WO2024103986A1 - 功率模块和设备 - Google Patents

功率模块和设备 Download PDF

Info

Publication number
WO2024103986A1
WO2024103986A1 PCT/CN2023/122947 CN2023122947W WO2024103986A1 WO 2024103986 A1 WO2024103986 A1 WO 2024103986A1 CN 2023122947 W CN2023122947 W CN 2023122947W WO 2024103986 A1 WO2024103986 A1 WO 2024103986A1
Authority
WO
WIPO (PCT)
Prior art keywords
package body
pin
power module
step portion
power
Prior art date
Application number
PCT/CN2023/122947
Other languages
English (en)
French (fr)
Inventor
周文杰
成章明
李正凯
别清峰
谢地林
Original Assignee
海信家电集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211458029.5A external-priority patent/CN115763381B/zh
Priority claimed from CN202211442177.8A external-priority patent/CN115799237B/zh
Priority claimed from CN202211442180.XA external-priority patent/CN115939119B/zh
Application filed by 海信家电集团股份有限公司 filed Critical 海信家电集团股份有限公司
Publication of WO2024103986A1 publication Critical patent/WO2024103986A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits

Definitions

  • the present disclosure relates to the technical field of electronic devices, and in particular to a power module and a device.
  • Power Module has the characteristics of high current density, low saturation voltage, low driving power, high switching frequency, high functional integration, easy use, good reliability, etc. It can be widely used in many fields such as consumer electronics, home appliances, automobiles, rail transportation, industrial equipment, new energy, smart grid, etc. Usually, power modules use resin to encapsulate power chips and control chips to achieve high integration.
  • a power module includes a package, a power chip, a control chip, a power pin, a control pin and a heat dissipation substrate.
  • the power chip is electrically connected to the control chip and both are arranged in the package, the power pin is led out from the first side of the package and is electrically connected to the power chip; the control pin is led out from the second side of the package and is electrically connected to the control chip; the first side is arranged opposite to the second side.
  • the heat dissipation substrate is located in the package, and the power chip is arranged on the heat dissipation substrate. The bottom surface of the heat dissipation substrate is flush with the bottom surface of the package and exposed outside the package.
  • the package body includes a resin injection portion; along the thickness direction of the power module, the distance from the resin injection portion to the bottom surface of the package body is greater than the distance from the top surface of the power chip to the bottom surface of the package body.
  • the package body also includes a recessed first step portion, which is located on a side of the portion of the power pin extending out of the package body close to the bottom surface of the package body, and along the thickness direction of the power module, the distance from the step surface of the first step portion to the bottom surface of the package body is smaller than the distance from the resin injection portion to the bottom surface of the package body.
  • a device comprising a controller and the power module provided in the above embodiment, wherein the power module is connected to the controller.
  • FIG1A is a schematic cross-sectional view of a power module in the related art along a width direction;
  • FIG. 1B is a schematic diagram of a structure in which a transfer molding method is used to encapsulate the main structure of a power module in the related art
  • FIG2A is a schematic cross-sectional view of a power module along a width direction according to some embodiments
  • FIG2B is a schematic structural diagram of encapsulating the main structure of a power module by transfer molding according to some embodiments.
  • 2C is a schematic cross-sectional view of a power module along a width direction according to some embodiments
  • 2D is a schematic cross-sectional view of a power module along a width direction according to some embodiments
  • FIG2E is a schematic cross-sectional view of a power module along a width direction according to some embodiments.
  • FIG3 is a side view of a power module according to some embodiments.
  • FIG4 is a top view of a power module according to some embodiments.
  • FIG5 is a perspective view of a power module according to some embodiments.
  • FIG6 is a top view of a power module according to some embodiments.
  • FIG7 is a perspective view of a power module according to some embodiments.
  • FIG8 is a top view of a power module according to some embodiments.
  • FIG9 is a bottom view of a power module according to some embodiments.
  • FIG10 is a partial enlarged view of the power module shown in FIG9 ;
  • FIG11 is a perspective view of a power module according to some embodiments.
  • FIG12 is a bottom view of a power module according to some embodiments.
  • FIG13 is a side view of a power module according to some embodiments.
  • FIG. 14 is a top view of a power module according to some embodiments.
  • FIG15 is a partial enlarged view of A1 of the power module in FIG14;
  • FIG16 is a schematic diagram of a structure of a power module according to some embodiments.
  • FIG17 is a partial enlarged view of B1 of the power module in FIG16 ;
  • FIG18 is a partial enlarged view of B1 of the power module in FIG16 ;
  • FIG. 19 is a schematic diagram of the structure of a device according to some embodiments.
  • first and second are used for descriptive purposes only and are not to be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the singular forms “one” and “the” as used in this specification and the appended claims also include plural referents unless the content clearly indicates otherwise. In the description of the embodiments of the present disclosure, unless otherwise stated, “multiple” means two or more.
  • connection and its derivative expressions may be used.
  • the term “connected” may be used to indicate that two or more components are in direct physical or electrical contact with each other.
  • the embodiments disclosed herein are not necessarily limited to the contents of this document.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C” and both include the following combinations of A, B, and C: A only, B only, C only, the combination of A and B, the combination of A and C, the combination of B and C, and the combination of A, B, and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • Exemplary embodiments are described herein with reference to cross-sectional views and/or plan views that are idealized exemplary drawings.
  • the thickness of layers and regions is exaggerated for clarity.
  • the exemplary embodiments of the present disclosure should not be construed as being limited to the shapes of the regions shown herein, but include shape deviations caused by, for example, manufacturing.
  • an etched region shown as a rectangle will typically have curved features. Therefore, the regions shown in the drawings are schematic in nature, and their shapes are not intended to illustrate the actual shapes of regions of the device, and are not intended to limit the scope of the exemplary embodiments.
  • a power module (PM) 100' integrates and packages, for example, a power chip 2' and a control chip 3' through a package 1'.
  • the power module 100' When the power module 100' is working, a large current flows through the power chip 2', resulting in a large amount of heat generated by the power module 100'. Therefore, in order to ensure the effectiveness of the power module, the power module 100' also includes a heat dissipation substrate 4' for dissipating heat from the power chip 2'.
  • the heat dissipation substrate 4' is usually disposed at the bottom of the power module 100', and the bottom surface of the heat dissipation substrate 4' is exposed from the bottom surface of the package 1' to improve heat dissipation. Thermal effect.
  • Transfer molding is usually used for packaging.
  • the main structure of the power module 100′ such as the power chip 2′, the control chip 3′, the heat dissipation substrate 4′ and the lead frame, are placed in the cavity 1011′ of the mold 101′, and then liquid packaging resin is injected into the cavity 1011′ of the mold. After the packaging resin is cured, the mold 101′ is disassembled to obtain the power module 100′ shown in FIG1A .
  • the mold has an upper shell and a lower shell, the upper shell and the lower shell are buckled to form an internal cavity, the power pin 20' is led out from the buckled position of the upper shell and the lower shell, and the resin injection port A' for injecting the encapsulation resin into the cavity 1011' of the mold is usually arranged on the side of the mold 101' corresponding to the power pin 20', and is located near the buckled position of the upper shell and the lower shell.
  • the height h1 of the resin injection port is approximately equal to or slightly higher than or slightly lower than the height of the position where the power pin 20' is led out of the package body 1'.
  • the height h1 of the resin injection port is higher than the height h2 of the upper surface of the power chip 2' arranged on the heat dissipation substrate 4', so as to ensure that the resin can completely encapsulate the power chip 2; in other words, the height h1 of the resin injection port is higher than the height of the upper surface of the heat dissipation substrate 4'. Therefore, when the encapsulation resin is injected, it will rush toward the heat dissipation substrate 4' in an oblique downward direction (as shown by the dotted arrow in FIG. 1B ), generating a large impact force on the heat dissipation substrate 4', which may easily cause displacement defects in the heat dissipation substrate 4' and affect the electrical safety and stability of the power module.
  • the main structure of the power module 100 includes a power chip 20, a control chip 30, a power pin 40 electrically connected to the power chip 20, a control pin 50 electrically connected to the control chip 30, and a heat dissipation substrate 60.
  • the power pin 40 is used to connect the power chip 20 with an external driving component
  • the control pin 50 is used to connect the control chip 30 with an external controller.
  • the power chip 20 is also electrically connected to the control chip 30, and the control chip 30 is used to drive the power chip 20.
  • the power chip 20 is arranged on the heat dissipation substrate 60, and the heat dissipation substrate 60 is used to dissipate heat for the power chip 20 to ensure the normal operation of the power chip 20, thereby ensuring the effectiveness of the power module 100.
  • the power module 100 further includes a package body 10 for encapsulating the main structure, and the package body 10 has a first side surface 10A and a second side surface 10B which are arranged opposite to each other and extend along the length direction X of the package body.
  • a portion (hereinafter referred to as the first portion) 401 of the power pin 40 is led out from the first side surface 10A of the package body 10, and another portion (hereinafter referred to as the second portion) 402 is electrically connected to the power chip 20;
  • a portion (hereinafter referred to as the first portion) 501 of the control pin 50 is led out from the second side surface 10B of the package body 10, and another portion (hereinafter referred to as the second portion) 502 is electrically connected to the control chip 30.
  • the bottom surface 60A of the heat dissipation substrate is flush with the bottom surface 10E of the package body and is exposed outside the package body 10 to improve the heat dissipation effect.
  • a surface of the heat dissipation substrate 60 on which the power chip 20 is provided is called the top surface of the heat dissipation substrate 60, and a surface of the heat dissipation substrate 60 which is arranged opposite to the top surface and on which the power chip is not provided is called the bottom surface 60A of the heat dissipation substrate 60; a surface of the package 10 on which the heat dissipation substrate 60 is provided is called the bottom surface 10E of the package 10, and the bottom surface 10E of the package 10 is the heat dissipation surface of the power module 100.
  • the length direction X of the package is the direction in which the multiple power pins 40 or the multiple control pins 50 are arranged.
  • the package body 10 includes a resin injection portion 11 .
  • the main structure of the power module 100 is encapsulated by transfer molding to form a package body 10. That is, as shown in FIG2B , the main structure of the power module 100 is placed in a cavity 1011 of a mold 101, and the mold 101 has a resin injection port A. Liquid resin is injected into the cavity 1011 of the mold through the resin injection port A and filled between the main structure of the power module in the cavity and the cavity wall of the cavity. After the resin is cured, a package body 10 as shown in FIG2A can be formed, which covers and protects the power chip 20 and the control chip 30, thereby improving the structural reliability of the power module 100.
  • the portion of the package 10 formed corresponding to the resin injection port A is the resin injection portion 11 of the package 10 , and the roughness of the resin injection portion 11 is greater than that of other portions of the package 10 .
  • the distance H0 from the resin injection portion 11 to the bottom surface 10E of the package body is greater than the distance H2 from the top surface (i.e., the surface away from the heat dissipation substrate 60) 20A of the power chip 20 to the bottom surface 10E of the package body.
  • the resin when the resin is injected into the cavity 1011, it can be ensured that the injected resin can submerge the power chip 20, so that the power chip 20 can be better packaged in the package body 10.
  • the package body 10 further includes a recessed first step portion 12, which is located at the extension of the power pin 40 toward the package body 10.
  • the first portion 401 is located on a side close to the bottom surface 10E of the package body.
  • the recessed first step portion 12 means that the first step portion 12 is recessed toward the inside of the package body 10. That is, the first step portion 12 has a step surface 12A and a side surface 12B, and along the width direction Y of the package body 10, the side surface 12B of the first step portion 12 is closer to the heat dissipation substrate 60 relative to the first side surface 10A of the package body 10; and along the thickness direction Z of the package body 10, the step surface 12A of the first step portion 12 is closer to the first portion 401 of the power pin 40 extending out of the package body 10 relative to the bottom surface 10E of the package body.
  • the distance H1 from the step surface 12A of the first step portion 12 to the bottom surface 10E of the package body is smaller than the distance H40 from the first portion 401 of the power pin 40 extending outward from the package body 10 to the bottom surface 10E of the package body.
  • the distance H1 from the step surface 12A of the first step portion 12 to the bottom surface 10E of the package body is smaller than the distance H0 from the resin injection portion 11 to the bottom surface 10E of the package body.
  • a surface of the package 10 opposite to its bottom surface 10E is called the top surface 10F of the package
  • the direction from the bottom surface 10E of the package to the top surface 10F is called the thickness direction Z of the package
  • the direction from the first side surface 10A of the package to the second side surface 10B is called the width direction of the package.
  • the cavity 1011 formed by the mold 101 should have a wall shape that matches the outer shape of the package 10 of the power module 100 of the embodiment of the present disclosure.
  • the cavity 1011 of the mold 101 should have a wall structure that corresponds to the outer shape of the package 10.
