WO2024077733A1 - 一种自风干控制方法、洗地机以及存储介质 - Google Patents

一种自风干控制方法、洗地机以及存储介质 Download PDF

Info

Publication number
WO2024077733A1
WO2024077733A1 PCT/CN2022/134954 CN2022134954W WO2024077733A1 WO 2024077733 A1 WO2024077733 A1 WO 2024077733A1 CN 2022134954 W CN2022134954 W CN 2022134954W WO 2024077733 A1 WO2024077733 A1 WO 2024077733A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
fan
self
closed
control method
Prior art date
Application number
PCT/CN2022/134954
Other languages
English (en)
French (fr)
Inventor
张旸明
邵振锋
何杰
Original Assignee
江苏美的清洁电器股份有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏美的清洁电器股份有限公司, 美的集团股份有限公司 filed Critical 江苏美的清洁电器股份有限公司
Priority to EP22946051.4A priority Critical patent/EP4378364A1/en
Publication of WO2024077733A1 publication Critical patent/WO2024077733A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/28Floor-scrubbing machines, motor-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/28Floor-scrubbing machines, motor-driven
    • A47L11/282Floor-scrubbing machines, motor-driven having rotary tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2836Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means characterised by the parts which are controlled
    • A47L9/2842Suction motors or blowers

Definitions

  • the present application relates to the technical field of floor scrubbers, and in particular to a self-drying control method, a floor scrubber, and a storage medium.
  • the existing floor scrubber includes a roller brush and a water tank, and the water in the water tank is sprayed onto the ground or the roller brush to clean the ground.
  • the roller brush is wet, and direct storage will cause problems such as mildew and bacterial growth of the roller brush. Therefore, the roller brush needs to be dried in time.
  • an external air duct, fan, heating wire and other structures specially designed for air-drying the roller brush are used to assist the air-drying roller brush with heating and spin-drying.
  • the external air duct is independent of the dust suction duct that sucks impurities such as water and garbage from the ground. In this way, additional external air duct, fan, drying or spin-drying components and other structures for air-drying the roller brush are added, thereby adding extra volume, weight and cost to the floor scrubber.
  • the embodiments of the present application provide a self-drying control method, a floor scrubber, and a storage medium, which do not require an additional external air duct for drying the roller brush.
  • the present application provides a self-drying control method for a floor scrubber, the floor scrubber comprising a dust suction duct, a fan and a cleaning member for cleaning a surface to be cleaned, the cleaning member being located at the dust suction duct, the fan rotating to drive airflow to flow through the dust suction duct, the self-drying control method comprising:
  • the fan is controlled by closed loop to reduce the initial set speed to the target set speed so as to air dry the cleaning parts.
  • reducing the fan speed from the initial set speed to the target set speed through closed-loop control includes:
  • the fan is gradually reduced from the initial set speed to the target set speed according to a single speed reduction setting value, wherein each time the fan speed is reduced to the dynamic set speed, the fan speed is controlled by the closed-loop control to reach a steady state corresponding to the dynamic set speed.
  • the single speed reduction setting value is: 100 rpm to 1000 rpm per second.
  • the steady state includes the rotation speed of the fan being maintained between 95% and 105% of the dynamically set rotation speed.
  • reducing the fan speed from the initial set speed to the target set speed through closed-loop control includes:
  • the PWM wave is controlled through the closed-loop control to reduce the fan speed from the initial setting speed to the target setting speed.
  • controlling the PWM wave through the closed-loop control to reduce the fan speed from the initial set speed to the target set speed includes:
  • the duty cycle of the PWM wave is lowered through the closed-loop control so that the rotation speed of the motor of the fan reaches the target set rotation speed.
  • the closed-loop control adopts a PID control algorithm, an auto-disturbance rejection control algorithm, or a sliding mode control algorithm.
  • reducing the fan speed from the initial set speed to the target set speed through closed-loop control includes:
  • the closed-loop control controls the current reference value or the driving voltage reference value to reduce the fan speed from the initial setting speed to the target setting speed.
  • the initially set rotation speed is between 0.2 times and 0.5 times the rated rotation speed of the fan.
  • an embodiment of the present application provides a floor scrubber, comprising a dust suction duct, a fan, a cleaning member for cleaning a surface to be cleaned, a processor and a memory, wherein the cleaning member is located at the dust suction duct, the fan rotates to drive air flow through the dust suction duct, and the memory is used to store one or more programs.
  • the processor implements the self-drying control method as described in any one of the above items.
  • An embodiment of the present application also provides a storage medium on which a computer program is stored, and when the program is executed by a processor, any of the self-drying control methods described above is implemented.
  • the self-drying control method provided by the present application utilizes the rotation of the fan to drive the airflow to flow through the dust suction duct, so that the airflow flows through the cleaning parts, and the dust suction fan is used to dry the cleaning parts, without the need to add additional external air ducts, fans, heating wires and other structures, and will not increase the volume, weight and cost of the floor scrubber.
  • the fan is started according to the initial set speed so that the fan can start stably, and the fan is reduced from the initial set speed to the target set speed through closed-loop control. In this way, the fan can stably rotate at a relatively low target set speed to achieve the function of self-drying the cleaning parts.
  • FIG1 is a flowchart of a self-air drying control method in an embodiment of the present application.
  • FIG2 is a schematic diagram of a PWM wave in an embodiment of the present application.
  • FIG3 is a schematic diagram of a PWM wave after the on-time is reduced in an embodiment of the present application
  • FIG4 is a schematic diagram of a three-phase half-bridge driver in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a PWM wave for driving the three-phase half-bridge driver shown in FIG. 4 .
