位为m/mm 2。L/S可以为0.0094、0.0096、0.0098、0.010、0.012、0.015、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.1、0.11、0.12等。
L的取值范围可以是2.3mm<L<35mm,比如2.3mm、2.5mm、5mm、10mm、15mm、20mm、25mm、30mm、34mm等。
优选的,4.3mm<L<9.4mm,比如4.4mm、4.5mm、5.2mm、5.5mm、6mm、6.5mm、7mm、7.5mm、8mm、8.5mm、9.3mm等。
S的取值范围可以是12.75mm 2<S<4500mm 2,比如100mm 2、200mm 2、300mm 2、500mm 2、1000mm 2、1500mm 2、2000mm 2、2500mm 2、3500mm 2、4000mm 2、4400mm 2等。
优选的,300mm2<S<1000mm2,比如400mm 2、450mm 2、500mm 2、550mm 2、600mm 2、650mm 2、700mm 2、750mm 2、800mm 2、900mm 2、950mm 2等。
在箱本体21的内部空间体积一定,且箱本体21沿各个方向(第一导流体的厚度方向X1、第一导流体长度方向Y1和第一导流体的宽度方向Z1)尺寸均相同的条件下,确保本申请实施例的第二导流体222的流量不小于相关技术中第二导流体222'为圆管时(图1、图2中示出)的流量。其中为圆管的第二导流体222'(图2中示出)和本申请实施例的第二导流体222的壁厚相同。示例性地,为圆管的第二导流体222'的半径为10mm,示例性地,12.75mm 2<S<4500mm 2优选,30mm 2<S<4500mm 2,以确保本申请实施例的第二导流体222的流量不小于相关技术中第二导流体222'为圆管(图1、图2中示出)时的流量。
表1
Figure PCTCN2022133241-appb-000001
上述表格中的数据采用体积利用率采用如下方法获得,如图8所示,量取箱本体21沿其长度方向的尺寸M,箱本体21沿其宽度方向的尺寸W,箱本体21沿其高度方向的尺寸N,其中,在电池100用于车辆1000的情况下,箱本体21的长度方向可以与行车方向平行。计算出箱本体21的体积V=M*W*N,电池100的所有电池单体10的体积之和V总=V cell*n,V cell为单个电池单体10的体积,n为电池单体10的数量。箱本体21的体积利用率=(V /V)*100%。
如表1所示,以相关技术中热管理部件22'的第二导流体222'为圆管形式,其箱本体21的体积利用率为70.3%为参照对比。在表1中,L/S为0.0074、0.0078、0.008、0.0094、0.01、0.02、0.032、0.04、0.15、0.154的情况下,箱本体21的体积利用率分别76.02%、76.1%、76.00%、75.96%、75.94%、75.57%、75.83%、74.75%、70.5%、70.3%,均不小于第二导流体222为圆管形式的情况下箱本体21的体积利用率70.3%,理论状态,L/S越小,沿第二导流体的厚度方向X2,箱本体21的体积利用率越高,但是根据实际测量,当L/S<0.074则第二导流体222在其厚度方向以外的方向中至少一个方向上的尺寸已经达到箱本体21内部空间尺寸的上限值,因此,L/S不能小于0.0074。继续参照表1,当L/S为0.16,箱本体21的体积利用率为70.1%,小于第二导流体222为圆管形式的情况下箱本体21的体积利用率70.3%。
因此,L/S<0.0074,第二导流体222在其厚度方向以外的其他方向中至少一个方向上的尺寸达到了箱本体21的内部空间尺寸的上限值,L/S不能小于0.0074;若是L/S>0.154,则沿第二导流体的厚度方向X2,电池单体10和热管理部件22形成的整体结构的尺寸较大,在第二流道的横截面积S一定的条件下,第二导流体222在其厚度方向上的尺寸较大,导致具备该热管理部件22的电池100的箱本体21内部的空间在第二导流体的厚度方向X2上的空间不能被充分用于容纳电池单体10,相较于第二导流体222为圆管或方管,且壁厚和流道横截面积均与本申请的第二导流体222相同的情况,具备该热管理部件22的电池100的箱本体21的内空间利用率较低,因此,0.0074≤L/S≤0.154,相较于第二导流体222为圆管或方管,且壁厚和流道横截面积均与本申请的第二导流体222相同的情况,具备该热管理部件22的电池100的箱本体21内的空间被充分利用于容纳电池单体10,提供电池100的箱本体21的内部空间利用率,有利于提高具备该热管理部件22的电池100的能量密度。
在一些实施例中,0.0094≤L/S≤0.032。
示例性地,L/S可以是0.0094、0.0095、0.0097、0.0099、0.011、0.016、0.018、0.022、0.025、0.028、0.030、0.031、0.032等。
表2
Figure PCTCN2022133241-appb-000002
表2中的C表示的是电池100的快充倍率的单位,快充倍率越高,要求热管理部件22的对电池单体10的换热效率越高。因此,以相关技术中圆管形式的第二导流体222'的对电池单体10的换热效率能满足4C这样的快充倍率,箱本体21的体积利用率为70.3%为参照对比。在表1中,L/S为0.0074、0.008的情况下,箱本体21的体积利用率分别为76.02%、76.00%,大于第二导流体222为圆管形式的情况下箱本体21的体积利用率70.3%,但热管理部件22仅能满足2C~3.5C的快充倍率,低于第二导流体222为圆管形式的情况下热管理部件22能满足的快充倍率。
