WO2024089916A1 - Precision nozzle and manufacturing method therefor - Google Patents

Precision nozzle and manufacturing method therefor Download PDF

Info

Publication number
WO2024089916A1
WO2024089916A1 PCT/JP2023/016411 JP2023016411W WO2024089916A1 WO 2024089916 A1 WO2024089916 A1 WO 2024089916A1 JP 2023016411 W JP2023016411 W JP 2023016411W WO 2024089916 A1 WO2024089916 A1 WO 2024089916A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
nozzle
discharge port
shape
precision
Prior art date
Application number
PCT/JP2023/016411
Other languages
French (fr)
Japanese (ja)
Inventor
伸也 池田
安春 福市
Original Assignee
株式会社共立合金製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社共立合金製作所 filed Critical 株式会社共立合金製作所
Publication of WO2024089916A1 publication Critical patent/WO2024089916A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/06Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape in annular, tubular or hollow conical form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/10Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape in the form of a fine jet, e.g. for use in wind-screen washers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/16Making specific metal objects by operations not covered by a single other subclass or a group in this subclass plates with holes of very small diameter, e.g. for spinning or burner nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P23/00Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass
    • B23P23/04Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass for both machining and other metal-working operations
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide

Definitions

  • the present invention relates to precision nozzles with minute apertures that are used in fields such as electronic components, and to a method for manufacturing the same.
  • a nozzle that supplies molten solder (solder cream) onto a substrate by irradiating a solder ball (solder ball) with a diameter of about 40 ⁇ m with a laser to melt the solder ball is also used. Therefore, in such a reflow nozzle, in order to temporarily retain the solder ball at the discharge port, the hole diameter of the discharge port must be adjusted to a minute hole diameter equivalent to the diameter of the solder ball.
  • precision nozzles such as reflow nozzles require accurate positioning, so the flow path shape also requires precision. Therefore, precision nozzles such as reflow nozzles require highly precise processing.
  • reflow nozzles require durability, so they are manufactured from cemented carbide. However, cemented carbide is hard and difficult to machine, so the processing efficiency of precision machining is low. For this reason, it has been difficult to efficiently manufacture precision nozzles such as reflow nozzles using conventional technology.
  • Patent Document 1 JP 2022-85914 A discloses a nozzle for bonding electronic components that dispenses adhesive required for mounting electronic components.
  • the nozzle is made of cemented carbide and has a tip portion formed with a through hole for discharging the adhesive with a diameter of 50 ⁇ m or less, and a main body portion having an internal space for supplying adhesive to the tip portion.
  • Patent Document 2 JP 2022-89371 A discloses a nozzle for bonding electronic components that dispenses adhesive required for mounting electronic components.
  • the nozzle is made of cemented carbide and has a main body that includes a discharge through hole with a discharge port having a diameter of 50 ⁇ m or less and an internal space for supplying adhesive to the discharge through hole.
  • Patent documents 1 and 2 describe a nozzle in which the diameter of the discharge port of the discharge through hole is smaller than the diameter of the injection port to facilitate the discharge of a fine amount of adhesive with a fine discharge diameter
  • the drawings show a nozzle with a two-stage flow path shape, with a flow path whose inner diameter gradually decreases from the injection port toward the downstream direction, and a flow path (straight flow path) that has the same inner diameter from this flow path toward the discharge port.
  • Patent documents 1 and 2 also describe that a diameter of 30 ⁇ m or less is preferable for the discharge port because it makes it possible to discharge adhesive suitable for high-density mounting.
  • Patent documents 1 and 2 also state that, because high precision is required for the inner diameter and the discharge axis of the discharge through hole, the method of forming the discharge through hole can be a method of forming it by drilling a hole at a specified position, a method of forming it by laminating, or a method of forming it by molding.
  • Patent Documents 1 and 2 describe methods for forming ejection through holes with high precision when the main body and tip are formed from a sintered body of metal powder, including a method of providing ejection through holes when forming the sintered body, and a method of forming ejection through holes by drilling or the like after the sintered body has been formed.
  • Patent Document 3 discloses an electric discharge machining method characterized by using an electric discharge electrode with a diameter larger than the diameter of the hole to be drilled, with the electric discharge electrode being positive and the workpiece being negative, and feeding the electric discharge electrode with a diameter larger than the diameter of the hole to be drilled at a feed rate of 30 to 200 ⁇ m/s while rotating, forming a hole in the workpiece as the electric discharge electrode wears away.
  • JP 2022-85914 A JP 2022-89371 A JP 2022-22419 A
  • Patent Documents 1 and 2 it is difficult to efficiently manufacture precision nozzles using cemented carbide.
  • manufacturing a precision nozzle using cemented carbide with an outlet diameter of less than 45 ⁇ m (particularly less than 30 ⁇ m) is extremely difficult, but Patent Documents 1 and 2 do not describe a specific manufacturing method, nor do they describe the outlet diameter of nozzles that have actually been manufactured.
  • the flow path connected to the discharge port is formed in a straight shape, probably because the adhesive is sprayed, but a tapered shape may be required depending on the application.
  • the flow path connected to the discharge port is required to be formed in a tapered shape in order to smoothly discharge the solder cream.
  • Patent Document 2 describes that drilling by machining is easy to achieve in order to form a fine diameter discharge through hole.
  • a common machining method for drilling holes is drilling, but when machining cemented carbide, the material hardness is high and machining with common tools is difficult, so electric discharge machining is mostly chosen.
  • a relatively new machining method is a machining method that uses a dedicated tool specialized for high hardness materials such as cemented carbide and a special machining machine that can rotate the tool at high speed to machine fine holes.
  • the blade length of the drill used must be shortened in order to maintain the strength of the blade.
  • Patent Document 3 requires complicated control of the discharge electrode, which results in low productivity, and the shape of the electrode changes during the manufacturing process, making it unsuitable for manufacturing precision nozzles. Furthermore, even with this method, it was not possible to manufacture precision nozzles with an outlet diameter of less than 45 ⁇ m.
  • the object of the present invention is therefore to efficiently manufacture precision nozzles using cemented carbide.
  • Another object of the present invention is to provide a new precision nozzle made of cemented carbide that is highly productive, has a discharge port diameter of less than 45 ⁇ m, and has a tapered hole that is not thin-walled, and a method for manufacturing the same.
  • a method for manufacturing a precision nozzle made of cemented carbide alloy that includes a tapered hole path that extends from an outlet toward an inlet in a direction in which the inner diameter increases can be achieved by carrying out the following steps: a powder compacting step in which raw material powder is compressed and molded using a transfer mold for forming the through hole to obtain a molded body having an opening corresponding to the inlet and a hole that does not pass through; a sintering step in which the obtained molded body is sintered to obtain a sintered body having an opening corresponding to the inlet and a hole that does not pass through; an electric discharge machining step in which an electrode is inserted into the hole of the sintered body to perform electric discharge machining; and a grinding step in which the electric discharge machined sintered body is ground from the opposite side of the opening that becomes the inlet to open the outlet, thereby discovering that a precision nozzle can be efficiently manufactured from cemented carbide alloy, and
  • the method for manufacturing a precision nozzle according to aspect [1] of the present invention comprises the steps of: A method for manufacturing a precision nozzle, the precision nozzle being made of cemented carbide and having a through hole penetrating from an injection port to a discharge port, the through hole including at least a tapered hole portion extending from the discharge port as a starting point toward the injection port in a direction in which an inner diameter increases, the method comprising the steps of: a powder compacting step of compressing and compacting a raw material powder using a transfer mold for forming the through hole to obtain a compact having an opening portion corresponding to the injection port and a hole portion that does not penetrate through the powder; a sintering step of sintering the green body to obtain a sintered body corresponding to the green body; an electric discharge machining step of inserting an electrode into the hole of the sintered body and performing electric discharge machining; The method includes a grinding step in which the discharged sintered body is ground from the opposite side of the opening that serves as the injection port
  • Aspect [2] of the present invention is an aspect of aspect [1], in which the cross-sectional shape of the through hole is circular, elliptical, or polygonal.
  • Aspect [3] of the present invention is an aspect of aspect [2], in which the cross-sectional shape of the through hole is circular.
  • Aspect [4] of the present invention is an aspect in which, in the powder compacting process of any of aspects [1] to [3], the shape of the transfer mold corresponds to the shape of the through hole, and the shape of the tapered portion corresponding to the tapered hole portion is a cone, an elliptical cone, or a polygonal pyramid.
  • Aspect [5] of the present invention is an aspect [4] in which the shape of the tapered portion corresponding to the tapered hole portion is conical.
  • Aspect [6] of the present invention is aspect [5], in which the tip diameter of the conical portion of the transfer mold corresponding to the tapered hole is 5 ⁇ m or less.
  • Aspect [7] of the present invention is an aspect in which, in the electric discharge machining process of any of aspects [1] to [6], the shape of the electrode corresponds to the shape of the transfer mold.
  • aspects [8] of the present invention is aspect [7], in which the shape of the electrode corresponding to the tapered hole is conical, and the tip diameter of the conical portion of the electrode corresponding to the tapered hole is 5 ⁇ m or less.
  • Aspect [9] of the present invention is an aspect in which, during the grinding process of any of aspects [1] to [8] above, the presence or absence of holes that will become discharge ports and their diameters are confirmed based on an image of the grinding surface captured using a camera.
  • Aspect [10] of the present invention is any of aspects [1] to [9] above, in which the through hole comprises the tapered hole portion and a cylindrical hole portion extending from the tapered hole portion to the injection port.
  • Aspect [11] of the present invention is any of aspects [1] to [10] above, in which the diameter of the discharge port is less than 30 ⁇ m.
  • Aspect [12] of the present invention is any of aspects [1] to [11] above, in which the precision nozzle is a nozzle for electronic components.
  • Aspect [13] of the present invention is any of aspects [1] to [12] above, in which the precision nozzle is a reflow nozzle for melting and discharging solder balls.
  • the present invention also provides, as an aspect [14], It is made of cemented carbide, A through hole is provided from the inlet to the outlet, the through hole includes a tapered hole portion extending in a direction in which an inner diameter increases from the discharge port toward the injection port, Also included is a precision nozzle in which the diameter of the discharge port is less than 45 ⁇ m, and the length of the tapered hole portion in the nozzle axial direction is 1 mm or more.
  • aspects [15] of the present invention is aspect [14], in which the length of the tapered hole in the nozzle axial direction is 10 times or more the diameter of the discharge port.
  • aspects [16] of the present invention is aspect [14] or [15], in which the shape of the discharge port is circular and the circularity of the discharge port is 5 ⁇ m or less.
  • Aspect [17] of the present invention is any of aspects [14] to [16] above, in which the outer shape of the precision nozzle at the outlet is isotropic, the shape of the outlet is circular, and the concentricity between the outer shape and the outlet is 10 ⁇ m or less.
  • Aspect [18] of the present invention is any of aspects [14] to [17] above, in which the inclination angle of the tapered hole portion is 3 to 60°.
  • Aspect [19] of the present invention is any of aspects [14] to [18] above, in which the diameter of the discharge port is less than 30 ⁇ m.
  • Aspect [20] of the present invention is any one of aspects [14] to [19],
  • the diameter of the discharge port is 1 ⁇ m or more and less than 30 ⁇ m
  • the length of the tapered hole in the nozzle axial direction is 1 to 20 mm
  • the length of the tapered hole portion in the nozzle axial direction is 100 times or more larger than the diameter of the discharge port
  • the shape of the discharge port is circular, and the circularity of the discharge port is 5 ⁇ m or less;
  • the precision nozzle has a circular outer shape at the discharge port, the concentricity between the outer shape and the discharge port is 10 ⁇ m or less, and the tapered hole has an inclination angle of 4 to 50°.
  • Aspect [21] of the present invention is any of aspects [14] to [20] above, in which the cemented carbide is an alloy containing tungsten carbide.
  • a precision nozzle can be efficiently manufactured from cemented carbide by a manufacturing method that combines a powder compacting process using a specific transfer mold, a sintering process, a die-sinking electric discharge machining process using a specific electrode, and a grinding process in which the sintered body that has been electric discharge machined into a specific shape is ground.
  • a new precision nozzle made of cemented carbide with an outlet diameter of less than 45 ⁇ m and a tapered hole that is not thin-walled can be easily manufactured.
  • FIG. 1 is a schematic perspective view showing an example of a precision nozzle of the present invention.
  • FIG. 2 is a schematic cross-sectional view taken along line II of FIG.
  • FIG. 3 is a schematic cross-sectional view showing another example of the precision nozzle of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing still another example of the precision nozzle of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing another example of a precision nozzle of the present invention.
  • FIG. 6 is a diagram for explaining the diameter of the discharge port and the depth of the tapered hole portion in the precision nozzle of FIG.
  • FIG. 7 is a diagram for explaining the diameter of the ejection port and the depth of the tapered hole portion in the precision nozzle of FIG.
  • FIG. 1 is a schematic perspective view showing an example of a precision nozzle of the present invention.
  • FIG. 2 is a schematic cross-sectional view taken along line II of FIG.
  • FIG. 3 is a schematic cross-
  • FIG. 8 is a schematic process diagram for explaining the powder compaction step and the electric discharge machining step in the manufacturing method of the precision nozzle of the present invention.
  • FIG. 9 is a schematic process diagram for explaining the sintering step and the electric discharge machining step in the manufacturing method of the precision nozzle of the present invention.
  • FIG. 10 is a schematic process diagram for explaining the grinding step in the manufacturing method of the precision nozzle of the present invention.
  • FIG. 11 is a micrograph of the tip of the transfer mold (press pin) used in the examples.
  • FIG. 12 is a micrograph of the tip of the electrode used in the examples.
  • FIG. 13 is a micrograph of the tip of the precision nozzle taken immediately after the outlet of the through-hole in Example 1 was opened.
  • FIG. 14 is a micrograph of a cross section of the tip of the precision nozzle obtained in Example 1.
  • FIG. 15 is a microscope photograph of the tip of a precision nozzle in which the outlet of the through-hole is opened in Example 2.
  • FIG. 16 is a microscope photograph of the tip of the precision nozzle in which the outlet of the through-hole is opened in Example 3.
  • FIG. 17 is a microscope photograph of the tip of a precision nozzle in which the outlet of the through-hole is opened in Example 4.
  • FIG. 18 is a microscope photograph of the tip of a precision nozzle in which the outlet of the through-hole is opened in Example 5.
  • FIG. 19 is a microscope photograph of the tip of a precision nozzle in which the outlet of the through-hole is opened in Example 6.
  • FIG. 20 is a micrograph of the tip of a precision nozzle in Example 8, in which the outlet of the through-hole is open.
  • FIG. 21 is a micrograph of the tip of a precision nozzle in Example 9, in which the outlet of the through-hole
  • cemented carbide which is the material of the precision nozzle of the present invention is not particularly limited.
  • Representative cemented carbide alloys include alloys containing metal carbides of Groups 4 to 6 of the Periodic Table, and among them, alloys containing tungsten carbide (WC) (WC-based alloys) are widely used.
  • the WC-based alloy may be composed of WC as the main component and a binder component that forms a liquid phase upon sintering and forms a binder phase.
  • binding components include metals in Groups 8 to 10 of the periodic table, such as manganese (Mn), iron (Fe), cobalt (Co), and nickel (Ni). These binding components can be used alone or in combination of two or more. Of these, cobalt (Co) and/or nickel (Ni) are preferred, with cobalt (Co) being particularly preferred.
  • the proportion of the binding component may be 30 parts by mass or less per 100 parts by mass of tungsten carbide, preferably 0.5 to 25 parts by mass, and more preferably 1 to 20 parts by mass.
  • the WC-based alloy may further contain metal carbides (other metal carbides) other than the main components.
  • metal carbides include titanium carbide (TiC), niobium carbide (NbC), tantalum carbide (TaC), and chromium carbide ( Cr3C2 ). These other metal carbides can be used alone or in combination of two or more. Among these, TiC, TaC , and Cr3C2 are preferred.
  • the WC-based alloy may further contain metal elements (other metal elements) other than the bonding components.
  • metal elements include titanium (Ti), zirconium (Zr), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), and rhenium (Re). These other metal elements may be used alone or in combination of two or more. Of these, V and/or Cr are preferred.
  • the proportion of other metal elements may be 5 parts by mass or less per 100 parts by mass of the entire WC-based alloy, preferably 0.1 to 3 parts by mass, and more preferably 0.2 to 2 parts by mass.
  • the WC-based alloy may further contain a carbon source C (such as carbon black) and may contain other components that are inevitably mixed in.
  • a carbon source C such as carbon black
  • WC alloys examples include WC-Co alloys, WC-TiC-Co alloys, WC-TaC-Co alloys, WC-TiC-TaC-Co alloys, WC-Ni alloys, and WC-Ni-Cr alloys. Of these, WC-Co alloys are the most widely used.
  • the shape of the precision nozzle of the present invention is not particularly limited as long as it has a through hole that penetrates from the injection port to the discharge port, and the through hole has at least a tapered hole portion that extends from the discharge port toward the injection port in a direction in which the inner diameter increases.
  • the detailed shape of the nozzle of the present invention will be described below with reference to the drawings.
  • FIG. 1 is a schematic perspective view of an example of a precision nozzle of the present invention, and is a schematic cross-sectional view taken along line I-I in FIG. 2.
  • This precision nozzle 1 has a through hole 3 with a circular cross section that penetrates from a circular injection port 2 for injecting the discharged material to a circular discharge port 4 for discharging the discharged material, and this through hole 3 functions as a passage (or flow path) for passing the discharged material such as gas, liquid, or solid.
  • the through hole 3 has a tapered hole portion 3b that extends from the discharge port 4 toward the injection port 2 in a direction in which the inner diameter increases, and a cylindrical hole portion 3a that extends from the upstream end of the tapered hole portion 3b to the injection port 2 with approximately the same inner diameter.
  • the outer periphery corresponding to the tapered hole portion 3b is formed in a tapered shape toward the discharge port 4. Specifically, the inclination angle ⁇ of the tapered hole portion 3b (the angle between the nozzle axis and the inclined wall) is 10° with respect to the nozzle axis.
  • the aperture (diameter) ⁇ of the discharge port 4 opening at the tip of the tapered hole portion 3b is about 20 ⁇ m.
  • the aperture diameter ⁇ of the discharge port is about 40 ⁇ m at the smallest in thin nozzles, but in the conventional manufacturing method described in Patent Document 2, it was difficult to manufacture a precision nozzle with an aperture (or hole diameter) of less than 30 ⁇ m.
  • Patent Document 2 does not describe the details of the conventional manufacturing method, but when high precision is required to form a fine discharge port, in the conventional technology, a method of forming a fine discharge port is usually considered by performing electric discharge machining from the discharge port side toward the inside of the nozzle (from the opposite side of the injection port) on a sintered body having a hole portion corresponding to the inside of the nozzle. This is because, in order to form a fine discharge port by electric discharge machining, it is easy to form a shape corresponding to the shape of the electrode at the entrance of the machining, but it is difficult to maintain a uniform shape as the machining progresses.
  • the through-holes processed by such conventional methods have the shape described in the drawings of Patent Document 2, that is, through-holes having a cylindrical hole portion that starts from the discharge port and extends toward the injection port. Furthermore, if fine electrodes that bend easily are used, it is extremely difficult to align them with the injection port side, making it difficult to manufacture a high-precision nozzle.
  • the method of finally processing from the discharge port side to form a through hole cannot manufacture a precision nozzle having a tapered hole portion with a shape extending in a direction in which the inner diameter increases from the discharge port toward the injection port as shown in FIG. 1. Therefore, even in the precision nozzle obtained by the conventional method such as Patent Document 2, although a fine discharge port with a diameter of about 40 ⁇ m is formed, the shape of the hole portion extending from the discharge port is not a shape extending in a direction in which the inner diameter increases from the discharge port toward the injection port.
  • FIG 3 is a schematic cross-sectional view of a precision nozzle that is another example of the precision nozzle of the present invention.
  • This precision nozzle 11 also has a through hole 13 that penetrates from a circular injection port 12 to a circular discharge port 14, but the shape of the through hole 13 differs from the shape of the through hole 3 in Figures 1 and 2. That is, in this precision nozzle 11, the through hole 13 is formed only by a tapered hole portion that extends continuously from the discharge port 14 to the injection port 12 in a direction in which the inner diameter increases.
  • FIG. 4 is a schematic cross-sectional view of a precision nozzle that is another example of the precision nozzle of the present invention.
  • This precision nozzle 21 is an example in which the shape of the through hole 23 that penetrates from the circular inlet 22 to the circular outlet 24 is the same as that of the precision nozzle of FIG. 1, but differs in that the outer periphery of the nozzle 21 is cylindrical (columnar).
  • the precision nozzle of FIG. 1 is usually formed by the method of grinding the precision nozzle of FIG. 4.
  • FIG. 5 is a schematic cross-sectional view of a precision nozzle that is another example of the precision nozzle of the present invention.
  • This precision nozzle 31 has a through hole 33 that penetrates from a circular injection port 32 to a circular discharge port 34, and this through hole 33 consists of a first tapered hole portion 33b that extends from the discharge port 34 in a direction in which the inner diameter increases toward the injection port 32, and a second tapered hole portion 33a that extends from the upstream end of this first tapered hole portion 33b in a direction in which the inner diameter increases toward the injection port 32.
  • the inclination angle of the second tapered hole portion 33a is formed to be larger than the inclination angle of the first tapered hole portion 33b.
  • the cross-sectional shape (cross-sectional shape perpendicular to the length direction or axial direction) of the through hole (particularly the tapered hole portion) is not particularly limited, and examples include a circle, an ellipse, a polygon, and the like.
  • an anisotropic shape such as an ellipse or a rectangle may be used, but an isotropic shape such as a circle, a square, or a regular hexagon is preferred, with a circle being particularly preferred.
  • the method of the present invention combines a specific powder compaction process, an electric discharge machining process, and a grinding process, so that the circular shape of the discharge port can be formed into a circular shape with low circularity.
  • the circularity of the discharge port may be 5 ⁇ m or less (e.g., about 0.1 to 5 ⁇ m), preferably 4 ⁇ m or less (e.g., 0.3 to 4 ⁇ m), even more preferably 3 ⁇ m or less, even more preferably 1 ⁇ m or less, and most preferably 0.5 ⁇ m or less. If the circularity is too large, there is a risk that the function of the precision nozzle will be reduced.
  • the circularity of the outlet may be 0.3 times or less, preferably 0.2 times or less, and more preferably 0.1 times or less, relative to the diameter of the outlet, for example 0.001 to 0.3 times, preferably 0.005 to 0.25 times, more preferably 0.01 to 0.2 times, more preferably 0.03 to 0.15 times, and most preferably 0.05 to 0.1 times. If the ratio of circularity to the diameter is too large, there is a risk that the functionality of the precision nozzle will be reduced.
  • the roundness of the discharge port can be measured in accordance with JIS B 0621-1984, specifically, using an optical image measuring device (OGP's "Smart Scope ZIP-300").
  • the concentricity between the outer shape and the outlet may be 10 ⁇ m or less, preferably 8 ⁇ m or less, more preferably 7 ⁇ m or less, and more preferably 5 ⁇ m or less, for example 0.1 to 10 ⁇ m, preferably 0.3 to 8 ⁇ m, more preferably 0.5 to 7 ⁇ m, more preferably 1 to 6 ⁇ m, and most preferably 1.5 to 5 ⁇ m. If the concentricity is too large, the function of the precision nozzle may be reduced.
  • the concentricity is defined in JIS B 0021-1998, and specifically, can be measured using an optical image measuring device (OGP's "Smart Scope ZIP-300").
  • OGP's "Smart Scope ZIP-300” the concentricity refers to the deviation between the center of the circular shape of the outer shape and the center of the circular shape of the discharge port (the distance between the center of the outer circumference and the center of the inner circumference).
  • the precision nozzle of the present invention may have an outlet diameter ⁇ (hole diameter at the outlet on the downstream side of the tapered hole portion) of less than 45 ⁇ m, preferably less than 40 ⁇ m, more preferably less than 35 ⁇ m, and even more preferably less than 30 ⁇ m.
  • the outlet diameter ⁇ may be 1 ⁇ m or more.
  • the outlet diameter may be 25 ⁇ m or less (particularly 20 ⁇ m or less), for example, 1 to 25 ⁇ m, preferably 2 to 20 ⁇ m, more preferably 3 to 10 ⁇ m, and even more preferably 4 to 7 ⁇ m.
