WO2024075481A1 - Superconducting wire material connection structure, and layered structure - Google Patents

Superconducting wire material connection structure, and layered structure Download PDF

Info

Publication number
WO2024075481A1
WO2024075481A1 PCT/JP2023/033294 JP2023033294W WO2024075481A1 WO 2024075481 A1 WO2024075481 A1 WO 2024075481A1 JP 2023033294 W JP2023033294 W JP 2023033294W WO 2024075481 A1 WO2024075481 A1 WO 2024075481A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting wire
superconducting
layer
face
connection structure
Prior art date
Application number
PCT/JP2023/033294
Other languages
French (fr)
Japanese (ja)
Inventor
智寛 伊東
康太郎 大木
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2024075481A1 publication Critical patent/WO2024075481A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/68Connections to or between superconductive connectors

Definitions

  • Patent Document 1 Japanese Patent Application Laid-Open No. 2013-235699
  • Patent Document 1 describes a superconducting wire connection structure.
  • the superconducting wire connection structure described in Patent Document 1 has a first superconducting wire, a second superconducting wire, a third superconducting wire, and a superconducting bonding layer.
  • the first superconducting wire has a first substrate, a first intermediate layer disposed on the first substrate, and a first superconducting layer disposed on the first intermediate layer.
  • the second superconducting wire has a second substrate, a second intermediate layer disposed on the second substrate, and a second superconducting layer disposed on the second intermediate layer.
  • the third superconducting wire has a third substrate, a third intermediate layer disposed on the third substrate, and a third superconducting layer disposed on the third intermediate layer.
  • the first superconducting wire has a first end face in the longitudinal direction of the first superconducting wire.
  • the first superconducting wire has a first end portion adjacent to the first end face in the longitudinal direction of the first superconducting wire.
  • the second superconducting wire has a second end portion adjacent to the second end face in the longitudinal direction of the second superconducting wire.
  • the first superconducting wire and the second superconducting wire are arranged so that the first end face and the second end face face each other. In this state, the first substrate, the first intermediate layer, and the first superconducting layer face the second substrate, the second intermediate layer, and the second superconducting layer, respectively.
  • the third superconducting wire is arranged so that the third superconducting layer faces the first superconducting layer at the first end and the second superconducting layer at the second end, with a superconducting bonding layer interposed between them.
  • the third superconducting layer is superconductively bonded to the first superconducting layer at the first end and the second superconducting layer at the second end by the superconducting bonding layer.
  • the superconducting wire connection structure disclosed herein comprises a first superconducting wire having a first substrate, a first intermediate layer disposed on the first substrate, and a first superconducting layer disposed on the first intermediate layer, and a second superconducting wire having a second substrate, a second intermediate layer disposed on the second substrate, and a second superconducting layer disposed on the second intermediate layer.
  • the first superconducting wire has a first end face which is an end face in the longitudinal direction of the first superconducting wire.
  • the second superconducting wire has a second end face which is an end face in the longitudinal direction of the second superconducting wire. The first end face and the second end face of the first superconducting wire are engaged with each other, so that the first substrate, the first intermediate layer, and the first superconducting layer face each other, respectively.
  • FIG. 1 is a plan view of a superconducting wire connection structure 100.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a plan view of the superconducting wire connection structure 100 in which the third superconducting wire 30 and the connection layer 40 are not shown.
  • FIG. 4 is a manufacturing process diagram of the superconducting wire connection structure 100.
  • FIG. 5 is a plan view of the superconducting wire connection structure 200.
  • FIG. 6 is a cross-sectional view taken along line VI-VI in FIG.
  • FIG. 7 is a plan view of superconducting wire connection structure 200 in which third superconducting wire 30 and connection layer 40 are not shown.
  • FIG. 1 is a plan view of a superconducting wire connection structure 100.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a plan view of the superconducting wire connection structure 100 in which the third supercon
  • FIG. 8 is a schematic side view of the laminated structure 300.
  • FIG. 9 is a plan view of a superconducting wire connection structure 100 according to Modification 1 in which the third superconducting wire 30 and the connection layer 40 are omitted.
  • FIG. 10 is a plan view of a superconducting wire connection structure 100 according to Modification 2 in which the third superconducting wire 30 and the connection layer 40 are omitted.
  • FIG. 11 is a plan view of a superconducting wire connection structure 100 according to Modification 3 in which the third superconducting wire 30 and the connection layer 40 are not shown.
  • FIG. 12 is a plan view of a superconducting wire connection structure 100 according to Modification 4 in which the third superconducting wire 30 and the connection layer 40 are not shown.
  • FIG. 9 is a plan view of a superconducting wire connection structure 100 according to Modification 1 in which the third superconducting wire 30 and the connection layer 40 are omitted.
  • FIG. 10 is a plan view
  • FIG. 13 is a plan view of the superconducting wire connection structure 100A.
  • FIG. 14 is a cross-sectional view taken along line XIV-XIV in FIG.
  • FIG. 15 is a cross-sectional view taken along line XV-XV in FIG.
  • FIG. 16 is a manufacturing process diagram of the superconducting wire connection structure 100A.
  • connection part increases.
  • This disclosure has been made in consideration of the problems with the conventional technology described above. More specifically, this disclosure provides a superconducting wire connection structure that can reduce the thickness of the connection while ensuring strength against tensile loads.
  • the superconducting wire connection structure includes a first superconducting wire having a first substrate, a first intermediate layer disposed on the first substrate, and a first superconducting layer disposed on the first intermediate layer, and a second superconducting wire having a second substrate, a second intermediate layer disposed on the second substrate, and a second superconducting layer disposed on the second intermediate layer.
  • the first superconducting wire has a first end face which is an end face in the longitudinal direction of the first superconducting wire.
  • the second superconducting wire has a second end face which is an end face in the longitudinal direction of the second superconducting wire.
  • the first end face and the second end face of the first superconducting wire are engaged with each other, so that the first substrate, the first intermediate layer, and the first superconducting layer face each other, respectively.
  • the superconducting wire connection structure of (1) above it is possible to thin the connection portion while ensuring strength against tensile load.
  • a recess may be provided on the first end face.
  • a protrusion may be provided on the second end face.
  • the first superconducting wire may be connected to the second superconducting wire by engaging the recess and the protrusion with each other.
  • it is possible to make the interface distance between the first end face and the second end face larger than the width of the wire by providing a recess and a protrusion on the first end face and the second end face, respectively.
  • the recesses and protrusions may be composed only of curves in a plan view.
  • the superconducting wire connection structure of (3) above makes it possible to suppress stress concentration when a tensile load is applied.
  • the first end face may be provided with a plurality of first recesses and a plurality of first protrusions.
  • the second end face may be provided with a plurality of second recesses and a plurality of second protrusions.
  • the first recess may be between two adjacent first protrusions in the width direction of the first superconducting wire.
  • the second recess may be between two adjacent second protrusions in the width direction of the second superconducting wire.
  • the first superconducting wire may be connected to the second superconducting wire by the first recess and the second protrusion engaging with each other and the first protrusion and the second recess engaging with each other.
  • the concentration of the tensile load at one point is suppressed, and the interface distance between the first end face and the second end face is larger than the width of the wire, so that the strength against the tensile load can be increased.
  • the first recess, the first protrusion, the second recess, and the second protrusion may be composed only of curves in a plan view. According to the superconducting wire connection structure of (5) above, it is possible to suppress stress concentration when a tensile load is applied.
  • the first end face may have a portion that is inclined with respect to the width direction of the first superconducting wire in a plan view.
  • the second end face may have a portion that is inclined with respect to the width direction of the second superconducting wire in a plan view. According to the superconducting wire connection structure of (6) above, the engagement between the first end face and the second end face can be made more firmly.
  • the superconducting wire connection structure of (1) to (6) above may further include a third superconducting wire and a connection layer.
  • the first superconducting wire may be an end of the first superconducting wire in the longitudinal direction and may have a first end adjacent to the first end face.
  • the second superconducting wire may be an end of the second superconducting wire in the longitudinal direction and may have a second end adjacent to the second end face.
  • the third superconducting wire may have a third substrate, a third intermediate layer disposed on the third substrate, and a third superconducting layer disposed on the third intermediate layer.
  • the third superconducting layer may be superconductively joined to the first superconducting layer at the first end and the second superconducting layer at the second end via a connection layer. According to the superconducting wire connection structure of (6) above, it is possible to pass a large current from the first superconducting layer to the second superconducting layer via the third superconducting layer.
  • the first intermediate layer and the first superconducting layer at both ends of the first end in the width direction of the first superconducting wire may be removed.
  • the second intermediate layer and the second superconducting layer at both ends of the second end in the width direction of the second superconducting wire may be removed.
  • the third intermediate layer and the third superconducting layer at both ends in the width direction of the third superconducting wire may be removed.
  • Both ends of the third substrate in the width direction of the third superconducting wire may be welded to the first substrate at both ends of the first end in the width direction of the first superconducting wire, and may be welded to the second substrate at both ends of the second end in the width direction of the second superconducting wire.
  • the laminated structure according to the embodiment includes a plurality of superconducting wire connection structures.
  • the superconducting wire connection structure includes a first superconducting wire having a first substrate, a first intermediate layer disposed on the first substrate, and a first superconducting layer disposed on the first intermediate layer, and a second superconducting wire having a second substrate, a second intermediate layer disposed on the second substrate, and a second superconducting layer disposed on the second intermediate layer.
  • the first superconducting wire has a first end face which is an end face in the longitudinal direction of the first superconducting wire.
  • the second superconducting wire has a second end face which is an end face in the longitudinal direction of the second superconducting wire.
  • the first end face and the second end face of the first superconducting wire are engaged with each other, so that the first substrate, the first intermediate layer, and the first superconducting layer face each other, respectively.
  • the plurality of superconducting wire connection structures are arranged in a stacked manner.
  • the superconducting wire connection structure according to the first embodiment is referred to as a superconducting wire connection structure 100.
  • the superconducting wire connection structure 100 has a first superconducting wire 10, a second superconducting wire 20, a third superconducting wire 30, and a connection layer 40.
  • the first superconducting wire 10 has a first substrate 11, a first intermediate layer 12, and a first superconducting layer 13.
  • the first substrate 11 is, for example, a clad material having a tape member made of stainless steel, a copper (Cu) layer disposed on the tape member, and a nickel (Ni) layer disposed on the copper layer.
  • the first substrate 11 may be, for example, a tape member made of Hastelloy (registered trademark).
  • the first intermediate layer 12 is disposed on the first substrate 11.
  • the first intermediate layer 12 is disposed on the nickel layer of the first substrate 11.
  • the first intermediate layer 12 has, for example, an yttria (Y 2 O 3 ) layer, an yttria-stabilized zirconia (YSZ) layer disposed on the yttria layer, and a cerium oxide (CeO 2 ) layer disposed on the yttria-stabilized zirconia layer.
  • the first superconducting layer 13 is disposed on the first intermediate layer 12.
  • the constituent material of the first superconducting layer 13 is an oxide superconductor.
  • the oxide superconductor is, for example, REBCO.
  • REBCO is REBa 2 Cu 3 O 7-y (RE is a rare earth element).
  • RE is a rare earth element.
  • a specific example of the rare earth element is gadolinium, but is not limited to this.
  • the second superconducting wire 20 has a second substrate 21, a second intermediate layer 22, and a second superconducting layer 23.
  • the second substrate 21 is, for example, a clad material having a tape member made of stainless steel, a copper layer disposed on the tape member, and a nickel layer disposed on the copper layer.
  • the second substrate 21 may be, for example, a tape member made of Hastelloy.
  • the second intermediate layer 22 is disposed on the second substrate 21.
  • the second intermediate layer 22 is disposed on the nickel layer of the second substrate 21.
  • the second intermediate layer 22 has, for example, an yttria layer, an yttria-stabilized zirconia layer disposed on the yttria layer, and a cerium oxide layer disposed on the yttria-stabilized zirconia layer.
  • the second superconducting layer 23 is disposed on the second intermediate layer 22.
  • the constituent material of the second superconducting layer 23 is an oxide superconductor.
  • the oxide superconductor is, for example, REBCO.
  • the first superconducting wire 10 has a first end face 10a in the longitudinal direction of the first superconducting wire 10.
  • the first superconducting wire 10 has a first end face 10b in the longitudinal direction of the first superconducting wire 10.
  • the first end face 10b is adjacent to the first end face 10a.
  • the second superconducting wire 20 has a second end face 20a in the longitudinal direction of the second superconducting wire 20.
  • the second superconducting wire 20 has a second end face 20b in the longitudinal direction of the second superconducting wire 20.
  • the second end face 20b is adjacent to the second end face 20a.
  • the longitudinal direction of the first superconducting wire 10 and the longitudinal direction of the second superconducting wire 20 are aligned along the first direction DR1.
  • the second direction DR2 is perpendicular to the first direction DR1.
  • the width direction of the first superconducting wire 10 and the width direction of the second superconducting wire 20 are aligned along the second direction DR2.
  • the first superconducting wire 10 is connected to the second superconducting wire 20 by engaging the first end face 10a with the second end face 20a.
  • the first end face 10a being engaged with the second end face 20a means that the first end face 10a and the second end face 20a are kept in contact with each other against a load along the first direction DR1, so that the relative position of the first superconducting wire 10 in the first direction DR1 with respect to the second superconducting wire 20 does not change.
  • the first substrate 11, the first intermediate layer 12, and the first superconducting layer 13 face the second substrate 21, the second intermediate layer 22, and the second superconducting layer 23, respectively.
  • the first end face 10a has a plurality of first recesses 10c.
  • the first recesses 10c penetrate the first superconducting wire 10 along the thickness direction. More specifically, the first recesses 10c penetrate the first substrate 11, the first intermediate layer 12, and the first superconducting layer 13.
  • the first recesses 10c are arranged at intervals in the second direction DR2.
  • the width of the first recesses 10c in the second direction DR2 becomes smaller as it approaches the first end face 10a.
  • the portion of the first superconducting wire 10 between two adjacent first recesses 10c becomes the first convex portion 10d. Therefore, the width of the first convex portion 10d in the second direction DR2 becomes larger as it approaches the first end face 10a.
  • the width of the first recess 10c in the second direction DR2 is maximum at the bottom side of the first recess 10c (see width W11 in FIG. 3) and minimum at the opening side of the first recess 10c (see width W12 in FIG. 3), and the width of the first convex portion 10d in the second direction DR2 is maximum at the tip side of the first convex portion 10d (see width W21 in FIG. 3) and minimum at the base side of the first convex portion 10d (see width W22 in FIG. 3).
  • the second end face 20a has a plurality of second recesses 20c.
  • the second recesses 20c penetrate the second superconducting wire 20 along the thickness direction. More specifically, the second recesses 20c penetrate the second substrate 21, the second intermediate layer 22, and the second superconducting layer 23.
  • the second recesses 20c are arranged at intervals in the second direction DR2.
  • the width of the second recesses 20c in the second direction DR2 decreases as it approaches the second end face 20a.
  • the portion of the second superconducting wire 20 between two adjacent second recesses 20c becomes the second convex portion 20d. Therefore, the width of the second convex portion 20d in the second direction DR2 increases as it approaches the second end face 20a.
  • the width of the second recess 20c in the second direction DR2 is maximum at the bottom side of the second recess 20c (see width W31 in FIG. 3) and minimum at the opening side of the second recess 20c (see width W32 in FIG. 3), and the width of the second convex portion 20d in the second direction DR2 is maximum at the tip side of the second convex portion 20d (see width W41 in FIG. 3) and minimum at the base side of the second convex portion 20d (see width W42 in FIG. 3).
  • the first convex portion 10d engages with the second concave portion 20c.