L/S为0.04、0.15的情况下,箱本体21的体积利用率分别为74.75%、70.5%,均大于第二导流体222为圆管形式的情况下箱本体21的体积利用率70.3%,但是热管理部件22只能满足3C~3.5C的快充倍率,低于第二导流体222为圆管形式的情况下热管理部件22能满足的4C快充倍率。
因此,若是0.0074≤L/S<0.0094,则不仅具备该热管理部件22的电池单体10的箱本体21的内部空间不能被充分利用,且具备该第二导流体222的热管理部件22的换热效率还较低,若是0.154>L/S>0.032,虽然具备该热管理部件22的电池单体10的箱本体21的内部空间被充分利用,有利于提高具备该热管理部件22的电池100的能量密度,但是具备该第二导流体222的热管理部件22的换热效率较低,因此,0.0094≤L/S≤0.032,既能有利于具备该热管理部件22的电池100的箱本体21内的空间被充分利用于容纳电池单体10,提高电池100的箱本 体21的内部体积利用率,有利于提高具备该热管理部件22的电池100的能量密度,还能使得具备该第二导流体222的热管理部件的换热效率较高,满足对电池100的快充倍率需求。
在一些实施例中,第二导流体222的沿其厚度方向的尺寸为H 1(图6、图7、图9-图11中示出),第二导流体222沿其宽度方向的尺寸为H 2(图6、图7、图9-图11中示出),H 1<H 2
第二导流体222的厚度H 1是指第二导流体222沿其厚度方向的尺寸,第二导流体的厚度方向X2为第二导流体222面向第一导流体221的方向。第二导流体222的宽度H 2是指第二导流体222沿其宽度方向的尺寸。
第二导流体222的厚度H 1小于第二导流体222的宽度H 2,因此,第二导流体222经过扁平化处理后可以形成扁管结构。沿第二导流体的厚度方向X2,第二导流体222背离第一导流体221的一侧可以是与箱本体21的壁相对,也可以是与电池100的内部的其他结构如汇流部件、电路板等结构相对。
第二导流体222的厚度H 1和第二导流体222的宽度H 2,满足H 1<H 2,相当于在保证第二导流体222的第二流道的流量,从而保证热管理部件22的热交换效率的情况下,减小第二导流体222的厚度,增大第二导流体222的宽度,能够减小在第二导流体的宽度方向Z2的空间的浪费,有利于具有该热管理部件22的电池100的箱本体21内的空间被充分利用,提高电池100的箱本体21的内部空间利用率,有利于提高具备该热管理部件22的电池100的能量密度。
第一导流体221和第二导流体222的相对位置关系可有不同的方式,比如结合参照图6、图9,在一些实施例中,第一导流体221沿其长度方向的至少一端连接有第二导流体222。在这种实施例中,第一导流体的长度方向Y1与第二导流体的厚度方向X2平行。第二导流体的宽度方向Z2与第一导流体的宽度方向Z1平行。
在这种实施例中,第二导流体222沿其厚度方向最远离电池单体10的表面和电池单体10之间的距离L为沿第二导流体的厚度方向X2(沿第一导流体的长度方向Y1),第二导流体222背离第一导流体221的表面和电池单体10的外壳面向第二导流体222的表面之间的距离(如图14所示)。
第一导流体221沿其长度方向的至少一端部形成第一导流体221的第一连接部2211。第一导流体221沿其长度方向的端部与第二导流体222的第二连接部2221连接。
第一导流体221沿其长度方向的至少一端连接有第二导流体222,则有利于流体介质从第二流道沿第一导流体的长度方向Y1在第一流道内流动,使得流体介质能够与电池单体10充分换热,提高换热效率,且能够使得电池单体10沿第一导流体的长度方向Y1的温度更加均匀。
请继续参照图6、图9,在一些实施例中,第一导流体221沿其长度方向的两端均连接有第二导流体222。
在本实施例中,热管理部件22包括两个第二导流体222,两个第二导流体222沿第一导流体的长度方向Y1间隔布置,且两个第二导流体222分别连接于每个第一导流体的长度方向Y1的两端。沿第一导流体的长度方向Y1,每个第一导流体221的第一流道将两个第二导流体222的第二流道连通。两个第二导流体222中的一个第二导流体222内的流体介质可以流入每个第一导流体221的第一流道,每个第一导流体221的第一流道内的流体介质可以汇集在两个第二导流体222中的另一个第二导流体222内,流体介质在每个第一流道和每个第二流道内流动,并与电池单体10(图4中示出)热交换。
第一导流体221沿其长度方向的两端均连接有第二导流体222,则流体介质能够从第一流道的一端流向另一端,使得流体介质能够与电池单体10充分换热,提高换热效率,且能够使得电池单体10沿第一导流体的长度方向Y1的温度更加均匀。
在另一些实施例中,第一导流体221沿其长度方向仅一端连接有第二导流体222。当然,第一导流体221沿其长度方向一端可以设置多个第二导流体222,设置在第一导流体221沿其长度方向同一端的多个第二导流体222可以沿第一导流体的宽度方向Z1间隔或者紧挨(即不间隔)布置。
结合参照图7、图10,再比如,第一导流体221沿其宽度方向的至少一侧连接有第二导流体222。在这种实施例中,第二导流体的厚度方向X2与第一导流体的宽度方向Z1平行。第二导流体的宽度方向Z2与第一导流体的长度方向Y1平行。
在这种实施例中,第二导流体222沿其厚度方向最远离电池单体10的表面和电池单体10之间的距离L为沿第二导流体的厚度方向X2(沿第一导流体的宽度方向Z1),第二导流体222背离第一导流体221的表面和电池单体10的外壳面向第二导流体222的表面之间的距离(如图18、图19、图20所示)。
第一连接部2211为凸出于第一导流体221在其宽度方向上面向第二导流体222的表面的凸部。第一连接部2211和第二连接部2221相连,从而实现将第二导流体222连接于第一导流体的宽度方向Z1的一侧。