  • an embodiment of the present application provides a self-drying control method for a floor scrubber.
  • the floor scrubber includes a dust suction duct, a fan, and a cleaning member for cleaning the surface to be cleaned.
  • the cleaning member is located at the dust suction duct, and the fan rotates to drive the airflow to flow through the dust suction duct.
  • the cleaning member can contact the surface to be cleaned to clean the surface to be cleaned by friction.
  • the dust suction duct has a dust port at the end close to the surface to be cleaned, and at least part of the cleaning member protrudes from the dust port to contact the surface to be cleaned.
  • Self-drying control methods include:
  • Air-drying the cleaning element in the present application refers to drying the cleaning element by blowing air.
  • the initial set speed is higher than the target set speed.
  • the fan includes an impeller and a motor 10, the motor shaft of the motor 10 is connected to the impeller, and the impeller is driven to rotate by the motor 10 to make the air flow. It is understandable that the speed of the fan can be the speed of the motor 10.
  • the motor 10 of the fan used for dust collection has a relatively high rotation speed, that is, the rated rotation speed of the motor 10 is relatively high, for example, 40,000 rpm to 60,000 rpm, and the air-drying cleaning parts require the fan to operate at a relatively low rotation speed, for example, below 25,000 rpm, so that the fan can be used for air-drying cleaning parts and has low noise.
  • the rotation speed will be unstable, so it is difficult to use the fan for air-drying cleaning parts.
  • the self-drying control method provided by the present application utilizes the rotation of the fan to drive the airflow to flow through the dust suction duct, so that the airflow flows through the cleaning parts, and the dust suction fan is used to dry the cleaning parts, without the need to add additional external air ducts, fans, heating wires and other structures, and will not increase the volume, weight and cost of the floor scrubber.
  • the fan is started according to the initial set speed so that the fan can start stably, and the fan is reduced from the initial set speed to the target set speed through closed-loop control. In this way, the fan can stably rotate at a relatively low target set speed to achieve the function of self-drying the cleaning parts.
  • rpm refers to revolutions per minute.
  • the fan is controlled by closed loop to reduce the initial set speed to the target set speed to dry the cleaning parts.
  • the fan can be controlled by controlling the running time at the target set speed to control the degree of drying the cleaning parts.
  • the initial set speed is between 0.2 times and 0.5 times the rated speed of the fan.
  • the initial set speed may be between 12,000 rpm and 30,000 rpm.
  • the initial set speed may be 12,000 rpm, 20,000 rpm or 30,000 rpm, etc. In this way, it can effectively ensure that the fan can be started at a relatively stable speed, and it is convenient for the fan to drop to the target set speed relatively quickly.
  • the rated speed refers to the speed of the motor 10 of the fan at the rated power.
  • Closed-loop control is a control method in which the output end feeds back to the input end and participates in re-control.
  • the speed control information is input into the fan, and the real-time speed information of the fan is fed back to the input to correct the operation process so that the real-time speed of the fan reaches the target set speed.
  • Closed-loop control is a system control method with feedback information.
  • the closed-loop control adopts a PID control algorithm.
  • PID stands for Proportion Integral Differential.
  • the PID control algorithm can be used to calculate the error value and control the real-time speed of the fan to reach the target set speed.
  • the closed-loop control may also use an auto-disturbance rejection control algorithm or a sliding mode control algorithm.
  • an adaptive control algorithm may also be used to implement the closed-loop control.
  • the fan is started at an initial set speed, and after the initial set speed is determined to be stable, the fan is reduced from the initial set speed to the target set speed through closed-loop control, thereby reducing fluctuations in the fan speed reduction process.
  • the fan after the fan is started at the initial set speed, the fan is allowed to run stably at the initial set speed through closed-loop control. In other words, after the fan is started at the initial set speed, the fan can rotate stably at the initial set speed. In other words, the real-time speed of the fan is maintained between 95% of the initial set speed and 105% of the target set speed.
  • S120 reducing the fan speed from the initial setting speed to the target setting speed through closed-loop control, including:
  • the initial set speed may be reduced to the target set speed once according to a single speed reduction setting value. In other embodiments, the initial set speed may be reduced to the target set speed multiple times according to a single speed reduction setting value.
  • the dynamic set speed is the dynamic value of the single speed reduction during the process of slowly decreasing from the initial set speed to the target set speed.
  • multiple times includes twice and more than twice.
  • the present application reduces the fan speed from the initial setting speed to the target setting speed according to the single speed reduction setting value, so as to achieve graded speed reduction and avoid the problem of unstable fan speed caused by rapid speed reduction.
  • the fan speed is made to reach a steady state corresponding to the dynamic setting speed through closed-loop control, that is, the fan rotates stably at the dynamic setting speed after each speed reduction, and then enters the next speed reduction.
  • the single speed reduction setting value is: 100 rpm to 1000 rpm per second.
  • the single speed reduction setting value can be: 100 rpm per second, 300 rpm per second, 500 rpm per second, or 1000 rpm per second, etc. In this way, the fan can be reduced to the target setting speed relatively quickly, and the fan can be ensured to rotate smoothly.
  • the steady state includes the fan speed being maintained between 95% and 105% of the dynamic setting speed.
  • the fluctuation range of the real-time speed of the fan is between -5% and 5% of the dynamic setting speed. In this way, the real-time speed of the fan is ensured to be stable.
  • the target set speed is stabilized through closed-loop control.
  • the fan can stably rotate at the target set speed.
