JP2005044636A - Superconductive wire rod - Google Patents

Superconductive wire rod Download PDF

Info

Publication number
JP2005044636A
JP2005044636A JP2003277885A JP2003277885A JP2005044636A JP 2005044636 A JP2005044636 A JP 2005044636A JP 2003277885 A JP2003277885 A JP 2003277885A JP 2003277885 A JP2003277885 A JP 2003277885A JP 2005044636 A JP2005044636 A JP 2005044636A
Authority
JP
Japan
Prior art keywords
layer
substrate
superconducting
stabilization
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003277885A
Other languages
Japanese (ja)
Inventor
Masaya Konishi
昌也 小西
Kazuya Daimatsu
一也 大松
Kozo Fujino
剛三 藤野
Shiyuuji Mokura
修司 母倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003277885A priority Critical patent/JP2005044636A/en
Publication of JP2005044636A publication Critical patent/JP2005044636A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconductive wire rod capable of achieving required stabilization at low cost while minimizing the increase in size of the wire rod. <P>SOLUTION: The superconductive wire rod comprises a conductive first substrate 10, an intermediate layer 20 formed on the first substrate 10, a superconductive layer 30 formed on the intermediate layer 20, and a stabilization layer 40 electrically continuous to both of the first substrate 10 and the superconductive layer 30. Since the first substrate 10 and the superconductive layer 30 are electrically continuous through the stabilization layer 40, when a large current is passed through the wire rod and even if a portion of the superconductive layer 30 has changed to normal conduction, it is possible to bypass the current to the first substrate 10 through the stabilization layer 40. It is thereby possible to protect the superconductive layer 30 and to pass the current in a stabilized state. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、超電導線材に関するものである。特に、超電導層の一部が常電導に転移した場合にも安定して通電が可能な超電導線材に関するものである。   The present invention relates to a superconducting wire. In particular, the present invention relates to a superconducting wire that can be stably energized even when a part of the superconducting layer is transferred to normal conduction.

超電導線材として、図8に示すように、テープ状基板10の上にイットリウム安定化ジルコニア(YSZ)などの絶縁性の中間層20を形成し、その中間層20の上に酸化物超電導体からなる超電導層30を形成して、さらに超電導層30の上に銀などの安定化層40を形成した超電導線材が知られている(例えば、特許文献1および特許文献2参照)。   As a superconducting wire, an insulating intermediate layer 20 such as yttrium-stabilized zirconia (YSZ) is formed on a tape-like substrate 10 as shown in FIG. 8, and an oxide superconductor is formed on the intermediate layer 20. There is known a superconducting wire in which a superconducting layer 30 is formed and a stabilizing layer 40 such as silver is further formed on the superconducting layer 30 (see, for example, Patent Document 1 and Patent Document 2).

通常、このような超電導層30には、超電導特性の分布が存在し、この特性のばらつきなどにより、超電導層30に電流を流している際、超電導層30の一部が常電導に転移することがある。安定化層40は、超電導から常電導に転移した部分に流れる電流を安定化層40に流して超電導層30を保護し、超電導線材として安定した電力輸送をおこなうために設けられている。従来の安定化層40は、超電導層30の上面にのみ形成されている。   Normally, such a superconducting layer 30 has a distribution of superconducting characteristics, and due to variations in these characteristics, when a current is passed through the superconducting layer 30, a part of the superconducting layer 30 is transferred to normal conduction. There is. The stabilization layer 40 is provided in order to protect the superconducting layer 30 by passing a current flowing through a portion where the transition is made from superconducting to normal conducting to the stabilizing layer 40 and to carry out stable power transport as a superconducting wire. The conventional stabilization layer 40 is formed only on the upper surface of the superconducting layer 30.

特開平7-37444号公報Japanese Unexamined Patent Publication No. 7-37444 特開平7-73759号公報Japanese Unexamined Patent Publication No. 7-73759

しかし、従来の超電導線材では、安定化層として十分な性能を発揮することが難しいという問題がある。   However, the conventional superconducting wire has a problem that it is difficult to exhibit sufficient performance as a stabilizing layer.