  • the second convex portion 20d engages with the first concave portion 10c.
  • the first end face 10a and the second end face 20a engage with each other, and the first superconducting wire 10 is connected to the second superconducting wire 20.
  • the width of the first recess 10c in the second direction DR2 decreases as it moves away from the bottom of the first recess 10c, and the width of the second protrusion 20d in the second direction DR2 increases as it moves closer to the tip of the second protrusion 20d. Therefore, even if a tensile load along the first direction DR1 is applied to the superconducting wire connection structure 100, the second protrusion 20d does not come out of the first recess 10c.
  • the width of the first protrusion 10d in the second direction DR2 increases as it moves closer to the tip of the first protrusion 10d, and the width of the second recess 20c in the second direction DR2 decreases as it moves away from the bottom of the second recess 20c. Therefore, even if a tensile load along the first direction DR1 is applied to the superconducting wire connection structure 100, the first protrusion 10d does not come out of the second recess 20c.
  • the shape of the first recess 10c and the shape of the first protrusion 10d in plan view are preferably made up of curves only.
  • the shape of the second recess 20c and the shape of the second protrusion 20d in plan view are preferably made up of curves only.
  • the third superconducting wire 30 has a third substrate 31, a third intermediate layer 32, and a third superconducting layer 33.
  • the third substrate 31 is, for example, a clad material having a tape member made of stainless steel, a copper layer disposed on the tape member, and a nickel layer disposed on the copper layer.
  • the third substrate 31 may be, for example, a tape member made of Hastelloy.
  • the third intermediate layer 32 is disposed on the third substrate 31.
  • the third intermediate layer 32 is disposed on the nickel layer of the third substrate 31.
  • the third intermediate layer 32 has, for example, an yttria layer, an yttria-stabilized zirconia layer disposed on the yttria layer, and a cerium oxide layer disposed on the yttria-stabilized zirconia layer.
  • the third superconducting layer 33 is disposed on the third intermediate layer 32.
  • the constituent material of the third superconducting layer 33 is an oxide superconductor.
  • the oxide superconductor is, for example, REBCO.
  • the third superconducting wire 30 is arranged so that the third superconducting layer 33 faces the first superconducting layer 13 at the first end 10b and the second superconducting layer 23 at the second end 20b, with the connecting layer 40 interposed therebetween.
  • connection layer 40 The material of the connection layer 40 is REBCO.
  • the REBCO crystals constituting the connection layer 40 are epitaxially grown from the REBCO crystals constituting the first superconducting layer 13 at the first end 10b, and also from the REBCO crystals constituting the second superconducting layer 23 at the second end 20b.
  • the REBCO crystals constituting the connection layer 40 are epitaxially grown from the REBCO crystals constituting the third superconducting layer 33. Therefore, the third superconducting layer 33 is superconductively joined to the first superconducting layer 13 at the first end 10b and the second superconducting layer 23 at the second end 20b by the connection layer 40.
  • the first superconducting wire 10 may further have a first stabilization layer 14.
  • the first stabilization layer 14 is disposed on the first superconducting layer 13.
  • the first superconducting wire 10 may have a first protective layer (not shown) disposed on the first stabilization layer 14.
  • the first superconducting wire 10 may not have a first protective layer.
  • the first stabilization layer 14 and the first protective layer are removed on the first superconducting layer 13 at the first end 10b.
  • the material of the first stabilization layer 14 is, for example, copper or a copper alloy.
  • the material of the first protective layer is, for example, silver or a silver alloy.
  • the second superconducting wire 20 may further have a second stabilizing layer 24.
  • the second stabilizing layer 24 is disposed on the second superconducting layer 23.
  • the second superconducting wire 20 may have a second protective layer (not shown) disposed on the second stabilizing layer 24.
  • the second superconducting wire 20 may not have a second protective layer.
  • the second stabilizing layer 24 and the second protective layer are removed on the second superconducting layer 23 at the second end 20b.
  • the second stabilizing layer 24 is made of, for example, copper or a copper alloy.
  • the second protective layer is made of, for example, silver or a silver alloy.
  • the method for manufacturing the superconducting wire connection structure 100 includes a preparation step S1, an end face processing step S2, a microcrystalline layer formation step S3, an end face engagement step S4, a superconducting joining step S5, and an oxygen reintroduction step S6.
  • the preparation step S1 the first superconducting wire 10, the second superconducting wire 20, and the third superconducting wire 30 are prepared. After the preparation step S1, the end face processing step S2 and the microcrystalline layer forming step S3 are performed.
  • a first recess 10c and a first protrusion 10d are formed on the first end face 10a.
  • the first recess 10c and the first protrusion 10d are formed by irradiating a laser near the first end face 10a to partially remove the first superconducting wire 10.
  • a second recess 20c and a second protrusion 20d are formed on the second end face 20a.
  • the second recess 20c and the second protrusion 20d are formed by the same method as the first recess 10c and the first protrusion 10d.
  • a microcrystalline layer 50 (not shown) is formed on the third superconducting layer 33.
  • an organic compound film is formed on the third superconducting layer 33 by, for example, spin coating.
  • the organic compound film contains the constituent elements of REBCO.
  • the organic compound film is pre-fired. By pre-fired, the organic compound film becomes a precursor of REBCO.
  • the organic compound film that has been pre-fired is called a pre-fired film.
  • the pre-fired film is heat-treated. As a result, the carbides contained in the pre-fired film are decomposed, and a microcrystalline layer 50 containing microcrystals of REBCO is formed.
  • the end face engagement step S4 is performed.
  • the first superconducting wire 10 is connected to the second superconducting wire 20 by engaging the first end face 10a with the second end face 20a.
  • the engagement between the first end face 10a and the second end face 20a is performed by sliding the first superconducting wire 10 along the thickness direction of the second superconducting wire 20 with the first recess 10c overlapping the second protrusion 20d and the first protrusion 10d overlapping the second recess 20c in a plan view.
  • the superconducting joining process S5 is performed.
  • the third superconducting layer 33 is superconductively joined to the first superconducting layer 13 at the first end 10b and the second superconducting layer 23 at the second end 20b by the connection layer 40.
  • the third superconducting wire 30 is arranged so that the third superconducting layer 33 faces the first superconducting layer 13 at the first end 10b and the second superconducting layer 23 at the second end 20b with the microcrystalline layer 50 interposed therebetween.
  • the first superconducting layer 13 at the first end 10b, the second superconducting layer 23 at the second end 20b, the third superconducting layer 33, and the microcrystalline layer 50 are heated and pressurized.
  • the REBCO microcrystals contained in the microcrystalline layer 50 are oriented and crystallized (epitaxially grown from the first superconducting layer 13 at the first end 10b, and the second superconducting layer 23 and the third superconducting layer 33 at the second end 20b) to become the connection layer 40.
  • the superconducting wire connection structure 100 having the structure shown in Figures 1 to 3 is formed.
  • the heating performed in the superconducting joining step S5 causes oxygen to be desorbed from the REBCO constituting the first superconducting layer 13 at the first end 10b, the REBCO constituting the second superconducting layer 23 at the second end 20b, the REBCO constituting the third superconducting layer 33, and the REBCO constituting the connection layer 40.
  • the superconducting wire connection structure 100 is heated and held in an oxygen-containing atmosphere, so that oxygen is reintroduced into the REBCO constituting the first superconducting layer 13 at the first end 10b, the REBCO constituting the second superconducting layer 23 at the second end 20b, the REBCO constituting the third superconducting layer 33, and the REBCO constituting the connection layer 40.
  • ⁇ Effects of superconducting wire connection structure 100> The effects of the superconducting wire connection structure 100 will be described below in comparison with a superconducting wire connection structure according to a comparative example.
  • the superconducting wire connection structure according to the comparative example is referred to as a superconducting wire connection structure 200.
  • the configuration of the superconducting wire connection structure 200 is the same as the configuration of the superconducting wire connection structure 100, except that the first end face 10a is not engaged with the second end face 20a, but is merely in contact with the second end face 20a.
  • the first end face 10a and the second end face 20a are not engaged, and therefore the first superconducting wire 10 and the second superconducting wire 20 are connected only via the connection layer 40. Therefore, reinforcement is required to ensure the strength of the superconducting wire connection structure 200 against the tensile load along the first direction DR1.
  • the third superconducting wire 30 and the first end 10b and the second end 20b are sandwiched between the first reinforcing member and the second reinforcing member, and reinforcement is required to fix the first reinforcing member and the second reinforcing member to each other, which results in a thick connection portion.
  • the superconducting wire connection structure 100 the first end face 10a and the second end face 20a are engaged, so that the strength against the tensile load along the first direction DR1 is ensured even without the above-mentioned reinforcement. Therefore, the superconducting wire connection structure 100 can be made thin while ensuring the strength against the tensile load.
  • the first superconducting layer 13 and the second superconducting layer 23 are superconductively joined to the third superconducting layer 33 by the connection layer 40, so that a large current can be passed from the first superconducting layer 13 to the second superconducting layer 23 via the third superconducting layer 33.
  • the superconducting wire connection structures 100 are stacked to form a laminated structure 300.
  • the superconducting wire connection structures 100 can be made thin, so even if the laminated structure 300 is formed by stacking superconducting wire connection structures 100, it is possible to suppress an increase in thickness.
  • the first convex portion 10d is engaged with the second concave portion 20c, and the second convex portion 20d is engaged with the first concave portion 10c, thereby engaging the first end face 10a and the second end face 20a. That is, in the superconducting wire connection structure 100, the tensile load along the first direction DR1 is supported at multiple points, and is prevented from concentrating at one point.
  • the shape of the first concave portion 10c, the shape of the first convex portion 10d, the shape of the second concave portion 20c, and the shape of the second convex portion 20d are composed of only curves in a plan view, so that stress concentration is suppressed when a tensile load along the first direction DR1 is applied. Furthermore, in the superconducting wire connection structure 100, the interface distance between the first end face 10a and the second end face 20a is greater than the width of the first superconducting wire 10 and the width of the second superconducting wire 20. Therefore, according to the superconducting wire connection structure 100, it is possible to increase the strength against the tensile load along the first direction DR1.
  • the first end face 10a and the second end face 20a can be engaged by fitting the first convex portion 10d into the second concave portion 20c and the second convex portion 20d into the first concave portion 10c, so that the first end face 10a and the second end face 20a can be easily engaged.
  • oxygen reintroduction step S6 oxygen is supplied through the boundary between the first end face 10a and the second end face 20a to the first superconducting layer 13 at the first end face 10b, the second superconducting layer 23 at the second end face 20b, the third superconducting layer 33, and the connection layer 40.
  • the area of the boundary between the first end face 10a and the second end face 20a is larger than that in the superconducting wire connection structure 200, so that in the oxygen reintroduction step S6, oxygen is more easily supplied to the first superconducting layer 13 at the first end face 10b, the second superconducting layer 23 at the second end face 20b, the third superconducting layer 33, and the connection layer 40.
  • one recess 10e may be formed on the first end face 10a instead of the plurality of first recesses 10c and the plurality of first protrusions 10d
  • one protrusion 20e may be formed on the second end face 20a instead of the plurality of second recesses 20c and the plurality of second protrusions 20d.
  • the first end face 10a and the second end face 20a are engaged with each other by engaging the protrusion 20e with the recess 10e.
  • the shape of the first recess 10c, the shape of the first protrusion 10d, the shape of the second recess 20c, and the shape of the second protrusion 20d may be composed of straight lines only. From another perspective, the shape of the first recess 10c, the shape of the first protrusion 10d, the shape of the second recess 20c, and the shape of the second protrusion 20d may be trapezoidal in plan view.
  • the shape of the first recess 10c, the shape of the first protrusion 10d, the shape of the second recess 20c, and the shape of the second protrusion 20d may be configured by a combination of straight lines and curves.
  • the first end face 10a and the second end face 20a may be inclined with respect to the second direction DR2 in a plan view.
  • the first end face 10a and the second end face 20a may have a portion inclined with respect to the second direction DR2 at a first angle and a portion inclined with respect to the second direction DR2 at a second angle different from the first angle.
  • the area of the first end face 10a and the area of the second end face 20a are increased, so that the first end face 10a and the second end face 20a are more firmly engaged with each other.
  • the superconducting wire connection structure according to the second embodiment is referred to as a superconducting wire connection structure 100A.
  • differences from the superconducting wire connection structure 100 will be mainly described, and overlapping descriptions will not be repeated.
  • superconducting wire connection structure 100A has a first superconducting wire 10, a second superconducting wire 20, a third superconducting wire 30, and a connection layer 40.
  • first end face 10a and second end face 20a are engaged with each other, thereby connecting first superconducting wire 10 to second superconducting wire 20.
  • the configuration of superconducting wire connection structure 100A is common to the configuration of superconducting wire connection structure 100.
  • the first intermediate layer 12 and the first superconducting layer 13 at both ends of the first end 10b in the second direction DR2 have been removed.
  • the second intermediate layer 22 and the second superconducting layer 23 at both ends of the second end 20b in the second direction DR2 have been removed.
  • the third intermediate layer 32 and the third superconducting layer 33 at both ends in the second direction DR2 have been removed.
  • the third substrates 31 at both ends in the second direction DR2 are joined to the first substrates 11 at both ends of the first end 10b in the second direction DR2 by welds 61.
  • the third substrates 31 at both ends in the second direction DR2 are joined to the second substrates 21 at both ends of the second end 20b in the second direction DR2 by welds 62.
  • the configuration of the superconducting wire connection structure 100A differs from the configuration of the superconducting wire connection structure 100.
  • the method for manufacturing the superconducting wire connection structure 100A includes a preparation step S1, an end face processing step S2, a microcrystalline layer forming step S3, an end face engagement step S4, a superconducting joining step S5, and an oxygen reintroduction step S6.
  • the method for manufacturing the superconducting wire connection structure 100A is common to the method for manufacturing the superconducting wire connection structure 100.
  • the manufacturing method of the superconducting wire connection structure 100A further includes a removal step S7 and a welding step S8.
  • the removal step S7 the first intermediate layer 12 and the first superconducting layer 13 at both ends of the first end 10b in the width direction of the first superconducting wire 10 are removed, and the second intermediate layer 22 and the second superconducting layer 23 at both ends of the second end 20b in the width direction of the second superconducting wire 20 are removed.
  • the third intermediate layer 32 and the third superconducting layer 33 at both ends in the width direction of the third superconducting wire 30 are further removed.
  • the welding process S8 is performed after the end face engagement process S4 and before the superconducting joining process S5.
  • spot welding is performed, so that the partially melted first substrate 11 and third substrate 31 are mixed and solidified to form a welded portion 61.
  • spot welding is performed, so that the partially melted second substrate 21 and third substrate 31 are mixed and solidified to form a welded portion 62.
  • the manufacturing method of the superconducting wire connection structure 100A differs from the manufacturing method of the superconducting wire connection structure 100.
  • the tensile load along the first direction DR1 is supported by the joining of the first substrate 11 and the third substrate 31 by the weld 61 and the joining of the second substrate 21 and the third substrate 31 by the weld 62, so that strength against the tensile load along the first direction DR1 is further ensured.
  • 100 superconducting wire connection structure 10 first superconducting wire, 10a first end face, 10b first end, 10c first recess, 10d first convex, 10e recess, 11 first substrate, 12 first intermediate layer, 13 first superconducting layer, 14 first stabilization layer, 20 second superconducting wire, 20a second end face, 20b second end, 20c second recess, 20d second convex, 20e convex, 21 second substrate, 22 second intermediate layer, 23 second superconducting layer, 24 second stabilization layer, 30 third superconducting wire, 31 third substrate material, 32 third intermediate layer, 33 third superconducting layer, 40 connection layer, 50 microcrystalline layer, 61, 62 welded portion, 100A superconducting wire connection structure, 200 superconducting wire connection structure, 300 laminated structure, DR1 first direction, DR2 second direction, S1 preparation process, S2 end face processing process, S3 microcrystalline layer formation process, S4 end face engagement process, S5 superconducting joining process, S6 oxygen reintr

