WO2024094129A1 - 电镀装置 - Google Patents

电镀装置 Download PDF

Info

Publication number
WO2024094129A1
WO2024094129A1 PCT/CN2023/129359 CN2023129359W WO2024094129A1 WO 2024094129 A1 WO2024094129 A1 WO 2024094129A1 CN 2023129359 W CN2023129359 W CN 2023129359W WO 2024094129 A1 WO2024094129 A1 WO 2024094129A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
current value
tank
copper electroplating
sub
Prior art date
Application number
PCT/CN2023/129359
Other languages
English (en)
French (fr)
Inventor
韩友生
袁晓波
方荣平
朱锦平
Original Assignee
昆山东威科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山东威科技股份有限公司 filed Critical 昆山东威科技股份有限公司
Publication of WO2024094129A1 publication Critical patent/WO2024094129A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/02Tanks; Installations therefor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/06Suspending or supporting devices for articles to be coated
    • C25D17/08Supporting racks, i.e. not for suspending
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode

Definitions

  • the present application relates to the field of electroplating technology, for example, to an electroplating device.
  • the electroplating device includes multiple copper electroplating tanks, and the electroplated workpiece moves into each of the copper electroplating tanks in turn to complete the electroplating, wherein the electroplating ions move to the electroplated workpiece under the electric field formed by the anode and cathode of the copper electroplating tank, and an electrochemical reaction occurs to form a coating of a preset shape and preset thickness on the electroplated workpiece.
  • the problem with the electroplating equipment currently in use is that, due to the inevitable abnormalities such as contact resistance fluctuations between the electrodes of the hanger and the copper electroplating tank, the electroplating current is unevenly distributed between the electroplated workpieces, and the plating thickness between the electroplated workpieces after electroplating varies greatly, which cannot meet the requirement of thickness uniformity between the electroplated workpieces.
  • the present application provides an electroplating device to improve the thickness uniformity of a coating on an electroplated workpiece.
  • an electroplating device comprising:
  • each copper electroplating tank comprising an induction zone and an electrode zone parallel to a first direction and spaced apart, the induction zone being provided with S transition cathodes spaced apart in the second direction, the electrode zone being provided with S sub-cathodes spaced apart in the second direction, in the first direction, a transition cathode and a sub-cathode being insulated and spaced apart, the value of M comprising an integer greater than or equal to 2, the value of S comprising an integer greater than or equal to 1, the first direction being parallel to a moving direction of an electroplated workpiece, and the second direction being perpendicular to a moving direction of the electroplated workpiece;
  • the Nth copper electroplating tank and the N+1th copper electroplating tank are adjacently arranged in a first direction, the sub-cathode of the Nth copper electroplating tank and the transition cathode of the N+1th copper electroplating tank are adjacently arranged and insulated, and N includes an integer greater than or equal to 1 and less than or equal to M.
  • a rectifier is further included, the Nth copper electroplating tank is provided with S first Rn cathode signal terminals and S second Rn cathode signal terminals; the N+1th copper electroplating tank is provided with S first Rn+1 cathode signal terminals and S second Rn+1 cathode signal terminals; the rectifier is configured to provide current to the first Rn cathode signal terminal, the second Rn cathode signal terminal, the first Rn+1 cathode signal terminal and the second Rn+1 cathode signal terminal;
  • the transition cathode of the Nth copper electroplating tank is connected to the first Rn cathode signal end in a one-to-one correspondence, and the end of the sub-cathode of the Nth copper electroplating tank close to the N+1th copper electroplating tank is connected to the second Rn cathode signal end in a one-to-one correspondence;
  • the transition cathode of the N+1th copper electroplating tank is connected to the first Rn+1 cathode signal end in a one-to-one correspondence, and the end of the sub-cathode of the N+1th copper electroplating tank away from the transition cathode is connected to the second Rn+1 cathode signal end in a one-to-one correspondence;
  • the current value of the second Rn cathode signal end, the current value of the first Rn+1 cathode signal end and the current value of the second Rn+1 cathode signal end are related to the moving position of the electroplating workpiece.
  • the sum of the current value of the second Rn cathode signal terminal and the current value of the first Rn+1 cathode signal terminal is the first preset current value.
  • the sum of the current value of the first Rn+1 cathode signal terminal and the current value of the second Rn+1 cathode signal terminal is the second preset current value.
  • the electroplating workpiece moves from the sub-cathode of the Nth copper electroplating tank to the transition cathode of the N+1th copper electroplating tank, the electroplating workpiece is completely located under one end of the sub-cathode of the Nth copper electroplating tank close to the N+1th copper electroplating tank, the current value of the second Rn cathode signal terminal is 100% of the first preset current value, and the current value of the first Rn+1 cathode signal terminal is 0.
  • part of the electroplated workpiece is located under one end of the partial cathode of the Nth copper electroplating tank close to the N+1th copper electroplating tank, part of the electroplated workpiece is located under the transition cathode of the N+1th copper electroplating tank, the current value of the second Rn cathode signal end decreases at an equal ratio, and the current value of the first Rn+1 cathode signal end increases at an equal ratio.
  • the electroplated workpiece moves from the sub-cathode of the Nth copper electroplating tank to the transition cathode of the N+1th copper electroplating tank, the electroplated workpiece is completely located under the transition cathode of the N+1th copper electroplating tank, the current value of the second Rn cathode signal terminal is 0, and the current value of the first Rn+1 cathode signal terminal is 100% of the first preset current value.
  • the electroplated workpiece is completely located under the transition cathode of the N+1th copper electroplating tank, the current value of the first Rn+1 cathode signal terminal is 100% of the second preset current value, and the current value of the second Rn+1 cathode signal terminal is 0.
  • the electroplating workpiece is partially located under the transition cathode of the N+1th copper electroplating tank, and the electroplating workpiece is partially located under the sub-cathode of the N+1th copper electroplating tank close to one end of the Nth copper electroplating tank, and the current value of the first Rn+1 cathode signal end is reduced in equal proportion, and the second Rn+1 The current value at the cathode signal end increases at an equal ratio.
  • the electroplated workpiece is completely located under the sub-cathode of the N+1th copper electroplating tank, the current value of the first Rn+1 cathode signal terminal is 0, and the current value of the second Rn+1 cathode signal terminal is 100% of the second preset value current value.
  • FIG1 is a schematic structural diagram of an electroplating device provided according to an embodiment of the present application.
  • FIG2 is a schematic structural diagram of another electroplating device provided according to an embodiment of the present application.
  • FIG3 is a schematic structural diagram of another electroplating device provided according to an embodiment of the present application.
  • FIG4 is a schematic structural diagram of another electroplating device provided according to an embodiment of the present application.
  • FIG5 is a schematic structural diagram of another electroplating device provided according to an embodiment of the present application.
  • FIG6 is a schematic diagram of the structure of another electroplating device provided according to an embodiment of the present application.
  • the problem with the currently used electroplating device is that when the electroplated workpiece moves from one copper electroplating tank to another, due to the inevitable abnormalities such as contact resistance fluctuations between the electrodes of the hanger and the copper electroplating tank, the plating current is unevenly distributed between the electroplated workpieces, and the plating thickness between the electroplated workpieces after electroplating varies greatly, which cannot meet the requirement of thickness uniformity between the electroplated workpieces.