一般に、安定化層は厚みが数μm程度と小さく、十分な電流容量を備えていない。そのため、大きな電流が安定化層にバイパスされると、安定化層が焼損することがある。あるいは、安定化層が薄いために電気抵抗が十分小さくなく、常電導に転移した超電導層に大きな電流が流れ、超電導層が焼損することがある。   In general, the stabilization layer has a small thickness of about several μm and does not have a sufficient current capacity. Therefore, if a large current is bypassed to the stabilization layer, the stabilization layer may burn out. Alternatively, since the stabilization layer is thin, the electrical resistance is not sufficiently low, and a large current flows through the superconducting layer that has been transferred to normal conduction, which may cause the superconducting layer to burn out.

一方、安定化層の厚みを大きくすれば大電流が流れた際の安定化層または超電導層の焼損の問題は解消するが、線材の厚みが大きくなる。例えば、従来の超電導線材における安定化層を100μmにすれば、超電導線材の厚みはほぼ倍になる。また、安定化層の厚膜化には、安定化層の材料が多く必要とされる。その上、通常、安定化層は気相法やメッキにより成膜されており、厚い安定化層の成膜には長時間を要する。その結果、超電導線材のコストアップにつながってしまう。   On the other hand, increasing the thickness of the stabilization layer eliminates the problem of burning of the stabilization layer or superconducting layer when a large current flows, but increases the thickness of the wire. For example, if the stabilization layer in the conventional superconducting wire is 100 μm, the thickness of the superconducting wire is almost doubled. In addition, in order to increase the thickness of the stabilization layer, many materials for the stabilization layer are required. In addition, the stabilization layer is usually formed by a vapor phase method or plating, and it takes a long time to form a thick stabilization layer. As a result, the cost of the superconducting wire is increased.

また、上述した超電導線材では、超電導層と基板との界面にYSZのような絶縁層が介在するため、超電導層と基板との電気的な導通をとることができない。そのため、線材の使用中に超電導層の一部が常電導に転移した場合に、基板へ電流をバイパスさせて超電導体を保護すること、つまり基板を安定化層として機能させることができない。   Further, in the above-described superconducting wire, since an insulating layer such as YSZ is interposed at the interface between the superconducting layer and the substrate, electrical conduction between the superconducting layer and the substrate cannot be achieved. Therefore, when a part of the superconducting layer is transferred to normal conduction during use of the wire, it is impossible to bypass the current to the substrate to protect the superconductor, that is, the substrate cannot function as a stabilization layer.

従って、本発明の主目的は、線材サイズの大型化を極力抑え、かつ低コストで必要な安定化を実現できる超電導線材を提供することにある。   Therefore, the main object of the present invention is to provide a superconducting wire that can suppress the increase in wire size as much as possible and can realize the necessary stabilization at low cost.

本発明は、安定化層の形成構造に工夫を施し、基板にも安定化層としての機能も持たせることで上記の目的を達成する。   The present invention achieves the above object by devising the formation structure of the stabilization layer and providing the substrate also with a function as the stabilization layer.

本発明超電導線材は、導電性の第一基板と、第一基板上に形成された中間層と、中間層上に形成された超電導層と、前記第一基板および超電導層の双方に導通される安定化層とを有することを特徴とする。   The superconducting wire of the present invention is electrically connected to the first conductive substrate, the intermediate layer formed on the first substrate, the superconducting layer formed on the intermediate layer, and both the first substrate and the superconducting layer. And a stabilizing layer.

この構成により、第一基板および超電導層が安定化層を介して導通されるため、第一基板自体も安定化層として機能させることができる。つまり、線材に大電流を流したような場合、超電導層の一部に常電導に転移する箇所が生じることがある。その場合でも、電流を安定化層を介して基板にもバイパスさせることができ、超電導層を保護して安定した状態で電流を流すことができる。   With this configuration, since the first substrate and the superconducting layer are conducted through the stabilization layer, the first substrate itself can also function as the stabilization layer. That is, when a large current is passed through the wire, a part of the superconducting layer may be transferred to normal conduction. Even in such a case, the current can be bypassed to the substrate via the stabilization layer, and the current can flow in a stable state while protecting the superconducting layer.