  • the real-time speed of the fan is maintained between 95% and 105% of the target set speed. In this way, during the process of air-drying the cleaning parts, the fan is kept rotating at a relatively low target set speed, taking into account both low noise and air-drying functions.
  • S120: reducing the fan speed from the initial set speed to the target set speed through closed-loop control includes:
  • S122 Controlling the PWM wave through the closed-loop control to reduce the fan speed from the initial set speed to the target set speed.
  • PWM wave is Pulse Width Modulation Wave, pulse width modulation wave.
  • the driving voltage generated by the PWM wave drives the fan motor 10 to rotate.
  • the fan By controlling the PWM wave to generate a constant driving voltage through closed-loop control, the fan can be controlled to rotate stably through the constant driving voltage, thereby reducing the fan speed from the initial setting to the target setting speed.
  • closed-loop control can be achieved by collecting the real-time speed of the motor 10, comparing the real-time speed of the motor 10 with the target set speed, and when the real-time speed of the motor 10 is different from the target set speed, adjusting the PWM wave, and then adjusting the speed of the motor 10 according to the adjusted PWM wave, thereby achieving the speed of the motor 10 being stabilized at the target set speed, thereby achieving the purpose of making the fan rotate at a constant speed.
  • a PID control algorithm can be used for calculation, and the PWM wave can be adjusted according to the calculation result to drive the motor 10 to rotate, so that the speed of the motor 10 is stabilized at the target set speed, thereby achieving the purpose of making the motor 10 rotate at a constant speed.
  • S122: controlling the PWM wave through the closed-loop control to reduce the fan speed from the initial setting speed to the target setting speed includes:
  • the driving voltage is equal to the bus voltage multiplied by the conduction time divided by the period.
  • the fan speed is adjusted by adjusting the duty cycle and converting it into a driving voltage signal which is input to the fan driver.
  • the motor 10 of the fan may be a brushless DC motor or a brushed DC motor.
  • FIG. 4 Take the motor 10 as a brushless DC motor as an example.
  • the brushless DC motor is driven by a fixed speed frequency.
  • the three switch tube signals of the upper bridge are V1, V2 and V3, and the three switch tube signals of the lower bridge are V4, V5 and V6.
  • V1 and V4 are a pair, and the switch models of V1 and V4 differ by 180 electrical degrees.
  • V2 and V5 are a pair, and the switch models of V2 and V5 differ by 180 electrical degrees.
  • V3 and V6 are a pair, and the switch models of V3 and V6 differ by 180 electrical degrees.
  • the rotor position of the brushless DC motor is not considered, and a fixed frequency PWM wave is passed to each switch tube of V1, V2, V3, V4, V5 and V6.
  • one switch tube of each upper bridge and lower bridge is turned on in pairs. That is to say, at the same time, one of V1, V2 and V3 is turned on, and one of V4, V5 and V6 is turned on.
  • V1 and V5 are turned on in pairs
  • V1 and V6 are turned on in pairs
  • V2 and V6 are turned on in pairs
  • V2 and V4 are turned on in pairs
  • V3 and V4 are turned on in pairs
  • V3 and V5 are turned on in pairs
  • V1 and V5 are turned on in pairs in sequence.
  • the electrical cycle 1s/(10000rpm/60s)/(1 pole pair), that is, the electrical cycle is 6 milliseconds.
  • Figure 5 shows the PWM wave of V1, the PWM wave of V2, the PWM wave of V3, the PWM wave of V4, the PWM wave of V5 and the PWM wave of V6 respectively.
  • S120: reducing the fan speed from the initial setting speed to the target setting speed through closed-loop control includes:
  • S123 Controlling the current reference value or the driving voltage reference value through the closed-loop control to reduce the fan speed from the initial set speed to the target set speed.
  • the current reference value of the control algorithm or the driving voltage reference value of the control algorithm is controlled by closed-loop control to achieve dynamic regulation, which is simple and efficient.
  • the present application provides a floor scrubber, which includes a dust suction duct, a fan, a cleaning member for cleaning a surface to be cleaned, a processor and a memory, wherein the cleaning member is located at the dust suction duct, and the fan rotates to drive airflow to flow through the dust suction duct.
  • the dust suction duct is used to suck impurities such as water and garbage from the surface to be cleaned.
  • the dust suction duct is used to ventilate and dry airflow.
  • the cleaning element is used to contact the surface to be cleaned, such as the ground, to clean the surface to be cleaned.
  • the cleaning element can roll, rotate or slide relative to the ground, etc., so that the cleaning element rubs the surface to be cleaned, so that the cleaning purpose is achieved by rubbing the surface to be cleaned by the cleaning element.
  • the fan rotates at a rated speed to suck impurities such as water and garbage on the surface to be cleaned into a container through the dust suction duct, and the container includes but is not limited to a sewage tank, etc. In this way, the ground can be cleaned by the dust suction duct, the fan and the cleaning element.
  • the fan rotates at a target set speed to dry the cleaning element.
  • the cleaning element includes but is not limited to a roller brush and/or a rag and the like.
  • the memory is used to store one or more programs.
  • the processor implements the self-drying control method in any embodiment of the present application.
  • the embodiment of the present application also provides a storage medium on which a computer program is stored, and when the program is executed by a processor, the self-drying control method in any embodiment of the present application is implemented.
  • the storage medium is a computer-readable storage medium.
  • the above-mentioned self-drying control method is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer-readable storage medium.
  • the technical solution of the embodiment of the present application can be essentially or partly reflected in the form of a software product, which is stored in a storage medium and includes several instructions for a floor scrubber to execute all or part of the methods described in each embodiment of the present application.
  • the aforementioned storage medium includes: various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read-only memory (ROM), a magnetic disk or an optical disk. In this way, the embodiments of the present application are not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ventilation (AREA)
  • Control Of Washing Machine And Dryer (AREA)

