WO2024077945A1 - 一种基于组合旋转束线的辐照终端及应用 - Google Patents

一种基于组合旋转束线的辐照终端及应用 Download PDF

Info

Publication number
WO2024077945A1
WO2024077945A1 PCT/CN2023/093423 CN2023093423W WO2024077945A1 WO 2024077945 A1 WO2024077945 A1 WO 2024077945A1 CN 2023093423 W CN2023093423 W CN 2023093423W WO 2024077945 A1 WO2024077945 A1 WO 2024077945A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam line
irradiation
rotating
horizontal
line
Prior art date
Application number
PCT/CN2023/093423
Other languages
English (en)
French (fr)
Inventor
杨建成
郑亚军
夏佳文
詹文龙
胡正国
徐瑚珊
阮爽
申国栋
杨雅清
盛丽娜
姚庆高
张金泉
刘杰
王儒亮
吴巍
陈文军
马桂梅
封安辉
Original Assignee
中国科学院近代物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院近代物理研究所 filed Critical 中国科学院近代物理研究所
Publication of WO2024077945A1 publication Critical patent/WO2024077945A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1079Sharing a beam by multiple treatment stations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1081Rotating beam systems with a specific mechanical construction, e.g. gantries
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1081Rotating beam systems with a specific mechanical construction, e.g. gantries
    • A61N5/1082Rotating beam systems with a specific mechanical construction, e.g. gantries having multiple beam rotation axes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons