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

This superconducting wire material connection structure is equipped with: a first superconducting wire material which has a first substrate, a first intermediate layer positioned on the first substrate, and a first superconducting layer positioned on the first intermediate layer; and a second superconducting wire material which has a second substrate, a second intermediate layer positioned on the second substrate, and a second superconducting layer positioned on the second intermediate layer. The first superconducting wire material has a first end surface, which is an end surface of the first superconducting wire material in the lengthwise direction. The second superconducting wire material has a second end surface, which is an end surface of the second superconducting wire material in the lengthwise direction. As a result of joining the first end surface and the second end surface to one another, the first superconducting wire material is connected to the second superconducting wire material in a manner such that the first substrate, the first intermediate layer and the first superconducting layer respectively face the second substrate, the second intermediate layer and the second superconducting layer.

Description

超電導線材接続構造及び積層構造体Superconducting wire joint structure and laminated structure
 本開示は、超電導線材接続構造及び積層構造体に関する。本出願は、2022年10月4日に出願した日本特許出願である特願2022-160363号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 This disclosure relates to a superconducting wire connection structure and a laminated structure. This application claims priority to Japanese Patent Application No. 2022-160363, filed on October 4, 2022. All contents of said Japanese patent application are incorporated herein by reference.
 例えば特開2013-235699号公報(特許文献1)には、超電導線材接続構造が記載されている。特許文献1に記載の超電導線材接続構造は、第1超電導線材と、第2超電導線材と、第3超電導線材と、超電導接合層とを有している。第1超電導線材は、第1基材、第1基材上に配置されている第1中間層及び第1中間層上に配置されている第1超電導層を有している。第2超電導線材は、第2基材、第2基材上に配置されている第2中間層及び第2中間層上に配置されている第2超電導層を有している。第3超電導線材は、第3基材、第3基材上に配置されている第3中間層及び第3中間層上に配置されている第3超電導層を有している。 For example, Japanese Patent Application Laid-Open No. 2013-235699 (Patent Document 1) describes a superconducting wire connection structure. The superconducting wire connection structure described in Patent Document 1 has a first superconducting wire, a second superconducting wire, a third superconducting wire, and a superconducting bonding layer. The first superconducting wire has a first substrate, a first intermediate layer disposed on the first substrate, and a first superconducting layer disposed on the first intermediate layer. The second superconducting wire has a second substrate, a second intermediate layer disposed on the second substrate, and a second superconducting layer disposed on the second intermediate layer. The third superconducting wire has a third substrate, a third intermediate layer disposed on the third substrate, and a third superconducting layer disposed on the third intermediate layer.
 第1超電導線材は、第1超電導線材の長手方向において、第1端面を有している。第1超電導線材は、第1超電導線材の長手方向において、第1端面に隣接している第1端部を有している。第2超電導線材は、第2超電導線材の長手方向において、第2端面を有している。第2超電導線材は、第2超電導線材の長手方向において、第2端面に隣接している第2端部を有している。第1超電導線材及び第2超電導線材は、第1端面及び第2端面が互いに対向するように配置されている。この状態において、第1基材、第1中間層及び第1超電導層は、それぞれ第2基材、第2中間層及び第2超電導層に向かい合っている。 The first superconducting wire has a first end face in the longitudinal direction of the first superconducting wire. The first superconducting wire has a first end portion adjacent to the first end face in the longitudinal direction of the first superconducting wire. The second superconducting wire has a second end portion adjacent to the second end face in the longitudinal direction of the second superconducting wire. The first superconducting wire and the second superconducting wire are arranged so that the first end face and the second end face face each other. In this state, the first substrate, the first intermediate layer, and the first superconducting layer face the second substrate, the second intermediate layer, and the second superconducting layer, respectively.
 第3超電導線材は、第3超電導層が超電導接合層を介在させて第1端部にある第1超電導層及び第2端部にある第2超電導層と対向するように、配置されている。第3超電導層は、超電導接合層により、第1端部にある第1超電導層及び第2端部にある第2超電導層に超電導接合されている。 The third superconducting wire is arranged so that the third superconducting layer faces the first superconducting layer at the first end and the second superconducting layer at the second end, with a superconducting bonding layer interposed between them. The third superconducting layer is superconductively bonded to the first superconducting layer at the first end and the second superconducting layer at the second end by the superconducting bonding layer.
特開2013-235699号公報JP 2013-235699 A
 本開示の超電導線材接続構造は、第1基材、第1基材上に配置されている第1中間層及び第1中間層上に配置されている第1超電導層を有する第1超電導線材と、第2基材、第2基材上に配置されている第2中間層及び第2中間層上に配置されている第2超電導層を有する第2超電導線材とを備える。第1超電導線材は、第1超電導線材の長手方向における端面である第1端面を有する。第2超電導線材は、第2超電導線材の長手方向における端面である第2端面を有する。第1超電導線材は、第1端面及び第2端面が互いに係合することにより、第1基材、第1中間層及び第1超電導層がそれぞれ第2基材、第2中間層及び第2超電導層と互いに向かい合うように第2超電導線材に接続されている。 The superconducting wire connection structure disclosed herein comprises a first superconducting wire having a first substrate, a first intermediate layer disposed on the first substrate, and a first superconducting layer disposed on the first intermediate layer, and a second superconducting wire having a second substrate, a second intermediate layer disposed on the second substrate, and a second superconducting layer disposed on the second intermediate layer. The first superconducting wire has a first end face which is an end face in the longitudinal direction of the first superconducting wire. The second superconducting wire has a second end face which is an end face in the longitudinal direction of the second superconducting wire. The first end face and the second end face of the first superconducting wire are engaged with each other, so that the first substrate, the first intermediate layer, and the first superconducting layer face each other, respectively.
図1は、超電導線材接続構造100の平面図である。FIG. 1 is a plan view of a superconducting wire connection structure 100. As shown in FIG. 図2は、図1中のII-IIにおける断面図である。FIG. 2 is a cross-sectional view taken along line II-II in FIG. 図3は、第3超電導線材30及び接続層40の図示を省略した超電導線材接続構造100の平面図である。FIG. 3 is a plan view of the superconducting wire connection structure 100 in which the third superconducting wire 30 and the connection layer 40 are not shown. 図4は、超電導線材接続構造100の製造工程図である。FIG. 4 is a manufacturing process diagram of the superconducting wire connection structure 100. 図5は、超電導線材接続構造200の平面図である。FIG. 5 is a plan view of the superconducting wire connection structure 200. As shown in FIG. 図6は、図5中のVI-VIにおける断面図である。FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. 図7は、第3超電導線材30及び接続層40の図示を省略した超電導線材接続構造200の平面図である。FIG. 7 is a plan view of superconducting wire connection structure 200 in which third superconducting wire 30 and connection layer 40 are not shown. 図8は、積層構造体300の模式的な側面図である。FIG. 8 is a schematic side view of the laminated structure 300. 図9は、第3超電導線材30及び接続層40の図示が省略された変形例1に係る超電導線材接続構造100の平面図である。FIG. 9 is a plan view of a superconducting wire connection structure 100 according to Modification 1 in which the third superconducting wire 30 and the connection layer 40 are omitted. 図10は、第3超電導線材30及び接続層40の図示が省略された変形例2に係る超電導線材接続構造100の平面図である。FIG. 10 is a plan view of a superconducting wire connection structure 100 according to Modification 2 in which the third superconducting wire 30 and the connection layer 40 are omitted. 図11は、第3超電導線材30及び接続層40の図示が省略された変形例3に係る超電導線材接続構造100の平面図である。FIG. 11 is a plan view of a superconducting wire connection structure 100 according to Modification 3 in which the third superconducting wire 30 and the connection layer 40 are not shown. 図12は、第3超電導線材30及び接続層40の図示が省略された変形例4に係る超電導線材接続構造100の平面図である。FIG. 12 is a plan view of a superconducting wire connection structure 100 according to Modification 4 in which the third superconducting wire 30 and the connection layer 40 are not shown. 図13は、超電導線材接続構造100Aの平面図である。FIG. 13 is a plan view of the superconducting wire connection structure 100A. 図14は、図13中のXIV-XIVにおける断面図である。FIG. 14 is a cross-sectional view taken along line XIV-XIV in FIG. 図15は、図13中のXV-XVにおける断面図である。FIG. 15 is a cross-sectional view taken along line XV-XV in FIG. 図16は、超電導線材接続構造100Aの製造工程図である。FIG. 16 is a manufacturing process diagram of the superconducting wire connection structure 100A.
 [本開示が解決しようとする課題]
 特許文献1に記載の超電導線材接続構造では、第1超電導線材と第2超電導線材との接続が、超電導接合層を介して行われているに過ぎない。そのため、特許文献1に記載の超電導線材接続構造では、第1超電導線材(第2超電導線材)の長手方向に沿う引張荷重に対する強度に関してさらなる向上が望まれる。
[Problem to be solved by this disclosure]
In the superconducting wire connection structure described in Patent Document 1, the first superconducting wire and the second superconducting wire are connected simply via a superconducting bonding layer. Therefore, in the superconducting wire connection structure described in Patent Document 1, it is desired to further improve the strength against a tensile load along the longitudinal direction of the first superconducting wire (second superconducting wire).
 これに対する補強のために、第1補強部材及び第2補強部材により第3超電導線材、第1端部及び第2端部を挟み込むとともに第1補強部材及び第2補強部材を相互に固定することが考えられる。しかしながら、この場合、接続部の厚さが増加してしまう。 To counter this, it is possible to sandwich the third superconducting wire, the first end, and the second end between the first reinforcing member and the second reinforcing member, and to fix the first reinforcing member and the second reinforcing member to each other. However, in this case, the thickness of the connection part increases.
 本開示は、上記のような従来技術の問題点に鑑みてなされたものである。より具体的には、本開示は、引張荷重に対する強度を確保しつつ、接続部を薄型化することが可能な超電導線材接続構造を提供するものである。 This disclosure has been made in consideration of the problems with the conventional technology described above. More specifically, this disclosure provides a superconducting wire connection structure that can reduce the thickness of the connection while ensuring strength against tensile loads.
 [本開示の効果]
 本開示の超電導線材接続構造によると、引張荷重に対する強度を確保しつつ、接続部を薄型化することが可能である。
[Effects of the present disclosure]
According to the superconducting wire connection structure of the present disclosure, it is possible to reduce the thickness of the connection portion while ensuring strength against tensile load.
 [本開示の実施形態の説明]
 まず、本開示の実施形態を列記して説明する。
[Description of the embodiments of the present disclosure]
First, embodiments of the present disclosure will be listed and described.
 (1)実施形態に係る超電導線材接続構造は、第1基材、第1基材上に配置されている第1中間層及び第1中間層上に配置されている第1超電導層を有する第1超電導線材と、第2基材、第2基材上に配置されている第2中間層及び第2中間層上に配置されている第2超電導層を有する第2超電導線材とを備えている。第1超電導線材は、第1超電導線材の長手方向における端面である第1端面を有する。第2超電導線材は、第2超電導線材の長手方向における端面である第2端面を有する。第1超電導線材は、第1端面及び第2端面が互いに係合することにより、第1基材、第1中間層及び第1超電導層がそれぞれ第2基材、第2中間層及び第2超電導層と互いに向かい合うように第2超電導線材に接続されている。上記(1)の超電導線材接続構造によると、引張荷重に対する強度を確保しつつ接続部を薄型化することが可能である。 (1) The superconducting wire connection structure according to the embodiment includes a first superconducting wire having a first substrate, a first intermediate layer disposed on the first substrate, and a first superconducting layer disposed on the first intermediate layer, and a second superconducting wire having a second substrate, a second intermediate layer disposed on the second substrate, and a second superconducting layer disposed on the second intermediate layer. The first superconducting wire has a first end face which is an end face in the longitudinal direction of the first superconducting wire. The second superconducting wire has a second end face which is an end face in the longitudinal direction of the second superconducting wire. The first end face and the second end face of the first superconducting wire are engaged with each other, so that the first substrate, the first intermediate layer, and the first superconducting layer face each other, respectively. According to the superconducting wire connection structure of (1) above, it is possible to thin the connection portion while ensuring strength against tensile load.
 (2)上記(1)の超電導線材接続構造では、第1端面に、凹部が設けられていてもよい。第2端面には、凸部が設けられていてもよい。第1超電導線材は、凹部及び凸部が互いに係合することにより、第2超電導線材に接続されていてもよい。上記(2)の超電導線材接続構造によると、凹部及び凸部を嵌め合わせることにより第1端面と第2端面とを容易に係合させることが可能である。また、上記(2)の超電導線材接続構造によると、第1端面及び第2端面にそれぞれ凹部及び凸部を設けることにより第1端面と第2端面との間の界面距離を線材の幅よりも大きくすることが可能である。 (2) In the superconducting wire connection structure of (1) above, a recess may be provided on the first end face. A protrusion may be provided on the second end face. The first superconducting wire may be connected to the second superconducting wire by engaging the recess and the protrusion with each other. According to the superconducting wire connection structure of (2) above, it is possible to easily engage the first end face and the second end face by fitting the recess and the protrusion. Also, according to the superconducting wire connection structure of (2) above, it is possible to make the interface distance between the first end face and the second end face larger than the width of the wire by providing a recess and a protrusion on the first end face and the second end face, respectively.
 (3)上記(2)の超電導線材接続構造では、凹部及び凸部が平面視において曲線のみで構成されていてもよい。上記(3)の超電導線材接続構造によると、引張荷重が加わった際の応力集中を抑制することが可能である。 (3) In the superconducting wire connection structure of (2) above, the recesses and protrusions may be composed only of curves in a plan view. The superconducting wire connection structure of (3) above makes it possible to suppress stress concentration when a tensile load is applied.
 (4)上記(1)の超電導線材接続構造では、第1端面に、複数の第1凹部及び複数の第1凸部が設けられていてもよい。第2端面には、複数の第2凹部及び複数の第2凸部が設けられていてもよい。第1凹部は、第1超電導線材の幅方向において、隣り合う2つの第1凸部の間にあってもよい。第2凹部は、第2超電導線材の幅方向において、隣り合う2つの第2凸部の間にあってもよい。第1超電導線材は、第1凹部及び第2凸部が互いに係合するとともに第1凸部及び第2凹部が互いに係合することにより、第2超電導線材に接続されていてもよい。上記(4)の超電導線材によると、引張荷重が1点に集中することが抑制され、かつ第1端面と第2端面との界面距離が線材の幅よりも大きくなって引張荷重に対する強度を高めることが可能である。 (4) In the superconducting wire connection structure of (1) above, the first end face may be provided with a plurality of first recesses and a plurality of first protrusions. The second end face may be provided with a plurality of second recesses and a plurality of second protrusions. The first recess may be between two adjacent first protrusions in the width direction of the first superconducting wire. The second recess may be between two adjacent second protrusions in the width direction of the second superconducting wire. The first superconducting wire may be connected to the second superconducting wire by the first recess and the second protrusion engaging with each other and the first protrusion and the second recess engaging with each other. According to the superconducting wire of (4) above, the concentration of the tensile load at one point is suppressed, and the interface distance between the first end face and the second end face is larger than the width of the wire, so that the strength against the tensile load can be increased.
 (5)上記(4)の超電導線材接続構造では、第1凹部、第1凸部、第2凹部及び第2凸部は、平面視において曲線のみで構成されていてもよい。上記(5)の超電導線材接続構造によると、引張荷重が加わった際の応力集中を抑制することが可能である。 (5) In the superconducting wire connection structure of (4) above, the first recess, the first protrusion, the second recess, and the second protrusion may be composed only of curves in a plan view. According to the superconducting wire connection structure of (5) above, it is possible to suppress stress concentration when a tensile load is applied.
 (6)上記(1)から(5)の超電導線材接続構造では、第1端面が、平面視において第1超電導線材の幅方向に対して傾斜している部分を有していてもよい。第2端面は、平面視において第2超電導線材の幅方向に対して傾斜している部分を有していてもよい。上記(6)の超電導線材接続構造によると、第1端面と第2端面との係合をより強固に行うことができる。 (6) In the superconducting wire connection structures of (1) to (5) above, the first end face may have a portion that is inclined with respect to the width direction of the first superconducting wire in a plan view. The second end face may have a portion that is inclined with respect to the width direction of the second superconducting wire in a plan view. According to the superconducting wire connection structure of (6) above, the engagement between the first end face and the second end face can be made more firmly.