第一导流体221沿其宽度方向的至少一侧连接有第二导流体222,则能够缓解热管理部件22在第一导流体的长度方向Y1上尺寸较大的问题,从而有利于具备该热管理部件22的电池100的箱本体21的内部空间被合理、充分利用。
在一些实施例中,热管理部件22包括两个第二导流体222,两个第二导流体222间隔设置于第一导流体221沿其宽度方向的同一侧。
在本实施例中,两个第二导流体222沿第一导流体的长度方向Y1间隔布置,且两个第二导流体222均连接于每个第一导流体221沿其宽度方向的同一侧。沿第一导流体的宽度方向Z1,每个第一导流体221的第一流道与两个第二导流体222的第二流道连通。两个第二导流体222中的流体介质可以沿第二导流体的厚度方向X2流入每个第一导流体221的第一流道,每个第一导流体221的第一流道内的流体介质可以向两个第二导流体222的第二流道内汇集。
两个第二导流体222均连接于第一导流体221沿其宽度方向的同一侧,则能够缓解因将第二导流体222连接于第一导流体221沿其宽度方向而导致热管理部件22在第一导流体的宽度方向Z1尺寸较大的问题。
在另一些实施例中,热管理部件22包括多个第二导流体222,多个是指两个及两个以上。多个第二导流体222中的一部分连接于第一导流体221沿其宽度方向的一侧,多个第二导流体222中的另一部分连接于第一导流体221沿其宽度方向的另一侧。示例性地,热管理部件22包括两个第二导流体222,两个第二导流体222分别连接于第一导流体221沿其宽度方向的两侧。两个第二导流体222在垂直第一导流体的宽度方向Z1的平面内的投影可以不重叠并间隔布置,这使得流体介质从一个第二导流体222内流向第一导流体221的第一流道后能够沿第一导流体的长度方向Y1在第一流道内流动,尽可能的充满整个第一流道,从而提高与电池单体10的换热效率。
如图6、图7、图9、图10所示,在一些实施例中,热管理部件22包括两个第二导流体222,沿第一导流体的长度方向Y1,两个第二导流体222间隔设置于第一导流体221;热管理部件22还包括第一连接件223和第二连接件224,第一连接件223和第二连接件224分别连接两个第二导流体222,第一连接件223内部形成介质流入通道,第二连接件224内部形成有介质流出通道,介质流入通道和介质流出通道分别与两个第二导流体222的第二流道连通。
第一连接件223直接连接于两个第二导流体222中的一者,以使介质流入通道能够与该第二导流体222的第二流道直接连通。第二连接件224直接连接于两个第二导流体222中的另一者,以使介质流出通道能够与该第二导流体222的第二流道直接连通。
流体介质从介质流入通道进入与介质流入通道直接连通的第二流道,再经过第二流道流入每个第一导流体221的第一流道,每个第一流道内的流体介质向与介质流出通道直接连通的第二流道汇聚,并经过该第二流道从介质流出通道排出。
第一连接件223设置,便于向一个第二流道提供流体介质,并通过该第二流道向每个第一流道同步提供流体介质,第二连接件224的设置,便于每个第一流道内的流体介质汇集在第二流道内后排出介质流出通道,使得流体介质能够在第一流道和第二流道内不断流通,提高与电池单体10(图4中示出)的换热效率。
第一连接件223和第二连接件224可以连接于两个第二导流体222的不同位置。请继续参见图6、图7、图9、图10,在一些实施例中,第一连接件223连接于两个第二导流体222中的一者沿其长度方向的一端,第一连接件223与第二导流体222垂直;第二连接件224连接于两个第二导流体222中的另一者沿其长度方向的一端,第二连接件224与第二导流体222垂直。
如图6、图9所示,在第一导流体221沿其长度方向的两端均连接有第二导流体222的实施例中,第一连接件223连接于第二导流体222长度方向的一端,第一连接件223从与之相连的第二导流体222沿第一导流体的长度方向Y1向靠近另一个第二导流体222的方向延伸。第一连接件223位于所有第一导流体221的一侧并与位于最端部的第一导流体221沿第一导流体的厚度方向X1层叠布置。第一连接件223与位于端部的第一导流体221相对间隔布置,第一连接于与位于端部的第一导流体221之间的间隔可以用于容纳电池单体10(图4中示出),这种情况下,第一连接件223也可以与电池单体10(图4中示出)接触,以使流体介质在第一连接件223时也能与电池单体10进行热交换,从而调高换热效率。
第二连接件224连接于第二导流体222长度方向的一端,第二连接件224从与之相连的第二导流体222沿第一导流体的长度方向Y1向靠近另一个第二导流体222的方向延伸。第二连接件224位于所有第一导流体221的一侧并与位于最端部的第一导流体221沿第一导流体的厚度方向X1层叠布置。第二连接件224与位于端部的第一导流体221相对间隔布置,第二连接于与位于端部的第一导流体221之间的间隔可以用于容纳电池单体10(图4中示出),这种情况下,第二连接件224也可以与电池单体10(图4中示出)接触,以使流体介质在第二连接件224时也能与电池单体10(图4中示出)进行热交换,从而调高换热效率。
其中,第一连接件223和第二连接件224可以位于将所有第一导流体221作为整体看待的同侧,第一连接件223和第二连接件224可以位于将所有第一导流体221作为整体看待的相对的两侧。图9中示出了第一连接件223和第二连接件224可以位于将所有第一导流体221作为整体看待的同侧的情况。