  • the cavity 1011 of the mold 101 has a first cavity wall step 1012 corresponding to the first step portion 12 of the package body 10, and the first cavity wall step 1012 is located on the side of the resin injection port A close to the bottom of the mold, that is, the distance H11 from the step surface of the first cavity wall step 1012 to the bottom surface of the cavity is less than the height of the resin injection port A (that is, the distance from the resin injection port A to the bottom surface of the cavity) H01.
  • the resin when the resin is injected into the mold cavity through the resin injection port, the resin first falls on the first cavity wall step 1012, and the first cavity wall step 1012 plays a certain buffering role, thereby reducing the height of the resin rushing toward the heat dissipation substrate 60, and reducing the downward oblique impact force of the resin on the heat dissipation substrate 60, so that the resin can flow to the heat dissipation substrate 60 as smoothly as possible, thereby alleviating the problem of displacement defects of the heat dissipation substrate 60 and improving the electrical safety and stability of the power module.
  • the space between the heat dissipation substrate 60 and the side of the corresponding power pin 40 of the cavity i.e., the space between the heat dissipation substrate 60 and the first cavity wall step 1012
  • the space between the heat dissipation substrate 60 and the first cavity wall step 1012 is reduced, thereby reducing the amount of resin accumulation in the space when injecting resin, thereby reducing the risk of resin overflowing from the bottom surface of the heat dissipation substrate 60 and generating burrs.
  • the mold 101 has an upper shell and a lower shell, which are buckled together to form an internal cavity 1011. Therefore, as shown in FIG3 , the side of the package body 10 formed by the mold has a resin parting surface F corresponding to the buckling position of the upper shell and the lower shell of the mold 101.
  • the resin injection port A can be set near the buckle position of the upper shell and the lower shell.
  • the resin injection port A can be set at the buckle position of the upper shell and the lower shell, or the setting position of the resin injection port A is slightly higher or slightly lower than the buckle position of the upper shell and the lower shell.
  • the resin injection portion 11 can be located near the resin parting surface F, for example, it can be located above or below the resin parting surface F or set corresponding to the resin parting surface F. Such a setting can facilitate mold processing.
  • the resin injection port A may be provided on the side of the mold 101 from which the power pin 40 is led out; that is, correspondingly, as shown in FIG. 4 , the resin injection portion 11 may be located on the first side 10A of the package 10; in other examples, the resin injection port A may be provided on another side of the mold adjacent to the side from which the power pin 40 is led out; that is, correspondingly, as shown in FIG. 4 , the resin injection portion 11 may be located on the side of the package 10 adjacent to the first side 10A (e.g., the fourth side 10D extending along the width direction Y of the package 10).
  • the present disclosure does not limit this, as long as the resin can be injected into the cavity of the mold 101 through the resin injection port A to form the package.
  • the heat dissipation substrate 60 may be a double-sided copper-clad ceramic plate or a single-sided copper-clad ceramic plate or a ceramic substrate or an insulating heat dissipation copper sheet in an integrated structure, and no specific limitation is made herein.
  • the heat dissipation substrate 60 is a double-sided copper-clad ceramic board (also referred to as a direct bond copper (DBC) ceramic board) in an integrated structure, including a ceramic board 61 and a copper layer 62 and another copper layer 63 located on both sides.
  • the power chip 20 can be disposed on the copper layer 62 of the double-sided copper-clad ceramic board; for example, A power pad (not shown in the figure) may be provided on the copper layer 62 of the double-sided copper-clad ceramic board, and the power chip 20 is provided on the copper layer 62 of the double-sided copper-clad ceramic board through the power pad; the power pin 40 is connected to the copper layer 62.
  • the other copper layer 63 of the double-sided copper-clad ceramic board is flush with the bottom surface 10E of the package body 10 and exposed outside the package body 10, that is, the surface of the other copper layer 63 of the double-sided copper-clad ceramic board away from the ceramic board 61 is flush with the bottom surface 10E of the package body 10 and exposed outside the package body 10.
  • the double-sided copper-clad ceramic board can realize both the conductive connection of the power chip 20 and the heat conduction of the power chip 20.
  • the heat dissipation substrate 60 is a single-sided copper-clad ceramic board with an integrated structure, including a ceramic board 61 and a copper layer 62 located on one side of the ceramic board 61.
  • the power chip 20 can be arranged on the copper layer 62 of the single-sided copper-clad ceramic board; for example, a power pad (not shown in the figure) can be arranged on the copper layer 62 of the single-sided copper-clad ceramic board, and the power chip 20 is arranged on the copper layer 62 of the single-sided copper-clad ceramic board through the power pad; the power pin 40 is connected to the copper layer 62.
  • the bottom surface of the ceramic board 61 of the single-sided copper-clad ceramic board (i.e., the surface of the ceramic board 61 without the copper layer) is flush with the bottom surface 10E of the package body 10 and exposed outside the package body 10.
  • the single-sided copper-clad ceramic board can realize both the conductive connection of the power chip 20 and the heat conduction of the power chip 20.
  • the heat dissipation substrate 60 is a ceramic substrate, the upper surface of the ceramic substrate (i.e., the surface close to the power chip 20) is in contact with the lower surface of the second portion 402 of the power pin 40 located in the package 10 (i.e., the surface away from the power chip 20), the power chip 20 is arranged on the first portion 401 of the power pin 40 located in the package 10, and the bottom surface of the ceramic substrate (i.e., the surface away from the power chip 20) is flush with the bottom surface 10E of the package 10 and exposed outside the package 10.
  • the second portion 402 of the power pin 40 located in the package 10 serves as a power pad frame to achieve conductive connection with the power chip 20, and is combined with the ceramic substrate to achieve heat conduction to the power chip 20.
  • the ceramic substrate may be a whole piece, or may be composed of a plurality of ceramic plates of the same height arranged on the side of the power pad frame away from the power chip 20.
  • the heat dissipation substrate 60 is a double-sided copper-clad ceramic board with an integrated structure as shown in FIG2A, which will not be described in detail here.
  • the power module 100 also includes a printed circuit board (PCB) packaged inside the package body 10, which can be used as a control pad for carrying the control chip 30, that is, the control chip 30 is mounted on the printed circuit board PCB; the control pin 50 can be soldered on the printed circuit board PCB.
  • PCB printed circuit board
  • a distance H1 from a step surface 12A of the first step portion 12 to a bottom surface 10E of the package body is smaller than a distance H2 from a top surface 20A of the power chip 20 to a bottom surface 10E of the package body 10.
  • a distance H11 from a step surface of a cavity wall step 1012 provided in the cavity of the mold to a bottom surface of the cavity is smaller than a distance from a top surface 20A of the power chip 20 to a bottom surface of the cavity.
  • the resin when the resin is injected into the mold cavity through the resin injection port A, the resin flows to the heat dissipation substrate 60 and the power chip 20 via the cavity wall step 1012. At this time, the resin tends to flow gently toward the heat dissipation substrate 60 in a horizontal direction, which greatly reduces the impact force of the resin on the heat dissipation substrate 60, thereby further reducing the displacement defects caused by the impact force of the resin on the heat dissipation substrate 60.
  • the space between the heat dissipation substrate 60 and the side surface of the corresponding power pin of the cavity is also small, which can further reduce the accumulation of resin in the space, thereby further reducing the risk of resin overflowing from the bottom surface of the heat dissipation substrate 60 and generating burrs.
  • a distance S from the end of the heat dissipation substrate 60 close to the power pin 40 to the side surface 12B of the first step portion 12 is greater than or equal to 0.5 times the thickness H3 of the heat dissipation substrate 60 and less than or equal to 1.5 times the thickness H3 of the heat dissipation substrate 60 , that is, 0.5H3 ⁇ S ⁇ 1.5H3.
  • the thickness H3 of the heat dissipation substrate 60 may be 1.05 mm.
  • the distance S between the end of the heat dissipation substrate 60 close to the power pin 40 and the side surface 12B of the first step portion 12 may be set to 0.869 mm or 1.2 mm.
  • the distance S between the end of the heat dissipation substrate 60 close to the power pin 40 and the side 12B of the first step portion 12 is large.
  • the resin is more likely to fill the space, thereby avoiding the defect of resin voids.
  • the distance S between the end of the heat dissipation substrate 60 close to the power pin 40 and the side 12B of the first step portion 12 is small.
  • the amount of resin accumulated in the space is small, which can prevent the resin from overflowing from the bottom of the heat dissipation substrate 60 and causing burr defects.
  • the distance S from the end of the heat dissipation substrate 60 close to the power pin 40 to the side surface 12B of the first step portion 12 is set to be greater than or equal to 0.5 times the thickness H3 of the heat dissipation substrate 60 and less than or equal to 1.5 times the thickness H3 of the heat dissipation substrate 60.
  • the first step portion 12 includes a main body 121 extending along the length direction X of the package body 10 and at least one end 122 extending along the width direction Y of the package body 10.
  • the first step portion 12 further includes a first guide portion 1031 connecting the main portion 121 and the end portion 122 of the first step portion 12.
  • the first guide portion 1031 is configured to achieve a function of guiding the resin.
  • the first step portion 12 when the first step portion 12 includes only one end portion 122, the first step portion 12 includes only one first guide portion 1031.
  • the first step portion 12 when the first step portion 12 includes two end portions 122, the first step portion 12 may include two first guide portions 1031, and one first guide portion 1031 connects one end portion 122 and the main body 121.
  • the first cavity wall step corresponding to the first step portion in the mold cavity forming the package body 10 also has a guide structure corresponding to the first guide portion 1031 .
  • the guide structure in the cavity corresponding to the first guide portion 1031 can generate a component force to guide the resin to the opposite side, so as to improve the fluidity of the resin here and guide the resin to flow forward, thereby avoiding stagnation of the resin here, thereby further reducing the generation of resin voids; and, the amount of resin accumulated here can be further reduced, thereby further avoiding the risk of resin overflowing from the bottom surface of the heat dissipation substrate 60 and generating burrs.
  • the first guide portion 1031 may be a chamfer, a convex portion, or a concave portion.
  • the first guide portion 1031 may be chamfered.
  • the chamfer may be understood as a surface that is formed by cutting off a sharp edge and that is connected to the side surfaces of the main body 121 and the end 122 included in the first step portion 12 and that is at a certain angle to the side surfaces of the main body 121 and the end 122 included in the first step portion 12.
  • the first guide portion 1031 may be a convex portion or a concave portion.
  • the first guide portion 1031 is an arc-shaped circular arc surface convex toward the outside of the package body 10 .
  • first guide portion 1031 is set as a convex portion or a concave portion
  • second guide portion 1032 which will not be described in detail here.
  • the power module 100 further includes a second guide portion 1032, which is disposed at a corner of an end portion of the package 10 along the length direction X of the package on one side (i.e., the first side surface 10A) of the package from which the power pin 40 is led out.
  • the second guide portion 1032 is configured to achieve the function of resin diversion.
  • the second guide portion 1032 may be disposed at a corner of one end of the first side surface 10A of the package body 10 along the length direction X of the package body, that is, at a corner where the first side surface 10A and the fourth side surface 10D are connected.
  • the second guide portion 1032 may be disposed at a corner of the other end of the first side surface 10A of the package body 10 along the length direction X of the package body, that is, at a corner where the first side surface 10A and the third side surface 10C (that is, another side surface adjacent to the first side surface 10A except the fourth side surface 10D) are connected.
  • the structure corresponding to the second guide portion 1032 in the cavity can generate a component force to guide the resin to the opposite side, so as to improve the fluidity of the resin at this point and guide the resin to flow forward, thereby reducing the amount of resin in the cavity.
  • the stagnation accumulation at the corner of the package body in the cavity reduces the generation of resin voids and ensures the electrical safety of the power module.
  • the second guide portion 1032 may be chamfered.
  • the chamfer may be understood as a surface that is formed by cutting off a sharp edge connecting the first side surface 10A and the third side surface 10C (or the fourth side surface 10D) and that is at a certain angle to both the first side surface 10A and the third side surface 10C (or the fourth side surface 10D).
  • the resin injection port is located on the side where the power pin of the mold is led out (i.e., the side corresponding to the first side 10A of the package body 10), and resin is injected into the cavity through the resin injection port.
  • the resin flows to the position in the cavity corresponding to the second guide portion 1032, as shown in FIG. 9, the corresponding chamfered structure in the cavity will generate a component force Fy obliquely toward the opposite side (e.g., the second side 10B) for the resin at this position, thereby allowing the resin in the cavity that flows to the corner to flow forward, avoiding stagnation and accumulation at the corner, and reducing the generation of resin voids.
  • the chamfer angle can affect the diversion effect of the diversion part.
  • the chamfer angle ⁇ can satisfy 50° ⁇ 70°, so that the diversion capacity of the chamfer can be large and raw materials can be saved.
  • the chamfer angle ⁇ can be 50°, 60° or 70°, etc., and the embodiments of the present disclosure are not limited to this.
  • the side length L of the chamfer can be greater than 1.2 mm to further improve the flow conductivity of the chamfer.
  • the side length L of the chamfer can be 1.2 mm, 1.4 mm, or 1.6 mm, etc., and the embodiments of the present disclosure do not limit this.
  • the side length L of the chamfer is 1.4 mm.