Definitions

  • the invention relates to an irradiation terminal based on a combined rotating beam and an application thereof, belonging to the technical field of medical treatment and irradiation.
  • Radiotherapy is a very popular technical means of tumor treatment in the world.
  • the most commonly used ions for ion cancer treatment are protons and carbon ions.
  • Carbon ions have more significant advantages in linear energy density, relative biological effects, and side scattering. They can produce DNA double-strand breaks (DSBs) that are difficult to repair and are usually used as the best choice for cancer treatment.
  • radiotherapy terminals have a single beam line corresponding to a single operating room.
  • the multi-angle operation of a single operating room is achieved through multiple fixed beam lines or rotating gantry technology. Under this scheme, it is very costly to increase the efficiency of treatment by adding operating rooms. Adding operating rooms on the basis of the current internationally used 3-5 operating rooms will lead to a significant increase in the cost of treatment equipment, which is not conducive to large-scale promotion and application.
  • my country's first domestically produced heavy ion demonstration device draws the beam out from the plane accelerated by the circular accelerator, passes through a section of beam transport line, and uses a larger deflection magnet to achieve the climbing and down-crossing of the beam line, realizing a vertical, horizontal, and horizontal + vertical 4-operation room scheme.
  • the terminal beam line length reaches 140 meters, with many equipment, high vertical beam line space, and a climbing height of nearly 20 meters.
  • the horizontal footprint is large and the cost is expensive.
  • a rotating gantry technology can also be used.
  • the scale of the rotating gantry is very large.
  • the heavy ion rotating gantry developed by the Heidelberg Heavy Ion Research Center in Germany weighs 630 tons, of which the rotating part weighs 570 tons. It is also very large in size, and the processing and operating costs are very high.
  • Even the superconducting carbon ion rotating gantry being developed internationally weighs more than 200 tons.
  • the magnetic rigidity of the proton therapy device is only 1/3 of that of the carbon ion device. The weight and volume of the gantry are greatly reduced.
  • the current proton cancer treatment device is generally A rotating gantry is often used to irradiate patients at multiple angles. To realize the beam delivery system, many functions need to be implemented, and the terminal beam line is complex, resulting in a large weight of the rotating gantry equipment, reaching hundreds of tons, and the entire rotating gantry is very expensive.
  • the present invention provides an irradiation terminal based on a combined rotating beam and its application.
  • the terminal includes a combined rotating beam.
  • more operating rooms can be configured in the horizontal beam of the combined rotating beam and the horizontal circumferential direction of the beam rotation of 45 degrees (or other angles).
  • the operating rooms are distributed in two layers, and the number of operating rooms is greatly increased.
  • a combined rotating beam fixed on a rotating frame can be configured with multiple operating rooms, and the treatment efficiency is greatly improved; multiple combined rotating beams are fixed on at least two rotating frames to achieve simultaneous irradiation of treatment heads at multiple angles (vertical + horizontal, or 45 degrees + horizontal) in one operating room.
  • the problem of a significant increase in beams due to the configuration of terminal operating rooms with different irradiation angles is solved, while the floor space and beam equipment investment are reduced, meeting the requirements of miniaturization of the treatment terminal system, and facilitating promotion and application.
  • the present invention adopts the following technical solutions:
  • An irradiation terminal based on a combined rotating beam line comprising:
  • a combined rotating beam line fixed on the first rotating frame, includes a rotator beam line and a terminal beam line, wherein the terminal beam line includes a horizontal beam line and an inclined beam line at a certain angle to the ground, and the horizontal beam line and the inclined beam line are branches of the rotator beam line;
  • the first rotating frame includes two end beams and two parallel main beams, the two end beams are arranged in the gaps at the two ends of the two main beams, and connect the two main beams together;
  • a plurality of first operating rooms which are evenly arranged along the circumferential direction of the horizontal beam line rotation to form a first layer of operating rooms, and a mounting hole is opened on the wall of each of the first operating rooms;
  • a plurality of second operating rooms wherein the plurality of second operating rooms are evenly arranged along the circumferential direction of the inclined beam line rotation to form a second layer of operating rooms, and a mounting hole is opened on the wall of each second operating room;
  • Irradiation heads a number of which are respectively arranged in one-to-one correspondence with the first operating room and the second operating room, and the irradiation heads pass through the mounting holes to receive the ion beam transmitted by the combined rotating beam line and irradiate the patient or the sample;
  • the driving mechanism is connected to the first rotating frame in a transmission manner and is used to drive the first rotating frame to rotate 0-360 degrees along the circular track, thereby making the combined rotating beam line a beam line that can rotate 0-360 degrees.
  • the irradiation terminal preferably, the terminal beam line also includes a first vertical beam line and a second vertical beam line,
  • the first vertical beamline and the second vertical beamline are both branches of the rotator beamline.
  • the irradiation terminal preferably has first vacuum membrane windows installed on the flanges at the ion beam output ends of the horizontal beam line, the inclined beam line and the second vertical beam line, and a second vacuum membrane window installed on the flange at the receiving end of the irradiation head, and the first vacuum membrane window and the second vacuum membrane window are used to achieve vacuum sealing of the combined rotating beam line and the irradiation head.
  • a gap size between the first vacuum film window and the second vacuum film window is 5-200 mm.
  • the first vertical beam line is mechanically connected to the first rotating frame via a thrust bearing.
  • the irradiation terminal preferably has a main beam comprising a vertical beam, a horizontal beam and two oblique beams connecting the vertical beam and the horizontal beam, the horizontal beams of the two main beams are connected together by a connecting shaft and a connecting plate, and the combined rotating beam is assembled in a cavity formed by the two main beams.
  • the irradiation terminal preferably, further comprises a motion assembly, wherein the motion assembly comprises a slider and a connector which are connected to each other, wherein the slider is slidably connected to the annular track, and the connector is drivingly connected to the driving mechanism.
  • the motion assembly comprises a slider and a connector which are connected to each other, wherein the slider is slidably connected to the annular track, and the connector is drivingly connected to the driving mechanism.
  • the irradiation terminal preferably has the rotator beam line rotated by a rotating structure, the rotating structure comprising a rotating drum, a large gear, a gear shaft and a positioning shaft, the gear shaft and the positioning shaft are respectively fastened to the rotating frame, the large gear is connected to the positioning shaft via a transition flange and a bearing, the large gear is meshed with the gear shaft, the large gear is fastened to the rotating drum, the rotating drum is used to fix the rotator beam line, and the rotating drum, the positioning shaft and the rotating frame are all provided with through holes for accommodating the rotator beam line to pass through.
  • the rotator beam line has the same rotation direction as the terminal beam line, the rotation angle is 1/2 of the terminal beam line, the phase shift in the x direction of the rotator beam line is an even multiple of ⁇ , and the phase shift in the y direction is an odd multiple of ⁇ , so as to achieve optical invariance during the rotation of the terminal beam line.
  • the irradiation terminal preferably has at least one rotating frame. When there are two rotating frames, they are the first rotating frame and the second rotating frame, which are coaxially arranged.
  • the first vertical beam forms a second horizontal beam by deflecting a dipole magnet.
  • the second horizontal beam is fixed on the second rotating frame.
  • the irradiation head of the second horizontal beam and the irradiation head of the second vertical beam are located in the same operating room to form vertical and horizontal dual-angle irradiation.
  • the irradiation terminal preferably, the number of the rotating rack is at least one, when the number of the rotating rack is When there are two beams, they are the first rotating frame and the second rotating frame, which are coaxially arranged.
  • the first vertical beam forms a second horizontal beam by deflecting a dipole magnet.
  • the second horizontal beam is fixed on the second rotating frame.
  • the irradiation head of the inclined beam and the third horizontal irradiation head of the second horizontal beam are located in the same operating room, forming inclined and horizontal dual-angle irradiation.
  • the irradiation head and the combined rotating beam line are of integrated or split design.
  • the third aspect of the present invention also relates to the application of the above-mentioned irradiation terminal in radiation therapy and industrial irradiation.
  • the present invention adopts the above technical solution, which has the following advantages:
  • the combined rotating beam line involved in the present invention is based on any accelerator to deflect the beam to the vertical direction after it is drawn out in any way, and then through the horizontal beam line, the first vertical beam line, the second vertical beam line, and the 45-degree (or other angle) beam line combination, the beam distribution at different irradiation angles is achieved.
  • the beam line combination is further rotated to achieve beam distribution to multiple operating rooms at different azimuth angles.
  • the combined rotating beam line has a compact structure and the beam line length can be shortened by 90% compared with the conventional fixed beam line.
  • one beam line corresponds to one operating room, and four beam lines are needed to achieve beam distribution in four operating rooms, with a total beam line length of nearly 200 meters.
  • the present invention can achieve beam distribution in more than eight operating rooms through a beam line of about 30 meters, which not only reduces the cost of process equipment such as magnets, vacuum, and power supplies, but also reduces the scale and cost of supporting auxiliary facilities, and at the same time greatly reduces the operating cost of the device during treatment.
  • the present invention can achieve multi-operation room beam distribution through a single rotating beam.
  • the rotating beam can be a single-angle or a multi-angle combination beam.
  • the number of operation rooms for a single-angle rotating beam can reach more than 8.
  • a multi-angle combination rotating beam can be constructed, which can not only expand the treatment angle but also further increase the number of operation rooms.
  • the rotating beam can also be a multi-level combination structure, and each level of the multi-angle rotating beam can correspond to multiple operation rooms, greatly improving the treatment efficiency.
  • the present invention can achieve multi-angle irradiation treatment in one operating room through a multi-stage rotating beam line.
  • two-stage rotation can achieve 45-degree and horizontal, vertical and horizontal dual-angle irradiation.
  • tumor patients can complete the required multi-angle irradiation in one operating room; and this multi-stage rotation combination can realize multiple multi-angle operating rooms at a low cost, which can further greatly improve the treatment efficiency.
  • the present invention adopts a split design and uses vacuum film window technology to design the combined rotating beam and the irradiation head into a split type, which further reduces the rotation radius, reduces the processing and installation costs of the rotating part, and improves the rotation efficiency.
  • Beam line movement and positioning accuracy A vacuum membrane window is used between the combined rotating beam line and the irradiation head to achieve vacuum sealing and physical space separation.
  • the ion beam can pass through the first vacuum membrane window, the atmosphere, and the second vacuum membrane window from the combined rotating beam line without loss to reach the irradiation head.
  • the combined rotating beam line and the irradiation head are designed to be split, and the rotation radius is further reduced by 50%.
  • the rotating structure is simple, the processing and installation costs are low, and the accuracy is easy to ensure.
  • the beam emitted by the synchrotron is highly asymmetric in the horizontal (x direction will be used instead when rotation is involved later) and vertical (y direction will be used instead when rotation is involved later).
  • the terminal beam spot cannot change during the rotation process.
  • the present invention adopts a rotator to achieve constant optical parameters during the rotation of the terminal beam line, which greatly reduces the difficulty of terminal target control during the rotation process; the rotator adopts a compact design with a total length of only 2.5m, which is much smaller than the 9-10m solutions available internationally, greatly reducing the vertical space requirements of the device and reducing the difficulty and cost of device construction; multi-angle beam lines on the same rotator beam line are a difficulty in optical design.
