WO2024098740A1 - 一种离岸式桩基海工建筑物上部结构整体式安装方法 - Google Patents

一种离岸式桩基海工建筑物上部结构整体式安装方法 Download PDF

Info

Publication number
WO2024098740A1
WO2024098740A1 PCT/CN2023/099180 CN2023099180W WO2024098740A1 WO 2024098740 A1 WO2024098740 A1 WO 2024098740A1 CN 2023099180 W CN2023099180 W CN 2023099180W WO 2024098740 A1 WO2024098740 A1 WO 2024098740A1
Authority
WO
WIPO (PCT)
Prior art keywords
superstructure
dock
pile
track
hydraulic jack
Prior art date
Application number
PCT/CN2023/099180
Other languages
English (en)
French (fr)
Inventor
张永涛
冯先导
林红星
刘聪聪
杨凯旋
黄睿奕
何聪
骆钊
沈立龙
张磊
肖苡辀
赵东梁
王聪
仇正中
高宁波
韩鹏鹏
陈迪郁
孙婉静
周龙
Original Assignee
中交第二航务工程局有限公司
中交武汉港湾工程设计研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中交第二航务工程局有限公司, 中交武汉港湾工程设计研究院有限公司 filed Critical 中交第二航务工程局有限公司
Publication of WO2024098740A1 publication Critical patent/WO2024098740A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B17/04Equipment specially adapted for raising, lowering, or immobilising the working platform relative to the supporting construction
    • E02B17/06Equipment specially adapted for raising, lowering, or immobilising the working platform relative to the supporting construction for immobilising, e.g. using wedges or clamping rings
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/06Moles; Piers; Quays; Quay walls; Groynes; Breakwaters ; Wave dissipating walls; Quay equipment
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/10Deep foundations
    • E02D27/12Pile foundations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/02Placing by driving
    • E02D7/06Power-driven drivers
    • E02D7/14Components for drivers inasmuch as not specially for a specific driver construction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Definitions