  • the second air guide 1032 is disposed at the corner of the first side surface 10A and the third side surface 10C (or the fourth side surface 10D), and when the power module is used, it is usually installed at the middle position along the width direction Y. Therefore, it can be understood that the side length L of the chamfer will not exceed 0.5 times the dimension of the third side surface 10C (or the fourth side surface 10D) along the width direction of the package body 10.
  • the second guide portion 1032 may also be a convex portion, for example, an arc surface protruding toward the outside of the package body 10, which can also achieve the effect of guiding the resin at the corner where the second guide portion 1032 of the package body 10 is located in the cavity, thereby avoiding stagnation and accumulation of resin at the corner, reducing the generation of resin gaps, and improving the electrical safety of the power module.
  • the second guide portion 1032 may also be a concave portion. In this way, the resin at the corner where the second guide portion 1032 of the package body 10 is located in the cavity can be directed forward, thereby avoiding the stagnation and accumulation of the resin at the corner, reducing the generation of resin voids, and saving raw materials.
  • the shape of the second guide portion 1032 is not limited to this, and the embodiments of the present disclosure are not limited to this.
  • the power module 100 further includes a third guide portion 1033.
  • the third guide portion 1033 may be disposed at a corner of an end portion of the package 10 along the length direction X of the package on one side (i.e., the second side surface 10B) of the package from which the control pin 50 is led out.
  • the third guide portion 1033 is configured to achieve the function of resin guide.
  • the third guide portion 1033 may be disposed at a corner of one end of the second side surface 10B of the package body 10 along the length direction X of the package body, that is, at a corner where the second side surface 10B and the fourth side surface 10D are connected.
  • the third guide portion 1033 may be disposed at a corner of the other end of the second side surface 10B of the package body 10 along the length direction X of the package body, that is, at a corner where the second side surface 10B and the third side surface 10C are connected.
  • the structure in the cavity corresponding to the third guide portion 1033 can generate an oblique middle component force (the component force Fx as shown in Figure 9) for the resin flowing toward this position, so as to guide the resin flowing to this position to flow to the middle of the cavity, thereby reducing the stagnation and accumulation of resin at this corner, reducing the generation of resin gaps, and ensuring the electrical safety of the power module.
  • the third guide portion 1033 may be a chamfer, a convex portion, or a concave portion.
  • the third air guide portion 1033 is chamfered.
  • the angle and side length of the chamfer can refer to the above description of the second air guide portion 1032, which will not be repeated here.
  • the third guide portion 1033 may also be a convex portion, such as an arc surface convex toward the outside of the package body ( FIG. not shown).
  • the third guide portion 1033 is a concave portion.
  • the structure corresponding to the concave portion in the cavity can squeeze the resin flowing to the corner, so that the resin flows to the middle of the cavity, avoiding the stagnation and accumulation of the resin at the corner to reduce the generation of resin voids, and can also save more raw materials.
  • the third guide portion 1033 when the third guide portion 1033 is a recess, can be a recess (such as the third guide portion 1033 located at the corner of the second side 10B and the fourth side 10D in Figure 8), or the third guide portion 1033 can be two consecutive first recesses 10331 and second recesses 10332 (such as the third guide portion 1033 located at the corner of the second side 10B and the third side 10C in Figure 8).
  • the package body 10 further includes a recessed second step portion 13 located on a side of the first portion 501 of the control pin 50 extending out of the package body 10 close to the bottom surface 10E of the package body.
  • the recessed second step portion 13 refers to the second step portion 13 being recessed toward the inside of the package body 10. That is, the second step portion 13 has a step surface 13A and a side surface 13B, and along the width direction Y of the package body 10, the side surface 13B of the second step portion 13 is closer to the heat dissipation substrate 60 relative to the second side surface 10B of the package body 10; and along the thickness direction Z of the package body 10, the step surface 13A of the second step portion 13 is closer to the first portion 501 of the control pin 50 extending out of the package body 10 relative to the bottom surface 10E of the package body.
  • a distance H13 from the step surface 13A of the second step portion 13 to the bottom surface 10E of the package is smaller than a distance H501 from the first portion 501 of the control pin 50 extending out of the package 10 to the bottom surface 10E of the package.
  • a second step portion 13 is provided on a side of the first portion 501 of the control pin 50 extending outward from the package body 10 close to the bottom surface 10E of the package body 10.
  • the cavity 1011 of the mold 101 has a second cavity wall step 1013 corresponding to the second step portion 13 of the package body 10.
  • the provision of the second cavity wall step 1013 can reduce the space between the heat dissipation substrate 60 and the side surface of the cavity corresponding to the control pin 50 (i.e., the space between the heat dissipation substrate 60 and the second cavity wall step 1013), thereby reducing the amount of resin accumulated in the space, and further reducing the risk of the resin overflowing from the bottom surface of the heat dissipation substrate 60 to generate burrs.
  • the height of the second step portion 13 is equal to the height of the first step portion 12. That is, along the thickness direction Z of the package body 10, the distance H13 from the step surface 13A of the second step portion 13 to the bottom surface 10E of the package body is equal to the distance H1 from the step surface 12A of the first step portion 12 to the bottom surface 10E of the package body 10.
  • the depth of the second step portion 13 is equal to the depth of the first step portion 12. That is, along the width direction Y of the package body 10, the distance D2 from the side surface 13B of the second step portion 13 to the side surface of the package body 10 (i.e., the second side surface 10B from which the control pin 50 is led out) is equal to the distance D1 from the side surface 12B of the first step portion 12 to the side surface of the package body 10 (i.e., the first side surface 10A from which the power pin is led out).
  • the distance H13 from the step surface 13A of the second step portion 13 to the bottom surface 10E of the package body is equal to the distance H1 from the step surface 12A of the first step portion 12 to the bottom surface 10E of the package body 10.
  • the distance D2 from the side surface 13B of the second step portion 13 to the side surface 10B of the package body 10 i.e., the second side surface 10B from which the control pin 50 is led out
  • the distance D1 from the side surface 12B of the first step portion 12 to the side surface 10A of the package body 10 i.e., the first side surface 10A from which the power pin is led out. That is, as shown in FIG2A and FIGS. 2C to 2E, the second step portion 13 and the first step portion 12 are symmetrically arranged along the width direction Y of the package body 10.
  • Such an arrangement not only simplifies the manufacturing process, but also allows the resin to more easily fill the space between the heat dissipation substrate 60 and the side of the cavity corresponding to the control pin 50, thereby avoiding the defect of resin gaps in the space.
  • the package body 10 further includes a recessed third step portion 14 located on a side of the first portion 501 of the control pin 50 extending toward the package body 10 away from the bottom surface 10E of the package body.
  • the recessed third step portion 14 means that the third step portion 14 is recessed toward the inside of the package body 10. That is, the third step portion 14 has a step surface 14A and a side surface 14B; along the width direction Y of the package body, the side surface 14B of the third step portion 14 is closer to the heat dissipation substrate 60 relative to the second side surface 10B of the package body; and along the thickness direction Z of the package body, the step surface 14A of the third step portion 14 is closer to the first portion 501 of the control pin 50 extending outward from the package body 10 relative to the top surface 10F of the package body.
  • a distance H14 from the step surface 14A of the third step portion 14 to the top surface 10F of the package body is smaller than a distance H502 from the first portion 501 of the control pin 50 extending out of the package body 10 to the top surface 10F of the package body.
  • the surface of the package 10 which is perpendicular to the thickness direction thereof and on which the heat dissipation substrate 60 is not provided is referred to as the top surface 10F of the package 10 .
  • the mold flow speed of the resin on the side of the cavity where the control pin 50 is provided can be adjusted when injecting the resin, so that the mold flow speed in the entire cavity is more balanced and gaps are avoided; and the resin injection time can also be accelerated.
  • a distance H14 from a step surface 14A of the third step portion 14 to a top surface 10F of the package body is smaller than a distance H13 from a step surface 13A of the second step portion 13 to a bottom surface 10E of the package body and/or a distance H1 from a step surface 12A of the first step portion 12 to a bottom surface 10E of the package body.
  • the mold flow speed of the resin on one side of the control pin in the cavity can be further adjusted to make the mold flow speed in the entire cavity more balanced and avoid the generation of gaps.
  • a fourth guide portion 1034 is further provided at a corner of the second step portion 13.
  • the fourth guide portion 1034 is configured to achieve a resin guide function.
  • the second step portion 13 includes a main body portion 131 extending along the length direction X of the package body 10 and at least one end portion 132 extending along the width direction Y of the package body 10.
  • the second step portion 13 also includes a fourth guide portion 1034 connecting the main body portion 131 and the end portion 132 of the second step portion 13.
  • the second step portion 13 includes only one fourth guide portion 1034 .
  • the second step portion 13 may include two fourth guide portions 1034 , and one fourth guide portion 1034 connects one end portion 132 and the main body 131 .
  • the fourth guide portion 1034 may be a chamfer, a convex portion, or a concave portion.
  • the fourth guide portion 1034 may be chamfered.
  • the angle and side length of the chamfer may refer to the description of the first guide portion 1031 in some of the above embodiments, which will not be repeated here.
  • the fourth guide portion 1034 may be a convex portion.
  • the fourth guide portion 1034 is an arc-shaped circular arc surface convex toward the outside of the package body 10.
  • the structure in the cavity corresponding to the fourth guide portion 1034 can generate a component force to guide the resin to the middle of the cavity, so that the resin flows to the middle of the cavity, avoiding stagnation and accumulation at the corner, thereby reducing the generation of resin voids.
  • a fifth guide portion 1035 is further provided at a corner of the third step portion 14.
  • the fifth guide portion 1035 is configured to achieve a resin guide function.
  • the third step portion 14 includes a main body portion 141 extending along the length direction X of the package body 10 and at least one end portion 142 extending along the width direction Y of the package body 10.
  • the third step portion 14 also includes a fifth guide portion 1035 connecting the main body portion 141 and the end portion 142 of the third step portion 14.
  • the third step portion 14 includes only one fifth guide portion 1035 .
  • the third step portion 14 may include two fifth guide portions 1035 , and one fifth guide portion 1035 connects one end portion 142 and the main body 141 .
  • the fifth air guide portion 1035 may be chamfered.
  • the angle and side length of the chamfer may refer to the description of the second air guide portion 1032 in some of the above embodiments, which will not be repeated here.
  • the fifth guide portion 1035 may be a convex portion, such as an arc-shaped circular surface protruding toward the outside of the package body 10 , or the fifth guide portion 1035 may be a concave portion.
  • the structure in the cavity corresponding to the fifth guide portion 1035 can generate a component force to guide the resin to the middle of the cavity, so that the resin flows to the middle of the cavity, avoiding stagnation and accumulation at the corner, thereby reducing the generation of resin voids.
  • a mold for forming the package 10 by transfer molding may have a plurality of resin injection ports, and the plurality of resin injection ports may be spaced apart and distributed on one side of the mold from which the plurality of power pins are led out. For example, along the length direction of the mold (i.e., the length direction of the package), each resin injection port may be located between two power pins.
  • the package 10 has a plurality of resin injection portions 11, and the plurality of resin injection portions 11 may be spaced apart and located on the first side surface 10A of the package.
  • the package body 10 has two resin injection parts 11, such as a first resin injection part 1021 and a second resin injection part 1022.
  • the first resin injection part 1021 and the second resin injection part 1022 are evenly located on the first side surface 10A of the package body 10. That is, along the length direction X of the package body 10, the distance H101 between the first resin injection part 1021 and the closest corner, the distance H102 between the first resin injection part 1021 and the second resin injection part 1022, and the distance H103 between the second resin injection part 1022 and the closest corner are approximately equal.
  • the resin when injecting resin, the resin can flow more evenly to the left and right sides and the middle of the cavity, which is beneficial to the uniformity of resin filling in the cavity and can also achieve the effect of reducing resin voids.
  • control pins 50 which are led out from the second side surface 10B of the package body 10 extending along the length direction X thereof, that is, the multiple control pins 50 are arranged along the second side surface 10B.
  • the power module 100 also includes a first dummy pin 70 extending from a third side 10C of the package body 10, the third side 10C is adjacent to the second side 10B and extends along the width direction Y of the package body 10.
  • the plurality of control pins 50 include a first function pin 501 and a second function pin 502 ; along the length direction X of the package body 10 , the second function pin 502 is close to the middle of the second side surface 10B of the package body 10 , and the first function pin 501 is located on a side of the second function pin 502 away from the first dummy pin 70 .
  • the first functional pin 501, the second functional pin 502 and the first dummy pin 70 are respectively arranged roughly evenly along the length direction X of the package body 10, and are led out from different sides of the package body 10, and are configured to support the power module 100 from different sides of the power module 100 to improve the stability of the power module 100.