  • the present invention optimizes the position and strength of the magnet elements to control the full-line beam spot size within ⁇ 16mm, which can greatly reduce the size and cost of magnets, power supplies, beam diagnoses, and vacuum elements, and the prices of corresponding auxiliary facilities are also greatly reduced.
  • the beam emitted by the synchrotron is highly asymmetric in the horizontal (x direction will be used instead when rotation is involved later) and vertical (y direction will be used instead when rotation is involved later).
  • the present invention adopts a rotator to achieve constant optical parameters during the rotation of the terminal beam line, which greatly reduces the difficulty of controlling the terminal target during the rotation process.
  • Another outstanding advantage of the optical design of the rotator is that it can adapt to terminal beam lines at any angle while maintaining a small beam spot size across the entire line, such as the horizontal, vertical and 45-degree combined rotating beam lines in the present invention, which can simultaneously achieve constant optical parameters of multiple terminal beam lines at any angle during rotation.
  • the rotator adopts a compact design with a total length of only 2.5m, which is much smaller than the 9-10m solutions available internationally, greatly reducing the vertical space requirements of the device and reducing the difficulty and cost of device construction.
  • the irradiation terminal of the present invention can be connected to any accelerator to provide multi-angle and multi-operation room beam delivery at a lower cost, further reducing the footprint of the device, reducing equipment investment, and improving treatment efficiency. It is not only applicable to heavy ion devices, but also to proton devices; not only to radiation therapy, but also to industrial irradiation. It is a universal solution in the field of radiotherapy and irradiation.
  • FIG. 1a is a schematic diagram of a beam drawn out from a particle accelerator in a horizontal direction and deflected vertically downward to a terminal
  • FIG. 1b is a schematic diagram of a beam deflected vertically upward to a terminal
  • FIG2 is a schematic diagram of a combined rotating wire harness fixed on a rotating frame according to an embodiment of the present invention
  • FIG3 is a cross-sectional view of an irradiation system provided by an embodiment of the present invention where a combined rotating beam line is fixed on a rotating frame;
  • FIGS. 4-7 are schematic diagrams of a combined rotating wire harness provided by several embodiments of the present invention being fixed on a rotating frame, wherein FIG7 is a cross-sectional view along the line B-B in FIG5 ;
  • FIG8 is a top view of a combined rotating wire harness fixed on two rotating frames provided by another embodiment of the present invention.
  • FIG9 is a cross-sectional view taken along lines 1-1 and 2-2 in FIG8 ;
  • FIG10 is a cross-sectional view taken along lines 3-3 and 4-4 in FIG8 ;
  • FIG11 is a top view of a combined rotating wire harness fixed on two rotating frames provided in a third embodiment of the present invention.
  • FIG12 is a cross-sectional view taken along lines 5-5 and 6-6 in FIG11 ;
  • FIG13 is a cross-sectional view taken along lines 7-7 and 8-8 in FIG11;
  • Fig. 16 is a partial enlarged view of point A in Figs. 4, 6, 7, 8, 11 and 14;
  • FIG17 is a partial enlarged view of point B in FIG9;
  • Fig. 18 is an optical parameter diagram of the first horizontal terminal of the present invention.
  • FIG19 is an optical parameter diagram of the first 45-degree terminal of the present invention.
  • FIG20 is an optical parameter diagram of the first vertical terminal of the present invention.
  • Fig. 21 is an optical parameter diagram of the second horizontal terminal of the present invention.
  • Fig. 22 is an optical parameter diagram of a third horizontal terminal of the present invention.
  • FIG23 is a beam envelope diagram of the first horizontal terminal of the present invention.
  • FIG24 is a beam envelope diagram of the first 45-degree terminal of the present invention.
  • FIG25 is a beam envelope diagram of the first vertical terminal of the present invention.
  • FIG26 is a beam envelope diagram of the second horizontal terminal of the present invention.
  • FIG27 is a beam envelope diagram of the third horizontal terminal of the present invention.
  • accelerator devices are moving towards miniaturization and compactness.
  • the footprint of the device itself is gradually shrinking, and the way the beam is extracted from the accelerator and the beam line arrangement are also moving in this direction.
  • the particle accelerator adopts a room temperature or superconducting solution, and can be a synchrotron, a cyclotron, a FFAG (Fixed-Field Alternating Gradient Accelerator), a linear accelerator or other types of accelerators.
  • the beam in the particle accelerator can be drawn out horizontally from the inside or outside, and the drawn beam is deflected vertically downward through the beam line 1 to the beam line 2 and transmitted to the terminal; or it is deflected vertically upward through the beam line 1 to the beam line 2 and transmitted to the terminal.
  • the beam in the particle accelerator can also be drawn out vertically from the outside or inside through the Lambertson (iron cutting magnet) cutting magnet.
  • radiotherapy terminals have a single beam line corresponding to a single operating room.
  • the multi-angle operation of a single operating room is achieved through multiple fixed beam lines or rotating gantry technology.
  • Adding operating rooms to improve treatment efficiency is costly. Adding operating rooms on the basis of the current internationally used 3-5 operating rooms will lead to a significant increase in the cost of treatment equipment, which is not conducive to large-scale promotion and application.
  • the present invention can realize beam distribution in multiple operating rooms through a single rotating beam line.
  • the rotating beam line can be a single-angle or a multi-angle combined beam line.
  • the number of operating rooms for a single-angle rotating beam line can reach more than 8.
  • a multi-angle combined rotating beam line can be constructed, which can not only expand the treatment angle but also further increase the number of operating rooms.
  • the rotating beam line can also be a multi-level combination structure, and each level of the multi-angle rotating beam line can correspond to multiple operating rooms, greatly improving the treatment efficiency.
  • the irradiation terminal based on the combined rotating beam line provided by the present invention provides a multi-angle, multi-operation room, and single-room multi-angle terminal irradiation system for any arrangement in which any accelerator draws out the beam in any way and then deflects it to a vertical (upward or downward) direction, which can further reduce the footprint of the device, reduce equipment investment, and improve treatment efficiency.
  • the combined rotating beam line provided by the present invention includes: a rotator beam line 1, and a first horizontal beam line 2 composed of conventional magnets, superconducting magnets, superconducting coils or any combination thereof, a first vertical beam line 3, and a 45 degree (or other angle) beam line 4 and a second vertical beam line 5.
  • the combined rotating beam line, a first rotating dynamic sealing device 6 and a second rotating dynamic sealing device 7 connect the rotator beam line 1 and the first vertical beam line 3 together, and the first rotating dynamic sealing device 6 and the second rotating dynamic sealing device 7 are used for maintaining vacuum during the rotation process.
  • FIG. 3-7 it is a single combined rotating beam terminal irradiation system (the beam is fixed on a rotating frame).
  • the single combined rotating beam can be arbitrarily combined according to the deflection magnet.
  • the present invention only lists several typical embodiments, and any other combined beams are included in the present invention.
  • the combined rotating beam is fixed on the rotating frame and rotates under the action of the driving mechanism 96.
  • the operating room is also divided into two layers, the upper layer is a horizontal operating room, and the lower layer is arranged with a 45-degree operating room and a vertical operating room.
  • this embodiment provides that the beam in the accelerator is deflected to the vertical direction after being drawn out in any way, and then a combined terminal beam is formed after a deflection.
  • the significant advantage of this structure is that the overall height of the system can be reduced.
  • the deflection magnet and the combined terminal beam are fixed on the rotating frame, and operating rooms with different irradiation angles are arranged in the rotating circumferential direction. Similarly, preferably, 12 operating rooms can be arranged, and of course, more operating rooms can be set according to the treatment plan.
  • the combined beam can be designed as a symmetrical structure, and the rotating frame only needs to rotate 180 degrees or less to achieve all irradiation angles, which helps to further shorten the waiting time for treatment and improve the treatment efficiency.
  • the combined rotating beam provided by the present invention is fixed on a rotating frame.
  • the operating room of the irradiation terminal is divided into two layers, the upper layer is the horizontal operating room arranged in the horizontal circumferential direction of the rotation of the first horizontal beam line 2.
  • the irradiation preparation room 38 of the first layer can also be a horizontal operating room, so that 8 horizontal operating rooms can be evenly arranged, and the lower layer is the 45-degree (or other angle) beam line 4.
  • the second vertical beam line 5 rotates in the circumferential direction and 4 vertical operating rooms are arranged.
  • the vertical operating room and the 45-degree operating room are staggered.
  • the combined rotating beam line can preferably arrange 16 operating rooms.
  • the present invention can achieve multi-angle irradiation treatment in one operating room through a multi-stage rotating beam line.
  • two-stage rotation can achieve dual-angle irradiation of 45 degrees and horizontal, vertical and horizontal.
  • this multi-stage rotation combination can realize multiple multi-angle operating rooms at a low cost, which can further greatly improve the treatment efficiency.
  • first rotating frame 8 includes two end beams and two parallel "gantry” main beams, the two end beams are arranged in the gaps at the two ends of the two main beams, and the two main beams are mechanically connected together;
  • second rotating frame 9 includes two end beams 92 and two parallel "herringbone” main beams 91, the two end beams 92 are arranged in the gaps at the two ends of the two main beams 91, and the two main beams 91 are mechanically connected together, the main beam 91 is used to disperse the gravity of the combined rotating beam to the end beam 92, and the lower part of the end beam 92 is provided with a motion component 94, the motion component 94 includes a slider and a connecting member connected to each other, the connecting member is connected to the driving mechanism 96 in a transmission manner, the slider is slidably connected to the annular track 95
  • the connecting shaft 93 connects the vertical beams and horizontal beams of the two main beams 91 together.
  • the connecting plate 97 welds the main beam 91 to form a box-type bridge structure, which is light and has good vertical cross-sectional bending strength and large load-bearing capacity.
  • Four sets of driving mechanisms 96 can be driven synchronously and are installed at the end beam 92. Through friction transmission with the annular track 95, they are used to realize the rotation of the combined rotating beam and the rotating frame within 0-360 degrees in the horizontal plane to form two combined rotating terminal beams.
  • the present invention provides some cross-sectional views of combined rotating beams fixed on two rotating frames.
  • the first rotating frame 8 and the second rotating frame 9 are vertically coaxially arranged, and the second rotating frame 9 is located below the first rotating frame 8.
  • the combined rotating beam on the first rotating frame 8 can form a horizontal beam, a vertical beam, a 45-degree beam or any other angle beam through any branch.
  • the beam drawn from the first vertical beam 3 is formed into a second horizontal beam 15 by deflecting a dipole magnet, and the second horizontal beam 15 is fixed on the second rotating frame 9.
  • the second horizontal beam line 15 is vacuum-connected to the first vertical beam line 3 through the third rotating dynamic sealing device 14 to ensure that the vacuum is maintained during the relative rotation.
  • the first vertical beam line 3 is connected to the first rotating frame 8 through the thrust bearing 10. When the first rotating frame 8 rotates, the first vertical beam line 3 is kept stationary by the thrust bearing 10 under the action of gravity.
  • the second horizontal beam line 15 is installed on the second rotating frame 9, and realizes 0-360 degree rotation with the second rotating frame 9.
  • the second rotating frame 9 rotates coaxially with the first rotating frame 8, and the two can rotate separately or synchronously.
  • the second horizontal irradiation head 16 is installed in the first to fourth vertical + horizontal operation rooms 34-37 of the second layer through the installation hole 25, and forms a double irradiation angle with the vertical irradiation head 11 (the vertical irradiation head 11 is a vertical irradiation head corresponding to the vertical beam line branched from the 45 degree beam line fixed on the first rotating frame 8) in the same operation room.
  • the 45 degree operation room 30 and the vertical operation room 34 of the second layer are staggered, so that the third horizontal irradiation head 17 can be installed in the first to fourth 45 degree + horizontal operation rooms 30-33 of the second layer, and the third horizontal irradiation head 17 forms a double irradiation angle with the 45 degree irradiation head 12 in the same operation room.