また、基板自体に安定化層としての機能、つまり電流のバイパス路としての機能を持たせることができるため、安定化層の厚みを特に大きくとる必要がなく、超電導線材の厚みが大きくなることを回避できる。   In addition, since the substrate itself can have a function as a stabilization layer, that is, a function as a current bypass path, it is not necessary to increase the thickness of the stabilization layer, and the thickness of the superconducting wire is increased. Can be avoided.

安定化層を介して基板と超電導層との導通をとる具体的な構成としては、次のものが挙げられる。   Specific examples of the structure that establishes conduction between the substrate and the superconducting layer through the stabilization layer include the following.

(1)前記安定化層は、超電導層の上面ならびに第一基板、中間層、超電導層の各側面を覆う金属膜とする。この構成によれば、超電導層の上面のみならず、第一基板、中間層、超電導層の各側面にも安定化層を設けることで、基板および超電導層の導通をとることができる。   (1) The stabilizing layer is a metal film that covers the upper surface of the superconducting layer and the side surfaces of the first substrate, the intermediate layer, and the superconducting layer. According to this configuration, the substrate and the superconducting layer can be electrically connected by providing the stabilizing layer not only on the upper surface of the superconducting layer but also on the side surfaces of the first substrate, the intermediate layer, and the superconducting layer.

(2)中間層を第一基板表面の一部に積層する。そして、安定化層は超電導層の上面および側面、中間層の側面ならびに第一基板上面において中間層および超電導層が形成されていない露出面を覆う金属膜とする。この構成によれば、第一基板よりも小さな面積の中間層および超電導層を設けることで、安定化層の形成範囲をより小さくしながらも第一基板と超電導層との導通を十分にとることができる。特に、中間層および超電導層の各側面における安定化層を第一基板の側面と面一に形成することで、超電導線材の幅を第一基板の幅と同一にすることもできる。   (2) The intermediate layer is laminated on a part of the first substrate surface. The stabilization layer is a metal film that covers the upper surface and side surfaces of the superconducting layer, the side surfaces of the intermediate layer, and the exposed surface of the first substrate upper surface where the intermediate layer and superconducting layer are not formed. According to this configuration, by providing the intermediate layer and the superconducting layer having an area smaller than that of the first substrate, sufficient conduction between the first substrate and the superconducting layer can be achieved while reducing the formation range of the stabilization layer. Can do. In particular, the width of the superconducting wire can be made equal to the width of the first substrate by forming the stabilizing layer on each side surface of the intermediate layer and the superconducting layer flush with the side surface of the first substrate.

(3)第一基板との間に超電導層を挟みこむ導電性の第二基板を設ける。そして、安定化層は、第二基板の上面ならびに第一基板、中間層、超電導層、第二基板の各側面を覆う金属膜とする。この構成によれば、第一基板のみならず、第二基板を有することで、両基板に安定化層の機能を持たせることができ、より一層安定した通電が可能な超電導線材を構成することができる。   (3) A conductive second substrate with a superconducting layer sandwiched between the first substrate and the first substrate is provided. The stabilization layer is a metal film that covers the upper surface of the second substrate and the side surfaces of the first substrate, the intermediate layer, the superconducting layer, and the second substrate. According to this configuration, by having not only the first substrate but also the second substrate, both substrates can have the function of a stabilizing layer, and a superconducting wire that can be more stably energized is configured. Can do.

(4)安定化層を超電導線材の上下面と側面を覆う金属膜とする。この構成によれば、超電導線材の全周を安定化層で覆うことができ、基板および超電導層の導通をとることができる。   (4) The stabilization layer is a metal film covering the upper and lower surfaces and side surfaces of the superconducting wire. According to this configuration, the entire circumference of the superconducting wire can be covered with the stabilization layer, and conduction between the substrate and the superconducting layer can be achieved.

