WO2024099018A1 - 电池包、电动工具、电动工具***、割草机和砂光机 - Google Patents

电池包、电动工具、电动工具***、割草机和砂光机 Download PDF

Info

Publication number
WO2024099018A1
WO2024099018A1 PCT/CN2023/123875 CN2023123875W WO2024099018A1 WO 2024099018 A1 WO2024099018 A1 WO 2024099018A1 CN 2023123875 W CN2023123875 W CN 2023123875W WO 2024099018 A1 WO2024099018 A1 WO 2024099018A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
battery
tool
power
housing
Prior art date
Application number
PCT/CN2023/123875
Other languages
English (en)
French (fr)
Inventor
高庆
李菊
Original Assignee
南京泉峰科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京泉峰科技有限公司 filed Critical 南京泉峰科技有限公司
Publication of WO2024099018A1 publication Critical patent/WO2024099018A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/76Driving mechanisms for the cutters
    • A01D34/78Driving mechanisms for the cutters electric
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D69/00Driving mechanisms or parts thereof for harvesters or mowers
    • A01D69/02Driving mechanisms or parts thereof for harvesters or mowers electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B23/00Portable grinding machines, e.g. hand-guided; Accessories therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/247Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for portable devices, e.g. mobile phones, computers, hand tools or pacemakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/284Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with incorporated circuit boards, e.g. printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to a battery pack and an electric tool, for example, to a battery pack for providing power to an electric tool, an electric tool, an electric tool system, a lawn mower, and a sander.
  • the battery pack is also required to have higher output characteristics.
  • the safety performance, power density, energy density, life and other performance of the battery pack are also increasingly required.
  • the present application provides a battery pack and an electric tool with better output performance and safety performance.
  • the present application provides a battery pack for providing power to an electric tool, including a battery housing, a battery module, and a control circuit.
  • the battery module is disposed in the battery housing, and the battery module includes a plurality of battery cells, at least one of which is a solid-state battery.
  • the control circuit is disposed in the battery housing, and the control circuit is configured to use the battery module to provide power to the electric tool.
  • the energy W and volume V1 of the battery pack satisfy: when the energy W of the battery pack is greater than or equal to 200 watts, the volume V1 of the battery pack is less than or equal to 400 cubic centimeters; or, when the energy W of the battery pack is greater than or equal to 300 watts, the volume V1 of the battery pack is less than or equal to 800 cubic centimeters; or, when the energy W of the battery pack is greater than or equal to 700 watts, the volume V1 of the battery pack is less than or equal to 2500 cubic centimeters.
  • the weight M1 of the battery pack is less than or equal to 10 kilograms.
  • the voltage of the battery pack is greater than or equal to 18 volts.
  • a ratio of the energy W of the battery pack to the volume V1 of the battery pack satisfies: 0.2 Wh/cm3 ⁇ W/V1 ⁇ 1 Wh/cm3.
  • the ratio of the energy W of the battery pack to the weight M1 of the battery pack satisfies: 35 watt-hours /kg ⁇ W/M1 ⁇ 1 watt-hour/kg.
  • the ratio of the volume V1 of the battery pack to the volume V2 of the battery module satisfies: 1 ⁇ V1/V2 ⁇ 5.
  • the length L2, width W2 and height H2 of the battery module satisfy: 1 ⁇ L2/W2 ⁇ 2, 1 ⁇ L2/H2 ⁇ 2, 0.5 ⁇ W2/H2 ⁇ 1.5.
  • the length L2, width W2 and height H2 of the battery module satisfy: 6 cm ⁇ L2 ⁇ 20 cm, 5 cm ⁇ H2 ⁇ 15 cm, 5 cm ⁇ W2 ⁇ 15 cm.
  • the length L3, width W3, and height H3 of the battery cell satisfy: 10 ⁇ L3/W3 ⁇ 100, 10 ⁇ L3/H3 ⁇ 100, 0.5 ⁇ W3/H3 ⁇ 2.
  • the length L3, width W3 and height H3 of the battery cell satisfy: 300 mm ⁇ L3 ⁇ 900 mm, 10 mm ⁇ H3 ⁇ 40 mm, 10 mm ⁇ W3 ⁇ 40 mm.
  • the present application provides a battery pack for providing power to an electric tool, including a battery housing, a battery module, a first interface, a second interface, and a control circuit.
  • the battery module is disposed in the battery housing, and the battery module includes a plurality of battery cells, at least one of which is a solid-state battery.
  • the first interface is configured to connect to an electric tool.
  • the second interface is configured to connect the battery pack to external power.
  • the control circuit is disposed in the battery housing, and the control circuit is electrically connected to the battery module, the first interface, and the second interface, respectively, and the control circuit is configured to use the battery module or external power to provide power to the electric tool.
  • the external power is alternating current.
  • the external power is direct current provided by an external energy storage device, which is independent of the battery pack.
  • the external energy storage device is a lithium-ion battery pack.
  • the external energy storage device is a sodium-ion battery pack.
  • the external energy storage device is a battery pack composed of a lithium-ion battery and a sodium-ion battery.
  • the external energy storage device is a solid-state battery pack.
  • the first interface and the second interface are located in different planes.
  • the first interface and the second interface are located on two opposite sides of the battery housing.
  • control circuit is configured to: after the second interface is connected to external power, control part of the external power to provide power to the power tool, control the battery pack to stop providing power to the power tool, and control part of the external power to charge the battery pack.
  • the present application provides an electric tool, comprising a tool body and a battery pack according to any one of the above embodiments.
  • the tool body includes a tool housing, a motor and a drive circuit.
  • the motor is arranged in the tool housing.
  • the drive circuit is electrically connected to the motor and is arranged to drive the motor.
  • the battery pack is arranged to supply power to the drive circuit.
  • the weight of the battery pack is less than or equal to 70% of the weight of the tool body.
  • the tool body further includes a transmission unit configured to transmit power output by the motor.
  • the projection of the center of gravity of the power tool on the horizontal plane falls within the projection range of the battery pack on the horizontal plane.
  • the power tool can operate in a temperature range of -50 degrees Celsius to 90 degrees Celsius.
  • the tool housing includes a grip portion for holding.
  • the battery pack partially overlaps with the grip portion.
  • the battery pack and the tool body are relatively detachable.
  • the motor is a DC motor.
  • the present application provides an electric tool, including a tool body and a battery pack.
  • the tool body includes a tool housing, a motor and a drive circuit.
  • the motor is arranged in the tool housing.
  • the drive circuit is electrically connected to the motor and is arranged to drive the motor.
  • the battery pack is arranged to power the drive circuit.
  • the battery pack includes a battery housing, a battery module and a control circuit.
  • the battery module is arranged in the battery housing, and the battery module includes a plurality of battery cells, and at least one battery cell is a solid-state battery.
  • the control circuit is arranged in the battery housing, and the control circuit is arranged to use the battery module to provide power to the electric tool.
  • the weight of the battery pack is less than or equal to 70% of the weight of the tool body.
  • the present application provides an electric tool, including a tool body and a battery pack assembly.
  • the tool body includes a tool housing, a motor and a drive circuit.
  • the motor is arranged in the tool housing.
  • the drive circuit is electrically connected to the motor and is configured to drive the motor.
  • the battery pack assembly is configured to power the drive circuit.
  • the battery pack assembly includes a first battery pack and a second battery pack.
  • the first battery pack is configured to power the drive circuit, the first battery pack including a plurality of battery cells, at least one of which is configured as a solid-state battery.
  • the second battery pack is configured to power at least one of the first battery pack and the drive circuit.
  • the second battery pack includes a plurality of battery cells, and at least one battery cell is configured as a solid-state battery.
  • the second battery pack includes a plurality of battery cells, and at least one battery cell is configured as a liquid battery.
  • the present application provides an electric tool system, including a tool body, a first battery pack and a second battery pack.
  • the tool body includes a tool interface configured to receive power.
  • the first battery pack includes a first battery pack housing and a first battery module disposed in the first battery pack housing.
  • the first battery module includes at least one first battery pack.
  • the first battery pack includes a second battery pack housing and a second battery module disposed in the second battery pack housing.
  • the second battery module includes at least one second battery unit, and the second battery unit is a solid-state battery.
  • the first battery pack has a first battery interface that matches the tool interface so that the first battery pack supplies power to the tool body, and the second battery pack has a second battery interface that matches the tool interface so that the second battery pack supplies power to the tool body.
  • the present application provides an electric tool, including a tool body and a second battery pack.
  • the tool body is configured to match a first battery pack to power the tool body through the first battery pack, wherein the first battery pack includes a first battery pack housing and a first battery module disposed in the first battery pack housing, the first battery module includes at least one first battery cell, and the first battery cell is a liquid battery.
  • the second battery pack includes a second battery pack housing and a second battery module disposed in the second battery pack housing, the second battery module includes at least one second battery cell, and the second battery cell is a solid-state battery.
  • the second battery pack has a second battery interface that matches the tool interface on the tool body so that the second battery pack can power the tool body.
  • the present application provides a lawn mower, including a machine housing, a first motor, a running device, a second motor, a cutting assembly and an energy storage device.
  • the first motor is accommodated in the machine housing, and the first motor is a DC motor.
  • the running device includes a driving wheel, and the driving wheel is driven by the first motor.
  • the second motor is accommodated in the machine housing, and the second motor is a DC motor.
  • the cutting assembly includes a blade, and the blade is driven by the second motor.
  • the energy storage device is configured to supply power to the first motor and the second motor.
  • the energy storage device includes an energy storage unit, and the energy storage unit includes a solid-state battery.
  • the lawn mower can operate in a temperature range of -20 degrees Celsius to 90 degrees Celsius.
  • the lawn mower further includes a charging port, which is configured to be connected to other power sources for charging.
  • the lawn mower charges at a rate of 3C to 10C.
  • the energy storage device is a sealed device.
  • the lawn mower is configured to determine the power level of the energy storage device, and can automatically charge at a charging station when the energy storage device is at low power.
  • the present application provides a sanding machine, including a sanding machine body and a battery pack.
  • the sanding machine body includes a tool housing, a motor and a battery pack interface.
  • the tool housing includes a grip portion.
  • the motor is disposed in the tool housing.