  • the electroplating device includes: M copper electroplating tanks, each copper electroplating tank includes an induction area and an electrode area parallel to a first direction and arranged at intervals, the induction area is provided with S transition cathodes arranged at intervals in the second direction, the electrode area is provided with S sub-cathodes arranged at intervals in the second direction, in the first direction, a transition cathode and a sub-cathode are insulated and arranged at intervals, the value of M includes an integer greater than or equal to 2, the value of S includes an integer greater than or equal to 1, the first direction is parallel to the movement direction of the electroplated workpiece, and the second direction is perpendicular to the movement direction of the electroplated workpiece; the Nth copper electroplating tank and the N+1th copper electroplating tank are adjacent to each other in the first direction, the sub-cathode of the Nth copper electroplating tank and the transition cathode of the N+1th copper electroplating tank are adjacent to each other and insulated, and N includes
  • FIG. 1 is a schematic diagram of the structure of an electroplating device provided according to an embodiment of the present application.
  • the first direction is the X direction, which is parallel to the direction of movement of the electroplated workpiece
  • the second direction is the Y direction, which is perpendicular to the direction of movement of the electroplated workpiece.
  • the electroplating device includes M electroplating copper tanks P0, wherein the value of M includes an integer greater than or equal to 2.
  • FIG. 1 shows two electroplating copper tanks P0 adjacently arranged in the first direction X direction, namely the Nth electroplating copper tank Pn and the N+1th electroplating copper tank Pn+1.
  • Each electroplating copper tank P0 includes an induction area 01 and an electrode area 02 that are parallel to the first direction X direction and spaced apart.
  • the induction area 01 is provided with S spaced apart transition cathodes in the second direction Y direction
  • the electrode area 02 is provided with S spaced apart sub-cathodes in the second direction Y direction
  • the value of S includes an integer greater than or equal to 1.
  • FIG1 shows six transition cathodes of the Nth copper electroplating tank Pn, which are the first transition cathode Ea1(n), the second transition cathode Eb1(n), the third transition cathode Ec1(n), the fourth transition cathode Ed1(n), the fifth transition cathode Ee1(n) and the sixth transition cathode Ef1(n).
  • FIG1 shows that the electrode area 02 of the Nth copper electroplating tank Pn is provided with six spaced-apart sub-cathode in the second direction Y, which are the first sub-cathode Ea2(n), the second sub-cathode Eb2(n), the third sub-cathode Ec2(n), the fourth sub-cathode Ed2(n), the fifth sub-cathode Ee2(n) and the sixth sub-cathode Ef2(n).
  • FIG1 shows six transition cathodes of the N+1th copper electroplating tank Pn+1, which are the first transition cathode Ea1(n+1), the second transition cathode Eb1(n+1), the third transition cathode Ec1(n+1), the fourth transition cathode Ed1(n+1), the fifth transition cathode Ee1(n+1) and the sixth transition cathode Ef1(n+1).
  • FIG1 shows that the electrode area 02 of the N+1th copper electroplating tank Pn+1 is provided with six spaced-apart sub-cathode in the second direction Y, which are the first sub-cathode Ea2(n+1), the second sub-cathode Eb2(n+1), the third sub-cathode Ec2(n+1), the fourth sub-cathode Ed2(n+1), the fifth sub-cathode Ee2(n+1) and the sixth sub-cathode Ef2(n+1).
  • Each copper electroplating tank P0 is provided with S fixtures, which are respectively the first fixture A, the second fixture B, the third fixture C, the fourth fixture D, the fifth fixture E and the sixth fixture F in FIG1.
  • Each fixture can drive a plated workpiece along the first direction X direction to complete the electroplating process in each copper electroplating tank P0 in turn under the drive of the driving structure.
  • the technical solution provided in this embodiment is that the electroplated workpiece is driven by the fixture along the first direction X direction to complete the electroplating process in each electroplating copper tank P0 in turn. Since a transition cathode is set in the induction area 01 of each electroplating copper tank P0, it is equivalent to setting a transition cathode between the sub-cathodes of two adjacent electroplating copper tanks P0, such as the Nth electroplating copper tank Pn and the N+1th electroplating copper tank Pn+1. During the electroplating process in each electroplating copper tank P0, each electroplated workpiece is always controlled by only one group of rectifiers. When crossing the tanks, the transition cathode control method is used to achieve a steady flow transition on the workpiece.
  • the current received by each electroplated workpiece has no abnormal fluctuations during the entire electroplating process, thereby improving the uniformity of the coating of the electroplated workpiece.
  • the current of the electroplated workpiece is kept uninterrupted and steady during the process of the electroplated workpiece moving from the sub-cathode of the Nth electroplating copper tank Pn to the sub-cathode of the N+1th electroplating copper tank Pn+1 driven by the fixture.
  • Electroplating can also be carried out in the induction area 01, so that the current on the electroplated workpiece is constant when the electroplated workpiece transitions between the sub-cathode, the transition cathode and the next sub-cathode, thereby avoiding the appearance of electroplating boundary lines on the electroplated workpiece due to current fluctuations, resulting in quality abnormalities.
  • the Nth copper electroplating tank Pn and the N+1th copper electroplating tank Pn+1 in the embodiment of the present application represent two copper electroplating tanks P0 that are adjacently arranged in the first direction X. Therefore, in the present embodiment, by introducing the process in which the electroplated workpiece moves from the sub-cathode of the Nth copper electroplating tank Pn to the sub-cathode of the N+1th copper electroplating tank Pn+1 driven by the clamp, it is possible to unambiguously deduce the electroplating process in which the electroplated workpiece moves from the sub-cathode of one copper electroplating tank P0 to the next copper electroplating tank P0 driven by the clamp in the electroplating device.
  • a rectifier 100 is further included, and the Nth copper electroplating tank Pn is provided with S first Rn cathode signal terminals R1(n) and S second Rn cathode signal terminals R2(n); the N+1th copper electroplating tank Pn+1 is provided with S first Rn+1 cathode signal terminals R1(n+1) and S second Rn+1 cathode signal terminals R2(n+1); the rectifier 100 is configured to provide current for the first Rn cathode signal terminal R1(n), the second Rn cathode signal terminal R2(n), the first Rn+1 cathode signal terminal R1(n+1) and the second Rn+1 cathode signal terminal R2(n+1).
  • the electroplating device further includes an anode (not shown), and the rectifier 100 provides the required current for the anode.
  • FIG. 1 shows that the value of S is 6.
  • FIG. 1 shows only a first Rn cathode signal terminal R1(n), a second Rn cathode signal terminal R2(n), a first Rn+1 cathode signal terminal R1(n+1) and a second Rn+1 cathode signal terminal R2(n+1).
  • the transition cathode of the Nth copper electroplating tank Pn is connected one-to-one with the first Rn cathode signal terminal R1(n), and the end of the sub-cathode of the Nth copper electroplating tank Pn close to the N+1th copper electroplating tank Pn+1 is connected one-to-one with the second Rn cathode signal terminal R2(n); the transition cathode of the N+1th copper electroplating tank Pn+1 is connected one-to-one with the first Rn+1 cathode signal terminal R1(n+1), and the end of the sub-cathode of the N+1th copper electroplating tank Pn+1 away from the transition cathode is connected one-to-one with the second Rn+1 cathode signal terminal R2(n+1).
  • the current value of the second Rn cathode signal terminal R2(n) In the process where the electroplated workpiece moves from the cathode of the Nth electroplating copper tank Pn to the cathode of the N+1th electroplating copper tank Pn+1 driven by the fixture, the current value of the second Rn cathode signal terminal R2(n), The current value of the first Rn+1 cathode signal terminal R1(n+1) and the current value of the second Rn+1 cathode signal terminal R2(n+1) are related to the moving position of the electroplating workpiece.
  • the rectifier 100 can adjust the output current according to the moving position of the electroplated workpiece in the electroplating device.
  • the rectifier 100 adjusts the current value of the second Rn cathode signal terminal R2(n), the current value of the first Rn+1 cathode signal terminal R1(n+1) and the current value of the second Rn+1 cathode signal terminal R2(n+1) according to the moving position of the electroplated workpiece to ensure that the current remains uninterrupted and steady, so that when the electroplated workpiece transitions between the sub-cathode, the transition cathode and the next sub-cathode, the current on the electroplated workpiece is constant, avoiding the appearance of electroplating boundary lines on the electroplated workpiece due to current fluctuations, resulting in quality abnormal
  • 1 to 6 show schematic diagrams of structures in different states of the process in which the electroplated workpiece moves from the sub-cathode of the Nth electroplating copper tank Pn to the sub-cathode of the N+1th electroplating copper tank Pn+1 under the drive of the fixture.