 (7)上記(1)から(6)の超電導線材接続構造は、第3超電導線材と接続層とをさらに備えていてもよい。第1超電導線材は、第1超電導線材の長手方向における端部であり、かつ、第1端面に隣接する第1端部を有していてもよい。第2超電導線材は、第2超電導線材の長手方向における端部であり、かつ、第2端面に隣接する第2端部を有していてもよい。第3超電導線材は、第3基材と、第3基材上に配置されている第3中間層と、第3中間層上に配置されている第3超電導層とを有していてもよい。第3超電導層は、接続層を介在させて、第1端部にある第1超電導層及び第2端部にある第2超電導層に超電導接合されていてもよい。上記(6)の超電導線材接続構造によると、第1超電導層から第3超電導層を経由して第2超電導層に大電流を流すことが可能である。 (7) The superconducting wire connection structure of (1) to (6) above may further include a third superconducting wire and a connection layer. The first superconducting wire may be an end of the first superconducting wire in the longitudinal direction and may have a first end adjacent to the first end face. The second superconducting wire may be an end of the second superconducting wire in the longitudinal direction and may have a second end adjacent to the second end face. The third superconducting wire may have a third substrate, a third intermediate layer disposed on the third substrate, and a third superconducting layer disposed on the third intermediate layer. The third superconducting layer may be superconductively joined to the first superconducting layer at the first end and the second superconducting layer at the second end via a connection layer. According to the superconducting wire connection structure of (6) above, it is possible to pass a large current from the first superconducting layer to the second superconducting layer via the third superconducting layer.
 (8)上記(7)の超電導線材接続構造では、第1超電導線材の幅方向における第1端部の両端部にある第1中間層及び第1超電導層が、除去されていてもよい。第2超電導線材の幅方向における第2端部の両端部にある第2中間層及び第2超電導層は、除去されていてもよい。第3超電導線材の幅方向における両端部にある第3中間層及び第3超電導層は、除去されていてもよい。第3超電導線材の幅方向における第3基材の両端部は、それぞれ第1超電導線材の幅方向における第1端部の両端部にある第1基材に溶接されているとともに、それぞれ第2超電導線材の幅方向における第2端部の両端部にある第2基材に溶接されていてもよい。上記(7)の超電導線材接続構造によると、引張荷重に対する強度をさらに高めることができる。 (8) In the superconducting wire connection structure of (7) above, the first intermediate layer and the first superconducting layer at both ends of the first end in the width direction of the first superconducting wire may be removed. The second intermediate layer and the second superconducting layer at both ends of the second end in the width direction of the second superconducting wire may be removed. The third intermediate layer and the third superconducting layer at both ends in the width direction of the third superconducting wire may be removed. Both ends of the third substrate in the width direction of the third superconducting wire may be welded to the first substrate at both ends of the first end in the width direction of the first superconducting wire, and may be welded to the second substrate at both ends of the second end in the width direction of the second superconducting wire. According to the superconducting wire connection structure of (7) above, the strength against tensile load can be further increased.
 (9)実施形態に係る積層構造体は、複数の超電導線材接続構造を備える。超電導線材接続構造は、第1基材、第1基材上に配置されている第1中間層及び第1中間層上に配置されている第1超電導層を有する第1超電導線材と、第2基材、第2基材上に配置されている第2中間層及び第2中間層上に配置されている第2超電導層を有する第2超電導線材とを備える。第1超電導線材は、第1超電導線材の長手方向における端面である第1端面を有する。第2超電導線材は、第2超電導線材の長手方向における端面である第2端面を有する。第1超電導線材は、第1端面及び第2端面が互いに係合することにより、第1基材、第1中間層及び第1超電導層がそれぞれ第2基材、第2中間層及び第2超電導層と互いに向かい合うように第2超電導線材に接続されている。複数の超電導線材接続構造は、重ねて配置されている。  (9) The laminated structure according to the embodiment includes a plurality of superconducting wire connection structures. The superconducting wire connection structure includes a first superconducting wire having a first substrate, a first intermediate layer disposed on the first substrate, and a first superconducting layer disposed on the first intermediate layer, and a second superconducting wire having a second substrate, a second intermediate layer disposed on the second substrate, and a second superconducting layer disposed on the second intermediate layer. The first superconducting wire has a first end face which is an end face in the longitudinal direction of the first superconducting wire. The second superconducting wire has a second end face which is an end face in the longitudinal direction of the second superconducting wire. The first end face and the second end face of the first superconducting wire are engaged with each other, so that the first substrate, the first intermediate layer, and the first superconducting layer face each other, respectively. The plurality of superconducting wire connection structures are arranged in a stacked manner.
 [本開示の実施形態の詳細]
 本開示の実施形態の詳細を、図面を参照しながら説明する。以下の図面では、同一又は相当する部分に同一の参照符号を付し、重複する説明は繰り返さないものとする。
[Details of the embodiment of the present disclosure]
The details of the embodiments of the present disclosure will be described with reference to the drawings. In the following drawings, the same or corresponding parts are designated by the same reference numerals, and redundant description will not be repeated.
 (第1実施形態)
 第1実施形態に係る超電導線材接続構造を説明する。第1実施形態に係る超電導線材接続構造を、超電導線材接続構造100とする。
First Embodiment
A superconducting wire connection structure according to a first embodiment will be described. The superconducting wire connection structure according to the first embodiment is referred to as a superconducting wire connection structure 100.
 <超電導線材接続構造100の構成>
 以下に、図1から図3を参照して、超電導線材接続構造100の構成を説明する。
<Configuration of superconducting wire connection structure 100>
The configuration of the superconducting wire connection structure 100 will be described below with reference to FIGS.
 図1から図3に示されているように、超電導線材接続構造100は、第1超電導線材10と、第2超電導線材20と、第3超電導線材30と、接続層40とを有している。 As shown in Figures 1 to 3, the superconducting wire connection structure 100 has a first superconducting wire 10, a second superconducting wire 20, a third superconducting wire 30, and a connection layer 40.
 第1超電導線材10は、第1基材11と、第1中間層12と、第1超電導層13とを有している。第1基材11は、例えば、ステンレス鋼製のテープ部材と、当該テープ部材上に配置されている銅(Cu)層と、当該銅層上に配置されているニッケル(Ni)層とを有するクラッド材である。第1基材11は、例えばハステロイ(登録商標)製のテープ部材であってもよい。 The first superconducting wire 10 has a first substrate 11, a first intermediate layer 12, and a first superconducting layer 13. The first substrate 11 is, for example, a clad material having a tape member made of stainless steel, a copper (Cu) layer disposed on the tape member, and a nickel (Ni) layer disposed on the copper layer. The first substrate 11 may be, for example, a tape member made of Hastelloy (registered trademark).
 第1中間層12は、第1基材11上に配置されている。第1基材11が上記のクラッド材である場合、第1中間層12は、第1基材11のニッケル層上に配置されている。第1中間層12は、例えば、イットリア(Y)層と、当該イットリア層上に配置されているイットリア安定化ジルコニア(YSZ)層と、当該イットリア安定化ジルコニア層上に配置されている酸化セリウム(CeO)層とを有している。 The first intermediate layer 12 is disposed on the first substrate 11. When the first substrate 11 is the above-mentioned clad material, the first intermediate layer 12 is disposed on the nickel layer of the first substrate 11. The first intermediate layer 12 has, for example, an yttria (Y 2 O 3 ) layer, an yttria-stabilized zirconia (YSZ) layer disposed on the yttria layer, and a cerium oxide (CeO 2 ) layer disposed on the yttria-stabilized zirconia layer.
 第1超電導層13は、第1中間層12上に配置されている。第1超電導層13の構成材料は、酸化物超電導体である。酸化物超電導体は、例えば、REBCOである。REBCOは、REBaCu7-y(REは希土類元素)である。希土類元素の具体例としてはガドリニウムが挙げられるが、これに限られるものではない。 The first superconducting layer 13 is disposed on the first intermediate layer 12. The constituent material of the first superconducting layer 13 is an oxide superconductor. The oxide superconductor is, for example, REBCO. REBCO is REBa 2 Cu 3 O 7-y (RE is a rare earth element). A specific example of the rare earth element is gadolinium, but is not limited to this.
 第2超電導線材20は、第2基材21と、第2中間層22と、第2超電導層23とを有している。第2基材21は、例えば、ステンレス鋼製のテープ部材と、当該テープ部材上に配置されている銅層と、当該銅層上に配置されているニッケル層とを有するクラッド材である。第2基材21は、例えばハステロイ製のテープ部材であってもよい。 The second superconducting wire 20 has a second substrate 21, a second intermediate layer 22, and a second superconducting layer 23. The second substrate 21 is, for example, a clad material having a tape member made of stainless steel, a copper layer disposed on the tape member, and a nickel layer disposed on the copper layer. The second substrate 21 may be, for example, a tape member made of Hastelloy.
 第2中間層22は、第2基材21上に配置されている。第2基材21が上記のクラッド材である場合、第2中間層22は、第2基材21のニッケル層上に配置されている。第2中間層22は、例えば、イットリア層と、当該イットリア層上に配置されているイットリア安定化ジルコニア層と、当該イットリア安定化ジルコニア層上に配置されている酸化セリウム層とを有している。第2超電導層23は、第2中間層22上に配置されている。第2超電導層23の構成材料は、酸化物超電導体である。酸化物超電導体は、例えば、REBCOである。 The second intermediate layer 22 is disposed on the second substrate 21. When the second substrate 21 is the above-mentioned clad material, the second intermediate layer 22 is disposed on the nickel layer of the second substrate 21. The second intermediate layer 22 has, for example, an yttria layer, an yttria-stabilized zirconia layer disposed on the yttria layer, and a cerium oxide layer disposed on the yttria-stabilized zirconia layer. The second superconducting layer 23 is disposed on the second intermediate layer 22. The constituent material of the second superconducting layer 23 is an oxide superconductor. The oxide superconductor is, for example, REBCO.
 第1超電導線材10は、第1超電導線材10の長手方向において、第1端面10aを有している。第1超電導線材10は、第1超電導線材10の長手方向において、第1端部10bを有している。第1端部10bは、第1端面10aに隣接している。第2超電導線材20は、第2超電導線材20の長手方向において、第2端面20aを有している。第2超電導線材20は、第2超電導線材20の長手方向において第2端部20bを有している。第2端部20bは、第2端面20aに隣接している。 The first superconducting wire 10 has a first end face 10a in the longitudinal direction of the first superconducting wire 10. The first superconducting wire 10 has a first end face 10b in the longitudinal direction of the first superconducting wire 10. The first end face 10b is adjacent to the first end face 10a. The second superconducting wire 20 has a second end face 20a in the longitudinal direction of the second superconducting wire 20. The second superconducting wire 20 has a second end face 20b in the longitudinal direction of the second superconducting wire 20. The second end face 20b is adjacent to the second end face 20a.
 第1超電導線材10の長手方向及び第2超電導線材20の長手方向は、第1方向DR1に沿っている。第2方向DR2は、第1方向DR1に直交する方向である。このことを別の観点から言えば、第1超電導線材10の幅方向及び第2超電導線材20の幅方向は、第2方向DR2に沿っている。 The longitudinal direction of the first superconducting wire 10 and the longitudinal direction of the second superconducting wire 20 are aligned along the first direction DR1. The second direction DR2 is perpendicular to the first direction DR1. From another perspective, the width direction of the first superconducting wire 10 and the width direction of the second superconducting wire 20 are aligned along the second direction DR2.
 第1超電導線材10は、第1端面10aが第2端面20aに係合されることにより、第2超電導線材20に接続されている。ここで、第1端面10aが第2端面20aに係合されているとは、第1方向DR1に沿う荷重に対して第1端面10a及び第2端面20aが互いに接触した状態を保つことにより、第2超電導線材20に対する第1超電導線材10の第1方向DR1における相対的な位置が変化しないようになっていることをいう。第1超電導線材10が第2超電導線材20に接続された状態で、第1基材11、第1中間層12及び第1超電導層13は、それぞれ第2基材21、第2中間層22及び第2超電導層23と向かい合っている。 The first superconducting wire 10 is connected to the second superconducting wire 20 by engaging the first end face 10a with the second end face 20a. Here, the first end face 10a being engaged with the second end face 20a means that the first end face 10a and the second end face 20a are kept in contact with each other against a load along the first direction DR1, so that the relative position of the first superconducting wire 10 in the first direction DR1 with respect to the second superconducting wire 20 does not change. With the first superconducting wire 10 connected to the second superconducting wire 20, the first substrate 11, the first intermediate layer 12, and the first superconducting layer 13 face the second substrate 21, the second intermediate layer 22, and the second superconducting layer 23, respectively.
 第1端面10aには、複数の第1凹部10cが設けられている。第1凹部10cは、第1超電導線材10を、厚さ方向に沿って貫通している。より具体的には、第1凹部10cは、第1基材11、第1中間層12及び第1超電導層13を貫通している。第1凹部10cは、第2方向DR2において、間隔を空けて並んでいる。第2方向DR2における第1凹部10cの幅は、第1端面10aに近づくにつれて、小さくなっている。隣り合う2つの第1凹部10cとの間にある第1超電導線材10の部分が、第1凸部10dになっている。そのため、第2方向DR2における第1凸部10dの幅は、第1端面10aに近づくにつれて、大きくなっている。つまり、第2方向DR2における第1凹部10cの幅は第1凹部10cの底部側で最大値(図3中の幅W11参照)になるとともに第1凹部10cの開口部側で最小値(図3中の幅W12参照)となり、第2方向DR2における第1凸部10dの幅は第1凸部10dの先端側で最大値(図3中の幅W21参照)になるとともに第1凸部10dの基部側で最小値(図3中の幅W22参照)となる。 The first end face 10a has a plurality of first recesses 10c. The first recesses 10c penetrate the first superconducting wire 10 along the thickness direction. More specifically, the first recesses 10c penetrate the first substrate 11, the first intermediate layer 12, and the first superconducting layer 13. The first recesses 10c are arranged at intervals in the second direction DR2. The width of the first recesses 10c in the second direction DR2 becomes smaller as it approaches the first end face 10a. The portion of the first superconducting wire 10 between two adjacent first recesses 10c becomes the first convex portion 10d. Therefore, the width of the first convex portion 10d in the second direction DR2 becomes larger as it approaches the first end face 10a. In other words, the width of the first recess 10c in the second direction DR2 is maximum at the bottom side of the first recess 10c (see width W11 in FIG. 3) and minimum at the opening side of the first recess 10c (see width W12 in FIG. 3), and the width of the first convex portion 10d in the second direction DR2 is maximum at the tip side of the first convex portion 10d (see width W21 in FIG. 3) and minimum at the base side of the first convex portion 10d (see width W22 in FIG. 3).
 第2端面20aには、複数の第2凹部20cが設けられている。第2凹部20cは、第2超電導線材20を、厚さ方向に沿って貫通している。より具体的には、第2凹部20cは、第2基材21、第2中間層22及び第2超電導層23を貫通している。第2凹部20cは、第2方向DR2において、間隔を空けて並んでいる。第2方向DR2における第2凹部20cの幅は、第2端面20aに近づくにつれて、小さくなっている。隣り合う2つの第2凹部20cとの間にある第2超電導線材20の部分が、第2凸部20dになっている。そのため、第2方向DR2における第2凸部20dの幅は、第2端面20aに近づくにつれて、大きくなっている。つまり、第2方向DR2における第2凹部20cの幅は第2凹部20cの底部側で最大値(図3中の幅W31参照)になるとともに第2凹部20cの開口部側で最小値(図3中の幅W32参照)となり、第2方向DR2における第2凸部20dの幅は第2凸部20dの先端側で最大値(図3中の幅W41参照)になるとともに第2凸部20dの基部側で最小値(図3中の幅W42参照)となる。 The second end face 20a has a plurality of second recesses 20c. The second recesses 20c penetrate the second superconducting wire 20 along the thickness direction. More specifically, the second recesses 20c penetrate the second substrate 21, the second intermediate layer 22, and the second superconducting layer 23. The second recesses 20c are arranged at intervals in the second direction DR2. The width of the second recesses 20c in the second direction DR2 decreases as it approaches the second end face 20a. The portion of the second superconducting wire 20 between two adjacent second recesses 20c becomes the second convex portion 20d. Therefore, the width of the second convex portion 20d in the second direction DR2 increases as it approaches the second end face 20a. In other words, the width of the second recess 20c in the second direction DR2 is maximum at the bottom side of the second recess 20c (see width W31 in FIG. 3) and minimum at the opening side of the second recess 20c (see width W32 in FIG. 3), and the width of the second convex portion 20d in the second direction DR2 is maximum at the tip side of the second convex portion 20d (see width W41 in FIG. 3) and minimum at the base side of the second convex portion 20d (see width W42 in FIG. 3).
 第1凸部10dは、第2凹部20cに係合される。第2凸部20dは、第1凹部10cに係合される。これにより、第1端面10aと第2端面20aとが係合されて第1超電導線材10が第2超電導線材20に接続されることになる。 The first convex portion 10d engages with the second concave portion 20c. The second convex portion 20d engages with the first concave portion 10c. As a result, the first end face 10a and the second end face 20a engage with each other, and the first superconducting wire 10 is connected to the second superconducting wire 20.