  • the battery pack interface is disposed in the tool housing.
  • the battery pack includes a battery cell and a tool interface.
  • the battery cell includes a solid-state battery.
  • the tool interface is configured to couple with the battery pack interface.
  • the battery pack partially overlaps with the grip portion.
  • the battery pack is detachable from the sander body.
  • the motor is a DC motor.
  • the battery pack includes a plurality of battery cells, and at least one battery cell is a solid-state battery.
  • FIG1 is a schematic diagram of an application scenario of a battery pack of the present application.
  • FIG2 is a perspective view of a power tool according to an embodiment of the present application from one viewing angle
  • FIG3 is a plan view of the electric tool of FIG2 from one viewing angle
  • FIG4 is a schematic structural diagram of the electric tool of FIG2 from a viewing angle
  • FIG5 is a three-dimensional view of a battery pack according to an embodiment of the present application from one viewing angle
  • FIG6 is an exploded view of a battery pack according to an embodiment of the present application from one perspective
  • FIG7 is a perspective view of the battery cell of FIG6 from one viewing angle
  • FIG8 is a three-dimensional view of a battery pack according to an embodiment of the present application from one viewing angle
  • FIG9 is an exploded view of a battery pack according to an embodiment of the present application from one perspective;
  • FIG10 is a plan view of a power tool according to an embodiment of the present application from one viewing angle
  • FIG11 is a perspective view of the tool body of FIG10 from one perspective
  • FIG12 is a perspective view of a power tool system according to an embodiment of the present application from one viewing angle
  • FIG13 is a plan view of a power tool according to an embodiment of the present application from one viewing angle
  • FIG14 is a perspective view of a lawn mower according to an embodiment of the present application from one perspective;
  • FIG15 is a schematic diagram of a partial structure of the lawn mower in FIG14;
  • FIG16 is a schematic diagram of a sanding machine provided by an embodiment of the present application when operated manually;
  • FIG17 is a perspective view of a sanding machine provided by an embodiment of the present application from one viewing angle;
  • FIG. 18 is a cross-sectional view of the sanding machine of FIG. 17 .
  • the electric tool 10 of the present application may be a handheld electric tool, a garden tool, or a garden vehicle such as a vehicle-type lawn mower, which is not limited here.
  • the electric tool 10 of the present application includes but is not limited to the following: electric tools that require speed regulation, such as screwdrivers, electric drills, wrenches, angle grinders, etc., electric tools that may be used to grind workpieces, reciprocating saws, circular saws, jigsaws, etc., electric tools that may be used to cut workpieces; electric hammers, etc., electric tools that may be used for impact.
  • These tools may also be garden tools, such as pruning machines, chain saws, and vehicle-type lawn mowers. As long as these electric tools can adopt the substantive content of the technical solutions disclosed below, they can fall within the protection scope of this application.
  • the power tool 10 includes a battery pack 100 and a tool body 200, and the battery pack 100 is configured to provide power to the tool body 200.
  • the tool body 200 of the power tool 10 includes at least a tool housing 210, a motor 220 and a drive circuit 230.
  • the motor 220 is disposed in the tool housing 210.
  • the drive circuit 230 is electrically connected to the motor 220 and drives the motor 220.
  • the battery pack 100 shown in Figures 5 to 7 is an energy storage device, which is configured to store electrical energy to power the power tool 10. The present application does not limit the appearance of the battery pack 100.
  • the battery pack 100 may be in the shape shown in Figure 5, or may be a rectangular parallelepiped, a cylinder or other three-dimensional structure.
  • the battery pack 100 has a battery housing 110 , and a terminal assembly 120 is provided on the battery housing 110 , which can be connected to the terminals on the power tool 10 or the charger or the adapter to output the electric energy stored in the battery pack 100 to the power tool 10 , or to charge the battery pack 100 using the charger.
  • the terminal assembly 120 may include a connection terminal, such as a positive terminal, a negative terminal, and a communication terminal.
  • the terminal assembly 120 is electrically connected to the battery module 130 in the battery pack 100 , so that the power stored in the battery cell 131 can be transmitted to the power tool 10 connected thereto, or the power transmitted by the charger is transmitted to the battery cell 131 to charge the battery cell 131 .
  • the battery pack 100 further has a control circuit 140 , which is provided in the battery housing 110 , and the control circuit 140 is electrically connected to the battery module 130 and the tool body 200 , and the control circuit 140 uses the battery module 130 to provide power to the tool body 200 .
  • the battery pack 100 may include a battery module 130, which may be understood as an intermediate unit between the battery cell 131 and the battery pack 100 formed by combining multiple battery cells 131 in series and parallel.
  • the battery cell 131 also known as a battery cell, is the smallest unit of the battery system, and is mainly composed of a positive electrode, a negative electrode, an electrolyte, a separator, and a battery cell casing.
  • the present application does not limit the appearance of the battery cell 131, and the battery cell 131 may be the shape shown in Figures 6 and 7, or may be a rectangular parallelepiped, a cylinder, or other three-dimensional structures.
  • the battery can be divided into solid-state battery and liquid-state battery.
  • Solid-state battery refers to a battery using solid electrolyte.
  • Liquid battery refers to a battery using liquid electrolyte.
  • Most of the battery packs used in power tools on the market are liquid lithium-ion batteries, which are different from traditional liquid lithium-ion batteries.
  • solid-state batteries are non-flammable, high temperature resistant, non-corrosive, and non-volatile. They avoid the occurrence of electrolyte leakage and electrode short circuit in traditional liquid batteries, reduce the sensitivity of battery modules to temperature, and thus greatly reduce safety risks.
  • the battery module 130 includes a plurality of battery cells 131, at least one of which is a solid-state battery.
  • the battery pack of a solid-state battery has the advantages of high energy density, good safety performance and long cycle life. Therefore, compared with a traditional battery pack, the battery pack 100 provided in the present application can provide more power, longer service life and safer use experience for the power tool 10 under the same volume.
  • the energy of a battery refers to the electrical energy output by the battery when doing work under certain discharge conditions, and is usually expressed in watt-hours (W ⁇ h) or kilowatt-hours (kW ⁇ h).
  • W ⁇ h watt-hours
  • kW ⁇ h kilowatt-hours
  • a battery pack with a smaller size and greater energy is more convenient for users to use.
  • the battery pack 100 is small in size. Using a battery pack 100 containing a solid-state battery as the power source of an electric tool 10 is conducive to miniaturization and light load of the electric tool 10, thereby facilitating user use.
  • the power tool 10 can meet both the user's requirements for energy and the user's requirements for the volume of the power tool 10, and is conducive to further promoting the miniaturization of the power tool 10.
  • the volume V1 of the battery pack 100 is less than or equal to 400 cubic centimeters.
  • the voltage of the battery pack 100 may be 18 volts (V) or 20 volts
  • the capacity of the battery pack 100 may be 8 ampere hours (A ⁇ h)
  • the volume of the battery pack 100 may be less than or equal to 370 cubic centimeters.
  • the energy of the battery pack 100 may be 100 watt-hours, 144 watt-hours, 150 watt-hours, 160 watt-hours, 200 watt-hours, and the volume of the battery pack 100 may be 200 cubic centimeters, 288 cubic centimeters, 300 cubic centimeters, 320 cubic centimeters, 350 cubic centimeters, 400 cubic centimeters.
  • the volume V1 of the battery pack 100 is less than or equal to 800 cubic centimeters.
  • the voltage of the battery pack 100 can be 24 volts
  • the capacity of the battery pack 100 can be 12 ampere-hours
  • the volume of the battery pack 100 can be less than or equal to 800 cubic centimeters.
  • the energy of the battery pack 100 can be 288 watt-hours, 300 watt-hours, 350 watt-hours, 400 watt-hours, and the volume of the battery pack 100 can be 700 cubic centimeters, 768 cubic centimeters, 780 cubic centimeters, 800 cubic centimeters.
  • the volume V1 of the battery pack 100 is less than or equal to 2500 cubic centimeters.
  • the voltage of the battery pack 100 may be 56 volts
  • the capacity of the battery pack 100 may be 12 ampere hours
  • the volume of the battery pack 100 may be
  • the energy of the battery pack 100 can be 700 Wh, 800 Wh, 900 Wh, 1000 Wh
  • the volume of the battery pack 100 can be 1500 cm3, 1780 cm3, 2000 cm3, or 2500 cm3.
  • the above-mentioned embodiment can also enable the electric tool 10 to meet the user's requirements for energy and volume of the electric tool 10, and is conducive to further promoting the miniaturization of the electric tool.
  • the power tool 10 can meet the user's requirements for energy and volume of the power tool 10, and is conducive to further promoting the realization of lightweight power tool 10.
  • the ratio of the energy W of the battery pack 100 to the volume V1 of the battery pack 100 is set to meet 0.1 Wh/cm3 ⁇ W/V1 ⁇ 1 Wh/cm3, or the ratio of the energy W of the battery pack 100 to the weight M1 of the battery pack 100 is set to meet 35 Wh/kg ⁇ W/M1 ⁇ 1 Wh/kg, it can meet the user's requirements for miniaturization and light load of the power tool 10, and it will not be difficult to achieve due to excessive requirements.
  • the ratio of the energy W of the battery pack 100 to the volume V1 of the battery pack 100 can be set to 0.1 Wh/cm3, 0.17 Wh/cm3, 0.21 Wh/cm3, 0.24 Wh/cm3, 0.26 Wh/cm3, 0.28 Wh/cm3, 0.33 Wh/cm3, 0.36 Wh/cm3, 0.41 Wh/cm3, 0.43 Wh/cm3, 0.45 Wh/cm3, 0.53 Wh/cm3, 0.62 Wh/cm3, 0.71 Wh/cm3, 0.83 Wh/cm3, or 0.92 Wh/cm3.
  • the voltage of the battery pack 100 the higher the power of the power tool 10.
  • the voltage of the battery pack 100 is set to be greater than or equal to 18 volts, it can meet the working requirements of the power tool 10 under most working conditions.
  • the battery pack 100 generally includes a terminal assembly 120, a battery monitoring and management device, a current transmission component, and functional components such as an electrical signal and temperature signal collection component and a transmission component. These functional components occupy part of the volume of the battery pack 100, and most of the remaining volume is occupied by the battery module 130.
  • the higher the ratio of the volume V2 of the battery module 130 to the volume V1 of the battery pack 100 the higher the volume energy density of the battery pack 100, but the more stringent the requirements for miniaturization of the functional components inside the battery pack 100, the more difficult it is to improve the structure inside the existing battery pack 100.
  • the ratio of the volume V1 of the battery pack 100 to the volume V2 of the battery module 130 is set to satisfy 1 ⁇ V1/V2 ⁇ 5, it can not only meet the user's requirements for miniaturization of the power tool 10, but also will not be difficult to achieve due to excessive requirements.
  • the length L1, width W1 and height H1 of the battery pack 100 are It can meet the following requirements: 1 cm ⁇ L1 ⁇ 100 cm, 1 cm ⁇ H1 ⁇ 100 cm, 1 cm ⁇ W1 ⁇ 100 cm.
  • the length L2, width W2 and height H2 of the battery module 130 may satisfy: 1 ⁇ L2/W2 ⁇ 2, 1 ⁇ L2/H2 ⁇ 2, 0.5 ⁇ W2/H2 ⁇ 1.5.
  • the length L2, width W2 and height H2 of the battery module 130 satisfy: 6 cm ⁇ L2 ⁇ 20 cm, 5 cm ⁇ H2 ⁇ 15 cm, 5 cm ⁇ W2 ⁇ 15 cm.