  • the sixth fixture F is used as a reference object to explain that the rectifier 100 adjusts the current value of the second Rn cathode signal terminal R2(n), the current value of the first Rn+1 cathode signal terminal R1(n+1) and the current value of the second Rn+1 cathode signal terminal R2(n+1) according to the moving position of the electroplated workpiece driven by the sixth fixture F, so that when the electroplated workpiece transitions between the sub-cathode, the transition cathode and the next sub-cathode, the current on the electroplated workpiece is constant, avoiding the appearance of an electroplating boundary line on the electroplated workpiece due to current fluctuations, causing quality abnormalities, thereby improving the uniformity of electroplating.
  • the process of adjusting the current value of the second Rn cathode signal terminal R2(n), the current value of the first Rn+1 cathode signal terminal R1(n+1) and the current value of the second Rn+1 cathode signal terminal R2(n+1) according to the moving position of the electroplated workpiece driven by the sixth clamp F can be applied to the process of adjusting the current value of the second Rn cathode signal terminal R2(n), the current value of the first Rn+1 cathode signal terminal R1(n+1) and the current value of the second Rn+1 cathode signal terminal R2(n+1) according to the moving position of the electroplated workpiece driven by any one of the first clamp A, the second clamp B, the third clamp C, the fourth clamp D and the fifth clamp E.
  • the rectifier 100 in the initial state, the current value applied to the second Rn cathode signal terminal R2(n), the current value applied to the first Rn+1 cathode signal terminal R1(n+1), and the current value applied to the second Rn+1 cathode signal terminal R2(n+1) by the rectifier 100 are equal.
  • the rectifier 100 is in a standby state.
  • the sum of the current value of the second Rn cathode signal terminal R2(n) and the current value of the first Rn+1 cathode signal terminal R1(n+1) is the first preset current value I1set.
  • the sum of the current value of the first Rn+1 cathode signal terminal R1(n+1) and the current value of the second Rn+1 cathode signal terminal R2(n+1) is the second preset current value I2set.
  • the first preset current value I1set and the second preset current value I2set may be equal or unequal.
  • the electroplated workpiece moves from the cathode of the Nth electroplating copper tank Pn to the cathode of the N+1th electroplating copper tank Pn+1 under the drive of the fixture.
  • the rectifier 100 adjusts the current value of the second Rn cathode signal terminal R2(n), the current value of the first Rn+1 cathode signal terminal R1(n+1) and the current value of the second Rn+1 cathode signal terminal R2(n+1) according to the moving position of the electroplated workpiece, and the effect of keeping the current uninterrupted and steady is better, so that when the electroplated workpiece transitions between the sub-cathode, the transition cathode and the next sub-cathode, the current on the electroplated workpiece is constant, avoiding the appearance of electroplating boundary lines on the electroplated workpiece due to current fluctuations, resulting in quality abnormalities.
  • the preset thickness of the electroplated workpiece coating can be adjusted by adjusting the numerical values of the first preset current value I1set and the second preset current value I2set.
  • the electroplated workpiece in the process of the electroplated workpiece driven by the sixth clamp F moving from the sub-cathode of the Nth copper plating tank Pn to the transition cathode of the N+1th copper plating tank Pn+1, the electroplated workpiece is completely located under the end of the sub-cathode of the Nth copper plating tank Pn close to the N+1th copper plating tank Pn+1, the current value of the second Rn cathode signal terminal R2(n) is 100% of the first preset current value I1set, and the current value of the first Rn+1 cathode signal terminal R1(n+1) is 0.
  • the electroplated workpiece is completely located under the end of the sub-cathode of the Nth electroplating copper tank Pn close to the N+1th electroplating copper tank Pn+1, it is not necessary to apply current to the first Rn+1 cathode signal terminal R1(n+1) through the rectifier 100, and the power consumption of the rectifier 100 is reduced while ensuring the uniform thickness of the plating layer of the electroplated workpiece.
  • the current value applied to the second Rn cathode signal terminal R2(n) through the rectifier 100 is 100% of the first preset current value I1set.
  • the current value applied to the second Rn cathode signal terminal R2(n) by the rectifier 100 is proportionally reduced, and the current value applied to the first Rn+1 cathode signal terminal R1(n+1) by the rectifier 100 is proportionally increased, and the currents of the second Rn cathode signal terminal R2(n) and the first Rn+1 cathode signal terminal R1(n+1) compensate each other, so that the electroplated workpiece is driven by the fixture from the Nth electroplating tank to the Nth electroplating tank.
  • the current is kept uninterrupted and steady during the movement of the sub-cathode of the copper tank Pn to the sub-cathode of the N+1th electroplating copper tank Pn+1. Electroplating can also be performed in the induction area 01.
  • the current on the electroplated workpiece is constant when the electroplated workpiece transitions between the sub-cathode, the transition cathode and the next sub-cathode, thereby avoiding the appearance of electroplating boundary lines on the electroplated workpiece due to current fluctuations, resulting in quality abnormalities, thereby increasing the thickness of the electroplated layer on the electroplated workpiece. Degree uniformity.
  • the electroplated workpiece in the process of the electroplated workpiece driven by the sixth clamp F moving from the sub-cathode of the Nth copper plating tank Pn to the transition cathode of the N+1th copper plating tank Pn+1, the electroplated workpiece is completely located under the transition cathode of the N+1th copper plating tank Pn+1, the current value of the second Rn cathode signal terminal R2(n) is 0, and the current value of the first Rn+1 cathode signal terminal R1(n+1) is 100% of the first preset current value I1set.
  • the electroplated workpiece is completely located under the transition cathode of the N+1th electroplating copper tank Pn+1, it is not necessary to apply current to the second Rn cathode signal terminal R2(n) through the rectifier 100, thereby reducing the power consumption of the rectifier 100 while ensuring the uniform thickness of the electroplated workpiece.
  • the current value applied to the first Rn+1 cathode signal terminal R1(n+1) through the rectifier 100 is 100% of the first preset current value I1set.
  • the electroplated workpiece driven by the sixth clamp F from the transition cathode of the N+1th copper plating tank Pn+1 to the sub-cathode of the N+1th copper plating tank Pn+1, the electroplated workpiece is completely located under the transition cathode of the N+1th copper plating tank Pn+1, the current value of the first Rn+1 cathode signal terminal R1(n+1) is 100% of the second preset current value I2set, and the current value of the second Rn+1 cathode signal terminal R2(n+1) is 0.
  • the electroplated workpiece is completely located under the transition cathode of the N+1th electroplating copper tank Pn+1, it is not necessary to apply current to the second Rn+1 cathode signal terminal R2(n+1) through the rectifier 100, and the power consumption of the rectifier 100 is reduced while ensuring the uniform thickness of the electroplated workpiece.
  • the current value applied to the first Rn+1 cathode signal terminal R1(n+1) through the rectifier 100 is 100% of the second preset current value I2set.
  • the current value applied to the first Rn+1 cathode signal terminal R1(n+1) by the rectifier 100 is proportionally reduced, and the current value applied to the second Rn+1 cathode signal terminal R2(n+1) by the rectifier 100 is proportionally increased, and the currents of the first Rn+1 cathode signal terminal R1(n+1) and the second Rn+1 cathode signal terminal R2(n+1) compensate each other, so that the current of the electroplated workpiece remains uninterrupted and steady during the process from the transition cathode of the N+1th electroplating copper tank Pn+1 to the sub-cathode of the N+1th electroplating copper tank Pn+1 driven by the fixture, and electroplating can also be carried out in the induction area 01.
  • the current on the electroplated workpiece is constant when the electroplated workpiece transitions between the sub-cathode, the transition cathode and the next sub-cathode, avoiding the appearance of electroplating boundary lines on the electroplated workpiece due to current fluctuations, resulting in quality abnormalities, thereby improving the thickness uniformity of the plating layer on the electroplated workpiece.
  • the electroplated workpiece is completely located under the cathode of the N+1th electroplating copper tank Pn+1, it is not necessary to apply current to the first Rn+1 cathode signal terminal R1(n+1) through the rectifier 100, and the power consumption of the rectifier 100 is reduced while ensuring the uniform thickness of the electroplated workpiece.
  • the current value applied to the second Rn+1 cathode signal terminal R2(n+1) through the rectifier 100 is 100% of the second preset current value I2set.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