  • the first function pin 501, the second function pin 502 and the first dummy pin 70 can support the power module 100 as a whole from both sides of the power module 100, thereby avoiding the shaking problem caused by supporting the power module 100 from one side, improving the stability of the power module 100 and preventing the power module 100 from deformation.
  • the first dummy pin 70 is led out from the third side surface 10C of the package body 10, which can avoid increasing the space occupied by the power module 100 along the length direction X and wasting materials, and can make the setting of each pin used to support the power module 100 more reasonable and compact, thereby reducing the volume of the power module 100 and improving the miniaturization of the power module 100.
  • first function pin 501 and the second function pin 502 are led out from the second side 10B of the package body 10, and the first dummy pin 70 is led out from the third side 10C of the package body 10, which can also increase the insulation distance between these pins, thereby further improving the safety performance of the power module 100.
  • the power module 100 further includes a control pad 90 , and the control chip 30 is disposed on the control pad 90 , which can ensure the stability and reliability of the installation of the control chip 30 and improve the performance of the control chip 30 .
  • the first function pin 501, the second function pin 502 and the first dummy pin 70 are connected to the control pad 90 as an integral structure.
  • different parts of the control pad 90 respectively form pads for carrying the control chip 30, and the first function pin 501, the second function pin 502 and the first dummy pin 70.
  • the first function pin 501 and the second function pin 502 are led out from the second side surface 10B of the package body 10 and are both electrically connected to the peripheral circuit, which not only ensures the normal operation of the power module 100, but also supports the power module 100 to ensure the function.
  • the first dummy pin 70 is led out from the third side surface 10C of the package body 10 to support the power module 100 from a side different from the side from which the control pin 50 is led out, so as to ensure the reliability of the installation of the power module 100.
  • the pads in the power module 100 for mounting the control chip 30 can be utilized to form pins for supporting the power module 100, without the need to add additional pins for supporting the power module, thereby reducing the space occupied by the pins supporting the power module and improving the miniaturization of the power module 100.
  • the power module 100 includes a plurality of control chips 30, for example, a first control chip 301 and a second control chip 302.
  • the first control chip 301 can be used as a low-voltage chip
  • the second control chip can be used as a high-voltage chip, which can improve the working performance of the power module 100.
  • control pad 90 includes: an integrally formed first chip pad 901 and a second chip pad 902; the first chip pad 901 and the second chip pad 902 are sequentially connected along the length direction X of the package body 10.
  • the first control chip 301 is arranged on the first chip pad 901, and the second control chip 302 is arranged on the second chip pad 902, so that the compactness of the structure of the power module 100 can be improved.
  • the first function pin 501 is electrically connected to the first control chip 301 and can be used to provide a ground voltage to the first control chip 301.
  • the first function pin 501 is arranged on one side of the first chip pad 901 along the length direction of the power module (i.e., the length direction X of the package body), the first dummy pin 70 is arranged on one side of the second chip pad 902 along the length direction X of the power module away from the first chip pad 901, and the second function pin 502 is arranged at the middle position of the second chip pad 902 close to the first chip pad 901, so that the first function pin 501, the second function pin 502 and the first dummy pin 70 can be more evenly distributed in the package body 10, so that the support force of the first function pin 501, the second function pin 502 and the first dummy pin 70 on the power module 100 can be more evenly distributed, so as to improve the reliability and stability of the power module 100.
  • the plurality of control pins 50 further include a third function pin 503 , which is electrically connected to the second control chip 302 and can be used to provide a high voltage to the second control chip 302 .
  • the power module 100 further includes a second dummy pin 80 extending from the third side 10C of the package body 10.
  • the third function pin 503 is connected to the second dummy pin 80 as an integral structure.
  • the third function pin 503 is located on a side of the second function pin 502 away from the first function pin 501 and close to the middle of the second side 10B of the package body 10. That is, the third function pin 503 is set at the middle position of the second chip pad 902 close to the first chip pad 901.
  • the third function pin 503 and the second dummy pin 80 can also support the power module 100 from two directions, thereby assisting the first function pin 501, the second function pin 502 and the first dummy pin 70 in supporting the power module 100, and further improving the stability of the power module 100.
  • the second dummy pin 80 is led out from the side of the power module extending along the width direction (i.e., the width direction Y of the package body), which can avoid increasing the space occupied by the power module 100 along the length direction X, thereby reducing the volume of the power module 100 and further improving the miniaturization of the power module 100.
  • the third functional pin 503 is connected to the second dummy pin 80 as an integral structure. It can be understood that: using the pin that provides high voltage to the control chip 30, one end of it is led out from the second side as a high-voltage pin (i.e., the third functional pin 503), and the other end extends along the length direction X of the power module 100 and is led out from the third side as a non-functional pin (i.e., the second dummy pin 80), which together with the high-voltage pin achieves the function of supporting the power module. In this way, there is no need to add additional pins to support the power module, so that the miniaturization of the power module 100 can be further improved while ensuring the support stability of the power module.
  • the power module 100 includes a third guide portion 1033 located at a corner of the end portion of the second side surface 10B of the package body 10 along the length direction X of the package body 10, and the third guide portion 1033 includes at least one recess.
  • the third guide portion 1033 includes at least one recess.
  • the third guide portion 1033 includes a concave portion.
  • the first dummy pin 70 and the third dummy pin 70 are connected to each other.
  • the two dummy leads 80 are led out from the side surface of the recess extending along the width direction Y of the package body 10 .
  • the third guide portion 1033 includes two continuous recesses. As shown in FIG8, FIG12, and FIG14 to FIG18, the third guide portion 1033 includes two continuous first recesses 10331 and second recesses 10332, the first recess 10331 extends along the length direction X of the package body 10 as a whole, and the second recess 10332 extends along the width direction Y of the package body 10 as a whole, so that the production process of the package body 10 can be simplified and the production difficulty of the package body 10 can be reduced.
  • the second recess 10332 is farther away from the control pin 50 than the first recess 10331. Therefore, leading the first dummy pin 70 and the second dummy pin 80 from the side of the second recess 10332 extending along the width direction Y of the package body 10 can not only improve the miniaturization of the power module, but also extend the insulation length between these pins.
  • the length of the first dummy pin 70 and the second dummy pin 80 extending out of the package body 10 does not exceed the depth of the second recess 10332, that is, along the length direction X of the package body 10, the ends of the first dummy pin 70 and the second dummy pin 80 extending out of the package body 10 do not exceed the third side surface 10C of the package body 10.
  • the first recess 10331 and the second recess 10332 are both in the shape of long strips, and the length d1 of the first recess 10331 and the length d2 of the second recess 10332 satisfy the relationship: d1 ⁇ d2. This can make the shape design of the first recess 10331 and the second recess 10332 simpler, facilitate the molding of the first recess 10331 and the second recess 10332, and further reduce the difficulty of producing the package 10.
  • the lengths of the first recess 10331 and the second recess 10332 can be matched with the lengths of the first side surface 10A and the third side surface 10C to which they are located, thereby further optimizing the structural design of the package body 10. While saving the resin material required for packaging and improving the compactness of the structure, the structure of the package body 10 can be made more stable and reliable, thereby further improving the structural reliability of the power module 100.
  • the first recess 10331 may mainly include a first sub-side surface 311 and a second sub-side surface 312, wherein the first sub-side surface 311 extends along the width direction Y of the package body 10, and the second sub-side surface 312 extends along the length direction X of the package body 10.
  • the first sub-side surface 311 is connected (e.g., vertically connected) between the second sub-side surface 312 and the second side surface 10B of the package body.
  • the length of the first sub-side surface 311 (i.e., the dimension along the width direction Y of the package body 10) is greater than the length of the second sub-side surface 312 (i.e., the dimension along the length direction X of the package body 10).
  • the second recess 10332 may mainly include a third sub-side surface 321 and a fourth sub-side surface 322, wherein the third sub-side surface 321 extends along the length direction X of the package body 10, and the fourth sub-side surface 322 extends along the width direction Y of the package body 10.
  • the third sub-side surface 321 is connected (e.g., may be vertically connected) between the fourth sub-side surface 322 and the third side surface 10C of the package body.
  • the structure of the first recess 10331 and the second recess 10332 can be simplified to realize the long strip structure of the first recess 10331 and the second recess 10332 , and the production difficulty of the third guide portion 1033 can be reduced.
  • the first recess 10331 is further provided with a first transition arc surface 313 between the first sub-side surface 311 and the second sub-side surface 312.
  • the stress distribution at the connection between the first sub-side surface 311 and the second sub-side surface 312 of the first recess 10331 can be made more uniform, and stress concentration and fracture caused by the connection between the first sub-side surface 311 and the second sub-side surface 312 can be prevented, thereby improving the fatigue safety factor of the package 10 at the first recess 10331, and improving the structural reliability of the package 10 and even the power module 100.
  • the second recess 10332 is further provided with a second transition arc surface 323 between the third sub-side surface 321 and the fourth sub-side surface 322.
  • the stress distribution at the connection between the third sub-side surface 321 and the fourth sub-side surface 322 of the second recess 10332 can be made more uniform, and stress concentration and fracture caused by the connection between the third sub-side surface 321 and the fourth sub-side surface 322 can be prevented, thereby improving the fatigue safety factor of the package 10 at the second recess 10332, and improving the structural reliability of the package 10 and even the power module 100.
  • the first dummy pin 70 and the second dummy pin 80 may each include a first pin segment, a second pin segment, and a third pin segment connected in sequence.
  • the first dummy pin 70 may include a first pin segment 71, a second pin segment 72, and a third pin segment 73 connected in sequence; the first pin segment 71 extends along the length direction X of the package body 10; the second pin segment 72 is connected to an end of the first pin segment 71 away from the second control chip 302, and extends along the width direction Y of the package body 10.
  • the third pin segment 73 is connected to one end of the second pin segment 72 away from the first pin segment 71, and is bent and extended along the length direction X of the package body 10, and the end of the third pin segment 73 away from the second pin segment 72 is led outward from the third side surface 10C of the package body 10 (for example, the fourth sub-side surface 322 of the second recess 10332).
  • the second dummy pin 80 may include a first pin segment 81, a second pin segment 82, and a third pin segment 83 connected in sequence.
  • the connection method of the first pin segment 81, the second pin segment 82, and the third pin segment 83 of the second dummy pin 80 is similar to the connection method of the first pin segment 71, the second pin segment 72, and the third pin segment 73 of the first dummy pin 70, and will not be repeated here.
  • Such a configuration can make the first dummy pin 70 and the second dummy pin 80 match the structure of the package body 10, which can not only ensure that the first dummy pin 70 and the second dummy pin 80 are led outward from the third side surface 10C of the package body 10 (for example, the fourth sub-side surface 322 of the second recess 10332) to ensure the supporting effect of the first dummy pin 70 and the second dummy pin 80 on the power module 100; but also can make the first dummy pin 70 and the second dummy pin 80 away from the screw fixing groove on the power module 100 through their respective first pin segments and second pin segments, so as to avoid interference or being too close to the screws and resulting in the failure to ensure the electrical insulation requirements of the power module 100, thereby improving the reliability of the power module 100.
  • the width of the second lead segment 82 of the second dummy lead 80 is greater than the width of the second lead segment 72 of the first dummy lead 70.
  • the width refers to a dimension along the length direction X of the package body 10.
  • the second pin segment 82 of the second dummy pin 80 and the second pin segment 72 of the first dummy pin 70 can make full use of the available space on the control pad 90 to enhance the structural stability of the second dummy pin 80 and the first dummy pin 70, thereby improving the stability of the second dummy pin 80 and the first dummy pin 70 in supporting the power module 100.
  • the device 1000 includes a controller 200 and a power module 100 provided in any one of the above embodiments, and the power module 100 is connected to the controller 200 .
  • the power module 100 may be one or more, and the device 1000 may include but is not limited to an inverter device or a rectifier device, for example, a motor drive controller.
  • the controller 200 can generate a control signal according to user instructions and send the control signal to the power module 100.
  • the power module 100 generates a drive signal according to the control signal and outputs it to the corresponding drive component to achieve drive control or inversion or rectification conversion, etc.
  • the insulation withstand voltage and insulation reliability of the device 1000 provided by the embodiment of the present disclosure are improved, and the electrical safety of the device is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