如图7、图10所示,在热管理部件22包括两个第二导流体222,第一导流体221沿其宽度方向的连接有第二导流体222的实施例中,第一连接件223连接于第二导流体222长度方向的一端,第一连接件223从与之相连的第二导流体222沿第一导流体的宽度方向Z1延伸至位于最端部的第一导流体221背离其他第一导流体221的一侧。第一连接件223和与之最靠近的位于最端部的第一导流体221沿第一导流体的厚度方向X1层叠布置。第一连接件223与位于端部的第一导流体221相对间隔布置,第一连接于与位于端部的第一导流体221之间的间隔可以用于容纳电池单体10(图4中示出),这种情况下,第一连接件223也可以与电池单体10接触,以使流体介质在第一连接件223时也能与电池单体10进行热交换,从而调高换热效率。
第二连接件224连接于第二导流体222长度方向的一端,第二连接件224从与之相连的第二导流体222沿第一导流体的宽度方向Z1延伸至位于最端部的第一导流体221背离其他第一导流体221的一侧。第二连接件224和与之最靠近的位于最端部的第一导流体221沿第一导流体的厚度方向X1层叠布置。第二连接件224与位于端部的第一导流体221相对间隔布置,第二连接件224与位于端部的第一导流体221之间的间隔可以用于容纳电池单体10,这种情况下,第二连接件224也可以与电池单体10(图4中示出)接触,以使流体介质在第二连接件224时也能与电池单体10(图4中示出)进行热交换,从而调高换热效率。
其中,沿第一导流体的厚度方向X1,第一连接件223和第二连接件224可以位于将所有第一导流体221作为整体看待的同侧,第一连接件223和第二连接件224可以位于将所有第一导流体221作为整体看待的相对的两侧。图10中示出了两个第二导流体222连接于第一导流体221沿其宽度方向的同侧,且第一连接件223和第二连接件224可以位于将所有第一导流体221作为整体看待的同侧的情况。
第一连接件223连接于两个第二导流体222中的一者沿其长度方向的一端,有利于流体介质进入第一流道后沿第一导流体的长度方向Y1流向第一流道的另一端,使得流体介质能够被分配至每个第一流道,从而与 电池单体10(图4中示出)充分换热,第一连接件223与第二导流体222垂直,降低第一连接件223和第二导流体222干涉的风险。第二连接件224连接于两个第二导流体222中的另一者沿其长度方向的一端,有利于每个第一流道内的流体介质汇集在第二流道内后从介质流出通道排出,第二连接件224与第二导流体222垂直,降低第二连接件224和第二导流体222干涉的风险。
当然,热管理部件22也可以不设置第一连接件223和第二连接件224。
请继续参见图6、图7、图9、图10,第一连接件223背离与之连接的第二导流体222的一端还可以连接有第一转接件225,第一转接件225可以延伸出箱本体21并与外部的提供流体介质的供料设备连接,以使供料设备于介质流入通道通过第一转接件225连通,供料设备提供流体介质从经过第一转接件225件、第一连接件223进入第二流道。第二连接件224背离与之连接的第二导流体222的一端还可以设置第二转接件226,第二转接件226能够延伸出箱本体21,以使热管理部件22内的流体介质能够排出。
如图11、图12所示,在一些实施例中,热管理部件22还包括第三连接件227,第一连接件223和第二连接件224通过第三连接件227连接。在这种情况下,沿第一导流体的厚度方向X1,第一连接件223和第二连接件224可以位于将所有第一导流体221作为整体看待的同侧。
如图11所示,在第一导流体221沿其长度方向的两端均连接有第二导流体222的实施例中,第三连接件227沿第一导流体的长度方向Y1延伸,第三连接件227的一端与第一连接背离与之相连的第二导流体222的一端,第三连接件227的另一端与第二连接背离与之相连的第二导流体222的一端。
如图12所示,在两个第二导流体222连接于第一导流体221沿其宽度方向的同侧的实施例中,第三连接件227沿第一导流体的长度方向Y1延伸,第三连接件227沿其延伸方向的两端分别与第一连接件223和第二连接件224。
在两个第二导流体222分别连接于第一导流体221沿其宽度方向的两侧的实施例中,第三连接件227沿第一导流体的宽度方向Z1延伸,第三连接件227沿其延伸方向的两端分别与第一连接件223和第二连接件224。
第三连接件227可以是未与介质流入通道和介质流出通道连通的结构,第三连接件227可以是连接板、连接索(如木制绳、钢丝绳等)等。
第一连接件223和第二连接件224通过第三连接件227连接,能够对第一连接件223和第二连接件224起到束缚作用,有利于第一连接件223和第二连接件224保持稳定的相对位置关系,从而使两个第二导流体222保持相对稳定的位置关系。
请参见图4,本申请实施例还提供一种箱体20,箱体20包括箱本体21和上述任意实施例提供的热管理部件22,箱本体21形成有容纳空间,热管理部件22容纳于容纳空间内。
由于第二导流体222沿其厚度方向最远离电池单体10的表面和电池单体10之间的距离L和第二流道的横截面积S,满足0.0094≤L/S≤0.12,有利于具备该热管理部件22的箱体20的箱本体21的内部空间被充分利用于容纳电池单体10,提高箱本体21的内部空间利用率,有利于提高箱体20的电池100的能量密度。
如图13所示,在一些实施例中,沿第一导流体的宽度方向Z1,箱本体21具有与第二导流体222相对设置的壁部213,第二导流体222设置于第一导流体221面向壁部213的一侧,壁部213设置有容纳第二导流体222的容纳部214。
容纳部214为设置于壁部213的凹槽。沿第二导流体的厚度方向X2,第二导流体222可以部分容纳于容纳部214内,也可以全部容纳于容纳部214。
如图13所示,箱本体21与第二导流体222相对的壁部213为箱本体21的底壁,则容纳部214设置于底壁的内表面。当然,第二导流体222也可以与箱本体21的其他壁相对设置。
壁部213设置有容纳第二导流体222的容纳部214,则第二导流体222可以嵌设于壁部213内,能够减少第二导流体222对箱本体21的内部空间的占用,即节省了箱本体21的内部空间,则箱本体21的内部可以具有更多的用于容纳电池单体10的空间,有利于提高具备箱体20的电池100的能量密度。