Abstract

一种自风干控制方法、洗地机以及存储介质,洗地机包括吸尘风道、风机和用于清洁待清洁面的清洁件,清洁件位于吸尘风道处,风机转动以驱动气流流经吸尘风道。自风干控制方法包括: 按照初始设定转速启动风机(S110);通过闭环控制将风机由初始设定转速降低至目标设定转速,以风干清洁件(S120)。通过闭环控制将风机由初始设定转速降低至目标设定转速,这样,风机能够稳定地以相对较低的目标设定转速旋转,实现自风干清洁件的功能。

Description

一种自风干控制方法、洗地机以及存储介质
相关申请的交叉引用
本申请基于申请号为202211253972.2、申请日为2022年10月13日的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及洗地机技术领域,尤其涉及一种自风干控制方法、洗地机以及存储介质。
背景技术
现有的洗地机包括滚刷和水箱,水箱中的水液喷洒至地面或滚刷上,以清洁地面。洗地机在使用过后,滚刷潮湿,直接存放会导致滚刷霉变和细菌滋生等问题,因此,需要将滚刷及时干燥。
针对滚刷需要风干的问题,相关技术中,通过设计专门用于风干滚刷的外部风道、风扇和加热丝等结构,为风干滚刷辅以加热和甩干等手段,外部风道独立于抽吸地面水液和垃圾等杂质的吸尘风道,这样,就会额外增加用于风干滚刷的外部风道、风扇、烘干或者甩干组件等结构,从而对洗地机增加了额外的体积、重量和成本。
发明内容
有鉴于此,本申请实施例提供一种自风干控制方法、洗地机以及存储介质,可以不额外增加用于风干滚刷的外部风道。
为达到上述目的,本申请一方面提供一种自风干控制方法,用于洗地机,所述洗地机包括吸尘风道、风机和用于清洁待清洁面的清洁件,所述清洁件位于所述吸尘风道处,所述风机转动以驱动气流流经所述吸尘风道,所述自风干 控制方法包括:
按照初始设定转速启动所述风机;
通过闭环控制将所述风机由所述初始设定转速降低至目标设定转速,以风干清洁件。
一些实施例中,通过闭环控制将所述风机由所述初始设定转速降低至目标设定转速,包括:
将所述风机由所述初始设定转速按照单次转速下降设定值逐次降低至所述目标设定转速,其中,每次降低所述风机的转速至动态设定转速的过程中,通过所述闭环控制使得所述风机的转速达到与所述动态设定转速对应的稳态。
一些实施例中,所述单次转速下降设定值为:每秒钟下降100rpm~1000rpm。
一些实施例中,所述稳态包括所述风机的转速保持在所述动态设定转速的95%~所述动态设定转速的105%之间。
一些实施例中,通过闭环控制将所述风机由所述初始设定转速降低至目标设定转速,包括:
通过所述闭环控制控制PWM波,以将所述风机由所述初始设定转速降低至所述目标设定转速。
一些实施例中,通过所述闭环控制控制PWM波,以将所述风机由所述初始设定转速降低至所述目标设定转速,包括:
通过所述闭环控制调低所述PWM波的占空比,使所述风机的电机的转速达到所述目标设定转速。
一些实施例中,所述闭环控制采用PID控制算法、自抗扰控制算法或者滑模控制算法。
一些实施例中,通过闭环控制将所述风机由所述初始设定转速降低至目标设定转速,包括:
通过所述闭环控制控制电流参考值或者驱动电压参考值,以将所述风机由所述初始设定转速降低至所述目标设定转速。
一些实施例中,所述初始设定转速在所述风机的额定转速的0.2倍~额定转 速的0.5倍之间。
本申请实施例另一方面提供一种洗地机,包括吸尘风道、风机、用于清洁待清洁面的清洁件、处理器和存储器,所述清洁件位于所述吸尘风道处,所述风机转动以驱动气流流经所述吸尘风道,所述存储器用于存储一个或多个程序,当所述一个或多个程序被所述处理器执行,使得所述处理器实现如上述任一项所述的自风干控制方法。
本申请实施例还提供一种存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述任一项所述的自风干控制方法。
本申请提供的自风干控制方法,一方面,利用风机转动以驱动气流流经吸尘风道,这样,气流流经清洁件,从而利用吸尘的风机用于风干清洁件,无需额外增加外部风道、风扇和加热丝等结构,不会另外增加洗地机的体积、重量和成本。另一方面,按照初始设定转速启动风机,以便风机能够稳定地启动,通过闭环控制将风机由初始设定转速降低至目标设定转速,这样,风机能够稳定地以相对较低的目标设定转速旋转,实现自风干清洁件的功能。
附图说明
图1为本申请一实施例中的自风干控制方法的流程框图;
图2为本申请一实施例中的PWM波的示意图;
图3为本申请一实施例中的减少导通时间后的PWM波的示意图;
图4为本申请一实施例中的3相半桥驱动器的示意图;
图5为用于驱动图4所示的3相半桥驱动器的PWM波的示意图。
具体实施方式
下面结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术 语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1,本申请实施例一方面提供自风干控制方法,用于洗地机。
洗地机包括吸尘风道、风机和用于清洁待清洁面的清洁件,清洁件位于吸尘风道处,风机转动以驱动气流流经吸尘风道。清洁件能够与待清洁面接触,以通过摩擦清洁待清洁面。具体地,吸尘风道靠近待清洁面的末端具有尘口,清洁件的至少部分凸出尘口,以与待清洁面接触。
自风干控制方法包括:
S110:按照初始设定转速启动所述风机;
S120:通过闭环控制将所述风机由所述初始设定转速降低至目标设定转速,以风干清洁件。
本申请中的风干清洁件是指通过吹风的方式干燥清洁件。
具体地,初始设定转速高于目标设定转速。本申请中,风机包括叶轮和电机10,电机10的电机轴与叶轮连接,通过电机10驱动叶轮转动,以使气流流动。可以理解的是,风机的转速可以是电机10的转速。