一种功率模块包括封装体、以及位于封装体内的功率芯片、控制芯片和散热基板、以及自封装体的第一和第二侧面分别引出的功率引脚和控制引脚。功率芯片设置于散热基板上。散热基板的底面与封装体的底面平齐且暴露于封装体外。封装体包括树脂注入部和第一台阶部,第一台阶部位于功率引脚的向封装体外延伸的部分靠近封装体的底面的一侧。沿封装体的宽度方向,第一台阶部的侧面相对于第一侧面更靠近散热基板;且沿封装体的厚度方向,第一台阶部的台阶面相对于封装体的底面更靠近功率引脚的向封装体外延伸的部分,且第一台阶部的台阶面到封装体的底面的距离小于树脂注入部到封装体的底面的距离。

Description

功率模块和设备
本申请要求于2022年11月17日提交的申请号为202211442177.8的中国专利申请、2022年11月17日提交的申请号为202211458029.5的中国专利申请以及2022年11月17日提交的申请号为202211442180.X的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及电子器件技术领域,尤其涉及一种功率模块和设备。
背景技术
功率模块(Power Module,PM),具有电流密度高、饱和电压低、驱动功率低、开关频率高、功能集成度高、使用方便、可靠性好等特点,可广泛应用在消费电子、家电、汽车、轨道交通、工业设备、新能源、智能电网等众多领域。通常,功率模块利用树脂对功率芯片及控制芯片进行封装,以使其实现高集成度的特点。
发明内容
一方面,提供一种功率模块。所述功率模块包括封装体、功率芯片、控制芯片、功率引脚、控制引脚和散热基板。所述功率芯片与所述控制芯片电连接,且均设置于所述封装体内,所述功率引脚自所述封装体的第一侧面引出,且与所述功率芯片电连接;所述控制引脚自所述封装体的第二侧面引出,且与所述控制芯片电连接;所述第一侧面与所述第二侧面相对设置。所述散热基板位于所述封装体内,且所述功率芯片设置于所述散热基板上。所述散热基板的底面与所述封装体的底面平齐且暴露于所述封装体外。
所述封装体包括树脂注入部;沿所述功率模块的厚度方向,所述树脂注入部到所述封装体的底面的距离大于所述功率芯片的顶面到所述封装体的底面的距离。
所述封装体还包括凹进的第一台阶部,所述第一台阶部位于所述功率引脚的向所述封装体外延伸的部分靠近所述封装体的底面的一侧,且沿所述功率模块的厚度方向,所述第一台阶部的台阶面到所述封装体的底面的距离小于所述树脂注入部到所述封装体的底面的距离。
另一方面,提供一种设备,包括控制器和上述实施例提供的所述功率模块,所述功率模块与所述控制器连接。
附图说明
图1A为相关技术的功率模块的沿宽度方向的截面示意图;
图1B为相关技术中采用传递模塑法对功率模块的主体结构进行封装的结构示意图;
图2A为根据一些实施例的功率模块的沿宽度方向的截面示意图;
图2B为根据一些实施例的采用传递模塑法对功率模块的主体结构进行封装的结构示意图;
图2C为根据一些实施例的功率模块的沿宽度方向的截面示意图;
图2D为根据一些实施例的功率模块的沿宽度方向的截面示意图;
图2E为根据一些实施例的功率模块的沿宽度方向的截面示意图;
图3为根据一些实施例的功率模块的侧视图;
图4为根据一些实施例的功率模块的俯视图;
图5为根据一些实施例的功率模块的立体图;
图6为根据一些实施例的功率模块的俯视图;
图7为根据一些实施例的功率模块的立体图;
图8为根据一些实施例的功率模块的俯视图;
图9为根据一些实施例的功率模块的仰视图;
图10为图9所示的功率模块的局部放大图;
图11为根据一些实施例的功率模块的立体图;
图12为根据一些实施例的功率模块的仰视图;
图13为根据一些实施例的功率模块的侧视图;
图14为根据一些实施例的功率模块的俯视图;
图15为图14中的功率模块的A1处的局部放大图;
图16为根据一些实施例的功率模块的结构示意图;
图17为图16中的功率模块的B1处的局部放大图;
图18为图16中的功率模块的B1处的局部放大图;
图19为根据一些实施例的设备的结构示意图。
具体实施方式
下面将结合附图,对本公开一些实施例进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。如在本说明书和所附的权利要求书中所使用的单数形式“一个”和“该”也包括复数个指示物,除非所述内容明确说明并非如此。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“近似”或“大致”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量***的局限性)所确定。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。本公开示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
在相关技术中,如图1A所示,功率模块(Power Module,PM)100’通过封装体1’将例如功率芯片2’和控制芯片3’集成并封装在一起,由于功率模块100’在工作时,功率芯片2’会流通较大的电流而导致功率模块100’的发热量较大。因此,为了保证功率模块的有效性,功率模块100’还包括用于对功率芯片2’进行散热的散热基板4’。散热基板4’通常设置于功率模块100’的底部,并使散热基板4’的底面从封装体1’的底面裸露出,以提高散 热效果。
通常采用传递模塑法进行封装,如图1B所示,将功率模块100’的主体结构例如功率芯片2’、控制芯片3’、散热基板4’以及引脚框架等放置于模具101’的型腔1011’中,然后向该模具的型腔1011’内注入液态的封装树脂,待该封装树脂固化后,拆卸该模具101’,即可得到图1A所示的功率模块100’。
然而,在相关技术中,如图1B所示,模具具有上壳体和下壳体,上壳体和下壳体扣合形成内部的型腔,功率引脚20’自上壳体和下壳体扣合位置处引出,向模具的型腔1011’内注入封装树脂的树脂注入口A’通常设置在模具101’的对应功率引脚20’引出的侧面,且位于上壳体和下壳体扣合处的附近。例如,沿模具的厚度方向,树脂注入口的高度h1大致等于或略高于或略低于功率引脚20’引出封装体1’的位置的高度。并且,树脂注入口的高度h1高于设置于散热基板4’上的功率芯片2’的上表面的高度h2,以保证树脂可以完全封装功率芯片2;换句话说,树脂注入口的高度h1高于散热基板4’的上表面的高度。因此,封装树脂在注入时会沿斜向下的方向(如图1B中虚线箭头所示的方向)冲向散热基板4’,对散热基板4’产生较大的冲击力,容易导致散热基板4’发生位移缺陷,影响功率模块的电气安全性和稳定性。
基于此,本公开实施例提供一种功率模块。如图2A至图2E所示,功率模块100的主体结构包括功率芯片20、控制芯片30、与功率芯片20电连接的功率引脚40、与控制芯片30电连接的控制引脚50、以及散热基板60。功率引脚40用以实现功率芯片20与外部的驱动部件的连接,控制引脚50用以实现控制芯片30与外部的控制器的连接。功率芯片20还与控制芯片30电连接,控制芯片30用于驱动功率芯片20。功率芯片20设置于散热基板60上,散热基板60用于对功率芯片20进行散热,以保证功率芯片20的正常工作,进而保证功率模块100的有效性。
功率模块100还包括用于封装该主体结构的封装体10,封装体10具有相对设置且均沿封装体的长度方向X延伸的第一侧面10A和第二侧面10B。功率引脚40的一部分(以下称为第一部分)401从封装体10的第一侧面10A引出,另一部分(以下称为第二部分)402与功率芯片20电连接;控制引脚50的一部分(以下称为第一部分)501从封装体10的第二侧面10B引出,另一部分(以下称为第二部分)502与控制芯片30电连接。散热基板的底面60A与封装体的底面10E平齐且暴露于封装体10外,以提高散热效果。
需要说明的是,将散热基板60设置有功率芯片20的一表面称为散热基板60的顶面,将散热基板60的与其顶面相对设置且未设置功率芯片的一表面称为散热基板60的底面60A;将封装体10的设置有散热基板60的一表面称为封装体10的底面10E,封装体10的底面10E为功率模块100的散热面。
如图4至图9、图11和图12所示,功率引脚40和控制引脚50均为多个,封装体的长度方向X即为多个功率引脚40或多个控制引脚50排列的方向。
如图2A、图3、图4和图13所示,封装体10包括树脂注入部11。
在本公开实施例中,采用传递模塑法对功率模块100的主体结构进行封装以形成封装体10。即,如图2B所示,将功率模块100的主体结构放置于模具101的型腔1011中,该模具101具有树脂注入口A,液态的树脂通过该树脂注入口A注入该模具的型腔1011内,并填充在位于型腔内的功率模块的主体结构与型腔的腔壁之间,待树脂固化后,即可形成如图2A所示的封装体10,对功率芯片20和控制芯片30起到覆盖保护的作用,从而提升功率模块100的结构可靠性。
由此,可以理解的是,所形成的封装体10的对应该树脂注入口A的部分即为该封装体10的树脂注入部11,树脂注入部11的粗糙度比封装体10的其他部分的粗糙度大。
示例的,沿功率模块100的厚度方向Z,树脂注入部11到封装体的底面10E的距离H0大于功率芯片20的顶面(即,远离散热基板60的表面)20A到封装体的底面10E的距离H2。这样,在向型腔1011内注入树脂时,能够保证注入的树脂能够淹没功率芯片20,从而更好地将功率芯片20封装在封装体10内。
此外,封装体10还包括凹进的第一台阶部12,位于功率引脚40的向封装体10外延 伸的第一部分401的靠近封装体的底面10E的一侧。
这里,凹进的第一台阶部12指第一台阶部12向封装体10的内部凹陷。即,第一台阶部12具有台阶面12A和侧面12B,沿封装体10的宽度方向Y,第一台阶部12的侧面12B相对于封装体10的第一侧面10A更靠近散热基板60;且沿封装体10的厚度方向Z,第一台阶部12的台阶面12A相对于封装体的底面10E更靠近功率引脚40的向封装体10外延伸的第一部分401。
沿功率模块100的厚度方向Z,第一台阶部12的台阶面12A到封装体的底面10E的距离H1小于功率引脚40的向封装体10外延伸的第一部分401到封装体的底面10E的距离H40。并且,第一台阶部12的台阶面12A到封装体的底面10E的距离H1小于树脂注入部11到封装体的底面10E的距离H0。
需要说明的是,如图2A所示,将封装体10的与其底面10E相对设置的一表面称为封装体的顶面10F,将封装体的底面10E指向顶面10F的方向称为封装体的厚度方向Z,将封装体的第一侧面10A指向第二侧面10B的方向称为封装体的宽度方向。
可以理解的是,模具101围成的型腔1011的腔壁形状应该与本公开实施例的功率模块100的封装体10的外形是匹配的。换句话说,模具101的型腔1011应该具有与封装体10的外形结构相对应的腔壁结构。
因此,如图2B所示,模具101的型腔1011具有与封装体10的第一台阶部12相对应的第一腔壁台阶1012,第一腔壁台阶1012位于树脂注入口A的靠近模具底部的一侧,即第一腔壁台阶1012的台阶面到型腔底面的距离H11小于树脂注入口A的高度(即,树脂注入口A到型腔底面的距离)H01。
这样,在通过树脂注入口向模具的型腔内注入树脂时,树脂先落到该第一腔壁台阶1012上,该第一腔壁台阶1012对其起到一定的缓冲作用,降低了树脂冲向散热基板60的高度,减小了树脂对散热基板60的斜向下的冲击力,以使树脂尽可能平缓地流向散热基板60,从而可缓解散热基板60发生位移缺陷的问题,提高功率模块的电气安全性和稳定性。
并且,通过设置第一腔壁台阶1012,减少了散热基板60与型腔的对应功率引脚40的侧面之间的空间(即散热基板60与第一腔壁台阶1012之间的空间),从而在注入树脂时可以减少树脂在该空间内的积聚的量,降低了树脂从散热基板60的底面溢出而产生毛刺的风险。
参考图2B,模具101具有上壳体和下壳体,上壳体和下壳体扣合以形成内部的型腔1011。因此,如图3所示,通过该模具所形成的封装体10的侧面具有与该模具101的上壳体与下壳体扣合位置对应的树脂分型面F。
示例的,参考图2B,树脂注入口A可以设置在上壳体与下壳体扣合位置附近。例如,树脂注入口A可以设置在上壳体与下壳体的扣合位置处或树脂注入口A的设置位置略高于或略低于上壳体与下壳体的扣合位置。对应的,对于功率模块100来说,如图3所示,树脂注入部11可以位于树脂分型面F附近,例如,可以位于在树脂分型面F的上方或者下方或者对应树脂分型面F设置。如此设置,可以利于模具加工方便。
在一些示例中,参考图2B,树脂注入口A可以设置于模具101的引出功率引脚40的侧面;即,对应的,如图4所示,树脂注入部11可以位于封装体10的第一侧面10A;在另一些示例中,树脂注入口A可以设置于模具的与引出功率引脚40的侧面相邻的另一侧面;即,对应的,如图4所示,树脂注入部11可以位于封装体10的与第一侧面10A相邻的侧面(例如,沿封装体10的宽度方向Y延伸的第四侧面10D)。本公开实施例对此不做限制,只要树脂可通过树脂注入口A注入至模具101的型腔以形成封装体即可。
在本公开的实施例中,散热基板60可以采用呈一体结构的双面覆铜陶瓷板或者单面覆铜陶瓷板或者陶瓷基板或者绝缘散热铜片,在此不做具体限制。
在一些示例中,如图2A所示,散热基板60为呈一体结构的双面覆铜陶瓷板(也可称为直接覆铜(Direct Bond Copper,DBC)陶瓷基板),包括陶瓷板61及分别位于两侧的一铜层62和另一铜层63。功率芯片20可以设置于双面覆铜陶瓷板的铜层62上;例如, 双面覆铜陶瓷板的铜层62上可以设置有功率焊盘(图中未示意),功率芯片20通过功率焊盘设置在该双面覆铜陶瓷板的铜层62上;功率引脚40与该铜层62连接。双面覆铜陶瓷板的另一铜层63与封装体10的底面10E平齐并暴露于封装体10外,即,双面覆铜陶瓷板的另一铜层63的远离陶瓷板61的表面与封装体10的底面10E平齐并暴露于封装体10外。在本实施例中,双面覆铜陶瓷板既可以实现对功率芯片20的导电连接也可以实现对功率芯片20的导热。
在另一些示例中,如图2C所示,散热基板60为呈一体结构的单面覆铜陶瓷板,包括陶瓷板61及位于该陶瓷板61一侧的铜层62。功率芯片20可以设置在该单面覆铜陶瓷板的铜层62上;例如,该单面覆铜陶瓷板的铜层62上可以设置有功率焊盘(图中未示意),功率芯片20通过功率焊盘设置在该单面覆铜陶瓷板的铜层62上;功率引脚40与该铜层62连接。单面覆铜陶瓷板的陶瓷板61的底面(即陶瓷板61的未设置铜层的表面)与封装体10的底面10E平齐并暴露于封装体10外。在本实施例中,单面覆铜陶瓷板既可以实现对功率芯片20的导电连接也可以实现对功率芯片20的导热。
在又一些示例中,如图2D所示,散热基板60为陶瓷基板,陶瓷基板的上表面(即,靠近功率芯片20的表面)与功率引脚40的位于封装体10内的第二部分402的下表面(即,远离功率芯片20的表面)贴合,功率芯片20设置在功率引脚40位于封装体10内的第一部分401上,陶瓷基板的底面(即,远离功率芯片20的表面)与封装体10的底面10E平齐并暴露于封装体10外。在本实施例中,功率引脚40位于封装体10内的第二部分402作为功率焊盘框架以实现与功率芯片20的导电连接,并结合陶瓷基板共同实现对功率芯片20的导热。其中,陶瓷基板可以为一整块,也可以由设于功率焊盘框架的远离功率芯片20的一侧的多块高度一致的陶瓷板构成。
在又一些示例中,在如图2E所示的功率模块100中,散热基板60为如图2A所示的呈一体结构的双面覆铜陶瓷板,在此不再赘述。在此情况下,该功率模块100还包括封装于封装体10内部的印刷电路板(Printed Circuit Board)PCB,其可作为搭载控制芯片30的控制焊盘,即,控制芯片30搭载于印刷电路板PCB上;控制引脚50可焊接在印刷电路板PCB上。
在一些实施例中,如图2A所示,第一台阶部12的台阶面12A到封装体的底面10E的距离H1小于功率芯片20的顶面20A到封装体10底面10E的距离H2。对应地,如图2B所示,模具的型腔内设置的腔壁台阶1012的台阶面到型腔底面的距离H11小于功率芯片20的顶面20A到型腔底面的距离。