如图14-图19所示,本申请实施例还提供一种电池100,电池100包括电池单体10和上述任意实施例提供的箱体20,电池单体10容纳于间隙内。
电池单体10容纳于相邻的两个第一导流体221之间形成的间隙内。第一导流体221不仅能够调节电池单体10的温度,第一导流体221可以相当于电池100内的梁结构,起到支撑电池单体10和提高电池100的结构强度的作用。电池100可以包括一个或者多个电池单体10。在电池100包括多个电池单体10的实施例中,多个电池单体10可以通过回流部件实现串联、并联或混联。
电池100的箱本体21内部空间能够被热管理部件22和电池单体10充分利用,从而提高箱本体21的内部空间的利用率,有利于提高换热效率和电池100的能量密度。
如图14所示,在一些实施例中,第一导流体221沿其长度方向的至少一端连接有第二导流体222;沿第二导流体的宽度方向Z2,第二导流体222覆盖电池单体10的至少部分。
沿第二导流体的宽度方向Z2,第二导流体222覆盖电池单体10的至少部分,可以理解为,第二导流体222和与之距离最近的电池单体10在垂直第一导流体的长度方向Y1的平面上的投影至少部分重叠,则第二导流体222可以和与之最近的电池单体10接触,使得第二导流体222内的流体介质也能够与电池单体10进行热交换,从而调节电池单体10的温度,还能提高温度调节效率。
在一些实施例中,沿第二导流体的宽度方向Z2,第二导流体222覆盖电池单体10的全部。
可以理解为,与第二导流体222距离最近的电池单体10在垂直第一导流体的长度方向Y1的平面上的投影位于第二导流体222在垂直第一导流体的长度方向Y1的平面上的投影内,使得第一导流体221和电池单体10的接触面积较大,能够增大换热面积,以提高换热效率,从而高温度调节效率。
电池单体10的电极端子14可以沿第二导流体的宽度方向Z2延伸,电池单体10在第二导流体的宽度方向Z2的尺寸包括电极端子14凸出电池单体10的端盖11的高度。
在第一导流体221沿其长度方向的至少一端连接有第二导流体222的实施例中,第二导流体222在其宽度方向上的尺寸可以与电池单体10的在第二导流体的宽度方向Z2上的尺寸相同,也可以不。
在一些实施例中,第二导流体的宽度方向Z2可以是电极端子14凸出与端盖11的方向,也可以不是电极端子14凸出与端盖11的方向。
第二导流体222沿其宽度方向的尺寸不能大于箱本体21(图4中示出)的内部空间沿第二导流体的宽度方向Z2的尺寸。第二导流体222沿其厚度方向的尺寸不能大于箱本体21的内部空间沿第二导流体的厚度方向X2的尺寸。
如图14、图15所示,在第一导流体221沿其长度方向至少一端连接有第二导流体222的实施例中,电池单体10的电极端子14可以位于电池单体10沿第一导流体的宽度方向Z1的一侧,这样第二导流体222可以不与电极端子14和设置在电池100端子侧的其他结构干涉。在图13、图14示出的实施例中,箱本体21在第一导流体的长度方向Y1上与第二导流体222相对的壁部213设有容纳部214,第二导流体222容纳于容纳部214内。
如图16、图17所示,在一些实施例中,电池单体10具有电极端子14,沿第一导流体的宽度方向Z1,电极端子14位于电池单体10背离第二导流体222的一侧。
电极端子14位于电池单体10沿第一导流体的宽度方向Z1的一侧,第二导流体222连接于第一导流体221沿其宽度方向的一侧,且与电极端子14相背离设置。
在电池100内部可以设置电路板,电路板上可以设有压力采集件、温度采集件等,以使检测电池100内部的相关信息,以判断电池100是否正常,从而有效降低安全事故发生的风险。为方便设置和信息检测的准确性,电路板一般靠近电极端子14设置。
在电池100包括多个电池单体10的实施例中,多个电池单体10还可以通过汇流部件实现串联、并联或混联,而汇流部件与电极端子14连接。
因此,沿第一导流体的宽度方向Z1,电极端子14位于电池单体10背离第二导流体222的一侧,能够避免第二导流体222与汇流部件、电路板等结构安装位置干涉的风险。
在图16、图17中示出实施例中,如图16所示,箱本体21在第一导流体的宽度方向Z1上与第二导流体222相对的壁部213设有容纳部214,第二导流体222容纳于容纳部214内,图17中示出了箱本体21的底壁设有容纳部214的情况。
当然,如图19、图20所示,在另一些实施例中,电池单体10具有电极端子14,沿第一导流体的宽度方向Z1,电极端子14位于电池单体10面向第二导流体222的一侧。可以理解在第一导流体的宽度方向Z1上,电极端子14和第二导流体222同侧设置。
第二导流体222可以利用电极端子14凸出于端盖11的部分的空间,因此,沿第一导流体的宽度方向Z1,电极端子14位于电池单体10面向第二导流体222的一侧,能够缓解因将第二导流体222连接于第一导流体221沿其宽度方向而导致热管理部件22和电池单体10形成的整体结构在第一导流体的宽度方向Z1尺寸较大的问题。
此外,电池100在电极端子14侧可以设置电路板、汇流部件等其他结构,沿第一导流体的宽度方向Z1,电极端子14位于电池单体10面向第二导流体222的一侧,能够对电池100的设置于电极端子14侧的其他结构进行温度调节。
如图19所示,在一些实施例中,端盖11上还设有泄压机构15,泄压机构15用于在电池单体10内部的压力达到阈值时泄放电池单体10内部的压力,以使降低电池单体10发生***、起火等安全事故的风险。电极端子14和泄压机构15均设置于端盖11,且第一导流体的宽度方向Z1,泄压机构15和电极端子14均位于电池单体10面向第二导流体222的一侧,在第二导流体222设置喷淋结构,喷淋结构与第二流道连通,第二流道内的流体介质可以通过喷淋结构喷出。在泄压机构15泄放压力的过程中,喷淋结构打开,以将流体介质向泄压机构15喷淋,从而降低从泄压机构15内喷出的气体的温度和箱本体21内的温度,降低明火产生的风险。