 なお、上記のとおり、第2方向DR2における第1凹部10cの幅が第1凹部10cの底から離れるにつれて小さくなっているとともに第2方向DR2における第2凸部20dの幅が第2凸部20dの先端に近づくにつれて大きくなっているため、第1方向DR1に沿った引張荷重が超電導線材接続構造100に加わっても、第2凸部20dは、第1凹部10cから抜けない。同様に、第2方向DR2における第1凸部10dの幅が第1凸部10dの先端に近づくにつれて大きくなっているとともに第2方向DR2における第2凹部20cの幅が第2凹部20cの底から離れるにつれて小さくなっているため、第1方向DR1に沿った引張荷重が超電導線材接続構造100に加わっても、第1凸部10dは、第2凹部20cから抜けない。 As described above, the width of the first recess 10c in the second direction DR2 decreases as it moves away from the bottom of the first recess 10c, and the width of the second protrusion 20d in the second direction DR2 increases as it moves closer to the tip of the second protrusion 20d. Therefore, even if a tensile load along the first direction DR1 is applied to the superconducting wire connection structure 100, the second protrusion 20d does not come out of the first recess 10c. Similarly, the width of the first protrusion 10d in the second direction DR2 increases as it moves closer to the tip of the first protrusion 10d, and the width of the second recess 20c in the second direction DR2 decreases as it moves away from the bottom of the second recess 20c. Therefore, even if a tensile load along the first direction DR1 is applied to the superconducting wire connection structure 100, the first protrusion 10d does not come out of the second recess 20c.
 平面視における第1凹部10cの形状及び第1凸部10dの形状は、曲線のみにより構成されていることが好ましい。平面視における第2凹部20cの形状及び第2凸部20dの形状は、曲線のみにより構成されていることが好ましい。 The shape of the first recess 10c and the shape of the first protrusion 10d in plan view are preferably made up of curves only. The shape of the second recess 20c and the shape of the second protrusion 20d in plan view are preferably made up of curves only.
 第3超電導線材30は、第3基材31と、第3中間層32と、第3超電導層33とを有している。第3基材31は、例えば、ステンレス鋼製のテープ部材と、当該テープ部材上に配置されている銅層と、当該銅層上に配置されているニッケル層とを有するクラッド材である。第3基材31は、例えばハステロイ製のテープ部材であってもよい。 The third superconducting wire 30 has a third substrate 31, a third intermediate layer 32, and a third superconducting layer 33. The third substrate 31 is, for example, a clad material having a tape member made of stainless steel, a copper layer disposed on the tape member, and a nickel layer disposed on the copper layer. The third substrate 31 may be, for example, a tape member made of Hastelloy.
 第3中間層32は、第3基材31上に配置されている。第3基材31が上記のクラッド材である場合、第3中間層32は、第3基材31のニッケル層上に配置されている。第3中間層32は、例えば、イットリア層と、当該イットリア層上に配置されているイットリア安定化ジルコニア層と、当該イットリア安定化ジルコニア層上に配置されている酸化セリウム層とを有している。第3超電導層33は、第3中間層32上に配置されている。第3超電導層33の構成材料は、酸化物超電導体である。酸化物超電導体は、例えば、REBCOである。 The third intermediate layer 32 is disposed on the third substrate 31. When the third substrate 31 is the above-mentioned clad material, the third intermediate layer 32 is disposed on the nickel layer of the third substrate 31. The third intermediate layer 32 has, for example, an yttria layer, an yttria-stabilized zirconia layer disposed on the yttria layer, and a cerium oxide layer disposed on the yttria-stabilized zirconia layer. The third superconducting layer 33 is disposed on the third intermediate layer 32. The constituent material of the third superconducting layer 33 is an oxide superconductor. The oxide superconductor is, for example, REBCO.
 第3超電導線材30は、第3超電導層33が接続層40を介在させて第1端部10bにある第1超電導層13及び第2端部20bにある第2超電導層23と対向するように配置されている。 The third superconducting wire 30 is arranged so that the third superconducting layer 33 faces the first superconducting layer 13 at the first end 10b and the second superconducting layer 23 at the second end 20b, with the connecting layer 40 interposed therebetween.
 接続層40の構成材料は、REBCOである。接続層40を構成しているREBCOの結晶は、第1端部10bにある第1超電導層13を構成しているREBCOの結晶からエピタキシャル成長しているとともに、第2端部20bにある第2超電導層23を構成しているREBCOの結晶からエピタキシャル成長している。また、接続層40を構成しているREBCOの結晶は、第3超電導層33を構成しているREBCOの結晶からエピタキシャル成長している。そのため、第3超電導層33は、接続層40により、第1端部10bにある第1超電導層13及び第2端部20bにある第2超電導層23に超電導接合されている。 The material of the connection layer 40 is REBCO. The REBCO crystals constituting the connection layer 40 are epitaxially grown from the REBCO crystals constituting the first superconducting layer 13 at the first end 10b, and also from the REBCO crystals constituting the second superconducting layer 23 at the second end 20b. The REBCO crystals constituting the connection layer 40 are epitaxially grown from the REBCO crystals constituting the third superconducting layer 33. Therefore, the third superconducting layer 33 is superconductively joined to the first superconducting layer 13 at the first end 10b and the second superconducting layer 23 at the second end 20b by the connection layer 40.
 第1超電導線材10は、さらに、第1安定化層14を有していてもよい。第1安定化層14は、第1超電導層13上に配置されている。第1超電導線材10は、第1安定化層14上に配置されている第1保護層(図示せず)を有していてもよい。第1超電導線材10は、第1保護層を有していなくてもよい。但し、第1端部10bにある第1超電導層13上では、第1安定化層14及び第1保護層が除去されている。第1安定化層14の構成材料は、例えば、銅又は銅合金である。第1保護層の構成材料は、例えば、銀又は銀合金である。 The first superconducting wire 10 may further have a first stabilization layer 14. The first stabilization layer 14 is disposed on the first superconducting layer 13. The first superconducting wire 10 may have a first protective layer (not shown) disposed on the first stabilization layer 14. The first superconducting wire 10 may not have a first protective layer. However, the first stabilization layer 14 and the first protective layer are removed on the first superconducting layer 13 at the first end 10b. The material of the first stabilization layer 14 is, for example, copper or a copper alloy. The material of the first protective layer is, for example, silver or a silver alloy.
 第2超電導線材20は、さらに、第2安定化層24を有していてもよい。第2安定化層24は、第2超電導層23上に配置されている。第2超電導線材20は、第2安定化層24上に配置されている第2保護層(図示せず)を有していてもよい。第2超電導線材20は、第2保護層を有していなくてもよい。但し、第2端部20bにある第2超電導層23上では、第2安定化層24及び第2保護層が除去されている。第2安定化層24の構成材料は、例えば、銅又は銅合金である。第2保護層の構成材料は、例えば、銀又は銀合金である。 The second superconducting wire 20 may further have a second stabilizing layer 24. The second stabilizing layer 24 is disposed on the second superconducting layer 23. The second superconducting wire 20 may have a second protective layer (not shown) disposed on the second stabilizing layer 24. The second superconducting wire 20 may not have a second protective layer. However, the second stabilizing layer 24 and the second protective layer are removed on the second superconducting layer 23 at the second end 20b. The second stabilizing layer 24 is made of, for example, copper or a copper alloy. The second protective layer is made of, for example, silver or a silver alloy.
 <超電導線材接続構造100の製造方法>
 以下に、図4を参照して、超電導線材接続構造100の製造方法を説明する。
<Method of manufacturing superconducting wire connection structure 100>
A method for manufacturing the superconducting wire connection structure 100 will be described below with reference to FIG.
 図4に示されるように、超電導線材接続構造100の製造方法は、準備工程S1と、端面加工工程S2と、微結晶層形成工程S3と、端面係合工程S4と、超電導接合工程S5と、酸素再導入工程S6とを有している。 As shown in FIG. 4, the method for manufacturing the superconducting wire connection structure 100 includes a preparation step S1, an end face processing step S2, a microcrystalline layer formation step S3, an end face engagement step S4, a superconducting joining step S5, and an oxygen reintroduction step S6.
 準備工程S1では、第1超電導線材10、第2超電導線材20及び第3超電導線材30が準備される。準備工程S1の後には、端面加工工程S2及び微結晶層形成工程S3が行われる。 In the preparation step S1, the first superconducting wire 10, the second superconducting wire 20, and the third superconducting wire 30 are prepared. After the preparation step S1, the end face processing step S2 and the microcrystalline layer forming step S3 are performed.
 端面加工工程S2では、第1端面10aに第1凹部10c及び第1凸部10dが形成される。第1凹部10c及び第1凸部10dは、第1端面10aの近傍にレーザを照射して第1超電導線材10を部分的に除去することで形成される。端面加工工程S2では、第2端面20aに第2凹部20c及び第2凸部20dが形成される。第2凹部20c及び第2凸部20dは、第1凹部10c及び第1凸部10dと同様の方法により形成される。 In the end face processing step S2, a first recess 10c and a first protrusion 10d are formed on the first end face 10a. The first recess 10c and the first protrusion 10d are formed by irradiating a laser near the first end face 10a to partially remove the first superconducting wire 10. In the end face processing step S2, a second recess 20c and a second protrusion 20d are formed on the second end face 20a. The second recess 20c and the second protrusion 20d are formed by the same method as the first recess 10c and the first protrusion 10d.
 微結晶層形成工程S3では、第3超電導層33上に、微結晶層50(図示を省略)が形成される。微結晶層50の形成では、第1に、例えばスピンコート法により、第3超電導層33上に有機化合物膜が形成される。有機化合物膜は、REBCOの構成元素を含有している。第2に、有機化合物膜に対する仮焼成が行われる。仮焼成により、有機化合物膜は、REBCOの前駆体となる。仮焼成が行われた有機化合物膜を、仮焼膜という。第3に、仮焼成の後に、仮焼膜に対する熱処理が行われる。これにより、仮焼膜に含まれる炭化物が分解されて、REBCOの微結晶を含む微結晶層50が形成される。端面加工工程S2及び微結晶層形成工程S3が行われた後に、端面係合工程S4が行われる。 In the microcrystalline layer forming step S3, a microcrystalline layer 50 (not shown) is formed on the third superconducting layer 33. In forming the microcrystalline layer 50, first, an organic compound film is formed on the third superconducting layer 33 by, for example, spin coating. The organic compound film contains the constituent elements of REBCO. Second, the organic compound film is pre-fired. By pre-fired, the organic compound film becomes a precursor of REBCO. The organic compound film that has been pre-fired is called a pre-fired film. Third, after pre-fired, the pre-fired film is heat-treated. As a result, the carbides contained in the pre-fired film are decomposed, and a microcrystalline layer 50 containing microcrystals of REBCO is formed. After the end face processing step S2 and the microcrystalline layer forming step S3, the end face engagement step S4 is performed.
 端面係合工程S4では、第1端面10aと第2端面20aとが係合されることにより、第1超電導線材10が第2超電導線材20に接続される。第1端面10aと第2端面20aとの係合は、平面視において第1凹部10cが第2凸部20dに重なっているとともに第1凸部10dが第2凹部20cに重なっている状態で、第1超電導線材10を第2超電導線材20の厚さ方向に沿ってスライドさせることにより行われる。端面係合工程S4が行われた後に、超電導接合工程S5が行われる。 In the end face engagement process S4, the first superconducting wire 10 is connected to the second superconducting wire 20 by engaging the first end face 10a with the second end face 20a. The engagement between the first end face 10a and the second end face 20a is performed by sliding the first superconducting wire 10 along the thickness direction of the second superconducting wire 20 with the first recess 10c overlapping the second protrusion 20d and the first protrusion 10d overlapping the second recess 20c in a plan view. After the end face engagement process S4, the superconducting joining process S5 is performed.
 超電導接合工程S5では、接続層40により、第3超電導層33と第1端部10bにある第1超電導層13及び第2端部20bにある第2超電導層23とが超電導接合される。超電導接合工程S5では、第1に、微結晶層50を介在させて第3超電導層33が第1端部10bにある第1超電導層13及び第2端部20bにある第2超電導層23と対向するように、第3超電導線材30が配置される。 In the superconducting joining process S5, the third superconducting layer 33 is superconductively joined to the first superconducting layer 13 at the first end 10b and the second superconducting layer 23 at the second end 20b by the connection layer 40. In the superconducting joining process S5, first, the third superconducting wire 30 is arranged so that the third superconducting layer 33 faces the first superconducting layer 13 at the first end 10b and the second superconducting layer 23 at the second end 20b with the microcrystalline layer 50 interposed therebetween.
 第2に、第1端部10bにある第1超電導層13、第2端部20bにある第2超電導層23、第3超電導層33及び微結晶層50に対する加熱・加圧が行われる。これにより、微結晶層50に含まれるREBCOの微結晶が配向結晶化し(第1端部10bにある第1超電導層13、第2端部20bにある第2超電導層23及び第3超電導層33からエピタキシャル成長し)、接続層40となる。これにより、図1から図3に示される構造の超電導線材接続構造100が形成される。 Secondly, the first superconducting layer 13 at the first end 10b, the second superconducting layer 23 at the second end 20b, the third superconducting layer 33, and the microcrystalline layer 50 are heated and pressurized. As a result, the REBCO microcrystals contained in the microcrystalline layer 50 are oriented and crystallized (epitaxially grown from the first superconducting layer 13 at the first end 10b, and the second superconducting layer 23 and the third superconducting layer 33 at the second end 20b) to become the connection layer 40. As a result, the superconducting wire connection structure 100 having the structure shown in Figures 1 to 3 is formed.
 超電導接合工程S5において行われた加熱により、第1端部10bにある第1超電導層13を構成しているREBCO、第2端部20bにある第2超電導層23を構成しているREBCO、第3超電導層33を構成しているREBCO及び接続層40を構成しているREBCOから酸素が脱離してしまう。そのため、酸素再導入工程S6では、酸素を含む雰囲気下において超電導線材接続構造100を加熱保持することにより、第1端部10bにある第1超電導層13を構成しているREBCO、第2端部20bにある第2超電導層23を構成しているREBCO、第3超電導層33を構成しているREBCO及び接続層40を構成しているREBCOに酸素が再導入される。 The heating performed in the superconducting joining step S5 causes oxygen to be desorbed from the REBCO constituting the first superconducting layer 13 at the first end 10b, the REBCO constituting the second superconducting layer 23 at the second end 20b, the REBCO constituting the third superconducting layer 33, and the REBCO constituting the connection layer 40. Therefore, in the oxygen reintroduction step S6, the superconducting wire connection structure 100 is heated and held in an oxygen-containing atmosphere, so that oxygen is reintroduced into the REBCO constituting the first superconducting layer 13 at the first end 10b, the REBCO constituting the second superconducting layer 23 at the second end 20b, the REBCO constituting the third superconducting layer 33, and the REBCO constituting the connection layer 40.
 <超電導線材接続構造100の効果>
 以下に、超電導線材接続構造100の効果を、比較例に係る超電導線材接続構造と比較しながら説明する。比較例に係る超電導線材接続構造を、超電導線材接続構造200とする。
<Effects of superconducting wire connection structure 100>
The effects of the superconducting wire connection structure 100 will be described below in comparison with a superconducting wire connection structure according to a comparative example. The superconducting wire connection structure according to the comparative example is referred to as a superconducting wire connection structure 200.
 図5から図7に示されるように、超電導線材接続構造200の構成は、第1端面10aが第2端面20aに係合されておらず、第1端面10aが第2端面20aに接触しているに過ぎない点を除いて、超電導線材接続構造100の構成と共通している。 As shown in Figures 5 to 7, the configuration of the superconducting wire connection structure 200 is the same as the configuration of the superconducting wire connection structure 100, except that the first end face 10a is not engaged with the second end face 20a, but is merely in contact with the second end face 20a.
 超電導線材接続構造200では、第1端面10aと第2端面20aとが係合されていないため、第1超電導線材10と第2超電導線材20との接続は、接続層40を介して行われているに過ぎない。そのため、第1方向DR1に沿う引張荷重に対する超電導線材接続構造200の強度を確保するために補強が必要となる。超電導線材接続構造200では、例えば、第1補強部材及び第2補強部材により第3超電導線材30と第1端部10b及び第2端部20bとを挟み込むとともに、第1補強部材及び第2補強部材を相互に固定する補強が必要となり、接続部が厚くなってしまう。 In the superconducting wire connection structure 200, the first end face 10a and the second end face 20a are not engaged, and therefore the first superconducting wire 10 and the second superconducting wire 20 are connected only via the connection layer 40. Therefore, reinforcement is required to ensure the strength of the superconducting wire connection structure 200 against the tensile load along the first direction DR1. In the superconducting wire connection structure 200, for example, the third superconducting wire 30 and the first end 10b and the second end 20b are sandwiched between the first reinforcing member and the second reinforcing member, and reinforcement is required to fix the first reinforcing member and the second reinforcing member to each other, which results in a thick connection portion.
 他方で、超電導線材接続構造100では、第1端面10aと第2端面20aとが係合しているため、上記のような補強を行わなくても、第1方向DR1に沿う引張荷重に対する強度が確保されている。そのため、超電導線材接続構造100では、引張荷重に対する強度を確保しつつ、薄型化が可能である。なお、超電導線材接続構造100では、第1超電導層13及び第2超電導層23が接続層40により第3超電導層33に超電導接合されているため、第1超電導層13から第3超電導層33を経由して第2超電導層23に大電流を流すことが可能である。 On the other hand, in the superconducting wire connection structure 100, the first end face 10a and the second end face 20a are engaged, so that the strength against the tensile load along the first direction DR1 is ensured even without the above-mentioned reinforcement. Therefore, the superconducting wire connection structure 100 can be made thin while ensuring the strength against the tensile load. In the superconducting wire connection structure 100, the first superconducting layer 13 and the second superconducting layer 23 are superconductively joined to the third superconducting layer 33 by the connection layer 40, so that a large current can be passed from the first superconducting layer 13 to the second superconducting layer 23 via the third superconducting layer 33.