  • the length L3, width W3 and height H3 of the battery cell 131 satisfy: 10 ⁇ L3/W3 ⁇ 100, 10 ⁇ L3/H3 ⁇ 100, 0.5 ⁇ W3/H3 ⁇ 2.
  • the length L3, width W3 and height H3 of the battery cell 131 satisfy: 300 mm ⁇ L3 ⁇ 900 mm, 10 mm ⁇ H3 ⁇ 40 mm, 10 mm ⁇ W3 ⁇ 40 mm.
  • the energy of the battery pack 100 is not enough to drive the power tool 10 to work for a long time and at high power. If the power tool 10 is stopped to charge the battery pack 100, the user's work efficiency will be hindered. With reference to the battery pack 300 shown in FIG8 , the energy of the battery pack 300 provided in the present application can drive the power tool 10 to work for a long time and at high power.
  • the parts of the above-mentioned embodiments that are compatible with the present embodiment can all be applied to the battery pack 300 of the present embodiment. The following only introduces the differences between the present embodiment and the above-mentioned embodiments.
  • the battery pack 300 includes a first interface 310 and a second interface 320.
  • the first interface 310 is configured to connect to the power tool 10
  • the second interface 320 is configured to access external power.
  • the control circuit 140 of the battery pack 300 is disposed in the battery housing 110, and the control circuit 140 is electrically connected to the battery module 130, the first interface 310, and the second interface 320, respectively.
  • the control circuit 140 uses the battery module 130 or external power to provide power to the power tool 10. In this embodiment, when the battery pack 300 is low on power, the user can provide power to the power tool 10 by introducing external power, thereby continuing to use the power tool 10 for operation.
  • the external power can be commercially available alternating current, and the user connects the alternating current from the power grid to power the power tool 10.
  • the external power can also be power provided by an external power supply device independent of the battery pack 300, which can be direct current directly output by the external power supply device, or alternating current converted from direct current.
  • the external power supply device can be a lithium-ion battery pack, a sodium-ion battery pack, or a battery pack composed of lithium-ion batteries and sodium-ion batteries.
  • the external power supply device can also be a solid-state battery pack.
  • the first interface 310 of the battery pack 300 is configured to connect to the tool body 200, and the second interface 320 is configured to access external power.
  • the battery pack 300 has two signal states: a charging state and a discharging state.
  • the second interface 320 receives electric energy from the outside to charge the battery pack 300.
  • the first interface 310 provides the electric energy of the battery pack 300 to the tool body 200.
  • the battery pack 300 includes a detection terminal, which is configured to detect the signal states of the first interface 310 and the second interface 320.
  • the first interface 310 has a discharging state and an idle state
  • the second interface 320 has a discharge state and an idle state.
  • the detection terminal detects that the second interface 320 is in a charging state, and sends a charging control signal to the control circuit 140 to receive external power to charge the battery pack 300.
  • the detection terminal detects that the first interface 310 is in a discharging state, and sends a discharging control signal to the control circuit 140 to enable the battery pack 300 to provide power to the power tool 10.
  • the first interface 310 and the second interface 320 are located on different planes.
  • the first interface 310 and the second interface 320 may be located on two opposite surfaces of the battery housing 110.
  • the battery pack 300 may need to introduce external power while powering the power tool 10. Arranging the first interface 310 and the second interface 320 on two opposite surfaces of the battery housing 110 can avoid user confusion of the interfaces.
  • control circuit 140 is configured to: after the second interface 320 is connected to external power, control part of the external power to provide power to the power tool 10, control the battery pack 300 to stop providing power to the power tool 10, and control part of the external power to charge the battery pack 300.
  • the battery pack 300 providing power to the power tool 10 while charging will damage the life of the battery pack 300.
  • the battery pack 300 is stopped from discharging and the external power is used to provide power to the power tool 10, which can ensure that the user can continue to work while avoiding damage to the service life of the battery pack 300.
  • the present application provides a battery pack 400 that can support the power tool 10 to operate in high power mode.
  • the parts of the above embodiments that are compatible with this embodiment can all be applied to the battery pack 400 of this embodiment. Only the differences between this embodiment and the above embodiments are described below.
  • the battery module 430 in the battery pack 400 may include at least a first battery cell 431 and a second battery cell 432.
  • the first battery cell 431 and the second battery cell 432 are arranged inside the battery housing 410 and supported by the housing, and the first battery cell 431 and the second battery cell 432 may be completely different, or have some characteristics that are the same.
  • the electrolyte of the first battery cell 431 is liquid
  • the electrolyte of the second battery cell 432 is solid
  • the power density of the first battery cell 431 is greater than the power density of the second battery cell 432
  • the energy density of the second battery cell 432 is greater than the energy density of the first battery cell 431.
  • the power density of the first battery cell 431 is greater than or equal to 250w/kg.
  • the energy density of the second battery cell 432 is greater than or equal to 400Wh/kg.
  • the first battery cell 431 may be a lithium iron phosphate liquid battery, a ternary lithium liquid battery, or a sodium ion battery
  • the second battery cell 432 may be a lithium ion solid-state battery or a sodium ion solid-state battery.
  • the battery pack 400 further includes a terminal assembly 420 , which may include a connection terminal electrically connected to the first battery cell 431 and the second battery cell 432 to transmit electrical energy from the battery module 430 to the power tool 10 .
  • the battery module 430 of this embodiment adopts a mixed composition of liquid batteries and solid-state batteries. Compared with the design in which all battery cells in the battery module are solid-state batteries, the battery module 430 of this embodiment is The power density is higher. Compared with the design of battery cells in the battery module that are all liquid batteries, the energy density of the battery module 430 of this embodiment is higher.
  • the battery module 430 of this embodiment adopts a mixed composition of liquid batteries and solid batteries, which enables the battery pack 400 to have a high energy density while also supporting the power tool 10 to operate in a high power mode.
  • the first battery cell 431 can be connected in series or in parallel with the second battery cell 432. In an optional implementation, the first battery cell 431 is connected in series to form a first branch, the second battery cell 432 is connected in series to form a second branch, and the first branch and the second branch are connected in parallel. In an optional implementation, the first battery cell 431 can be connected in parallel with the second battery cell 432 and then connected in series. In this embodiment, there may be other types of electrical connections between the two battery cells, which are not listed here one by one.
  • the first battery cell 431 and the second battery cell 432 may be completely different, or have some of the same characteristics.
  • the first battery cell 431 may have a first energy and a first cycle life
  • the second battery cell 432 may have a second energy and a second cycle life.
  • the cycle life may be the number of charge and discharge cycles that a battery cell can perform while maintaining a certain energy output, and may also be referred to as the service life of the battery.
  • the first energy is different from the second energy
  • the first cycle life is different from the second cycle life.
  • the first cycle life is greater than the second cycle life and the first energy is less than the second energy.
  • the ratio of the first cycle life to the second cycle life is greater than or equal to 2, and the ratio of the first energy to the second energy is less than or equal to 0.8.
  • the first battery cell 431 has the characteristics of a long service life but slightly lower energy
  • the second battery cell 432 has a short service life but greater energy.
  • the battery module 430 may include at least a first module 430a and a second module 430b.
  • the first module 430a is formed by connecting a first battery cell 431.
  • the second module 430b is formed by connecting a second battery cell 432.
  • the first module 430a and the second module 430b are electrically connected in series or in parallel.
  • the design of the first module 430a and the second module 430b using the same battery cell can facilitate the sampling, detection and consistency management of the battery by the control circuit 140.
  • the first module 430a supplies power to the power tool 10
  • the second module 430b supplies power to the first module 430a.
  • the second module 430b supplies power to the power tool 10
  • the first module 430a supplies power to the second module 430b.
  • the applicant has found through research that the low charge and discharge rate performance of solid-state batteries is due to the low conductivity of solid-state batteries at room temperature.
  • the present application provides an implementation method that can be provided with a heating device to increase the battery temperature, thereby solving the problem that solid-state batteries are difficult to support power tools to operate in high power mode at room temperature and low temperature.
  • the battery pack 400 includes a heating device 440, which is configured to heat the solid-state battery. After the solid-state battery is heated, the conductivity increases, and the power density and charge and discharge rate performance also increase accordingly, thereby supporting the power tool 10 to operate in high power mode.
  • control circuit 140 further includes a temperature detection module and a controller.
  • the detection module is configured to detect the temperature of the solid-state battery.
  • the controller is electrically connected to at least the heating device 440.
  • the controller is configured to: obtain the temperature output by the temperature detection module; when the temperature is lower than a first temperature threshold, control the heating device 440 to start heating the solid-state battery; when the temperature is higher than or equal to a second temperature threshold, control the heating device 440 to stop heating.
  • the controller is configured to: obtain the temperature output by the temperature detection module; when the temperature is lower than the first temperature threshold, control the heating device 440 to start heating the second battery cell 432; when the temperature is higher than or equal to the second temperature threshold, control the heating device 440 to stop heating.
  • at least one first battery cell 431 provides power for the heating device 440 to heat the second battery cell 432.
  • the second module 430b supplies power to the power tool 10
  • the first module 430a supplies power to at least the heating device 440.
  • the first module 430a with higher room temperature conductivity can be controlled to heat the second module 430b.
  • the conductivity of the second module 430b is improved, and the controller can control the second module 430b with higher energy density to supply power to the power tool 10.
  • the controller is configured to: when the temperature is lower than the first temperature threshold, control the first module 430a to supply power to the heating device 440 to heat the second module 430b; when the temperature is higher than or equal to the second temperature threshold, control the second module 430b to supply power to the power tool 10.