  • the present invention relates to the technical field of pile foundation marine engineering structure construction, and more specifically, to an integrated installation method for the upper structure of an offshore pile foundation marine engineering structure.
  • the sea areas where offshore pile-foundation marine engineering structures are located are usually characterized by strong winds, high waves, and rapid currents.
  • the construction environment is harsh, which poses huge challenges to project safety, quality, and cost, and has become one of the pain points in the development of marine engineering construction.
  • Offshore pile-based marine engineering structures include docks, marine observation platforms, piers, etc.
  • a pile-based dock is generally composed of structures such as pile foundations, pile caps, longitudinal and transverse beams, and panels.
  • pile-based docks have more cast-in-place operations on the water, including cast-in-place pile cores, pile caps, nodes, etc.
  • the safety risk of setting up the bottom formwork support system is high, and the site requires tying and welding steel bars, mixing boats to pump concrete, and personnel to cast, etc., with a low degree of automation; secondly, the construction process of the dock superstructure is numerous and complex, and the construction time is long.
  • the prefabricated longitudinal and transverse beams are installed, and then the nodes are cast, and finally the prefabricated panels, plate joints and surface layers are installed; in addition, the traditional construction method is highly dependent on offshore ship machinery and equipment.
  • floating cranes are mostly used to install prefabricated beams, prefabricated panels and other dock superstructures. Under harsh sea conditions, there are few operating windows for engineering ships, construction quality is difficult to guarantee, and work efficiency is low, affecting the construction period and cost.
  • One object of the present invention is to provide an integrated installation method for the upper structure of an offshore pile-based marine engineering structure, which is an integrated jacking and traction installation method with the advantages of low construction risk, high safety, and high construction efficiency.
  • an integrated installation method for the superstructure of an offshore pile-based marine engineering structure is provided.
  • the bottom surface of the dock superstructure has a protruding crossbeam or longitudinal beam, which is arranged perpendicular to the installation direction of the dock superstructure.
  • the dock superstructure is accurately pushed and installed by a detachable pile top pushing device arranged on the top surface of the pile cap.
  • a three-way hydraulic jack is arranged in the middle of the pile top pushing device.
  • Vertical hydraulic jacks are arranged on both sides of the installation direction of the dock superstructure.
  • Step 1 Install the pile top pushing device on the top of the pile cap.
  • the protruding beam or longitudinal beam of the dock superstructure reaches the pile cap position, lift the vertical hydraulic jack in front of the dock superstructure installation to serve as a temporary support for the dock superstructure.
  • Step 2 Lower the height of the middle three-way hydraulic jack to below the bottom elevation of the protruding crossbeam or longitudinal beam to ensure that the protruding crossbeam or longitudinal beam at the bottom allows the jacking to pass through;
  • Step 3 Move the three-way hydraulic jack to the rear of the protruding crossbeam or longitudinal beam of the dock superstructure, then lift the vertical hydraulic jack behind the dock superstructure installation, and lower the vertical hydraulic jack in front of the dock superstructure installation to below the bottom elevation of the protruding crossbeam or longitudinal beam;
  • Step 4 The three-way hydraulic jack in the middle pushes the dock superstructure forward. After the dock superstructure moves forward to the set spacing, the pile top pushing devices on each pile cap are operated as described in steps 1 to 3 above. The vertical hydraulic jack in front of the dock superstructure installation is lifted, and the three-way hydraulic jack is moved to the rear of the protruding crossbeam or longitudinal beam. Then, the vertical hydraulic jack in front of the dock superstructure installation is lowered to continue pushing until it reaches the designed position.
  • Step 5 After the dock superstructure is pushed into place, it is supported by the vertical hydraulic jacks at the rear of the dock superstructure installation.
  • the three-way hydraulic jacks are removed, and then the heights of the two vertical hydraulic jacks on both sides are slowly lowered until the protruding crossbeams or longitudinal beams of the dock superstructure are directly placed on the top of each pile cap, and then the pile top pushing devices on both sides are removed.
  • the pile top pushing device comprises:
  • the base comprises three detachable left, middle and right parts, both sides of the middle part are provided with middle base slots, the left and right parts are matched in the middle base slots and are detachably connected by bolts, and the base is formed by bolting a plurality of criss-cross base cross beams and base longitudinal beams, Embedded bolt anchoring of base and pile cap;
  • a three-way hydraulic jack which is arranged in the middle of the base and is arranged to move linearly along the direction of installation of the dock superstructure;
  • a vertical hydraulic jack one of which is arranged on each of the two opposite sides of the three-way hydraulic jack, and the two vertical hydraulic jacks are staggered with the three-way hydraulic jack;
  • a limiting device is provided at the bottom of both sides of the base along the direction of installation of the dock superstructure, and the two limiting devices just limit the base on the pile cap.
  • the specific installation method is as follows:
  • step S5 According to steps S2 to S4, the dock superstructures of multiple modules are pushed forward simultaneously, and the superstructures of the dock structure sections are installed continuously. After the installation is in place, the expansion joints of the dock structure sections are processed until the installation of the dock superstructure is completed.
  • the traction technology is also used for installation.
  • the specific installation method is as follows:
  • a pile top pushing device is installed on the top of the pile cap, and a plurality of tracks are arranged and installed on the pile cap along the cross beam at intervals, which are arranged along the cross beam direction and extend to the outside of the pile cap to form a cantilever.
  • a track is also arranged on the ship deck, which is connected to the track on the pile cap in a one-to-one correspondence as a whole, and a hydraulic trolley is arranged to move along the track, and the track can be detachably installed in the middle of the pile top pushing device;
  • vehicle stops are provided on both sides and the front end of the track.
  • the traction mechanism in step S3 includes a forward winch, a reverse winch, a fixed pulley and a wire rope
  • the forward winch and the reverse winch are both arranged on the deck of the ship and are staggered in height
  • the fixed pulley is arranged at the front end of the track
  • the wire rope of the forward winch passes through the fixed pulley and is fixed to the front hydraulic trolley
  • the wire rope of the reverse winch is fixed to the rear hydraulic trolley.
  • the bottom of the flange on the track is set to a tooth shape
  • a brake device is provided on the hydraulic trolley.
  • the inner side of the brake pad is an arc that matches the wheel of the hydraulic trolley.
  • the inner side of the brake pad is also fixed with a rubber layer.
  • the bottom two sides of the outer side of the brake pad are set to a tooth shape, which is set to be engaged with the tooth shape on the track.
  • the brake pad is connected by a connecting rod fixed on the wheel of the hydraulic trolley, and the connecting rod is connected by a hydraulic gear and rotates with the hydraulic trolley wheel as the center through hydraulic drive.
  • the track on the pile cap is connected to the track on the ship deck via an arched track overlap section, and both ends of the track overlap section are connected to the track on the pile cap and the track on the ship deck via bolts.
  • the present invention improves the construction quality of the upper structure of offshore engineering buildings by manufacturing prefabricated components of offshore engineering buildings in factories, transporting them by land to the construction site for assembly, or prefabricating and assembling them in factories in modular form and then transporting them to the construction site by water. At the same time, it reduces the on-site construction procedures, avoids on-site water operations such as steel bar binding, formwork erection, and pouring, and reduces the safety risks of water construction.
  • the pile top pushing device of the assembled structure of the present invention is divided into three parts: left, middle and right. Its own structure and the pushing mechanism, track and other facilities can be quickly assembled and disassembled.
  • the bottom is anchored and limited at the top of the pile cap.
  • the top can be installed with hydraulic jacks and tracks in any combination, which ensures the stability of the pushing process of the upper structure of the wharf and improves the efficiency of the pushing work.
  • the jacking and traction system of the present invention has winches installed on the deck of the ship, and is steered by installing a fixed pulley on the rail cantilever, which avoids the need to install traction equipment on the pile cap at the front of the dock, reserves space for the installation of berthing facilities on the upper structure, and ensures the safety of operators;
  • the hydraulic trolley is provided with a hydraulically controlled rotatable brake device, which can drive the rotating connecting rod through the hydraulic gear to make the brake pads reach the top of the track at the same time and fit with the wheels, and the two sides of the bottom are engaged with the track teeth to achieve "one-button braking", thereby improving the controllable traction ability of the dock upper structure.
  • the present invention adopts the walking top-pushing, traction and top-pushing combination technology of the upper structure of the marine engineering building, replacing the traditional crane ship water hoisting operation, and switching from water to pile top construction, avoiding the impact of waves and water currents on the operation window and installation accuracy of the engineering ship, and reducing the cost of ship machinery and equipment.
  • the whole process of superstructure installation is highly automated, with fewer on-site operators, which can greatly shorten the construction period of the dock and realize the full assembly and rapid construction of pile-based marine engineering buildings.
  • FIG1 is a schematic cross-sectional view of a wharf structure of the present invention.
  • FIG2 is a schematic diagram of the wharf superstructure being pushed from the bridge deck to the pile top in Scenario 1 of the present invention
  • FIG3 is a schematic diagram of a wharf superstructure in scenario 1 of the present invention, which is completely placed on the pile top;
  • FIG4 is a schematic diagram of a pile top pushing device according to scenario 1 of the present invention acting on a bottom cross beam of a wharf superstructure;
  • FIG5 is a schematic diagram of the arrangement of the pile top pushing device in scenario 1 of the present invention.
  • FIG6 is a top view of the arrangement of the pile top pushing device in scenario 1 of the present invention.