  • the reference numerals 11-13 and 16-17 are split irradiation heads of different angles, which are fixedly installed in the operating room through the mounting holes 25 in the operating room.
  • the rotating frame is powered by the circular busbar 24, and the combined rotating beam line is rotated 0-360 degrees under the action of the driving mechanism 96.
  • the first vacuum film window 20 and the second vacuum film window 21 are used between the combined rotating beam line and the irradiation heads 11-13 and 16-17 installed at a fixed angle to achieve vacuum sealing and physical space separation.
  • the ion beam can pass through the first vacuum film window 20, the atmosphere, and the second vacuum film window 21 from the combined rotating beam line in sequence without loss to reach the irradiation head.
  • the terminal treatment system of the combined rotating beam line of the present invention is fixed on two rotating frames, and the operation rooms are arranged more, preferably up to 12, the beam line length is only about 10% of the conventional beam line, the treatment angle covers all the treatment angles of the conventional beam line arrangement, and 8 dual-angle operation rooms can be provided.
  • the irradiation head and the terminal beam line in the present invention can be fixedly connected, that is, no vacuum membrane window is set between the irradiation heads 11-13, 16-17 and the terminal beam line, and the arrangement of multiple operating rooms of the terminal treatment system can also be realized.
  • the multiple combined rotating beam terminal irradiation systems can provide 4 45-degree + horizontal irradiation angles, 4 vertical + horizontal irradiation angles, and 4 horizontal irradiation angles. Tumor patients can complete the required multiple irradiation angles at one time in one operating room, further improving the treatment efficiency. More of the above-mentioned operating rooms can be configured according to the layout of the operating room and treatment needs.
  • more single or multiple combined rotating beam lines can be set up on the basis of the combined rotating beam line to form
  • the rotating beam lines are coaxially arranged to form a rotating beam group.
  • the rotating beam lines can rotate individually or synchronously. These rotating beam lines can not only expand the number of operating rooms and the irradiation angle, but also overlap with each other to form a layout with multiple irradiation angles in the operating room.
  • the rotator beam line 1 of the present invention is connected to the first rotating frame 8 or the second rotating frame 9 through a rotating structure 39.
  • the rotating structure 39 includes: a rotating drum 391, which is used to install and fix a number of quadrupole magnets on the rotator beam line 1; a large gear 392 and a rotating drum 391 are connected by a first bolt 398, a gear shaft 393 and a large gear 392 are meshed, a positioning shaft 394 and a first rotating frame 8 or a second rotating frame 9 are fastened and connected by a second bolt 399, and a large gear 392 and a positioning shaft 394 are connected by a transition flange 3910 and a bearing 397.
  • a number of quadrupole magnets on the rotator beam line 1 are fixedly installed in the rotating drum 391 through a fixing frame 396.
  • the rotating drum 391, the positioning shaft 394 and the rotating frame are all provided with through holes for accommodating the rotator beam line 1 to pass through.
  • the gear shaft 393 is driven by a motor 395 to drive the large gear 392, and the large gear 392 drives the rotating drum 391 to realize the rotation of a number of quadrupole magnets on the rotator beam line 1.
  • the rotating structure 39 and the rotator beam line 1 form a rotator, which is used to eliminate the influence of beam line rotation on the terminal beam spot.
  • the rotator rotates in the same direction as the terminal beam line, and the rotation angle is 1/2 of the terminal beam line rotation angle.
  • Several quadrupole magnets in the rotator adopt a mirror-symmetric optical design.
  • the present invention proposes a set of compact optical designs for realizing combined rotating beamlines, which include a rotator beamline 1 and a plurality of terminal beamlines.
  • the rotator beamline 1 is a common beamline for all terminal beamlines (the terminal beamlines include a first horizontal beamline 2, a 45-degree beamline 4, a first vertical beamline 3, a second vertical beamline 5, etc.).
  • the rotator beam line 1 is a key component for realizing the combined rotating beam line, and is used to eliminate the influence of the beam line rotation on the terminal beam spot.
  • the rotator beam line 1 is composed of 7 quadrupole magnets 40, as shown in Figure 18.
  • the rotator beam line 1 rotates in the same direction as the terminal beam line, and the rotation angle is 1/2 of the rotation angle of the terminal beam line.
  • the rotator beam line 1 adopts a mirror-symmetric optical design, that is, the 7 quadrupole magnets 40 are centered on the fourth quadrupole magnet 40, and the remaining 6 quadrupole magnets 40 are arranged in a mirror-symmetric manner.
  • the x-direction ⁇ function and the y-direction ⁇ function of the beam are both zero.
  • the biggest feature of this beam line is that the phase shift in the x-direction is 2 ⁇ , the phase shift in the y-direction is ⁇ , and the entrance and exit optical parameters (twiss parameters) are mirror-symmetric.
  • the preferred quadrupole magnets 40 are all superconducting magnets, the normalized integrated gradient is 2 ⁇ 20/m, and the total length is only 2.5m. It can also be designed with a room temperature magnet, and the corresponding total length is 10 ⁇ 20m.
  • the quadrupole magnet 40 can also be realized by a combination of 5 to 10 pieces.
  • Another outstanding advantage of the optical design of the rotator is that it can adapt to the terminal beam line at any angle while maintaining a small beam spot size across the entire line, such as the horizontal, vertical and 45-degree combined rotating beam lines in the present invention, which can simultaneously achieve constant optical parameters of multiple terminal beam lines at any angle during the rotation process.
  • the terminal beamline (the terminal beamline includes the first horizontal beamline 2, the 45-degree beamline 4, the first vertical beamline 3, the second vertical beamline 5, etc.) is used to distribute the beam transmitted from the rotator beamline 1 to different terminals and match it according to the target size and scanning area required by the terminal.
  • the optical design of the first horizontal beam line 2 is shown in FIG. 18, which includes two 45-degree dipole magnets 41, as shown by the black blocks symmetrically arranged above and below the horizontal axis (abscissa) in the figure, and five quadrupole magnets 40, as shown by the black blocks distributed on both sides of the horizontal axis (abscissa) in the figure, wherein the black block located above the horizontal axis represents the focusing quadrupole magnet, and the black block located below the horizontal axis represents the defocusing quadrupole magnet.
  • the two 45-degree dipole magnets 41 are used to deflect the beam to the horizontal direction, and at the same time form an achromatic structure with the quadrupole magnet 40 (the first quadrupole magnet from left to right in the abscissa).
  • the second to fifth quadrupole magnets 40 are used for terminal beam spot matching, and the normalized integrated gradient of the quadrupole magnet 40 is 0.5 to 5/m.
  • the first horizontal beam line 2 adopts a compact design, with a total length of less than 15m, and the beam envelope is shown in FIG. 23, and the lateral size of the beam of the entire line is less than ⁇ 15mm.
  • the dotted curve in the upper part of the first horizontal beam line 2 in FIG18 represents the ⁇ function in the y direction
  • the solid curve represents the ⁇ function in the x direction, respectively indicating the size relationship between the x-direction and y-direction dimensions of the beam when it is stably transmitted in the first horizontal beam line 2.
  • the dotted curve in the lower part represents the y-direction dispersion function, indicating the fluctuation of the y-direction motion trajectory superimposed by the influence of momentum dispersion of the beam.
  • the directional dispersion function in the x direction of the first horizontal beam line 2 is always zero. It can be judged from the optical diagram that the ⁇ function transitions smoothly, ensuring the stability of the optical structure.
  • the optical diagrams of FIGS. 19-22 can also draw similar conclusions to those of FIG. 18.
  • the optical design of the 45-degree beam line 4 is shown in Figure 19, including a 45-degree dipole magnet 41 and 7 quadrupole magnets 40, wherein the 45-degree dipole magnet 41 is used to deflect the beam to a 45-degree direction, and the quadrupole magnet 40 is used for terminal beam spot matching and reducing the terminal dispersion to zero.
  • the normalized integrated gradient of the quadrupole magnet 40 is 0.5 to 5/m.
  • the terminal beam line adopts a compact design with a total length of less than 20m.
  • the beam envelope is shown in Figure 24, and the lateral size (x and y directions) of the entire beam line is less than ⁇ 15mm.
  • the optical design of the second vertical beam line 5 is shown in Figure 20, which includes two 45-degree dipole magnets 41 and five quadrupole magnets 40, wherein two 45-degree dipole magnets 41 with opposite deflection directions are used to deflect the beam to the vertical direction, and the quadrupole magnet 40 and the 45-degree dipole magnet 41 form an achromatic structure and are used for terminal beam spot matching.
  • the normalized integrated gradient of the quadrupole magnet 40 is 0.5 to 5/m.
  • the terminal beam line adopts a compact design with a total length of less than 18m.
  • the beam envelope is shown in Figure 25, and the lateral size of the entire beam is less than ⁇ 15mm.
  • the optical design of the second horizontal beam line 15 is shown in FIG. 21, comprising
  • the four quadrupole magnets 40 of the first vertical beam line 3 are used for beam matching with the second horizontal beam line 15; the two 45-degree dipole magnets 41 and one quadrupole magnet 40 of the second horizontal beam line 15 form an achromatic structure; the second horizontal irradiation head 16 is a drift node for beam matching.
  • the normalized integrated gradient of the quadrupole magnet 40 is 0.5-5/m.
  • the terminal beam line adopts a compact design with a total length of less than 20m.
  • the beam envelope is shown in Figure 26, and the lateral size of the beam of the entire line is less than ⁇ 16mm.
  • the optical design of the third horizontal beamline is shown in FIG22, including beamlines 1, 3, and 15 shared with the second horizontal beamline 15, and a third horizontal irradiation head 17; the third horizontal irradiation head 17 includes three quadrupole magnets 40 for target beam matching.
  • the normalized integrated gradient of the quadrupole magnet 40 is 0.5 to 5/m.
  • the terminal beamline adopts a compact design with a total length of less than 25m.
  • the beam envelope is shown in FIG27, and the lateral size of the full-line beam is less than ⁇ 15mm.
  • the horizontal + 45 degree dual irradiation angle beam line composed of the 45 degree beam line 4 and the third horizontal beam line, and all other full-line beams have lateral dimensions less than ⁇ 16mm, which can greatly reduce the size and cost of the magnet components, and the price of the corresponding power supply and auxiliary supporting facilities is also greatly reduced.
  • the upper part of Figure 23 represents the change in the size of the beam in the x direction in the first horizontal beamline 2, and the lower part represents the change in the size of the beam in the y direction in the first horizontal beamline 2.
  • the beam size determines the size of the magnet element and the vacuum element, which in turn determines the cost of the hardware system.
  • the first horizontal beamline 2 adopts a compact design, and the beam size in the x and y directions is less than ⁇ 15 mm, which is significantly smaller than the conventional ⁇ 30 mm beam size, greatly reducing the cost of the hardware system.
  • the optical images of Figures 24-27 can also draw similar conclusions to Figure 23.
  • a second aspect of the present invention also provides an operating method of an irradiation terminal, comprising the following steps:
  • the rotator beam line 1 rotates under the drive of the motor 395 to affect the deflection direction of the beam, distribute the beam to different beam line terminals, and drive the combined rotating beam line to rotate around the rotation axis 22 through the driving mechanism 13, so that the rotating film window axis 22 and the irradiation head film window axis 23 coincide with each other;
  • the required ion beam passes through the rotator beam line 1, the horizontal beam line 2 and the inclined beam line in sequence, then passes through the first vacuum film window 20 and the second vacuum film window 21, and finally the irradiation head receives the ion beam to irradiate the patient or sample.
  • the ion beam does not need to pass through the vacuum film window and is directly delivered to the corresponding vertical treatment (irradiation) head; when the 45-degree (or other angle) beam line 4, the second vertical beam line 5, or the horizontal beam line 2 is selected for irradiation, the required ion beam passes through the rotator beam line 1 and passes through the first rotating dynamic sealing device. 6 reaches the terminal beam line fixed on the rotating system, and the rotating frame rotates to make the rotating film window axis 22 coincide with the irradiation head film window axis 23, and the ion beam passes through the vacuum film window between the two to reach the treatment (irradiation) head for irradiation.
  • a third aspect of the present invention relates to the use of the above-mentioned irradiation terminal in radiation therapy and industrial irradiation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)
  • Insulated Conductors (AREA)