  • the present application further provides an electric tool 50, including a tool body 200 and a battery pack 500, wherein the battery pack 500 is configured to provide power to the tool body 200.
  • an electric tool 50 including a tool body 200 and a battery pack 500, wherein the battery pack 500 is configured to provide power to the tool body 200.
  • the battery pack 500 includes a battery housing 110, a battery module 130 and a control circuit 140.
  • the battery module 130 is disposed in the battery housing 110.
  • the control circuit 140 is disposed in the battery housing 110, and the control circuit 140 uses the battery module 130 to provide power to the power tool 50.
  • the battery module 130 includes a plurality of battery cells 131, at least one of which is a solid-state battery.
  • the battery pack of the present application may be a battery pack of any of the above-mentioned embodiments, which will not be described in detail herein.
  • the battery pack 500 includes a first battery pack 510 and a second battery pack 520.
  • the first battery pack 510 at least powers the drive circuit 230
  • the first battery pack 510 includes a plurality of battery cells 511, at least one of which is configured as a solid-state battery.
  • the second battery pack 520 at least powers the drive circuit 230 or the first battery pack 510.
  • the battery pack 500 includes the first battery pack 510 and the second battery pack 520, which can provide a larger amount of power for the power tool 50, so that the power tool 50 can work for a longer time.
  • the first battery pack 510 further includes a heating device 512, and the heating device 512 of the battery pack 500 can be configured to heat the solid-state battery. After the solid-state battery is heated, the conductivity increases, and the power density and charge and discharge rate performance also increase accordingly, thereby being able to support The electric tool 50 is operated in a high power mode.
  • the first battery pack 510 further includes a temperature detection module 513 configured to detect the temperature of the solid-state battery.
  • the power tool 50 is configured to: obtain the temperature output by the temperature detection module 513; when the temperature is lower than a first temperature threshold, control the heating device 512 to start heating the solid-state battery; when the temperature is higher than or equal to a second temperature threshold, control the heating device 512 to stop heating.
  • the power tool 50 is configured to: when the temperature is lower than a first temperature threshold, control the second battery pack 520 to supply power to the heating device 512 to heat the first battery pack 510; when the temperature is higher than or equal to the second temperature threshold, control the first battery pack 510 to supply power to the drive circuit 230.
  • the weight of the battery pack 500 is less than or equal to 70% of the weight of the tool body 200.
  • the setting of the weight of the battery pack 500 in the present application prevents the battery pack 500 from being too heavy, improves the user's operating experience, and is conducive to the placement of the power tool 50.
  • the projection of the center of gravity of the power tool 50 on the horizontal plane falls within the projection range of the battery pack 500 on the horizontal plane, thereby reducing the shaking of the power tool 50 when it is placed.
  • the tool body 200 also includes a transmission unit 240 to transmit the power output by the motor 220.
  • the operating temperature range of the power tool 50 is minus 50 degrees Celsius to 90 degrees Celsius.
  • the tool housing 210 includes a grip portion 211 for easy gripping by a user.
  • the battery pack partially overlaps with the grip portion 211 to reduce the volume of the power tool and facilitate miniaturization of the power tool.
  • the battery pack and the tool body 210 are relatively detachable.
  • the battery pack and the power tool may be provided by any of the above embodiments.
  • the motor 220 is a DC motor. In one embodiment, the motor 220 is a brushed motor or a brushless motor.
  • the present application further provides an electric tool system 60, including a tool body 200 and a battery pack 600, wherein the battery pack 600 is configured to provide power to the tool body 200.
  • an electric tool system 60 including a tool body 200 and a battery pack 600, wherein the battery pack 600 is configured to provide power to the tool body 200.
  • the electric tool system 60 includes a tool body 200, a first battery pack 610 and a second battery pack 620.
  • the tool body 200 includes a tool housing 210 and a tool interface 250 configured to receive electric power.
  • the first battery pack 610 includes a first battery pack housing 611 and a first battery module 612 disposed in the first battery pack housing 611.
  • the first battery module 612 includes at least one first battery cell 612a, and the first battery cell 612a is a liquid battery.
  • the first battery cell 612a may be a liquid ternary lithium battery or a liquid lithium iron phosphate battery, and the size of the first battery cell 612a may be a 18650 cylindrical battery, a 2170 cylindrical battery, or a 4680 cylindrical battery.
  • the second battery pack 620 includes a second battery pack housing 621 and a battery pack disposed in the second battery pack housing 621.
  • the second battery module 622 includes at least one second battery cell 622a, and the second battery cell 622a is a solid-state battery.
  • the first battery pack 610 has a first battery interface 613 that matches with the tool interface 250 so that the first battery pack 610 supplies power to the tool body 200
  • the second battery pack 620 has a second battery interface 623 that matches with the tool interface 250 so that the second battery pack 620 supplies power to the tool body 200 .
  • the present application further provides an electric tool 60′, comprising a tool body 200 and a second battery pack 620, wherein the second battery pack 620 is configured to provide power to the tool body 200.
  • an electric tool 60′ comprising a tool body 200 and a second battery pack 620, wherein the second battery pack 620 is configured to provide power to the tool body 200.
  • the present application provides an electric tool 60', including a tool body 200 and a second battery pack 620.
  • the tool body 200 includes a tool housing 210 and a tool interface 250 configured to access electricity.
  • the tool body 200 is configured to match a first battery pack 610 to power the tool body 200 through the first battery pack 610, wherein the first battery pack 610 includes a first battery pack housing 611 and a first battery module 612 disposed in the first battery pack housing 611, and the first battery module 612 includes at least one first battery cell 612a, and the first battery cell 612a is a liquid battery.
  • the second battery pack 620 includes a second battery pack housing 621 and a second battery module 622 disposed in the second battery pack housing 621.
  • the second battery module 622 includes at least one second battery cell 622a, and the second battery cell 622a is a solid-state battery.
  • the second battery pack 620 has a second battery interface 623 that matches the tool interface 250 so that the second battery pack 620 supplies power to the tool body 200.
  • the present application provides a lawn mower 70 , and all parts of the above-mentioned embodiments that are compatible with the present embodiment can be applied to the present embodiment, and only the differences between the present embodiment and the above-mentioned embodiments are introduced below.
  • the present application proposes a mowing system.
  • the mowing system includes an actuator configured to trim vegetation.
  • the actuator is hardware for the mowing system to implement the mowing function.
  • the actuator is a mower 70 .
  • the lawn mower 70 includes at least a cutting assembly 720 configured to achieve a mowing function and a walking device 710 configured to achieve a walking function, and includes a support body 740 and a machine housing 730 , which encloses the support body 740 , the cutting assembly 720 , and the walking device 710 .
  • the walking device 710 includes at least one driving wheel 711 and a first motor 712 configured to drive the driving wheel 711.
  • the first motor 712 provides torque to at least one driving wheel 711.
  • the mowing system can control the actuator 70 to move and operate on the vegetation.
  • the first motor 712 can be a DC motor.
  • the cutting assembly 720 includes a mowing element 721 and a second motor 722.
  • the second motor 722 drives the mowing element
  • the mowing element 721 rotates to trim the vegetation, and the mowing element 721 can be a blade, or other elements that can cut and trim the lawn.
  • the second motor 722 can be a DC motor.
  • the energy storage device 750 is configured to supply power to the first motor 712 and the second motor 722.
  • the energy storage device 770 includes an energy storage unit 751, and the energy storage unit 751 includes a solid-state battery.
  • the energy storage device 750 is configured to supply power to the walking device 710 and the cutting assembly 720.
  • the energy storage device 750 is a pluggable battery pack installed in the machine housing 730.
  • the energy storage device 750 can be a battery pack in any of the above embodiments, and the energy storage unit 751 can be a battery cell in any of the above embodiments.
  • the operating temperature range of the lawn mower 70 is minus 20 degrees Celsius to 90 degrees Celsius.
  • the lawn mower 70 also includes a charging port, which can be connected to other power sources for charging.
  • the charging rate of the lawn mower 70 is 3C to 10C.
  • the charging rate of the battery is also called the charge and discharge rate, usually represented by C, which refers to the reciprocal of the time it takes for the battery to charge and discharge. Taking the battery capacity of 10 ampere hours (A ⁇ h) as an example, 1C means that the rated capacity is discharged in 1 hour.
  • the charging rate is 3C to 10C, which means that the time it takes for the energy storage device 750 to be fully charged to the rated capacity is between 1/10 hour and 1/3 hour.
  • the energy storage device 750 adopts a sealed design to prevent water or dust.
  • the lawn mower 70 can determine the power of the energy storage device 750, and when the power is low, the lawn mower 70 can charge at the charging pile by itself.
  • the present application provides a sanding machine 80 .
  • the parts of the above-mentioned embodiments that are compatible with the present embodiment can all be applied to the present embodiment. Only the differences between the present embodiment and the above-mentioned embodiments are introduced below.
  • the present application provides a sanding machine 80, as shown in FIG17, including a sanding machine body 810 and a battery pack 820.
  • the sanding machine body 810 includes a tool housing 811, a motor 812 and a battery pack interface 813.
  • the tool housing 811 includes a gripping portion 811a.
  • the motor 812 is disposed in the inner cavity of the tool housing 811.
  • the battery pack interface 813 is disposed in the tool housing 811.
  • the sanding machine 80 also includes a battery pack 820, and the battery pack 820 includes a battery cell 821 and a tool interface 822.
  • the battery cell 821 includes a solid-state battery.
  • the tool interface 822 is configured to couple with the battery pack interface 813.
  • the battery pack 820 partially overlaps with the grip 811a. In some embodiments, the battery pack 820 and the sanding machine body 810 can be relatively disassembled. In some embodiments, the motor 812 is a DC motor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Biophysics (AREA)
  • Computer Hardware Design (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种为电动工具提供电力的电池包、电动工具、电动工具***、割草机和砂光机。所述电池包,包括电池壳体;电池模组,设置于所述电池壳体内,所述电池模组包括多个电池单体,至少一个所述电池单体为固态电池;控制电路,设置于所述电池壳体内,所述控制电路设置为使用所述电池模组为所述电动工具提供电力;所述电池包的能量W和体积V1满足:在所述电池包的能量W大于或等于200瓦的情况下,所述电池包的体积V1小于或等于400立方厘米;或,在所述电池包的能量W大于或等于300瓦的情况下,所述电池包的体积V1小于或等于800立方厘米;或,在所述电池包的能量W大于或等于700瓦的情况下,所述电池包的体积V1小于或等于2500立方厘米。