  • FIG7 is a schematic diagram of the plan layout of the walking-type jacking of the dock superstructure in Scenario 1 of the present invention.
  • FIG8 is a schematic diagram of the elevation structure of the dock superstructure being towed from a ship to a pile cap in Scenario 2 of the present invention
  • FIG9 is a schematic diagram of the elevation structure of the wharf superstructure in scenario 2 of the present invention, in which the superstructure is completely located on the top of the pile top;
  • FIG10 is a schematic diagram of the vertical structure in the length direction of the wharf during the process of removing the track and the pile top pushing device in the second scenario of the present invention
  • FIG11 is a schematic diagram of a partial elevation structure of a pile top pushing device and track removal in Scenario 2 of the present invention.
  • FIG12 is a schematic diagram of the arrangement of the pile top pushing device and the track of the dock superstructure in Scenario 2 of the present invention.
  • FIG13 is a schematic diagram of the planar structure of the dock superstructure being towed from a ship to the pile top in scenario 2 of the present invention
  • FIG14 is a partial schematic diagram of the overlap between the ship deck track and the pile cap track
  • FIG15 is a schematic diagram of the vertical structure of the trolley brake device
  • FIG. 16 is a schematic diagram of the planar structure of the trolley brake device.
  • the present invention provides an integrated installation technology for the superstructure of an offshore pile-based marine engineering building.
  • the superstructure 1 of the wharf is an integral steel structure or a concrete structure.
  • the steel structure as a whole is composed of a steel frame, an I-beam longitudinal and transverse beam 101, diagonal braces, secondary beams, etc.
  • Two box-type track beams 103 are arranged in the steel frame area corresponding to the quay crane track 6, an I-beam longitudinal beam 102 is arranged in the middle of the frame, and an I-beam transverse beam 101 is arranged at the center of each rack in the width direction of the wharf.
  • Diagonal braces are arranged in the steel frame, and secondary beams are arranged in the steel frame.
  • a steel ⁇ -shaped plate and a cast-in-place layer are arranged on the top;
  • the concrete structure is composed of a precast concrete structure and embedded iron parts, and a precast concrete panel and a cast-in-place layer are arranged on the top.
  • the components are connected to each other by welding or bolting to form a whole.
  • the two integrated installation methods of offshore pile foundation docks of the present invention are respectively aimed at two scenarios in which the overall upper structure of the dock is transported by land or by water to the construction area.
  • an assembled pile top jacking device 4 and a walking jacking technology are used to integrally install the offshore pile foundation 3 of the dock.
  • the pile top pushing device 4 of the assembled structure is arranged on the top of the pile cap 2, and is composed of a base 401 and a hydraulic jack.
  • the base 401 is divided into three parts: left, middle and right.
  • the middle part is provided with an intermediate base slot 407 and a bolt 408, which can be quickly installed and disassembled with the left and right parts.
  • the three-part structure is respectively connected by bolts of a plurality of base crossbeams 405 and base longitudinal beams 406, and the bottom is anchored with the embedded parts of the pile cap 2.
  • Limiting devices are respectively arranged at the edges of the pile cap 2 at both ends of the base 401, which are limit plate structures protruding downward.
  • the hydraulic jack is installed on the base 401, and a three-way hydraulic jack 403 is installed in the middle, which can move forward and backward along the base crossbeam 405; vertical hydraulic jacks 402 are installed on the left and right, and the three-way hydraulic jack 403 and the vertical hydraulic jack 402 are staggered front and back, as shown in Figures 5 and 6.
  • the specific installation steps include:
  • the prefabricated components of the dock superstructure 1 are manufactured in a factory and transported to the construction site in a modular manner by vehicles via an approach bridge or a temporary trestle.
  • the I-beam track beam 103, the I-beam longitudinal beam 102, the I-beam cross beam 101 and the steel frame are welded and assembled with the dock structure section on a temporary working platform 5.
  • a hydraulic jack is installed on the temporary operation platform 5
  • two pile top jacking devices 4 are installed at the bottom of each beam 101 of the wharf upper structure 1 structure section, and a pile top jacking device 4 is installed on the top of the steel pile cap 2 with one bent frame interval.
  • the base 401 of the left, middle and right parts of the pile top jacking device 4 and the corresponding hydraulic jack are integrally installed on the top of the pile cap 2, the base 401 is anchored with the embedded bolts 408 of the pile cap 2, and the limit device 404 is adjusted to stabilize it.
  • the crawler crane is stationed on the approach bridge or temporary working platform 5 to lift the prefabricated components of the upper structure, and the dock structure section is pushed forward from the temporary working platform 5 to the top of the steel pile cap 2. As shown in FIG. 2 , the dock structure section is pushed to the five bent pile foundations 3.
  • each pile top pushing device 4 raises the height of the right vertical hydraulic jack 402 to serve as a temporary support for the dock superstructure 1. And the height of the three-way hydraulic jack 403 of the middle base 401 is lowered to below the bottom elevation of the beam 101 to ensure that the bottom beam 101 allows pushing through.
  • the three-way hydraulic jack 403 moves along the base beam 405 to the rear of the beam 101 of the dock superstructure 1, and then the left vertical hydraulic jack 402 is raised, and the right vertical hydraulic jack 402 is lowered to below the bottom elevation of the beam 101, replacing the left hydraulic jack as a temporary support.
  • each pile top pushing device 4 raises the right vertical hydraulic jack 402, lowers the left vertical hydraulic jack 402, moves the three-way hydraulic jack 403 along the base crossbeam 405 to the rear of the crossbeam 101, and then lowers the right vertical hydraulic jack 402 to continue pushing until it reaches the designed position, as shown in Figure 4.
  • step S5 According to steps S2 to S4, the dock superstructures 1 of multiple modules are pushed forward simultaneously, and the superstructures of the dock structure sections are installed continuously. After the installation is in place, the expansion joints of the dock structure sections are processed until the dock superstructure 1 is completely installed.
  • the planar structure is shown in Figure 7.
  • Example 2 (Scenario 2: The scenario where the dock superstructure 1 is transported by water)
  • a technology combining traction and jacking is used to perform an integrated installation of the offshore pile foundation 3 dock.
  • the specific installation steps include:
  • the dock superstructure 1 is prefabricated in the factory according to the dock structure segment, and the I-beam track beam 103, the longitudinal beam 102, the cross beam 101 are welded and connected with the steel frame, and transported to the construction site by the ship 10.
  • a temporary hydraulic trolley 7 is installed at the bottom of the dock superstructure 1, which can slide laterally along the track 6 to anchor and stabilize it during transportation.
  • a pile top push device 4 is installed on the top of the steel pile cap 2, and a three-way hydraulic jack 403 and a vertical hydraulic jack 402 are installed on the left and right parts of the base 401, respectively.
  • Three tracks 6 are laid along the racks J1, J4, and J7 in the middle part of the pile top base 401.
  • a tooth shape is set at the bottom of the upper flange of the track 6, and a car stopper is set at both ends of the track 6.
  • the plane layout is shown in FIG13.
  • a cantilever length of 2000mm is also set when laying the track 6.
  • a car stopper and a fixed pulley are set at the front end of the track 6.
  • One end of the steel wire rope 9 is fixed to the front hydraulic trolley 7, passes through the fixed pulley at the front end of the track 6, and is connected to the forward winch 8 on the deck of the ship 10.
  • Another section of the steel wire rope 9 is fixed to the rear hydraulic trolley 7 and is directly connected to the reverse winch 8 on the deck of the rear ship 10.
  • the forward and reverse winches 8 are at different heights to avoid mutual interference.
  • the ship 10 is moored at the construction area by means of temporary rubber fenders, steel wire ropes 9, shackles and other mooring facilities and anchoring measures.
  • Three tracks 6 with the same spacing as the pile tops are laid on the deck of the ship 10 according to the spacing of the racks J1, J4, and J7.
  • Two winches 8 with different height differences of 1500mm are installed on the deck of the ship 10, which are connected to the hydraulic trolley 7 through steel wire ropes 9, as shown in Figure 8.
  • an arched track overlap section 601 is used to connect the track 6 on the deck with the track 6 on the pile top, and only two resting points are set at the head and tail. The two ends are respectively connected to the deck and the track 6 on the pile top by bolts 408.
  • the local structure is shown in FIG14 .
  • the dock superstructure 1 is towed from the deck of the ship 10 to the top of the steel pile cap 2.
  • the forward winch 8 provides traction power, and the fixed pulley in front of the track 6 is turned, and the hydraulic trolley 7 moves along the track 6, and the dock superstructure 1 moves to the front pile cap 2 of the dock.
  • the reverse winch 8 is connected to the rear hydraulic trolley 7 through a steel wire rope 9 to control the traction speed.
  • the hydraulic trolley 7 is provided with a rotatable brake device 701, as shown in Figures 15 and 16, and the brake pad is connected to the body through a connecting rod 702.
  • the connecting rod 702 drives the brake pad to rotate along the arc direction of the wheel under the rotation of the hydraulic gear.
  • One side of the brake pad is arc-shaped, and the surface is provided with rubber, which can fit with the wheel.
  • the two sides of the bottom are toothed, and after rotation, they are engaged with the teeth at the bottom of the upper flange of the track 6.
  • the brake pad is suspended in front of the wheel.
  • the hydraulic control gear rotates, and the connecting rod 702 rotates all the brake pads to the track 6 at the same time with the center of the wheel as the center of the circle.
  • the other side fits with the wheel, and the two sides of the bottom are rotated at the same time to engage with the teeth at the bottom of the track 6, realizing "one-button braking" to ensure that the movement of the dock superstructure 1 can be controlled at any time.
  • the middle part of the base 401 is connected to the base 401 structures on both sides through the middle base slot 407 and bolts 408.
  • the hydraulic jack gradually lowers the overall height of the upper structure, and the beam 101 is slowly placed on the top of the steel pile cap 2.
  • the pushing mechanism no longer bears the weight of the superstructure, and then the hydraulic jacks, the base 401 and other temporary facilities on both sides of the pile top pushing device 4 are removed, and finally the welding or bolting operation of the wharf superstructure 1 and the steel pile cap 2 is carried out.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Ocean & Marine Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Revetment (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Abstract