一种电镀装置。该电镀装置包括:M个电镀铜槽(P0),每个电镀铜槽(P0)包括平行于第一方向(X)且间隔设置的感应区(01)和电极区(02),感应区(01)在第二方向(Y)上设置有S个间隔设置的过渡阴极,电极区(02)在第二方向(Y)上设置有S个间隔设置的分阴极,在第一方向(X)上,一个过渡阴极和一个分阴极绝缘且间隔设置,M的取值包括大于或等于2的整数,S的取值包括大于或等于1的整数。

Description

电镀装置
本申请要求在2022年11月04日提交中国专利局、申请号为202211373203.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电镀技术领域,例如涉及一种电镀装置。
背景技术
电镀装置包括多个电镀铜槽,电镀工件依次运动至每一个电镀铜槽内完成电镀,其中,电镀离子在电镀铜槽的阳极和阴极形成的电场下运动至电镀工件,发生电化学反应,以在电镀工件上形成预设形状和预设厚度的镀层。
目前使用的电镀装置存在的问题是,由于挂具与电镀铜槽的电极之间避免不了接触电阻波动等异常,导致电镀工件间电镀电流分配不均,电镀后电镀工件片间镀厚差异大,无法满足电镀工件片间厚度均一性的要求。
发明内容
本申请提供了一种电镀装置,以提高电镀工件镀层的厚度均匀度。
根据本申请的一方面,提供了一种电镀装置,包括:
M个电镀铜槽,每个电镀铜槽包括平行于第一方向且间隔设置的感应区和电极区,所述感应区在第二方向上设置有S个间隔设置的过渡阴极,所述电极区在第二方向上设置有S个间隔设置的分阴极,在第一方向上,一所述过渡阴极和一所述分阴极绝缘且间隔设置,所述M的取值包括大于或等于2的整数,所述S的取值包括大于或等于1的整数,所述第一方向平行于电镀工件的运动方向,所述第二方向垂直于电镀工件的运动方向;
第N个电镀铜槽和第N+1个电镀铜槽在第一方向上相邻设置,第N个电镀铜槽的分阴极和第N+1个电镀铜槽的过渡阴极相邻且绝缘设置,所述N包括大于或等于1,且小于或等于M的整数。
在一个或多个实施例中,还包括整流机,第N个电镀铜槽设置有S个第一Rn阴极信号端和S个第二Rn阴极信号端;第N+1个电镀铜槽设置有S个第一Rn+1阴极信号端和S个第二Rn+1阴极信号端;所述整流机设置为为所述第一Rn阴极信号端、所述第二Rn阴极信号端、所述第一Rn+1阴极信号端和所述第二Rn+1阴极信号端提供电流;
第N个电镀铜槽的过渡阴极与所述第一Rn阴极信号端一一对应连接,第N个电镀铜槽的分阴极靠近第N+1个电镀铜槽的一端与所述第二Rn阴极信号端一一对应连接;第N+1个电镀铜槽的过渡阴极与所述第一Rn+1阴极信号端一一对应连接,第N+1个电镀铜槽的分阴极远离过渡阴极的一端与所述第二Rn+1阴极信号端一一对应连接;
电镀工件从第N个电镀铜槽的分阴极运动至第N+1个电镀铜槽的分阴极的过程中,所述第二Rn阴极信号端的电流值、所述第一Rn+1阴极信号端的电流值以及所述第二Rn+1阴极信号端的电流值与电镀工件的运动位置相关。
在一个或多个实施例中,第二Rn阴极信号端的电流值和第一Rn+1阴极信号端的电流值之和为第一预设定值电流值。
在一个或多个实施例中,第一Rn+1阴极信号端的电流值和第二Rn+1阴极信号端的电流值之和为第二预设定值电流值。
在一个或多个实施例中,电镀工件从第N个电镀铜槽的分阴极运动至第N+1个电镀铜槽的过渡阴极的过程中,电镀工件完全位于第N个电镀铜槽的分阴极靠近第N+1个电镀铜槽的一端之下,第二Rn阴极信号端的电流值是第一预设定值电流值的100%,第一Rn+1阴极信号端的电流值为0。
在一个或多个实施例中,电镀工件从第N个电镀铜槽的分阴极运动至第N+1个电镀铜槽的过渡阴极的过程中,电镀工件部分位于第N个电镀铜槽的分阴极靠近第N+1个电镀铜槽的一端之下,电镀工件部分位于第N+1个电镀铜槽的过渡阴极之下,第二Rn阴极信号端的电流值等比率降低,第一Rn+1阴极信号端的电流值等比率升高。
在一个或多个实施例中,电镀工件从第N个电镀铜槽的分阴极运动至第N+1个电镀铜槽的过渡阴极的过程中,电镀工件完全位于第N+1个电镀铜槽的过渡阴极之下,第二Rn阴极信号端的电流值是0,第一Rn+1阴极信号端的电流值是第一预设定值电流值的100%。
在一个或多个实施例中,电镀工件从第N+1个电镀铜槽的过渡阴极至第N+1个电镀铜槽的分阴极的过程中,电镀工件完全位于第N+1个电镀铜槽的过渡阴极之下,第一Rn+1阴极信号端的电流值是第二预设定值电流值的100%,第二Rn+1阴极信号端的电流值为0。
在一个或多个实施例中,电镀工件从第N+1个电镀铜槽的过渡阴极至第N+1个电镀铜槽的分阴极的过程中,电镀工件部分位于第N+1个电镀铜槽的过渡阴极之下,电镀工件部分位于第N+1个电镀铜槽的分阴极靠近第N个电镀铜槽的一端之下,第一Rn+1阴极信号端的电流值等比率降低,第二Rn+1 阴极信号端的电流值等比率升高。
在一个或多个实施例中,电镀工件从第N+1个电镀铜槽的过渡阴极至第N+1个电镀铜槽的分阴极的过程中,电镀工件完全位于第N+1个电镀铜槽的分阴极之下,第一Rn+1阴极信号端的电流值是0,第二Rn+1阴极信号端的电流值是第二预设定值电流值的100%。
附图说明
图1是根据本申请实施例提供的一种电镀装置的结构示意图;
图2是根据本申请实施例提供的另一种电镀装置的结构示意图;
图3是根据本申请实施例提供的又一种电镀装置的结构示意图;
图4是根据本申请实施例提供的又一种电镀装置的结构示意图;
图5是根据本申请实施例提供的又一种电镀装置的结构示意图;
图6是根据本申请实施例提供的又一种电镀装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于列出的那些步骤或单元,而是可包括没有列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
正如上述相关技术所述的目前使用的电镀装置存在的问题是,电镀工件从一个电镀铜槽运动至另一个电镀铜槽的过程中,由于挂具与电镀铜槽的电极之间避免不了接触电阻波动等异常,导致电镀工件间电镀电流分配不均,电镀后电镀工件片间镀厚差异大,无法满足电镀工件片间厚度均一性的要求。
针对上述技术问题,为了确保电镀工件上电流恒定,避免因电流波动导致电镀工件上出现电镀分界线,造成品质异常,本申请实施例提供了如下技术方案:
该电镀装置包括:M个电镀铜槽,每个电镀铜槽包括平行于第一方向且间隔设置的感应区和电极区,感应区在第二方向上设置有S个间隔设置的过渡阴极,电极区在第二方向上设置有S个间隔设置的分阴极,在第一方向上,一个过渡阴极和一个分阴极绝缘且间隔设置,M的取值包括大于或等于2的整数,S的取值包括大于或等于1的整数,第一方向平行于电镀工件运动方向,第二方向垂直于电镀工件运动方向;第N个电镀铜槽和第N+1个电镀铜槽在第一方向上相邻设置,第N个电镀铜槽的分阴极和第N+1个电镀铜槽的过渡阴极相邻且绝缘设置,N包括大于或等于1,且小于或等于M的整数。