Description

电池包、电动工具、电动工具***、割草机和砂光机
本申请要求在2022年11月9日提交中国专利局、申请号为202211395477.5的中国专利申请的优先权,以及在2023年09月26日提交中国专利局、申请号为202311255477.X、202311252928.4的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种电池包和电动工具,例如涉及一种为电动工具提供电力的电池包、电动工具、电动工具***、割草机和砂光机。
背景技术
随着电池技术的发展,电动工具正在逐渐取代引擎工具。为了使无绳电动工具具备更好的使用效果,也要求电池包具备更高的输出特性。例如,为了实现近似于引擎工具的工作效果和续航时间,对电池包的安全性能、功率密度、能量密度、寿命等性能也有越来越高的要求。
发明内容
本申请提供了一种具备更好输出性能和安全性能的电池包和电动工具。
本申请提供一种为电动工具提供电力的电池包,包括电池壳体、电池模组和控制电路。电池模组设置于电池壳体内,电池模组包括多个电池单体,至少一个电池单体为固态电池。控制电路设置于电池壳体内,控制电路设置为使用电池模组为电动工具提供电力。电池包的能量W和体积V1满足:在电池包的能量W大于或等于200瓦的情况下,电池包的体积V1小于或等于400立方厘米;或,在电池包的能量W大于或等于300瓦的情况下,电池包的体积V1小于或等于800立方厘米;或,在电池包的能量W大于或等于700瓦的情况下,电池包的体积V1小于或等于2500立方厘米。
在一些实施例中,在电池包的能量W大于或等于350瓦的情况下,电池包的重量M1小于或等于10千克。
在一些实施例中,电池包的电压大于或等于18伏特。
在一些实施例中,电池包的能量W与电池包的体积V1之比满足:0.2瓦时/立方厘米≤W/V1≤1瓦时/立方厘米。
在一些实施例中,电池包的能量W与电池包的重量M1之比满足:35瓦时 /千克≤W/M1≤1瓦时/千克。
在一些实施例中,电池包的体积V1与电池模组的体积V2之比满足:1≤V1/V2≤5。
在一些实施例中,电池模组的长度L2、宽度W2和高度H2满足:1≤L2/W2≤2,1≤L2/H2≤2,0.5≤W2/H2≤1.5。
在一些实施例中,电池模组的长度L2、宽度W2和高度H2满足:6厘米≤L2≤20厘米,5厘米≤H2≤15厘米,5厘米≤W2≤15厘米。
在一些实施例中,电池单体的长度L3、宽度W3和高度H3满足:10≤L3/W3≤100,10≤L3/H3≤100,0.5≤W3/H3≤2。
在一些实施例中,电池单体的长度L3、宽度W3和高度H3满足:300毫米≤L3≤900毫米,10毫米≤H3≤40毫米,10毫米≤W3≤40毫米。
本申请提供一种为电动工具提供电力的电池包,包括电池壳体、电池模组、第一接口、第二接口和控制电路。电池模组设置于电池壳体内,电池模组包括多个电池单体,至少一个电池单体为固态电池。第一接口被配置为连接电动工具。第二接口被配置为为电池包接入外部电力。控制电路设置于电池壳体内,控制电路分别与电池模组、第一接口和第二接口电连接,控制电路设置为使用电池模组或者外部电力为电动工具提供电力。
在一些实施例中,外部电力为交流电。
在一些实施例中,外部电力为外部储能装置提供的直流电,外部储能装置独立于电池包之外。
在一些实施例中,外部储能装置为锂离子电池包。
在一些实施例中,外部储能装置为钠离子电池包。
在一些实施例中,外部储能装置为锂离子电池和钠离子电池共同组成的电池包。
在一些实施例中,外部储能装置为固态电池包。
在一些实施例中,第一接口和第二接口位于不同平面。
在一些实施例中,第一接口和第二接口位于电池壳体的相对的两个面上。
在一些实施例中,控制电路被设置为:在第二接口接入外部电力后,控制部分外部电力为电动工具提供电力,控制电池包停止为电动工具提供电力,控制部分外部电力为电池包充电。
本申请提供一种电动工具,包括工具主体和上述任一项实施例的电池包。工 具主体包括工具壳体、电机和驱动电路。电机设置于工具壳体中。驱动电路与电机电连接并设置为驱动电机。电池包设置为为驱动电路供电。
在一些实施例中,电池包的重量小于等于工具主体的重量的70%。
在一些实施例中,工具主体还包括传动单元,设置为将电机输出的动力进行传输。
在一些实施例中,电动工具的重心在水平面的投影落在电池包在水平面的投影范围内。
在一些实施例中,电动工具可工作的温度范围为零下50摄氏度至90摄氏度。
在一些实施例中,工具壳体包括用于握持的握持部。
在一些实施例中,电池包与握持部部分重合。
在一些实施例中,电池包与工具主体可相对拆装。
在一些实施例中,电机为直流电机。
本申请提供一种电动工具,包括工具主体和电池包。工具主体包括工具壳体、电机和驱动电路。电机设置于工具壳体中。驱动电路与电机电连接并设置为驱动电机。电池包设置为为驱动电路供电。电池包包括电池壳体、电池模组和控制电路。电池模组设置于电池壳体内,电池模组包括多个电池单体,至少一个电池单体为固态电池。控制电路设置于电池壳体内,控制电路设置为使用电池模组为电动工具提供电力。电池包的重量小于等于工具主体的重量的70%。
本申请提供一种电动工具,包括工具主体和电池包组件。工具主体包括工具壳体、电机和驱动电路。电机设置于工具壳体中。驱动电路与电机电连接并设置为驱动电机。电池包组件设置为为驱动电路供电。电池包组件包括第一电池包和第二电池包。第一电池包设置为为驱动电路供电,第一电池包包括多个电池单体,至少一个电池单体被设置为固态电池。第二电池包设置为为第一电池包和驱动电路中的至少之一供电。
在一些实施例中,第二电池包包括多个电池单体,至少一个电池单体被设置为固态电池。
在一些实施例中,第二电池包包括多个电池单体,至少一个电池单体被设置为液态电池。
本申请提供一种电动工具***,包括工具主体、第一电池包和第二电池包。工具主体包括设置为接入电力的工具接口。第一电池包包括第一电池包壳体和设置在第一电池包壳体内的第一电池模组,第一电池模组包括至少一个第一电 池单体,第一电池单体为液态电池。第二电池包包括第二电池包壳体和设置在第二电池包壳体内的第二电池模组,第二电池模组包括至少一个第二电池单体,第二电池单体为固态电池。其中,第一电池包具有与工具接口匹配以使第一电池包给工具主体供电的第一电池接口,第二电池包具有与工具接口匹配以使第二电池包给工具主体供电的第二电池接口。
本申请提供一种电动工具,包括工具主体和第二电池包。工具主体被设置为匹配第一电池包以通过第一电池包给工具主体供电,其中,第一电池包包括第一电池包壳体和设置在第一电池包壳体内的第一电池模组,第一电池模组包括至少一个第一电池单体,第一电池单体为液态电池。第二电池包包括第二电池包壳体和设置在第二电池包壳体内的第二电池模组,第二电池模组包括至少一个第二电池单体,第二电池单体为固态电池。其中,第二电池包具有与工具主体上的工具接口匹配以使第二电池包给工具主体供电的第二电池接口。
本申请提供一种割草机,包括机器壳体、第一电机、行走装置、第二电机、切割组件和储能装置。第一电机容纳于机器壳体,第一电机是直流电机。行走装置,行走装置包括驱动轮,驱动轮由第一电机驱动。第二电机,容纳于机器壳体,第二电机是直流电机。切割组件,切割组件包括刀片,刀片由第二电机驱动。储能装置,被配置为为第一电机和第二电机供电。储能装置包括储能单元,储能单元包括固态电池。
在一些实施例中,割草机可工作的温度范围为零下20摄氏度至90摄氏度。
在一些实施例中,割草机,还包括充电口,充电口设置为与其他电能来源连接充电。
在一些实施例中,割草机充电速率为3C至10C。
在一些实施例中,储能装置为密封装置。
在一些实施例中,割草机设置为判断储能装置电量,在储能装置处于低电量的情况下可自行至充电桩充电。
本申请提供一种砂光机,包括砂光机本体和电池包。砂光机本体,包括工具壳体、电机和电池包接口。工具壳体包括握持部。电机设置于工具壳体。电池包接口设置于工具壳体。电池包包括电池单体和工具接口。电池单体包括固态电池。工具接口被配置为与电池包接口耦合。
在一些实施例中,电池包与握持部部分重合。
在一些实施例中,电池包与砂光机本体相对拆装。
在一些实施例中,电机为直流电机。
在本申请的实施方式中,电池包包括多个电池单体,至少一个电池单体为固态电池。
附图说明
图1是本申请的一个电池包的应用场景示意图;
图2是本申请一实施例的电动工具的一个视角下的立体图;
图3是图2的电动工具的一个视角下的平面图;
图4是图2的电动工具的一个视角下的结构示意图;
图5是本申请一实施例的电池包的一个视角下的立体图;
图6是本申请一实施例的电池包的一个视角下的***图;
图7是图6的电池单体的一个视角下的立体图;
图8是本申请一实施例的电池包的一个视角下的立体图;
图9是本申请一实施例的电池包的一个视角下的***图;
图10是本申请一实施例的电动工具的一个视角下的平面图;
图11是图10的工具主体的一个视角下的立体图;
图12是本申请一实施例的电动工具***的一个视角下的立体图;
图13是本申请一实施例的电动工具的一个视角下的平面图;
图14是本申请一实施例的割草机的一个视角下的立体图;
图15是图14中的割草机的部分结构示意图;
图16是手操作本申请一实施例所提供的砂光机时的示意图;
图17是本申请一实施例所提供的砂光机的一个视角下的立体图;
图18是图17的砂光机的剖视图。
具体实施方式
以下结合附图和具体实施例对本申请作介绍。
本领域技术人员应理解的是,在本申请的揭露中,术语“上”、“下”、“前”、“后”、“左”、“右”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本申请的限制。
如图1所示,本申请的电动工具10,可以为手持式电动工具、花园类工具、花园类车辆如车辆型割草机,在此并非有所限制。本申请的电动工具10包括但不限于以下内容:螺丝批、电钻、扳手、角磨等需要调速的电动工具,砂光机等可能用来打磨工件的电动工具,往复锯、圆锯、曲线锯等可能用来切割工件的电动工具;电锤等可能用来做冲击使用的电动工具。这些工具也可能是园林类工具,比如修枝机、链锯、车辆型割草机。只要这些电动工具能够采用以下披露的技术方案的实质内容即可落在本申请的保护范围内。
以下结合附图和具体实施例对本申请作介绍。
如图1至图4所示,电动工具10包括电池包100和工具主体200,电池包100设置为为工具主体200提供电力。如图4所示,电动工具10的工具主体200至少包括工具壳体210、电机220和驱动电路230。电机220设置于工具壳体210中。驱动电路230与电机220电连接并驱动电机220。如图5至图7所示的电池包100作为一种储能装置,其设置为存储电能以为电动工具10供电。本申请对电池包100的外形不做限定,电池包100可以是图5所示的形状,也可以是类似长方体,圆柱体或者其他立体结构。
在本实施例中,如图5所示,电池包100具有电池壳体110,电池壳体110上设置有端子组件120,能够与电动工具10或者充电器或者适配器上的端子相连接,以将电池包100存储的电能输出至电动工具10,或者采用充电器为电池包100充电。在一个实施例中,端子组件120可以包括连接端子,例如正极端子,负极端子以及通信端子。在本实施例中,端子组件120与电池包100内的电池模组130电连接,从而使得电池单体131中存储的电力能够传输至与之连接的电动工具10,或者使充电器传输的电力传输至电池单体131以为电池单体131充电。在一个实施例中,如图4所示,电池包100还具有控制电路140,控制电路140设置于电池壳体110内,控制电路140与电池模组130和工具主体200电连接,控制电路140使用电池模组130为工具主体200提供电力。