Abstract

本发明涉及一种基于组合旋转束线的辐照终端及应用,辐照终端包括:组合旋转束线、旋转架和操作室。其中组合旋转束线包含旋转器束线、水平束线和与地面成一定角度的倾斜束线,可以实现不同角度的照射;组合旋转束线放置于所述旋转架上,通过旋转架0-360度旋转单个组合束线即可实现对不同方位角的多个操作室的束流配送;多个旋转束线通过组合,可以在一个操作室内实现多角度束流照射。本发明解决了辐照装置应用推广中的难题,具有操作室数量多、照射角度多、建设成本低、占地面积小的突出优势,大幅提升了治疗效率,降低了治疗成本,是一种普惠型离子辐照终端设计方案。

Description

一种基于组合旋转束线的辐照终端及应用 技术领域
本发明涉及一种基于组合旋转束线的辐照终端及应用,属于医疗及辐照技术领域。
背景技术
离子束放疗和辐照研究广泛应用于医疗、工农业等领域。放疗是目前全世界肿瘤治疗应用非常热门的一种技术手段,离子治癌最常用的离子是质子和碳离子。碳离子线性能量密度、相对生物效应、侧向散射优势更为显著,能够产生难以修复的DNA双链断裂(DSB),通常用作癌症治疗的最优选择。
放射治疗或辐照研究过程中耗时最长的环节是照射前的摆位和照射后剂量衰减等待,增加操作室是提高照射效率的关键瓶颈。目前放射治疗终端,是单束线对应单操作室,单操作室多角度通过多条固定束线或旋转机架技术来实现,在这种方案下,通过增加操作室来提高治疗效率,成本巨大。在目前国际通用的3-5个操作室的基础上增加操作室会导致治疗装置成本大幅增加,不利于大规模的推广应用。
采用离子束治疗癌症时,如果只用一个照射方向,皮肤与肿瘤间的正常细胞至少要受到1/3的肿瘤辐射剂量,形成不同程度的伤害,为减少这部分损害,增加治疗的焦皮比值,所以一个治疗疗程需要从不同方向来照射,将总剂量分成多个辐射方向,这样正常组织受到的剂量就大幅降低。常用的有水平终端、45度终端,垂直终端等。如我国首台国产重离子示范装置(武威碳离子治疗装置),将束流从环形加速器加速的平面内引出,通过一段束运线后采用较大的偏转磁铁来实现束线的爬高和下穿,实现一个垂直、一个水平、一个水平+垂直的4个操作室方案,终端束线长度达到140米,设备多,束线竖向占空高,爬升高度接近20米,水平占地面积大,造价昂贵。
为了实现多角度照射,也可以使用旋转机架(gantry)技术,但由于碳离子磁刚度高,旋转机架规模非常大,如德国海德堡重离子研究中心研制的重离子旋转机架重量达630吨,其中旋转部分重量达570吨,而且体积很大,加工和运行成本很高。即使国际上正在研制的超导碳离子旋转机架重量也超过200吨。而质子治疗装置磁刚度仅为碳离子磁刚度的1/3,Gantry重量和体积大幅缩小,目前的质子治癌装置通 常设置旋转机架用于多角度照射病人,为实现束流配送***需要实现很多功能,终端束线复杂,导致旋转机架设备重量大,达到百吨量级,且整个旋转机架造价非常昂贵。
发明内容
针对上述技术问题,本发明提供一种基于组合旋转束线的辐照终端及应用,该终端包括组合旋转束线,与常规固定束线终端方案相比,在组合旋转束线的水平束线和45度(或其它角度)束线旋转的水平圆周方向可以配置更多的操作室,操作室呈上下两层分布,操作室数量大大增加,一条组合旋转束线固定在一个旋转架上可以配置多个操作室,治疗效率大幅提升;多条组合旋转束线固定在至少两个旋转架上可以实现在一个操作室内多个角度(垂直+水平,或45度+水平)的治疗头同时照射。解决了为配置不同照射角度的终端操作室导致束线大幅增加的问题,同时减小了占地面积和束线设备投入,满足治疗终端***小型化的要求,便于推广应用。
为实现上述目的,本发明采取以下技术方案:
一种基于组合旋转束线的辐照终端,包括:
组合旋转束线,固定在第一旋转架上,包括旋转器束线和终端束线,所述终端束线包括水平束线和与地面成一定角度的倾斜束线,所述水平束线和所述倾斜束线是所述旋转器束线的分支;
所述第一旋转架包括两端梁和两平行布置的主梁,两所述端梁设置于两所述主梁两端的空隙中,并将两所述主梁连接在一起;
第一操作室,数量若干,若干所述第一操作室沿所述水平束线旋转的圆周方向均匀布置,形成第一层操作室,每个所述第一操作室的墙壁上开设有安装孔;
第二操作室,数量若干,若干所述第二操作室沿所述倾斜束线旋转的圆周方向均匀布置,形成第二层操作室,每个所述第二操作室的墙壁上开设有安装孔;
照射头,数量若干,所述照射头分别与所述第一操作室、所述第二操作室一一对应设置,所述照射头穿过所述安装孔用于接收所述组合旋转束线传输的离子束并对患者或样品进行照射;
驱动机构,与所述第一旋转架传动连接,用于驱动所述第一旋转架沿环形轨道做0-360度旋转,进而使得所述组合旋转束线成为可做0-360度旋转的束线。
所述的辐照终端,优选地,所述终端束线还包括第一垂直束线和第二垂直束线, 所述第一垂直束线和所述第二垂直束线均为所述旋转器束线的分支。
所述的辐照终端,优选地,所述水平束线、所述倾斜束线和所述第二垂直束线的离子束输出端的法兰上均装配有第一真空膜窗,所述照射头的接收端法兰上装配有第二真空膜窗,所述第一真空膜窗和所述第二真空膜窗用于实现所述组合旋转束线和所述照射头的真空密封。
所述的辐照终端,优选地,所述第一真空膜窗和所述第二真空膜窗之间的间隙尺寸为5-200mm。
所述的辐照终端,优选地,所述第一垂直束线通过推力轴承与所述第一旋转架机械连接。
所述的辐照终端,优选地,所述主梁包括竖直梁、水平梁以及将所述竖直梁和所述水平梁连接的两斜梁,两所述主梁的所述水平梁之间通过连接轴和连接板连接在一起,所述组合旋转束线装配在两所述主梁所形成的空腔中。
所述的辐照终端,优选地,所述辐照终端还包括运动组件,所述运动组件包括相互连接的滑块和连接件,所述滑块与所述环形轨道滑动连接,所述连接件与所述驱动机构传动连接。
所述的辐照终端,优选地,所述旋转器束线通过旋转结构实现旋转,所述旋转结构包括转筒、大齿轮、齿轮轴和定位轴,所述齿轮轴和所述定位轴分别与所述旋转架紧固连接,所述大齿轮通过过渡法兰和轴承与所述定位轴连接,所述大齿轮与所述齿轮轴相啮合,所述大齿轮与所述转筒紧固连接,所述转筒用于固定所述旋转器束线,所述转筒、所述定位轴以及所述旋转架上均设置有容纳所述旋转器束线穿过的过孔。
所述的辐照终端,优选地,所述旋转器束线与所述终端束线的旋转方向相同,旋转角度是所述终端束线的1/2,所述旋转器束线x方向相移为π的偶数倍,y方向相移为π的奇数倍,以实现所述终端束线旋转过程中光学不变。
所述的辐照终端,优选地,所述旋转架的数量至少为一个,当所述旋转架的数量为两个时,分别为所述第一旋转架和第二旋转架,二者共轴设置,所述第一垂直束线通过偏转二极磁铁形成第二水平束线,所述第二水平束线固定在所述第二旋转架上,所述第二水平束线的照射头与所述第二垂直束线的照射头位于同一操作室内,形成垂直和水平双角度照射。
所述的辐照终端,优选地,所述旋转架的数量至少为一个,当所述旋转架的数 量为两个时,分别为所述第一旋转架和第二旋转架,二者共轴设置,所述第一垂直束线通过偏转二极磁铁形成第二水平束线,所述第二水平束线固定在所述第二旋转架上,所述倾斜束线的照射头与所述第二水平束线的第三水平照射头位于同一操作室内,形成倾斜和水平双角度照射。
所述的辐照终端,优选地,所述照射头与所述组合旋转束线为一体式或分体式设计。
本发明第三方面还涉及上述辐照终端在照射治疗和工业辐照中的应用。
本发明由于采取以上技术方案,其具有以下优点:
1、本发明所涉及的组合旋转束线是基于任意一种加速器以任意方式引出束流后偏转至垂直方向,再通过水平束线,第一垂直束线,第二垂直束线,45度(或其它角度)束线组合,实现不同照射角度的束流配送,进一步将束线组合进行旋转,可以实现不同方位角的多个操作室的束流配送,该组合旋转束线结构紧凑,束线长度相比常规固定束线可以缩短90%。
2、传统的治疗终端是一条束线对应一个操作室,需要4条束线实现4个操作室的束流配送,束线总长接近200米。本发明通过一条约30米的束线即可实现8个以上操作室的束流配送,这样不仅减小了磁铁、真空、电源等工艺设备的造价,而且与之配套的辅助设施的规模和成本也减小,同时装置治疗过程中的运行成本也大幅减小。
3、本发明通过单条旋转束线即可实现多操作室束流配送,旋转束线可以是单角度也可以是多角度组合束线,单角度旋转束线操作室数量可以达到8个以上,在此基础上可以构建多角度组合旋转束线,不仅可以扩展治疗角度也可以进一步提高操作室的数量,更进一步地,在上述基础上旋转束线也可以是多级组合结构,每一级多角度旋转束线都可以对应多个操作室,大幅提升治疗效率。
4、肿瘤患者一次治疗中往往需要多角度照射以降低束流通过路径上对正常细胞的伤害,而本发明通过多级旋转束线可以在一个操作室内实现多角度照射治疗,比如通过两级旋转可以实现45度和水平、垂直和水平的双角度照射,这样肿瘤患者在一个操作室内即可完成所需的多角度照射;而且这种多级旋转组合可以低成本实现多个多角度操作室,可进一步大幅提升治疗效率。
5、本发明采用分体式设计,利用真空膜窗技术,将组合旋转束线与照射头设计为分体式,进一步减小了旋转半径,降低旋转部分的加工、安装成本,提高旋转 束线运动和定位精度。组合旋转束线与照射头之间采用真空膜窗实现真空密封和物理空间分离,离子束可以从组合旋转束线中无损穿过第一真空膜窗、大气、第二真空膜窗到达照射头,组合旋转束线与照射头设计为分体式,旋转半径进一步减小50%,旋转结构简单,加工、安装成本低,精度容易保证。
6、同步加速器引出的束流在水平(后续涉及到旋转,用x方向代替)和垂直(后续涉及到旋转,用y方向代替)方向具有高度不对称性,为了保证照***度要求在旋转过程中终端束斑不能发生变化,本发明采用旋转器实现了终端束线旋转过程中光学参数恒定不变,大幅降低了旋转过程中终端靶点控制难度;旋转器采用紧凑型设计,总长度仅2.5m,远小于国际上已有的9~10m的方案,大幅减小了装置垂直方向空间需求,降低了装置建设难度和成本;同一旋转器束线上的多角度束线是光学设计的一个难点,本发明通过磁铁元件位置和强度优化,将全线束斑尺寸控制在±16mm以内,可以大幅减小磁铁、电源、束诊、真空元件尺寸和造价,相应的辅助配套设施的价格也大幅降低。
7、同步加速器引出的束流在水平(后续涉及到旋转,用x方向代替)和垂直(后续涉及到旋转,用y方向代替)方向具有高度不对称性,为了保证照***度要求在旋转过程中终端束斑不能发生变化,本发明采用旋转器实现了终端束线旋转过程中光学参数恒定不变,大幅降低了旋转过程中终端靶点控制难度;该旋转器光学设计的另外一个突出优势是保持全线小束斑尺寸的条件下适配任意角度的终端束线,如本发明中的水平、垂直和45度组合旋转束线,可以同时实现多条任意角度终端束线在旋转过程中光学参数恒定不变;旋转器采用紧凑型设计,总长度仅2.5m,远小于国际上已有的9~10m的方案,大幅减小了装置垂直方向空间需求,降低了装置建设难度和成本。
8、本发明的辐照终端可以连接任意一种加速器,以更低的成本提供多角度、多操作室束流配送,进一步降低装置占地面积,减少设备投入,提升治疗效率。不仅适用于重离子装置,也可以用于质子装置;不仅适用于照射治疗,也可以用于工业辐照,是一种放疗和辐照领域的普适性方案。
附图说明
图1a为从粒子加速器水平方向引出束流向下垂直偏转至终端的示意图,图1b为向上垂直偏转至终端的示意图;
图2为本发明一实施例提供的组合旋转束线固定在旋转架上的示意图;
图3为本发明一实施例提供的组合旋转束线固定在一个旋转架上的照射***剖视图;
图4-7为本发明几种实施例提供的组合旋转束线固定在一个旋转架上的示意图,其中图7为图5中B-B向剖面图;
图8为本发明另一实施例提供的组合旋转束线固定在两个旋转架上的俯视图;
图9为图8中1-1向和2-2向的剖视图;
图10为图8中3-3向和4-4向的剖视图;
图11为本发明第三实施例提供的组合旋转束线固定在两个旋转架上的俯视图;
图12为图11中5-5向和6-6向的剖视图;
图13为图11中7-7向和8-8向的剖视图;
图14-15为本发明几种实施例提供的组合旋转束线固定在两个旋转架上的剖视图;
图16为图4、6、7、8、11、14中的A处局部放大图;
图17为图9中B处局部放大图;
图18为本发明第一水平终端的光学参数图;
图19为本发明第一45度终端的光学参数图;
图20为本发明第一垂直终端的光学参数图;
图21为本发明第二水平终端的光学参数图;
图22为本发明第三水平终端的光学参数图;
图23为本发明第一水平终端的束流包络图;
图24为本发明第一45度终端的束流包络图;
图25为本发明第一垂直终端的束流包络图;
图26为本发明第二水平终端的束流包络图;
图27为本发明第三水平终端的束流包络图;
图中各标记如下:
1-旋转器束线;2-第一水平束线;3-第一垂直束线;4-45度束线;5-第二垂直束线;6-第一旋转动密封装置,7-第二旋转动密封置;8-第一旋转架;9-第二旋转架;91-主梁;92-端梁;93-连接轴;94-运动组件;95-环形轨道;96-驱动机构;97-连接板;10-推力轴承;11-垂直照射头;12-45度照射头;13-第一水平照射头;14-第三旋转动密封置;15-第二水平束线;16-第二水平照射头;17-第三水平照射头;18- 治疗床;19-旋转轴线;20-第一真空膜窗;21-第二真空膜窗;22-旋转膜窗轴线;23-照射头膜窗轴线;24-圆形滑触线;25-安装孔;26-29-第一至第四水平操作室;30-33-第一至第四45度+水平操作室;34-37第一至第四垂直+水平操作室;38-照射准备室;39旋转结构;391-转筒;392-大齿轮;393-齿轮轴;394-定位轴;395-电机;396-固定架;397-轴承;398-第一螺栓;399-第二螺栓;3910-过渡法兰;40-四极磁铁;41-45度二极磁铁。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本发明使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明中使用的“第一”、“第二”、“第三”、“第四”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
近年来,随着加速器技术不断发展,加速器装置朝着小型化、紧凑型方向发展,装置本身占地面积在逐渐缩小,束流从加速器中的引出方式和束线布置也在朝着这方面努力。
如图1a和图1b所示,粒子加速器采用常温或超导方案,可为同步加速器,回旋加速器,FFAG(固定磁场交变梯度加速器,Fixed-Field Alternating Gradient),直线加速器或其他类型加速器。粒子加速器中束流可以从内侧或外侧水平方向引出,引出束经过束运线1垂直向下偏转至束运线2传输至终端;或经过束运线1垂直向上偏转至束运线2传输至终端。粒子加速器中束流也可以从外侧或内侧经Lambertson(铁切割磁铁)切割磁铁由垂直方向引出。
放射治疗过程中耗时最长的环节是照射前的摆位和放射后剂量衰减等待,增加操作室是提高治疗效率的关键瓶颈。目前放射治疗终端,是单束线对应单操作室,单操作室多角度通过多条固定束线或旋转机架技术来实现,在这种方案下,通过增 加操作室来提高治疗效率,成本巨大。在目前国际通用的3-5个操作室的基础上增加操作室会导致治疗装置成本大幅增加,不利于大规模的推广应用。