  • the aperture diameter ⁇ of the discharge port can be measured using an optical image measuring device (Smart Scope ZIP-300 manufactured by OGP) or the like.
  • the aperture diameter of the discharge port means the maximum diameter, which is the diameter for a circular shape and the major axis for a polygonal or anisotropic shape.
  • Figures 6 and 7 show the aperture diameter ⁇ of the discharge port in the precision nozzle of Figures 4 and 5.
  • the length L of the tapered hole in the nozzle axial direction may be 1 mm or more, or 30 mm or less. That is, the depth of the tapered hole can be selected from a range of about 1 to 30 mm, for example, 1 to 20 mm, preferably 2 to 10 mm, more preferably 2.5 to 8 mm, more preferably 3 to 5 mm, and most preferably 3.5 to 4.5 mm. If the depth of the tapered hole is too short, it may be difficult to manufacture a minute discharge port.
  • the length of the tapered hole in the nozzle axial direction means the shortest distance between the upstream opening of the tapered hole and the center of the discharge port.
  • Figures 6 and 7 show the depth L of the tapered hole in the precision nozzle of Figures 4 and 5.
  • the precision nozzle of the present invention is characterized in that the length of the tapered hole portion is greater than the diameter of the discharge port, and the precision nozzle is not thin-walled. It is difficult to form a precision nozzle with a tapered hole portion that is not thin-walled from a cemented carbide alloy, and in particular, a tapered hole portion with a discharge port diameter of less than 45 ⁇ m cannot be manufactured from a cemented carbide alloy by conventional machining, but when a precision nozzle is manufactured using the manufacturing method of the present invention, a tapered hole portion with a fine discharge port can be formed.
  • the depth L of the tapered hole portion is relatively large relative to the diameter ⁇ of the discharge port, and the tapered hole portion is not thin-walled.
  • the depth L of the tapered hole portion may be 10 times or more relative to the diameter ⁇ of the discharge port, for example, 30 times or more, preferably 50 times or more, further preferably 80 times or more, more preferably 100 times or more, and most preferably 200 times or more, for example, 50 to 10,000 times (particularly 100 to 1,000 times).
  • the inclination angle ⁇ of the tapered hole is, for example, 3 to 60°, preferably 4 to 50°, more preferably 5 to 30°, even more preferably 7 to 20°, and most preferably 8 to 15° relative to the nozzle axis. If the inclination angle ⁇ is too small, there is a risk that it will not function as a precision nozzle, such as a reflow nozzle that uses solder balls, and conversely, if it is too large, there is a risk that it will be difficult to form a fine discharge port.
  • the inner wall of the tapered hole has excellent smoothness.
  • the arithmetic mean roughness Ra of the inner wall surface of the tapered hole is, for example, 5 to 1000 ⁇ m, preferably 10 to 800 ⁇ m, further preferably 30 to 500 ⁇ m, even more preferably 50 to 300 ⁇ m, and most preferably 100 to 200 ⁇ m.
  • Figure 6 shows inner wall 21b in the precision nozzle of Figure 4
  • Figure 7 shows inner walls 31b and 31c in the precision nozzle of Figure 5.
  • the tip surface (downstream tip surface) of the outlet of the precision nozzle of the present invention is also obtained through a grinding process as described below, and therefore has excellent smoothness.
  • the arithmetic mean roughness Ra of the tip surface (ground surface) of the outlet is, for example, 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m, further preferably 8 to 40 ⁇ m, even more preferably 10 to 30 ⁇ m, and most preferably 15 to 25 ⁇ m.
  • Figure 6 shows tip surface 21a of the outlet of the precision nozzle of Figure 4
  • Figure 7 shows tip surface 31a of the outlet of the precision nozzle of Figure 5.
  • the arithmetic mean roughness Ra of the inner wall surface of the tapered hole and the tip surface of the discharge port can be measured by a method conforming to JIS B 0601-2001, specifically, using a contour/shape measuring instrument ("Surfcom 2600G-13" manufactured by Tokyo Seimitsu Co., Ltd.).
  • the shape of the through hole of the precision nozzle of the present invention is not particularly limited as long as it includes the tapered hole portion, and the shape of the hole upstream of the tapered hole portion is not limited and can be appropriately selected according to the application and the type of the object to be discharged. Therefore, in addition to the shape shown in FIG. 1 or FIG. 2, the shape of the through hole may be, for example, a shape that combines the tapered hole portion with another tapered hole portion, a shape that combines the tapered hole portion with multiple other tapered hole portions, a shape that combines the tapered hole portion with a non-tapered hole portion (particularly a cylindrical hole portion) and another tapered hole portion, etc.
  • the non-tapered hole portion is not particularly limited as long as it has a shape corresponding to the tapered hole portion, and examples include cylindrical holes as well as non-tapered holes whose internal shape is an elliptical cylinder or polygonal cylinder.
  • the inner diameter of the flow path of the non-tapered hole portion is, for example, 0.5 to 10 mm, preferably 0.8 to 5 mm, more preferably 1 to 3 mm, and even more preferably 1.2 to 2 mm.
  • the method for manufacturing a precision nozzle of the present invention includes a powder compacting step in which a raw material powder is compression-molded using a transfer mold for forming the through hole of the nozzle to obtain a molded body having an opening portion corresponding to the injection port and a hole portion that does not pass through.
  • the raw material powder can be appropriately selected depending on the type of cemented carbide, and usually, the components of the cemented carbide are used in the form of particles. In the case of a WC-based alloy, in addition to binder particles, other metal carbide particles and other metal particles are used as the raw material powder as necessary.
  • the average particle size of the WC particles is, for example, 0.1 to 15 ⁇ m, preferably 0.12 to 12 ⁇ m, and more preferably 0.2 to 10 ⁇ m.
  • the average particle size of the binder component particles is not particularly limited since they melt to form a binder phase, but is, for example, 0.1 to 5 ⁇ m, preferably 0.5 to 3 ⁇ m, and more preferably 1 to 2.5 ⁇ m.
  • the average particle size of the other metal carbide particles and the other metal particles is, for example, 0.1 to 5 ⁇ m, preferably 0.5 to 3 ⁇ m, and more preferably 1 to 2.5 ⁇ m.
  • the amount of these WC-based alloy raw powders used is the same as the ratio of the components in the aforementioned cemented carbide alloy.
  • a binder in addition to these raw material powders, a binder may be mixed.
  • a binder a binder that can be removed by heating during the pre-sintering or sintering process is preferable.
  • binders include linear or branched aliphatic hydrocarbons such as paraffin, wax, or wax, and polyethylene glycol. These binders may be in a particulate form. Furthermore, these binders may be mixed with alcohols such as ethanol and/or benzines.
  • the proportion of binder may be 20 parts by mass or less per 100 parts by mass of raw material powder, preferably 0.1 to 10 parts by mass, and more preferably 0.2 to 7 parts by mass.
  • compression molding In the compression molding of the raw material powder, by using a transfer mold to form the through hole of the nozzle, it is possible to obtain a molded body (powder molded body) that has an opening corresponding to the injection port and also has a hole portion that does not pass through (corresponding to a so-called "pilot hole”).
  • raw material powder 41 for forming a cemented carbide is filled into a cylindrical mold such as a cylinder formed by a die 42 and a lower punch 43 [FIG. 8(a)].
  • a press pin 45 which is a transfer mold, is inserted into the cylindrical mold to pressurize the raw material powder 41, so that the press pin 45 penetrates into the filled raw material powder 41, and the shape of the press pin 45 is transferred to the molded body (or powder compact) of the raw material powder 41 [FIG. 8(b)].
  • the powder compact of the raw material powder 41 is removed from the cylindrical mold, and a cylindrical powder compact 46 having the hole is obtained [FIG. 8(c)].
  • the press pin 45 which is a transfer mold, has a cylindrical shape with a conical tip.
  • the press pin 45 having the above shape is inserted from the tip of the cone while applying pressure to the raw material powder 41 filled in a die, thereby compacting the raw material powder 41 and transferring the shape of the press pin 45, which is a transfer mold, to the powder compact of the raw material powder 41 as the shape of the hole.
  • the hole formed in this way is different from the through hole of the desired nozzle, and by forming it as a hole that does not penetrate the powder compact, a tiny discharge port can be formed at the tip of the bottom of the hole by a process combined with the die-sinking electric discharge machining process and grinding process described below.
  • the shape of the transfer mold is not particularly limited as long as it has an opening corresponding to the injection port and can transfer a powder molding having a non-penetrating hole.
  • a minute discharge port can be formed by grinding from the opposite side of the opening in the grinding process described below.
  • the tip shape (bottom shape) of the hole a tapered minute shape, a discharge port with a minute aperture can be easily formed.
  • the shape of such a transfer mold only needs to correspond to the shape of the through hole, and it is preferable that the shape of the tapered portion corresponding to the tapered hole portion is conical in order to easily form a minute discharge port.
  • the shape of the transfer mold only the shape of the portion corresponding to the tapered hole portion of the shape corresponding to the shape of the through hole may be a shape that approximately corresponds to the shape of the through hole, but does not correspond completely (the tapered hole portion may be a cone shape with the tip extending from the discharge port).
  • the conical portion of the transfer mold may also be formed to have the same taper angle as the tapered hole portion of the precision nozzle described above, making it easy to form a minute discharge port.
  • the shape of the transfer mold may be formed to be slightly larger than the shape of the through hole depending on the shrinkage rate.
  • the tip diameter of the conical portion of the transfer mold is preferably small so that it is easy to form a minute discharge port of the precision nozzle.
  • the tip diameter can be selected according to the target diameter of the discharge port, but may be, for example, 10 ⁇ m or less (e.g., 1 to 10 ⁇ m), preferably 7 ⁇ m or less (e.g., 2 to 7 ⁇ m), and more preferably 5 ⁇ m or less (e.g., 3 to 5 ⁇ m). If the tip diameter is too large, it may be difficult to easily manufacture a precision nozzle with a minute discharge port diameter.
  • the molding pressure for compression molding is, for example, 50 to 300 MPa, preferably 100 to 250 MPa, and more preferably 150 to 200 MPa.
  • the method for manufacturing a precision nozzle of the present invention further includes a sintering step of sintering the powder compact obtained in the powder compacting step to obtain a sintered body having an opening portion corresponding to the injection port and a hole portion that does not pass through.
  • the binder particles are melted to form a liquid phase, thereby obtaining a sintered body in which the powder compact is densified and integrated.
  • the powder compact may be pre-sintered (preliminary sintered) by heating it at a lower temperature than the main sintering as a preliminary process prior to the main sintering in which the binder particles are melted. If the powder compact contains a binder, the binder may be removed by pre-sintering.
  • the pre-sintering temperature is, for example, 100 to 1000°C, preferably 300 to 900°C, and more preferably 500 to 800°C.
  • the pre-sintering pressure may be either normal pressure or reduced pressure, but reduced pressure is preferred.
  • the pre-sintering time is, for example, 2 to 48 hours, preferably 4 to 12 hours, and more preferably 6 to 10 hours.
  • the temperature of this sintering is, for example, 1200 to 1600°C, preferably 1250 to 1550°C, and more preferably 1300 to 1500°C.
  • the pressure of this sintering may be normal pressure or reduced pressure (or vacuum), or normal pressure or pressurized pressure.
  • the time of this sintering is, for example, 1 to 48 hours, preferably 2 to 24 hours, and more preferably 3 to 20 hours.
  • the method for manufacturing a precision nozzle of the present invention further includes an electric discharge machining step (die sinking electric discharge machining step) in which an electrode is inserted into the hole of the sintered body to perform electric discharge machining.
  • the powder compact obtained in the powder compacting process is densified by sintering to produce a sintered body that is close to the desired precision nozzle (near net shape) by utilizing a transfer mold and shrinkage ratio.
  • a precision nozzle with a minute discharge port can be manufactured by further finishing the shape to a shape close to the through hole of the desired precision nozzle by die-sinking electric discharge machining.
  • the present invention by using a specific electrode in the die-sinking electric discharge machining process, it is possible to manufacture a discharge port with a diameter of less than 30 ⁇ m with high precision through the grinding process described below, and it is also possible to manufacture a discharge port with a diameter of 20 ⁇ m or less that could not be manufactured by conventional manufacturing methods.
  • the effect of near-net shaping with a transfer mold is that the electrode wear in die-sinking electric discharge machining is small, which improves precision machining accuracy and reduces costs.
  • the electrode 48 also has a shape corresponding to the press pin 45 in the powder compacting process, and is a cylinder with a conical tip.
  • an electrode 48 having such a conical shape is used to transfer the shape of the electrode, so that the hole 47a of the sintered body 47 is made closer to the shape of the through-hole of the desired precision nozzle, and it also becomes easier to form a minute discharge port in the grinding process described below.
  • the shape of the electrode is preferably a shape corresponding to the through hole, since the desired through hole shape can be easily formed, and is preferably a shape that corresponds to the shape of the through hole and has a conical tapered portion corresponding to the tapered hole portion, since a minute discharge port can be easily opened in the grinding process described later. That is, in the shape of the electrode, only the shape of the portion corresponding to the tapered hole portion, among the shapes corresponding to the shape of the through hole, may be a shape that approximately corresponds to the shape of the through hole, but does not correspond completely (the tapered hole portion may be a cone shape with the tip extending from the discharge port). Therefore, it is preferable that the taper angle of the conical portion of the electrode is the same as the taper angle of the tapered hole portion of the precision nozzle described above.
  • the conical portion of the electrode preferably has a small tip diameter so that it is easy to form a minute discharge port of the precision nozzle.
  • the tip diameter can be selected according to the intended diameter of the discharge port, but may be, for example, 10 ⁇ m or less (e.g., 1 to 10 ⁇ m), preferably 7 ⁇ m or less (e.g., 2 to 7 ⁇ m), and more preferably 5 ⁇ m or less (e.g., 3 to 5 ⁇ m). If the tip diameter is too large, it may be difficult to easily manufacture a precision nozzle with a minute discharge port diameter.
  • the electrode material preferably contains tungsten (W), more preferably tungsten alone or an alloy of tungsten with another metal (e.g., an alloy of tungsten and copper), and most preferably tungsten alone.
  • W tungsten
  • another metal e.g., an alloy of tungsten and copper
  • the gap (discharge gap) between the electrode and the hole is, for example, 10 to 30 ⁇ m, preferably 10 to 20 ⁇ m, and more preferably 5 to 10 ⁇ m.
  • the manufacturing method of the precision nozzle of the present invention includes a grinding step in which the sintered body processed by the die sinking discharge machining is ground from the opposite side of the opening serving as the injection port to open a discharge port.
  • a hole having a shape corresponding to the through hole of the precision nozzle is formed inside the sintered body obtained by the die sinking discharge step, but the tip of the cone corresponding to the bottom of the hole does not penetrate the sintered body. Therefore, in the grinding step, the sintered body is ground up to the tip of the cone serving as the hole to open a discharge port.
  • a conventional grinding method can be used as the grinding method, for example, a grinding machine (such as a surface grinder) equipped with a disc-shaped grinding wheel can be used.
  • a grinding machine such as a surface grinder
  • a disc-shaped grinding wheel can be used.
  • the method for checking the presence or absence of holes that serve as discharge ports and their diameter is not particularly limited, and examples include a method of checking by passing gas or liquid through the holes, and a method of checking by images using a camera. Of these, the method of checking by images using a camera is preferred from the standpoint of simplicity, etc.
  • the grinding process employs a method of confirming the grinding surface by an image captured by a camera, as described below with reference to FIG. 10.
  • the sintered body 47 obtained in the die-sinking discharge machining process is ground on the surface of the sintered body 47 by rotating and moving the disk-shaped grinding wheel using a grinding machine 49 equipped with a disk-shaped grinding wheel [FIG. 10(a)], and the surface is ground for a predetermined time from the opposite side (back side) of the opening that serves as the injection port, and the image of the ground surface is confirmed with a camera 50 [FIG. 10(b)]. If no hole is confirmed on the ground surface as a result of the image confirmation, grinding is repeated for a predetermined time and/or a predetermined distance until the hole is confirmed.
  • the aperture is measured with a measuring device, and if the target outlet diameter is not reached, grinding is repeated for a predetermined time and/or a predetermined distance until the target aperture is confirmed, thereby manufacturing a precision nozzle 51 having the target outlet.
  • the peripheral speed of the disc-shaped grinding wheel is, for example, 15 to 35 m/s, preferably 20 to 30 m/s, and more preferably about 24 to 28 m/s.
  • the rotational speed of the rotating shaft for rotating the disc-shaped grinding wheel is, for example, 1400 to 2600 rpm, preferably 1600 to 2400 rpm, and more preferably 1800 to 2200 rpm. If the speed is too low, there is a risk of reduced productivity, and conversely, if it is too high, there is a risk that it will be difficult to adjust the diameter of the discharge port.
  • any conventional grinding wheel can be used, such as diamond-resin (SDC)-based grinding wheels and diamond-resin (SD)-based grinding wheels.
  • SDC diamond-resin
  • SD diamond-resin
  • the size of the abrasive grains is, for example, #170 to #2000, preferably #200 to #1800, and more preferably #325 to #1500. If the grain size is too small, there is a risk of reduced productivity, and conversely, if it is too large, there is a risk that it will be difficult to adjust the diameter of the discharge port.
  • CCD cameras digital cameras
  • CMOS cameras laser cameras
  • thermal imaging cameras thermal imaging cameras
  • stereo vision cameras can be used.
  • CCD cameras are preferred due to their high image processing accuracy.
  • the method for checking the holes and their diameters on the grinding surface is not particularly limited, and may involve visually observing the image on a monitor, or the data read by image processing may be analyzed by an information analysis device (such as a personal computer) and correlated with the grinding speed to control the hole diameter to a specified value.
  • an information analysis device such as a personal computer
  • the precision nozzle obtained through the grinding process may be a nozzle for discharging various fluids, such as heated or unheated fluids.
  • the heated fluid may be a heated and melted fluid (for example, solder cream produced by injecting solder balls from an injection port and melting the solder balls inside the hole by heating means such as laser irradiation).
  • Example 1 [Press pin creation] Using an optical profile grinder, a pin with a sharp edge with almost no straight land at the tip was produced by profile grinding (PG) a cemented carbide alloy. A micrograph of the tip of the obtained press pin (transfer mold) is shown in Figure 11. The tip diameter of the press pin was 5 ⁇ m.
  • the depth L of the tapered hole portion of the obtained precision nozzle was 4240 ⁇ m, and the depth of the tapered hole portion relative to the diameter ⁇ of the discharge port (aspect ratio L/ ⁇ ) was 848.
  • the inclination angle ⁇ of the tapered hole portion was 10°.
  • Figure 14 shows a micrograph of the cross section of the tip of the precision nozzle obtained. It was tapered towards the outlet, and the diameter of the outlet was ⁇ 20 ⁇ m. The arithmetic mean roughness Ra of the tapered inner wall surface was 128 ⁇ m, and the arithmetic mean roughness Ra of the tip surface was 20 ⁇ m.
  • Example 2 A sintered body was produced by electrical discharge machining in the same manner as in Example 1, and the timing and frequency of checking the image of the ground surface in the grinding process were changed, and ultimately a precision nozzle with an outlet diameter ⁇ of 39.1 ⁇ m was produced. The diameter and the depth of the tapered hole were measured at each checking time, the aspect ratio was calculated, and the roundness of the outlet was measured. The results are shown in Table 1. Note that for the first and last checked grinding surfaces, the concentricity of the precision nozzle tip (the concentricity between the outer shape of the precision nozzle at the outlet and the outlet) was also evaluated.
  • FIG. 15 shows a microscopic photograph of the cross section of the tip of the precision nozzle obtained in the second confirmation. It can be seen that a circular outlet has been formed in the center of the photograph.
  • Example 3 A sintered body was produced by electrical discharge machining in the same manner as in Example 1, and the timing and frequency of checking the image of the ground surface in the grinding process were changed, and ultimately a precision nozzle with an outlet diameter ⁇ of 39.5 ⁇ m was produced. The diameter and the depth of the tapered hole at each checking timing were measured to calculate the aspect ratio, and the roundness of the outlet was measured. The results are shown in Table 2.
  • FIG. 16 shows a micrograph of the cross section of the tip of the precision nozzle obtained in the second confirmation. It can be seen that a circular outlet has been formed in the center of the photograph.
  • Example 4 A sintered body was produced by electrical discharge machining in the same manner as in Example 1, and the timing and frequency of checking the image of the ground surface in the grinding process were changed, and ultimately a precision nozzle with an outlet diameter ⁇ of 39.3 ⁇ m was produced. The diameter and the depth of the tapered hole at each checking time were measured to calculate the aspect ratio, and the results of measuring the roundness of the outlet are shown in Table 3. Note that the concentricity of the tip of the precision nozzle was also evaluated for the last checked ground surface.
  • FIG. 17 shows a micrograph of the cross section of the tip of the precision nozzle obtained in the final confirmation. It can be seen that a circular outlet has been formed in the center of the photograph.
  • Example 5 A sintered body was produced by electrical discharge machining in the same manner as in Example 1, and the timing and frequency of checking the image of the ground surface in the grinding process were changed, and ultimately a precision nozzle with an outlet diameter ⁇ of 39.2 ⁇ m was produced. The diameter and the depth of the tapered hole at each checking time were measured to calculate the aspect ratio, and the results of measuring the roundness of the outlet are shown in Table 4. The concentricity of the tip of the precision nozzle was also evaluated for the last checked ground surface.
  • FIG. 18 shows a micrograph of the cross section of the tip of the precision nozzle obtained in the final confirmation. It can be seen that a circular outlet has been formed in the center of the photograph.
  • Example 6 A sintered body was produced by electric discharge machining in the same manner as in Example 1, except that finishing processing was added multiple times during electric discharge machining. Using a grinding machine equipped with a disk-shaped grinding wheel, the electric discharge machined sintered body was processed while checking the ground surface with an image using a CCD camera in the grinding process. The aperture and the depth of the tapered hole at each confirmation time were measured to calculate the aspect ratio, and the results of measuring the circularity of the discharge port are shown in Table 5. The concentricity of the precision nozzle tip was also evaluated for the ground surfaces confirmed first and last.
  • FIG. 19 shows a micrograph of the cross section of the tip of the precision nozzle obtained in the final confirmation. It can be seen that a circular outlet has been formed in the center of the photograph.
  • Example 7 A sintered body was produced by electrical discharge machining in the same manner as in Example 6, and this sintered body was used to produce a precision nozzle with an outlet diameter ⁇ of 42.5 ⁇ m by changing the timing of checking the image of the ground surface in the grinding process.
  • the tapered hole depth L of the precision nozzle obtained was 4133 ⁇ m, and the aspect ratio L/ ⁇ of the tapered hole depth to the outlet diameter ⁇ was 97.
  • the circularity of the outlet was 0.8 ⁇ m, and the concentricity of the tip of the precision nozzle was 3 ⁇ m.
  • Example 8 A sintered body was produced by electrical discharge machining in the same manner as in Example 6, and the timing and frequency of checking the image of the ground surface in the grinding process were changed to finally produce a precision nozzle with an outlet diameter ⁇ of 39.9 ⁇ m. The diameter and the depth of the tapered hole were measured at each checking timing to calculate the aspect ratio, and the circularity of the outlet and the concentricity of the precision nozzle tip were measured, and the results are shown in Table 6.
  • Figure 20 shows a microscopic photograph of the cross section of the tip of the precision nozzle obtained in the final confirmation. It can be seen that a circular outlet has been formed in the center of the photograph.
  • Example 9 A sintered body was produced by electric discharge machining in the same manner as in Example 1, except that finer powdered tungsten carbide WC (average particle size about 0.8 ⁇ m) was used as the powdered tungsten carbide WC in the powder compacting process.
  • a grinding machine equipped with a disk-shaped grinding wheel was used to process the sintered body by electric discharge machining while checking the ground surface with an image using a CCD camera. The results of measuring the aperture diameter ⁇ and the depth L of the tapered hole at each confirmation time and calculating the aspect ratio are shown in Table 7.
  • the concentricity of the precision nozzle tip was also evaluated, for the fifth confirmed ground surface, the roundness of the discharge port was also evaluated, and for the first and last confirmed ground surfaces, the roundness of the discharge port and the concentricity of the precision nozzle tip were also evaluated.
  • FIG. 21 shows a micrograph of the cross section of the tip of the precision nozzle obtained in the final confirmation. It can be seen that a circular outlet has been formed in the center of the photograph.
  • Example 10 A precision nozzle having a discharge port with a diameter of ⁇ 5 ⁇ m (roundness 0.4 ⁇ m) was obtained in the same manner as in Example 1, except that finishing processing was performed multiple times during the electric discharge processing.
  • the precision nozzle of the present invention can be used as various precision nozzles with fine nozzle openings.
  • it can be used as a reflow nozzle, suction nozzle, solder jetting nozzle, etc., as a nozzle for electronic components used in assembling tiny components and mounting them on a board during the manufacturing process of conductor devices, and is particularly suitable as a reflow nozzle for melting and discharging solder balls.
  • Nozzle 2 Inlet 3: Through hole 3a: Cylindrical hole 3b: Tapered hole 4: Discharge port