 図8に示されるように、大きな電流を流すためには、複数の超電導線材接続構造100を重ねて積層構造体300を構成することになる。上記のように、超電導線材接続構造100では薄型化が可能であるため、超電導線材接続構造100を重ねて積層構造体300を構成しても、厚さの増大を抑制することが可能である。 As shown in FIG. 8, in order to pass a large current, multiple superconducting wire connection structures 100 are stacked to form a laminated structure 300. As described above, the superconducting wire connection structures 100 can be made thin, so even if the laminated structure 300 is formed by stacking superconducting wire connection structures 100, it is possible to suppress an increase in thickness.
 超電導線材接続構造100では、第1凸部10dが第2凹部20cに係合されとともに第2凸部20dが第1凹部10cに係合されることで、第1端面10aと第2端面20aとが係合されている。すなわち、超電導線材接続構造100では、第1方向DR1に沿う引張荷重が、複数点で支持されており、1点に集中することが回避されている。また、超電導線材接続構造100では、平面視において、第1凹部10cの形状、第1凸部10dの形状、第2凹部20cの形状及び第2凸部20dの形状が曲線のみで構成されているため、第1方向DR1に沿う引張荷重が加わった際の応力集中が抑制されている。さらに、超電導線材接続構造100では、第1端面10aと第2端面20aとの間の界面距離が第1超電導線材10の幅及び第2超電導線材20の幅よりも大きくなる。そのため、超電導線材接続構造100によると、第1方向DR1に沿う引張荷重に対する強度を高めることが可能となる。なお、超電導線材接続構造100では、第1凸部10dが第2凹部20cに嵌め合わされるとともに第2凸部20dが第1凹部10cに嵌め合わされることにより第1端面10aと第2端面20aとを係合することができるため、第1端面10aと第2端面20aとの係合を容易に行うことが可能である。 In the superconducting wire connection structure 100, the first convex portion 10d is engaged with the second concave portion 20c, and the second convex portion 20d is engaged with the first concave portion 10c, thereby engaging the first end face 10a and the second end face 20a. That is, in the superconducting wire connection structure 100, the tensile load along the first direction DR1 is supported at multiple points, and is prevented from concentrating at one point. In addition, in the superconducting wire connection structure 100, the shape of the first concave portion 10c, the shape of the first convex portion 10d, the shape of the second concave portion 20c, and the shape of the second convex portion 20d are composed of only curves in a plan view, so that stress concentration is suppressed when a tensile load along the first direction DR1 is applied. Furthermore, in the superconducting wire connection structure 100, the interface distance between the first end face 10a and the second end face 20a is greater than the width of the first superconducting wire 10 and the width of the second superconducting wire 20. Therefore, according to the superconducting wire connection structure 100, it is possible to increase the strength against the tensile load along the first direction DR1. In addition, in the superconducting wire connection structure 100, the first end face 10a and the second end face 20a can be engaged by fitting the first convex portion 10d into the second concave portion 20c and the second convex portion 20d into the first concave portion 10c, so that the first end face 10a and the second end face 20a can be easily engaged.
 酸素再導入工程S6では、酸素が第1端面10aと第2端面20aとの間の境界を通って、第1端部10bにある第1超電導層13、第2端部20bにある第2超電導層23、第3超電導層33及び接続層40に供給される。超電導線材接続構造100では、超電導線材接続構造200と比較して第1端面10aと第2端面20aとの境界の面積が大きくなるため、酸素再導入工程S6において第1端部10bにある第1超電導層13、第2端部20bにある第2超電導層23、第3超電導層33及び接続層40に酸素を供給しやすくなる。 In the oxygen reintroduction step S6, oxygen is supplied through the boundary between the first end face 10a and the second end face 20a to the first superconducting layer 13 at the first end face 10b, the second superconducting layer 23 at the second end face 20b, the third superconducting layer 33, and the connection layer 40. In the superconducting wire connection structure 100, the area of the boundary between the first end face 10a and the second end face 20a is larger than that in the superconducting wire connection structure 200, so that in the oxygen reintroduction step S6, oxygen is more easily supplied to the first superconducting layer 13 at the first end face 10b, the second superconducting layer 23 at the second end face 20b, the third superconducting layer 33, and the connection layer 40.
 <変形例1>
 図9に示されているように、超電導線材接続構造100では、複数の第1凹部10c及び複数の第1凸部10dに代えて1つの凹部10eが第1端面10aに形成されていてもよく、複数の第2凹部20c及び複数の第2凸部20dに代えて1つの凸部20eが第2端面20aに形成されていてもよい。この場合、凸部20eが凹部10eに係合されることにより、第1端面10aと第2端面20aとが係合される。
<Modification 1>
9, in the superconducting wire connection structure 100, one recess 10e may be formed on the first end face 10a instead of the plurality of first recesses 10c and the plurality of first protrusions 10d, and one protrusion 20e may be formed on the second end face 20a instead of the plurality of second recesses 20c and the plurality of second protrusions 20d. In this case, the first end face 10a and the second end face 20a are engaged with each other by engaging the protrusion 20e with the recess 10e.
 <変形例2>
 図10に示されているように、平面視において、第1凹部10cの形状、第1凸部10dの形状、第2凹部20cの形状及び第2凸部20dの形状は、直線のみで構成されていてもよい。このことを別の観点から言えば、平面視において、第1凹部10cの形状、第1凸部10dの形状、第2凹部20cの形状及び第2凸部20dの形状は、台形状であってもよい。
<Modification 2>
10, the shape of the first recess 10c, the shape of the first protrusion 10d, the shape of the second recess 20c, and the shape of the second protrusion 20d may be composed of straight lines only. From another perspective, the shape of the first recess 10c, the shape of the first protrusion 10d, the shape of the second recess 20c, and the shape of the second protrusion 20d may be trapezoidal in plan view.
 なお、図示されていないが、平面視において、第1凹部10cの形状、第1凸部10dの形状、第2凹部20cの形状及び第2凸部20dの形状は、直線と曲線とを組み合わせて構成されていてもよい。 Although not shown, in plan view, the shape of the first recess 10c, the shape of the first protrusion 10d, the shape of the second recess 20c, and the shape of the second protrusion 20d may be configured by a combination of straight lines and curves.
 <変形例3及び変形例4>
 図11に示されるように、平面視において、第1端面10a及び第2端面20aは、第2方向DR2に対して傾斜していてもよい。図12に示されるように、第1端面10a及び第2端面20aは、第1角度で第2方向DR2に対して傾斜している部分と、第1角度とは異なる第2角度で第2方向DR2に対して傾斜している部分とを有していてもよい。これらの場合、第1端面10aの面積及び第2端面20aの面積が増加するため、第1端面10aと第2端面20aとがより強固に係合されることになる。
<Modification 3 and Modification 4>
As shown in Fig. 11, the first end face 10a and the second end face 20a may be inclined with respect to the second direction DR2 in a plan view. As shown in Fig. 12, the first end face 10a and the second end face 20a may have a portion inclined with respect to the second direction DR2 at a first angle and a portion inclined with respect to the second direction DR2 at a second angle different from the first angle. In these cases, the area of the first end face 10a and the area of the second end face 20a are increased, so that the first end face 10a and the second end face 20a are more firmly engaged with each other.
 (第2実施形態)
 第2実施形態に係る超電導線材接続構造を説明する。第2実施形態に係る超電導線材接続構造を、超電導線材接続構造100Aとする。ここでは、超電導線材接続構造100と異なる点を主に説明し、重複する説明は繰り返さない。
Second Embodiment
A superconducting wire connection structure according to the second embodiment will be described. The superconducting wire connection structure according to the second embodiment is referred to as a superconducting wire connection structure 100A. Here, differences from the superconducting wire connection structure 100 will be mainly described, and overlapping descriptions will not be repeated.
 <超電導線材接続構造100Aの構成>
 以下に、図13から図15を参照し、超電導線材接続構造100Aの構成を説明する。
<Configuration of superconducting wire connection structure 100A>
The configuration of the superconducting wire connection structure 100A will be described below with reference to FIGS.
 図13から図15に示されるように、超電導線材接続構造100Aは、第1超電導線材10と、第2超電導線材20と、第3超電導線材30と、接続層40とを有している。超電導線材接続構造100Aでは、第1端面10aと第2端面20aとが係合されていることにより第1超電導線材10が第2超電導線材20に接続されている。これらの点に関して、超電導線材接続構造100Aの構成は、超電導線材接続構造100の構成と共通している。 As shown in Figures 13 to 15, superconducting wire connection structure 100A has a first superconducting wire 10, a second superconducting wire 20, a third superconducting wire 30, and a connection layer 40. In superconducting wire connection structure 100A, first end face 10a and second end face 20a are engaged with each other, thereby connecting first superconducting wire 10 to second superconducting wire 20. In these respects, the configuration of superconducting wire connection structure 100A is common to the configuration of superconducting wire connection structure 100.
 超電導線材接続構造100Aでは、第2方向DR2における第1端部10bの両端部にある第1中間層12及び第1超電導層13が除去されている。超電導線材接続構造100Aでは、第2方向DR2における第2端部20bの両端部にある第2中間層22及び第2超電導層23が除去されている。超電導線材接続構造100Aでは、第2方向DR2における両端部にある第3中間層32及び第3超電導層33が除去されている。 In the superconducting wire connection structure 100A, the first intermediate layer 12 and the first superconducting layer 13 at both ends of the first end 10b in the second direction DR2 have been removed. In the superconducting wire connection structure 100A, the second intermediate layer 22 and the second superconducting layer 23 at both ends of the second end 20b in the second direction DR2 have been removed. In the superconducting wire connection structure 100A, the third intermediate layer 32 and the third superconducting layer 33 at both ends in the second direction DR2 have been removed.
 超電導線材接続構造100Aでは、溶接部61により、第2方向DR2における両端部にある第3基材31がそれぞれ第2方向DR2における第1端部10bの両端部にある第1基材11に接合されている。超電導線材接続構造100Aでは、溶接部62により、第2方向DR2における両端部にある第3基材31がそれぞれ第2方向DR2における第2端部20bの両端部にある第2基材21に接合されている。これらの点に関して、超電導線材接続構造100Aの構成は、超電導線材接続構造100の構成と異なっている。 In the superconducting wire connection structure 100A, the third substrates 31 at both ends in the second direction DR2 are joined to the first substrates 11 at both ends of the first end 10b in the second direction DR2 by welds 61. In the superconducting wire connection structure 100A, the third substrates 31 at both ends in the second direction DR2 are joined to the second substrates 21 at both ends of the second end 20b in the second direction DR2 by welds 62. In these respects, the configuration of the superconducting wire connection structure 100A differs from the configuration of the superconducting wire connection structure 100.
 <超電導線材接続構造100Aの製造方法>
 以下に、図16を参照して、超電導線材接続構造100Aの製造方法を説明する。
<Method of manufacturing superconducting wire connection structure 100A>
A method for manufacturing the superconducting wire connection structure 100A will be described below with reference to FIG.
 図16に示されているように、超電導線材接続構造100Aの製造方法は、準備工程S1と、端面加工工程S2と、微結晶層形成工程S3と、端面係合工程S4と、超電導接合工程S5と、酸素再導入工程S6とを有している。この点に関して、超電導線材接続構造100Aの製造方法は、超電導線材接続構造100の製造方法と共通している。 As shown in FIG. 16, the method for manufacturing the superconducting wire connection structure 100A includes a preparation step S1, an end face processing step S2, a microcrystalline layer forming step S3, an end face engagement step S4, a superconducting joining step S5, and an oxygen reintroduction step S6. In this respect, the method for manufacturing the superconducting wire connection structure 100A is common to the method for manufacturing the superconducting wire connection structure 100.
 超電導線材接続構造100Aの製造方法は、除去工程S7と、溶接工程S8とをさらに有している。除去工程S7では、第1超電導線材10の幅方向における第1端部10bの両端部にある第1中間層12及び第1超電導層13が除去されるとともに、第2超電導線材20の幅方向における第2端部20bの両端部にある第2中間層22及び第2超電導層23が除去される。除去工程S7では、さらに、第3超電導線材30の幅方向における両端部にある第3中間層32及び第3超電導層33が除去される。 The manufacturing method of the superconducting wire connection structure 100A further includes a removal step S7 and a welding step S8. In the removal step S7, the first intermediate layer 12 and the first superconducting layer 13 at both ends of the first end 10b in the width direction of the first superconducting wire 10 are removed, and the second intermediate layer 22 and the second superconducting layer 23 at both ends of the second end 20b in the width direction of the second superconducting wire 20 are removed. In the removal step S7, the third intermediate layer 32 and the third superconducting layer 33 at both ends in the width direction of the third superconducting wire 30 are further removed.
 溶接工程S8は、端面係合工程S4が行われた後であって超電導接合工程S5が行われる前に行われる。溶接工程S8では、例えばスポット溶接が行われることにより、部分的に溶融された第1基材11と第3基材31が混合された上で凝固し、溶接部61となる。また、溶接工程S8では、例えばスポット溶接が行われることにより、部分的に溶融された第2基材21と第3基材31とが混合された上で凝固し、溶接部62となる。これらの点に関して、超電導線材接続構造100Aの製造方法は、超電導線材接続構造100の製造方法と異なっている。 The welding process S8 is performed after the end face engagement process S4 and before the superconducting joining process S5. In the welding process S8, for example, spot welding is performed, so that the partially melted first substrate 11 and third substrate 31 are mixed and solidified to form a welded portion 61. In the welding process S8, for example, spot welding is performed, so that the partially melted second substrate 21 and third substrate 31 are mixed and solidified to form a welded portion 62. In these respects, the manufacturing method of the superconducting wire connection structure 100A differs from the manufacturing method of the superconducting wire connection structure 100.
 <超電導線材接続構造100Aの効果>
 以下に、超電導線材接続構造100Aの効果を説明する。
<Effects of superconducting wire connection structure 100A>
The effects of the superconducting wire connection structure 100A will be described below.
 超電導線材接続構造100Aでは、第1端面10aと第2端面20aとの係合に加えて、溶接部61による第1基材11と第3基材31との接合及び溶接部62による第2基材21と第3基材31との接合により第1方向DR1に沿う引張荷重が支持されるため、第1方向DR1に沿う引張荷重に対する強度がさらに確保されている。 In the superconducting wire connection structure 100A, in addition to the engagement between the first end face 10a and the second end face 20a, the tensile load along the first direction DR1 is supported by the joining of the first substrate 11 and the third substrate 31 by the weld 61 and the joining of the second substrate 21 and the third substrate 31 by the weld 62, so that strength against the tensile load along the first direction DR1 is further ensured.
 今回開示された実施形態は全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記の実施形態ではなく請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 The embodiments disclosed herein are illustrative in all respects and should not be considered limiting. The scope of the present invention is indicated by the claims rather than the above embodiments, and is intended to include all modifications within the meaning and scope of the claims.
 100 超電導線材接続構造、10 第1超電導線材、10a 第1端面、10b 第1端部、10c 第1凹部、10d 第1凸部、10e 凹部、11 第1基材、12 第1中間層、13 第1超電導層、14 第1安定化層、20 第2超電導線材、20a 第2端面、20b 第2端部、20c 第2凹部、20d 第2凸部、20e 凸部、21 第2基材、22 第2中間層、23 第2超電導層、24 第2安定化層、30 第3超電導線材、31 第3基材、32 第3中間層、33 第3超電導層、40 接続層、50 微結晶層、61,62 溶接部、100A 超電導線材接続構造、200 超電導線材接続構造、300 積層構造体、DR1 第1方向、DR2 第2方向、S1 準備工程、S2 端面加工工程、S3 微結晶層形成工程、S4 端面係合工程、S5 超電導接合工程、S6 酸素再導入工程、S7 除去工程、S8 溶接工程、W11,W12,W21,W22,W31,W32,W41,W42 幅。 100 superconducting wire connection structure, 10 first superconducting wire, 10a first end face, 10b first end, 10c first recess, 10d first convex, 10e recess, 11 first substrate, 12 first intermediate layer, 13 first superconducting layer, 14 first stabilization layer, 20 second superconducting wire, 20a second end face, 20b second end, 20c second recess, 20d second convex, 20e convex, 21 second substrate, 22 second intermediate layer, 23 second superconducting layer, 24 second stabilization layer, 30 third superconducting wire, 31 third substrate material, 32 third intermediate layer, 33 third superconducting layer, 40 connection layer, 50 microcrystalline layer, 61, 62 welded portion, 100A superconducting wire connection structure, 200 superconducting wire connection structure, 300 laminated structure, DR1 first direction, DR2 second direction, S1 preparation process, S2 end face processing process, S3 microcrystalline layer formation process, S4 end face engagement process, S5 superconducting joining process, S6 oxygen reintroduction process, S7 removal process, S8 welding process, W11, W12, W21, W22, W31, W32, W41, W42 width.