以下、本発明線材の各構成要素をより詳しく説明する。   Hereafter, each component of this invention wire is demonstrated in detail.

<第一・第二基板>
第一・第二基板は、安定化層として機能させるには低抵抗材料で構成されることが好ましい。ただし、特に第一基板は、基板上に中間層を介して超電導層を形成するための制約、線材として強度を確保するための制約などがあるため、それらの制約に対応できる材料が好適である。例えば、ステンレス鋼、ニッケル、あるいはハステロイ(登録商標:「例えばハステロイC-276」)などのニッケル合金に代表される各種金属材料、もしくは銅(合金)やアルミニウム(合金)とニッケル(合金)とを貼り合わせた積層体が好ましい。これらの材料は、金属材料として格別抵抗率が低いわけではないが、一般に基板の厚み、特に第一基板の厚みがある程度大きいため、従来の薄い安定化層に比べれば抵抗は低くなる。第一基板が上記制約に対応できるものであれば、第二基板には低抵抗であることを重視した材料を選択することが可能である。例えば、金、銀、銅、アルミニウムまたはこれらの合金が利用できる。もちろん、第二基板の材質を第一基板と同一としてもかまわない。
<First and second substrates>
The first and second substrates are preferably made of a low resistance material in order to function as a stabilization layer. However, since the first substrate has restrictions for forming a superconducting layer on the substrate via an intermediate layer, restrictions for securing strength as a wire, etc., a material that can cope with these restrictions is suitable. . For example, various metal materials represented by nickel alloys such as stainless steel, nickel, or Hastelloy (registered trademark: “For example, Hastelloy C-276”), or copper (alloy), aluminum (alloy), and nickel (alloy) The laminated body bonded together is preferable. These materials do not have exceptionally low resistivity as a metal material, but generally the thickness of the substrate, particularly the thickness of the first substrate, is somewhat large, so that the resistance is lower than that of a conventional thin stabilization layer. As long as the first substrate can cope with the above-described restrictions, it is possible to select a material that emphasizes low resistance for the second substrate. For example, gold, silver, copper, aluminum, or an alloy thereof can be used. Of course, the material of the second substrate may be the same as that of the first substrate.

第一・第二基板の形状は、通常、テープ状が好ましい。一般に、基板の厚みは80〜100μm程度である。第一基板が主に線材強度を確保することに寄与するため、第二基板の厚みは安定化層として機能させるのに必要な厚みを適宜選択することができる。   The shape of the first and second substrates is usually preferably a tape shape. Generally, the thickness of the substrate is about 80-100 μm. Since the first substrate mainly contributes to securing the wire strength, the thickness of the second substrate can be appropriately selected as a thickness necessary for functioning as a stabilizing layer.

<中間層>
中間層は、超電導層を形成する際の加熱などによって、基板と超電導層との相互拡散が生じ、超電導線材としての性能が劣化してしまうことを回避するために形成する。また、中間層は、基板と超電導層の結晶格子不整合を緩和する役割を持つ場合もある。さらに、多結晶で結晶方位の揃っていない金属基板上に、IBAD法(Ion Beam Assisted Deposition)やISD法(Inclined Substrate Deposition)などの方法で結晶方位の揃った中間層を形成する場合もある。そのため、中間層の材質は、超電導層の結晶に近い結晶組織を有し、酸化物超電導層の熱膨張率に近い熱膨張率を有するものが好ましい。例えば、YSZ、SrTiO3、MgO、CeO2などのセラミックス系の材料が好ましい。
<Intermediate layer>
The intermediate layer is formed in order to avoid the occurrence of mutual diffusion between the substrate and the superconducting layer due to heating at the time of forming the superconducting layer and the performance as a superconducting wire being deteriorated. The intermediate layer may also have a role of relaxing crystal lattice mismatch between the substrate and the superconducting layer. Further, an intermediate layer having a uniform crystal orientation may be formed on a polycrystalline metal substrate having a uniform crystal orientation by a method such as IBAD (Ion Beam Assisted Deposition) or ISD (Inclined Substrate Deposition). Therefore, the material of the intermediate layer preferably has a crystal structure close to the crystal of the superconducting layer and has a thermal expansion coefficient close to that of the oxide superconducting layer. For example, ceramic materials such as YSZ, SrTiO 3 , MgO, and CeO 2 are preferable.