图1是根据本申请实施例提供的一种电镀装置的结构示意图。在本申请实施例中,第一方向为X方向,其平行于电镀工件的运动方向,第二方向为Y方向,其垂直于电镀工件的运动方向。参见图1,该电镀装置包括M个电镀铜槽P0,其中,M的取值包括大于或等于2的整数。示例性的,图1示出了在第一方向X方向相邻设置的两个电镀铜槽P0,分别是第N个电镀铜槽Pn和第N+1个电镀铜槽Pn+1。每个电镀铜槽P0包括平行于第一方向X方向且间隔设置的感应区01和电极区02。感应区01在第二方向Y方向设置有S个间隔设置的过渡阴极,电极区02在第二方向Y方向设置有S个间隔设置的分阴极,S的取值包括大于或等于1的整数。图1中示出了第N个电镀铜槽Pn的6个过渡阴极,分别是第一过渡阴极Ea1(n)、第二过渡阴极Eb1(n)、第三过渡阴极Ec1(n)、第四过渡阴极Ed1(n)、第五过渡阴极Ee1(n)和第六过渡阴极Ef1(n)。图1示出了第N个电镀铜槽Pn的电极区02在第二方向Y方向设置了6个间隔设置的分阴极,分别是第一分阴极Ea2(n)、第二分阴极Eb2(n)、第三分阴极Ec2(n)、第四分阴极Ed2(n)、第五分阴极Ee2(n)以及第六分阴极Ef2(n)。
图1中示出了第N+1个电镀铜槽Pn+1的6个过渡阴极,分别是第一过渡阴极Ea1(n+1)、第二过渡阴极Eb1(n+1)、第三过渡阴极Ec1(n+1)、第四过渡阴极Ed1(n+1)、第五过渡阴极Ee1(n+1)和第六过渡阴极Ef1(n+1)。图1示出了第N+1个电镀铜槽Pn+1的电极区02在第二方向Y方向设置了6个间隔设置的分阴极,分别是第一分阴极Ea2(n+1)、第二分阴极Eb2(n+1)、第三分阴极Ec2(n+1)、第四分阴极Ed2(n+1)、第五分阴极Ee2(n+1)以及第六分阴极Ef2(n+1)。
每一个电镀铜槽P0内设置有S个夹具,图1中,分别是第一夹具A、第二夹具B、第三夹具C、第四夹具D、第五夹具E和第六夹具F。每一个夹具都可以在驱动结构的驱动下带动一个电镀工件沿着第一方向X方向依次在每一个电镀铜槽P0完成电镀过程。
本实施例提供的技术方案,电镀工件在夹具的带动下沿着第一方向X方向依次在每一个电镀铜槽P0完成电镀过程。由于在每个电镀铜槽P0的感应区01都设置了过渡阴极,相当于在相邻两个电镀铜槽P0例如第N个电镀铜槽Pn和第N+1个电镀铜槽Pn+1的分阴极之间设置了过渡阴极,每片电镀工件在每个电镀铜槽P0内电镀过程中,始终只有一组整流机控制,槽间跨槽时通过过渡阴极控制方法,实现工件上稳流过渡。确保每片电镀工件在电镀的整个过程中,所接受的电流无异常波动,从而提高电镀工件的镀层均匀性。示例性的,使得电镀工件在夹具的带动下从第N个电镀铜槽Pn的分阴极运动至第N+1个电镀铜槽Pn+1的分阴极的过程中电流保持不间断和稳流,在感应区01也可以进行电镀,使得电镀工件在分阴极、过渡阴极和下一段分阴极之间过渡时,电镀工件上电流恒定,避免因电流波动导致电镀工件上出现电镀分界线,造成品质异常。
第N个电镀铜槽Pn和第N+1个电镀铜槽Pn+1在本申请实施例中表征的是在第一方向X方向相邻设置的两个电镀铜槽P0。因此,在本实施例中,通过介绍电镀工件在夹具的带动下从第N个电镀铜槽Pn的分阴极运动至第N+1个电镀铜槽Pn+1的分阴极的过程可以毫无疑义推导出电镀装置中电镀工件在夹具的带动下从一个电镀铜槽P0的分阴极运动至下一个电镀铜槽P0的电镀过程。
可选地,参见图1,还包括整流机100,第N个电镀铜槽Pn设置有S个第一Rn阴极信号端R1(n)和S个第二Rn阴极信号端R2(n);第N+1个电镀铜槽Pn+1设置有S个第一Rn+1阴极信号端R1(n+1)和S个第二Rn+1阴极信号端R2(n+1);整流机100设置为为第一Rn阴极信号端R1(n)、第二Rn阴极信号端R2(n)、第一Rn+1阴极信号端R1(n+1)和第二Rn+1阴极信号端R2(n+1)提供电流。可选地,该电镀装置还包括阳极(未示出),整流机100为阳极提供所需电流。示例性的,图1中示出了S的取值取6。示例性的,图1仅仅示出了一个第一Rn阴极信号端R1(n)、第二Rn阴极信号端R2(n)、第一Rn+1阴极信号端R1(n+1)和第二Rn+1阴极信号端R2(n+1)。
第N个电镀铜槽Pn的过渡阴极与第一Rn阴极信号端R1(n)一一对应连接,第N个电镀铜槽Pn的分阴极靠近第N+1个电镀铜槽Pn+1的一端与第二Rn阴极信号端R2(n)一一对应连接;第N+1个电镀铜槽Pn+1的过渡阴极与第一Rn+1阴极信号端R1(n+1)一一对应连接,第N+1个电镀铜槽Pn+1的分阴极远离过渡阴极的一端与第二Rn+1阴极信号端R2(n+1)一一对应连接。
电镀工件在夹具的带动下从第N个电镀铜槽Pn的分阴极运动至第N+1个电镀铜槽Pn+1的分阴极的过程中,第二Rn阴极信号端R2(n)的电流值、 第一Rn+1阴极信号端R1(n+1)的电流值以及第二Rn+1阴极信号端R2(n+1)的电流值与电镀工件的运动位置相关。
示例性的,上述技术方案中,整流机100可以根据电镀工件在电镀装置中的运动位置,来调整输出的电流。示例性的,电镀工件在夹具的带动下从第N个电镀铜槽Pn的分阴极运动至第N+1个电镀铜槽Pn+1的分阴极的过程中,整流机100根据电镀工件的运动位置,调整第二Rn阴极信号端R2(n)的电流值、第一Rn+1阴极信号端R1(n+1)的电流值以及第二Rn+1阴极信号端R2(n+1)的电流值,保证电流保持不间断和稳流,使得电镀工件在分阴极、过渡阴极和下一段分阴极之间过渡时,电镀工件上电流恒定,避免因电流波动导致电镀工件上出现电镀分界线,造成品质异常。
图1~图6示出了电镀工件在夹具的带动下从第N个电镀铜槽Pn的分阴极运动至第N+1个电镀铜槽Pn+1的分阴极的过程的不同状态下的结构示意图。为了便于说明,以第六夹具F为参考对象来阐述整流机100根据第六夹具F带动的电镀工件的运动位置,调整第二Rn阴极信号端R2(n)的电流值、第一Rn+1阴极信号端R1(n+1)的电流值以及第二Rn+1阴极信号端R2(n+1)的电流值,使得电镀工件在分阴极、过渡阴极和下一段分阴极之间过渡时,电镀工件上电流恒定,避免因电流波动导致电镀工件上出现电镀分界线,造成品质异常,从而提高了电镀均匀性。在本申请实施例中,根据第六夹具F带动的电镀工件的运动位置,调整第二Rn阴极信号端R2(n)的电流值、第一Rn+1阴极信号端R1(n+1)的电流值以及第二Rn+1阴极信号端R2(n+1)的电流值的过程可以应用在根据第一夹具A、第二夹具B、第三夹具C、第四夹具D以及第五夹具E中的任意一种带动的电镀工件的运动位置,调整第二Rn阴极信号端R2(n)的电流值、第一Rn+1阴极信号端R1(n+1)的电流值以及第二Rn+1阴极信号端R2(n+1)的电流值的过程。
其中,图1中在初始状态时,整流机100施加在第二Rn阴极信号端R2(n)的电流值、第一Rn+1阴极信号端R1(n+1)的电流值以及第二Rn+1阴极信号端R2(n+1)的电流值是相等的。整流机100处于待机状态。
可选地,第二Rn阴极信号端R2(n)的电流值和第一Rn+1阴极信号端R1(n+1)的电流值之和为第一预设定值电流值I1set。