Claims (9)

  1.  第1基材、前記第1基材上に配置されている第1中間層及び前記第1中間層上に配置されている第1超電導層を有する第1超電導線材と、
     第2基材、前記第2基材上に配置されている第2中間層及び前記第2中間層上に配置されている第2超電導層を有する第2超電導線材とを備え、
     前記第1超電導線材は、前記第1超電導線材の長手方向における端面である第1端面を有し、
     前記第2超電導線材は、前記第2超電導線材の長手方向における端面である第2端面を有し、
     前記第1超電導線材は、前記第1端面及び前記第2端面が互いに係合することにより、前記第1基材、前記第1中間層及び前記第1超電導層がそれぞれ前記第2基材、前記第2中間層及び前記第2超電導層と互いに向かい合うように前記第2超電導線材に接続されている、超電導線材接続構造。
    a first superconducting wire having a first substrate, a first intermediate layer disposed on the first substrate, and a first superconducting layer disposed on the first intermediate layer;
    a second superconducting wire having a second base material, a second intermediate layer disposed on the second base material, and a second superconducting layer disposed on the second intermediate layer;
    the first superconducting wire has a first end surface which is an end surface in a longitudinal direction of the first superconducting wire,
    the second superconducting wire has a second end surface which is an end surface in a longitudinal direction of the second superconducting wire,
    A superconducting wire connection structure, in which the first superconducting wire is connected to the second superconducting wire by engaging the first end face and the second end face with each other, so that the first base material, the first intermediate layer, and the first superconducting layer face each other with the second base material, the second intermediate layer, and the second superconducting layer, respectively.
  2.  前記第1端面には、凹部が設けられており、
     前記第2端面には、凸部が設けられており、
     前記第1超電導線材は、前記凹部及び前記凸部が互いに係合することにより、前記第2超電導線材に接続されている、請求項1に記載の超電導線材接続構造。
    The first end surface is provided with a recess.
    The second end surface is provided with a protrusion,
    2. The superconducting wire connection structure according to claim 1, wherein the first superconducting wire is connected to the second superconducting wire by engaging the recess and the protrusion with each other.
  3.  前記凹部及び前記凸部は、平面視において曲線のみで構成されている、請求項2に記載の超電導線材接続構造。 The superconducting wire connection structure according to claim 2, wherein the recess and the protrusion are composed only of curves in a plan view.
  4.  前記第1端面には、複数の第1凹部及び複数の第1凸部が設けられており、
     前記第2端面には、複数の第2凹部及び複数の第2凸部が設けられており、
     前記第1凹部は、前記第1超電導線材の幅方向において、隣り合う2つの前記第1凸部の間にあり、
     前記第2凹部は、前記第2超電導線材の幅方向において、隣り合う2つの前記第2凸部の間にあり、
     前記第1超電導線材は、前記第1凹部及び前記第2凸部が互いに係合するとともに前記第1凸部及び前記第2凹部が互いに係合することにより、前記第2超電導線材に接続されている、請求項1に記載の超電導線材接続構造。
    The first end surface is provided with a plurality of first recesses and a plurality of first protrusions,
    The second end surface is provided with a plurality of second recesses and a plurality of second protrusions,
    the first recess is located between two adjacent first protrusions in a width direction of the first superconducting wire,
    the second recess is located between two adjacent second protrusions in a width direction of the second superconducting wire,
    2. The superconducting wire connection structure according to claim 1, wherein the first superconducting wire is connected to the second superconducting wire by the first recess and the second protrusion engaging with each other and the first protrusion and the second recess engaging with each other.
  5.  前記第1凹部、前記第1凸部、前記第2凹部及び前記第2凸部は、平面視において曲線のみで構成されている、請求項4に記載の超電導線材接続構造。 The superconducting wire connection structure according to claim 4, wherein the first recess, the first protrusion, the second recess, and the second protrusion are composed only of curves in a plan view.
  6.  前記第1端面は、平面視において前記第1超電導線材の幅方向に対して傾斜している部分を有し、
     前記第2端面は、平面視において前記第2超電導線材の幅方向に対して傾斜している部分を有する、請求項1から請求項5のいずれか1項に記載の超電導線材接続構造。
    the first end surface has a portion that is inclined with respect to a width direction of the first superconducting wire in a plan view,
    6. The superconducting wire connection structure according to claim 1, wherein the second end surface has a portion that is inclined with respect to a width direction of the second superconducting wire in a plan view.
  7.  第3超電導線材と、
     接続層とをさらに備え、
     前記第1超電導線材は、前記第1超電導線材の長手方向における端部であり、かつ前記第1端面に隣接する第1端部を有し、
     前記第2超電導線材は、前記第2超電導線材の長手方向における端部であり、かつ前記第2端面に隣接する第2端部を有し、
     前記第3超電導線材は、第3基材と、前記第3基材上に配置されている第3中間層と、前記第3中間層上に配置されている第3超電導層とを有し、
     前記第3超電導層は、前記接続層を介在させて、前記第1端部にある前記第1超電導層及び前記第2端部にある前記第2超電導層に超電導接合されている、請求項1から請求項6のいずれか1項に記載の超電導線材接続構造。
    A third superconducting wire; and
    A connection layer is further provided,
    the first superconducting wire has a first end portion which is an end portion in a longitudinal direction of the first superconducting wire and is adjacent to the first end surface;
    the second superconducting wire has a second end portion which is an end portion of the second superconducting wire in a longitudinal direction and is adjacent to the second end surface;
    the third superconducting wire has a third base material, a third intermediate layer disposed on the third base material, and a third superconducting layer disposed on the third intermediate layer,
    7. The superconducting wire connection structure according to claim 1, wherein the third superconducting layer is superconductively joined to the first superconducting layer at the first end and the second superconducting layer at the second end, with the connection layer interposed therebetween.
  8.  前記第1超電導線材の幅方向における前記第1端部の両端部にある前記第1中間層及び前記第1超電導層は、除去されており、
     前記第2超電導線材の幅方向における前記第2端部の両端部にある前記第2中間層及び前記第2超電導層は、除去されており、
     前記第3超電導線材の幅方向における両端部にある前記第3中間層及び前記第3超電導層は、除去されており、
     前記第3超電導線材の幅方向における前記第3基材の両端部は、それぞれ前記第1超電導線材の幅方向における前記第1端部の両端部にある前記第1基材に溶接されているとともに、それぞれ前記第2超電導線材の幅方向における前記第2端部の両端部にある前記第2基材に溶接されている、請求項7に記載の超電導線材接続構造。
    the first intermediate layer and the first superconducting layer at both ends of the first end in a width direction of the first superconducting wire are removed,
    the second intermediate layer and the second superconducting layer at both ends of the second end in a width direction of the second superconducting wire are removed,
    the third intermediate layer and the third superconducting layer at both ends in a width direction of the third superconducting wire are removed,
    8. The superconducting wire connection structure of claim 7, wherein both ends of the third substrate in the width direction of the third superconducting wire are welded to the first substrate at both ends of the first end in the width direction of the first superconducting wire, and are welded to the second substrate at both ends of the second end in the width direction of the second superconducting wire.
  9.  複数の超電導線材接続構造を備え、
     前記超電導線材接続構造は、
     第1基材、前記第1基材上に配置されている第1中間層及び前記第1中間層上に配置されている第1超電導層を有する第1超電導線材と、
     第2基材、前記第2基材上に配置されている第2中間層及び前記第2中間層上に配置されている第2超電導層を有する第2超電導線材とを備え、
     前記第1超電導線材は、前記第1超電導線材の長手方向における端面である第1端面を有し、
     前記第2超電導線材は、前記第2超電導線材の長手方向における端面である第2端面を有し、
     前記第1超電導線材は、前記第1端面及び前記第2端面が互いに係合することにより、前記第1基材、前記第1中間層及び前記第1超電導層がそれぞれ前記第2基材、前記第2中間層及び前記第2超電導層と互いに向かい合うように前記第2超電導線材に接続されており、
     複数の前記超電導線材接続構造は、重ねて配置されている、積層構造体。
    A plurality of superconducting wire rod connection structures are provided,
    The superconducting wire connection structure includes:
    a first superconducting wire having a first substrate, a first intermediate layer disposed on the first substrate, and a first superconducting layer disposed on the first intermediate layer;
    a second superconducting wire having a second base material, a second intermediate layer disposed on the second base material, and a second superconducting layer disposed on the second intermediate layer;
    the first superconducting wire has a first end surface which is an end surface in a longitudinal direction of the first superconducting wire,
    the second superconducting wire has a second end surface which is an end surface in a longitudinal direction of the second superconducting wire,
    the first superconducting wire is connected to the second superconducting wire such that the first base material, the first intermediate layer, and the first superconducting layer face each other, respectively, by engaging the first end surface and the second end surface with each other, and
    A laminated structure, in which a plurality of the superconducting wire connection structures are arranged in a stacked manner.
PCT/JP2023/033294 2022-10-04 2023-09-13 Superconducting wire material connection structure, and layered structure WO2024075481A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022160363 2022-10-04
JP2022-160363 2022-10-04