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Powder Metallurgy (AREA)
  • Nozzles (AREA)

Abstract

[Problem] To efficiently manufacture a precision nozzle using cemented carbide. This precision nozzle is manufactured through a powder compaction molding step for compression molding a raw material powder by using a transfer mold for forming a through hole to obtain a molded body having an opening corresponding to an injection port and a non-penetrating hole, a sintering step for sintering the molded body to obtain a sintered body having an opening corresponding to an injection port and a non-penetrating hole, a discharge machining step for discharge-machining the hole of the sintered body by using an electrode, and a grinding step for grinding the discharge-machined sintered body from the opposite side of the opening that will become the injection port and opening a discharge port. The obtained precision nozzle 1 is made of cemented carbide and has a through hole 3 penetrating from an injection port 2 to a discharge port 4, the through hole 3 including at least a tapered hole portion 3b extending in a direction in which the inner diameter increases toward the injection port 2 starting from the discharge port 4.

Description

精密ノズルおよびその製造方法Precision nozzle and method of manufacturing same
 本発明は、電子部品の分野などで利用される微小孔径の精密ノズルおよびその製造方法に関する。 The present invention relates to precision nozzles with minute apertures that are used in fields such as electronic components, and to a method for manufacturing the same.
 近年の技術革新による電子機器の小型化に伴って、スマートフォン、タブレット型パーソナルコンピュータ(PC)、ゲーム機器、マザーボード、デジタルカメラなどに搭載される電子部品の分野では、半導体デバイスにおいて、半導体素子や集積回路の微細化や高密度化が進行している。このような半導体デバイスの製造過程において、微小部品の組み立てや基板上での実装などに利用されるノズルとして、リフローノズル、吸着ノズル、ソルダージェッティングノズルなどが知られており、いずれのノズルも微小な吐出孔または吸着孔を有する精密ノズルである。例えば、リフローノズルとしては、直径40μm程度の半田ボール(半田球)にレーザーを照射して溶融することにより、基板上に溶融した半田(半田クリーム)を供給するノズルも利用されている。そのため、このようなリフローノズルでは、半田ボールを吐出口に一時的に滞留させるために、吐出口の孔径も半田ボールの直径と同程度の微小孔径に調整する必要がある。さらに、リフローノズルなどの精密ノズルでは、正確に位置決めする必要があるため、流路形状にも精密さが要求される。そのため、リフローノズルなどの精密ノズルでは、高度な精密加工が必要となる。特に、リフローノズルでは耐久性も要求されるため、超硬合金で製造されているが、超硬合金は硬質であり、加工が困難であるため、精密加工の加工効率が低い。そのため、従来の技術では、リフローノズルなどの精密ノズルを効率良く製造するのは困難であった。  In the field of electronic components mounted on smartphones, tablet-type personal computers (PCs), game devices, motherboards, digital cameras, etc., due to the miniaturization of electronic devices caused by technological innovation in recent years, semiconductor elements and integrated circuits in semiconductor devices are becoming finer and denser. In the manufacturing process of such semiconductor devices, reflow nozzles, suction nozzles, solder jetting nozzles, etc. are known as nozzles used for assembling micro-components and mounting on a substrate, and all of these nozzles are precision nozzles with minute discharge or suction holes. For example, as a reflow nozzle, a nozzle that supplies molten solder (solder cream) onto a substrate by irradiating a solder ball (solder ball) with a diameter of about 40 μm with a laser to melt the solder ball is also used. Therefore, in such a reflow nozzle, in order to temporarily retain the solder ball at the discharge port, the hole diameter of the discharge port must be adjusted to a minute hole diameter equivalent to the diameter of the solder ball. Furthermore, precision nozzles such as reflow nozzles require accurate positioning, so the flow path shape also requires precision. Therefore, precision nozzles such as reflow nozzles require highly precise processing. In particular, reflow nozzles require durability, so they are manufactured from cemented carbide. However, cemented carbide is hard and difficult to machine, so the processing efficiency of precision machining is low. For this reason, it has been difficult to efficiently manufacture precision nozzles such as reflow nozzles using conventional technology.
 特開2022-85914号公報(特許文献1)には、電子部品の実装に必要となる接着剤を吐出する電子部品接着用ノズルとして、超硬合金で形成され、かつ直径50μm以下の吐出口を有する吐出用貫通孔が形成された先端部と、この先端部に接着剤を供給するための内部空間を有する本体部とからなるノズルが開示されている。 JP 2022-85914 A (Patent Document 1) discloses a nozzle for bonding electronic components that dispenses adhesive required for mounting electronic components. The nozzle is made of cemented carbide and has a tip portion formed with a through hole for discharging the adhesive with a diameter of 50 μm or less, and a main body portion having an internal space for supplying adhesive to the tip portion.
 特開2022-89371号公報(特許文献2)には、電子部品の実装に必要となる接着剤を吐出する電子部品接着用ノズルとして、超硬合金で形成され、かつ直径50μm以下の吐出口を有する吐出用貫通孔と、この吐出用貫通孔に接着剤を供給するための内部空間とからなる本体部を備えたノズルが開示されている。 JP 2022-89371 A (Patent Document 2) discloses a nozzle for bonding electronic components that dispenses adhesive required for mounting electronic components. The nozzle is made of cemented carbide and has a main body that includes a discharge through hole with a discharge port having a diameter of 50 μm or less and an internal space for supplying adhesive to the discharge through hole.
 特許文献1および2には、接着剤を微細な量および吐出径で吐出され易くするために、吐出用貫通孔の吐出口の直径が注入口の直径よりも小さいノズルが記載されており、図面には、注入口から下流方向に向かって次第に内径が小さくなる流路と、この流路から吐出口に向かって同一の内径を有する流路(ストレート流路)との2段階の流路形状を有するノズルが記載されている。また、特許文献1および2には、吐出口の直径について、高密度実装に適した接着剤の吐出が可能である点などから、30μm以下が好適であると記載されている。 Patent documents 1 and 2 describe a nozzle in which the diameter of the discharge port of the discharge through hole is smaller than the diameter of the injection port to facilitate the discharge of a fine amount of adhesive with a fine discharge diameter, and the drawings show a nozzle with a two-stage flow path shape, with a flow path whose inner diameter gradually decreases from the injection port toward the downstream direction, and a flow path (straight flow path) that has the same inner diameter from this flow path toward the discharge port. Patent documents 1 and 2 also describe that a diameter of 30 μm or less is preferable for the discharge port because it makes it possible to discharge adhesive suitable for high-density mounting.
 また、特許文献1および2には、吐出用貫通孔には内径、吐出軸の高い精度が求められるため、吐出用貫通孔の形成方法としては、所定位置を穿孔して形成する方法、張り合わせで形成する方法、型加工で形成する方法が利用できることが記載されている。 Patent documents 1 and 2 also state that, because high precision is required for the inner diameter and the discharge axis of the discharge through hole, the method of forming the discharge through hole can be a method of forming it by drilling a hole at a specified position, a method of forming it by laminating, or a method of forming it by molding.
 さらに、特許文献1および2には、本体部や先端部を金属粉体の焼結体で形成する場合は、高い精度で吐出用貫通孔を形成する方法として、焼結体とする際に、吐出用貫通孔を設ける方法、焼結体となった後で、穿孔などにより吐出用貫通孔を形成する方法が記載されている。 Furthermore, Patent Documents 1 and 2 describe methods for forming ejection through holes with high precision when the main body and tip are formed from a sintered body of metal powder, including a method of providing ejection through holes when forming the sintered body, and a method of forming ejection through holes by drilling or the like after the sintered body has been formed.
 一方、特開2022-22419号公報(特許文献3)には、穿孔する穴径より大きい径の放電電極を用い、放電電極をプラス、工作物をマイナスとし、穿孔する穴径より大きい径の放電電極を回転させながら送り速度30~200μm/sで送り、放電電極が消耗しながら工作物に穴を形成することを特徴とする放電加工方法が開示されている。 On the other hand, Japanese Patent Application Laid-Open No. 2022-22419 (Patent Document 3) discloses an electric discharge machining method characterized by using an electric discharge electrode with a diameter larger than the diameter of the hole to be drilled, with the electric discharge electrode being positive and the workpiece being negative, and feeding the electric discharge electrode with a diameter larger than the diameter of the hole to be drilled at a feed rate of 30 to 200 μm/s while rotating, forming a hole in the workpiece as the electric discharge electrode wears away.
特開2022-85914号公報JP 2022-85914 A 特開2022-89371号公報JP 2022-89371 A 特開2022-22419号公報JP 2022-22419 A
 しかし、特許文献1および2に記載されているノズルの製造方法では、超硬合金で精密ノズルを効率良く製造することは困難である。特に、超硬合金で吐出口の口径が45μm未満(特に30μm未満)である精密ノズルでは、製造すること自体が極めて困難であるが、特許文献1および2には、具体的な製造方法は記載されておらず、実際に製造されたノズルの吐出口の口径についても記載されていない。 However, using the nozzle manufacturing methods described in Patent Documents 1 and 2, it is difficult to efficiently manufacture precision nozzles using cemented carbide. In particular, manufacturing a precision nozzle using cemented carbide with an outlet diameter of less than 45 μm (particularly less than 30 μm) is extremely difficult, but Patent Documents 1 and 2 do not describe a specific manufacturing method, nor do they describe the outlet diameter of nozzles that have actually been manufactured.
 なお、特許文献2のノズルでは、接着剤を噴射するためか、吐出口に連なる流路はストレート状に形成されているが、用途によってはテーパ状が要求される場合もある。例えば、半田ボールを利用するリフローノズルでは、半田クリームを円滑に吐出するために、吐出口に連なる流路はテーパ状に形成されることも要求される。 In the nozzle of Patent Document 2, the flow path connected to the discharge port is formed in a straight shape, probably because the adhesive is sprayed, but a tapered shape may be required depending on the application. For example, in a reflow nozzle that uses solder balls, the flow path connected to the discharge port is required to be formed in a tapered shape in order to smoothly discharge the solder cream.
 また、特許文献2では、微細な直径の吐出用貫通孔を形成するために機械加工で穿孔すると実現容易となることが記載されている。穴をあける場合の機械加工として一般的な加工方法はドリル加工であるが、超硬合金の加工では材料硬度が高く、一般的な工具では加工が困難であるため、放電加工を選択されることが大半である。比較的新しい加工方法として超硬合金のような高硬度材に特化した専用工具とその工具を高速回転させることができる特殊な加工機を用いた加工方法で微細な穴を加工することができる。しかし、この方法で直径が40μm程度の微細な穴を加工する場合、用いられるドリルが刃の強度を保持するためには、刃長を短くせざるを得ない。微細な直径を有するドリル刃の刃長が長くなると、製造時または使用時にドリルの刃が折れるためである。市販品の中で超硬合金に対して前記のような特殊な微細加工が可能なドリルとしては、ファインセラミック用極小径ドリル(オーエスジー(株)製「UVM-CERA(特殊品)」)が挙げられる。しかし、この極小径ドリルでは、ドリル刃の直径に応じてドリル刃の長さが選択されており、ドリル刃の直径が40μmの場合、ドリル刃の長さは0.4mmである。直径40μm程度の微細径で長さが0.4mmを超える細長形状では、ドリル刃としての強度を保持できないためである。従って、特許文献2に記載されている機械加工では、0.5mmを超えるような厚みを有する超硬合金に対して孔径40μm程度の微細な貫通孔を形成することはできない。 Also, Patent Document 2 describes that drilling by machining is easy to achieve in order to form a fine diameter discharge through hole. A common machining method for drilling holes is drilling, but when machining cemented carbide, the material hardness is high and machining with common tools is difficult, so electric discharge machining is mostly chosen. A relatively new machining method is a machining method that uses a dedicated tool specialized for high hardness materials such as cemented carbide and a special machining machine that can rotate the tool at high speed to machine fine holes. However, when machining a fine hole with a diameter of about 40 μm with this method, the blade length of the drill used must be shortened in order to maintain the strength of the blade. This is because if the blade length of a drill blade with a fine diameter becomes long, the drill blade will break during manufacturing or use. Among commercially available drills that can perform the above-mentioned special fine machining of cemented carbide, there is an extremely small diameter drill for fine ceramics ("UVM-CERA (special product)" manufactured by OSG Corporation). However, in this extremely small diameter drill, the length of the drill bit is selected according to the diameter of the drill bit, and when the diameter of the drill bit is 40 μm, the length of the drill bit is 0.4 mm. This is because a slender shape with a fine diameter of about 40 μm and a length of more than 0.4 mm cannot maintain its strength as a drill bit. Therefore, the machining process described in Patent Document 2 cannot form a fine through hole with a diameter of about 40 μm in a cemented carbide alloy having a thickness of more than 0.5 mm.
 さらに、特許文献3の放電加工方法では、放電電極の制御が煩雑であり、生産性が低い上に、製造過程で電極の形状が変化するため、精密ノズルの製造には向いていない。さらに、この方法でも、吐出口の口径が45μm未満である精密ノズルは製造できなかった。 Furthermore, the electric discharge machining method of Patent Document 3 requires complicated control of the discharge electrode, which results in low productivity, and the shape of the electrode changes during the manufacturing process, making it unsuitable for manufacturing precision nozzles. Furthermore, even with this method, it was not possible to manufacture precision nozzles with an outlet diameter of less than 45 μm.
 従って、本発明の目的は、超硬合金で効率良く精密ノズルを製造することにある。 The object of the present invention is therefore to efficiently manufacture precision nozzles using cemented carbide.
 本発明の他の目的は、生産性が高く、吐出口の口径が45μm未満であり、かつ薄肉でないテーパ状孔部を有する新規な超硬合金製精密ノズルおよびその製造方法を提供することにある。 Another object of the present invention is to provide a new precision nozzle made of cemented carbide that is highly productive, has a discharge port diameter of less than 45 μm, and has a tapered hole that is not thin-walled, and a method for manufacturing the same.
 本発明者等は、前記課題を達成するため鋭意検討した結果、吐出口を起点として注入口に向かって内径が増大する方向に延びるテーパ状孔路を含む超硬合金製精密ノズルの製造方法において、前記貫通孔を形成するための転写型を用いて、原料粉末を圧縮成形し、前記注入口に相当する開口部を有し、かつ貫通していない穴部を有する成形体を得る圧粉成形工程、得られた成形体を焼結し、前記注入口に相当する開口部を有し、かつ貫通していない穴部を有する焼結体を得る焼結工程、前記焼結体の穴部に電極を挿入して放電加工する放電加工工程、放電加工した焼結体を、注入口となる開口部の反対側から研削し、吐出口を開口する研削工程を経ることにより、超硬合金で効率良く精密ノズルを製造することができることを見出し、本発明を完成した。 The inventors of the present invention have conducted extensive research to achieve the above object, and have discovered that a method for manufacturing a precision nozzle made of cemented carbide alloy that includes a tapered hole path that extends from an outlet toward an inlet in a direction in which the inner diameter increases can be achieved by carrying out the following steps: a powder compacting step in which raw material powder is compressed and molded using a transfer mold for forming the through hole to obtain a molded body having an opening corresponding to the inlet and a hole that does not pass through; a sintering step in which the obtained molded body is sintered to obtain a sintered body having an opening corresponding to the inlet and a hole that does not pass through; an electric discharge machining step in which an electrode is inserted into the hole of the sintered body to perform electric discharge machining; and a grinding step in which the electric discharge machined sintered body is ground from the opposite side of the opening that becomes the inlet to open the outlet, thereby discovering that a precision nozzle can be efficiently manufactured from cemented carbide alloy, and have completed the present invention.
 すなわち、本発明の態様[1]としての精密ノズルの製造方法は、
 超硬合金で形成され、注入口から吐出口まで貫通する貫通孔を有し、かつ前記貫通孔が、前記吐出口を起点として前記注入口に向かって内径が増大する方向に延びるテーパ状孔部を少なくとも含む精密ノズルの製造方法であって、
 前記貫通孔を形成するための転写型を用いて、原料粉末を圧縮成形し、前記注入口に対応する開口部を有し、かつ貫通していない穴部を有する成形体を得る圧粉成形工程、
 前記成形体を焼結し、前記成形体に対応する焼結体を得る焼結工程、
 前記焼結体の穴部に電極を挿入して放電加工する放電加工工程、
 放電加工した焼結体を、注入口となる開口部の反対側から研削し、吐出口を開口する研削工程を含む。
That is, the method for manufacturing a precision nozzle according to aspect [1] of the present invention comprises the steps of:
A method for manufacturing a precision nozzle, the precision nozzle being made of cemented carbide and having a through hole penetrating from an injection port to a discharge port, the through hole including at least a tapered hole portion extending from the discharge port as a starting point toward the injection port in a direction in which an inner diameter increases, the method comprising the steps of:
a powder compacting step of compressing and compacting a raw material powder using a transfer mold for forming the through hole to obtain a compact having an opening portion corresponding to the injection port and a hole portion that does not penetrate through the powder;
a sintering step of sintering the green body to obtain a sintered body corresponding to the green body;
an electric discharge machining step of inserting an electrode into the hole of the sintered body and performing electric discharge machining;
The method includes a grinding step in which the discharged sintered body is ground from the opposite side of the opening that serves as the injection port to open a discharge port.
 本発明の態様[2]は、前記態様[1]において、前記貫通孔の断面形状が円形状、楕円形状または多角形状である態様である。 Aspect [2] of the present invention is an aspect of aspect [1], in which the cross-sectional shape of the through hole is circular, elliptical, or polygonal.
 本発明の態様[3]は、前記態様[2]において、前記貫通孔の断面形状が円形状である態様である。 Aspect [3] of the present invention is an aspect of aspect [2], in which the cross-sectional shape of the through hole is circular.
 本発明の態様[4]は、前記態様[1]~[3]のいずれかの圧粉成形工程において、前記転写型の形状が、前記貫通孔の形状に対応し、かつ前記テーパ状孔部に対応するテーパ部の形状が円錐状、楕円錐状または多角錐状である態様である。 Aspect [4] of the present invention is an aspect in which, in the powder compacting process of any of aspects [1] to [3], the shape of the transfer mold corresponds to the shape of the through hole, and the shape of the tapered portion corresponding to the tapered hole portion is a cone, an elliptical cone, or a polygonal pyramid.
 本発明の態様[5]は、前記態様[4]において、前記テーパ状孔部に対応するテーパ部の形状が円錐状である態様である。 Aspect [5] of the present invention is an aspect [4] in which the shape of the tapered portion corresponding to the tapered hole portion is conical.
 本発明の態様[6]は、前記態様[5]において、前記テーパ状孔部に対応する前記転写型の円錐状部の先端径が5μm以下である態様である。 Aspect [6] of the present invention is aspect [5], in which the tip diameter of the conical portion of the transfer mold corresponding to the tapered hole is 5 μm or less.
 本発明の態様[7]は、前記態様[1]~[6]のいずれかの態様の放電加工工程において、前記電極の形状が、前記転写型の形状に対応している態様である。 Aspect [7] of the present invention is an aspect in which, in the electric discharge machining process of any of aspects [1] to [6], the shape of the electrode corresponds to the shape of the transfer mold.
 本発明の態様[8]は、前記態様[7]において、前記テーパ状孔部に対応する前記電極の形状が円錐状であり、かつ前記テーパ状孔部に対応する前記電極の円錐状部の先端径が5μm以下である態様である。 Aspect [8] of the present invention is aspect [7], in which the shape of the electrode corresponding to the tapered hole is conical, and the tip diameter of the conical portion of the electrode corresponding to the tapered hole is 5 μm or less.
 本発明の態様[9]は、前記態様[1]~[8]のいずれかの態様の研削工程において、カメラを用いて研削面を撮像した画像に基づいて、吐出口となる孔の発生の有無およびその口径を確認する態様である。 Aspect [9] of the present invention is an aspect in which, during the grinding process of any of aspects [1] to [8] above, the presence or absence of holes that will become discharge ports and their diameters are confirmed based on an image of the grinding surface captured using a camera.
 本発明の態様[10]は、前記態様[1]~[9]のいずれかの態様において、前記貫通孔が、前記テーパ状孔部と、前記テーパ状孔部から前記注入口まで延びる円筒状孔部とからなる態様である。 Aspect [10] of the present invention is any of aspects [1] to [9] above, in which the through hole comprises the tapered hole portion and a cylindrical hole portion extending from the tapered hole portion to the injection port.
 本発明の態様[11]は、前記態様[1]~[10]のいずれかの態様において、前記吐出口の口径が30μm未満である態様である。 Aspect [11] of the present invention is any of aspects [1] to [10] above, in which the diameter of the discharge port is less than 30 μm.
 本発明の態様[12]は、前記態様[1]~[11]のいずれかの態様において、前記精密ノズルが電子部品用ノズルである態様である。 Aspect [12] of the present invention is any of aspects [1] to [11] above, in which the precision nozzle is a nozzle for electronic components.
 本発明の態様[13]は、前記態様[1]~[12]のいずれかの態様において、前記精密ノズルが、半田ボールを溶融して吐出するためのリフローノズルである態様である。 Aspect [13] of the present invention is any of aspects [1] to [12] above, in which the precision nozzle is a reflow nozzle for melting and discharging solder balls.
 本発明には、態様[14]として、
 超硬合金で形成され、
 注入口から吐出口まで貫通する貫通孔を有し、
 前記貫通孔が、前記吐出口から前記注入口に向かって内径が増大する方向に延びるテーパ状孔部を含み、
 前記吐出口の口径が45μm未満であり、かつ
 前記テーパ状孔部のノズル軸心方向の長さが1mm以上である、精密ノズルも含まれる。
The present invention also provides, as an aspect [14],
It is made of cemented carbide,
A through hole is provided from the inlet to the outlet,
the through hole includes a tapered hole portion extending in a direction in which an inner diameter increases from the discharge port toward the injection port,
Also included is a precision nozzle in which the diameter of the discharge port is less than 45 μm, and the length of the tapered hole portion in the nozzle axial direction is 1 mm or more.
 本発明の態様[15]は、前記態様[14]において、前記テーパ状孔部のノズル軸心方向の長さが、前記吐出口の口径に対して10倍以上である態様である。 Aspect [15] of the present invention is aspect [14], in which the length of the tapered hole in the nozzle axial direction is 10 times or more the diameter of the discharge port.
 本発明の態様[16]は、前記態様[14]または[15]において、前記吐出口の形状が円形状であり、かつ前記吐出口の真円度が5μm以下である態様である。 Aspect [16] of the present invention is aspect [14] or [15], in which the shape of the discharge port is circular and the circularity of the discharge port is 5 μm or less.
 本発明の態様[17]は、前記態様[14]~[16]のいずれかの態様において、前記吐出口における精密ノズルの外形状が等方形状であり、前記吐出口の形状が円形状であり、かつ前記外形状と前記吐出口との同心度が10μm以下である態様である。 Aspect [17] of the present invention is any of aspects [14] to [16] above, in which the outer shape of the precision nozzle at the outlet is isotropic, the shape of the outlet is circular, and the concentricity between the outer shape and the outlet is 10 μm or less.
 本発明の態様[18]は、前記態様[14]~[17]のいずれかの態様において、前記テーパ状孔部の傾斜角が3~60°である態様である。 Aspect [18] of the present invention is any of aspects [14] to [17] above, in which the inclination angle of the tapered hole portion is 3 to 60°.
 本発明の態様[19]は、前記態様[14]~[18]のいずれかの態様において、前記吐出口の口径が30μm未満である態様である。 Aspect [19] of the present invention is any of aspects [14] to [18] above, in which the diameter of the discharge port is less than 30 μm.
 本発明の態様[20]は、前記態様[14]~[19]のいずれかの態様において、
 前記吐出口の口径が1μm以上30μm未満であり、
 前記テーパ状孔部のノズル軸心方向の長さが1~20mmであり、
 前記テーパ状孔部のノズル軸心方向の長さが、前記吐出口の口径に対して100倍以上であり、
 前記吐出口の形状が円形状であり、かつ前記吐出口の真円度が5μm以下であり、
 前記吐出口における精密ノズルの外形状が円形状であり、かつ前記外形状と前記吐出口との同心度が10μm以下であり、かつ
 前記テーパ状孔部の傾斜角が4~50°である態様である。
Aspect [20] of the present invention is any one of aspects [14] to [19],
The diameter of the discharge port is 1 μm or more and less than 30 μm,
The length of the tapered hole in the nozzle axial direction is 1 to 20 mm,
The length of the tapered hole portion in the nozzle axial direction is 100 times or more larger than the diameter of the discharge port,
The shape of the discharge port is circular, and the circularity of the discharge port is 5 μm or less;
In one embodiment, the precision nozzle has a circular outer shape at the discharge port, the concentricity between the outer shape and the discharge port is 10 μm or less, and the tapered hole has an inclination angle of 4 to 50°.
 本発明の態様[21]は、前記態様[14]~[20]のいずれかの態様において、前記超硬合金が炭化タングステンを含む合金である態様である。 Aspect [21] of the present invention is any of aspects [14] to [20] above, in which the cemented carbide is an alloy containing tungsten carbide.
 本発明では、特定の転写型を用いた圧粉成形工程と、焼結工程と、特定の電極を用いた型彫り放電加工工程と、特定形状に放電加工した焼結体を研削する研削工程とを組み合わせた製造方法によって、超硬合金で効率良く精密ノズルを製造できる。特に、吐出口の口径が45μm未満であり、かつ薄肉でないテーパ状孔部を有する新規な超硬合金製精密ノズルを簡便に製造できる。 In the present invention, a precision nozzle can be efficiently manufactured from cemented carbide by a manufacturing method that combines a powder compacting process using a specific transfer mold, a sintering process, a die-sinking electric discharge machining process using a specific electrode, and a grinding process in which the sintered body that has been electric discharge machined into a specific shape is ground. In particular, a new precision nozzle made of cemented carbide with an outlet diameter of less than 45 μm and a tapered hole that is not thin-walled can be easily manufactured.