中間層の厚みは、一般に数μm程度でよい。中間層を形成する方法は、スパッタ法、真空蒸着法、レーザ蒸着法、化学気相成長法(CVD)などのいずれの成膜法を用いても良い。中でも、パルスレーザ蒸着法(PLD法)は、スパッタ法や分子線エピタキシー法などの他の成膜方法に比べて成膜速度が速く量産に向いている。第一基板としてテープ材を用いる場合は、使用する成膜装置内にテープの送出装置と巻取装置を設け、送出装置から送り出した基材を装置内で連続的に所定の速度で移動させながら巻取装置で巻き取り、移動中の基材に連続成膜処理を行なえば良い。これらテープ材に成膜する方法は次述する超電導層の形成においても同様である。   The thickness of the intermediate layer may generally be about several μm. As a method for forming the intermediate layer, any film forming method such as sputtering, vacuum vapor deposition, laser vapor deposition, or chemical vapor deposition (CVD) may be used. Among these, the pulsed laser deposition method (PLD method) has a higher film formation rate and is suitable for mass production than other film formation methods such as sputtering and molecular beam epitaxy. When a tape material is used as the first substrate, a tape feeding device and a winding device are provided in the film forming apparatus to be used, and the base material fed from the feeding device is continuously moved at a predetermined speed in the device. What is necessary is just to perform a continuous film-forming process to the base material which is winding and moving with a winding device. The method of forming a film on these tape materials is the same in the formation of the superconducting layer described below.

特に、PLD法を用いたISD法(Inclined Substrate Deposition)が好適である。ISD法によれば、ターゲットに対して基板を所定角度傾斜して蒸着を行う。そのため、基板面に垂直な方向と、プラズマの飛翔方向の2軸に配向した結晶構造、つまり多結晶であるが単結晶に近い構造の中間層を形成できる。   In particular, the ISD method (Inclined Substrate Deposition) using the PLD method is suitable. According to the ISD method, deposition is performed with the substrate inclined at a predetermined angle with respect to the target. Therefore, it is possible to form an intermediate layer having a crystal structure oriented in two directions, that is, a direction perpendicular to the substrate surface and a plasma flight direction, that is, a polycrystalline structure close to a single crystal.

そのほか、IBAD法(Ion Beam Assisted Deposition)やRABiTS法(Rolling-assisted Biaxially Textured Substrates)により中間層を形成することも好適である。これらのISD法、IBAD法、RABiTS法は後述する超電導層の形成にももちろん利用できる。   In addition, it is also preferable to form the intermediate layer by IBAD method (Ion Beam Assisted Deposition) or RABiTS method (Rolling-assisted Biaxially Textured Substrates). These ISD, IBAD, and RABiTS methods can of course be used for forming a superconducting layer, which will be described later.

<超電導層>
超電導層を構成する超電導体としては、酸化物超電導体が好適である。例えば、希土類元素含有のペロブスカイト型酸化物超電導体や、Bi-Sr-Ca-Cu-O系酸化物超電導体、Tl-Ba-Ca-Cu-O系酸化物超電導体等が適用される。
<Superconducting layer>
As the superconductor constituting the superconducting layer, an oxide superconductor is suitable. For example, rare earth element-containing perovskite oxide superconductors, Bi-Sr-Ca-Cu-O-based oxide superconductors, Tl-Ba-Ca-Cu-O-based oxide superconductors, and the like are applied.