由于用于吸尘的风机的电机10的转速较高,也就是说,电机10的额定转速较高例如在40000rpm至60000rpm,而风干清洁件需要风机工作在相对较低的转速例如25000rpm以下,这样使得风机既可以用于风干清洁件,又具有较低的噪音。然而,电机10远离额定工作点,会出现转速不稳的现象,因此,难以将风机用于风干清洁件。
本申请提供的自风干控制方法,一方面,利用风机转动以驱动气流流经吸尘风道,这样,气流流经清洁件,从而利用吸尘的风机用于风干清洁件,无需额外增加外部风道、风扇和加热丝等结构,不会另外增加洗地机的体积、重量和成本。另一方面,按照初始设定转速启动风机,以便风机能够稳定地启动,通过闭环控制将风机由初始设定转速降低至目标设定转速,这样,风机能够稳定地以相对较低的目标设定转速旋转,实现自风干清洁件的功能。
需要说明的是,本申请中,rpm是指转每分钟。
通过闭环控制将风机由初始设定转速降低至目标设定转速,以风干清洁件。示例性的,可以通过控制风机在目标设定转速下的运行时长。如此来控制风机风干清洁件的程度。
可以理解的是,清洁件的干燥程度可以根据实际需求设定,本申请在此不再赘述。
一实施例中,初始设定转速在风机的额定转速的0.2倍~额定转速的0.5倍之间。例如,风机的额定转速为60000rpm,初始设定转速可以在12000rpm至30000rpm之间。也就是说,初始设定转速可以为12000rpm、20000rpm或者30000rpm等等。如此,既可以有效保证风机能够以较为稳定的转速启动,又便于风机较为快速地下降至目标设定转速。
额定转速是指风机的电机10在额定功率下的转速。
闭环控制是一种输出端反馈输入端,参与再控制的控制方式。示例性的,将转速控制信息输入风机,并将风机的实时转速信息反馈到输入中,以修正操作过程,使风机的实时转速达到目标设定转速。闭环控制是带有反馈信息的***控制方式。
一实施例中,闭环控制采用PID控制算法。PID即Proportion Integral Differential,比例、积分和微分。可以通过PID控制算法对误差值的计算,控制风机的实时转速达到目标设定转速。
一些实施例中,闭环控制还可以采用自抗扰控制算法或者滑模控制算法。也就是说,还可以采用自适应控制算法以实现闭环控制。
一些实施例中,按照初始设定转速启动风机,并确定初始设定转速稳定之后;再通过闭环控制将风机由初始设定转速降低至目标设定转速。如此,减少风机降速过程中的波动。
示例性的,一些实施例中,按照初始设定转速启动风机之后,通过闭环控制使得风机按照初始设定转速稳定运行。换句话说,风机按照初始设定转速启动之后,风机能够以初始设定转速稳定转动。也就是说,风机的实时转速保持在初始设定转速的95%~目标设定转速的105%之间。
一实施例中,S120:通过闭环控制将所述风机由所述初始设定转速降低至目标设定转速,包括:
S121:将所述风机由所述初始设定转速按照单次转速下降设定值逐次降低至所述目标设定转速,其中,每次降低所述风机的转速至动态设定转速的过程中,通过所述闭环控制使得所述风机的转速达到与所述动态设定转速对应的稳态。
可以理解的是,一些实施例中,可以是一次将初始设定转速按照单次转速下降设定值降低至目标设定转速。另一些实施例中,也可以是多次将初始设定转速按照单次转速下降设定值降低至目标设定转速。
可以理解的是,由于初始设定转速按照单次转速下降设定值逐次降低至目标设定转速的过程中,实时转速呈动态变化,因此,动态设定转速为从初始设定转速到目标设定转速缓慢下降过程中单次降速的动态值。
需要说明的是,多次包括两次以及两次以上。
示例性的,以三次将风机由初始设定转速按照单次转速下降设定值降低至目标设定转速为例,第一次将风机由初始设定转速按照单次转速下降设定值降低至第一次的动态设定转速,通过闭环控制使得风机的转速达到与第一次的动态设定转速对应的稳态之后;第二次将风机由第一次的动态设定转速按照单次转速下降设定值降低至第二次的动态设定转速,通过闭环控制使得风机的转速达到与第二次的动态设定转速对应的稳态之后;第三次将风机由第二次的动态设定转速按照单次转速下降设定值降低至目标设定转速。
这里,一方面,由于风机降速过快导致风机难以稳定旋转,本申请将风机由初始设定转速按照单次转速下降设定值逐次降低至目标设定转速,实现分级降速,避免快速降速导致风机转速不稳的问题。另一方面,通过闭环控制使得风机的转速达到与动态设定转速对应的稳态,也就是说,风机在每次降速后的动态设定转速稳定旋转,再进入下次降速。这样,每次降速后等到闭环控制起作用,风机的转速稳定后,再次降速,再次等待风机的实时转速稳定,逐渐将风机的转速下降至自风干工作需要的目标设定转速。
一实施例中,单次转速下降设定值为:每秒钟下降100rpm~1000rpm。例如,单次转速下降设定值可以为:每秒钟下降100rpm、每秒钟下降300rpm、每秒钟下降500rpm或者每秒钟下降1000rpm等等。如此,既便于风机能够较为快速地下降至目标设定转速,又能够保证风机平稳转动。
一实施例中,稳态包括风机的转速保持在动态设定转速的95%~动态设定转速的105%之间。也就是说,风机的实时转速的波动范围在动态设定转速的-5%至动态设定转速的5%之间。如此,以确保风机的实时转速稳定。
可以理解的是,风机达到目标设定转速之后,通过闭环控制使得目标设定转速稳定。换句话说,风机达到目标设定转速之后,风机能够以目标设定转速稳定转动。也就是说,风机的实时转速保持在目标设定转速的95%~目标设定转速的105%之间。这样,风机在风干清洁件的过程中,风机保持在相对较低的目标设定转速转动,兼顾低噪音和风干功能。