Publications (1)

Publication Number Publication Date
WO2024075481A1 true WO2024075481A1 (en) 2024-04-11

Family

ID=90607885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033294 WO2024075481A1 (en) 2022-10-04 2023-09-13 Superconducting wire material connection structure, and layered structure

Country Status (1)

Country Link
WO (1) WO2024075481A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202065A (en) * 1990-11-30 1992-07-22 Sumitomo Heavy Ind Ltd Method for joining oxide superconductor and metal superconductor
JPH07182935A (en) * 1993-12-22 1995-07-21 Toshiba Corp High-frequency member
JPH09306565A (en) * 1996-05-13 1997-11-28 Sumitomo Electric Ind Ltd Connection structure of superconductor
JP2010287350A (en) * 2009-06-09 2010-12-24 Sumitomo Electric Ind Ltd Interconnection structure of superconducting cable
JP2013235699A (en) * 2012-05-08 2013-11-21 Sumitomo Electric Ind Ltd Joint method of high temperature superconducting thin film wire and high temperature superconducting thin film wire
JP2014154320A (en) * 2013-02-07 2014-08-25 Fujikura Ltd Connection structure of oxide superconductive wire rod and superconductive apparatus
US20190228893A1 (en) * 2015-10-14 2019-07-25 Bruker Hts Gmbh Superconducting structure for connecting tape conductors, in particular having a corrugated or serrated seam
JP2019175637A (en) * 2018-03-28 2019-10-10 株式会社フジクラ Connection structure and connection method of oxide superconductive wire rod

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202065A (en) * 1990-11-30 1992-07-22 Sumitomo Heavy Ind Ltd Method for joining oxide superconductor and metal superconductor
JPH07182935A (en) * 1993-12-22 1995-07-21 Toshiba Corp High-frequency member
JPH09306565A (en) * 1996-05-13 1997-11-28 Sumitomo Electric Ind Ltd Connection structure of superconductor
JP2010287350A (en) * 2009-06-09 2010-12-24 Sumitomo Electric Ind Ltd Interconnection structure of superconducting cable
JP2013235699A (en) * 2012-05-08 2013-11-21 Sumitomo Electric Ind Ltd Joint method of high temperature superconducting thin film wire and high temperature superconducting thin film wire
JP2014154320A (en) * 2013-02-07 2014-08-25 Fujikura Ltd Connection structure of oxide superconductive wire rod and superconductive apparatus
US20190228893A1 (en) * 2015-10-14 2019-07-25 Bruker Hts Gmbh Superconducting structure for connecting tape conductors, in particular having a corrugated or serrated seam
JP2019175637A (en) * 2018-03-28 2019-10-10 株式会社フジクラ Connection structure and connection method of oxide superconductive wire rod

Similar Documents

Publication Publication Date Title
JP4810268B2 (en) Superconducting wire connection method and superconducting wire
KR101242007B1 (en) Two-sided splice for high temperature superconductor laminated wires
JP5684601B2 (en) Oxide superconducting wire and method for producing the same
JP6712125B2 (en) Connection structure of oxide superconducting wire and method for manufacturing the same
KR20130107301A (en) Structure to reduce electroplated stabilizer content
WO2024075481A1 (en) Superconducting wire material connection structure, and layered structure
JP5548441B2 (en) Superconducting connection structure, superconducting wire connecting method, superconducting coil device
JP2012004029A (en) Metal terminal joint structure of superconducting wire rod and method for joining superconducting wire rod and metal terminal
CN110326062B (en) Connection structure of superconducting wire
JP7074190B2 (en) Superconducting wire, laminated superconducting wire, superconducting coil and superconducting cable
WO2013153973A1 (en) Oxide superconducting wire having reinforcing materials
CN111357126A (en) Splicing superconducting tapes
JP2020061255A (en) Superconducting wire rod, and superconducting wire rod bonding method
JP5701247B2 (en) Oxide superconducting wire connection structure and connection method
JP2005044636A (en) Superconductive wire rod
JP5732345B2 (en) Oxide superconducting wire connecting structure and oxide superconducting wire connecting method
JP2013084382A (en) Oxide superconductive wire, and method of manufacturing the same
KR102302847B1 (en) superconducting wire
JP2014130793A (en) Connection structure of oxide superconductive wire material and its manufacturing method
JP6492205B2 (en) Manufacturing method of oxide superconducting wire
JP2018206521A (en) High-temperature superconducting wire and superconducting coil
JP5775810B2 (en) Manufacturing method of oxide superconducting wire
WO2023112391A1 (en) Superconducting wire connection structure
JP6279459B2 (en) Oxide superconducting wire and method for producing oxide superconducting wire
JP2017152210A (en) Oxide superconducting wire and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874610

Country of ref document: EP

Kind code of ref document: A1