可选地,第一Rn+1阴极信号端R1(n+1)的电流值和第二Rn+1阴极信号端R2(n+1)的电流值之和为第二预设定值电流值I2set。其中,第一预设定值电流值I1set和第二预设定值电流值I2set可以相等也可以不相等。当第一预设定值电流值I1set和第二预设定值电流值I2set相等时,电镀工件在夹具的带动下从第N个电镀铜槽Pn的分阴极运动至第N+1个电镀铜槽Pn+1的分 阴极的过程中,整流机100根据电镀工件的运动位置,调整第二Rn阴极信号端R2(n)的电流值、第一Rn+1阴极信号端R1(n+1)的电流值以及第二Rn+1阴极信号端R2(n+1)的电流值,电流保持不间断和稳流的效果更佳,使得电镀工件在分阴极、过渡阴极和下一段分阴极之间过渡时,电镀工件上电流恒定,避免因电流波动导致电镀工件上出现电镀分界线,造成品质异常。可以通过调整第一预设定值电流值I1set和第二预设定值电流值I2set的数值大小,调整电镀工件镀层的预设厚度。
可选地,参见图2,第六夹具F带动的电镀工件从第N个电镀铜槽Pn的分阴极运动至第N+1个电镀铜槽Pn+1的过渡阴极的过程中,电镀工件完全位于第N个电镀铜槽Pn的分阴极靠近第N+1个电镀铜槽Pn+1的一端之下,第二Rn阴极信号端R2(n)的电流值是第一预设定值电流值I1set的100%,第一Rn+1阴极信号端R1(n+1)的电流值为0。
示例性的,由于电镀工件完全位于第N个电镀铜槽Pn的分阴极靠近第N+1个电镀铜槽Pn+1的一端之下,没有必要通过整流机100对第一Rn+1阴极信号端R1(n+1)施加电流,在保证电镀工件的镀层的厚度均匀的情况下,降低了整流机100的功耗。且为了保证电镀工件在分阴极、过渡阴极和下一段分阴极之间过渡时,电镀工件上电流恒定,通过整流机100对第二Rn阴极信号端R2(n)施加的电流值是第一预设定值电流值I1set的100%。
可选地,参见图3,第六夹具F带动的电镀工件从第N个电镀铜槽Pn的分阴极运动至第N+1个电镀铜槽Pn+1的过渡阴极的过程中,电镀工件部分位于第N个电镀铜槽Pn的分阴极靠近第N+1个电镀铜槽Pn+1的一端之下,电镀工件部分位于第N+1个电镀铜槽Pn+1的过渡阴极之下,第二Rn阴极信号端R2(n)的电流值等比率降低,第一Rn+1阴极信号端R1(n+1)的电流值等比率升高。
示例性的,由于电镀工件位于第N+1个电镀铜槽Pn+1的过渡阴极之下的面积越来越大,通过整流机100施加在第二Rn阴极信号端R2(n)的电流值等比率降低,通过整流机100施加在第一Rn+1阴极信号端R1(n+1)的电流值等比率升高,第二Rn阴极信号端R2(n)和第一Rn+1阴极信号端R1(n+1)的电流相互补偿,使得电镀工件在夹具的带动下从第N个电镀铜槽Pn的分阴极运动至第N+1个电镀铜槽Pn+1的分阴极的过程中电流保持不间断和稳流,在感应区01也可以进行电镀,在电镀工件从一个电镀铜槽P0的分阴极运动至下一个电镀铜槽P0的分阴极的过程中,使得电镀工件在分阴极、过渡阴极和下一段分阴极之间过渡时,电镀工件上电流恒定,避免因电流波动导致电镀工件上出现电镀分界线,造成品质异常,从而提高了电镀工件镀层的厚 度均匀度。
可选地,参见图4,第六夹具F带动的电镀工件从第N个电镀铜槽Pn的分阴极运动至第N+1个电镀铜槽Pn+1的过渡阴极的过程中,电镀工件完全位于第N+1个电镀铜槽Pn+1的过渡阴极之下,第二Rn阴极信号端R2(n)的电流值是0,第一Rn+1阴极信号端R1(n+1)的电流值是第一预设定值电流值I1set的100%。
示例性的,由于电镀工件完全位于第N+1个电镀铜槽Pn+1的过渡阴极之下,没有必要通过整流机100对第二Rn阴极信号端R2(n)施加电流,在保证电镀工件镀层的厚度均匀的情况下,降低了整流机100的功耗。且为了保证电镀工件的预设镀层厚度,通过整流机100对第一Rn+1阴极信号端R1(n+1)施加的电流值是第一预设定值电流值I1set的100%。
可选地,参见图4,第六夹具F带动的电镀工件从第N+1个电镀铜槽Pn+1的过渡阴极至第N+1个电镀铜槽Pn+1的分阴极的过程中,电镀工件完全位于第N+1个电镀铜槽Pn+1的过渡阴极之下,第一Rn+1阴极信号端R1(n+1)的电流值是第二预设定值电流值I2set的100%,第二Rn+1阴极信号端R2(n+1)的电流值为0。
示例性的,由于电镀工件完全位于第N+1个电镀铜槽Pn+1的过渡阴极之下,没有必要通过整流机100对第二Rn+1阴极信号端R2(n+1)施加电流,在保证电镀工件镀层的厚度均匀的情况下,降低了整流机100的功耗。且为了保证电镀工件的预设镀层厚度,通过整流机100对第一Rn+1阴极信号端R1(n+1)施加的电流值是第二预设定值电流值I2set的100%。
可选地,参见图5,第六夹具F带动的电镀工件从第N+1个电镀铜槽Pn+1的过渡阴极至第N+1个电镀铜槽Pn+1的分阴极的过程中,电镀工件部分位于第N+1个电镀铜槽Pn+1的过渡阴极之下,电镀工件部分位于第N+1个电镀铜槽Pn+1的分阴极靠近第N个电镀铜槽的一端之下,第一Rn+1阴极信号端R1(n+1)的电流值等比率降低,第二Rn+1阴极信号端R2(n+1)的电流值等比率升高。
示例性的,由于电镀工件位于第N+1个电镀铜槽Pn+1的分阴极之下的面积越来越大,通过整流机100施加在第一Rn+1阴极信号端R1(n+1)的电流值等比率降低,通过整流机100施加在第二Rn+1阴极信号端R2(n+1)的电流值等比率升高,第一Rn+1阴极信号端R1(n+1)和第二Rn+1阴极信号端R2(n+1)的电流相互补偿,使得电镀工件在夹具的带动下从第N+1个电镀铜槽Pn+1的过渡阴极至第N+1个电镀铜槽Pn+1的分阴极的过程中电流保持不间断和稳流,在感应区01也可以进行电镀,在电镀工件从一个电镀铜槽 P0的分阴极运动至下一个电镀铜槽P0的分阴极的过程中,使得电镀工件在分阴极、过渡阴极和下一段分阴极之间过渡时,电镀工件上电流恒定,避免因电流波动导致电镀工件上出现电镀分界线,造成品质异常,从而提高了电镀工件镀层的厚度均匀度。
可选地,参见图6,第六夹具F带动的电镀工件从第N+1个电镀铜槽Pn+1的过渡阴极至第N+1个电镀铜槽Pn+1的分阴极的过程中,电镀工件完全位于第N+1个电镀铜槽Pn+1的分阴极之下,第一Rn+1阴极信号端R1(n+1)的电流值是0,第二Rn+1阴极信号端R2(n+1)的电流值是第二预设定值电流值I2set的100%。
示例性的,由于电镀工件完全位于第N+1个电镀铜槽Pn+1的分阴极之下,没有必要通过整流机100对第一Rn+1阴极信号端R1(n+1)施加电流,在保证电镀工件镀层的厚度均匀的情况下,降低了整流机100的功耗。且为了保证电镀工件的预设镀层厚度,通过整流机100对第二Rn+1阴极信号端R2(n+1)施加的电流值是第二预设定值电流值I2set的100%。
上述实施方式,并不构成对本申请保护范围的限制。根据设计要求和其他因素,可以进行多种修改、组合、子组合和替代。