在一个实施例中,电池包100可以包括电池模组130,电池模组130可以理解为多个电池单体131经串并联方式组合后,形成的介于电池单体131和电池包100的中间单元。电池单体131,又称电芯,是电池***的最小单元,主要由正极、负极、电解质、隔膜和电芯外壳组成。本申请对电池单体131的外形不做限定,电池单体131可以是图6和图7所示的形状,也可以是类似长方体,圆柱体或者其他立体结构。
按照电池单体131的电解质的材质划分,电池可以分为固态电池和液态电池。固态电池是指采用固态电解质的电池。液态电池是指采用液态电解质的电池。市场上的电动工具所使用的电池包大多为液态锂离子电池,与传统的液态锂离 子电池相比,固态电池具有不易燃、耐高温、无腐蚀、不挥发特性,避免了传统液态电池中电解液泄露、电极短路等现象的发生,降低了电池模组对于温度的敏感性,从而大幅降低了安全隐患。
在本申请的实施方式中,电池模组130包括多个电池单体131,至少一个电池单体131为固态电池。固态电池的电池包具有能量密度高、安全性能好和循环寿命长的优点,因此相较于传统电池包,本申请提供的电池包100在相同的体积下能够为电动工具10提供更多的电量、更长的使用寿命和更安全的使用体验。
电池的能量是指电池在一定的放电条件下对外做功所输出的电能,单位常用瓦时(W·h)或千瓦时(kW·h)表示。电池包作为电动工具的动力源,电池包的能量以及体积大小是影响用户的使用体验的两个重要因素,体积较小且能量较大的电池包更便于用户使用。在本申请中,通过采用固态电池作为储能装置,使得电池包100的体积小,使用含有固态电池的电池包100作为电动工具10的动力源利于实现电动工具10的小型化、轻载化,从而利于用户使用。
在本申请实施例中,如设定电池包100的能量W大于或等于350瓦,使电池包100的体积V1小于或等于700立方厘米,能够使电动工具10既能够满足用户对能量的要求,又能够满足用户对电动工具10的体积的要求,且利于进一步促进电动工具10小型化的实现。
在一些实施例中,当电池包100的能量W大于或等于200瓦时,电池包100的体积V1小于或等于400立方厘米。在一个具体的实施例中,电池包100的电压可以为18伏特(V)或20伏特,电池包100的容量可以为8安时(A·h),电池包100的体积可以小于或等于370立方厘米。在其它实施例中,可选地,电池包100的能量可以为100瓦时、144瓦时、150瓦时、160瓦时、200瓦时,电池包100的体积可以为200立方厘米、288立方厘米、300立方厘米、320立方厘米、350立方厘米、400立方厘米。
在一些实施例中,当电池包100的能量W大于或等于300瓦时,电池包100的体积V1小于或等于800立方厘米。在一个具体的实施例中,电池包100的电压可以为24伏特,电池包100的容量可以为12安时,电池包100的体积可以小于或等于800立方厘米。在其它实施例中,可选地,电池包100的能量可以为288瓦时、300瓦时、350瓦时、400瓦时,电池包100的体积可以为700立方厘米、768立方厘米、780立方厘米、800立方厘米。
在一些实施例中,当电池包100的能量W大于或等于700瓦时,电池包100的体积V1小于或等于2500立方厘米。在一个具体的实施例中,电池包100的电压可以为56伏特,电池包100的容量可以为12安时,电池包100的体积可 以小于或等于2500立方厘米。在其它实施例中,可选地,电池包100的能量可以为700瓦时、800瓦时、900瓦时、1000瓦时,电池包100的体积可以为1500立方厘米、1780立方厘米、2000立方厘米、2500立方厘米。
上述实施例同样能够使电动工具10既能够满足用户对能量的要求,又能够满足用户对电动工具10的体积的要求,且利于进一步促进电动工具小型化的实现。
在本申请实施例中,如设定电池包100的能量W大于或等于350瓦,设定电池包100的重量M1小于或等于10千克,能够使电动工具10既能够满足用户对能量的要求,又能够满足用户对电动工具10的体积的要求,且利于进一步促进电动工具10轻便化的实现。
电池包作为成熟的储能装置,改变电池包的结构或者电池包的制作工艺难度很大。在本申请实施例中,如设定电池包100的能量W与电池包100的体积V1之比满足0.1瓦时/立方厘米≤W/V1≤1瓦时/立方厘米,或者电池包100的能量W与电池包100的重量M1之比满足35瓦时/千克≤W/M1≤1瓦时/千克,既能够满足用户对电动工具10的小型化、轻载化的使用要求,又不会因要求过高难以实现。在一些实施例中,可以设定电池包100的能量W与电池包100的体积V1之比为0.1瓦时/立方厘米、0.17瓦时/立方厘米、0.21瓦时/立方厘米、0.24瓦时/立方厘米、0.26瓦时/立方厘米、0.28瓦时/立方厘米、0.33瓦时/立方厘米、0.36瓦时/立方厘米、0.41瓦时/立方厘米、0.43瓦时/立方厘米、0.45瓦时/立方厘米、0.53瓦时/立方厘米、0.62瓦时/立方厘米、0.71瓦时/立方厘米、0.83瓦时/立方厘米、0.92瓦时/立方厘米。
电池包100的电压越大,电动工具10的功率就越高。在本申请实施例中,如设定电池包100的电压大于或等于18伏特,可以满足大部分工况下电动工具10的工作需求。
电池包100的内部除了包括电池模组130外,通常还包括端子组件120、电池监控与管理装置、电流传输件,以及电信号、温度信号的采集组件和传输组件等功能性部件。这些功能性部件占据了电池包100的部分容积,剩下的大部分容积被电池模组130所占据。对于电池包100而言,电池模组130的体积V2与电池包100的体积V1之比越高,则电池包100的体积能量密度就越高,但对于与电池包100内部的功能性部件的小型化的要求就越严苛,对现有的电池包100内部的结构改进的难度也就越高。在本申请的一些实施例中,如设定电池包100的体积V1与电池模组130的体积V2之比满足1≤V1/V2≤5,既能够满足用户对电动工具10的小型化的使用要求,又不会因要求过高难以实现。
如图5所示,在一个实施例中,电池包100的长度L1、宽度W1和高度H1 可以满足:1厘米≤L1≤100厘米,1厘米≤H1≤100厘米,1厘米≤W1≤100厘米。
如图6所示,在一个实施例中,电池模组130的长度L2、宽度W2和高度H2可以满足:1≤L2/W2≤2,1≤L2/H2≤2,0.5≤W2/H2≤1.5。示例性的,电池模组130的长度L2、宽度W2和高度H2满足:6厘米≤L2≤20厘米,5厘米≤H2≤15厘米,5厘米≤W2≤15厘米。
如图7所示,在一个实施例中,电池单体131的长度L3、宽度W3和高度H3满足:10≤L3/W3≤100,10≤L3/H3≤100,0.5≤W3/H3≤2。示例性的,电池单体131的长度L3、宽度W3和高度H3满足:300毫米≤L3≤900毫米,10毫米≤H3≤40毫米,10毫米≤W3≤40毫米。
在一些工况中,电池包100的能量不足以驱动电动工具10长时间、高功率地工作。如果使电动工具10停止工作从而为电池包100充电,会妨碍用户的工作效率。参考图8所示的电池包300,本申请提供的电池包300的能量可以驱动电动工具10长时间、高功率地工作。上述实施方式中与本实施方式中相适应的部分均可以应用到本实施方式的电池包300中,以下仅介绍本实施方式与上述实施方式的区别部分。
在一些实施例中,如图8所示,电池包300包括第一接口310和第二接口320。第一接口310被配置为连接电动工具10,第二接口320被配置为接入外部电力。电池包300的控制电路140设置于电池壳体110内,控制电路140分别与电池模组130,第一接口310和第二接口320电连接,控制电路140使用电池模组130或者外部电力为电动工具10提供电力。在本实施例中,当电池包300的电量不足时,用户可以通过引入外部电力的方式为电动工具10提供电力,从而继续使用电动工具10作业。
外部电力可以为市售的交流电,用户从电网中接入交流电为电动工具10提供动力。外部电力也可以为独立于电池包300之外的外部供电装置提供的电力,该电力可以为外部供电装置直接输出的直流电,也可以是直流电经转化后的交流电。可选地,外部供电装置可以为锂离子电池包、钠离子电池包,或者为锂离子电池和钠离子电池共同组成的电池包。外部供电装置也可以是固态电池包。
电池包300的第一接口310被配置为连接工具主体200,第二接口320被配置为接入外部电力。电池包300具有充电状态和放电状态两种信号状态,电池包300处于充电状态时,第二接口320接收来自外部的电能从而为电池包300充电,电池包300处于放电状态时,第一接口310将电池包300的电能提供给工具主体200。电池包300包括检测端子,检测端子设置为检测第一接口310和第二接口320的信号状态,第一接口310具有放电状态和空置状态,第二接口 320具有充电状态和空置状态。当第二接口320连接至外部电力时,检测端子检测到第二接口320处于充电状态,发送充电控制信号至控制电路140,以接收外部电力为电池包300充电。当第一接口310连接至电动工具10时,检测端子检测到第一接口310处于放电状态,发送放电控制信号至控制电路140,以使电池包300为电动工具10提供电力。
在部分实施例中,如图8所示,第一接口310和第二接口320位于不同平面。例如,第一接口310和第二接口320可以位于电池壳体110的相对的两个面上。在一些工况中,电池包300可能需要在为电动工具10供电的同时,引入外部电力,将第一接口310和第二接口320设置于电池壳体110的相对的两个面上,可以避免用户混淆接口。
在部分实施例中,控制电路140被设置为:在第二接口320接入外部电力后,控制部分外部电力为电动工具10提供电力,控制电池包300停止为电动工具10提供电力,控制部分外部电力为电池包300充电。电池包300在充电的同时为电动工具10提供电力会损害电池包300的寿命,在接入外部电力后,停止电池包300放电,使用外部电力为电动工具10提供电力,可以在保障用户持续工作的同时避免损害电池包300使用寿命。
本申请提供一种电池包400,可以支持电动工具10以高功率模式作业。上述实施方式中与本实施方式中相适应的部分均可以应用到本实施方式的电池包400中,以下仅介绍本实施方式与上述实施方式的区别部分。
如图9所示,在本实施方式中,电池包400中的电池模组430至少可以包括第一电池单体431和第二电池单体432。在本实施例中,第一电池单体431和第二电池单体432设置于电池壳体410的内部且被外壳支撑,第一电池单体431和第二电池单体432可以完全不同,或者部分特性相同。示例性地,第一电池单体431的电解质为液体,第二电池单体432的电解质为固体,第一电池单体431的功率密度大于第二电池单体432的功率密度,且第二电池单体432的能量密度大于第一电池单体431的能量密度。在一个实施例中,第一电池单体431的功率密度大于等于250w/kg。第二电池单体432的能量密度大于等于400Wh/kg。在一个具体地实施例中,第一电池单体431可以是磷酸铁锂液态电池、三元锂液态电池或钠离子电池,第二电池单体432可以为锂离子固态电池或钠离子固态电池。在一个实施例中,电池包400还包括端子组件420,端子组件420可以包括连接端子,连接端子与第一电池单体431和第二电池单体432电连接,以将电能从电池模组430传输至电动工具10。
本实施例的电池模组430采取液态电池和固态电池混合的组成方式,相较于电池模组中全部为固态电池的电池单体的设计,本实施例的电池模组430的 功率密度更高,相较于电池模组中全部为液态电池的电池单体的设计,本实施例的电池模组430的能量密度更高。本实施例的电池模组430采取液态电池和固态电池混合的组成方式,能够使电池包400在具有高能量密度的同时,还能够支持电动工具10以高功率模式作业。
在可选的实现方式中,第一电池单体431可以与第二电池单体432串联连接或并联连接。在可选的实现方式中,第一电池单体431串联形成第一支路,第二电池单体432串联形成第二支路,第一支路和第二支路并联连接。在可选的实现方式中,第一电池单体431可以与第二电池单体432并联连接后再串联连接。在本实施例中,两种电池单体之间还可以存在其他类型的电连接方式,此处不再一一列举。