図1は、本発明の精密ノズルの一例を示す概略透視斜視図である。FIG. 1 is a schematic perspective view showing an example of a precision nozzle of the present invention. 図2は、図1のI-I線概略断面図である。FIG. 2 is a schematic cross-sectional view taken along line II of FIG. 図3は、本発明の精密ノズルの他の例を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing another example of the precision nozzle of the present invention. 図4は、本発明の精密ノズルのさらに他の例を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing still another example of the precision nozzle of the present invention. 図5は、本発明の精密ノズルの別の例を示す概略断面図である。FIG. 5 is a schematic cross-sectional view showing another example of a precision nozzle of the present invention. 図6は、図4の精密ノズルにおける吐出口の口径およびテーパ状孔部の深さを説明するための図である。FIG. 6 is a diagram for explaining the diameter of the discharge port and the depth of the tapered hole portion in the precision nozzle of FIG. 図7は、図5の精密ノズルにおける吐出口の口径およびテーパ状孔部の深さを説明するための図である。FIG. 7 is a diagram for explaining the diameter of the ejection port and the depth of the tapered hole portion in the precision nozzle of FIG. 図8は、本発明の精密ノズルの製造方法における圧粉成形工程および放電加工工程を説明するための概略工程図である。FIG. 8 is a schematic process diagram for explaining the powder compaction step and the electric discharge machining step in the manufacturing method of the precision nozzle of the present invention. 図9は、本発明の精密ノズルの製造方法における焼結工程および放電加工工程を説明するための概略工程図である。FIG. 9 is a schematic process diagram for explaining the sintering step and the electric discharge machining step in the manufacturing method of the precision nozzle of the present invention. 図10は、本発明の精密ノズルの製造方法における研削工程を説明するための概略工程図である。FIG. 10 is a schematic process diagram for explaining the grinding step in the manufacturing method of the precision nozzle of the present invention. 図11は、実施例で用いた転写型(プレスピン)の先端部の顕微鏡写真である。FIG. 11 is a micrograph of the tip of the transfer mold (press pin) used in the examples. 図12は、実施例で用いた電極の先端部の顕微鏡写真である。FIG. 12 is a micrograph of the tip of the electrode used in the examples. 図13は、実施例1において貫通孔の吐出口が開口した直後に得られた精密ノズルの先端部の顕微鏡写真である。FIG. 13 is a micrograph of the tip of the precision nozzle taken immediately after the outlet of the through-hole in Example 1 was opened. 図14は、実施例1で得られた精密ノズルの先端部の断面の顕微鏡写真である。FIG. 14 is a micrograph of a cross section of the tip of the precision nozzle obtained in Example 1. 図15は、実施例2において貫通孔の吐出口が開口した精密ノズルの先端部の顕微鏡写真である。FIG. 15 is a microscope photograph of the tip of a precision nozzle in which the outlet of the through-hole is opened in Example 2. 図16は、実施例3において貫通孔の吐出口が開口した精密ノズルの先端部の顕微鏡写真である。FIG. 16 is a microscope photograph of the tip of the precision nozzle in which the outlet of the through-hole is opened in Example 3. 図17は、実施例4において貫通孔の吐出口が開口した精密ノズルの先端部の顕微鏡写真である。FIG. 17 is a microscope photograph of the tip of a precision nozzle in which the outlet of the through-hole is opened in Example 4. 図18は、実施例5において貫通孔の吐出口が開口した精密ノズルの先端部の顕微鏡写真である。FIG. 18 is a microscope photograph of the tip of a precision nozzle in which the outlet of the through-hole is opened in Example 5. 図19は、実施例6において貫通孔の吐出口が開口した精密ノズルの先端部の顕微鏡写真である。FIG. 19 is a microscope photograph of the tip of a precision nozzle in which the outlet of the through-hole is opened in Example 6. 図20は、実施例8において貫通孔の吐出口が開口した精密ノズルの先端部の顕微鏡写真である。FIG. 20 is a micrograph of the tip of a precision nozzle in Example 8, in which the outlet of the through-hole is open. 図21は、実施例9において貫通孔の吐出口が開口した精密ノズルの先端部の顕微鏡写真である。FIG. 21 is a micrograph of the tip of a precision nozzle in Example 9, in which the outlet of the through-hole is open.
 [精密ノズルの材質]
 本発明の精密ノズルの材質である超硬合金は、特に限定されない。代表的な超硬合金としては、周期表4~6族金属炭化物を含む合金が挙げられ、なかでも、炭化タングステンWC(タングステンカーバイト)を含む合金(WC系合金)が汎用される。
[Precision nozzle material]
The cemented carbide which is the material of the precision nozzle of the present invention is not particularly limited. Representative cemented carbide alloys include alloys containing metal carbides of Groups 4 to 6 of the Periodic Table, and among them, alloys containing tungsten carbide (WC) (WC-based alloys) are widely used.
 WC系合金は、主成分であるWCと、焼結により液相を形成し、結合相を形成する結合成分とで形成されていてもよい。 The WC-based alloy may be composed of WC as the main component and a binder component that forms a liquid phase upon sintering and forms a binder phase.
 結合成分としては、例えば、マンガンMn、鉄Fe、コバルトCo、ニッケルNiなど周期表8~10族金属などが挙げられる。これらの結合成分は、単独でまたは二種以上組み合わせて使用できる。これらのうち、コバルトCoおよび/またはニッケルNiが好ましく、コバルトCoが特に好ましい。 Examples of binding components include metals in Groups 8 to 10 of the periodic table, such as manganese (Mn), iron (Fe), cobalt (Co), and nickel (Ni). These binding components can be used alone or in combination of two or more. Of these, cobalt (Co) and/or nickel (Ni) are preferred, with cobalt (Co) being particularly preferred.
 結合成分(特に、Co)の割合は、炭化タングステン100質量部に対して30質量部以下であってもよく、好ましくは0.5~25質量部、さらに好ましくは1~20質量部である。 The proportion of the binding component (especially Co) may be 30 parts by mass or less per 100 parts by mass of tungsten carbide, preferably 0.5 to 25 parts by mass, and more preferably 1 to 20 parts by mass.
 WC系合金は、前記主成分以外の金属炭化物(他の金属炭化物)をさらに含んでいてもよい。他の金属炭化物としては、例えば、炭化チタンTiC、炭化ニオブNbC、炭化タンタルTaC、炭化クロムCrなどが挙げられる。これら他の金属炭化物は、単独でまたは二種以上組み合わせて使用できる。これらのうち、TiC、TaC、Crが好ましい。 The WC-based alloy may further contain metal carbides (other metal carbides) other than the main components. Examples of the other metal carbides include titanium carbide (TiC), niobium carbide (NbC), tantalum carbide (TaC), and chromium carbide ( Cr3C2 ). These other metal carbides can be used alone or in combination of two or more. Among these, TiC, TaC , and Cr3C2 are preferred.
 WC系合金は、前記結合成分以外の金属単体(他の金属単体)をさらに含んでいてもよい。他の金属単体としては、例えば、チタンTi、ジルコニウムZr、バナジウムV、ニオブNb、タンタルTa、クロムCr、モリブデンMo、タングステンW、レニウムReなどが挙げられる。これら他の金属単体は、単独でまたは二種以上組み合わせて使用できる。これらのうち、Vおよび/またはCrが好ましい。 The WC-based alloy may further contain metal elements (other metal elements) other than the bonding components. Examples of other metal elements include titanium (Ti), zirconium (Zr), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), and rhenium (Re). These other metal elements may be used alone or in combination of two or more. Of these, V and/or Cr are preferred.
 他の金属単体の割合は、WC系合金全体100質量部に対して5質量部以下であってもよく、好ましくは0.1~3質量部、さらに好ましくは0.2~2質量部である。 The proportion of other metal elements may be 5 parts by mass or less per 100 parts by mass of the entire WC-based alloy, preferably 0.1 to 3 parts by mass, and more preferably 0.2 to 2 parts by mass.
 WC系合金は、炭素源C(カーボンブラックなど)をさらに含んでいてもよく、不可避的に混入する成分を含んでいてもよい。 The WC-based alloy may further contain a carbon source C (such as carbon black) and may contain other components that are inevitably mixed in.
 WC系合金としては、例えば、WC-Co系合金、WC-TiC-Co系合金、WC-TaC-Co系合金、WC-TiC-TaC-Co系合金、WC-Ni系合金、WC-Ni-Cr系合金などが挙げられる。これらのうち、WC-Co系合金が汎用される。 Examples of WC alloys include WC-Co alloys, WC-TiC-Co alloys, WC-TaC-Co alloys, WC-TiC-TaC-Co alloys, WC-Ni alloys, and WC-Ni-Cr alloys. Of these, WC-Co alloys are the most widely used.
 [精密ノズルの形状]
 本発明の精密ノズルの形状は、注入口から吐出口まで貫通する貫通孔を有するとともに、前記貫通孔が、前記吐出口を起点として前記注入口に向かって内径が増大する方向に延びるテーパ状孔部を少なくとも含む形状であれば、特に限定されない。本発明のノズルの詳細な形状について、以下に図面を用いて説明する。
[Precision nozzle shape]
The shape of the precision nozzle of the present invention is not particularly limited as long as it has a through hole that penetrates from the injection port to the discharge port, and the through hole has at least a tapered hole portion that extends from the discharge port toward the injection port in a direction in which the inner diameter increases. The detailed shape of the nozzle of the present invention will be described below with reference to the drawings.
 図1は、本発明の精密ノズルの一例の概略透視斜視図であり、図2のI-I線概略断面図である。 FIG. 1 is a schematic perspective view of an example of a precision nozzle of the present invention, and is a schematic cross-sectional view taken along line I-I in FIG. 2.
 この精密ノズル1は、被吐出体を注入するための円形状の注入口2から、被吐出体を吐出するための円形状の吐出口4まで貫通する断面円形状の貫通孔3を有しており、この貫通孔3は、気体、液体や固体などの被吐出体を通過するための通路(または流路)として機能する。前記貫通孔3は、前記吐出口4を起点として前記注入口2に向かって内径が増大する方向に延びるテーパ状孔部3bと、このテーパ状孔部3bの上流端から前記注入口2まで略同じ内径で延びる円筒状孔部3aとを備えている。さらに、テーパ状孔部3bに対応する外周は、吐出口4に向かって先細状に形成されている。具体的には、テーパ状孔部3bの傾斜角θ(ノズル軸心と傾斜壁との角度)は、ノズル軸心に対して10°である。 This precision nozzle 1 has a through hole 3 with a circular cross section that penetrates from a circular injection port 2 for injecting the discharged material to a circular discharge port 4 for discharging the discharged material, and this through hole 3 functions as a passage (or flow path) for passing the discharged material such as gas, liquid, or solid. The through hole 3 has a tapered hole portion 3b that extends from the discharge port 4 toward the injection port 2 in a direction in which the inner diameter increases, and a cylindrical hole portion 3a that extends from the upstream end of the tapered hole portion 3b to the injection port 2 with approximately the same inner diameter. Furthermore, the outer periphery corresponding to the tapered hole portion 3b is formed in a tapered shape toward the discharge port 4. Specifically, the inclination angle θ of the tapered hole portion 3b (the angle between the nozzle axis and the inclined wall) is 10° with respect to the nozzle axis.
 図1に示す精密ノズル1では、前記テーパ状孔部3bの先端で開口している吐出口4の口径(直径)φは20μm程度である。従来の精密ノズルでは、吐出口の口径φは最小でも薄肉のノズルにおいて40μm程度であるが、特許文献2に記載されているような従来の製造方法では、吐出口の口径(または孔径)が30μm未満である精密ノズルの製造方法が困難であったためである。なお、特許文献2には、従来の製造方法の詳細について記載されていないが、微細な吐出口を形成するために高い精度が要求される場合、従来の技術では、通常、ノズル内部に対応する穴部を形成した焼結体に対して、吐出口側からノズル内部に向けて(注入口の反対側から)放電加工することにより、微細な吐出口を形成する方法が考えられる。放電加工で微細な吐出口を形成するためには、加工の入り口では、電極の形状に対応した形状を形成し易いが、加工が進むにつれて、均一な形状を維持するのが困難であるためである。特に、微細な吐出口を形成するためには、髪の毛のように、細くて曲がりやすい電極を用いる必要があるため、尚更である。そのため、このような従来の方法で加工した貫通孔は、特許文献2の図面に記載されている形状を有する貫通孔、すなわち吐出口を起点として注入口に向かって延びる円筒状孔部を有する貫通孔となる。さらに、曲がり易い微細な電極を用いると、注入口側との位置合わせも極めて困難であり、高精度のノズルを製造することが困難である。 In the precision nozzle 1 shown in FIG. 1, the aperture (diameter) φ of the discharge port 4 opening at the tip of the tapered hole portion 3b is about 20 μm. In conventional precision nozzles, the aperture diameter φ of the discharge port is about 40 μm at the smallest in thin nozzles, but in the conventional manufacturing method described in Patent Document 2, it was difficult to manufacture a precision nozzle with an aperture (or hole diameter) of less than 30 μm. Note that Patent Document 2 does not describe the details of the conventional manufacturing method, but when high precision is required to form a fine discharge port, in the conventional technology, a method of forming a fine discharge port is usually considered by performing electric discharge machining from the discharge port side toward the inside of the nozzle (from the opposite side of the injection port) on a sintered body having a hole portion corresponding to the inside of the nozzle. This is because, in order to form a fine discharge port by electric discharge machining, it is easy to form a shape corresponding to the shape of the electrode at the entrance of the machining, but it is difficult to maintain a uniform shape as the machining progresses. In particular, in order to form a fine discharge port, it is necessary to use an electrode that is thin and easily bent, like a hair, so this is all the more difficult. Therefore, the through-holes processed by such conventional methods have the shape described in the drawings of Patent Document 2, that is, through-holes having a cylindrical hole portion that starts from the discharge port and extends toward the injection port. Furthermore, if fine electrodes that bend easily are used, it is extremely difficult to align them with the injection port side, making it difficult to manufacture a high-precision nozzle.
 すなわち、貫通孔を形成するために最終的に吐出口側から加工する方法では、図1のような吐出口から注入口に向かって内径が増大する方向に延びる形状を有するテーパ状孔部を有する精密ノズルは製造できない。そのため、特許文献2のような従来の方法で得られる精密ノズルにおいても、吐出口の口径が40μm程度の微細な吐出口が形成されているものの、吐出口から延びる孔部の形状は、吐出口から注入口に向かって内径が増大する方向に延びる形状ではなかった。特に、薄肉でないテーパ状孔部を有する精密ノズルでは、微細な吐出口を形成するのが困難であり、例えば45μm未満の微細な口径の吐出口を有し、かつ吐出口から注入口に向かって内径が増大する方向に延びる形状を有するテーパ状孔部を有する精密ノズルは、従来の製造方法では製造できない。 In other words, the method of finally processing from the discharge port side to form a through hole cannot manufacture a precision nozzle having a tapered hole portion with a shape extending in a direction in which the inner diameter increases from the discharge port toward the injection port as shown in FIG. 1. Therefore, even in the precision nozzle obtained by the conventional method such as Patent Document 2, although a fine discharge port with a diameter of about 40 μm is formed, the shape of the hole portion extending from the discharge port is not a shape extending in a direction in which the inner diameter increases from the discharge port toward the injection port. In particular, it is difficult to form a fine discharge port in a precision nozzle having a tapered hole portion that is not thin-walled, and a precision nozzle having a discharge port with a fine diameter of less than 45 μm and a tapered hole portion with a shape extending in a direction in which the inner diameter increases from the discharge port toward the injection port cannot be manufactured by the conventional manufacturing method.
 図3は、本発明の精密ノズルの他の例である精密ノズルの概略断面図である。この精密ノズル11も、円形状の注入口12から円形状の吐出口14まで貫通する貫通孔13を有しているが、貫通孔13の形状が、図1および2の貫通孔3の形状と異なっている。すなわち、この精密ノズル11では、前記貫通孔13が、前記吐出口14から前記注入口12まで内径が増大する方向に連続して延びるテーパ状孔部のみで形成されている。 Figure 3 is a schematic cross-sectional view of a precision nozzle that is another example of the precision nozzle of the present invention. This precision nozzle 11 also has a through hole 13 that penetrates from a circular injection port 12 to a circular discharge port 14, but the shape of the through hole 13 differs from the shape of the through hole 3 in Figures 1 and 2. That is, in this precision nozzle 11, the through hole 13 is formed only by a tapered hole portion that extends continuously from the discharge port 14 to the injection port 12 in a direction in which the inner diameter increases.
 図4は、本発明の精密ノズルの他の例である精密ノズルの概略断面図である。この精密ノズル21は、円形状の注入口22から円形状の吐出口24まで貫通する貫通孔23の形状は図1の精密ノズルと同一であり、ノズル21の外周形状が円筒形状(円柱形状)である点で異なる例である。図1の精密ノズルは、通常、図4の精密ノズルを研削加工する方法によって成形される。 FIG. 4 is a schematic cross-sectional view of a precision nozzle that is another example of the precision nozzle of the present invention. This precision nozzle 21 is an example in which the shape of the through hole 23 that penetrates from the circular inlet 22 to the circular outlet 24 is the same as that of the precision nozzle of FIG. 1, but differs in that the outer periphery of the nozzle 21 is cylindrical (columnar). The precision nozzle of FIG. 1 is usually formed by the method of grinding the precision nozzle of FIG. 4.
 図5は、本発明の精密ノズルの別の例である精密ノズルの概略断面図である。この精密ノズル31は、円形状の注入口32から円形状の吐出口34まで貫通する貫通孔33を有しており、この貫通孔33は、前記吐出口34を起点として前記注入口32に向かって内径が増大する方向に延びる第1のテーパ状孔部33bと、この第1のテーパ状孔部33bの上流端から前記注入口32に向かって内径が増大する方向に延びる第2のテーパ状孔部33aとからなる。この例では、第2のテーパ状孔部33aの傾斜角は、第1のテーパ状孔部33bの傾斜角よりも大きく形成されている。 FIG. 5 is a schematic cross-sectional view of a precision nozzle that is another example of the precision nozzle of the present invention. This precision nozzle 31 has a through hole 33 that penetrates from a circular injection port 32 to a circular discharge port 34, and this through hole 33 consists of a first tapered hole portion 33b that extends from the discharge port 34 in a direction in which the inner diameter increases toward the injection port 32, and a second tapered hole portion 33a that extends from the upstream end of this first tapered hole portion 33b in a direction in which the inner diameter increases toward the injection port 32. In this example, the inclination angle of the second tapered hole portion 33a is formed to be larger than the inclination angle of the first tapered hole portion 33b.
 貫通孔(特に、テーパ状孔部)の断面形状(長さ方向または軸心方向に垂直な断面形状)は、特に限定されず、例えば、円形状、楕円形状、多角形状などが挙げられる。これらの断面形状のうち、楕円形状、長方形状などの異方形状であってもよいが、円形状、正方形状、正六角形などの等方形状が好ましく、円形状が特に好ましい。吐出口の形状も同様である。 The cross-sectional shape (cross-sectional shape perpendicular to the length direction or axial direction) of the through hole (particularly the tapered hole portion) is not particularly limited, and examples include a circle, an ellipse, a polygon, and the like. Among these cross-sectional shapes, an anisotropic shape such as an ellipse or a rectangle may be used, but an isotropic shape such as a circle, a square, or a regular hexagon is preferred, with a circle being particularly preferred. The same applies to the shape of the discharge port.
 吐出口の形状(孔形状)が円形状である場合、本発明の方法では、特定の圧粉成形工程と放電加工工程と研削工程とを組み合わせているため、吐出口の円形状を真円度の小さい円形状に形成できる。吐出口の真円度は5μm以下(例えば0.1~5μm程度)であってもよく、好ましくは4μm以下(例えば0.3~4μm)、さらに好ましくは3μm以下、より好ましくは1μm以下、最も好ましくは0.5μm以下である。真円度が大きすぎると、精密ノズルの機能が低下する虞がある。 When the shape of the discharge port (hole shape) is circular, the method of the present invention combines a specific powder compaction process, an electric discharge machining process, and a grinding process, so that the circular shape of the discharge port can be formed into a circular shape with low circularity. The circularity of the discharge port may be 5 μm or less (e.g., about 0.1 to 5 μm), preferably 4 μm or less (e.g., 0.3 to 4 μm), even more preferably 3 μm or less, even more preferably 1 μm or less, and most preferably 0.5 μm or less. If the circularity is too large, there is a risk that the function of the precision nozzle will be reduced.
 吐出口の形状が円形状である場合、吐出口の真円度は、吐出口の口径に対して0.3倍以下、好ましくは0.2倍以下、さらに好ましくは0.1倍以下であってもよく、例えば0.001~0.3倍、好ましくは0.005~0.25倍、さらに好ましくは0.01~0.2倍、より好ましくは0.03~0.15倍、最も好ましくは0.05~0.1倍である。口径に対する真円度の比率が大きすぎると、精密ノズルの機能が低下する虞がある。 If the outlet shape is circular, the circularity of the outlet may be 0.3 times or less, preferably 0.2 times or less, and more preferably 0.1 times or less, relative to the diameter of the outlet, for example 0.001 to 0.3 times, preferably 0.005 to 0.25 times, more preferably 0.01 to 0.2 times, more preferably 0.03 to 0.15 times, and most preferably 0.05 to 0.1 times. If the ratio of circularity to the diameter is too large, there is a risk that the functionality of the precision nozzle will be reduced.
 なお、本明細書および請求の範囲において、吐出口の真円度は、JIS B 0621-1984に準拠して測定でき、具体的には、光学式画像測定器(OGP社製「スマートスコープZIP-300」)を用いて測定できる。 In this specification and claims, the roundness of the discharge port can be measured in accordance with JIS B 0621-1984, specifically, using an optical image measuring device (OGP's "Smart Scope ZIP-300").
 吐出口における精密ノズルの外形状が等方形状(特に、円形状)であり、かつ吐出口の形状が円形状である場合、前記外形状と前記吐出口との同心度は10μm以下、好ましくは8μm以下、さらに好ましくは7μm以下、より好ましくは5μm以下であってもよく、例えば0.1~10μm、好ましくは0.3~8μm、さらに好ましくは0.5~7μm、より好ましくは1~6μm、最も好ましくは1.5~5μmである。同心度が大きすぎると、精密ノズルの機能が低下する虞がある。 When the outer shape of the precision nozzle at the outlet is isotropic (particularly circular) and the outlet is circular, the concentricity between the outer shape and the outlet may be 10 μm or less, preferably 8 μm or less, more preferably 7 μm or less, and more preferably 5 μm or less, for example 0.1 to 10 μm, preferably 0.3 to 8 μm, more preferably 0.5 to 7 μm, more preferably 1 to 6 μm, and most preferably 1.5 to 5 μm. If the concentricity is too large, the function of the precision nozzle may be reduced.
 なお、本明細書および請求の範囲において、前記同心度は、JIS B 0021-1998で定義され、具体的には、光学式画像測定器(OGP社製「スマートスコープZIP-300」)を用いて測定できる。また、本明細書および請求の範囲において、前記同心度は、前記外形状の円形状の中心と、吐出口の円形状の中心とのズレ(外周円の中心と内周円の中心間の距離)を意味する。 In this specification and claims, the concentricity is defined in JIS B 0021-1998, and specifically, can be measured using an optical image measuring device (OGP's "Smart Scope ZIP-300"). In this specification and claims, the concentricity refers to the deviation between the center of the circular shape of the outer shape and the center of the circular shape of the discharge port (the distance between the center of the outer circumference and the center of the inner circumference).
 本発明の精密ノズルは、吐出口の口径(テーパ状孔部の下流側の出口における孔径)φが45μm未満であってもよく、好ましくは40μm未満、さらに好ましくは35μm未満、より好ましくは30μm未満である。また、吐出口の口径φは1μm以上であってもよい。特に、精密ノズルにおいて、吐出口の口径は25μm以下(特に20μm以下)であってもよく、例えば1~25μm、好ましくは2~20μm、さらに好ましくは3~10μm、より好ましくは4~7μmである。 The precision nozzle of the present invention may have an outlet diameter φ (hole diameter at the outlet on the downstream side of the tapered hole portion) of less than 45 μm, preferably less than 40 μm, more preferably less than 35 μm, and even more preferably less than 30 μm. The outlet diameter φ may be 1 μm or more. In particular, in the precision nozzle, the outlet diameter may be 25 μm or less (particularly 20 μm or less), for example, 1 to 25 μm, preferably 2 to 20 μm, more preferably 3 to 10 μm, and even more preferably 4 to 7 μm.
 なお、本明細書および請求の範囲において、吐出口の口径φは、光学式画像測定器(OGP社製「スマートスコープZIP-300」)などを用いて測定できる。吐出口の口径は最大径を意味し、円形状では直径であり、多角形状や異方形状では、長径などを意味する。図6および図7には、図4および図5の精密ノズルにおける吐出口の口径φが示されている。 In this specification and claims, the aperture diameter φ of the discharge port can be measured using an optical image measuring device (Smart Scope ZIP-300 manufactured by OGP) or the like. The aperture diameter of the discharge port means the maximum diameter, which is the diameter for a circular shape and the major axis for a polygonal or anisotropic shape. Figures 6 and 7 show the aperture diameter φ of the discharge port in the precision nozzle of Figures 4 and 5.
 テーパ状孔部のノズル軸心方向の長さ(テーパ状孔部の深さ)Lは1mm以上であってもよく、30mm以下であってもよい。すなわち、テーパ状孔部の深さは、1~30m程度の範囲から選択でき、例えば1~20mm、好ましくは2~10mm、さらに好ましくは2.5~8mm、より好ましくは3~5mm、最も好ましくは3.5~4.5mmである。テーパ状孔部の深さが短すぎると、微小な吐出口を製造するのが困難となる虞がある。 The length L of the tapered hole in the nozzle axial direction (depth of the tapered hole) may be 1 mm or more, or 30 mm or less. That is, the depth of the tapered hole can be selected from a range of about 1 to 30 mm, for example, 1 to 20 mm, preferably 2 to 10 mm, more preferably 2.5 to 8 mm, more preferably 3 to 5 mm, and most preferably 3.5 to 4.5 mm. If the depth of the tapered hole is too short, it may be difficult to manufacture a minute discharge port.
 なお、本明細書および請求の範囲において、テーパ状孔部のノズル軸心方向の長さは、テーパ状孔部の上流側の開口部と吐出口の中心との最短距離を意味する。図6および図7には、図4および図5の精密ノズルにおけるテーパ状孔部の深さLが示されている。 In this specification and claims, the length of the tapered hole in the nozzle axial direction means the shortest distance between the upstream opening of the tapered hole and the center of the discharge port. Figures 6 and 7 show the depth L of the tapered hole in the precision nozzle of Figures 4 and 5.
 本発明の精密ノズルは、吐出口の口径に対してテーパ状孔部の長さが大きく、薄肉ではない精密ノズルであることを特徴とする。テーパ状孔部が薄肉でない精密ノズルを超硬合金で形成することは困難であり、特に、超硬合金で吐出口の口径が45μm未満のテーパ状孔部を従来の機械加工で製造することはできないが、本発明の製造方法で精密ノズルを製造すると、微細な吐出口を有するテーパ状孔部を形成することができる。 The precision nozzle of the present invention is characterized in that the length of the tapered hole portion is greater than the diameter of the discharge port, and the precision nozzle is not thin-walled. It is difficult to form a precision nozzle with a tapered hole portion that is not thin-walled from a cemented carbide alloy, and in particular, a tapered hole portion with a discharge port diameter of less than 45 μm cannot be manufactured from a cemented carbide alloy by conventional machining, but when a precision nozzle is manufactured using the manufacturing method of the present invention, a tapered hole portion with a fine discharge port can be formed.