本发明公开了一种离岸式桩基海工建筑物上部结构整体式安装方法,码头上部结构底面具有凸出的横梁或纵梁,通过桩顶顶推装置实现顶推安装,桩顶顶推装置中部设置有三向液压千斤顶,两侧均设置有立式液压千斤顶,码头上部结构在桩基之间的具体顶推安装步骤如下:步骤一、在桩帽顶部安装桩顶顶推装置;步骤二、将中间的三向液压千斤顶的高度降低至凸出的横梁或纵梁底标高以下;步骤三、三向液压千斤顶移动至码头上部结构凸出的横梁或纵梁的后方,再提升码头上部结构安装后方的立式液压千斤顶;步骤四、由中间的三向液压千斤顶将码头上部结构向前进行顶推。本发明采用整体式顶推及牵引安装方法,具有施工风险低,安全性高,施工效率高等优点。

Description

一种离岸式桩基海工建筑物上部结构整体式安装方法 技术领域
本发明涉及桩基海工建筑物建造技术领域。更具体地说,本发明涉及一种离岸式桩基海工建筑物上部结构整体式安装方法。
背景技术
离岸式桩基海工建筑物所处海域通常具有风大、浪高、流急等特点,施工环境恶劣,对工程安全、质量、成本带来巨大挑战,成为海洋工程建设发展中的痛点之一。
离岸式桩基海工建筑物包括码头、海洋观测平台、栈桥等,以典型桩基码头为例,桩基码头一般由桩基、桩帽、纵横梁、面板等结构组成,在传统施工方式中,桩基码头水上现浇作业较多,包括现浇桩芯、桩帽、节点等,搭设底模支撑体系安全风险高,且现场需绑扎焊接钢筋、搅拌船泵送混凝土以及人员浇筑等,自动化程度低;其次,码头上部结构施工工序多且复杂,施工时间长,通常待桩帽混凝土达到设计强度后,进行预制纵横梁安装,再浇筑节点,最后安装预制面板、板缝及面层现浇等;此外,传统施工方式对海上船机设备依赖程度较高,目前多采用浮式起重船安装预制梁、预制面板等码头上部结构,在恶劣海况条件下,工程船舶作业窗口少,施工质量难以保障,工效低,影响施工工期与成本。
发明内容
本发明的一个目的是提供一种离岸式桩基海工建筑物上部结构整体式安装方法,整体式顶推及牵引安装,具有施工风险低,安全性高,施工效率高等优点。
为了实现根据本发明的这些目的和其它优点,提供了一种离岸式桩基海工建筑物上部结构整体式安装方法,码头上部结构底面具有凸出的横梁或纵梁,其垂直于码头上部结构安装的方向设置,码头上部结构通过桩帽顶面上设置的可拆卸的桩顶顶推装置实现精确顶推安装,桩顶顶推装置中部设置有三向液压千斤顶,码头上部结构安装的方向的两侧均设置有立式液压千斤顶,码头上部结构在桩基之间的具体顶推安装步骤如下:
步骤一、在桩帽顶部安装桩顶顶推装置,码头上部结构凸出的横梁或纵梁至桩帽位置时,提升码头上部结构安装前方的立式液压千斤顶,作为码头上部结构的临时支撑;
步骤二、将中间的三向液压千斤顶的高度降低至凸出的横梁或纵梁底标高以下,保证底部凸出的横梁或纵梁允许顶推通过;
步骤三、三向液压千斤顶移动至码头上部结构凸出的横梁或纵梁的后方,再提升码头上部结构安装后方的立式液压千斤顶,降低码头上部结构安装前方的立式液压千斤顶至凸出的横梁或纵梁底部标高以下;
步骤四、由中间的三向液压千斤顶将码头上部结构向前进行顶推,码头上部结构向前移动至设定间距后,各桩帽上的桩顶顶推装置如上述步骤一至步骤三所述进行操作,提升码头上部结构安装前方的立式液压千斤顶,将三向液压千斤顶移动至凸出的横梁或纵梁后方,再降低码头上部结构安装前方的立式液压千斤顶继续进行顶推,直至到达设计位置;
步骤五、码头上部结构顶推就位后,由码头上部结构安装后方的立式液压千斤顶支撑,将三向液压千斤顶拆除,再缓慢降低两侧两个立式液压千斤顶的高度,直至码头上部结构凸出的横梁或纵梁直接搁置于各桩帽顶部,再拆除两侧的桩顶顶推装置。
优选的是,所述桩顶顶推装置包括:
底座,其包括可拆卸的左、中、右三部分,中间部分两侧均设置中间底座卡槽,左、右两部分配合于中间底座卡槽内并通过螺栓可拆卸连接,所述底座由若干纵横交错的底座横梁和底座纵梁栓接而成,所述 底座与桩帽的预埋螺栓锚固;
三向液压千斤顶,其设置于所述底座的中部并设置为沿码头上部结构安装的方向直线移动;
立式液压千斤顶,其在所述三向液压千斤顶相对的两侧各设置一个,两个立式液压千斤顶与三向液压千斤顶错开设置;
限位装置,其在所述底座沿码头上部结构安装的方向的两侧底部均设置一个,两个限位装置恰好将所述底座限位于桩帽上。
优选的是,对于码头上部结构由陆上运输的场景,具体安装方法如下:
S1:码头上部结构的预制构件在工厂制作后运输至施工现场,在桩基侧面的临时作业平台上焊接拼装为码头上部结构;
S2:临时作业平台上安装两个桩顶顶推装置,桩帽顶部间隔1个排架安装桩顶顶推装置,桩顶顶推装置在临时作业平台上组装完成后整体安装至桩帽顶部;
S3:码头上部结构由临时作业平台向前顶推至桩帽顶部,然后依据步骤一至步骤五完成码头上部结构在桩基之间的顶推安装;
S4:将码头上部结构与桩帽焊接或栓接;
S5:按照步骤S2~S4,多个模块的码头上部结构同时向前顶推,连续安装码头结构段的上部结构,安装就位后再进行码头结构段伸缩缝的处理,直至码头上部结构全部安装完成。
优选的是,对于码头上部结构由水上运输的场景,除采用顶推技术外,还采用牵引技术结合进行安装,具体安装方法如下:
S1:码头上部结构的预制构件在工厂制作后运输至施工现场并焊接拼装为码头上部结构,再通过船舶水上运输至施工现场,码头上部结构底部安装前后两个液压台车;
S2:在桩帽顶部安装桩顶顶推装置,在桩帽上沿横梁间隔布设安装多条轨道,其沿横梁方向设置并延伸至桩帽外侧形成悬臂,船舶甲板上也设置有轨道,其与桩帽上的轨道一一对应连接为一体,液压台车设置为沿轨道移动,轨道可拆卸安装于所述桩顶顶推装置的中部;
S3:驱动码头上部结构通过牵引机构沿轨道移动,至桩帽顶部时通过桩顶顶推装置上沿码头上部结构前方的立式液压千斤顶顶升,支撑整个码头上部结构重量,拆除液压台车及轨道,通过牵引机构将轨道牵引至船舶甲板;
S4:依据步骤一至步骤五完成码头上部结构在桩基之间的顶推安装,将码头上部结构与桩帽焊接或栓接;
S5:船舶移位,按照步骤S2~S4进行其他结构段的码头上部结构安装,以此实现码头上部结构整体式安装。
优选的是,所述轨道两侧及前端设置有车档。
优选的是,所述步骤S3中的牵引机构包括正向卷扬机、反向卷扬机、定滑轮和钢丝绳,所述正向卷扬机和反向卷扬机均设置于船舶甲板上且高度错开设置,所述定滑轮设置于轨道前端,所述正向卷扬机的钢丝绳穿过定滑轮后固定于前方的液压台车上,所述反向卷扬机的钢丝绳固定于后方的液压台车上。