一些实施例中,S120:通过闭环控制将所述风机由所述初始设定转速降低至目标设定转速,包括:
S122:通过所述闭环控制控制PWM波,以将所述风机由所述初始设定转速降低至所述目标设定转速。
PWM波即Pulse Width Modulation Wave,脉冲宽度调制波。
通过PWM波产生的驱动电压以驱动风机的电机10转动。通过闭环控制控制PWM波产生恒定的驱动电压,即可通过恒定的驱动电压控制风机稳定旋转,从而将风机由初始设定转速降低至目标设定转速。
示例性的,闭环控制可以是通过采集电机10的实时转速,比较电机10的实时转速与目标设定转速,当电机10的实时转速与目标设定转速不同时,调整PWM波,再根据调整后的PWM波调节电机10的转速,从而实现电机10的转速稳定在目标设定转速,达到使风机恒速转动的目的。
示例性的,可以通过PID控制算法进行运算,根据运算结果调整PWM波并驱动电机10转动,从而实现电机10的速度稳定在目标设定转速,达到使电机10恒速转动的目的。
一实施例中,S122:通过所述闭环控制控制PWM波,以将所述风机由所述初始设定转速降低至所述目标设定转速,包括:
S1221:通过所述闭环控制调低所述PWM波的占空比,使所述风机的电机10的转速达到所述目标设定转速。
驱动电压等于母线电压乘以导通时间再除以周期。通过调节占空比并转化为驱动电压信号输入至风机的驱动器,以实现对风机转速的调节。
示例性的,请参阅图2和图3,图2和图3中纵坐标为电压,横坐标为时间。保持母线电压和周期不变,通过降低PWM波的占空比,即减少导通时间,例如将图2中的导通时间减少至图3中的导通时间,就可以调低驱动电压,使电机10按照目标设定转速旋转,电机10能够工作在低速状态,实现使用风机进行自风干功能。
风机的电机10可以为直流无刷电机或者直流有刷电机。
示例性的,请参阅图4和图5,以电机10为直流无刷电机为例,直流无刷电机通过固定转速频率驱动,以直流无刷电机采用3相半桥驱动器为例(请参阅图4),上桥的三个开关管信号分别为V1、V2和V3,下桥的三个开关管信号分别为V4、V5和V6。其中,V1与V4为一对,V1和V4的开关型号相差180电角度。V2与V5为一对,V2和V5的开关型号相差180电角度。V3与V6为一对,V3和V6的开关型号相差180电角度。此示例中不考虑直流无刷电机的转子位置,给V1、V2、V3、V4、V5和V6各个开关管通固定频率的PWM波。
本示例中,请参阅图5,同一时刻均有上桥和下桥各一个开关管成对导通,也就是说,同一时刻,V1、V2和V3中一个导通,并且V4、V5和V6中的一个导通。例如,在一个电周期内,按照V1和V5成对导通、V1和V6成对导通、V2和V6成对导通、V2和V4成对导通、V3和V4成对导通、V3和V5成对导通、V1和V5成对导通依次循环导通。
以转子一对极,目标设定转速为10000rpm工作时,可以得出电周期=1s/(10000rpm/60s)/(1极对数),即电周期为6毫秒。请参阅图5,图5 中纵坐标为电压,横坐标为时间,图5中分别展示出了V1的PWM波、V2的PWM波、V3的PWM波、V4的PWM波、V5的PWM波和V6的PWM波,当电周期设置为6毫秒时,就能按照给定的10000rpm拖动直流无刷电机,使直流无刷电机按照目标设定转速旋转,直流无刷电机能够工作在低速状态,实现使用风机进行自风干功能。
一实施例中,S120:通过闭环控制将所述风机由所述初始设定转速降低至目标设定转速,包括:
S123:通过所述闭环控制控制电流参考值或者驱动电压参考值,以将所述风机由所述初始设定转速降低至所述目标设定转速。
这里,通过闭环控制控制控制算法的电流参考值或者控制算法的驱动电压参考值,实现动态调节,简单高效。
本申请另一方面提供一种洗地机,洗地机包括吸尘风道、风机、用于清洁待清洁面的清洁件、处理器和存储器,清洁件位于吸尘风道处,风机转动以驱动气流流经吸尘风道。在风机以额定转速转动的情况下,吸尘风道用于抽吸待清洁面的水液和垃圾等杂质。在风机以目标设定转速转动的情况下,吸尘风道用于流通风干气流。
清洁件用于与待清洁面例如地面接触以清洁待清洁面。清洁件可以相对地面滚动、旋转或滑动等等,以便清洁件摩擦待清洁面,这样通过清洁件摩擦被清洁面以达到清洁的目的。在洗地机清洁地面的过程中,风机以额定转速转动以将待清洁面上的水液和垃圾等杂质通过吸尘风道吸入容器中,容器包括但不限于污水箱等等。这样,可以通过吸尘风道、风机和清洁件实现地面清洁。在洗地机风干清洁件的过程中,风机以目标设定转速转动以风干清洁件。
示例性的,清洁件包括但不限于滚刷和/或抹布等等。
存储器用于存储一个或多个程序,当一个或多个程序被处理器执行,使得处理器实现本申请任一项实施例中的自风干控制方法。
本申请实施例还提供一种存储介质,其上存储有计算机程序,该程序被处理器执行时实现本申请任一项实施例中的自风干控制方法。具体地,存储介质 为计算机可读存储介质。
以上洗地机和存储介质实施例的描述,与上述自风干控制方法的任意一项实施例的描述是类似的,具有与自风干控制方法实施例相同的有益效果。对于本申请实施例中洗地机和存储介质未披露的技术细节,请参照本申请实施例自风干控制方法实施例的描述而理解。
需要说明的是,本申请实施例中,如果以软件功能模块的形式实现上述的自风干控制方法,并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台洗地机执行本申请各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本申请实施例不限制于任何特定的硬件和软件结合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (11)