 本発明の精密ノズルにおいて、吐出口の口径φに対するテーパ状孔部の深さLは比較的大きく、テーパ状孔部は薄肉ではない。テーパ状孔部の深さLは、吐出口の口径φに対して10倍以上であってもよく、例えば30倍以上、好ましくは50倍以上、さらに好ましくは80倍以上、より好ましくは100倍以上、最も好ましくは200倍以上であり、例えば50~10000倍(特に100~1000倍)であってもよい。 In the precision nozzle of the present invention, the depth L of the tapered hole portion is relatively large relative to the diameter φ of the discharge port, and the tapered hole portion is not thin-walled. The depth L of the tapered hole portion may be 10 times or more relative to the diameter φ of the discharge port, for example, 30 times or more, preferably 50 times or more, further preferably 80 times or more, more preferably 100 times or more, and most preferably 200 times or more, for example, 50 to 10,000 times (particularly 100 to 1,000 times).
 テーパ状孔部の傾斜角θ[ノズル軸心と傾斜壁(テーパ状孔部の内壁)との角度]は、ノズル軸心に対して、例えば3~60°、好ましくは4~50°、さらに好ましくは5~30°、より好ましくは7~20°、最も好ましくは8~15°である。傾斜角θが小さすぎると、半田ボールを利用したリフローノズルなどの精密ノズルとしての機能が低下する虞があり、逆に大きすぎると、微細な吐出口を形成するのが困難となる虞がある。 The inclination angle θ of the tapered hole [the angle between the nozzle axis and the inclined wall (the inner wall of the tapered hole)] is, for example, 3 to 60°, preferably 4 to 50°, more preferably 5 to 30°, even more preferably 7 to 20°, and most preferably 8 to 15° relative to the nozzle axis. If the inclination angle θ is too small, there is a risk that it will not function as a precision nozzle, such as a reflow nozzle that uses solder balls, and conversely, if it is too large, there is a risk that it will be difficult to form a fine discharge port.
 テーパ状孔部の内壁は平滑性に優れている。テーパ状孔部の内壁面の算術平均粗さRaは、例えば5~1000μm、好ましくは10~800μm、さらに好ましくは30~500μm、より好ましくは50~300μm、最も好ましくは100~200μmである。図6には、図4の精密ノズルにおける内壁21bが示され、図7には、図5の精密ノズルにおける内壁31b,31cが示されている。 The inner wall of the tapered hole has excellent smoothness. The arithmetic mean roughness Ra of the inner wall surface of the tapered hole is, for example, 5 to 1000 μm, preferably 10 to 800 μm, further preferably 30 to 500 μm, even more preferably 50 to 300 μm, and most preferably 100 to 200 μm. Figure 6 shows inner wall 21b in the precision nozzle of Figure 4, and Figure 7 shows inner walls 31b and 31c in the precision nozzle of Figure 5.
 本発明の精密ノズルの吐出口の先端面(下流側の先端面)も、後述するように、研削工程を経て得られるため、平滑性に優れている。吐出口の先端面(研削面)の算術平均粗さRaは、例えば1~100μm、好ましくは5~50μm、さらに好ましくは8~40μm、より好ましくは10~30μm、最も好ましくは15~25μmである。図6には、図4の精密ノズルにおける吐出口の先端面21aが示され、図7には、図5の精密ノズルにおける吐出口の先端面31aが示されている。 The tip surface (downstream tip surface) of the outlet of the precision nozzle of the present invention is also obtained through a grinding process as described below, and therefore has excellent smoothness. The arithmetic mean roughness Ra of the tip surface (ground surface) of the outlet is, for example, 1 to 100 μm, preferably 5 to 50 μm, further preferably 8 to 40 μm, even more preferably 10 to 30 μm, and most preferably 15 to 25 μm. Figure 6 shows tip surface 21a of the outlet of the precision nozzle of Figure 4, and Figure 7 shows tip surface 31a of the outlet of the precision nozzle of Figure 5.
 なお、本明細書および請求の範囲において、テーパ状孔部の内壁面および吐出口先端面の算術平均粗さRaは、JIS B 0601-2001に準拠した方法で測定でき、具体的には、輪郭・形状測定機((株)東京精密製「サーフコム2600G-13」)を用いて測定できる。 In this specification and claims, the arithmetic mean roughness Ra of the inner wall surface of the tapered hole and the tip surface of the discharge port can be measured by a method conforming to JIS B 0601-2001, specifically, using a contour/shape measuring instrument ("Surfcom 2600G-13" manufactured by Tokyo Seimitsu Co., Ltd.).
 本発明の精密ノズルの貫通孔の形状は、前記テーパ状孔部を含む形状であれば特に限定されず、前記テーパ状孔部の上流側の孔形状は限定されず、適宜用途や被吐出体の種類などに応じて選択できる。そのため、前記貫通孔の形状は、図1または図2に示す形状の他、例えば、前記テーパ状孔部と他のテーパ状孔部とを組み合わせた形状、前記テーパ状孔部と複数の他のテーパ状孔部とを組み合わせた形状、前記テーパ状孔部と非テーパ状孔部(特に、円筒状孔部)と他のテーパ状孔部とを組み合わせた形状などであってもよい。 The shape of the through hole of the precision nozzle of the present invention is not particularly limited as long as it includes the tapered hole portion, and the shape of the hole upstream of the tapered hole portion is not limited and can be appropriately selected according to the application and the type of the object to be discharged. Therefore, in addition to the shape shown in FIG. 1 or FIG. 2, the shape of the through hole may be, for example, a shape that combines the tapered hole portion with another tapered hole portion, a shape that combines the tapered hole portion with multiple other tapered hole portions, a shape that combines the tapered hole portion with a non-tapered hole portion (particularly a cylindrical hole portion) and another tapered hole portion, etc.
 非テーパ状孔部は、テーパ状孔部に対応した形状であれば、特に限定されず、円筒状孔部の他、内部形状が楕円柱状や多角柱状である非テーパ状孔部などが挙げられる。 The non-tapered hole portion is not particularly limited as long as it has a shape corresponding to the tapered hole portion, and examples include cylindrical holes as well as non-tapered holes whose internal shape is an elliptical cylinder or polygonal cylinder.
 テーパ状孔部と非テーパ状孔部(特に、円筒状孔部)とを組み合わせた形状の場合、非テーパ状孔部の流路(特に、円筒状流路)の内径は、例えば0.5~10mm、好ましくは0.8~5mm、さらに好ましくは1~3mm、より好ましくは1.2~2mmである。 In the case of a shape that combines a tapered hole portion and a non-tapered hole portion (particularly a cylindrical hole portion), the inner diameter of the flow path of the non-tapered hole portion (particularly the cylindrical flow path) is, for example, 0.5 to 10 mm, preferably 0.8 to 5 mm, more preferably 1 to 3 mm, and even more preferably 1.2 to 2 mm.
 [圧粉成形工程]
 本発明の精密ノズルの製造方法は、ノズルの貫通孔を形成するための転写型を用いて、原料粉末を圧縮成形し、前記注入口に相当する開口部を有し、かつ貫通していない穴部を有する成形体を得る圧粉成形工程を含む。
[Powder compaction process]
The method for manufacturing a precision nozzle of the present invention includes a powder compacting step in which a raw material powder is compression-molded using a transfer mold for forming the through hole of the nozzle to obtain a molded body having an opening portion corresponding to the injection port and a hole portion that does not pass through.
 (原料粉末)
 原料粉末は、超硬合金の種類に応じて適宜選択でき、通常、超硬合金の構成成分が、それぞれ粒子の形態で使用される。WC系合金では、原料粉末として、結合成分粒子に加えて、必要に応じて他の金属炭化物粒子、他の金属粒子が使用される。
(raw powder)
The raw material powder can be appropriately selected depending on the type of cemented carbide, and usually, the components of the cemented carbide are used in the form of particles. In the case of a WC-based alloy, in addition to binder particles, other metal carbide particles and other metal particles are used as the raw material powder as necessary.
 WC粒子の平均粒子径は、例えば0.1~15μm、好ましくは0.12~12μm、さらに好ましくは0.2~10μmである。 The average particle size of the WC particles is, for example, 0.1 to 15 μm, preferably 0.12 to 12 μm, and more preferably 0.2 to 10 μm.
 結合成分粒子(特に、Co粒子)の平均粒子径は、溶融して結合相を形成するため、特に限定されないが、例えば0.1~5μm、好ましくは0.5~3μm、さらに好ましくは1~2.5μmである。 The average particle size of the binder component particles (especially Co particles) is not particularly limited since they melt to form a binder phase, but is, for example, 0.1 to 5 μm, preferably 0.5 to 3 μm, and more preferably 1 to 2.5 μm.
 他の金属炭化物粒子および他の金属粒子の平均粒子径は、それぞれ、例えば0.1~5μm、好ましくは0.5~3μm、さらに好ましくは1~2.5μmである。 The average particle size of the other metal carbide particles and the other metal particles is, for example, 0.1 to 5 μm, preferably 0.5 to 3 μm, and more preferably 1 to 2.5 μm.
 これらのWC系合金の原料粉末の使用量は、前述の超硬合金中における構成成分の割合と同一である。 The amount of these WC-based alloy raw powders used is the same as the ratio of the components in the aforementioned cemented carbide alloy.
 圧粉成形(圧縮成形)においては、これらの原料粉末に加えて、バインダーを配合してもよい。バインダーとしては、予備焼結や焼結の過程で加熱によって除去可能なバインダーが好ましい。このようなバインダーとしては、例えば、パラフィン、ワックスまたはロウなどの直鎖状または分岐鎖状脂肪族炭化水素類、ポリエチレングリコールなどが挙げられる。これらのバインダーは、粒子状の形態であってもよい。さらに、これらのバインダーは、エタノールなどのアルコール類および/またはベンジン類と共に配合してもよい。 In powder compaction (compression molding), in addition to these raw material powders, a binder may be mixed. As the binder, a binder that can be removed by heating during the pre-sintering or sintering process is preferable. Examples of such binders include linear or branched aliphatic hydrocarbons such as paraffin, wax, or wax, and polyethylene glycol. These binders may be in a particulate form. Furthermore, these binders may be mixed with alcohols such as ethanol and/or benzines.
 バインダーの割合は、原料粉末100質量部に対して20質量部以下であってもよく、好ましくは0.1~10質量部、さらに好ましくは0.2~7質量部である。 The proportion of binder may be 20 parts by mass or less per 100 parts by mass of raw material powder, preferably 0.1 to 10 parts by mass, and more preferably 0.2 to 7 parts by mass.
 (圧縮成形)
 原料粉末の圧縮成形では、ノズルの貫通孔を形成するための転写型を用いることにより、前記注入口に相当する開口部を有し、かつ貫通していない穴部(いわゆる「下穴」に相当)を有する成形体(粉末成形体)を得ることができる。
(Compression molding)
In the compression molding of the raw material powder, by using a transfer mold to form the through hole of the nozzle, it is possible to obtain a molded body (powder molded body) that has an opening corresponding to the injection port and also has a hole portion that does not pass through (corresponding to a so-called "pilot hole").
 圧粉成形工程の一例について、図8を用いて説明する。図8に示されるように、圧粉成形工程では、まず、ダイ42と下パンチ43とで形成された円筒状などの筒状型内に、超硬合金を形成するための原料粉末41を充填する[図8(a)]。次に、転写型であるプレスピン45を装着した上パンチ44を前記筒状型内に挿入して原料粉末41を加圧することにより、プレスピン45が原料粉末41の充填物の内部に侵入するため、原料粉末41の成形体(または粉末成形体)に前記プレスピン45の形状が転写される[図8(b)]。最後に、原料粉末41の粉末成形体が前記筒状型から取り出され、前記穴部を有する円柱状の粉末成形体46が得られる[図8(c)]。 An example of the powder compaction process will be described with reference to FIG. 8. As shown in FIG. 8, in the powder compaction process, first, raw material powder 41 for forming a cemented carbide is filled into a cylindrical mold such as a cylinder formed by a die 42 and a lower punch 43 [FIG. 8(a)]. Next, an upper punch 44 equipped with a press pin 45, which is a transfer mold, is inserted into the cylindrical mold to pressurize the raw material powder 41, so that the press pin 45 penetrates into the filled raw material powder 41, and the shape of the press pin 45 is transferred to the molded body (or powder compact) of the raw material powder 41 [FIG. 8(b)]. Finally, the powder compact of the raw material powder 41 is removed from the cylindrical mold, and a cylindrical powder compact 46 having the hole is obtained [FIG. 8(c)].
 転写型であるプレスピン45は、円柱の先端を円錐にした形状である。圧粉成形工程では、金型内に充填した原料粉末41に対して、前記形状を有するプレスピン45を、加圧しながら円錐の先端部から差し込むことにより、原料粉末41を押し固めることができるとともに、転写型であるプレスピン45の形状を前記穴部の形状として原料粉末41の粉末成形体に転写できる。このようにして形成された穴部は、目的のノズルの貫通孔とは異なり、粉末成形体を貫通しない穴部として形成することにより、後述する型彫り放電加工工程および研削工程と組み合わせた工程によって前記穴部底の先端で微小な吐出口を形成できる。 The press pin 45, which is a transfer mold, has a cylindrical shape with a conical tip. In the powder compaction process, the press pin 45 having the above shape is inserted from the tip of the cone while applying pressure to the raw material powder 41 filled in a die, thereby compacting the raw material powder 41 and transferring the shape of the press pin 45, which is a transfer mold, to the powder compact of the raw material powder 41 as the shape of the hole. The hole formed in this way is different from the through hole of the desired nozzle, and by forming it as a hole that does not penetrate the powder compact, a tiny discharge port can be formed at the tip of the bottom of the hole by a process combined with the die-sinking electric discharge machining process and grinding process described below.
 転写型の形状は、前記注入口に対応する開口部を有し、かつ貫通していない穴部を有する粉末成形体を転写できる形状であれば、特に限定されない。粉末成形体に貫通していない穴部を形成することにより、後述する研削工程によって、開口部の反対側から研削して微小な吐出口を形成できるためである。特に、穴部の先端形状(底形状)を先細の微小形状とすることにより、微小な口径を有する吐出口を容易に形成できる。 The shape of the transfer mold is not particularly limited as long as it has an opening corresponding to the injection port and can transfer a powder molding having a non-penetrating hole. By forming a non-penetrating hole in the powder molding, a minute discharge port can be formed by grinding from the opposite side of the opening in the grinding process described below. In particular, by making the tip shape (bottom shape) of the hole a tapered minute shape, a discharge port with a minute aperture can be easily formed.
 このような転写型の形状は、貫通孔の形状に対応していればよく、微小な吐出口を形成し易い点から、前記貫通孔の形状に対応し、かつ前記テーパ状孔部に対応するテーパ部の形状が円錐状であるのが好ましい。すなわち、転写型の形状において、前記貫通孔の形状に対応する形状のうち、前記テーパ状孔部に対応する部分の形状のみ、前記貫通孔の形状に略対応しているが、完全には対応していない形状(前記テーパ状孔部の形状において、吐出口から先端部が延出した形状である円錐状)であってもよい。転写型の円錐状部も、前述の精密ノズルのテーパ状孔部と同様のテーパ角に形成することにより、微小な吐出口を形成することが容易になる。また、粉末成形体は、後述する焼結工程で20~30%程度収縮するため、転写型の形状は、貫通孔の形状よりも収縮率に応じて若干大きい形状で形成してもよい。 The shape of such a transfer mold only needs to correspond to the shape of the through hole, and it is preferable that the shape of the tapered portion corresponding to the tapered hole portion is conical in order to easily form a minute discharge port. In other words, in the shape of the transfer mold, only the shape of the portion corresponding to the tapered hole portion of the shape corresponding to the shape of the through hole may be a shape that approximately corresponds to the shape of the through hole, but does not correspond completely (the tapered hole portion may be a cone shape with the tip extending from the discharge port). The conical portion of the transfer mold may also be formed to have the same taper angle as the tapered hole portion of the precision nozzle described above, making it easy to form a minute discharge port. In addition, since the powder compact shrinks by about 20 to 30% in the sintering process described later, the shape of the transfer mold may be formed to be slightly larger than the shape of the through hole depending on the shrinkage rate.
 転写型の円錐状部は、精密ノズルの微小な吐出口を形成し易い点から、円錐状部の先端径を小さくするのが好ましい。前記先端径は、吐出口の目的の口径に応じて選択できるが、例えば10μm以下(例えば1~10μm)であってもよく、好ましくは7μm以下(例えば、2~7μm)、さらに好ましくは5μm以下(例えば3~5μm)である。先端径が大きすぎると、微小な吐出口径を有する精密ノズルを容易に製造するのが困難となる虞がある。 The tip diameter of the conical portion of the transfer mold is preferably small so that it is easy to form a minute discharge port of the precision nozzle. The tip diameter can be selected according to the target diameter of the discharge port, but may be, for example, 10 μm or less (e.g., 1 to 10 μm), preferably 7 μm or less (e.g., 2 to 7 μm), and more preferably 5 μm or less (e.g., 3 to 5 μm). If the tip diameter is too large, it may be difficult to easily manufacture a precision nozzle with a minute discharge port diameter.
 圧縮成形の成形圧は、例えば50~300MPa、好ましくは100~250MPa、さらに好ましくは150~200MPaである。 The molding pressure for compression molding is, for example, 50 to 300 MPa, preferably 100 to 250 MPa, and more preferably 150 to 200 MPa.
 [焼結工程]
 本発明の精密ノズルの製造方法は、前記圧粉成形工程で得られた粉末成形体を焼結し、前記注入口に対応する開口部を有し、かつ貫通していない穴部を有する焼結体を得る焼結工程をさらに含む。
[Sintering process]
The method for manufacturing a precision nozzle of the present invention further includes a sintering step of sintering the powder compact obtained in the powder compacting step to obtain a sintered body having an opening portion corresponding to the injection port and a hole portion that does not pass through.
 焼結工程では、結合成分粒子を溶融させて液相を形成することにより、前記粉末成形体を緻密化および一体化した焼結体を得ることができるが、必要に応じて、結合成分粒子を溶融する本焼結の前工程として、前記粉末成形体を本焼結よりも低温で加熱して予備焼結(仮焼結)してもよい。粉末成形体がバインダーを含む場合、予備焼結により、バインダーを除去してもよい。 In the sintering process, the binder particles are melted to form a liquid phase, thereby obtaining a sintered body in which the powder compact is densified and integrated. However, if necessary, the powder compact may be pre-sintered (preliminary sintered) by heating it at a lower temperature than the main sintering as a preliminary process prior to the main sintering in which the binder particles are melted. If the powder compact contains a binder, the binder may be removed by pre-sintering.
 予備焼結の温度は、例えば100~1000℃、好ましくは300~900℃、さらに好ましくは500~800℃である。予備焼結の圧力は、常圧下または減圧下のいずれであってもよいが、減圧下が好ましい。予備焼結時間は、例えば2~48時間、好ましくは4~12時間、さらに好ましくは6~10時間である。 The pre-sintering temperature is, for example, 100 to 1000°C, preferably 300 to 900°C, and more preferably 500 to 800°C. The pre-sintering pressure may be either normal pressure or reduced pressure, but reduced pressure is preferred. The pre-sintering time is, for example, 2 to 48 hours, preferably 4 to 12 hours, and more preferably 6 to 10 hours.
 本焼結の温度は、例えば1200~1600℃、好ましくは1250~1550℃、さらに好ましくは1300~1500℃である。本焼結の圧力は、常圧下または減圧下(または真空下)であってもよく、常圧下または加圧下であってもよい。本焼結時間は、例えば1~48時間、好ましくは2~24時間、さらに好ましくは3~20時間である。 The temperature of this sintering is, for example, 1200 to 1600°C, preferably 1250 to 1550°C, and more preferably 1300 to 1500°C. The pressure of this sintering may be normal pressure or reduced pressure (or vacuum), or normal pressure or pressurized pressure. The time of this sintering is, for example, 1 to 48 hours, preferably 2 to 24 hours, and more preferably 3 to 20 hours.
 [放電加工工程]
 本発明の精密ノズルの製造方法は、前記焼結体の穴部に電極を挿入して放電加工する放電加工工程(型彫り放電加工工程)をさらに含む。
[Electric discharge machining process]
The method for manufacturing a precision nozzle of the present invention further includes an electric discharge machining step (die sinking electric discharge machining step) in which an electrode is inserted into the hole of the sintered body to perform electric discharge machining.
 圧粉成形工程で得られた粉末成形体を焼結により緻密化した焼結体は、転写型と収縮比を利用することにより、目的の精密ノズルに近い状態(ニアネットシェイプ)まで仕上げられているが、本発明では精密な被吐出体の通路形状および微細な吐出口を要求される精密ノズルを製造するために、さらに型彫り放電加工によって目的の精密ノズルの貫通孔に近い形状に仕上げることにより、微小な吐出口を有する精密ノズルを製造できる。特に、本発明では、型彫り放電加工工程において、特定の電極を用いることにより、後述する研削工程を経て30μm未満の口径を有する吐出口を精度良く製造でき、従来の製造方法では製造できなかった20μm以下の口径を有する吐出口も製造できる。この時、転写型でニアネットシェイプしている効果として、型彫り放電加工の電極消耗が少なく、精密加工精度を向上したり、コストを抑えることができる。 The powder compact obtained in the powder compacting process is densified by sintering to produce a sintered body that is close to the desired precision nozzle (near net shape) by utilizing a transfer mold and shrinkage ratio. In the present invention, in order to manufacture a precision nozzle that requires a precise passage shape for the object to be discharged and a fine discharge port, a precision nozzle with a minute discharge port can be manufactured by further finishing the shape to a shape close to the through hole of the desired precision nozzle by die-sinking electric discharge machining. In particular, in the present invention, by using a specific electrode in the die-sinking electric discharge machining process, it is possible to manufacture a discharge port with a diameter of less than 30 μm with high precision through the grinding process described below, and it is also possible to manufacture a discharge port with a diameter of 20 μm or less that could not be manufactured by conventional manufacturing methods. At this time, the effect of near-net shaping with a transfer mold is that the electrode wear in die-sinking electric discharge machining is small, which improves precision machining accuracy and reduces costs.
 焼結工程から型彫り放電工程に至る一連の流れについて、図9を用いて説明する。図9に示されるように、圧粉成形工程で得られた粉末成形体46[図9(a)]は、焼結工程において緻密および一体化され、ニアネットシェイプされた穴部47aを有する焼結体47として得られる[図9(b)]。この穴部47aに対して、精密ノズルの貫通孔に対応する形状の電極48を用いて放電加工し、穴部47aの内壁を仕上げ加工することにより、電極48の形状を焼結体47の穴部47aに精密に転写する[図9(c)]。 The series of steps from the sintering process to the die-sinking discharge process will be explained using Figure 9. As shown in Figure 9, the powder compact 46 obtained in the powder compacting process [Figure 9(a)] is densified and integrated in the sintering process, resulting in a sintered body 47 having a near-net shaped hole 47a [Figure 9(b)]. This hole 47a is discharge machined using an electrode 48 having a shape corresponding to the through hole of the precision nozzle, and the inner wall of the hole 47a is finish-machined to precisely transfer the shape of the electrode 48 to the hole 47a of the sintered body 47 [Figure 9(c)].
 電極48も、前記圧粉成形工程のプレスピン45に対応した形状であり、円柱の先端を円錐にした形状である。型彫り放電加工工程では、このような円錐形状を有する電極48を用いて、電極の形状を転写することにより、焼結体47の穴部47aを、目的の精密ノズルの貫通孔の形状に、より近付けるとともに、後述する研削工程で微小な吐出口を形成し易くなる。 The electrode 48 also has a shape corresponding to the press pin 45 in the powder compacting process, and is a cylinder with a conical tip. In the die-sinking electric discharge machining process, an electrode 48 having such a conical shape is used to transfer the shape of the electrode, so that the hole 47a of the sintered body 47 is made closer to the shape of the through-hole of the desired precision nozzle, and it also becomes easier to form a minute discharge port in the grinding process described below.
 電極の形状は、容易に目的の貫通孔の形状を形成できる点から、前記貫通孔に対応する形状が好ましく、後述する研削工程で容易に微小な吐出口を開口できる点から、前記貫通孔の形状に対応し、かつ前記テーパ状孔部に対応するテーパ部の形状が円錐状である形状であるのが好ましい。すなわち、電極の形状において、前記貫通孔の形状に対応する形状のうち、前記テーパ状孔部に対応する部分の形状のみ、前記貫通孔の形状に略対応しているが、完全には対応していない形状(前記テーパ状孔部の形状において、吐出口から先端部が延出した形状である円錐状)であってもよい。そのため、電極の円錐状部のテーパ角は、前述の精密ノズルのテーパ状孔部のテーパ角と同一にするのが好ましい。 The shape of the electrode is preferably a shape corresponding to the through hole, since the desired through hole shape can be easily formed, and is preferably a shape that corresponds to the shape of the through hole and has a conical tapered portion corresponding to the tapered hole portion, since a minute discharge port can be easily opened in the grinding process described later. That is, in the shape of the electrode, only the shape of the portion corresponding to the tapered hole portion, among the shapes corresponding to the shape of the through hole, may be a shape that approximately corresponds to the shape of the through hole, but does not correspond completely (the tapered hole portion may be a cone shape with the tip extending from the discharge port). Therefore, it is preferable that the taper angle of the conical portion of the electrode is the same as the taper angle of the tapered hole portion of the precision nozzle described above.
 電極の円錐状部は、精密ノズルの微小な吐出口を形成し易い点から、円錐状部の先端径を小さくするのが好ましい。前記先端径は、吐出口の目的の口径に応じて選択できるが、例えば10μm以下(例えば1~10μm)であってもよく、好ましくは7μm以下(例えば、2~7μm)、さらに好ましくは5μm以下(例えば3~5μm)である。先端径が大きすぎると、微小な吐出口径を有する精密ノズルを容易に製造するのが困難となる虞がある。 The conical portion of the electrode preferably has a small tip diameter so that it is easy to form a minute discharge port of the precision nozzle. The tip diameter can be selected according to the intended diameter of the discharge port, but may be, for example, 10 μm or less (e.g., 1 to 10 μm), preferably 7 μm or less (e.g., 2 to 7 μm), and more preferably 5 μm or less (e.g., 3 to 5 μm). If the tip diameter is too large, it may be difficult to easily manufacture a precision nozzle with a minute discharge port diameter.
 電極の材質としては、タングステンWを含むのが好ましく、タングステン単体、タングステンと他の金属との合金(例えば、タングステンと銅との合金)がさらに好ましく、タングステン単体がより好ましい。 The electrode material preferably contains tungsten (W), more preferably tungsten alone or an alloy of tungsten with another metal (e.g., an alloy of tungsten and copper), and most preferably tungsten alone.
 放電加工において、電極と穴部との隙間(放電代)は、例えば10~30μm、好ましくは10~20μm、さらに好ましくは5~10μmである。 In electrical discharge machining, the gap (discharge gap) between the electrode and the hole is, for example, 10 to 30 μm, preferably 10 to 20 μm, and more preferably 5 to 10 μm.
 放電加工の条件としては、例えば、生産性と精度維持を考慮すると、5~8本の電極を用いて加工することが好ましい。 As for the conditions for electric discharge machining, for example, taking into consideration productivity and maintaining precision, it is preferable to use 5 to 8 electrodes for machining.