优选的是,所述轨道上翼缘底部设置为齿形,所述液压台车上设置有刹车装置,其刹车片内侧为与液压台车的车轮相匹配的弧形,所述刹车片的内侧面还固设有橡胶层,所述刹车片的外侧的底部两侧设置为齿形,其与所述轨道上的齿形设置为咬合配合,所述刹车片通过固定于所述液压台车车轮上的连接杆连接,所述连接杆通过液压齿轮连接并通过液压驱动以液压台车车轮为圆心转动。
优选的是,桩帽上的轨道与船舶甲板上的轨道通过拱形的轨道搭接段连接,所述轨道搭接段两端与桩帽上的轨道与船舶甲板上的轨道通过螺栓连接。
本发明至少包括以下有益效果:
(1)本发明通过将海工建筑物预制构件在工厂制作、陆上运输至施工现场后进行拼装,或以模块化在工厂预制拼装完成后水上运输至施工现场,提高了海工建筑物上部结构施工质量,同时减少了现场施工工序,避免了现场钢筋绑扎、模板搭设、浇筑等水上作业,降低了水上施工安全风险。
(2)本发明的拼装结构的桩顶顶推装置,分为左、中、右三部分,其自身结构及顶推机构、轨道等设施均可快速拼装、拆卸,底部锚固、限位于桩帽顶部,顶部可任意组合安装液压千斤顶、轨道,保障了码头上部结构顶推过程的稳定,同时提高了顶推工作效率。
(3)本发明的顶推及牵引***,卷扬机均设置于船舶甲板处,由轨道悬臂处安装定滑轮进行转向,避免了码头前沿桩帽设置牵引设备,预留了上部结构靠船设施安装空间,并保障了操作人员的安全;液压台车设置液压控制可旋转的刹车装置,可通过液压齿轮驱动旋转连接杆,使刹车片同时到达轨道顶部,并与车轮贴合,底部两侧与轨道齿形相咬合,实现“一键刹车”,提高了码头上部结构牵引的控制能力。
(4)本发明采用海工建筑物上部结构步履式顶推、牵引与顶推组合技术,代替了传统起重船水上吊装作业,由水上转为桩顶施工,避免了波浪、水流对工程船舶的作业窗口及安装精度等影响,减少了船机设备成本。同时上部结构安装全过程自动化程度高,现场作业人员少,可极大地缩短码头施工工期,实现桩基海工建筑物全装配式快速建造。
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。
附图说明
图1为本发明的码头结构断面示意图;
图2为本发明场景一的码头上部结构由桥面顶推至桩顶示意图;
图3为本发明场景一的码头上部结构全部搁置于桩顶示意图;
图4为本发明场景一的桩顶顶推装置作用于码头上部结构底部横梁的示意图;
图5为本发明场景一的桩顶顶推装置布置示意图;
图6为本发明场景一的桩顶顶推装置布置俯视图;
图7为本发明场景一的码头上部结构步履式顶推平面布置示意图;
图8为本发明场景二的码头上部结构从船上牵引至桩帽的立面结构示意图;
图9为本发明场景二的码头上部结构完全位于桩顶顶部的立面结构示意图;
图10为本发明场景二的桩顶顶推装置及轨道拆除过程的码头长度方向立面结构示意图;
图11为本发明场景二的桩顶顶推装置及轨道拆除的局部立面结构示意图;
图12为本发明场景二的码头上部结构桩顶顶推装置及轨道布置示意图;
图13为本发明场景二的码头上部结构从船上牵引至桩顶的平面结构示意图;
图14为船舶甲板轨道与桩帽轨道搭接局部示意图;
图15为台车刹车装置立面结构示意图;
图16为台车刹车装置平面结构示意图。
附图标记:1‐码头上部结构,101‐横梁;102‐纵梁;103‐轨道梁;2‐桩帽,3‐桩基,4‐桩顶顶推装置,401‐底座,402‐立式液压千斤顶,403‐三向液压千斤顶,404‐限位装置,405‐底座横梁,406‐底座纵梁,407‐中间底座卡槽,408‐螺栓,5‐临时作业平台,6‐轨道,601‐轨道搭接段,7‐液压台车,701‐刹车装置,702‐连接杆,8‐卷扬机,9‐钢丝绳,10‐船舶。
具体实施方式
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
需要说明的是,下述实施方案中所述实验方法,如无特殊说明,均为常规方法,所述试剂和材料,如无特殊说明,均可从商业途径获得;在本发明的描述中,术语“横向”、“纵向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,并不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
本发明提供的离岸式桩基海工建筑物上部结构整体式安装技术,以桩基码头为例,针对码头上部结构1为整体钢结构或混凝土结构。其钢结构整体由钢框架、工字钢纵横梁101及斜撑、次梁等组成,岸桥轨道6下对应的钢框架区域设置两根箱型轨道梁103,框架中间设置一根工字钢纵梁102,码头宽度方向每个排架中心设置工字钢横梁101。钢框架内设置斜撑,并在钢框架内设置次梁,顶部设置钢系π型板及现浇层;混凝土结构则由预制混凝土结构及预埋铁件组成,顶部再设置预制混凝土面板及现浇层。构件相互采用焊接或栓接连接形成整体。
本发明的两种离岸式桩基码头整体式安装方法,分别针对码头整体上部结构由陆上运输、水上运输至施工区域的两种场景。
实施例1(场景一:码头上部结构1由陆上运输的场景)
如图1至7所示,针对码头上部结构1由车辆经引桥或临时栈桥陆上运输至施工现场的场景,采用拼装结构的桩顶顶推装置4、步履式顶推技术对离岸式桩基3码头整体式安装。
拼装结构的桩顶顶推装置4,设置于桩帽2顶部,由底座401及液压千斤顶组成。底座401整体分为左、中、右三部分,中间部分设置中间底座卡槽407、螺栓408,可与左右两部分快速安装、拆卸。三部分结构分别由若干底座横梁405、底座纵梁406栓接相连,底部与桩帽2预埋件锚固,底座401两端分别在桩帽2边线处设置限制装置,为向下凸出的限位板体结构。液压千斤顶安装至底座401上,中间安装三向液压千斤顶403,可沿底座横梁405前后移动;左右安装立式液压千斤顶402,三向液压千斤顶403与立式液压千斤顶402前后相互错开,见图5和图6所示。
具体安装包括如下步骤:
S1:对码头上部结构1的预制构件在工厂制作,由车辆经引桥或临时栈桥模块化运输至施工现场,在临时作业平台5将工字钢轨道梁103、工字钢纵梁102、工字钢横梁101与钢框架以码头结构段进行焊接拼装。