希土類元素を含有しペロブスカイト型構造を有する酸化物超電導体は、例えばREM2Cu3O7-x系の酸化物が挙げられる。ここでREは、Y、La、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb等の希土類元素から選ばれた少なくとも1種の元素、MはBa、Sr、Caから選ばれた少なくとも1種の元素、Xは1以下の数である。REM2Cu3O7-xのうち、Cuの一部はTi、V、Cr、Mn、Fe、Co、Ni、Znで置換することも可能である。より具体的には、Y1Ba2Cu3O7-xが挙げられる。 Examples of the oxide superconductor containing a rare earth element and having a perovskite structure include a REM 2 Cu 3 O 7-x oxide. Here, RE is at least one element selected from rare earth elements such as Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, and Yb, and M is selected from Ba, Sr, and Ca. Further, at least one element, X is a number of 1 or less. In REM 2 Cu 3 O 7-x , a part of Cu can be substituted with Ti, V, Cr, Mn, Fe, Co, Ni, Zn. More specifically, Y 1 Ba 2 Cu 3 O 7-x can be mentioned.

また、Bi-Sr-Ca-Cu-O系の酸化物超電導体には、Bi2Sr2Ca2Cu3OxやBi2(Sr,Ca)3Cu2Oxで表される酸化物が含まれる。このうち、Biの一部はPbで置換することが可能である。代表的にはには、(Bi,Pb)2Ca2Sr2Cu3Ox、(Bi,Pb)2Ca2Sr3Cu4Oxなどが挙げられる。Tl-Ba-Ca-Cu-O系酸化物超電導体は、Tl2Ba2Ca2Cu3OxやTl2(Ba,Ca)3Cu2Ox、Tl1Ba2Ca2Cu3Ox、Tl1Ba2Ca3Cu4Ox等で表される酸化物が挙げられる。 Bi-Sr-Ca-Cu-O-based oxide superconductors include oxides represented by Bi 2 Sr 2 Ca 2 Cu 3 O x and Bi 2 (Sr, Ca) 3 Cu 2 O x. included. Among these, a part of Bi can be replaced with Pb. Typical examples include (Bi, Pb) 2 Ca 2 Sr 2 Cu 3 O x , (Bi, Pb) 2 Ca 2 Sr 3 Cu 4 O x and the like. Tl-Ba-Ca-Cu-O oxide superconductors include Tl 2 Ba 2 Ca 2 Cu 3 O x , Tl 2 (Ba, Ca) 3 Cu 2 O x , Tl 1 Ba 2 Ca 2 Cu 3 O x And oxides represented by Tl 1 Ba 2 Ca 3 Cu 4 O x and the like.

これらの超電導層は、物理的蒸着法であるスパッタ法、反応性蒸着法、レーザ蒸着法、あるいは化学的蒸着法であるCVD法、有機金属化学蒸着法(MOCVD法)等の各種薄膜形成方法を用いて形成することができる。中でも、成膜速度が速く均質な膜を連続的に長時間成膜することが可能なPLD法を用いることが好ましい。PLD法でレーザ蒸着を行なうには、超電導体材料の焼結体をターゲットとし、このターゲットに真空中でエキシマレーザを照射してプラズマ化して、ターゲットに対向された中間層付き基板に超電導層を堆積させる。   These superconducting layers are formed by various thin film formation methods such as sputtering, physical vapor deposition, reactive vapor deposition, laser vapor deposition, chemical vapor deposition (CVD), and metal organic chemical vapor deposition (MOCVD). Can be formed. Among them, it is preferable to use a PLD method that can form a uniform film at a high film forming speed continuously for a long time. To perform laser deposition by the PLD method, a superconductor material sintered body is used as a target, and this target is irradiated with an excimer laser in a vacuum to form a plasma, and a superconducting layer is formed on a substrate with an intermediate layer facing the target. Deposit.