这样,在通过树脂注入口A向型腔内注入树脂时,树脂经由腔壁台阶1012流动至散热基板60和功率芯片20,此时,树脂趋向于沿水平方向缓和流向散热基板60,极大地减少了树脂对散热基板60的冲击力,从而可进一步减少了树脂对散热基板60的冲击力所造成的位移缺陷。
并且,第一台阶部12的台阶面12A到封装体10的底面10E的距离H1较小时,散热基板60与型腔的对应功率引脚的侧面之间的空间也较小,可进一步降低该空间内树脂的积存量,从而进一步减少树脂从散热基板60底面溢出而产生毛刺的风险。
在一些实施例中,如图2C所示,散热基板60的靠近功率引脚40的端部到第一台阶部12的侧面12B的距离S大于等于散热基板60的厚度H3的0.5倍且小于等于散热基板60的厚度H3的1.5倍,即,0.5H3≤S≤1.5H3。
例如,散热基板60的厚度H3可以为1.05mm。
示例的,散热基板60的靠近功率引脚40的端部到第一台阶部12的侧面12B的距离S满足:S=0.5H3、或S=1.0H3、或S=1.5H3。
例如,可设置散热基板60的靠近功率引脚40的端部到第一台阶部12的侧面12B的距离S为0.869mm或者1.2mm等。
散热基板60的靠近功率引脚40的端部到第一台阶部12的侧面12B的距离S较大,在向膜具的型腔内注入树脂时,树脂更容易填满该空间,可以避免产生树脂空隙的缺陷;散热基板60的靠近功率引脚40的端部到第一台阶部12的侧面12B的距离S较小,在向 膜具的型腔内注入树脂时,树脂在该空间内的积存量较小,可以避免树脂从散热基板60的底部溢出而产生毛刺缺陷。
因此,在该实施例中,将散热基板60的靠近功率引脚40的端部到第一台阶部12的侧面12B的距离S设置为大于等于散热基板60的厚度H3的0.5倍且小于等于散热基板60的厚度H3的1.5倍。这样,在向膜具的型腔内注入树脂时,既可以使树脂较容易地填充满散热基板60与型腔的对应功率引脚40的侧面之间的空间以避免产生树脂空隙的缺陷,又可以减少树脂在该空间内的积存量,避免产生毛刺缺陷,从而可进一步保证功率模块100的绝缘稳定性,提高其电气安全性。
在一些实施例中,如图5至图8以及图11所示,第一台阶部12包括沿封装体10的长度方向X延伸的主体部121和沿封装体10的宽度方向Y延伸的至少一个端部122。示例的,端部122可以为一个,位于主体部121的沿封装体10的长度方向X的一侧。又示例的,端部122也可以为两个,分别位于主体部121的沿封装体10的长度方向X的两侧。
在此情况下,第一台阶部12还包括连接该第一台阶部12的主体部121和端部122的第一导流部1031。第一导流部1031被配置为实现树脂导流的作用。
示例的,在第一台阶部12仅包括一个端部122的情况下,第一台阶部12仅包括一个第一导流部1031。又示例的,在第一台阶部12包括两个端部122的情况下,第一台阶部12可以包括两个第一导流部1031,一个第一导流部1031连接一个端部122和主体部121。
可以理解的是,在第一台阶部12包括第一导流部1031的情况下,对应的,形成封装体10的模具的型腔内与第一台阶部对应的第一腔壁台阶也具有与第一导流部1031对应的导流结构。
这样,在向型腔内注入树脂时,树脂流动至型腔内与第一导流部1031对应的拐角处时,型腔内与第一导流部1031对应的导流结构可以产生将树脂导向对面侧的分力作用,以提高树脂在此处的流动性,引导树脂向前流动,可以避免树脂在此处停滞,从而进一步减少树脂空隙的产生;并且,还可进一步减少树脂在此处的积存量,可进一步避免树脂从散热基板60的底面溢出而产生毛刺的风险。
在一些示例中,第一导流部1031可以为倒角、凸部或凹部。
示例的,如图5至图8所示,第一导流部1031可以为倒角。这里,倒角可以理解为连接第一台阶部12所包括的主体部121和端部122的侧面的通过切掉尖锐边缘而形成的与该第一台阶部12所包括的主体部121和端部122的侧面均呈一定角度的表面。
关于倒角的角度和边长的具体设置以及第一导流部1031设置为倒角时所能产生的效果,可参考下述的关于第二导流部1032的描述,此处将不细述。
又示例的,第一导流部1031可以为凸部或凹部。例如,如图11所示,第一导流部1031为弧形朝向封装体10外凸出的圆弧面。
关于将第一导流部1031设置为凸部或凹部时所产生的效果,可参考下述的关于第二导流部1032的描述,此处将不细述。
在一些实施例中,如图5至图9所示,功率模块100还包括第二导流部1032,第二导流部1032设置在封装体10的引出功率引脚40的一侧(即,封装体的第一侧面10A)的沿封装体的长度方向X的端部的拐角处。第二导流部1032被配置为实现树脂导流的作用。
示例的,第二导流部1032可以为一个。该第二导流部1032可设置在封装体10的第一侧面10A沿封装体的长度方向X的一个端部的拐角处,即第一侧面10A与第四侧面10D连接的拐角处。或者,该第二导流部1032可设置在封装体10的第一侧面10A沿封装体的长度方向X的另一个端部的拐角处,即,第一侧面10A与第三侧面10C(即,与第一侧面10A相邻的除第四侧面10D外的另一侧面)连接的拐角处。
又示例的,如图5至图9所示,第二导流部1032可以为两个,分别设置在封装体10的第一侧面10A沿封装体的长度方向X的两个端部的拐角处,即,分别设置在第一侧面10A与第四侧面10D连接的拐角处以及第一侧面10A与第三侧面10C连接的拐角处。
这样,在注入树脂时,型腔内对应该第二导流部1032的结构可以产生将树脂导向对面侧的分力作用,以提高树脂在此处的流动性,引导树脂向前流动,从而可以减少树脂在 型腔内对应封装体的拐角的位置处的停滞积聚,并减少树脂空隙的产生,保证功率模块的电气安全性。
在一些示例中,如图5至9所示,第二导流部1032可以为倒角。这里,倒角可以理解为连接第一侧面10A与第三侧面10C(或第四侧面10D)的通过切掉尖锐边缘而形成的与第一侧面10A和第三侧面10C(或第四侧面10D)均呈一定角度的表面。
例如,树脂注入口位于模具的功率引脚引出的一侧(即,与封装体10的第一侧面10A对应的一侧),通过该树脂注入口向型腔内注入树脂,在树脂流动至型腔内与第二导流部1032对应的位置时,如图9所示,型腔内对应倒角的结构对此处的树脂会产生一个斜向对面侧(例如第二侧面10B)的分力Fy,从而可以使得型腔内流动至该拐角处的树脂向前流动,避免在拐角处停滞积聚,减少树脂空隙的产生。
由上可知,倒角的角度可以影响导流部的导流效果。示例的,如图10所示,倒角的角度θ可以满足50°≤θ≤70°,这样,既能保证倒角的导流能力大,又可以节省原料。例如,倒角的角度θ可以为50°、60°或者70°等,本公开实施例对此不做限制。
示例的,如图10所示,倒角的边长L可以大于1.2mm,以进一步提高倒角的导流能力。例如,倒角的边长L可以为1.2mm、1.4mm或者1.6mm等,本公开实施例对此不做限制。如图8所示,倒角的边长L为1.4mm。
由于第二导流部1032设置于第一侧面10A和第三侧面10C(或第四侧面10D)的拐角处,且在功率模块应用时,通常在沿宽度方向Y的中部位置处对其进行安装。因此,可以理解的是,倒角的边长L不会超过第三侧面10C(或第四侧面10D)的沿封装体10的宽度方向的尺寸的0.5倍。
同理地,在另一些示例中,第二导流部1032也可以为凸部,例如,弧度朝向封装体10外凸出的圆弧面,同样也可以达到将型腔内对应封装体10的第二导流部1032所在的拐角处的树脂向前导流的作用,避免造成树脂在该拐角处停滞积聚,减小树脂空隙的产生,提高功率模块的电气安全性。
在又一些示例中,第二导流部1032还可以为凹部。这样,不仅可达到将型腔内对应封装体10的第二导流部1032所在的拐角处的树脂向前导流的作用,避免造成树脂在该拐角处停滞积聚,减小树脂空隙的产生,还可节省原料。当然,第二导流部1032的形状不限于此,本公开实施例对此不做限制。
在一些实施例中,如图5至图9所示,功率模块100还包括第三导流部1033。第三导流部1033可以设置在封装体10的引出控制引脚50的一侧(即,封装体的第二侧面10B)的沿封装体的长度方向X的端部的拐角处。第三导流部1033被配置为实现树脂导流的作用。
示例的,第三导流部1033可以为一个。该第三导流部1033可以设置在封装体10的第二侧面10B沿封装体的长度方向X的一个端部的拐角处,即第二侧面10B与第四侧面10D连接的拐角处。或者,该第三导流部1033可设置在封装体10的第二侧面10B沿封装体的长度方向X的另一个端部的拐角处,即,第二侧面10B与第三侧面10C连接的拐角处。
又示例的,如图5至图9所示,第三导流部1033可以为两个,分别设置在封装体10的第二侧面10B沿封装体的长度方向X的两个端部的拐角处,即,分别设置在第二侧面10B与第四侧面10D连接的拐角处以及第二侧面10B与第三侧面10C连接的拐角处。
这样,在注入树脂流动至型腔内与第三导流部1033对应的拐角处时,型腔内与该第三导流部1033对应的结构可以对流向此处的树脂产生一个斜向中间的分力(如图9所示的分力Fx),以引导流向该位置的树脂向型腔的中部流动,从而减少树脂在此拐角处的停滞积聚,减少树脂空隙的产生,保证功率模块的电气安全性。
在一些示例中,第三导流部1033可以为倒角、凸部或凹部。
示例的,如图5和图6所示,第三导流部1033为倒角。倒角的角度和边长可参考上述关于第二导流部1032的描述,此处不再赘述。
又示例的,第三导流部1033也可以为凸部,例如弧度朝向封装体外凸出的圆弧面(图 中未示意)。
又示例的,如图7和图8所示,第三导流部1033为凹部。同样地,型腔内与该凹部对应的结构可以挤压流动至该拐角处的树脂,以使树脂向型腔的中部流动,在避免树脂在该拐角处的停滞积聚以减小树脂空隙的产生的同时,还可以更加节省原料。
在一些实施例中,在第三导流部1033为凹部的情况下,第三导流部1033可以为一个凹部(如图8中的位于第二侧面10B与第四侧面10D的拐角处的第三导流部1033),第三导流部1033也可以为两个连续的第一凹部10331和第二凹部10332(如图8中的位于第二侧面10B与第三侧面10C的拐角处的第三导流部1033)。
在一些实施例中,如图2A、图2C至图2E所示,封装体10还包括凹进的第二台阶部13,位于控制引脚50的向封装体10外延伸的第一部分501的靠近封装体的底面10E的一侧。
这里,与凹进的第一台阶部12类似,凹进的第二台阶部13指第二台阶部13向封装体10的内部凹陷。即,第二台阶部13具有台阶面13A和侧面13B,沿封装体10的宽度方向Y,第二台阶部13的侧面13B相对于封装体10的第二侧面10B更靠近散热基板60;且沿封装体10的厚度方向Z,第二台阶部13的台阶面13A相对于封装体的底面10E更靠近控制引脚50的向封装体10外延伸的第一部分501。
沿封装体10的厚度方向Z,第二台阶部13的台阶面13A到封装体的底面10E的距离H13小于控制引脚50的向封装体10外延伸的第一部分501到封装体的底面10E的距离H501。
在本公开的一些实施例中,在控制引脚50的向封装体10外延伸的第一部分501靠近封装体10的底面10E的一侧设置第二台阶部13,对应的,如图2B所示,模具101的型腔1011具有与封装体10的第二台阶部13相对应的第二腔壁台阶1013。这样,第二腔壁台阶1013的设置可以减小散热基板60与型腔的对应控制引脚50的侧面之间的空间(即散热基板60与第二腔壁台阶1013之间的空间),从而可减少树脂在该空间内的积聚的量,进一步降低了树脂从散热基板60的底面溢出而产生毛刺的风险。
在一些示例中,如图2A所示,第二台阶部13的高度与第一台阶部12的高度相等。即,沿封装体10的厚度方向Z,第二台阶部13的台阶面13A到封装体的底面10E的距离H13与第一台阶部12的台阶面12A到封装体10的底面10E的距离H1相等。
在另一些示例中,如图2C所示,第二台阶部13的深度与第一台阶部12的深度相等。即,沿封装体10的宽度方向Y,第二台阶部13的侧面13B到封装体10的侧面(即,引出控制引脚50的第二侧面10B)的距离D2与第一台阶部12的侧面12B到封装体10的侧面(即,引出功率引脚的第一侧面10A)的距离D1相等。
在又一些示例中,沿封装体10的厚度方向Z,第二台阶部13的台阶面13A到封装体的底面10E的距离H13与第一台阶部12的台阶面12A到封装体10的底面10E的距离H1相等。并且,如图2C所示,沿封装体10的宽度方向Y,第二台阶部13的侧面13B到封装体10的侧面(即,引出控制引脚50的第二侧面10B)的距离D2与第一台阶部12的侧面12B到封装体10的侧面(即,引出功率引脚的第一侧面10A)的距离D1也相等。也就是说,如图2A以及图2C至图2E所示,第二台阶部13和第一台阶部12沿封装体10的宽度方向Y对称设置。
如此设置,不仅制作工艺更加简单,而且还可以使树脂较容易地填充满散热基板60与型腔的对应控制引脚50的侧面之间的空间,以避免在该空间内产生树脂空隙的缺陷。
在一些实施例中,如图2A、图2C至图2E所示,封装体10还包括凹进的第三台阶部14,位于控制引脚50的向封装体外10延伸的第一部分501远离封装体的底面10E的一侧。
这里,与凹进的第一台阶部12类似,凹进的第三台阶部14指第三台阶部14向封装体10的内部凹陷。即,第三台阶部14具有台阶面14A和侧面14B;沿封装体的宽度方向Y,第三台阶部14的侧面14B相对于封装体的第二侧面10B更靠近散热基板60;且沿封装体的厚度方向Z,第三台阶部14的台阶面14A相对于封装体的顶面10F更靠近控制引脚50的向封装体10外延伸的第一部分501。
如图2A所示,沿封装体10的厚度方向Z,第三台阶部14的台阶面14A到封装体的顶面10F的距离H14小于控制引脚50的向封装体10外延伸的第一部分501到封装体的顶面10F的距离H502。
需要说明的是,将封装体10的与其厚度方向垂直且未设置散热基板60的表面称为封装体10的顶面10F。
由于型腔内设有控制引脚50的一侧距离树脂注入口的距离较远,因此,通过在封装体10的位于控制引脚50的向封装体10外延伸的第一部分501的两侧分别设置第二台阶部13和第三台阶部14,可以在注入树脂时,调整树脂在型腔内设有控制引脚50的一侧的模流速度,从而使整个型腔内的模流速度较为均衡,避免产生空隙;并且,还可以加快树脂的冲注时间。
在一些示例中,如图2A、图2C至图2E所示,第三台阶部14的台阶面14A到封装体的顶面10F的距离H14小于第二台阶部13的台阶面13A到封装体的底面10E的距离H13和/或第一台阶部12的台阶面12A到封装体的底面10E的距离H1。
这样,可以在保证树脂可完全淹没控制芯片30的前提下,进一步调整树脂在型腔内的控制引脚的一侧的模流速度,使整个型腔内的模流速度较为均衡,避免产生空隙。
在一些实施例中,如图5至图8所示,在封装体10还包括凹进的第二台阶部13的情况下,第二台阶部13的拐角处还设置有第四导流部1034。第四导流部1034被配置为实现树脂导流的作用。
如图6和图8所示,第二台阶部13包括沿封装体10的长度方向X延伸的主体部131和沿封装体10的宽度方向Y延伸的至少一个端部132。在此情况下,第二台阶部13还包括连接该第二台阶部13的主体部131和端部132的第四导流部1034。
示例的,端部132可以为一个,位于主体部131的沿封装体10的长度方向X的一侧。此时,第二台阶部13仅包括一个第四导流部1034。
又示例的,端部132也可以为两个,分别位于主体部131的沿封装体10的长度方向X的两侧。此时,第二台阶部13可以包括两个第四导流部1034,一个第四导流部1034连接一个端部132和主体部131。
在一些示例中,第四导流部1034可以为倒角、凸部或凹部。
示例的,如图5至图8所示,第四导流部1034可以为倒角。倒角的角度和边长可参考上述一些实施例中的关于第一导流部1031的描述,此处不再赘述。又示例的,第四导流部1034可以为凸部。例如,如图11所示,第四导流部1034为弧形朝向封装体10外凸出的圆弧面。