  1. 一种自风干控制方法,用于洗地机,所述洗地机包括吸尘风道、风机和用于清洁待清洁面的清洁件,所述清洁件位于所述吸尘风道处,所述风机转动以驱动气流流经所述吸尘风道,所述自风干控制方法包括:
    按照初始设定转速启动所述风机;
    通过闭环控制将所述风机由所述初始设定转速降低至目标设定转速,以风干清洁件。
  2. 根据权利要求1所述的自风干控制方法,通过闭环控制将所述风机由所述初始设定转速降低至目标设定转速,包括:
    将所述风机由所述初始设定转速按照单次转速下降设定值逐次降低至所述目标设定转速,其中,每次降低所述风机的转速至动态设定转速的过程中,通过所述闭环控制使得所述风机的转速达到与所述动态设定转速对应的稳态。
  3. 根据权利要求2所述的自风干控制方法,所述单次转速下降设定值为:每秒钟下降100rpm~1000rpm。
  4. 根据权利要求2所述的自风干控制方法,所述稳态包括所述风机的转速保持在所述动态设定转速的95%~所述动态设定转速的105%之间。
  5. 根据权利要求1所述的自风干控制方法,通过闭环控制将所述风机由所述初始设定转速降低至目标设定转速,包括:
    通过所述闭环控制控制PWM波,以将所述风机由所述初始设定转速降低至所述目标设定转速。
  6. 根据权利要求5所述的自风干控制方法,通过所述闭环控制控制PWM波,以将所述风机由所述初始设定转速降低至所述目标设定转速,包括:
    通过所述闭环控制调低所述PWM波的占空比,使所述风机的电机的转 速达到所述目标设定转速。
  7. 根据权利要求1所述的自风干控制方法,所述闭环控制采用PID控制算法、自抗扰控制算法或者滑模控制算法。
  8. 根据权利要求1所述的自风干控制方法,通过闭环控制将所述风机由所述初始设定转速降低至目标设定转速,包括:
    通过所述闭环控制控制电流参考值或者驱动电压参考值,以将所述风机由所述初始设定转速降低至所述目标设定转速。
  9. 根据权利要求1~8任一项所述的自风干控制方法,所述初始设定转速在所述风机的额定转速的0.2倍~额定转速的0.5倍之间。
  10. 一种洗地机,包括吸尘风道、风机、用于清洁待清洁面的清洁件、处理器和存储器,所述清洁件位于所述吸尘风道处,所述风机转动以驱动气流流经所述吸尘风道,所述存储器用于存储一个或多个程序,当所述一个或多个程序被所述处理器执行,使得所述处理器实现如权利要求1~9任一项所述的自风干控制方法。
  11. 一种存储介质,其上存储有计算机程序,该程序被处理器执行时实现如权利要求1~9任一项所述的自风干控制方法。
PCT/CN2022/134954 2022-10-13 2022-11-29 一种自风干控制方法、洗地机以及存储介质 WO2024077733A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22946051.4A EP4378364A1 (en) 2022-10-13 2022-11-29 Self-air-drying control method, floor scrubber and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211253972.2 2022-10-13
CN202211253972.2A CN117918750A (zh) 2022-10-13 2022-10-13 一种自风干控制方法、洗地机以及存储介质