<安定化層>
安定化層の材質には、超電導層と反応しないか、反応が少ない材料を用いる。特に酸化物超電導体と熱膨張係数が近いかまたは大きい値を有する金属材料が好適である。例えば、金や銀、白金あるいはその合金が挙げられる。特に、経済性で銀が好ましい。
<Stabilization layer>
As the material of the stabilization layer, a material that does not react with the superconducting layer or has little reaction is used. In particular, a metal material having a thermal expansion coefficient close to or larger than that of the oxide superconductor is preferable. For example, gold, silver, platinum, or an alloy thereof can be used. In particular, silver is preferable in terms of economy.

安定化層の厚みは、約1μm〜数10μm程度でよい。この程度の厚みであっても基板を安定化層として機能させることができるため、超電導線材の安定化は十分に実現できる。   The thickness of the stabilization layer may be about 1 μm to several tens of μm. Even with such a thickness, the substrate can function as a stabilizing layer, so that the superconducting wire can be sufficiently stabilized.

安定化層を形成する方法は、前述の各種成膜法のいずれを用いても良い。金や銀の安定化層は、レーザ蒸着法によって非常に速い成膜速度で形成することが可能である。特に、酸化物超電導層を形成する装置と安定化層を形成する装置とを連続して運転できるようにすることによって、高い生産性が達成される。安定化層を基板、中間層および超電導層の側面に成膜するには、気相法の場合、成膜対象を傾けて、その側面を気相材料の飛翔方向に向けることで可能になる。さらに、上記成膜法のほか、メッキも安定化層の形成に利用できる。メッキ法では特に成膜対象の全周に成膜することが容易にできる。蒸着法とメッキを併用すれば、比較的厚い安定化層も容易に形成できる。   Any of the various film forming methods described above may be used as a method of forming the stabilization layer. The gold or silver stabilization layer can be formed at a very high deposition rate by laser vapor deposition. In particular, high productivity is achieved by enabling the apparatus for forming the oxide superconducting layer and the apparatus for forming the stabilizing layer to be operated continuously. In order to form the stabilization layer on the side surfaces of the substrate, the intermediate layer, and the superconducting layer, in the case of the vapor phase method, the film formation target is inclined and the side surface is directed in the flight direction of the vapor phase material. Further, in addition to the film forming method described above, plating can also be used for forming the stabilizing layer. In particular, the plating method can easily form a film on the entire circumference of the film formation target. If vapor deposition and plating are used in combination, a relatively thick stabilization layer can be easily formed.

安定化層を形成後は、500℃〜750℃の温度で熱処理を施すことが好ましい。このような熱処理を施すことにより、超電導層と安定化層との接触抵抗を大きく低減することができる。そのため、部分的に超電導から常電導への転移が起こって抵抗が発生しても、その部分では電流は安定化層にバイパスして流れ、発熱が抑えられる。また、この熱処理により、安定化層の表面上の欠陥を減少し、超電導層との密着性を向上させることもできる。熱処理時間は1時間程度よい。さらに、この熱処理においては、超電導層から酸素が放出されて特性が低下するため、酸素中で熱処理することが好ましい。   After forming the stabilization layer, it is preferable to perform heat treatment at a temperature of 500 ° C to 750 ° C. By performing such heat treatment, the contact resistance between the superconducting layer and the stabilizing layer can be greatly reduced. For this reason, even if a partial transition from superconductivity to normal conductivity occurs and resistance is generated, current flows bypassing the stabilization layer in that portion, and heat generation is suppressed. In addition, this heat treatment can reduce defects on the surface of the stabilization layer and improve adhesion to the superconducting layer. The heat treatment time is good for about 1 hour. Further, in this heat treatment, oxygen is released from the superconducting layer and the characteristics are deteriorated. Therefore, the heat treatment is preferably performed in oxygen.