与上述一些实施例中的第三导流部1033的作用类似,在树脂流动至型腔内与第四导流部1034对应的拐角处时,型腔内与第四导流部1034对应的结构可以产生将树脂导向型腔中部的分力作用,以使树脂向型腔的中部流动,避免在该拐角处停滞积聚,减少树脂空隙的产生。
在一些实施中,如图12所示,在封装体10还包括凹进的第三台阶部14的情况下,第三台阶部14的拐角处还设置有第五导流部1035。第五导流部1035被配置为实现树脂导流的作用。
如图12所示,第三台阶部14包括沿封装体10的长度方向X延伸的主体部141和沿封装体10的宽度方向Y延伸的至少一个端部142。在此情况下,第三台阶部14还包括连接该第三台阶部14的主体部141和端部142的第五导流部1035。
示例的,端部142可以为一个,位于主体部141的沿封装体10的长度方向X的一侧。此时,第三台阶部14仅包括一个第五导流部1035。
又示例的,端部132也可以为两个,分别位于主体部141的沿封装体10的长度方向X的两侧。此时,第三台阶部14可以包括两个第五导流部1035,一个第五导流部1035连接一个端部142和主体部141。
在一些示例中,如图12所示,第五导流部1035可以为倒角,倒角的角度和边长可参考上述一些实施例中的关于第二导流部1032的描述,此处不再赘述。
在另一些示例中,第五导流部1035可以为凸部,例如弧形朝向封装体10外凸出的圆弧面,或者,第五导流部1035可以为凹部。
与上述一些实施例中的第三导流部1033的作用类似,在树脂流动至型腔内与第五导流部1035对应的拐角处时,型腔内与第五导流部1035对应的结构可以产生将树脂导向型腔的中部的分力作用,以使树脂向型腔的中部流动,避免在该拐角处停滞积聚,减少树脂空隙的产生。
在本公开的实施例中,采用传递模塑法形成封装体10的模具可以具有多个树脂注入口,多个树脂注入口可以间隔分布于模具的多个功率引脚引出的一侧。例如,沿模具的长度方向(即,封装体的长度方向),每个树脂注入口可以位于两个功率引脚之间。对应的,在一些实施例中,封装体10具有多个树脂注入部11,多个树脂注入部11可以间隔位于封装体的第一侧面10A。
示例的,如图13所示,封装体10具有两个树脂注入部11,如第一树脂注入部1021和第二树脂注入部1022。沿封装体10的长度方向X,第一树脂注入部1021和第二树脂注入部1022均匀位于封装体10的第一侧面10A。即,沿封装体10的长度方向X,第一树脂注入部1021与其最靠近的拐角之间的距离H101、第一树脂注入部1021与第二树脂注入部1022之间的距离H102、以及第二树脂注入部1022与其最靠近的拐角之间的距离H103近似相等。
这样,在注入树脂时,可以使树脂更加均匀地向型腔内的左右两侧以及中部流动,有利于型腔内树脂充注的均匀性,也可以达到减少树脂空隙的效果。
在本公开实施例提供的功率模块100中,控制引脚50为多个,且自封装体10的沿其长度方向X延伸的第二侧面10B引出,即,多个控制引脚50沿第二侧面10B排列。
在一些实施例中,如图8、图12、图14以及图16所示,功率模块100还包括自封装体10的第三侧面10C引出的第一伪引脚70,第三侧面10C与第二侧面10B相邻,且沿封装体10的宽度方向Y延伸。
多个控制引脚50包括第一功能引脚501和第二功能引脚502;沿封装体10的长度方向X,第二功能引脚502靠近封装体10的第二侧面10B的中部,且第一功能引脚501位于第二功能引脚502远离第一伪引脚70的一侧。
也就是说,第一功能引脚501、第二功能引脚502和第一伪引脚70分别沿封装体10的长度方向X大致均匀排列,且从封装体10的不同侧面引出,并且被配置为从功率模块100的不同侧面支撑该功率模块100,以提升功率模块100的稳固性。
这样,可以使第一功能引脚501和第二功能引脚502与第一伪引脚70从功率模块100的两侧对功率模块100进行整体的支撑,从而可以避免从功率模块100的单侧对其支撑而产生的晃动问题,可以提升功率模块100的稳固性,防止功率模块100变形。
并且,第一伪引脚70从封装体10的第三侧面10C引出,这样可以避免增加对功率模块100的沿长度方向X上的空间的占用以及材料的浪费,可以使用于支撑功率模块100的各个引脚的设置更加合理紧凑,从而可减小功率模块100的体积,提高功率模块100的小型化程度。
此外,第一功能引脚501和第二功能引脚502从封装体10的第二侧面10B引出,且第一伪引脚70从封装体10的第三侧面10C引出,还可以加大这些引脚之间的绝缘距离,从而可以进一步地提升功率模块100的安全性能。
在一些实施例中,如图16所示,功率模块100还包括控制焊盘90,控制芯片30设置于控制焊盘90上,这样可以保证控制芯片30安装设置的稳定性和可靠性,可以提升控制芯片30的性能。
第一功能引脚501、第二功能引脚502以及第一伪引脚70与控制焊盘90连接为一体结构。或者,也可以理解为:控制焊盘90的不同部分分别形成用于搭载控制芯片30的焊盘、以及上述的第一功能引脚501、第二功能引脚502和第一伪引脚70。
第一功能引脚501和第二功能引脚502从封装体10的第二侧面10B引出,均与***电路电连接,不仅保证功率模块100的正常工作,还可对功率模块100进行支撑,保证功 率模块100的安装的可靠性。第一伪引脚70从封装体10的第三侧面10C引出,以实现从不同于控制引脚50所引出的侧面对功率模块100进行支撑,以保证功率模块100的安装的可靠性。
由此可知,在本公开的一些实施例所提供的功率模块100中,可利用功率模块100中用于搭载控制芯片30的焊盘来形成用于支撑功率模块100的引脚,无需额外增加引脚用于支撑功率模块,从而可减小于支撑功率模块的引脚的占用空间,提高功率模块100的小型化程度。
在一些实施例中,如图16所示,功率模块100包括多个控制芯片30,例如包括第一控制芯片301和第二控制芯片302。根据功率模块100的不同用途,第一控制芯片301可以作为低压芯片,第二控制芯片可以作为高压芯片,可以提升功率模块100的工作性能。
在此情况下,控制焊盘90包括:一体成型的第一芯片焊盘901和第二芯片焊盘902;沿封装体10的长度方向X,第一芯片焊盘901和第二芯片焊盘902顺次连接。第一控制芯片301设置在第一芯片焊盘901上,第二控制芯片302设置在第二芯片焊盘902上,这样可以提高功率模块100的结构紧凑性。
在一些示例中,第一功能引脚501与第一控制芯片301电连接,可用于向第一控制芯片301提供接地电压。第一功能引脚501设置于第一芯片焊盘901的沿功率模块的长度方向(即,封装体的长度方向X)的一侧,第一伪引脚70设置于第二芯片焊盘902的沿功率模块的长度方向X的远离第一芯片焊盘901的一侧,第二功能引脚502靠近第一芯片焊盘901的第二芯片焊盘902的中间位置设置,这样可以使第一功能引脚501、第二功能引脚502和第一伪引脚70在封装体10内的分布更加均匀,从而可以使第一功能引脚501、第二功能引脚502和第一伪引脚70对功率模块100的支撑力的分布更加均匀,以提升功率模块100的可靠性和稳定性。
在一些实施例中,如图16所示,多个控制引脚50还包括第三功能引脚503,第三功能引脚503与第二控制芯片302电连接,可用于向第二控制芯片302提供高电压。
在此情况下,如图8、图12、图14以及图16所示,功率模块100还包括自封装体10的第三侧面10C引出的第二伪引脚80。第三功能引脚503与第二伪引脚80连接为一体结构。并且,沿封装体的长度方向X,第三功能引脚503位于第二功能引脚502远离第一功能引脚501的一侧,且靠近封装体10的第二侧面10B的中部。即,第三功能引脚503靠近第一芯片焊盘901的第二芯片焊盘902的中间位置设置。
这样,第三功能引脚503与第二伪引脚80也可以从两个方向对功率模块100进行支撑,从而可以辅助第一功能引脚501、第二功能引脚502和第一伪引脚70对功率模块100进行支撑,可进一步提升功率模块100的稳固性。
并且,第二伪引脚80从功率模块的沿宽度方向(即封装体的宽度方向Y)延伸的侧面引出,可避免增加对功率模块100的沿长度方向X上的空间的占用,从而可减小功率模块100的体积,进一步提高功率模块100的小型化程度。
同时,第三功能引脚503与第二伪引脚80连接为一体结构。可以理解为:利用向控制芯片30提供高电压的引脚,将其一端从第二侧面引出作为高压引脚(即,第三功能引脚503),另一端沿功率模块100的长度方向X延伸并从第三侧面引出,作为非功能引脚(即第二伪引脚80),与高压引脚共同达到支撑功率模块的作用。这样,无需额外增加引脚用于支撑功率模块,从而可在保证功率模块的支撑稳固性的同时,进一步提高功率模块100的小型化程度。
在本公开一些实施例提供的功率模块100中,功率模块100包括位于封装体10的第二侧面10B的沿封装体10的长度方向X的端部的拐角处的第三导流部1033,且第三导流部1033包括至少一个凹部。这样,在保证封装体10对功率模块100的主体结构起到保护作用的前提下,不仅可以减小封装体10的体积,节省封装所需的树脂材料,降低功率模块100的生产成本,而且还可以使功率模块100的结构更加紧凑,减小功率模块100的体积,提升功率模块100的小型化程度。
在一些实施例中,第三导流部1033包括一个凹部,在此情况下,第一伪引脚70和第 二伪引脚80从该凹部的沿封装体10的宽度方向Y延伸的侧面引出。
在另一些实施例中,第三导流部1033包括两个连续的凹部。如图8、图12以及图14至图18所示,第三导流部1033包括两个连续的第一凹部10331和第二凹部10332,第一凹部10331整体沿封装体10的长度方向X延伸,第二凹部10332整体沿封装体10的宽度方向Y延伸,这样,可以简化封装体10的生产流程,降低封装体10的生产难度。
由此可知,第二凹部10332相比于第一凹部10331远离控制引脚50。因此,将第一伪引脚70和第二伪引脚80从第二凹部10332的沿封装体10的宽度方向Y延伸的侧面引出,不仅可以提高功率模块的小型化程度,还可延长这些引脚之间的绝缘长度。
此外,示例的,如图14和图15所示,第一伪引脚70和第二伪引脚80的引出封装体10的长度不超过第二凹部10332的深度,即,沿封装体10的长度方向X,第一伪引脚70和第二伪引脚80的引出封装体10外的端部不超过封装体10的第三侧面10C。这样不仅可以加大第一伪引脚70和第二伪引脚80与各自对应的功能引脚之间的爬电距离,而且还可以防止裸露的第一伪引脚70和第二伪引脚80与位于封装体10的第三侧面10C一侧的外部器件接触而导致发生电触事件或被损坏。
在一些示例中,如图17所示,第一凹部10331和第二凹部10332均为长条状,第一凹部10331的长度d1与第二凹部10332的长度d2满足关系式:d1≥d2。这样可以使第一凹部10331和第二凹部10332的形状设计更加简单,方便第一凹部10331和第二凹部10332的成型,进一步降低封装体10的生产难度。
并且,可以使第一凹部10331和第二凹部10332的长度与其对应所在的第侧面10A和第三侧面10C的长度相匹配,从而可以进一步地优化封装体10的结构设计,在节省封装所需的树脂材料,以及提升结构紧凑性的前提下,可以使封装体10的结构更加稳定可靠,从而可以进一步地提升功率模块100的结构可靠性。
在本公开一些实施例提供的功率模块100中,如图15和图18所示,第一凹部10331可以主要包括第一子侧面311和第二子侧面312,第一子侧面311沿封装体10的宽度方向Y延伸,第二子侧面312沿封装体10的长度方向X延伸。第一子侧面311连接(例如,可垂直连接)于第二子侧面312和封装体的第二侧面10B之间。第一子侧面311的长度(即沿封装体10的宽度方向Y的尺寸)大于第二子侧面312的长度(即沿封装体10的长度方向X的尺寸)。
第二凹部10332可以主要包括第三子侧面321和第四子侧面322,第三子侧面321沿封装体10的长度方向X延伸,第四子侧面322沿封装体10的宽度方向Y延伸。第三子侧面321连接(例如,可垂直连接)于第四子侧面322和封装体的第三侧面10C之间。
这样,可以简化第一凹部10331和第二凹部10332的结构,以实现第一凹部10331和第二凹部10332的长条状结构,并可降低第三导流部1033的生产难度。
示例的,如图15和图18所示,第一凹部10331在第一子侧面311和第二子侧面312之间还设置有第一过渡圆弧面313。这样,可以使第一凹部10331的第一子侧面311和第二子侧面312的连接处的应力分布更加均匀,防止第一子侧面311和第二子侧面312的连接处出现应力集中而导致断裂,从而可以提高封装体10在第一凹部10331处的疲劳安全系数,可以提高封装体10乃至功率模块100的结构可靠性。
示例的,如图15和图18所示,第二凹部10332在第三子侧面321和第四子侧面322之间还设置第二过渡圆弧面323。这样,可以使第二凹部10332的第三子侧面321和第四子侧面322的连接处的应力分布更加均匀,防止第三子侧面321和第四子侧面322的连接处出现应力集中而导致断裂,从而可以提高封装体10在第二凹部10332处的疲劳安全系数,可以提高封装体10乃至功率模块100的结构可靠性。
在一些实施例中,第一伪引脚70和第二伪引脚80均可以包括依次连接的第一引脚段、第二引脚段和第三引脚段。
如图16和图18所示,第一伪引脚70可以包括依次连接的第一引脚段71、第二引脚段72和第三引脚段73;第一引脚段71沿封装体10的长度方向X上延伸;第二引脚段72与第一引脚段71的远离第二控制芯片302的一端相连接,且沿封装体10的宽度方向Y延 伸;第三引脚段73与第二引脚段72的远离第一引脚段71的一端相连接,且沿封装体10的长度方向X弯折延伸,第三引脚段73的远离第二引脚段72的端部从封装体10的第三侧面10C(例如,第二凹部10332的第四子侧面322)向外引出。
第二伪引脚80可以包括依次连接的第一引脚段81、第二引脚段82和第三引脚段83。第二伪引脚80的第一引脚段81、第二引脚段82和第三引脚段83连接方式与第一伪引脚70的第一引脚段71、第二引脚段72和第三引脚段73的连接方式类似,在此不再赘述。
如此设置,可以使第一伪引脚70和第二伪引脚80匹配封装体10的结构,不仅可以保证第一伪引脚70和第二伪引脚80从封装体10的第三侧面10C(例如,第二凹部10332的第四子侧面322)向外引出,以保证第一伪引脚70和第二伪引脚80对功率模块100的支撑作用;而且可以使第一伪引脚70和第二伪引脚80通过各自的第一引脚段和第二引脚段远离功率模块100上的螺钉固定槽,避免干涉或与螺钉距离过近而导致无法保证功率模块100的电绝缘性的要求,从而提升功率模块100的可靠性。
在一些示例中,第二伪引脚80的第二引脚段82的宽度大于第一伪引脚70的第二引脚段72的宽度。这里,宽度指沿封装体10的长度方向X的尺寸。
这样,可以使第二伪引脚80的第二引脚段82和第一伪引脚70的第二引脚段72充分利用控制焊盘90上的可用空间,增强第二伪引脚80和第一伪引脚70的结构稳定性,从而提高第二伪引脚80和第一伪引脚70对功率模块100支撑作用的稳固性。
本公开一些实施例还提出一种设备,上述实施例提供的功率模块应用于该设备。
如图19所示,设备1000包括控制器200和上述任一实施例提供的功率模块100,功率模块100与控制器200连接。
在一些实施例中,功率模块100可以为一个或者多个,设备1000可以包括但不限于逆变设备或者整流设备,例如可以为电机驱动控制器。
例如,控制器200可以根据用户指令可以生成控制信号,并将该控制信号发送给功率模块100,功率模块100根据该控制信号生成驱动信号,并输出给对应的驱动件,实现驱动控制或者逆变或者整流转换等。
通过采用上述实施例的功率模块100,提高了本公开实施例提供的设备1000的绝缘耐压性和绝缘可靠性,以及提高了设备的电气安全性。
本领域的技术人员将会理解,本发明的公开范围不限于上述具体实施例,并且可以在不脱离本申请的精神的情况下对实施例的某些要素进行修改和替换。本公开的范围受所附权利要求的限制。