Publications (1)

Publication Number Publication Date
WO2024077733A1 true WO2024077733A1 (zh) 2024-04-18

Family

ID=89574010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134954 WO2024077733A1 (zh) 2022-10-13 2022-11-29 一种自风干控制方法、洗地机以及存储介质

Country Status (3)

Country Link
EP (1) EP4378364A1 (zh)
CN (1) CN117918750A (zh)
WO (1) WO2024077733A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206228293U (zh) * 2016-06-17 2017-06-09 九阳股份有限公司 扫地机器人的尘满检测***
CN112515577A (zh) * 2020-09-30 2021-03-19 深圳市银星智能科技股份有限公司 清洁机器人的自清洁方法、清洁机器人及清洁***
CN113171031A (zh) * 2021-04-07 2021-07-27 美智纵横科技有限责任公司 清洁设备的风干方法、装置、基站、清洁设备及存储介质
CN114869181A (zh) * 2022-05-19 2022-08-09 广东栗子科技有限公司 一种具有风干结构的清洁装置以及洗地机
CN114951077A (zh) * 2022-05-23 2022-08-30 苏州威摩尔智能科技有限公司 一种清洁设备及其自清洗方法
CN217408692U (zh) * 2022-02-24 2022-09-13 深圳银星智能集团股份有限公司 清洁机器人
JP2022143026A (ja) * 2021-03-17 2022-10-03 三菱電機株式会社 電気掃除機システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206228293U (zh) * 2016-06-17 2017-06-09 九阳股份有限公司 扫地机器人的尘满检测***
CN112515577A (zh) * 2020-09-30 2021-03-19 深圳市银星智能科技股份有限公司 清洁机器人的自清洁方法、清洁机器人及清洁***
JP2022143026A (ja) * 2021-03-17 2022-10-03 三菱電機株式会社 電気掃除機システム
CN113171031A (zh) * 2021-04-07 2021-07-27 美智纵横科技有限责任公司 清洁设备的风干方法、装置、基站、清洁设备及存储介质
CN217408692U (zh) * 2022-02-24 2022-09-13 深圳银星智能集团股份有限公司 清洁机器人
CN114869181A (zh) * 2022-05-19 2022-08-09 广东栗子科技有限公司 一种具有风干结构的清洁装置以及洗地机
CN114951077A (zh) * 2022-05-23 2022-08-30 苏州威摩尔智能科技有限公司 一种清洁设备及其自清洗方法

Also Published As

Publication number Publication date
EP4378364A1 (en) 2024-06-05
CN117918750A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
US5075607A (en) Method and apparatus for operating vacuum cleaner
JP4604777B2 (ja) モータ駆動装置
JP2008080142A (ja) ソフトスタート機能付きクリーニング装置
CN111431446B (zh) 马达控制方法与装置
JP2008132351A (ja) ドラム洗濯機の脱水速度制御方法
CN108903808A (zh) 一种电机无级调速方法、装置及手持吸尘器
TW202027403A (zh) 馬達控制方法與裝置
WO2024077733A1 (zh) 一种自风干控制方法、洗地机以及存储介质
US4983895A (en) Method and apparatus for operating vacuum cleaner
JP2520998B2 (ja) 空気調和器における圧縮機の運転周波数制御装置及びその運転周波数制御方法
JP2008167525A (ja) モータ駆動装置及びそれを備えた電気機器
KR20060009199A (ko) 무정류자 모터의 속도 제어 장치 및 방법
US11739457B2 (en) Laundry treatment machine and method for controlling the same
WO2024016612A1 (zh) 一种直流电机控制方法和存储介质
CN106382662A (zh) 一种带直流无刷无位置传感器电机的吸油烟机及控制方法
JP2539532B2 (ja) 電気掃除機の制御方法
TWI520478B (zh) 直流馬達控制方法及其裝置
CN108768241B (zh) 一种开关磁阻电机***效率优化控制方法
JP7315337B2 (ja) ファンモータ、電子機器及びモータの制御方法
JPH044788A (ja) 電気掃除機
JP7256033B2 (ja) モータ駆動制御装置、ファン、およびモータ駆動制御方法
JP2679988B2 (ja) 電気掃除機
CN113131808A (zh) 无刷直流电机控制方法、电子设备及介质
WO2024051227A1 (zh) 一种控制方法、装置及存储介质
JPH1085498A (ja) 乾燥装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022946051

Country of ref document: EP

Effective date: 20231221