本申请实施例还提供一种用电设备,用电设备包括上述任意实施例提供的电池100。
用电设备可以包括一个或者多个电池100,以为用电设备执行相关功能提供电能。
本申请实施例提供一种电池100,电池100包括电池单体10和箱体20,箱体20包括箱本体21和热管理部件22,热管理部件22和电池单体10均位于箱本体21内。热管理部件22包括多个第一导流体221、两个第二导流体222、第一连接件223、第二连接件224、第一转接件225和第二转接件226。所有第一导流体221沿第一导流体的厚度方向X1间隔布置,相邻的两个第一导流体221之间形成间隙,电池单体10位于间隙内。每个第一导流体221内部形成第一流道,每个第二导流体222内部形成第二流道。每个第二导流体222与每个第一导流体221相连。每个第二流道与每个第一流道连通。两个第一导流体221分别连接于第一导流体221沿其长度方向的两端。第一连接件223内部形成介质流入通道,并连接于一个第二导流体222沿其长度方向的一端。第一连接件223沿第一导流体的长度方向Y1延伸并向靠近另一个第二导流体222的方向延伸,第一连接件223内部形成介质流入通道,介质流入通道和与之连接的第二导流体222的第二流道连通。第二连接件224内部形成介质流出通道,并连接于另一个第二导流体222沿其长度方向的一端,第二连接件224沿第一导流体的长度方向Y1延伸并向靠近另一个第二导流体222的方向延伸,第二连接件224内部形成介质流出通道,介质流出通道和与之连接的第二导流体222的第二流道连通。第一连接件223、第二连接件224、第一转接件225和第二转接件226均位于同一个位于最端部的第一导流体221背离其他第一导流体221的一侧。第一转接件225和第二转接件226分别连接于第一连接件223和第二连接件224,第一转接件225和第二转接件226均延伸出箱本体21外。电池单体10的电极端子14位于电池 单体10沿第一导流体的宽度方向Z1的一侧。第二导流体222沿其厚度方向(第二导流体的厚度方向X2)最远离电池单体10的表面和电池单体10之间的距离为L,第二流道的横截面积为S,满足0.0074≤L/S≤0.154,优选为0.0094≤L/S≤0.032。
本申请实施例还提供一种电池100,电池100包括电池单体10和箱体20,箱体20包括箱本体21和热管理部件22,热管理部件22和电池单体10均位于箱本体21内。热管理部件22包括多个第一导流体221、两个第二导流体222、第一连接件223、第二连接件224、第一转接件225和第二转接件226。所有第一导流体221沿第一导流体的厚度方向X1间隔布置,相邻的两个第一导流体221之间形成间隙,电池单体10位于间隙内。每个第一导流体221内部形成第一流道,每个第二导流体222内部形成第二流道。每个第二导流体222与每个第一导流体221相连。每个第二流道与每个第一流道连通。两个第一导流体221分别连接于第一导流体221沿其宽度方向的同侧。第一连接件223内部形成介质流入通道,并连接于一个第二导流体222沿其长度方向的一端。第一连接件223沿第一导流体的宽度方向Z1延伸,第一连接件223内部形成介质流入通道,介质流入通道和与之连接的第二导流体222的第二流道连通。第二连接件224内部形成介质流出通道,并连接于另一个第二导流体222沿其长度方向的一端,第二连接件224沿第一导流体的宽度方向Z1延伸,第二连接件224内部形成介质流出通道,介质流出通道和与之连接的第二导流体222的第二流道连通。第一连接件223、第二连接件224、第一转接件225和第二转接件226均位于同一个位于最端部的第一导流体221背离其他第一导流体221的一侧。第一转接件225和第二转接件226分别连接于第一连接件223和第二连接件224,第一转接件225和第二转接件226均延伸出箱本体21外。在第一导流体的宽度方向Z1上,电池单体10的电极端子14位于电池单体10背离第二导流体222的一侧,箱本体21与第二导流体222相对的壁部213为箱本体21的底壁,底壁上设有容纳部214,第二导流体222容纳于容纳部214内。或者,在第一导流体的宽度方向Z1上,电池单体10的电极端子14位于电池单体10面向第二导流体222的一侧。第二导流体222沿其厚度方向(第二导流体的厚度方向X2)最远离电池单体10的表面和电池单体10之间的距离为L,第二流道的横截面积为S,满足0.0074≤L/S≤0.154,优选为0.0094≤L/S≤0.032。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (17)

  1. 一种热管理部件(22),包括:
    多个第一导流体(221),沿所述第一导流体的厚度方向(X1)间隔排布,相邻的两个所述第一导流体(221)之间形成用于容纳电池单体(10)的间隙,每个所述第一导流体(221)内部形成有用于容纳流体介质的第一流道;
    至少一个第二导流体(222),连接每个所述第一导流体(221),所述第二导流体(222)内部形成有用于容纳流体介质的第二流道,所述第二流道与每个所述第一流道连通;
    其中,所述第二导流体的长度方向(Y2)与所述第一导流体的厚度方向(X1)平行,所述第二导流体(222)沿其厚度方向的一表面连接于所述第一导流体(221),沿所述第二导流体的厚度方向(X2),所述第二导流体(222)最远离所述电池单体(10)的表面和所述电池单体(10)的外壳最靠近所述第二导流体的表面之间的距离为L,所述第二流道的横截面积为S,满足0.0074≤L/S≤0.154。