S2:以码头标准结构段覆盖6个排架为例,在临时作业平台5上安装液压千斤顶,码头上部结构1结构段每根横梁101底部安装2个桩顶顶推装置4,钢桩帽2顶部间隔1个排架安装桩顶顶推装置4。桩顶顶推装置4左、中、右三部分的底座401以及对应的液压千斤顶在临时作业平台5组装完成后整体安装至桩帽2顶部,底座401与桩帽2的预埋螺栓408锚固,并调整限位装置404将其稳固。
履带吊驻位于引桥或临时作业平台5,起吊上部结构预制构件等,码头结构段由临时作业平台5向前顶推至钢桩帽2顶部。如图2所示,码头结构段顶推至5个排架桩基3。
S3:如图3所示,为适应码头上部结构1底部标高不一致的结构特点,其横梁101均位于码头上部结构1最底部,凸出平台底部800mm距离,因此当码头上部结构1向前顶推至一个排架间距时,各桩顶顶推装置4均提升右侧立式液压千斤顶402的高度,作为码头上部结构1的临时支撑。并将中间底座401的三向液压千斤顶403的高度降低至横梁101底标高以下,保证底部横梁101允许顶推通过,同时三向液压千斤顶403沿底座横梁405移动至码头上部结构1横梁101的后方,再提升左侧立式液压千斤顶402,降低右侧立式液压千斤顶402至横梁101底部标高以下,代替左侧液压千斤顶作为临时支撑。
最后由底座401中间的三向液压千斤顶403将码头上部结构1向前进行顶推,码头上部结构1向前移动一跨间距后,各桩顶顶推装置4升高右侧立式液压千斤顶402,降低左侧立式液压千斤顶402,将三向液压千斤顶403沿底座横梁405移动至横梁101后方,再降低右侧立式液压千斤顶402继续进行顶推,直至到达设计位置,见图4。
S4:码头上部结构1顶推就位后,由各桩顶顶推装置4左侧的立式液压千斤顶402支撑,将中间部分 底座401及三向液压千斤顶403拆除,再缓慢降低左侧立式液压千斤顶402的高度,直至码头上部结构1的横梁101直接搁置于各桩帽2顶部,再拆除两侧的桩顶顶推装置4,最后将上部结构与钢桩帽2焊接或栓接。
S5:按照步骤S2~S4,多个模块的码头上部结构1同时向前顶推,连续安装码头结构段的上部结构,安装就位后再进行码头结构段伸缩缝的处理,直至码头上部结构1全部安装完成。平面结构见图7。
实施例2(场景二:码头上部结构1由水上运输的场景)
如图8至16所示,针对码头上部结构1由船舶10水上运输至施工现场的场景,采用牵引和顶推结合的技术进行离岸式桩基3码头整体式安装。
具体安装包括如下步骤:
S1:将码头上部结构1按码头结构段在工厂预制,工字钢轨道梁103、纵梁102、横梁101与钢框架焊接连接,由船舶10水上运输至施工现场。码头上部结构1底部安装临时液压台车7,可沿轨道6横向滑动,运输时进行锚固稳定。
S2:如图12所示,在钢桩帽2顶部安装桩顶顶推装置4,底座401左、右两部分分别安装三向液压千斤顶403、立式液压千斤顶402,在桩顶底座401中间部分沿排架J1、J4、J7铺设三条轨道6,轨道6上翼缘底部设置齿形,轨道6两端设置车挡,平面布置见图13所示。由于离岸式码头上部结构1前后边线通常需安装橡胶护舷、防撞板等靠船附属设施,超出桩帽2,具有1500mm的悬臂长度,因此铺设轨道6时同样设置2000mm的悬臂长度,轨道6前端设置车挡及定滑轮,钢丝绳9一端固定于前方的液压台车7,穿过轨道6前端的定滑轮,连接于船舶10甲板上的正向卷扬机8。另一钢丝绳9一段固定于后方的液压台车7,直接与后方船舶10甲板的反向卷扬机8相连,正向、反向卷扬机8高度不同,避免相互干扰。
船舶10通过临时橡胶护舷、钢丝绳9、卸扣等系泊设施及抛锚措施靠泊于施工区域,船舶10甲板按照排架J1、J4、J7间距铺设三条与桩顶相同的轨道6,船舶10甲板设置两台不同高度差1500mm的卷扬机8,通过钢丝绳9与液压台车7相连,见图8所示。
S3:如图9所示,根据潮位及船舶10吃水情况,考虑减少轨道6变形及施工工序,采用拱形的轨道搭接段601将甲板的轨道6与桩顶的轨道6连接,仅设置首尾两个搁置点,两端分别与甲板、桩顶轨道6螺栓408连接,局部结构如图14所示。再将码头上部结构1从船舶10甲板牵引至钢桩帽2顶部。正向卷扬机8提供牵引动力,通过轨道6前方的定滑轮转向,液压台车7沿轨道6移动,码头上部结构1随之移动至码头前沿桩帽2。反向卷扬机8通过钢丝绳9与后方液压台车7相连,控制牵引速度。
同时,液压台车7车身设置可旋转的刹车装置701,如图15和图16所示,刹车片通过连接杆702与车身相连,连接杆702在液压齿轮转动下,驱动刹车片沿车轮弧线方向旋转。刹车片一面为弧形,表面设置橡胶,能够与车轮贴合,底部两侧为齿形,旋转后与轨道6上翼缘底部的齿形相互咬合。正常行驶时刹车片悬挂于车轮前方,当需要临时刹车时,液压控制齿轮转动,连接杆702以车轮中心为圆心,将所有刹车片同时旋转至轨道6,另一面与车轮相互贴合,同时转动底部两侧,与轨道6底部齿形咬合,实现“一键刹车”,确保码头上部结构1的运动能够随时控制。
S4:如图10所示,码头上部结构1逐步牵引至设计位置后,将桩顶顶推装置4右侧的立式液压千斤顶402顶升,支撑整个码头上部结构1重量。确保整体稳定后,再逐步拆解钢丝绳9、液压台车7、轨道6以及桩顶顶推装置4中间部分的底座401,细部结构见图11所示。
底座401中间部分与两侧的底座401结构通过中间底座卡槽407螺栓408连接,拆解轨道6时,松解螺栓408,将轨道6整条抬升脱离底座401,由船舶10一侧的卷扬机8快速牵引整条轨道6至甲板。
S5:利用桩顶顶推装置4精准调整码头上部结构1的平面位置,由于码头上部结构1底面存在纵梁102(轨道梁103、前后边梁)凸出,将码头上部结构1沿码头横梁101方向顶推时,若遇到凸出的纵梁102,则需降低或升高右侧立式液压千斤顶402,同时使用三向液压千斤顶403顶推,操作方法同实施例1中的步骤S3。
精准定位后,液压千斤顶逐步降低上部结构整体高度,横梁101缓慢搁置至钢桩帽2顶部,两侧的顶 推机构不再承受上部结构的重量,随后拆除桩顶顶推装置4两侧的液压千斤顶、底座401等其他临时设施,最后进行码头上部结构1与钢桩帽2的焊接或栓接作业。
S6:船舶10移位,按照步骤S2~S5进行其他结构段的上部结构安装,以此实现码头上部结构1整体式安装。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (8)