本发明通过单条旋转束线即可实现多操作室束流配送,旋转束线可以是单角度也可以是多角度组合束线,单角度旋转束线操作室数量可以达到8个以上,在此基础上可以构建多角度组合旋转束线,不仅可以扩展治疗角度也可以进一步提高操作室的数量,更进一步地,在上述基础上本旋转束线也可以是多级组合结构,每一级多角度旋转束线都可以对应多个操作室,大幅提升治疗效率。
本发明所提供的基于组合旋转束线的辐照终端,为任意一种加速器以任意方式引出束流后偏转至垂直(向上或向下)方向的布置方式提供多角度、多操作室、单室多角度的终端照射***,可进一步缩小装置占地面积,减少设备投入,提升治疗效率。
下面结合附图对本发明进行详细阐释。
如图2所示,本发明所提供的组合旋转束线包括:旋转器束线1,以及由常规磁铁、超导磁铁、超导线圈或它们之间的任意组合构成的第一水平束线2、第一垂直束线3、以及45度(或其它角度)束线4和第二垂直束线5组成的组合旋转束线,将旋转器束线1和第一垂直束线3连接在一起的第一旋转动密封装置6和第二旋转动密封装置7,第一旋转动密封装置6和第二旋转动密封装置7用于旋转过程中的真空保持。
如图3-7所示,其为单个组合旋转束线终端照射***(束线固定在1个旋转架上),单个组合旋转束线可以根据偏转磁铁进行任意组合,本发明只列举几种典型的实施例,其余的任一组合束线均包含在本发明内。组合旋转束线固定在旋转架上,在驱动机构96的作用下实现旋转,操作室同样分为上下两层,上层为水平操作室、下层布置45度操作室和垂直操作室。如图4所示,该实施例提供了加速器中的束流以任意方式引出后,偏转至垂直方向,经过一次偏转后再形成组合终端束线,该结构的显著优势是可以降低***整体高度。偏转磁铁及组合终端束线固定在旋转架上,在旋转圆周方向上分别布置不同照射角度的操作室。同样,优选地,可以布置12个操作室,当然根据治疗计划,可以设置更多的操作室。如图7所示,组合束线可以设计成对称结构,旋转架只需旋转180度或者更小,即可实现所有的照射角度,有助于进一步缩短治疗等待时间,提高治疗效率。
具体地,如图3所示,本发明所提供的基于组合旋转束线固定在一个旋转架上 的辐照终端的操作室分为上下两层,上层为第一水平束线2旋转的水平圆周方向布置的水平操作室,显然,第一层的照射准备室38也可以是水平操作室,这样就可以均匀布置8个水平操作室,下层为45度(或其它角度)束线4旋转的水平圆周方向布置4个45度(或其它角度)操作室。第二垂直束线5旋转的圆周方向布置4个垂直操作室,优选地、垂直操作室和45度操作室错位布置,该组合旋转束线优选地可以布置16个操作室。
现实中,肿瘤患者一次治疗中往往需要多角度照射以降低束流通过路径上对正常细胞的伤害,而本发明通过多级旋转束线可以在一个操作室内实现多角度照射治疗,比如通过两级旋转可以实现45度和水平、垂直和水平的双角度照射,这样肿瘤患者在一个操作室内即可完成所需的多角度照射,无需在单角度操作室之间来回转换,可以减小转换时间和准备之间,而且这种多级旋转组合可以低成本实现多个多角度操作室,可进一步大幅提升治疗效率。
如图9所示,将两个组合旋转束线固定于竖向共轴设置的第一旋转架8和第二旋转架9上;第一旋转架8包括两端梁和两平行布置的“龙门型”主梁,两端梁设置于两主梁两端的空隙中,并将两主梁机械地连接在一起;第二旋转架9包括两端梁92和两平行布置的“人字型”主梁91,两端梁92设置于两主梁91两端的空隙中,并将两主梁91机械地连接在一起,主梁91用于将组合旋转束线的重力分散到端梁92上,端梁92下部设有运动组件94,运动组件94包括相互连接的滑块和连接件,连接件与驱动机构96传动连接,滑块与环形轨道95滑动连接,环形轨道95对滑块起导向、约束作用。连接轴93将两个主梁91的竖直梁、水平梁连接在一起。连接板97将主梁91焊接形成箱型桥式结构,该结构轻且具备良好的竖向截面抗弯强度,承载大。四组驱动机构96可以同步传动,安装在端梁92处,通过与环形轨道95摩擦传动,用于实现组合旋转束线和旋转架在水平面内0-360度的旋转,成为两条组合旋转终端束线。
如图9-10、12-15所示,本发明提供了一些组合旋转束线固定在两个旋转架上的剖视图,具体地,如图9所示,第一旋转架8和第二旋转架9竖直共轴设置,第二旋转架9位于第一旋转架8的下方,第一旋转架8上的组合旋转束线通过任意分支可以形成水平束线、垂直束线、45度束线或者其它任意的角度束线。为了实现在一个操作室内对患者或样品同时进行双角度照射,第一垂直束线3引出的束流,通过偏转二极磁铁形成第二水平束线15,第二水平束线15固定在第二旋转架9上。 如图12、13所示,第二水平束线15通过第三旋转动密封装置14与第一垂直束线3真空连接,以确保相对旋转过程中真空保持。第一垂直束线3通过推力轴承10连接在第一旋转架8上,第一垂直束线3在第一旋转架8旋转时,在重力的作用下依靠推力轴承10保持静止不动。
如图9、10所示,第二水平束线15安装在第二旋转架9上,随第二旋转架9一起实现0-360度旋转,第二旋转架9与第一旋转架8共轴旋转,两者可以单独旋转,也可以同步旋转。第二水平照射头16通过安装孔25安装在第二层的第一至第四垂直+水平操作室34-37中,与垂直照射头11(垂直照射头11是与从固定在第一旋转架8上的45度束线分支出来的垂直束线所对应设置的垂直照射头)在同一操作室中形成双照射角度。第二层的45度操作室30和垂直操作室34错位布置,这样可以在第二层的第一至第四45度+水平操作室30-33中安装第三水平照射头17,第三水平照射头17与45度照射头12在同一操作室中形成双照射角度。
如图9-10、12-15所示,附图标记11-13和16-17为不同角度的分体式照射头通过操作室中的安装孔25固定安装在操作室内,旋转架通过圆形滑触线24供电,在驱动机构96的作用下实现组合旋转束线0-360度旋转,组合旋转束线与固定角度安装的照射头11-13、16-17之间采用第一真空膜窗20和第二真空膜窗21实现真空密封和物理空间分隔,如图16所示,离子束可以从组合旋转束线依次无损穿过第一真空膜窗20、大气和第二真空膜窗21后到达照射头。相比固定束线的终端治疗***,本发明的组合旋转束线固定在两个旋转架上的终端治疗***操作室布置多,优选地可达12个,束线长度仅为常规束线的10%左右,治疗角度覆盖常规束线布置的所有治疗角度,且可以提供8个双角度操作室。当然,本发明中的照射头与终端束线可以是固定连接,即照射头11-13、16-17与终端束线之间不设置真空膜窗,也可以实现终端治疗***多个操作室的布置。
具体地,如图8-15所示,其提供了几种多个组合旋转束线终端照射***(束线固定在2个旋转架上),显然,其他的能够达到该照射效果的任意束线组合也是可行的,此处不再一一详述。该多个组合旋转束线终端照射***可以提供4个45度+水平照射角度,4个垂直+水平照射角度,4个水平照射角度,肿瘤患者在一个操作室内可以一次完成所需的多照射角度,进一步提高治疗效率。根据操作室的布置和治疗需求,还可以配置更多的上述操作室。
除此之外,可以在组合旋转束线基础上设置更多单个或多个组合旋转束线,形 成旋转束线群,多个组合旋转束线间共轴设置,多个旋转束线可以单独旋转,也可以同步旋转,这些旋转束线不仅可以扩展操作室的数量和照射角度,也可以相互交叠形成一个操作室内多照射角度的布局。
如图2、17所示,本发明的旋转器束线1通过旋转结构39与第一旋转架8或第二旋转架9连接。旋转结构39包括:转筒391,用于对旋转器束线1上的若干四极磁铁进行安装固定;大齿轮392和转筒391通过第一螺栓398连接,齿轮轴393和大齿轮392相啮合,定位轴394和第一旋转架8或第二旋转架9通过第二螺栓399紧固连接,大齿轮392和定位轴394通过过渡法兰3910和轴承397连接。旋转器束线1上的若干四极磁铁通过固定架396固定安装在转筒391内。转筒391、定位轴394以及旋转架上均设置有容纳旋转器束线1穿过的过孔。通过电机395带动齿轮轴393驱动大齿轮392,大齿轮392带动转筒391实现旋转器束线1上若干四极磁铁的旋转。旋转结构39和旋转器束线1组成旋转器,旋转器用于消除束线旋转对终端束斑的影响。旋转器与终端束线旋转方向相同,旋转角度为终端束线旋转角度的1/2。旋转器中的若干四极磁铁采用镜像对称光学设计。
本发明提出了一套实现组合旋转束线的紧凑型光学设计,其包括旋转器束线1和多条终端束线。旋转器束线1是所有终端束线(终端束线包括第一水平束线2、45度束线4、第一垂直束线3、第二垂直束线5等)的共用束线。
旋转器束线1是实现组合旋转束线的关键部件,用于消除束线旋转对终端束斑的影响。在本发明一个具体实施例中,旋转器束线1由7块四极磁铁40组成,如图18所示。在旋转的过程中旋转器束线1与终端束线旋转方向相同,旋转角度为终端束线旋转角度的1/2。旋转器束线1采用镜像对称光学设计,即7块四极磁铁40以第四块四极磁铁40为中心,剩余6块四极磁铁40成镜像对称布置,在中间位置(第四块四极磁铁处)束流的x方向α函数和y方向α函数均为零。这段束线最大的特点在于x方向相移为2π,y方向相移为π,入口和出口光学参数(twiss参数)镜像对称。为了缩短旋转器束线1的长度,优选的四极磁铁40均采用超导磁铁,归一化积分梯度为2~20/m,总长度仅为2.5m,也可以采用常温磁铁设计,相应的总长度为10~20m。四极磁铁40也可以通过5~10块的组合实现。该旋转器光学设计的另外一个突出优势是保持全线小束斑尺寸的条件下适配任意角度的终端束线,如本发明中的水平、垂直和45度组合旋转束线,可以同时实现多条任意角度终端束线在旋转过程中光学参数恒定不变。
终端束线(终端束线包括第一水平束线2、45度束线4、第一垂直束线3、第二垂直束线5等)用于将旋转器束线1传输过来的束流分配到不同的终端,并按照终端要求的靶点尺寸和扫描面积进行匹配。
在本发明一个具体实施例中,第一水平束线2的光学设计如图18所示,其包含两台45度二极磁铁41,如图中关于水平轴线(横坐标)上下对称的黑色块所示,以及5台四极磁铁40,如图中分布水平轴线(横坐标)上下两侧的黑色块所示,其中位于水平轴线上方的黑色块表示聚焦四极磁铁,位于水平轴线下方的黑色块表示散焦四极磁铁。两台45度二极磁铁41,用于将束流偏转至水平方向,同时与四极磁铁40(横坐标中从左向右起第一台四极磁铁)组成消色散结构,第2~5台四极磁铁40用于终端束斑匹配,四极磁铁40归一化积分梯度为0.5~5/m,第一水平束线2采用紧凑型设计,总长度小于15m,束流包络如图23所示,全线束流横向尺寸小于±15mm。
图18中第一水平束线2的上半部分虚曲线代表y方向β函数,实曲线代表x方向β函数,分别表明了束流在第一水平束线2中稳定传输时x方向和y方向尺寸的大小关系,下半部分的虚曲线代表了y方向色散函数,表示束流受动量分散的影响而叠加的y方向运动轨迹的波动,本发明实施例中第一水平束线2x方向方向色散函数恒为零。从光学图中可以判断出β函数过渡光滑,保证了光学结构的稳定性。图19-22的光学图也能得出与图18相似的结论。
在本发明一个具体实施例中,45度束线4的光学设计如图19所示,包含一台45度二极磁铁41以及7台四极磁铁40,其中一台45度二极磁铁41用于将束流偏转至45度方向,四极磁铁40用于终端束斑匹配,并将终端色散降为零,四极磁铁40的归一化积分梯度为0.5~5/m,该终端束线采用紧凑型设计,总长度小于20m,束流包络如图24所示,全线束流横向尺寸(x方向和y方向)小于±15mm。
在本发明一个具体实施例中,第二垂直束线5的光学设计如图20所示,包含两台45度二极磁铁41以及5台四极磁铁40,其中两台偏转方向相反的45度二极磁铁41用于将束流偏转至垂直方向,四极磁铁40与45度二极磁铁41组成消色散结构,并且用于终端束斑匹配,四极磁铁40的归一化积分梯度为0.5~5/m,该终端束线采用紧凑型设计,总长度小于18m,束流包络如图25所示,全线束流横向尺寸小于±15mm。
在本发明一个具体实施例中,第二水平束线15的光学设计如图21所示,包含 第一垂直束线3的4台四极磁铁40,用于与第二水平束线15进行束流匹配;第二水平束线15的两台45度二极磁铁41和1台四极磁铁40,形成消色散结构;第二水平照射头16为漂移节,用于束流匹配。四极磁铁40的归一化积分梯度为0.5~5/m,该终端束线采用紧凑型设计,总长度小于20m,束流包络如图26所示,全线束流横向尺寸小于±16mm。
在本发明一个具体实施例中,第三水平束线光学设计如图22所示,包含与第二水平束线15共用的束线1、3、15,以及第三水平照射头17;第三水平照射头17包含3块四极磁铁40用于靶点束流匹配。四极磁铁40归一化积分梯度为0.5~5/m,该终端束线采用紧凑型设计,总长度小于25m,束流包络如图27所示,全线束流横向尺寸小于±15mm。
更进一步地,第一垂直束线3与第二水平束线15组成的水平+垂直双照射角度束线,45度束线4与第三水平束线组成水平+45度双照射角度束线以及其他所有全线束流的横向尺寸均小于±16mm,这样可以大幅减小磁铁元件尺寸和造价,相应的电源及辅助配套设施的价格也大幅降低。
图23中上半部分代表了第一水平束线2中束流x方向的尺寸变化,下半部分代表了第一水平束线2中束流y方向的尺寸变化,束流尺寸决定了磁铁元件、真空元件的尺寸,也就决定了硬件***的造价。第一水平束线2采用了紧凑型设计方案,束流x方向尺寸和y方向尺寸均小于±15mm,相对于常规的±30mm束流尺寸大幅减小,大幅降低了硬件***造价。图24-27的光学图也能得出与图23相似的结论。
本发明第二方面还提供辐照终端的操作方法,包括如下步骤:
当肿瘤患者或样品需要照射时,旋转器束线1在电机395的驱动下发生旋转进而影响束流的偏转方向,将束流分配给不同的束线终端,通过所述驱动机构13带动所述组合旋转束线绕旋转轴线22旋转,使得旋转膜窗轴线22和照射头膜窗轴线23重合;
患者或样品定位后,所需离子束依次通过所述旋转器束线1、所述水平束线2和所述倾斜束线,然后经过所述第一真空膜窗20和所述第二真空膜窗21,最后所述照射头接收离子束对患者或样品进行照射。
当采用第一垂直束线3照射时,离子束无需经过真空膜窗,直接配送至相应的垂直治疗(辐照)头;当选择用45度(或其它角度)束线4,或者第二垂直束线5,或者水平束线2照射时,所需离子束经过旋转器束线1,通过第一旋转动密封装置 6到达固定在旋转***上的终端束线,通过旋转架的旋转使旋转膜窗轴线22和照射头膜窗轴线23重合,离子束经过两者之间的真空膜窗到达治疗(辐照)头进行照射。
本发明第三方面涉及上述辐照终端在照射治疗和工业辐照中的应用。
以上实施例仅用以说明本发明的任意一种加速器的垂直向下引出或水平引出后再偏转至垂直向下方向的情况,显然本发明的所有结构也适用于任意一种加速器的垂直向上引出或水平引出后再偏转至垂直向上方向的情况,以上两种情况均包含在本发明范围之内。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (12)