在可选的实现方式中,第一电池单体431和第二电池单体432可以完全不同,或者部分特性相同。示例性的,第一电池单体431可以具有第一能量和第一循环寿命,第二电池单体432可以具有第二能量和第二循环寿命,循环寿命可以是电池单体在保持输出一定的能量的情况下所能进行的充放电循环次数,也可以称为电池的使用寿命。其中,第一能量不同于第二能量,第一循环寿命不同于第二循环寿命。在一个实施例中,第一循环寿命大于第二循环寿命且第一能量小于第二能量。在一个实施例中,第一循环寿命与第二循环寿命的比值大于等于2,第一能量与第二能量的比值小于等于0.8。也就是说,第一电池单体431具有使用寿命长但能量稍低的特性,第二电池单体432的使用寿命短但能量较大。
在可选的实现方式中,如图9所示,电池模组430至少可以包括第一模组430a和第二模组430b。第一模组430a由第一电池单体431连接而成。第二模组430b由第二电池单体432连接而成。第一模组430a和第二模组430b以串联或并联方式电连接。第一模组430a和第二模组430b采用同一种电池单体的设计可以便于控制电路140对电池的采样、检测和一致性管理。在一个实施例中,第一模组430a为电动工具10供电,第二模组430b为第一模组430a供电。在一个实施例中,第二模组430b为电动工具10供电,第一模组430a为第二模组430b供电。
申请人经过研究发现,固态电池的充放电倍率性能较低,是因为固态电池在室温下电导率低。本申请提供一种实施方式,可以设置加热装置来提高电池温度,从而解决室温和低温下固态电池难以支持电动工具以高功率模式作业的问题。
如图9所示,在本实施方式中,电池包400包括加热装置440,设置为加热固态电池。固态电池被加热后,电导率升高,功率密度和充放电倍率性能也随之升高,从而能够支持电动工具10以高功率模式作业。
在可选的实现方式中,控制电路140还包括温度检测模块和控制器。温度 检测模块设置为检测固态电池的温度。控制器至少与加热装置440电连接。控制器被配置为:获取温度检测模块输出的温度;在温度低于第一温度阈值时,控制加热装置440启动以加热固态电池;在温度高于或等于第二温度阈值时,控制加热装置440停止加热。
在可选的实现方式中,控制器被配置为:获取温度检测模块输出的温度;在温度低于第一温度阈值时,控制加热装置440启动以加热第二电池单体432;在温度高于或等于第二温度阈值时,控制加热装置440停止加热。在一个实施例中,至少一个第一电池单体431为加热装置440提供加热第二电池单体432的电力。
在可选的实现方式中,第二模组430b为电动工具10供电,第一模组430a至少为加热装置440供电。在一个实施例中,电动工具10启动后,可以控制室温电导率较高的第一模组430a加热第二模组430b,等第二模组430b升温后,第二模组430b的电导率得以提高,控制器可以控制能量密度较高的第二模组430b为电动工具10供电。在一个实施例中,控制器被配置为:在温度低于第一温度阈值时,控制第一模组430a为加热装置440供电以加热第二模组430b;在温度高于或等于第二温度阈值时,控制第二模组430b为电动工具10供电。
参考图10所示的电动工具,本申请还提供一种电动工具50,包括工具主体200和电池包500,电池包500设置为为工具主体200提供电力。上述实施方式中与本实施方式中相适应的部分均可以应用到本实施方式中,以下仅介绍本实施方式与上述实施方式的区别部分。
电池包500包括电池壳体110、电池模组130和控制电路140。电池模组130设置于电池壳体110内。控制电路140设置于电池壳体110内,控制电路140使用电池模组130为电动工具50提供电力。电池模组130包括多个电池单体131,至少一个电池单体131为固态电池。本申请的电池包可以为上述任一项实施例的电池包,在此不做赘述。
在一些实施例中,如图10所示,电池包500包括第一电池包510和第二电池包520。第一电池包510至少为驱动电路230供电,第一电池包510包括多个电池单体511,至少一个电池单体511被设置为固态电池。第二电池包520至少为驱动电路230或第一电池包510供电。电池包500包括第一电池包510和第二电池包520,可以为电动工具50提供更大的电量,使电动工具50的工作时长更长久。
在一些实施例中,由于固态电池在室温下电导率低,第一电池包510还包括加热装置512,电池包500的加热装置512可以设置为加热固态电池。固态电池被加热后,电导率升高,功率密度和充放电倍率性能也随之升高,从而能够支 持电动工具50以高功率模式作业。
在可选的实现方式中,第一电池包510还包括温度检测模块513,设置为检测固态电池的温度。电动工具50被配置为:获取温度检测模块513输出的温度;在温度低于第一温度阈值时,控制加热装置512启动以加热固态电池;在温度高于或等于第二温度阈值时,控制加热装置512停止加热。
在可选的实现方式中,电动工具50被配置为:在温度低于第一温度阈值时,控制第二电池包520为加热装置512供电以加热第一电池包510;在温度高于或等于第二温度阈值时,控制第一电池包510为驱动电路230供电。
在一个实施例中,电池包500的重量小于等于工具主体200的重量的70%。本申请对于电池包500的重量的设置,使电池包500不会过重,提高用户操作体验,并且有利于电动工具50的摆放。在一个实施例中,电动工具50的重心在水平面的投影落在电池包500在水平面的投影范围内,从而使电动工具50在摆放时减少晃动。在一个实施例中,工具主体200还包括传动单元240,将电机220输出的动力进行传输。在一个实施例中,电动工具50可工作的温度范围为零下50摄氏度至90摄氏度。
在可选的实现方式中,如图11所示,工具壳体210包括握持部211,以便于用户握持。在一个实施例中,电池包与握持部211部分重合,以减少电动工具的体积,便于实现电动工具的小型化。在一个实施例中,电池包与工具主体210可相对拆装。所述电池包和电动工具可以是上述任一实施例提供的。在一个实施例中,电机220为直流电机。在一个实施例中,电机220为有刷电机或无刷电机。
参考图12所示的电动工具***,本申请还提供一种电动工具***60,包括工具主体200和电池包600,电池包600设置为为工具主体200提供电力。上述实施方式中与本实施方式中相适应的部分均可以应用到本实施方式中,以下仅介绍本实施方式与上述实施方式的区别部分。
电动工具***60,包括工具主体200、第一电池包610和第二电池包620。工具主体200包括工具壳体210和设置为接入电力的工具接口250。
第一电池包610包括第一电池包壳体611和设置在第一电池包壳体611内的第一电池模组612,第一电池模组612包括至少一个第一电池单体612a,第一电池单体612a为液态电池。示例性的,第一电池单体612a可以为液态三元锂电池、液态磷酸铁锂电池,第一电池单体612a的尺寸可以为18650圆柱电池、2170圆柱电池或4680圆柱电池。
第二电池包620包括第二电池包壳体621和设置在第二电池包壳体621内 的第二电池模组622,第二电池模组622包括至少一个第二电池单体622a,第二电池单体622a为固态电池。
第一电池包610具有与工具接口250匹配以使第一电池包610给工具主体200供电的第一电池接口613,第二电池包620具有与工具接口250匹配以使第二电池包620给工具主体200供电的第二电池接口623。
参考图13所示的电动工具,本申请还提供一种电动工具60’,包括工具主体200和第二电池包620,第二电池包620设置为为工具主体200提供电力。上述实施方式中与本实施方式中相适应的部分均可以应用到本实施方式中,以下仅介绍本实施方式与上述实施方式的区别部分。
本申请提供一种电动工具60’,包括工具主体200和第二电池包620。工具主体200包括工具壳体210和设置为接入电力的工具接口250。如图12所示,工具主体200被设置为能匹配第一电池包610以通过第一电池包610给工具主体200供电,其中,第一电池包610包括第一电池包壳体611和设置在第一电池包壳体611内的第一电池模组612,第一电池模组612包括至少一个第一电池单体612a,第一电池单体612a为液态电池。
如图12所示,第二电池包620包括第二电池包壳体621和设置在第二电池包壳体621内的第二电池模组622,第二电池模组622包括至少一个第二电池单体622a,第二电池单体622a为固态电池。其中,第二电池包620具有与工具接口250匹配以使第二电池包620给工具主体200供电的第二电池接口623。
参考图14和图15所示的割草机,本申请提供一种割草机70,上述实施方式中与本实施方式中相适应的部分均可以应用到本实施方式中,以下仅介绍本实施方式与上述实施方式的区别部分。
本申请提出一种割草***,参照图14和图15,割草***包括设置为修整植被的执行机构,执行机构为割草***实现割草功能的硬件,可选的,执行机构为割草机70。
割草机70至少包括设置为实现割草功能的切割组件720和设置为实现行走功能的行走装置710,并且包括支撑主体740以及机器壳体730,机器壳体730包装支撑主体740、切割组件720、行走装置710。
行走装置710包括至少一驱动轮711,以及设置为驱动所述驱动轮711的第一电机712,第一电机712提供转矩给至少一个驱动轮711。通过切割组件720和行走装置710的配合,实现割草***可以控制执行机构70在植被上移动并作业。第一电机712可以是直流电机。
切割组件720包括割草元件721和第二电机722,第二电机722驱动割草元 件721旋转进行修整植被,割草元件721可以是刀片,或者其它可以切割修整草坪的元件。第二电机722可以是直流电机。
储能装置750,被配置为第一电机712和第二电机722供电。储能装置770包括储能单元751,储能单元751包括固态电池。储能装置750设置为给行走装置710和切割组件720供电,可选的,储能装置750为可插拔的电池包,安装到机器壳体730。储能装置750可以为上述任一实施例中的电池包,储能单元751可以为上述任一实施例中的电池单体。
在一些实施例中,割草机70可工作的温度范围为零下20摄氏度至90摄氏度。在一些实施例中,割草机70,还包括充电口,充电口可与其他电能来源连接充电。在一些实施例中,割草机70的充电速率为3C至10C。电池的充电速率又称充放电倍率,通常用C表示,指的是电池充放电所用时间的倒数。以电池的容量为10安时(A·h)为例,1C指的是用1小时放完额定容量。充电速率为3C至10C,表示储能装置750充满额定容量的用时在1/10小时至1/3小时之间。在一些实施例中,储能装置750采用密封设计,以防水或防尘。在一些实施例中,割草机70可判断储能装置750的电量,低电量时割草机70可自行至充电桩充电。
参考图16至18所示的电动工具,本申请提供一种砂光机80,上述实施方式中与本实施方式中相适应的部分均可以应用到本实施方式中,以下仅介绍本实施方式与上述实施方式的区别部分。
本申请提供一种砂光机80,如图17所示,包括砂光机本体810和电池包820。如图18所示,砂光机本体810包括工具壳体811、电机812和电池包接口813。工具壳体811包括握持部811a。电机812设置于工具壳体811内腔中。电池包接口813设置于工具壳体811。砂光机80还包括电池包820,电池包820包括电池单体821和工具接口822。电池单体821包括固态电池。工具接口822被配置为与电池包接口813耦合。
在一些实施例中,电池包820与握持部811a部分重合。在一些实施例中,电池包820与砂光机本体810可相对拆装。在一些实施例中,电机812为直流电机。