  1. 一种离岸式桩基海工建筑物上部结构整体式安装方法,其特征在于,码头上部结构底面具有凸出的横梁或纵梁,其垂直于码头上部结构安装的方向设置,码头上部结构通过桩帽顶面上设置的可拆卸的桩顶顶推装置实现精确顶推安装,桩顶顶推装置中部设置有三向液压千斤顶,码头上部结构安装的方向的两侧均设置有立式液压千斤顶,码头上部结构在桩基之间的具体顶推安装步骤如下:
    步骤一、在桩帽顶部安装桩顶顶推装置,码头上部结构凸出的横梁或纵梁至桩帽位置时,提升码头上部结构安装前方的立式液压千斤顶,作为码头上部结构的临时支撑;
    步骤二、将中间的三向液压千斤顶的高度降低至凸出的横梁或纵梁底标高以下,保证底部凸出的横梁或纵梁允许顶推通过;
    步骤三、三向液压千斤顶移动至码头上部结构凸出的横梁或纵梁的后方,再提升码头上部结构安装后方的立式液压千斤顶,降低码头上部结构安装前方的立式液压千斤顶至凸出的横梁或纵梁底部标高以下;
    步骤四、由中间的三向液压千斤顶将码头上部结构向前进行顶推,码头上部结构向前移动至设定间距后,各桩帽上的桩顶顶推装置如上述步骤一至步骤三所述进行操作,提升码头上部结构安装前方的立式液压千斤顶,将三向液压千斤顶移动至凸出的横梁或纵梁后方,再降低码头上部结构安装前方的立式液压千斤顶继续进行顶推,直至到达设计位置;
    步骤五、码头上部结构顶推就位后,由码头上部结构安装后方的立式液压千斤顶支撑,将三向液压千斤顶拆除,再缓慢降低两侧两个立式液压千斤顶的高度,直至码头上部结构凸出的横梁或纵梁直接搁置于各桩帽顶部,再拆除两侧的桩顶顶推装置。
  2. 如权利要求1所述的离岸式桩基海工建筑物上部结构整体式安装方法,其特征在于,所述桩顶顶推装置包括:
    底座,其包括可拆卸的左、中、右三部分,中间部分两侧均设置中间底座卡槽,左、右两部分配合于中间底座卡槽内并通过螺栓可拆卸连接,所述底座由若干纵横交错的底座横梁和底座纵梁栓接而成,所述底座与桩帽的预埋螺栓锚固;
    三向液压千斤顶,其设置于所述底座的中部并设置为沿码头上部结构安装的方向直线移动;
    立式液压千斤顶,其在所述三向液压千斤顶相对的两侧各设置一个,两个立式液压千斤顶与三向液压千斤顶错开设置;
    限位装置,其在所述底座沿码头上部结构安装的方向的两侧底部均设置一个,两个限位装置恰好将所述底座限位于桩帽上。
  3. 如权利要求2所述的离岸式桩基海工建筑物上部结构整体式安装方法,其特征在于,对于码头上部结构由陆上运输的场景,具体安装方法如下:
    S1:码头上部结构的预制构件在工厂制作后运输至施工现场,在桩基侧面的临时作业平台上焊接拼装为码头上部结构;
    S2:临时作业平台上安装两个桩顶顶推装置,桩帽顶部间隔1个排架安装桩顶顶推装置,桩顶顶推装置在临时作业平台上组装完成后整体安装至桩帽顶部;
    S3:码头上部结构由临时作业平台向前顶推至桩帽顶部,然后依据步骤一至步骤五完成码头上部结构在桩基之间的顶推安装;
    S4:将码头上部结构与桩帽焊接或栓接;
    S5:按照步骤S2~S4,多个模块的码头上部结构同时向前顶推,连续安装码头结构段的 上部结构,安装就位后再进行码头结构段伸缩缝的处理,直至码头上部结构全部安装完成。
  4. 如权利要求2所述的离岸式桩基海工建筑物上部结构整体式安装方法,其特征在于,对于码头上部结构由水上运输的场景,除采用顶推技术外,还采用牵引技术结合进行安装,具体安装方法如下:
    S1:码头上部结构的预制构件在工厂制作后运输至施工现场并焊接拼装为码头上部结构,再通过船舶水上运输至施工现场,码头上部结构底部安装前后两个液压台车;
    S2:在桩帽顶部安装桩顶顶推装置,在桩帽上沿横梁间隔布设安装多条轨道,其沿横梁方向设置并延伸至桩帽外侧形成悬臂,船舶甲板上也设置有轨道,其与桩帽上的轨道一一对应连接为一体,液压台车设置为沿轨道移动,轨道可拆卸安装于所述桩顶顶推装置的中部;
    S3:驱动码头上部结构通过牵引机构沿轨道移动,至桩帽顶部时通过桩顶顶推装置上沿码头上部结构前方的立式液压千斤顶顶升,支撑整个码头上部结构重量,拆除液压台车及轨道,通过牵引机构将轨道牵引至船舶甲板;
    S4:依据步骤一至步骤五完成码头上部结构在桩基之间的顶推安装,将码头上部结构与桩帽焊接或栓接;
    S5:船舶移位,按照步骤S2~S4进行其他结构段的码头上部结构安装,以此实现码头上部结构整体式安装。
  5. 如权利要求4所述的离岸式桩基海工建筑物上部结构整体式安装方法,其特征在于,所述轨道两侧及前端设置有车档。
  6. 如权利要求4所述的离岸式桩基海工建筑物上部结构整体式安装方法,其特征在于,所述步骤S3中的牵引机构包括正向卷扬机、反向卷扬机、定滑轮和钢丝绳,所述正向卷扬机和反向卷扬机均设置于船舶甲板上且高度错开设置,所述定滑轮设置于轨道前端,所述正向卷扬机的钢丝绳穿过定滑轮后固定于前方的液压台车上,所述反向卷扬机的钢丝绳固定于后方的液压台车上。
  7. 如权利要求4所述的离岸式桩基海工建筑物上部结构整体式安装方法,其特征在于,所述轨道上翼缘底部设置为齿形,所述液压台车上设置有刹车装置,其刹车片内侧为与液压台车的车轮相匹配的弧形,所述刹车片的内侧面还固设有橡胶层,所述刹车片的外侧的底部两侧设置为齿形,其与所述轨道上的齿形设置为咬合配合,所述刹车片通过固定于所述液压台车车轮上的连接杆连接,所述连接杆通过液压齿轮连接并通过液压驱动以液压台车车轮为圆心转动。
  8. 如权利要求4所述的离岸式桩基海工建筑物上部结构整体式安装方法,其特征在于,桩帽上的轨道与船舶甲板上的轨道通过拱形的轨道搭接段连接,所述轨道搭接段两端与桩帽上的轨道与船舶甲板上的轨道通过螺栓连接。
PCT/CN2023/099180 2022-11-10 2023-06-08 一种离岸式桩基海工建筑物上部结构整体式安装方法 WO2024098740A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211405491.9A CN115652859B (zh) 2022-11-10 2022-11-10 一种离岸式桩基海工建筑物上部结构整体式安装方法
CN202211405491.9 2022-11-10