Claims (10)

  1. 一种电镀装置,包括:
    M个电镀铜槽,每个电镀铜槽包括平行于第一方向且间隔设置的感应区和电极区,所述感应区在第二方向上设置有S个间隔设置的过渡阴极,所述电极区在所述第二方向上设置有S个间隔设置的分阴极,在所述第一方向上,一个过渡阴极和一个分阴极绝缘且间隔设置,所述M的取值包括大于或等于2的整数,所述S的取值包括大于或等于1的整数,所述第一方向平行于电镀工件的运动方向,所述第二方向垂直于电镀工件的运动方向;
    第N个电镀铜槽和第N+1个电镀铜槽在所述第一方向上相邻设置,所述第N个电镀铜槽的分阴极和所述第N+1个电镀铜槽的过渡阴极相邻且绝缘设置,所述N包括大于或等于1,且小于或等于M的整数。
  2. 根据权利要求1所述的电镀装置,还包括整流机,所述第N个电镀铜槽设置有S个第一Rn阴极信号端和S个第二Rn阴极信号端;所述第N+1个电镀铜槽设置有S个第一Rn+1阴极信号端和S个第二Rn+1阴极信号端;所述整流机设置为为所述第一Rn阴极信号端、所述第二Rn阴极信号端、所述第一Rn+1阴极信号端和所述第二Rn+1阴极信号端提供电流;
    所述第N个电镀铜槽的过渡阴极与所述第一Rn阴极信号端一一对应连接,所述第N个电镀铜槽的分阴极靠近所述第N+1个电镀铜槽的一端与所述第二Rn阴极信号端一一对应连接;所述第N+1个电镀铜槽的过渡阴极与所述第一Rn+1阴极信号端一一对应连接,所述第N+1个电镀铜槽的分阴极远离所述第N+1个电镀铜槽的过渡阴极的一端与所述第二Rn+1阴极信号端一一对应连接;
    所述电镀工件从所述第N个电镀铜槽的分阴极运动至所述第N+1个电镀铜槽的分阴极的过程中,所述第二Rn阴极信号端的电流值、所述第一Rn+1阴极信号端的电流值以及所述第二Rn+1阴极信号端的电流值与所述电镀工件的运动位置相关。
  3. 根据权利要求2所述的电镀装置,其中,所述第二Rn阴极信号端的电流值和所述第一Rn+1阴极信号端的电流值之和为第一预设定值电流值。
  4. 根据权利要求2所述的电镀装置,其中,所述第一Rn+1阴极信号端的电流值和所述第二Rn+1阴极信号端的电流值之和为第二预设定值电流值。
  5. 根据权利要求3所述的电镀装置,其中,所述电镀工件从所述第N个电镀铜槽的分阴极运动至所述第N+1个电镀铜槽的过渡阴极的过程中,所述电镀工件完全位于所述第N个电镀铜槽的分阴极靠近所述第N+1个电镀铜槽的一端之下,所述第二Rn阴极信号端的电流值是所述第一预设定值电流值的100%,所述第一Rn+1阴极信号端的电流值为0。
  6. 根据权利要求2或3所述的电镀装置,其中,所述电镀工件从所述第N个电镀铜槽的分阴极运动至所述第N+1个电镀铜槽的过渡阴极的过程中,所述电镀工件部分位于所述第N个电镀铜槽的分阴极靠近所述第N+1个电镀铜槽的一端之下,所述电镀工件部分位于所述第N+1个电镀铜槽的过渡阴极之下,所述第二Rn阴极信号端的电流值等比率降低,所述第一Rn+1阴极信号端的电流值等比率升高。
  7. 根据权利要求3所述的电镀装置,其中,所述电镀工件从所述第N个电镀铜槽的分阴极运动至所述第N+1个电镀铜槽的过渡阴极的过程中,所述电镀工件完全位于所述第N+1个电镀铜槽的过渡阴极之下,所述第二Rn阴极信号端的电流值是0,所述第一Rn+1阴极信号端的电流值是所述第一预设定值电流值的100%。
  8. 根据权利要求4所述的电镀装置,其中,所述电镀工件从所述第N+1个电镀铜槽的过渡阴极至所述第N+1个电镀铜槽的分阴极的过程中,所述电镀工件完全位于所述第N+1个电镀铜槽的过渡阴极之下,所述第一Rn+1阴极信号端的电流值是所述第二预设定值电流值的100%,所述第二Rn+1阴极信号端的电流值为0。
  9. 根据权利要求2或4所述的电镀装置,其中,所述电镀工件从第N+1个电镀铜槽的过渡阴极至所述第N+1个电镀铜槽的分阴极的过程中,所述电镀工件部分位于所述第N+1个电镀铜槽的过渡阴极之下,所述电镀工件部分位于所述第N+1个电镀铜槽的分阴极靠近所述第N个电镀铜槽的一端之下,所述第一Rn+1阴极信号端的电流值等比率降低,所述第二Rn+1阴极信号端的电流值等比率升高。
  10. 根据权利要求4所述的电镀装置,其中,所述电镀工件从所述第N+1个电镀铜槽的过渡阴极至所述第N+1个电镀铜槽的分阴极的过程中,所述电镀工件完全位于所述第N+1个电镀铜槽的分阴极之下,所述第一Rn+1阴极信号端的电流值是0,所述第二Rn+1阴极信号端的电流值是所述第二预设定值电流值的100%。
PCT/CN2023/129359 2022-11-04 2023-11-02 电镀装置 WO2024094129A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211373203.6A CN115505996B (zh) 2022-11-04 2022-11-04 一种电镀装置
CN202211373203.6 2022-11-04