Claims (45)

  1. 一种为电动工具提供电力的电池包,包括:
    电池壳体;
    电池模组,设置于所述电池壳体内,所述电池模组包括多个电池单体,至少一个所述电池单体为固态电池;
    控制电路,设置于所述电池壳体内,所述控制电路设置为使用所述电池模组为所述电动工具提供电力;
    所述电池包的能量W和体积V1满足:
    在所述电池包的能量W大于或等于200瓦的情况下,所述电池包的体积V1小于或等于400立方厘米;或
    在所述电池包的能量W大于或等于300瓦的情况下,所述电池包的体积V1小于或等于800立方厘米;或
    在所述电池包的能量W大于或等于700瓦的情况下,所述电池包的体积V1小于或等于2500立方厘米。
  2. 根据权利要求1所述的电池包,其中,在所述电池包的能量W大于或等于350瓦的情况下,所述电池包的重量M1小于或等于10千克。
  3. 根据权利要求1所述的电池包,其中,所述电池包的电压大于或等于18伏特。
  4. 根据权利要求1所述的电池包,其中,所述电池包的能量W与所述电池包的体积V1之比满足:0.2瓦时/立方厘米≤W/V1≤1瓦时/立方厘米。
  5. 根据权利要求1所述的电池包,其中,所述电池包的能量W与所述电池包的重量M1之比满足:35瓦时/千克≤W/M1≤1瓦时/千克。
  6. 根据权利要求1所述的电池包,其中,所述电池包的体积V1与所述电池模组的体积V2之比满足:1≤V1/V2≤5。
  7. 根据权利要求1所述的电池包,其中,所述电池模组的长度L2、宽度W2和高度H2满足:1≤L2/W2≤2,1≤L2/H2≤2,0.5≤W2/H2≤1.5。
  8. 根据权利要求1所述的电池包,其中,所述电池模组的长度L2、宽度W2和高度H2满足:6厘米≤L2≤20厘米,5厘米≤H2≤15厘米,5厘米≤W2≤15厘米。
  9. 根据权利要求1所述的电池包,其中,所述电池单体的长度L3、宽度W3和高度H3满足:10≤L3/W3≤100,10≤L3/H3≤100,0.5≤W3/H3≤2。
  10. 根据权利要求1所述的电池包,其中,所述电池单体的长度L3、宽度 W3和高度H3满足:300毫米≤L3≤900毫米,10毫米≤H3≤40毫米,10毫米≤W3≤40毫米。
  11. 一种为电动工具提供电力的电池包,包括:
    电池壳体;
    电池模组,设置于所述电池壳体内,所述电池模组包括多个电池单体,至少一个所述电池单体为固态电池;
    第一接口,所述第一接口被配置为连接所述电动工具;
    第二接口,所述第二接口被配置为为电池包接入外部电力;
    控制电路,设置于所述电池壳体内,所述控制电路分别与所述电池模组、所述第一接口和所述第二接口电连接,所述控制电路设置为使用所述电池模组或者所述外部电力为所述电动工具提供电力。
  12. 根据权利要求11所述的电池包,其中,所述外部电力为交流电。
  13. 根据权利要求11所述的电池包,其中,所述外部电力为外部储能装置提供的直流电,所述外部储能装置独立于所述电池包之外。
  14. 根据权利要求13所述的电池包,其中,所述外部储能装置为锂离子电池包。
  15. 根据权利要求13所述的电池包,其中,所述外部储能装置为钠离子电池包。
  16. 根据权利要求13所述的电池包,其中,所述外部储能装置为锂离子电池和钠离子电池共同组成的电池包。
  17. 根据权利要求13所述的电池包,其中,所述外部储能装置为固态电池包。
  18. 根据权利要求11所述的电池包,其中,所述第一接口和所述第二接口位于不同平面。
  19. 根据权利要求18所述的电池包,其中,所述第一接口和所述第二接口位于所述电池壳体的相对的两个面上。
  20. 根据权利要求11所述的电池包,其中,所述控制电路被设置为:
    在所述第二接口接入所述外部电力后,控制部分所述外部电力为所述电动工具提供电力,控制所述电池包停止为所述电动工具提供电力,控制部分所述外部电力为所述电池包充电。
  21. 一种电动工具,包括工具主体和如权利要求1-20任一项所述的电池包, 其中:
    所述工具主体,包括:
    工具壳体;
    电机,设置于所述工具壳体中;
    驱动电路,所述驱动电路与所述电机电连接并设置为驱动所述电机;
    所述电池包设置为为所述驱动电路供电。
  22. 根据权利要求21所述的电动工具,其中,所述电池包的重量小于等于所述工具主体的重量的70%。
  23. 根据权利要求21所述的电动工具,其中,所述工具主体还包括传动单元,设置为将所述电机输出的动力进行传输。
  24. 根据权利要求21所述的电动工具,其中,所述电动工具的重心在水平面的投影落在所述电池包在水平面的投影范围内。
  25. 根据权利要求21所述的电动工具,其中,所述电动工具可工作的温度范围为零下50摄氏度至90摄氏度。
  26. 根据权利要求21所述的电动工具,其中,所述工具壳体包括用于握持的握持部。
  27. 根据权利要求26所述的电动工具,其中,所述电池包与所述握持部部分重合。
  28. 根据权利要求26所述的电动工具,其中,所述电池包与所述工具主体可相对拆装。
  29. 根据权利要求26所述的电动工具,其中,所述电机为直流电机。
  30. 一种电动工具,包括工具主体和电池包,其中:
    所述工具主体,包括:
    工具壳体;
    电机,设置于所述工具壳体中;
    驱动电路,所述驱动电路与所述电机电连接并设置为驱动所述电机;
    所述电池包设置为为所述驱动电路供电,所述电池包包括:
    电池壳体;
    电池模组,设置于所述电池壳体内,所述电池模组包括多个电池单体,至少一个所述电池单体为固态电池;
    控制电路,设置于所述电池壳体内,所述控制电路设置为使用所述电池模组为所述电动工具提供电力;
    所述电池包的重量小于等于所述工具主体的重量的70%。
  31. 一种电动工具,包括工具主体和电池包组件,其中:
    所述工具主体,包括:
    工具壳体;
    电机,设置于所述工具壳体中;
    驱动电路,所述驱动电路与所述电机电连接并设置为驱动所述电机;
    所述电池包组件设置为为所述驱动电路供电;
    所述电池包组件包括:
    第一电池包,所述第一电池包至少设置为为所述驱动电路供电,所述第一电池包包括多个电池单体,至少一个电池单体被设置为固态电池;
    第二电池包,所述第二电池包设置为为所述第一电池包和所述驱动电路中的至少之一供电。
  32. 根据权利要求31所述的电动工具,其中,所述第二电池包包括多个电池单体,至少一个电池单体被设置为固态电池。
  33. 根据权利要求31所述的电动工具,其中,所述第二电池包包括多个电池单体,至少一个电池单体被设置为液态电池。
  34. 一种电动工具***,包括:
    工具主体,所述工具主体包括设置为接入电力的工具接口;
    第一电池包,包括第一电池包壳体和设置在所述第一电池包壳体内的第一电池模组,所述第一电池模组包括至少一个第一电池单体,所述第一电池单体为液态电池;
    第二电池包,包括第二电池包壳体和设置在所述第二电池包壳体内的第二电池模组,所述第二电池模组包括至少一个第二电池单体,所述第二电池单体为固态电池;
    其中,所述第一电池包具有与所述工具接口匹配以使所述第一电池包给所述工具主体供电的第一电池接口,所述第二电池包具有与所述工具接口匹配以使所述第二电池包给所述工具主体供电的第二电池接口。
  35. 一种电动工具,包括工具主体和第二电池包,其中:
    所述工具主体被设置为匹配第一电池包以通过第一电池包给工具主体供电,其中,所述第一电池包包括第一电池包壳体和设置在所述第一电池包壳体内的第一电池模组,所述第一电池模组包括至少一个第一电池单体,所述第一电池单体为液态电池;
    所述第二电池包包括第二电池包壳体和设置在所述第二电池包壳体内的第二电池模组,所述第二电池模组包括至少一个第二电池单体,所述第二电池单体为固态电池;
    其中,所述第二电池包具有与所述工具主体上的工具接口匹配以使所述第二电池包给所述工具主体供电的第二电池接口。
  36. 一种割草机,包括:
    机器壳体;
    第一电机,容纳于所述机器壳体,所述第一电机是直流电机;
    行走装置,所述行走装置包括驱动轮,所述驱动轮由所述第一电机驱动;
    第二电机,容纳于所述机器壳体,所述第二电机是直流电机;
    切割组件,所述切割组件包括刀片,所述刀片由所述第二电机驱动;
    储能装置,被配置为为所述第一电机和所述第二电机供电,所述储能装置包括:
    储能单元,所述储能单元包括固态电池。
  37. 根据权利要求36所述的割草机,其中,所述割草机的工作温度范围为零下20摄氏度至90摄氏度。
  38. 根据权利要求36所述的割草机,还包括充电口,所述充电口设置为与其他电能来源连接充电。
  39. 根据权利要求36所述的割草机,其中,所述割草机充电速率为3C至10C。
  40. 根据权利要求36所述的割草机,其中,所述储能装置为密封装置。
  41. 根据权利要求36所述的割草机,其中,所述割草机设置为判断储能装置电量,在储能装置处于低电量的情况下可自行至充电桩充电。
  42. 一种砂光机,包括砂光机本体和电池包,其中:
    所述砂光机本体,包括:
    工具壳体,所述工具壳体包括握持部;
    电机,设置于所述工具壳体;
    电池包接口,设置于所述工具壳体;
    所述电池包包括:
    电池单体,所述电池单体包括固态电池;
    工具接口,被配置为与所述电池包接口耦合。
  43. 根据权利要求42所述的砂光机,其中,所述电池包与所述握持部部分重合。
  44. 根据权利要求42所述的砂光机,其中,所述电池包与所述砂光机本体相对拆装。
  45. 根据权利要求42所述的砂光机,其中,所述电机为直流电机。
PCT/CN2023/123875 2022-11-09 2023-10-11 电池包、电动工具、电动工具***、割草机和砂光机 WO2024099018A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202211395477.5 2022-11-09
CN202211395477 2022-11-09
CN202311252928.4A CN118017118A (zh) 2022-11-09 2023-09-26 电动工具及电动工具***
CN202311252928.4 2023-09-26
CN202311255477.XA CN118017114A (zh) 2022-11-09 2023-09-26 电动工具、为电动工具提供电力的电池包
CN202311255477.X 2023-09-26

Publications (1)

Publication Number Publication Date
WO2024099018A1 true WO2024099018A1 (zh) 2024-05-16

Family

ID=90946859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/123875 WO2024099018A1 (zh) 2022-11-09 2023-10-11 电池包、电动工具、电动工具***、割草机和砂光机

Country Status (2)

Country Link
CN (2) CN118017118A (zh)
WO (1) WO2024099018A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130266827A1 (en) * 2011-04-01 2013-10-10 Sakti3, Inc. Electric vehicle propulsion system and method utilizing solid-state rechargeable electrochemical cells
WO2016100750A1 (en) * 2014-12-18 2016-06-23 Sakti3, Inc. Multiphysics design for solid state energy devices with high energy density
US20200127340A1 (en) * 2018-10-19 2020-04-23 Ridge Tool Company Battery packs for power tools
CN111370615A (zh) * 2020-03-23 2020-07-03 中国华能集团清洁能源技术研究院有限公司 一种全固态电池的高安全性分布式储能***
CN111933999A (zh) * 2020-09-15 2020-11-13 江苏时代新能源科技有限公司 一种固态电池、电池模组、电池包及其相关的装置
CN112952273A (zh) * 2019-11-22 2021-06-11 比亚迪股份有限公司 一种电池、电池模组、电池包及电动车
CN113937836A (zh) * 2020-07-14 2022-01-14 南京德朔实业有限公司 电动工具及其控制方法
CN114709547A (zh) * 2022-01-27 2022-07-05 浙江锋锂新能源科技有限公司 一种锂金属负极固态电池模组

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130266827A1 (en) * 2011-04-01 2013-10-10 Sakti3, Inc. Electric vehicle propulsion system and method utilizing solid-state rechargeable electrochemical cells
WO2016100750A1 (en) * 2014-12-18 2016-06-23 Sakti3, Inc. Multiphysics design for solid state energy devices with high energy density
US20200127340A1 (en) * 2018-10-19 2020-04-23 Ridge Tool Company Battery packs for power tools
CN112952273A (zh) * 2019-11-22 2021-06-11 比亚迪股份有限公司 一种电池、电池模组、电池包及电动车
CN111370615A (zh) * 2020-03-23 2020-07-03 中国华能集团清洁能源技术研究院有限公司 一种全固态电池的高安全性分布式储能***
CN113937836A (zh) * 2020-07-14 2022-01-14 南京德朔实业有限公司 电动工具及其控制方法
CN111933999A (zh) * 2020-09-15 2020-11-13 江苏时代新能源科技有限公司 一种固态电池、电池模组、电池包及其相关的装置
CN114709547A (zh) * 2022-01-27 2022-07-05 浙江锋锂新能源科技有限公司 一种锂金属负极固态电池模组

Also Published As

Publication number Publication date
CN118017114A (zh) 2024-05-10
CN118017118A (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
US9819203B2 (en) Electric power tool system
US9748780B2 (en) Electric power tool system
CN103753507B (zh) 电动工具机
CN101622106B (zh) 无线电动工具及其容纳盒
CN220400799U (zh) 一种电池包、电动工具及充电***
US20100065295A1 (en) Cordless power tool and accomodation case
US20070279000A1 (en) Plug in power adapter and/or battery pack for cordless tools
WO2024099018A1 (zh) 电池包、电动工具、电动工具***、割草机和砂光机
WO2023173859A1 (en) Battery pack, battery pack system and power tool
CN213602428U (zh) 基于超级电池电容供电的电动工具
CN116073465A (zh) 充电装置及充电装置的控制方法
WO2021223729A1 (zh) 电池包及电动工具***
WO2021110078A1 (zh) 一种电动工具及其能量存储装置
CN115483731A (zh) 供电***、工作***、充电***以及工作方法
WO2024037266A1 (zh) 为电动工具提供电力的电池包
WO2024131658A1 (zh) 适配器、电设备和***
CN114649838A (zh) 充电***和电动工具***
CN217562652U (zh) 一种基于锂电池热管理***辅助结构
CN218918991U (zh) 具有良好散热功能的锂离子电池组
CN218039390U (zh) 用于无绳电动工具的电池包
CN202016021U (zh) 一种能快速充电的电动螺丝刀
CN116722211A (zh) 一种固态电池包及建筑用电动工具
CN116388314A (zh) 具有多个机电蓄电池接口的电器具
JP2004113595A (ja) 電気掃除機
CN114649858A (zh) 充电***和充电器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23887710

Country of ref document: EP

Kind code of ref document: A1