  1. 一种基于组合旋转束线的辐照终端,其特征在于,包括:
    组合旋转束线,固定在第一旋转架上,包括旋转器束线和终端束线,所述终端束线包括水平束线和与地面成一定角度的倾斜束线,所述水平束线和所述倾斜束线是所述旋转器束线的分支;
    所述第一旋转架包括两端梁和两平行布置的主梁,两所述端梁设置于两所述主梁两端的空隙中,并将两所述主梁连接在一起;
    第一操作室,数量若干,若干所述第一操作室沿所述水平束线旋转的圆周方向均匀布置,形成第一层操作室,每个所述第一操作室的墙壁上开设有安装孔;
    第二操作室,数量若干,若干所述第二操作室沿所述倾斜束线旋转的圆周方向均匀布置,形成第二层操作室,每个所述第二操作室的墙壁上开设有安装孔;
    照射头,数量若干,所述照射头分别与所述第一操作室、所述第二操作室一一对应设置,所述照射头穿过所述安装孔用于接收所述组合旋转束线传输的离子束并对患者或样品进行照射;
    驱动机构,与所述第一旋转架传动连接,用于驱动所述第一旋转架沿环形轨道做0-360度旋转,进而使得所述组合旋转束线成为可做0-360度旋转的束线。
  2. 根据权利要求1所述的辐照终端,其特征在于,所述终端束线还包括第一垂直束线和第二垂直束线,所述第一垂直束线和所述第二垂直束线均为所述旋转器束线的分支。
  3. 根据权利要求2所述的辐照终端,其特征在于,所述水平束线、所述倾斜束线和所述第二垂直束线的离子束输出端的法兰上均装配有第一真空膜窗,所述照射头的接收端法兰上装配有第二真空膜窗,所述第一真空膜窗和所述第二真空膜窗用于实现所述组合旋转束线和所述照射头的真空密封。
  4. 根据权利要求3所述的辐照终端,其特征在于,所述第一真空膜窗和所述第二真空膜窗之间的间隙尺寸为5-200mm。
  5. 根据权利要求2所述的辐照终端,其特征在于,所述第一垂直束线通过推力轴承与所述第一旋转架机械连接。
  6. 根据权利要求1所述的辐照终端,其特征在于,所述主梁包括竖直梁、水平梁以及将所述竖直梁和所述水平梁连接的两斜梁,两所述主梁的所述水平梁之间通过连接轴和连接板连接在一起,所述组合旋转束线装配在两所述主梁所形成的空 腔中。
  7. 根据权利要求1所述的辐照终端,其特征在于,所述辐照终端还包括运动组件,所述运动组件包括相互连接的滑块和连接件,所述滑块与所述环形轨道滑动连接,所述连接件与所述驱动机构传动连接。
  8. 根据权利要求1所述的辐照终端,其特征在于,所述旋转器束线通过旋转结构实现旋转,所述旋转结构包括转筒、大齿轮、齿轮轴和定位轴,所述齿轮轴和所述定位轴分别与所述旋转架紧固连接,所述大齿轮通过过渡法兰和轴承与所述定位轴连接,所述大齿轮与所述齿轮轴相啮合,所述大齿轮与所述转筒紧固连接,所述转筒用于固定所述旋转器束线,所述转筒、所述定位轴以及所述旋转架上均设置有容纳所述旋转器束线穿过的过孔。
  9. 根据权利要求1所述的辐照终端,其特征在于,所述旋转器束线与所述终端束线的旋转方向相同,旋转角度是所述终端束线的1/2,所述旋转器束线x方向相移为π的偶数倍,y方向相移为π奇数倍,以实现所述终端束线旋转过程中光学不变。
  10. 根据权利要求2所述的辐照终端,其特征在于,所述旋转架的数量至少为一个,当所述旋转架的数量为两个时,分别为所述第一旋转架和第二旋转架,二者共轴设置,所述第一垂直束线通过偏转二极磁铁形成第二水平束线,所述第二水平束线固定在所述第二旋转架上,所述第二水平束线的照射头与所述第二垂直束线的照射头位于同一操作室内,形成垂直和水平双角度照射。
  11. 根据权利要求2所述的辐照终端,其特征在于,所述旋转架的数量至少为一个,当所述旋转架的数量为两个时,分别为所述第一旋转架和第二旋转架,二者共轴设置,所述第一垂直束线通过偏转二极磁铁形成第二水平束线,所述第二水平束线固定在所述第二旋转架上,所述倾斜束线的照射头与所述第二水平束线的第三水平照射头位于同一操作室内,形成倾斜和水平双角度照射。
  12. 根据权利要求1所述的辐照终端,其特征在于,所述照射头与所述组合旋转束线为一体式或分体式设计。
PCT/CN2023/093423 2022-09-01 2023-05-11 一种基于组合旋转束线的辐照终端及应用 WO2024077945A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211066136 2022-09-01
CN202211069813 2022-09-01
CN202211251705.1 2022-10-13
CN202211251705.1A CN115569310B (zh) 2022-09-01 2022-10-13 一种基于组合旋转束线的辐照终端及应用