 [研削工程]
 本発明の精密ノズルの製造方法は、前記型彫り放電加工で放電加工した焼結体を、注入口となる開口部の反対側から研削し、吐出口を開口する研削工程を含む。前記型彫り放電工程で得られた焼結体の内部には、精密ノズルの貫通孔に対応した形状の穴部が形成されているが、穴部の底に相当する円錐の先端部は、焼結体を貫通していない。そこで、研削工程では、穴部としての円錐の先端部まで焼結体を研削して吐出口を開口させる。
[Grinding process]
The manufacturing method of the precision nozzle of the present invention includes a grinding step in which the sintered body processed by the die sinking discharge machining is ground from the opposite side of the opening serving as the injection port to open a discharge port. A hole having a shape corresponding to the through hole of the precision nozzle is formed inside the sintered body obtained by the die sinking discharge step, but the tip of the cone corresponding to the bottom of the hole does not penetrate the sintered body. Therefore, in the grinding step, the sintered body is ground up to the tip of the cone serving as the hole to open a discharge port.
 研削方法としては、慣用の研削方法を利用でき、例えば、円盤状砥石を備えた研削機(平面研削盤など)などを利用してもよい。 A conventional grinding method can be used as the grinding method, for example, a grinding machine (such as a surface grinder) equipped with a disc-shaped grinding wheel can be used.
 前記研削工程において、吐出口となる孔の発生の有無および口径の確認方法は、特に限定されず、気体や液体を流通させることにより確認する方法、カメラを用いて画像で確認する方法などが挙げられる。これらのうち、簡便性などの点から、カメラを用いて画像で確認する方法が好ましい。 In the grinding process, the method for checking the presence or absence of holes that serve as discharge ports and their diameter is not particularly limited, and examples include a method of checking by passing gas or liquid through the holes, and a method of checking by images using a camera. Of these, the method of checking by images using a camera is preferred from the standpoint of simplicity, etc.
 カメラを用いて研削面を撮像した画像で確認する方法を採用した研削工程について図10を用いて説明する。研削工程では、型彫り放電加工工程で得られた焼結体47については、円盤状砥石を備えた研削機49を用いて、円盤状砥石を回転させながら移動させて前記焼結体47の表面を研削することにより[図10(a)]、注入口となる開口部の反対側(裏面)から前記表面を所定時間研削した後、カメラ50で研削面の画像を確認する[図10(b)]。画像確認の結果、研削面に孔が確認できなかった場合には、孔が確認できるまで所定時間および/または所定距離の研削を繰り返す。そして、孔が確認できると、測定機で口径を測定し、目的の吐出口径に達していない場合には、目的の口径が確認できるまで所定時間および/または所定距離の研削を繰り返すことにより、目的の吐出口を有する精密ノズル51を製造できる。 The grinding process employs a method of confirming the grinding surface by an image captured by a camera, as described below with reference to FIG. 10. In the grinding process, the sintered body 47 obtained in the die-sinking discharge machining process is ground on the surface of the sintered body 47 by rotating and moving the disk-shaped grinding wheel using a grinding machine 49 equipped with a disk-shaped grinding wheel [FIG. 10(a)], and the surface is ground for a predetermined time from the opposite side (back side) of the opening that serves as the injection port, and the image of the ground surface is confirmed with a camera 50 [FIG. 10(b)]. If no hole is confirmed on the ground surface as a result of the image confirmation, grinding is repeated for a predetermined time and/or a predetermined distance until the hole is confirmed. Then, when the hole is confirmed, the aperture is measured with a measuring device, and if the target outlet diameter is not reached, grinding is repeated for a predetermined time and/or a predetermined distance until the target aperture is confirmed, thereby manufacturing a precision nozzle 51 having the target outlet.
 円盤状砥石を備えた研削機を用いた研削方法において、円盤状砥石の周速度は、例えば15~35m/s、好ましくは20~30m/s、さらに好ましくは24~28m/s程度である。また、円盤状砥石を回転するための回転軸の回転速度は、例えば1400~2600rpm、好ましくは1600~2400rpm、さらに好ましくは1800~2200rpmである。速度が小さすぎると、生産性が低下する虞があり、逆に大きすぎると、吐出口の口径の調整が困難となる虞がある。 In a grinding method using a grinding machine equipped with a disc-shaped grinding wheel, the peripheral speed of the disc-shaped grinding wheel is, for example, 15 to 35 m/s, preferably 20 to 30 m/s, and more preferably about 24 to 28 m/s. The rotational speed of the rotating shaft for rotating the disc-shaped grinding wheel is, for example, 1400 to 2600 rpm, preferably 1600 to 2400 rpm, and more preferably 1800 to 2200 rpm. If the speed is too low, there is a risk of reduced productivity, and conversely, if it is too high, there is a risk that it will be difficult to adjust the diameter of the discharge port.
 砥石としては、慣用の砥石を利用でき、例えば、ダイヤ・レジン(SDC)質系砥石、ダイヤ・レジン(SD)質系砥石などが挙げられる。砥粒(砥石の番手)の大きさは、例えば#170~#2000、好ましくは#200~#1800、さらに好ましくは#325~#1500である。粒度が小さすぎると、生産性が低下する虞があり、逆に大きすぎると、吐出口の口径の調整が困難となる虞がある。 Any conventional grinding wheel can be used, such as diamond-resin (SDC)-based grinding wheels and diamond-resin (SD)-based grinding wheels. The size of the abrasive grains (grit of the grinding wheel) is, for example, #170 to #2000, preferably #200 to #1800, and more preferably #325 to #1500. If the grain size is too small, there is a risk of reduced productivity, and conversely, if it is too large, there is a risk that it will be difficult to adjust the diameter of the discharge port.
 カメラとしては、CCDカメラやCMOSカメラ、レーザカメラ、熱画像カメラ、ステレオビジョンカメラなどのデジタルカメラを用いることができる。これらのうち、画像処理の精度が高い点などから、CCDカメラが好ましい。 As the camera, digital cameras such as CCD cameras, CMOS cameras, laser cameras, thermal imaging cameras, and stereo vision cameras can be used. Of these, CCD cameras are preferred due to their high image processing accuracy.
 研削面での孔およびその口径を確認する方法としては、特に限定されず、モニターの画像を目視で観察する方法であってもよく、画像処理して読み取られたデータを情報分析装置(パーソナルコンピュータなど)で解析し、研削速度と関連付けて、所定の口径に制御してもよい。 The method for checking the holes and their diameters on the grinding surface is not particularly limited, and may involve visually observing the image on a monitor, or the data read by image processing may be analyzed by an information analysis device (such as a personal computer) and correlated with the grinding speed to control the hole diameter to a specified value.
 研削工程を経て得られた精密ノズルは、種々の流体、例えば加熱または非加熱流体を吐出するためのノズルであってもよい。さらに、加熱した流体は、加熱溶融した流体(例えば、注入口から半田ボールを注入し、レーザー照射などの加熱手段によって半田ボールを孔内で溶融した半田クリーム)などであってもよい。 The precision nozzle obtained through the grinding process may be a nozzle for discharging various fluids, such as heated or unheated fluids. Furthermore, the heated fluid may be a heated and melted fluid (for example, solder cream produced by injecting solder balls from an injection port and melting the solder balls inside the hole by heating means such as laser irradiation).
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.
 実施例1
 [プレスピンの作製]
 光学式倣い研削盤を用いて、超硬合金をプロファイル研削(PG)加工することにより、先端に限りなくストレートランドが無いシャープエッジが形成されたピンを作製した。得られたプレスピン(転写型)の先端部の顕微鏡写真を図11に示す。プレスピンの先端径は5μmであった。
Example 1
[Press pin creation]
Using an optical profile grinder, a pin with a sharp edge with almost no straight land at the tip was produced by profile grinding (PG) a cemented carbide alloy. A micrograph of the tip of the obtained press pin (transfer mold) is shown in Figure 11. The tip diameter of the press pin was 5 μm.
 [電極の作製]
 光学式倣い研削盤を用いて、タングステンW丸棒をPG加工することにより、先端に限りなくストレートランドが無いシャープエッジが成形されたピンを作製した。得られた電極の先端部およびその拡大部分の顕微鏡写真を図12に示す。電極の先端径は4μmであった。
[Preparation of electrodes]
Using an optical profile grinder, a tungsten rod was PG-machined to produce a pin with a sharp edge at the tip with almost no straight land. The tip of the electrode obtained and a micrograph of its enlarged portion are shown in Figure 12. The tip diameter of the electrode was 4 μm.
 [圧粉成形工程]
 粉末状炭化タングステンWC(平均粒径2.5μm程度) 92gと、粉末状コバルトCo 8gと、パラフィン0.8gとを混ぜて作製した混合末を、図8に示すダイと下パンチとで形成された型内に必要量充填し、前記プレスピンを装着した上パンチを用いて150MPaで加圧し、穴部を有する円柱状の粉末成形体を得た。
[Powder compaction process]
A required amount of mixed powder was filled into a mold formed by a die and a lower punch shown in FIG. 8, and a cylindrical powder compact having a hole was obtained by pressing the molded body at 150 MPa using an upper punch equipped with the press pin. The mixture was 92 g of powdered tungsten carbide WC (average particle size: about 2.5 μm), 8 g of powdered cobalt Co, and 0.8 g of paraffin.
 [焼結工程]
 得られた粉末成形体を、真空下、1400℃で5時間焼結し、焼結体を得た。
[Sintering process]
The resulting powder compact was sintered in vacuum at 1400° C. for 5 hours to obtain a sintered body.
 [放電加工工程]
 型彫り放電加工機((株)ソディック製AQ35L)および限りなくシャープエッジに成形された電極を用いて、荒加工・中仕上げ加工・仕上げ加工に分割して前記焼結体を複数回型彫り放電加工した。
[Electric discharge machining process]
Using a die-sinking electric discharge machine (AQ35L manufactured by Sodick Co., Ltd.) and an electrode formed with an extremely sharp edge, the sintered body was subjected to die-sinking electric discharge machining several times, divided into rough machining, semi-finishing machining, and finishing machining.
 [研削工程]
 円盤状砥石を備えた研削機(アマダマシナリー(株)製「TECSTAR 52」)を用いて、研削工程において、CCDカメラを用いて研削面を画像で確認しながら、放電加工した焼結体に対して加工を行った。画像確認の結果、研削面に孔が確認できなかった場合には、孔が確認できるまで研削および研削面の画像の確認を繰り返した。孔が貫通し最初に吐出口が観察できた精密ノズルの先端部の顕微鏡写真を図13に示す。吐出口の口径はφ5μmであった。写真中央に確認できる微小な白色の円形状開口部が口径5μmの吐出口である。得られた精密ノズルのテーパ状孔部の深さLは4240μmであり、吐出口の口径φに対するテーパ状孔部の深さ(アスペクト比L/φ)は848であった。前記テーパ状孔部の傾斜角θは10°であった。
[Grinding process]
In the grinding process, a grinding machine equipped with a disk-shaped grinding wheel ("TECSTAR 52" manufactured by Amada Machinery Co., Ltd.) was used to process the sintered body that had been subjected to electrical discharge machining while checking the image of the ground surface with a CCD camera. When the result of checking the image showed that no hole was found on the ground surface, grinding and checking the image of the ground surface were repeated until the hole was found. A micrograph of the tip of the precision nozzle where the hole penetrated and the discharge port was first observed is shown in FIG. 13. The diameter of the discharge port was φ5 μm. The tiny white circular opening that can be seen in the center of the photograph is the discharge port with a diameter of 5 μm. The depth L of the tapered hole portion of the obtained precision nozzle was 4240 μm, and the depth of the tapered hole portion relative to the diameter φ of the discharge port (aspect ratio L/φ) was 848. The inclination angle θ of the tapered hole portion was 10°.
 さらに研削を繰り返すことにより、目的の吐出口を有する精密ノズルを製造した。得られた精密ノズルの先端部の断面の顕微鏡写真を図14に示す。吐出口にむけてテーパ状になっており、吐出口の口径はφ20μmであった。テーパ状内壁面の算術平均粗さRaは128μmであり、先端面の算術平均粗さRaは20μmであった。 Further grinding was repeated to produce a precision nozzle with the desired outlet. Figure 14 shows a micrograph of the cross section of the tip of the precision nozzle obtained. It was tapered towards the outlet, and the diameter of the outlet was φ20μm. The arithmetic mean roughness Ra of the tapered inner wall surface was 128μm, and the arithmetic mean roughness Ra of the tip surface was 20μm.
 実施例2
 実施例1と同様にして放電加工した焼結体を製造し、研削工程において、研削面の画像を確認する時期および頻度を変更し、最終的に、吐出口の口径φが39.1μmである精密ノズルを製造した。各確認時期における口径およびテーパ状孔部の深さを測定し、アスペクト比を算出し、吐出口の真円度を測定した結果を表1に示す。なお、最初および最後に確認した研削面については、精密ノズル先端部の同心度(吐出口における精密ノズルの外形状と吐出口との同心度)も評価した。
Example 2
A sintered body was produced by electrical discharge machining in the same manner as in Example 1, and the timing and frequency of checking the image of the ground surface in the grinding process were changed, and ultimately a precision nozzle with an outlet diameter φ of 39.1 μm was produced. The diameter and the depth of the tapered hole were measured at each checking time, the aspect ratio was calculated, and the roundness of the outlet was measured. The results are shown in Table 1. Note that for the first and last checked grinding surfaces, the concentricity of the precision nozzle tip (the concentricity between the outer shape of the precision nozzle at the outlet and the outlet) was also evaluated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、実施例2では、アスペクト比の大きいテーパ状孔部を有する精密ノズルにおいて、吐出口の口径を微細で、かつ小さい真円度に形成することができた。2回目の確認で得られた精密ノズルの先端部の断面の顕微鏡写真を図15に示す。写真中央に円形状の吐出口が形成されているのが確認できる。 As is clear from the results in Table 1, in Example 2, in a precision nozzle having a tapered hole with a large aspect ratio, it was possible to form the outlet with a fine diameter and small circularity. Figure 15 shows a microscopic photograph of the cross section of the tip of the precision nozzle obtained in the second confirmation. It can be seen that a circular outlet has been formed in the center of the photograph.
 実施例3
 実施例1と同様にして放電加工した焼結体を製造し、研削工程において、研削面の画像を確認する時期および頻度を変更し、最終的に、吐出口の口径φが39.5μmである精密ノズルを製造した。各確認時期における口径およびテーパ状孔部の深さを測定してアスペクト比を算出し、吐出口の真円度を測定した結果を表2に示す。
Example 3
A sintered body was produced by electrical discharge machining in the same manner as in Example 1, and the timing and frequency of checking the image of the ground surface in the grinding process were changed, and ultimately a precision nozzle with an outlet diameter φ of 39.5 μm was produced. The diameter and the depth of the tapered hole at each checking timing were measured to calculate the aspect ratio, and the roundness of the outlet was measured. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果から明らかなように、実施例3では、アスペクト比の大きいテーパ状孔部を有する精密ノズルにおいて、吐出口の口径を微細で、かつ小さい真円度に形成することができた。2回目の確認で得られた精密ノズルの先端部の断面の顕微鏡写真を図16に示す。写真中央に円形状の吐出口が形成されているのが確認できる。 As is clear from the results in Table 2, in Example 3, in a precision nozzle having a tapered hole with a large aspect ratio, it was possible to form the outlet with a fine diameter and small circularity. Figure 16 shows a micrograph of the cross section of the tip of the precision nozzle obtained in the second confirmation. It can be seen that a circular outlet has been formed in the center of the photograph.
 実施例4
 実施例1と同様にして放電加工した焼結体を製造し、研削工程において、研削面の画像を確認する時期および頻度を変更し、最終的に、吐出口の口径φが39.3μmである精密ノズルを製造した。各確認時期における口径およびテーパ状孔部の深さを測定してアスペクト比を算出し、吐出口の真円度を測定した結果を表3に示す。なお、最後に確認した研削面については、精密ノズル先端部の同心度も評価した。
Example 4
A sintered body was produced by electrical discharge machining in the same manner as in Example 1, and the timing and frequency of checking the image of the ground surface in the grinding process were changed, and ultimately a precision nozzle with an outlet diameter φ of 39.3 μm was produced. The diameter and the depth of the tapered hole at each checking time were measured to calculate the aspect ratio, and the results of measuring the roundness of the outlet are shown in Table 3. Note that the concentricity of the tip of the precision nozzle was also evaluated for the last checked ground surface.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の結果から明らかなように、実施例4では、アスペクト比の大きいテーパ状孔部を有する精密ノズルにおいて、吐出口の口径を微細で、かつ小さい真円度に形成することができた。最後の確認で得られた精密ノズルの先端部の断面の顕微鏡写真を図17に示す。写真中央に円形状の吐出口が形成されているのが確認できる。 As is clear from the results in Table 3, in Example 4, in a precision nozzle having a tapered hole with a large aspect ratio, it was possible to form the outlet with a fine diameter and small circularity. Figure 17 shows a micrograph of the cross section of the tip of the precision nozzle obtained in the final confirmation. It can be seen that a circular outlet has been formed in the center of the photograph.
 実施例5
 実施例1と同様にして放電加工した焼結体を製造し、研削工程において、研削面の画像を確認する時期および頻度を変更し、最終的に、吐出口の口径φが39.2μmである精密ノズルを製造した。各確認時期における口径およびテーパ状孔部の深さを測定してアスペクト比を算出し、吐出口の真円度を測定した結果を表4に示す。なお、最後に確認した研削面については、精密ノズル先端部の同心度も評価した。
Example 5
A sintered body was produced by electrical discharge machining in the same manner as in Example 1, and the timing and frequency of checking the image of the ground surface in the grinding process were changed, and ultimately a precision nozzle with an outlet diameter φ of 39.2 μm was produced. The diameter and the depth of the tapered hole at each checking time were measured to calculate the aspect ratio, and the results of measuring the roundness of the outlet are shown in Table 4. The concentricity of the tip of the precision nozzle was also evaluated for the last checked ground surface.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4の結果から明らかなように、実施例5では、アスペクト比の大きいテーパ状孔部を有する精密ノズルにおいて、吐出口の口径を微細で、かつ小さい真円度に形成することができた。最後の確認で得られた精密ノズルの先端部の断面の顕微鏡写真を図18に示す。写真中央に円形状の吐出口が形成されているのが確認できる。 As is clear from the results in Table 4, in Example 5, in a precision nozzle having a tapered hole with a large aspect ratio, it was possible to form the outlet with a fine diameter and small circularity. Figure 18 shows a micrograph of the cross section of the tip of the precision nozzle obtained in the final confirmation. It can be seen that a circular outlet has been formed in the center of the photograph.
 実施例6
 放電加工時の仕上げ加工を複数回追加した以外は実施例1と同様にして放電加工した焼結体を製造した。円盤状砥石を備えた研削機を用いて、研削工程において、CCDカメラを用いて研削面を画像で確認しながら、放電加工した焼結体に対して加工を行った。各確認時期における口径およびテーパ状孔部の深さを測定してアスペクト比を算出し、吐出口の真円度を測定した結果を表5に示す。なお、最初および最後に確認した研削面については、精密ノズル先端部の同心度も評価した。
Example 6
A sintered body was produced by electric discharge machining in the same manner as in Example 1, except that finishing processing was added multiple times during electric discharge machining. Using a grinding machine equipped with a disk-shaped grinding wheel, the electric discharge machined sintered body was processed while checking the ground surface with an image using a CCD camera in the grinding process. The aperture and the depth of the tapered hole at each confirmation time were measured to calculate the aspect ratio, and the results of measuring the circularity of the discharge port are shown in Table 5. The concentricity of the precision nozzle tip was also evaluated for the ground surfaces confirmed first and last.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5の結果から明らかなように、実施例6では、アスペクト比の大きいテーパ状孔部を有する精密ノズルにおいて、吐出口の口径を微細で、かつ小さい真円度に形成することができた。最後の確認で得られた精密ノズルの先端部の断面の顕微鏡写真を図19に示す。写真中央に円形状の吐出口が形成されているのが確認できる。 As is clear from the results in Table 5, in Example 6, in a precision nozzle having a tapered hole with a large aspect ratio, it was possible to form the outlet with a fine diameter and small circularity. Figure 19 shows a micrograph of the cross section of the tip of the precision nozzle obtained in the final confirmation. It can be seen that a circular outlet has been formed in the center of the photograph.
 実施例7
 実施例6と同様にして放電加工した焼結体を製造し、この焼結体を用いて、研削工程において、研削面の画像を確認する時期を変更し、吐出口の口径φが42.5μmである精密ノズルを製造した。得られた精密ノズルのテーパ状孔部の深さLは4133μmであり、吐出口の口径φに対するテーパ状孔部の深さ(アスペクト比L/φ)は97であった。吐出口の真円度は0.8μmであり、精密ノズル先端部の同心度は3μmであった。
Example 7
A sintered body was produced by electrical discharge machining in the same manner as in Example 6, and this sintered body was used to produce a precision nozzle with an outlet diameter φ of 42.5 μm by changing the timing of checking the image of the ground surface in the grinding process. The tapered hole depth L of the precision nozzle obtained was 4133 μm, and the aspect ratio L/φ of the tapered hole depth to the outlet diameter φ was 97. The circularity of the outlet was 0.8 μm, and the concentricity of the tip of the precision nozzle was 3 μm.
 実施例8
 実施例6と同様にして放電加工した焼結体を製造し、研削工程において、研削面の画像を確認する時期および頻度を変更し、最終的に、吐出口の口径φが39.9μmである精密ノズルを製造した。各確認時期における口径およびテーパ状孔部の深さを測定してアスペクト比を算出し、吐出口の真円度および精密ノズル先端部の同心度を測定した結果を表6に示す。
Example 8
A sintered body was produced by electrical discharge machining in the same manner as in Example 6, and the timing and frequency of checking the image of the ground surface in the grinding process were changed to finally produce a precision nozzle with an outlet diameter φ of 39.9 μm. The diameter and the depth of the tapered hole were measured at each checking timing to calculate the aspect ratio, and the circularity of the outlet and the concentricity of the precision nozzle tip were measured, and the results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6の結果から明らかなように、実施例8では、アスペクト比の大きいテーパ状孔部を有する精密ノズルにおいて、吐出口の口径を微細で、かつ小さい真円度に形成することができた。最後の確認で得られた精密ノズルの先端部の断面の顕微鏡写真を図20に示す。写真中央に円形状の吐出口が形成されているのが確認できる。 As is clear from the results in Table 6, in Example 8, in a precision nozzle having a tapered hole with a large aspect ratio, it was possible to form the outlet with a fine diameter and small circularity. Figure 20 shows a microscopic photograph of the cross section of the tip of the precision nozzle obtained in the final confirmation. It can be seen that a circular outlet has been formed in the center of the photograph.
 実施例9
 圧粉成形工程において、粉末状炭化タングステンWCとして、より細かい粉末状炭化タングステンWC(平均粒径0.8μm程度)を用いる以外は実施例1と同様にして放電加工した焼結体を製造した。円盤状砥石を備えた研削機を用いて、研削工程において、CCDカメラを用いて研削面を画像で確認しながら、放電加工した焼結体に対して加工を行った。各確認時期における口径φおよびテーパ状孔部の深さLを測定してアスペクト比を算出した結果を表7に示す。なお、最初に確認した研削面については、精密ノズル先端部の同心度も評価し、5回目に確認した研削面については、吐出口の真円度も評価し、最初および最後に確認した研削面については、吐出口の真円度および精密ノズル先端部の同心度も評価した。
Example 9
A sintered body was produced by electric discharge machining in the same manner as in Example 1, except that finer powdered tungsten carbide WC (average particle size about 0.8 μm) was used as the powdered tungsten carbide WC in the powder compacting process. In the grinding process, a grinding machine equipped with a disk-shaped grinding wheel was used to process the sintered body by electric discharge machining while checking the ground surface with an image using a CCD camera. The results of measuring the aperture diameter φ and the depth L of the tapered hole at each confirmation time and calculating the aspect ratio are shown in Table 7. For the first confirmed ground surface, the concentricity of the precision nozzle tip was also evaluated, for the fifth confirmed ground surface, the roundness of the discharge port was also evaluated, and for the first and last confirmed ground surfaces, the roundness of the discharge port and the concentricity of the precision nozzle tip were also evaluated.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7の結果から明らかなように、実施例9では、アスペクト比の大きいテーパ状孔部を有する精密ノズルにおいて、吐出口の口径を微細で、かつ小さい真円度に形成することができた。最後の確認で得られた精密ノズルの先端部の断面の顕微鏡写真を図21に示す。写真中央に円形状の吐出口が形成されているのが確認できる。 As is clear from the results in Table 7, in Example 9, in a precision nozzle having a tapered hole with a large aspect ratio, it was possible to form the outlet with a fine diameter and small circularity. Figure 21 shows a micrograph of the cross section of the tip of the precision nozzle obtained in the final confirmation. It can be seen that a circular outlet has been formed in the center of the photograph.
 実施例10
 放電加工時の仕上げ加工を複数回追加した以外は実施例1と同様にして吐出口の口径がφ5μm(真円度0.4μm)である精密ノズルを得た。
Example 10
A precision nozzle having a discharge port with a diameter of φ5 μm (roundness 0.4 μm) was obtained in the same manner as in Example 1, except that finishing processing was performed multiple times during the electric discharge processing.
 本発明の精密ノズルは、吐出口が微細な各種の精密ノズルとして利用でき、例えば、導体デバイスの製造過程において、微小部品の組み立てや基板上での実装などに利用される電子部品用ノズルとして、リフローノズル、吸着ノズル、ソルダージェッティングノズルなどに好適に利用でき、なかでも、半田ボールを溶融して吐出するためのリフローノズルとして特に好適である。 The precision nozzle of the present invention can be used as various precision nozzles with fine nozzle openings. For example, it can be used as a reflow nozzle, suction nozzle, solder jetting nozzle, etc., as a nozzle for electronic components used in assembling tiny components and mounting them on a board during the manufacturing process of conductor devices, and is particularly suitable as a reflow nozzle for melting and discharging solder balls.
 1…ノズル
 2…注入口
 3…貫通孔
 3a…円筒状孔部
 3b…テーパ状孔部
 4…吐出口
Reference Signs List 1: Nozzle 2: Inlet 3: Through hole 3a: Cylindrical hole 3b: Tapered hole 4: Discharge port