Publications (1)

Publication Number Publication Date
WO2024098740A1 true WO2024098740A1 (zh) 2024-05-16

Family

ID=85021282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099180 WO2024098740A1 (zh) 2022-11-10 2023-06-08 一种离岸式桩基海工建筑物上部结构整体式安装方法

Country Status (2)

Country Link
CN (1) CN115652859B (zh)
WO (1) WO2024098740A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115652859B (zh) * 2022-11-10 2023-06-23 中交第二航务工程局有限公司 一种离岸式桩基海工建筑物上部结构整体式安装方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105421454A (zh) * 2015-11-27 2016-03-23 中交第二航务工程局有限公司 桩顶支撑步履式移动打桩平台
KR20190057579A (ko) * 2017-11-20 2019-05-29 대림산업 주식회사 런칭 갠트리 크레인을 이용한 교량 거더의 횡방향 양측 동시 인양 방식의 교량 시공방법
CN109958051A (zh) * 2019-03-04 2019-07-02 中国建筑第八工程局有限公司 大跨度高度差系杆拱结构顶推机构及顶推方法
CN209368698U (zh) * 2018-11-28 2019-09-10 中铁上海工程局集团有限公司 一种步履式顶推施工装置
CN212452322U (zh) * 2020-05-12 2021-02-02 中铁上海设计院集团有限公司 一种可连续作业的步履式顶推结构
CN114892540A (zh) * 2022-06-13 2022-08-12 中交第二公路工程局有限公司 一种用于钢桁梁主动调节的步履式顶推装置及方法
CN115652859A (zh) * 2022-11-10 2023-01-31 中交第二航务工程局有限公司 一种离岸式桩基海工建筑物上部结构整体式安装方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102477717B (zh) * 2010-11-30 2016-03-09 上海市政工程设计研究总院 一种桥梁顶推施工方法
US9249594B2 (en) * 2013-10-16 2016-02-02 High Tide Homes Inc. Jackable building foundation
WO2018000409A1 (zh) * 2016-07-01 2018-01-04 中交第二航务工程局有限公司 桩顶支撑步履式移动打桩平台
CN106759423A (zh) * 2017-03-03 2017-05-31 中交第三航务工程勘察设计院有限公司 超大直径桩基装配式码头结构及其施工方法
CN107653858A (zh) * 2017-08-14 2018-02-02 中交第二航务工程局有限公司 水上自升式的桩顶可移动打桩平台及其施工方法
CN208830177U (zh) * 2018-07-18 2019-05-07 中交第三航务工程局有限公司 一种独塔自锚式悬索桥大跨度钢箱梁步履式顶推***
CN112049106A (zh) * 2020-07-27 2020-12-08 中国港湾工程有限责任公司 中长周期波海域钢管桩施工工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105421454A (zh) * 2015-11-27 2016-03-23 中交第二航务工程局有限公司 桩顶支撑步履式移动打桩平台
KR20190057579A (ko) * 2017-11-20 2019-05-29 대림산업 주식회사 런칭 갠트리 크레인을 이용한 교량 거더의 횡방향 양측 동시 인양 방식의 교량 시공방법
CN209368698U (zh) * 2018-11-28 2019-09-10 中铁上海工程局集团有限公司 一种步履式顶推施工装置
CN109958051A (zh) * 2019-03-04 2019-07-02 中国建筑第八工程局有限公司 大跨度高度差系杆拱结构顶推机构及顶推方法
CN212452322U (zh) * 2020-05-12 2021-02-02 中铁上海设计院集团有限公司 一种可连续作业的步履式顶推结构
CN114892540A (zh) * 2022-06-13 2022-08-12 中交第二公路工程局有限公司 一种用于钢桁梁主动调节的步履式顶推装置及方法
CN115652859A (zh) * 2022-11-10 2023-01-31 中交第二航务工程局有限公司 一种离岸式桩基海工建筑物上部结构整体式安装方法

Also Published As

Publication number Publication date
CN115652859A (zh) 2023-01-31
CN115652859B (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
JP4504910B2 (ja) 台車及びそれを用いた仮桟橋の架設方法
WO1996005375A9 (en) Construction of large structures by robotic crane placement of modular bridge sections
WO1996005375A1 (en) Construction of large structures by robotic crane placement of modular bridge sections
US5549176A (en) Bridge construction machinery and method for constructing bridges
WO2024098740A1 (zh) 一种离岸式桩基海工建筑物上部结构整体式安装方法
JP2023164950A (ja) 重量物移動装置を用いた重量物の移動方法及び重量物移動装置
CN111172882A (zh) 一种桥梁主梁悬臂拼装的梁段运输方法
CN112695696A (zh) 一种高桩码头上部结构一体化施工装备及其施工方法
CN110468743B (zh) 一种用于旧桥墩帽改造的移动式吊架及施工方法
CN112342926B (zh) 一种海上架桥机及其施工方法
CN112523090B (zh) 一种钢桁梁斜拉桥起始节间安装方式
CN210766417U (zh) 一种桥梁侧位跨墩提梁支架装置
JP5772273B2 (ja) 据付装置及び据付方法
CN110820519A (zh) 一种便于快速施工的隧间拱桥及其施工方法
CN217325062U (zh) 斜拉桥索塔大吨位钢横梁的拼装滑移支架
CN215329670U (zh) 一种高桩码头上部结构一体化施工装备
CN114701949A (zh) 一种泵站主厂房桥机主梁安装方法
CN109823970B (zh) 一种桥梁建造用钢结构运输方法
CN110438906B (zh) 一种上承式箱型拱桥拱肋施工方法
KR100465882B1 (ko) 잭 시스템에 의한 리그선의 육상 데크메이팅 공법
CN215629403U (zh) 一种用于架桥机临时过孔的支撑***
CN219099820U (zh) 一种跨航道钢混结合梁桥面板的提升装置
CN220450690U (zh) 一种适用于跨海或跨河桥梁施工的水上提梁站
CN220449130U (zh) 一种用于水陆联运的水上中转站
CN116497760B (zh) 一种重力式沉箱码头预制梁板架桥机安装方法