Publications (1)

Publication Number Publication Date
WO2024094129A1 true WO2024094129A1 (zh) 2024-05-10

Family

ID=84513317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/129359 WO2024094129A1 (zh) 2022-11-04 2023-11-02 电镀装置

Country Status (2)

Country Link
CN (1) CN115505996B (zh)
WO (1) WO2024094129A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115505996B (zh) * 2022-11-04 2023-03-10 昆山东威科技股份有限公司 一种电镀装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101423969A (zh) * 2007-11-01 2009-05-06 Almexpe株式会社 连续电镀处理装置
CN104651910A (zh) * 2011-06-30 2015-05-27 Almexpe株式会社 表面处理装置及工件保持夹具
CN204982125U (zh) * 2015-08-24 2016-01-20 黄海 一种用于pcb垂直连续电镀生产线的阴极电流分段调节机构
CN113755933A (zh) * 2021-10-28 2021-12-07 江西威力固智能设备有限公司 一种高效四列电镀槽
CN216274434U (zh) * 2021-10-27 2022-04-12 江西威力固智能设备有限公司 一种带板框的高效电镀飞靶
CN114775023A (zh) * 2022-05-26 2022-07-22 枣庄睿诺光电信息有限公司 一种电镀装置
CN115505996A (zh) * 2022-11-04 2022-12-23 昆山东威科技股份有限公司 一种电镀装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3329056B2 (ja) * 1994-02-15 2002-09-30 カシオ計算機株式会社 メッキ方法およびその装置
US6669833B2 (en) * 2000-10-30 2003-12-30 International Business Machines Corporation Process and apparatus for electroplating microscopic features uniformly across a large substrate
JP2003268597A (ja) * 2002-03-18 2003-09-25 Fujitsu Ltd めっき膜の製造装置及び製造方法
CN202543364U (zh) * 2012-04-24 2012-11-21 博敏电子股份有限公司 一种分段打电流的电镀槽
CN112981515B (zh) * 2021-05-06 2021-09-14 四川英创力电子科技股份有限公司 一种电流调控方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101423969A (zh) * 2007-11-01 2009-05-06 Almexpe株式会社 连续电镀处理装置
CN104651910A (zh) * 2011-06-30 2015-05-27 Almexpe株式会社 表面处理装置及工件保持夹具
CN204982125U (zh) * 2015-08-24 2016-01-20 黄海 一种用于pcb垂直连续电镀生产线的阴极电流分段调节机构
CN216274434U (zh) * 2021-10-27 2022-04-12 江西威力固智能设备有限公司 一种带板框的高效电镀飞靶
CN113755933A (zh) * 2021-10-28 2021-12-07 江西威力固智能设备有限公司 一种高效四列电镀槽
CN114775023A (zh) * 2022-05-26 2022-07-22 枣庄睿诺光电信息有限公司 一种电镀装置
CN115505996A (zh) * 2022-11-04 2022-12-23 昆山东威科技股份有限公司 一种电镀装置

Also Published As

Publication number Publication date
CN115505996A (zh) 2022-12-23
CN115505996B (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
WO2024094129A1 (zh) 电镀装置
US20130081939A1 (en) Serial plating system
US9631294B2 (en) Device for vertical galvanic metal deposition on a substrate
KR20160134532A (ko) 공간적으로 맞춰진 저항률을 갖는 이온 저항성 이온 투과성 엘리먼트의 사용을 통한 금속들의 전착을 위한 장치 및 방법
TW200610084A (en) Method and apparatus for plating semiconductor wafers
US11926920B2 (en) Electroplating apparatus and electroplating method
CN104047042A (zh) 电镀以及实施电镀的装置
JP2005501181A (ja) 電解処理システム用のセグメント化した対向電極
CN102560612B (zh) 电镀用阳极组件和电镀装置
CN114250501A (zh) 一种可连续进行电镀和化镀的设备和方法
CN110760918B (zh) 一种镀层可控电镀***
US20170298530A1 (en) Electroplating anode assembly
CN111464017A (zh) 一种工业电解制氟高频开关电源及其控制方法
CN107190306A (zh) 电镀***
CN114574922B (zh) 一种电子元件的制造方法和制造装置
CN106435697B (zh) 一种vcp电镀双输出整流器的电镀装置
CN107190307A (zh) 电镀阳极装置
CN212357443U (zh) 电镀装置及其阳极组件
CN101667780A (zh) 一种应用于电镀过程的高频开关电源
US20170298529A1 (en) Electroplating system
CN102560611B (zh) 电镀用阳极组件和电镀装置
JP2002004095A (ja) 不溶性陽極及びその給電方法
CN213086158U (zh) 一种电镀板架、电镀设备
CN114075689B (zh) 一种电镀pcb板的控制方法及电镀***
CN102560587B (zh) 电镀装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885054

Country of ref document: EP

Kind code of ref document: A1