Claims (21)

  1.  超硬合金で形成され、注入口から吐出口まで貫通する貫通孔を有し、かつ前記貫通孔が、前記吐出口を起点として前記注入口に向かって内径が増大する方向に延びるテーパ状孔部を少なくとも含む精密ノズルの製造方法であって、
     前記貫通孔を形成するための転写型を用いて、原料粉末を圧縮成形し、前記注入口に対応する開口部を有し、かつ貫通していない穴部を有する成形体を得る圧粉成形工程、
     前記成形体を焼結することにより、前記成形体に対応する焼結体を得る焼結工程、
     前記焼結体の穴部に電極を挿入して放電加工する放電加工工程、
     放電加工した焼結体を、注入口となる開口部の反対側から研削し、吐出口を開口する研削工程を含む、精密ノズルの製造方法。
    A method for manufacturing a precision nozzle, the precision nozzle being made of cemented carbide and having a through hole penetrating from an injection port to a discharge port, the through hole including at least a tapered hole portion extending from the discharge port as a starting point toward the injection port in a direction in which an inner diameter increases, the method comprising the steps of:
    a powder compacting step of compressing and compacting a raw material powder using a transfer mold for forming the through hole to obtain a compact having an opening portion corresponding to the injection port and a hole portion that does not penetrate through the powder;
    a sintering step of sintering the green body to obtain a sintered body corresponding to the green body;
    an electric discharge machining step of inserting an electrode into the hole of the sintered body and performing electric discharge machining;
    A method for manufacturing a precision nozzle, which includes a grinding step in which a sintered body that has been subjected to electrical discharge machining is ground from the opposite side of the opening that serves as the injection port to open an ejection port.
  2.  前記貫通孔の断面形状が円形状、楕円形状または多角形状である請求項1記載の製造方法。 The manufacturing method according to claim 1, wherein the cross-sectional shape of the through hole is circular, elliptical or polygonal.
  3.  前記貫通孔の断面形状が円形状である請求項2記載の製造方法。 The manufacturing method according to claim 2, wherein the cross-sectional shape of the through hole is circular.
  4.  前記圧粉成形工程において、前記転写型の形状が、前記貫通孔の形状に対応し、かつ前記テーパ状孔部に対応するテーパ部の形状が円錐状、楕円錐状または多角錐状である請求項1~3のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein in the powder compacting process, the shape of the transfer mold corresponds to the shape of the through hole, and the shape of the tapered portion corresponding to the tapered hole portion is a cone, an elliptical cone, or a polygonal pyramid.
  5.  前記テーパ状孔部に対応するテーパ部の形状が円錐状である請求項4記載の製造方法。 The manufacturing method according to claim 4, wherein the shape of the tapered portion corresponding to the tapered hole portion is conical.
  6.  前記テーパ状孔部に対応する前記転写型の円錐状部の先端径が5μm以下である請求項5記載の製造方法。 The manufacturing method according to claim 5, wherein the tip diameter of the conical portion of the transfer mold corresponding to the tapered hole is 5 μm or less.
  7.  前記放電加工工程において、前記電極の形状が、前記転写型の形状に対応している請求項1~3のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein the shape of the electrode in the electric discharge machining process corresponds to the shape of the transfer mold.
  8.  前記テーパ状孔部に対応する前記電極の形状が円錐状であり、かつ前記テーパ状孔部に対応する前記電極の円錐状部の先端径が5μm以下である請求項7記載の製造方法。 The manufacturing method according to claim 7, wherein the shape of the electrode corresponding to the tapered hole is conical, and the tip diameter of the conical portion of the electrode corresponding to the tapered hole is 5 μm or less.
  9.  前記研削工程において、カメラを用いて研削面を撮像した画像に基づいて、吐出口となる孔の発生の有無およびその口径を確認する請求項1~3のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, in which the grinding process checks for the presence or absence of holes that will become discharge ports and their diameters based on an image of the grinding surface captured by a camera.
  10.  前記貫通孔が、前記テーパ状孔部と、前記テーパ状孔部から前記注入口まで延びる円筒状孔部とからなる請求項1~3のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein the through hole comprises the tapered hole portion and a cylindrical hole portion extending from the tapered hole portion to the injection port.
  11.  前記吐出口の口径が30μm未満である請求項1~3のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein the diameter of the discharge port is less than 30 μm.
  12.  前記精密ノズルが電子部品用ノズルである請求項1~3のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein the precision nozzle is a nozzle for electronic components.
  13.  前記精密ノズルが、半田ボールを溶融して吐出するためのリフローノズルである請求項1~3のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein the precision nozzle is a reflow nozzle for melting and discharging solder balls.
  14.  超硬合金で形成され、
     注入口から吐出口まで貫通する貫通孔を有し、
     前記貫通孔が、前記吐出口から前記注入口に向かって内径が増大する方向に延びるテーパ状孔部を含み、
     前記吐出口の口径が45μm未満であり、かつ
     前記テーパ状孔部のノズル軸心方向の長さが1mm以上である、精密ノズル。
    It is made of cemented carbide,
    A through hole is provided from the inlet to the outlet,
    the through hole includes a tapered hole portion extending in a direction in which an inner diameter increases from the discharge port toward the injection port,
    A precision nozzle, wherein the diameter of the discharge port is less than 45 μm, and the length of the tapered hole portion in the nozzle axial direction is 1 mm or more.
  15.  前記テーパ状孔部のノズル軸心方向の長さが、前記吐出口の口径に対して10倍以上である請求項14記載の精密ノズル。 The precision nozzle according to claim 14, wherein the length of the tapered hole in the nozzle axial direction is 10 times or more the diameter of the discharge port.
  16.  前記吐出口の形状が円形状であり、かつ前記吐出口の真円度が5μm以下である請求項14または15記載の精密ノズル。 The precision nozzle according to claim 14 or 15, wherein the shape of the outlet is circular and the circularity of the outlet is 5 μm or less.
  17.  前記吐出口における精密ノズルの外形状が等方形状であり、前記吐出口の形状が円形状であり、かつ前記外形状と前記吐出口との同心度が10μm以下である請求項14または15記載の精密ノズル。 The precision nozzle according to claim 14 or 15, wherein the outer shape of the precision nozzle at the outlet is isotropic, the outlet is circular, and the concentricity between the outer shape and the outlet is 10 μm or less.
  18.  前記テーパ状孔部の傾斜角が3~60°である請求項14または15記載の精密ノズル。 The precision nozzle according to claim 14 or 15, wherein the inclination angle of the tapered hole is 3 to 60°.
  19.  前記吐出口の口径が30μm未満である請求項14または15記載の精密ノズル。 The precision nozzle according to claim 14 or 15, wherein the diameter of the discharge port is less than 30 μm.
  20.  前記吐出口の口径が1μm以上30μm未満であり、
     前記テーパ状孔部のノズル軸心方向の長さが1~20mmであり、
     前記テーパ状孔部のノズル軸心方向の長さが、前記吐出口の口径に対して100倍以上であり、
     前記吐出口の形状が円形状であり、かつ前記吐出口の真円度が5μm以下であり、
     前記吐出口における精密ノズルの外形状が円形状であり、かつ前記外形状と前記吐出口との同心度が10μm以下であり、かつ
     前記テーパ状孔部の傾斜角が4~50°である請求項14または15記載の精密ノズル。
    The diameter of the discharge port is 1 μm or more and less than 30 μm,
    The length of the tapered hole in the nozzle axial direction is 1 to 20 mm,
    The length of the tapered hole portion in the nozzle axial direction is 100 times or more larger than the diameter of the discharge port,
    The shape of the discharge port is circular, and the circularity of the discharge port is 5 μm or less;
    16. The precision nozzle according to claim 14 or 15, wherein an outer shape of the precision nozzle at the discharge port is circular, a concentricity between said outer shape and said discharge port is 10 μm or less, and an inclination angle of said tapered hole portion is 4 to 50°.
  21.  前記超硬合金が炭化タングステンを含む合金である請求項14または15記載の精密ノズル。 The precision nozzle according to claim 14 or 15, wherein the cemented carbide is an alloy containing tungsten carbide.
PCT/JP2023/016411 2022-10-24 2023-04-26 Precision nozzle and manufacturing method therefor WO2024089916A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-169800 2022-10-24
JP2022169800 2022-10-24
JP2023-067550 2023-04-18
JP2023067550A JP7327864B1 (en) 2022-10-24 2023-04-18 Precision nozzle and its manufacturing method