  2. 根据权利要求1所述的热管理部件(22),其中,0.0094≤L/S≤0.032。
  3. 根据权利要求1或2所述的热管理部件(22),其中,所述第一导流体(221)沿其长度方向的至少一端连接有所述第二导流体(222)。
  4. 根据权利要求3所述的热管理部件(22),其中,所述第一导流体(221)沿其长度方向的两端均连接有所述第二导流体(222)。
  5. 根据权利要求1-4任一项所述的热管理部件(22),其中,所述第一导流体(221)沿其宽度方向的至少一侧连接有所述第二导流体(222)。
  6. 根据权利要求5所述的热管理部件(22),其中,所述热管理部件(22)包括两个所述第二导流体
    (222),两个所述第二导流体(222)间隔设置于所述第一导流体(221)沿其宽度方向的同一侧。
  7. 根据权利要求1-6任一项所述的热管理部件(22),其中,所述热管理部件(22)包括两个所述第二导流体(222),沿所述第一导流体的长度方向(Y1),两个所述第二导流体(222)间隔设置于所述第一导流体
    (221);
    所述热管理部件(22)还包括第一连接件(223)和第二连接件(224),所述第一连接件(223)和所述第二连接件(224)分别连接两个所述第二导流体(222),所述第一连接件(223)内部形成介质流入通道,所述第二连接件(224)内部形成有介质流出通道,所述介质流入通道和所述介质流出通道分别与两个所述第二导流体
    (222)的第二流道连通。
  8. 根据权利要求7所述的热管理部件(22),其中,所述第一连接件(223)连接于两个所述第二导流体(222)中的一者沿其长度方向的一端,所述第一连接件(223)与所述第二导流体(222)垂直;所述第二连接件(224)连接于两个所述第二导流体(222)中的另一者沿其长度方向的一端,所述第二连接件(224)与所述第二导流体(222)垂直。
  9. 根据权利要求7或8所述的热管理部件(22),其中,所述热管理部件(22)还包括第三连接件(227),所述第一连接件(223)和所述第二连接件(224)通过所述第三连接件(227)连接。
  10. 一种箱体(20),包括:
    箱本体(21),形成有容纳空间;
    如权利要求1-9任一项所述的热管理部件(22),所述热管理部件(22)容纳于所述容纳空间内。
  11. 根据权利要求10所述的箱体(20),其中,沿所述第一导流体的宽度方向(Z1),所述箱本体(21)具有与所述第二导流体(222)相对设置的壁部(213),所述第二导流体(222)设置于所述第一导流体(221)面向所述壁部(213)的一侧,所述壁部(213)设置有容纳所述第二导流体(222)的容纳部(214)。
  12. 一种电池(100),包括:
    如权利要求10或11所述的箱体(20);以及
    电池单体(10),容纳于所述间隙内。
  13. 根据权利要求12所述的电池(100),其中,所述第一导流体(221)沿其长度方向的至少一端连接有所述第二导流体(222);
    沿所述第二导流体的宽度方向(Z2),所述第二导流体(222)覆盖所述电池单体(10)的至少部分。
  14. 根据权利要求13所述的电池(100),其中,沿所述第二导流体的宽度方向(Z2),所述第二导流体(222)覆盖所述电池单体(10)的全部。
  15. 根据权利要求12所述的电池(100),其中,所述电池单体(10)具有电极端子(14),沿所述第一导流体的宽度方向(Z1),所述电极端子(14)位于所述电池单体(10)背离所述第二导流体(222)的一侧。
  16. 根据权利要求12所述的电池(100),其中,所述电池单体(10)具有电极端子(14),沿所述第一导流体的宽度方向(Z1),所述电极端子(14)位于所述电池单体(10)面向所述第二导流体(222)的一侧。
  17. 一种用电设备,包括根据权利要求12-16任一项所述的电池(100)。
PCT/CN2022/133241 2022-11-21 2022-11-21 热管理部件、箱体、电池及用电设备 WO2024108335A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/133241 WO2024108335A1 (zh) 2022-11-21 2022-11-21 热管理部件、箱体、电池及用电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/133241 WO2024108335A1 (zh) 2022-11-21 2022-11-21 热管理部件、箱体、电池及用电设备

Publications (1)

Publication Number Publication Date
WO2024108335A1 true WO2024108335A1 (zh) 2024-05-30

Family

ID=91194901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133241 WO2024108335A1 (zh) 2022-11-21 2022-11-21 热管理部件、箱体、电池及用电设备

Country Status (1)

Country Link
WO (1) WO2024108335A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012218082A1 (de) * 2012-10-04 2014-04-10 Continental Automotive Gmbh Trägerelement für eine elektrische Energiespeicherzelle mit Kühlkanälen mit einem nicht kreisförmigen Querschnitt, elektrischer Energiespeicher und Herstellverfahren für ein Trägerelement