Claims (20)

  1. 一种功率模块,包括:
    封装体;
    设置于所述封装体内的功率芯片;
    设置于所述封装体内,且与所述功率芯片电连接的控制芯片;
    自所述封装体的第一侧面引出的功率引脚,所述功率引脚与所述功率芯片电连接;
    自所述封装体的第二侧面引出的控制引脚,所述第一侧面与所述第二侧面相对设置,所述控制引脚与所述控制芯片电连接;和
    位于所述封装体内的散热基板;所述功率芯片设置于所述散热基板上,所述散热基板的底面与所述封装体的底面平齐且暴露于所述封装体外;其中,
    所述封装体包括树脂注入部和第一台阶部,所述第一台阶部位于所述功率引脚的向所述封装体外延伸的部分靠近所述封装体的底面的一侧,所述第一台阶部具有台阶面和侧面;沿所述封装体的宽度方向,所述第一台阶部的侧面相对于所述封装体的第一侧面更靠近所述散热基板;且沿所述封装体的厚度方向,所述第一台阶部的台阶面相对于所述封装体的底面更靠近所述功率引脚的向所述封装体外延伸的部分,且所述第一台阶部的台阶面到所述封装体的底面的距离小于所述树脂注入部到所述封装体的底面的距离。
  2. 根据权利要求1所述的功率模块,其中,所述第一台阶部的台阶面到所述封装体的底面的距离小于所述功率芯片的顶面到所述封装体的底面的距离。
  3. 根据权利要求1或2所述的功率模块,其中,所述散热基板的靠近所述功率引脚的端部到所述第一台阶部的侧面的距离大于等于所述散热基板的厚度的0.5倍且小于等于所述散热基板的厚度的1.5倍。
  4. 根据权利要求1-3任一项所述的功率模块,其中,所述第一台阶部包括沿所述封装体的长度方向延伸的主体部和沿所述封装体的宽度方向延伸的端部;其中,所述第一台阶部还包括:
    连接所述第一台阶部的主体部和端部的第一导流部。
  5. 根据权利要求1-4任一项所述的功率模块,还包括:
    第二导流部,位于所述封装体的第一侧面沿所述封装体的长度方向的端部的拐角处;和/或
    第三导流部,位于所述封装体的第二侧面沿所述封装体的长度方向的端部的拐角处。
  6. 根据权利要求5所述的功率模块,其中,所述第二导流部包括倒角、凸部或凹部;和/或
    所述第三导流部包括倒角、凸部或至少一个凹部。
  7. 根据权利要求1-6任一项所述的功率模块,其中,所述封装体还包括第二台阶部,所述第二台阶部位于所述控制引脚的向所述封装体外延伸的部分靠近所述封装体的底面的一侧;所述第二台阶部具有台阶面和侧面;沿所述封装体的宽度方向,所述第二台阶部的侧面相对于所述封装体的第二侧面更靠近所述散热基板;且沿所述封装体的厚度方向,所述第二台阶部的台阶面相对于所述封装体的底面更靠近所述控制引脚的向所述封装体外延伸的部分。
  8. 根据权利要求7所述的功率模块,其中,沿所述封装体的厚度方向,所述第二台阶部的台阶面到所述封装体的底面的距离与所述第一台阶部的台阶面到所述封装体的底面的距离大致相等,和/或沿所述封装体的宽度方向,所述第二台阶部的侧面到所述封装体的侧面的距离与第一台阶部的侧面到所述封装体的侧面的距离大致相等。
  9. 根据权利要求7或8所述的功率模块,其中,所述第二台阶部包括沿所述封装体的长度方向延伸的主体部和沿所述封装体的宽度方向延伸的端部;其中,所述第二台阶部还包括:
    连接所述第二台阶部的主体部和端部的第四导流部。
  10. 根据权利要求7-9任一项所述的功率模块,其中,所述封装体还包括第三台阶部,所述第三台阶部位于所述控制引脚的向所述封装体外延伸的部分远离所述封装体的底面的一侧;所述第三台阶部具有台阶面和侧面;沿所述封装体的宽度方向,所述第三台阶部的侧面相对于所述封装体的第二侧面更靠近所述散热基板;且沿所述封装体的厚度方向,所述第三台阶部的台阶面相对于所述封装体的顶面更靠近所述控制引脚的向所述封装体外延伸的部分。
  11. 根据权利要求10所述的功率模块,其中,所述第三台阶部的台阶面到所述封装体的顶面的高度小于所述第二台阶部的台阶面到所述封装体的底面的高度和/或第一台阶部的台阶面到所述封装体的底面的高度。
  12. 根据权利要求10或11所述的功率模块,其中,所述第三台阶部包括沿所述封装体的长度方向延伸的主体部和沿所述封装体的宽度方向延伸的端部;其中,所述第三台阶部还包括:
    连接所述第三台阶部的主体部和端部的第五导流部。
  13. 根据权利要求1-12任一项所述的功率模块,还包括:
    自所述封装体的与所述第二侧面相邻的第三侧面引出的第一伪引脚;其中,
    所述控制引脚包括第一功能引脚和第二功能引脚;沿所述封装体的长度方向,所述第二功能引脚靠近所述第二侧面的中部,且所述第一功能引脚位于所述第二功能引脚远离所述第一伪引脚的一侧;
    所述第一功能引脚、第二功能引脚和所述第一伪引脚被配置为从所述功率模块的不同侧面支撑所述功率模块。
  14. 根据权利要求13所述的功率模块,还包括:
    控制焊盘,所述控制芯片设置于所述控制焊盘上;其中,所述第一功能引脚、所述第二功能引脚以及所述第一伪引脚与所述控制焊盘连接为一体结构;和
    自所述第三侧面引出的第二伪引脚;其中,
    控制引脚还包括第三功能引脚,沿所述封装体的长度方向,所述第三功能引脚位于所述第二功能引脚远离所述第一功能引脚的一侧,且靠近所述第二侧面的中部;其中,
    所述第二伪引脚和所述第三功能引脚连接为一体结构。
  15. 根据权利要求14所述的功率模块,在所述功率模块还包括位于所述封装体的第二侧面沿所述封装体的长度方向的端部的拐角处的第三导流部的情况下,
    所述第三导流部包括一个凹部,所述第一伪引脚和所述第二伪引脚从所述凹部引出;或
    所述第三导流部包括两个连续的第一凹部和第二凹部,所述第一凹部沿所述封装体的长度方向延伸,且所述第二凹部沿所述封装体的宽度方向延伸;所述第一伪引脚和所述第二伪引脚均从所述第二凹部引出。
  16. 根据权利要求14或15所述的功率模块,其中,所述第一伪引脚和所述第二伪引脚均包括依次连接的第一引脚段、第二引脚段和第三引脚段;所述第一引脚段沿所述封装体的长度方向延伸,所述第二引脚段沿所述封装体的宽度方向延伸,所述第三引脚段沿所述封装体的长度方向延伸并从所述封装体的第三侧面延伸出所述封装体。
  17. 根据权利要求16所述的功率模块,其中,所述第二伪引脚的第二引脚段的宽度大于所述第一伪引脚的第二引脚段的宽度。
  18. 根据权利要求1-17任一项所述的功率模块,其中,所述树脂注入部位于所述封装体的第一侧面或者与所述第一侧面相邻的第四侧面。
  19. 根据权利要求1-18任一项所述的功率模块,其中,所述散热基板包括:
    呈一体结构的双面覆铜陶瓷板,包括陶瓷板和分别位于所述陶瓷板两侧的铜层;所述功率芯片设置于所述双面覆铜陶瓷板的一铜层上,且所述功率引脚与所述铜层连接,另一铜层与所述封装体的底面平齐并暴露于所述封装体外;或
    呈一体结构的单面覆铜陶瓷板,包括陶瓷板和位于所述陶瓷板一侧的铜层;所述功率芯片设置于所述铜层上,且所述功率引脚与所述铜层连接,所述陶瓷板的底面与所述封装体的底面平齐并暴露于所述封装体外;或
    陶瓷基板,所述功率引脚的位于封装体内的部分贴合于所述陶瓷基板上,所述功率芯片设置于所述功率引脚的位于封装体内的部分远离所述陶瓷基板的一侧,所述陶瓷基板的底面与所述封装体的底面平齐并暴露于所述封装体外。
  20. 一种设备,包括控制器和权利要求1-19任一项所述的功率模块,所述功率模块与所述控制器连接。
PCT/CN2023/122947 2022-11-17 2023-09-28 功率模块和设备 WO2024103986A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202211458029.5A CN115763381B (zh) 2022-11-17 2022-11-17 智能功率模块和设备
CN202211442177.8 2022-11-17
CN202211442177.8A CN115799237B (zh) 2022-11-17 2022-11-17 智能功率模块和设备
CN202211458029.5 2022-11-17
CN202211442180.X 2022-11-17
CN202211442180.XA CN115939119B (zh) 2022-11-17 2022-11-17 功率模块和电子设备

Publications (1)

Publication Number Publication Date
WO2024103986A1 true WO2024103986A1 (zh) 2024-05-23

Family

ID=91083781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/122947 WO2024103986A1 (zh) 2022-11-17 2023-09-28 功率模块和设备

Country Status (1)

Country Link
WO (1) WO2024103986A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106463420A (zh) * 2014-05-12 2017-02-22 三菱电机株式会社 电力用半导体装置及其制造方法
JP2018029149A (ja) * 2016-08-19 2018-02-22 三菱電機株式会社 電力用半導体装置およびその製造方法
CN114300420A (zh) * 2020-10-08 2022-04-08 联发科技股份有限公司 半导体封装
CN115763381A (zh) * 2022-11-17 2023-03-07 海信家电集团股份有限公司 智能功率模块和设备
CN115799237A (zh) * 2022-11-17 2023-03-14 海信家电集团股份有限公司 智能功率模块和设备
CN115939119A (zh) * 2022-11-17 2023-04-07 海信家电集团股份有限公司 功率模块和电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106463420A (zh) * 2014-05-12 2017-02-22 三菱电机株式会社 电力用半导体装置及其制造方法
JP2018029149A (ja) * 2016-08-19 2018-02-22 三菱電機株式会社 電力用半導体装置およびその製造方法
CN114300420A (zh) * 2020-10-08 2022-04-08 联发科技股份有限公司 半导体封装
CN115763381A (zh) * 2022-11-17 2023-03-07 海信家电集团股份有限公司 智能功率模块和设备
CN115799237A (zh) * 2022-11-17 2023-03-14 海信家电集团股份有限公司 智能功率模块和设备
CN115939119A (zh) * 2022-11-17 2023-04-07 海信家电集团股份有限公司 功率模块和电子设备

Similar Documents

Publication Publication Date Title
KR100576298B1 (ko) 수지몰드형 디바이스 및 그 제조장치
JP4455488B2 (ja) 半導体装置
US8994165B2 (en) Power semiconductor device
KR100752239B1 (ko) 전력 모듈 패키지 구조체
US6867484B2 (en) Semiconductor device
JP2011253862A (ja) パワー半導体装置
KR102004785B1 (ko) 반도체모듈 패키지 및 그 제조 방법
CN115799237B (zh) 智能功率模块和设备
JP2005191071A (ja) 半導体装置
CN115939119B (zh) 功率模块和电子设备
JP5481104B2 (ja) 半導体装置
CN115763381B (zh) 智能功率模块和设备
JP5024289B2 (ja) 樹脂封止型半導体装置及びこの半導体装置を用いた電子装置
JP2014072304A (ja) 半導体モジュールの製造方法、半導体モジュール
TWI248175B (en) Semiconductor device
WO2024103986A1 (zh) 功率模块和设备
JP5268660B2 (ja) パワーモジュール及びパワー半導体装置
WO2022145097A1 (ja) パワー半導体装置
WO2024104111A1 (zh) 功率模块和设备
CN111681997B (zh) 功率封装模块及电子装置
WO2024104172A1 (zh) 功率模块组件和具有其的电子设备
WO2024104166A1 (zh) 框架总成、功率模块和设备
CN219591377U (zh) 智能功率模块和设备
WO2023093562A1 (zh) 功率模块和电器设备
WO2019021507A1 (ja) 半導体装置及び半導体モジュール