Publications (1)

Publication Number Publication Date
WO2024089916A1 true WO2024089916A1 (en) 2024-05-02

Family

ID=87562933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016411 WO2024089916A1 (en) 2022-10-24 2023-04-26 Precision nozzle and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JP7327864B1 (en)
WO (1) WO2024089916A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054808A (en) * 1999-08-20 2001-02-27 Matsushita Electric Ind Co Ltd Nozzle hole machining method
JP2002224919A (en) * 2001-01-31 2002-08-13 Tokyo Metropolis Electric discharge machining method for forming hole in workpiece
JP2003301234A (en) * 2002-04-12 2003-10-24 Hitachi Tool Engineering Ltd Cemented carbide for electric discharge machining
JP2008200806A (en) * 2007-02-20 2008-09-04 Denso Corp Electrical discharge machine
JP2008254117A (en) * 2007-04-04 2008-10-23 Denso Corp Electric discharge machining method and manufacturing method of fuel injection nozzle
CN102328074A (en) * 2011-07-22 2012-01-25 浙江一火科技有限公司 Hard alloy nozzle and manufacturing method thereof
WO2021010073A1 (en) * 2019-07-12 2021-01-21 株式会社ワークス Electronic-component bonding nozzle
JP2022085914A (en) * 2020-11-28 2022-06-09 株式会社ワークス Nozzle for bonding electronic component
JP2022089371A (en) * 2020-12-04 2022-06-16 株式会社ワークス Nozzle for bonding electronic component

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054808A (en) * 1999-08-20 2001-02-27 Matsushita Electric Ind Co Ltd Nozzle hole machining method
JP2002224919A (en) * 2001-01-31 2002-08-13 Tokyo Metropolis Electric discharge machining method for forming hole in workpiece
JP2003301234A (en) * 2002-04-12 2003-10-24 Hitachi Tool Engineering Ltd Cemented carbide for electric discharge machining
JP2008200806A (en) * 2007-02-20 2008-09-04 Denso Corp Electrical discharge machine
JP2008254117A (en) * 2007-04-04 2008-10-23 Denso Corp Electric discharge machining method and manufacturing method of fuel injection nozzle
CN102328074A (en) * 2011-07-22 2012-01-25 浙江一火科技有限公司 Hard alloy nozzle and manufacturing method thereof
WO2021010073A1 (en) * 2019-07-12 2021-01-21 株式会社ワークス Electronic-component bonding nozzle
JP2022085914A (en) * 2020-11-28 2022-06-09 株式会社ワークス Nozzle for bonding electronic component
JP2022089371A (en) * 2020-12-04 2022-06-16 株式会社ワークス Nozzle for bonding electronic component

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
株式会社共立合金製作所, JIMTOF2022 第31回日本国際工作機械見本市, 08 November 2022 all disclosures, (KYORITSU GOKIN CO LTD. JIMTOF2022 The 31st JAPN INTERNATIONAL MACHINE TOOL FAIR.) *

Also Published As

Publication number Publication date
JP7327864B1 (en) 2023-08-16
JP2024062346A (en) 2024-05-09

Similar Documents

Publication Publication Date Title
JP6796266B2 (en) Cemented carbide and cutting tools
TWI619571B (en) Rod shape member and cutting tool
JP5807850B2 (en) Cermet, cermet manufacturing method, and cutting tool
JP5922758B2 (en) Drill blank, drill blank manufacturing method, drill and drill manufacturing method
JP2009035810A (en) Cemented carbide
US20100290845A1 (en) Carbide rotary tool
JPWO2020090280A1 (en) Manufacturing method of cemented carbide, cutting tool and cemented carbide
CN109072362A (en) machining tool
JP2022172474A (en) end mill
WO2024089916A1 (en) Precision nozzle and manufacturing method therefor
JP6633735B2 (en) Cutting insert
CN106573314B (en) Cutting tool and method of making a cutting tool
TW202417115A (en) Precision nozzle and manufacturing method thereof
JP2008238354A (en) Drill and cutting method
JP6339436B2 (en) Drill blank, drill blank manufacturing method, and drill
JP7193677B2 (en) Manufacturing method of sintered gear
JP6608941B2 (en) Rod and cutting tool
CN108883474B (en) Cutting insert and cutting tool
JP2016132805A (en) Blank for cutting tool, production method of blank for cutting tool, cutting tool, and production method of cutting tool
JP2000336451A (en) Modified sintered alloy, coated sintered alloy, and their production
JP2004232000A (en) Cemented carbide and manufacturing method, and rotary tool using the cemented carbide
JP6304648B2 (en) Metal powder and method for producing metal powder
JP4184783B2 (en) Cemented carbide, method for manufacturing the same, and drill for printed circuit board processing
Ko et al. A study of WC end-milling manufacturing and cutting ability evaluation by using powder injection molding
JP2024063431A (en) Cemented carbide compact having long and narrow holes and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23882133

Country of ref document: EP

Kind code of ref document: A1