CN104779422A (zh) * 2014-01-13 2015-07-15 新普科技股份有限公司 散热件及电池模块
EP3386001A1 (de) * 2017-04-03 2018-10-10 hofer mechatronik GmbH Traktionsakkumulator, insbesondere länglicher bauart mit benachbart angeordneten lithium-ionen-sekundärzellen und verfahren zur kontrolle des wärmehaushalts
EP3595031A1 (en) * 2018-07-09 2020-01-15 Valmet Automotive Oy Temperature regulation element, battery module, battery pack and use
CN217641535U (zh) * 2022-07-25 2022-10-21 宁德时代新能源科技股份有限公司 电池模组、电池和用电设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012218082A1 (de) * 2012-10-04 2014-04-10 Continental Automotive Gmbh Trägerelement für eine elektrische Energiespeicherzelle mit Kühlkanälen mit einem nicht kreisförmigen Querschnitt, elektrischer Energiespeicher und Herstellverfahren für ein Trägerelement
CN104779422A (zh) * 2014-01-13 2015-07-15 新普科技股份有限公司 散热件及电池模块
EP3386001A1 (de) * 2017-04-03 2018-10-10 hofer mechatronik GmbH Traktionsakkumulator, insbesondere länglicher bauart mit benachbart angeordneten lithium-ionen-sekundärzellen und verfahren zur kontrolle des wärmehaushalts
EP3595031A1 (en) * 2018-07-09 2020-01-15 Valmet Automotive Oy Temperature regulation element, battery module, battery pack and use
CN217641535U (zh) * 2022-07-25 2022-10-21 宁德时代新能源科技股份有限公司 电池模组、电池和用电设备

Similar Documents

Publication Publication Date Title
WO2020143171A1 (zh) 单体电池、动力电池包和电动车
KR102258816B1 (ko) 배터리 모듈
CN217182265U (zh) 电池和用电设备
WO2024093100A1 (zh) 电极极片、电极组件、电池单体、电池和用电设备
WO2024021293A1 (zh) 热管理部件、电池以及用电装置
CN217562707U (zh) 电池单体、电池及用电设备
WO2023065923A1 (zh) 电池单体、电池和用电设备
WO2024031413A1 (zh) 电池以及用电装置
WO2023078187A1 (zh) 电池组、电池的热管理***以及用电装置
US20240195155A1 (en) Heat dissipation structure, high-voltage distribution box, battery, and electrical device
WO2024109411A1 (zh) 电池及用电设备
WO2024104020A1 (zh) 电池箱体、电池及用电装置
US11888136B2 (en) Battery, power consumption device, and method and device for producing battery
WO2024108335A1 (zh) 热管理部件、箱体、电池及用电设备
CN218414770U (zh) 电池包及电池舱
WO2023226201A1 (zh) 箱体组件、电池和用电设备
CN216872163U (zh) 箱体、电池以及用电装置
CN216120489U (zh) 电池壳体、电池单体、电池及用电装置
WO2023155207A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2024065717A1 (zh) 电池及用电设备
CN219071908U (zh) 电池防火装置、电池箱、电池及用电设备
WO2024077622A1 (zh) 电池及用电设备
WO2024077626A1 (zh) 电池及用电设备
WO2024077631A1 (zh) 电池和用电设备
CN217485575U (zh) 电池箱体、电池以及用电装置