Publications (1)

Publication Number Publication Date
WO2024077945A1 true WO2024077945A1 (zh) 2024-04-18

Family

ID=84585038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093423 WO2024077945A1 (zh) 2022-09-01 2023-05-11 一种基于组合旋转束线的辐照终端及应用

Country Status (2)

Country Link
CN (1) CN115569310B (zh)
WO (1) WO2024077945A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115569310B (zh) * 2022-09-01 2023-05-30 中国科学院近代物理研究所 一种基于组合旋转束线的辐照终端及应用
CN116020062B (zh) * 2023-01-13 2023-09-29 兰州科近泰基新技术有限责任公司 基于旋转束线的治疗终端

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004025502A1 (de) * 2004-05-21 2005-12-15 Gesellschaft für Schwerionenforschung mbH Beschleunigeranlage für eine Strahlentherapie mit Ionenstrahlen
US20060106301A1 (en) * 2002-05-03 2006-05-18 Ion Beam Applications S.A. Device for irradiation therapy with charged particles
CN1889995A (zh) * 2003-12-02 2007-01-03 雷迪诺华公司 多室放射治疗***
CN106139420A (zh) * 2016-07-29 2016-11-23 中国原子能科学研究院 基于回旋加速器的质子治疗***
CN106139421A (zh) * 2016-07-29 2016-11-23 中国原子能科学研究院 一种错位布置的双固定室双束照射的质子治疗***
CN107596579A (zh) * 2017-10-12 2018-01-19 合肥中科离子医学技术装备有限公司 基于紧凑型超导回旋加速器的质子治疗***
JP2019105641A (ja) * 2018-12-25 2019-06-27 株式会社東芝 荷電粒子ビーム照射装置
CN113808775A (zh) * 2021-09-18 2021-12-17 中国科学院近代物理研究所 直线加速器重离子微孔膜辐照装置
CN114796895A (zh) * 2022-04-11 2022-07-29 中国科学院近代物理研究所 一种基于90度旋转束线的终端治疗***及其操作方法
CN114867184A (zh) * 2022-06-15 2022-08-05 中国科学院近代物理研究所 紧凑型多离子加速器治疗装置及其应用
CN114849084A (zh) * 2022-04-11 2022-08-05 中国科学院近代物理研究所 一种基于90度旋转束线的治疗床及其操作方法
CN115569310A (zh) * 2022-09-01 2023-01-06 中国科学院近代物理研究所 一种基于组合旋转束线的辐照终端及应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE472807T1 (de) * 1998-09-11 2010-07-15 Gsi Helmholtzzentrum Schwerionenforschung Gmbh Ionenstrahl-therapieanlage und verfahren zum betrieb der anlage
SE9902163D0 (sv) * 1999-06-09 1999-06-09 Scanditronix Medical Ab Stable rotable radiation gantry
DE10010523C2 (de) * 2000-03-07 2002-08-14 Schwerionenforsch Gmbh Ionenstrahlanlage zur Bestrahlung von Tumorgewebe
JP4489529B2 (ja) * 2004-07-28 2010-06-23 株式会社日立製作所 粒子線治療システム及び粒子線治療システムの制御システム
JP5535879B2 (ja) * 2010-11-11 2014-07-02 住友重機械工業株式会社 荷電粒子線照射装置、荷電粒子線照射方法、及び輸送ラインの着脱方法。
JP6906361B2 (ja) * 2017-05-12 2021-07-21 株式会社日立製作所 粒子線治療システム
JP2020048607A (ja) * 2018-09-21 2020-04-02 株式会社日立製作所 粒子線治療システムおよびその拡張方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060106301A1 (en) * 2002-05-03 2006-05-18 Ion Beam Applications S.A. Device for irradiation therapy with charged particles
CN1889995A (zh) * 2003-12-02 2007-01-03 雷迪诺华公司 多室放射治疗***
DE102004025502A1 (de) * 2004-05-21 2005-12-15 Gesellschaft für Schwerionenforschung mbH Beschleunigeranlage für eine Strahlentherapie mit Ionenstrahlen
CN106139420A (zh) * 2016-07-29 2016-11-23 中国原子能科学研究院 基于回旋加速器的质子治疗***
CN106139421A (zh) * 2016-07-29 2016-11-23 中国原子能科学研究院 一种错位布置的双固定室双束照射的质子治疗***
CN107596579A (zh) * 2017-10-12 2018-01-19 合肥中科离子医学技术装备有限公司 基于紧凑型超导回旋加速器的质子治疗***
JP2019105641A (ja) * 2018-12-25 2019-06-27 株式会社東芝 荷電粒子ビーム照射装置
CN113808775A (zh) * 2021-09-18 2021-12-17 中国科学院近代物理研究所 直线加速器重离子微孔膜辐照装置
CN114796895A (zh) * 2022-04-11 2022-07-29 中国科学院近代物理研究所 一种基于90度旋转束线的终端治疗***及其操作方法
CN114849084A (zh) * 2022-04-11 2022-08-05 中国科学院近代物理研究所 一种基于90度旋转束线的治疗床及其操作方法
CN114867184A (zh) * 2022-06-15 2022-08-05 中国科学院近代物理研究所 紧凑型多离子加速器治疗装置及其应用
CN115569310A (zh) * 2022-09-01 2023-01-06 中国科学院近代物理研究所 一种基于组合旋转束线的辐照终端及应用

Also Published As

Publication number Publication date
CN115569310A (zh) 2023-01-06
CN115569310B (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
WO2024077945A1 (zh) 一种基于组合旋转束线的辐照终端及应用
US7345291B2 (en) Device for irradiation therapy with charged particles
US8173981B2 (en) Gantry for medical particle therapy facility
US8748852B2 (en) Compac gantry for particle therapy
US7582886B2 (en) Gantry for medical particle therapy facility
JP2824363B2 (ja) ビーム供給装置
US8426833B2 (en) Gantry for medical particle therapy facility
CN102687230A (zh) 紧凑型等中心机架
WO2012014705A1 (ja) 荷電粒子線照射装置
Schippers et al. Can technological improvements reduce the cost of proton radiation therapy?
CN115006747B (zh) 超导旋转机架以及质子治疗设备
CN115499994A (zh) 紧凑型束流切换偏转装置及其应用
CN114796895A (zh) 一种基于90度旋转束线的终端治疗***及其操作方法
WO2014011779A1 (en) Permanent magnet beam transport system for proton radiation therapy
CN114849084A (zh) 一种基于90度旋转束线的治疗床及其操作方法
Pearson et al. Development of cyclotrons for proton and particle therapy
Benedikt et al. Riesenrad’ion gantry for hadrontherapy: Part III
CN115499995B (zh) 一种紧凑型多离子同步加速器
CN117504167A (zh) 一种基于多通道、小惯量旋转束线的治疗终端
Amaldi et al. CERN collaborations in hadron therapy and future accelerators
Huggins Novel Beam Optics of Achromatic Superconducting Gantries for Proton Therapy
CN210813564U (zh) 一种分层重离子/质子治疗装置
CN115531743A (zh) 一种多方位角照射***及其应用方法
CN117062297A (zh) 用于桌面型回旋加速器的紧凑型生产靶及剥离靶布局结构
Gough et al. Design of a dedicated heavy ion accelerator for radiotherapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876156

Country of ref document: EP

Kind code of ref document: A1