以下、本発明の実施の形態を説明する。
(実施例1)
図1は本発明超電導線材を示す模式断面図である。この線材は、下から順に、第一基板10、中間層20、超電導層30が積層され、この積層体の上面および側面に安定化層40が被覆されている。ここでは、第一基板10にハステロイC-276を、中間層20にYSZを、超電導層30にYBaCuO系超電導膜を、安定化層40に銀を用いており、積層体50の側面を覆う安定化層40を介して第一基板10と超電導層30とは導通されることになる。従って、超電導層30が部分的に超電導から常電導に転移しても、安定化層40を介して電流を第一基板にバイパスすることができる。つまり、第一基板10を安定化層としても機能させることができ、一層安定して電流を流すことができる超電導線材を構成することができる。
Embodiments of the present invention will be described below.
(Example 1)
FIG. 1 is a schematic cross-sectional view showing a superconducting wire of the present invention. In this wire, the first substrate 10, the intermediate layer 20, and the superconducting layer 30 are laminated in this order from the bottom, and the stabilization layer 40 is covered on the upper surface and side surfaces of the laminated body. Here, Hastelloy C-276 is used for the first substrate 10, YSZ is used for the intermediate layer 20, YBaCuO-based superconducting film is used for the superconducting layer 30, and silver is used for the stabilizing layer 40. The first substrate 10 and the superconducting layer 30 are brought into conduction through the chemical layer 40. Therefore, even if the superconducting layer 30 partially changes from superconducting to normal conducting, current can be bypassed to the first substrate via the stabilizing layer 40. That is, the first substrate 10 can also function as a stabilization layer, and a superconducting wire that can flow current more stably can be configured.

このような線材の製造方法を図5(A)に基づいて説明する。まず、ハステロイC-276の第一基板10(幅10mm、長さ550mm、厚さ0.1mm)を用意する。この第一基板10の上面に、第一基板10との相互拡散を防ぐための中間層20として、YSZをISD法で形成する。続いて、中間層20を形成した第一基板上にISD法でY1Ba2Cu3O7-x膜の形成を行なう。中間層20と超電導層30の形成に用いるISD法では、YSZまたはY1Ba2Cu3O7-xの焼結体をターゲットとし、真空中でターゲットにエキシマレーザを照射してプラズマを発生させ、第一基板10上に中間層20を、または中間層20上に超電導層30を形成する。その成膜装置は、真空チャンバー内に成膜対象テープの送出装置と巻取装置を設け、送出装置から送り出した成膜対象テープを装置内で所定の速度で移動させながら巻取装置で巻き取り、移動中の成膜対象テープに連続成膜処理を行なえる。形成した中間層20の厚みは1μm、超電導層30の厚みは1μmである。 A method for manufacturing such a wire will be described with reference to FIG. First, a first substrate 10 (width 10 mm, length 550 mm, thickness 0.1 mm) of Hastelloy C-276 is prepared. YSZ is formed on the upper surface of the first substrate 10 as an intermediate layer 20 for preventing mutual diffusion with the first substrate 10 by the ISD method. Subsequently, a Y 1 Ba 2 Cu 3 O 7-x film is formed on the first substrate on which the intermediate layer 20 is formed by the ISD method. In the ISD method used to form the intermediate layer 20 and the superconducting layer 30, a YSZ or Y 1 Ba 2 Cu 3 O 7-x sintered body is used as a target, and the target is irradiated with an excimer laser in vacuum to generate plasma. Then, the intermediate layer 20 is formed on the first substrate 10 or the superconducting layer 30 is formed on the intermediate layer 20. The film forming apparatus is provided with a film forming tape feeding device and a winding device in a vacuum chamber, and the film forming tape fed from the feeding device is wound by the winding device while moving at a predetermined speed in the device. The continuous film forming process can be performed on the moving film forming target tape. The formed intermediate layer 20 has a thickness of 1 μm, and the superconducting layer 30 has a thickness of 1 μm.

次に、この第一基板10、中間層20、超電導層30の積層体50にレーザーアブレーション法により銀の安定化層40を形成した。その際、図5(A)に示すように、積層体50の超電導層30を下方に向け、さらに積層体50の左側面側もターゲットに向くように積層体50を傾けて成膜を行う。その後、積層体50の右側面側がターゲット(図示せず)に向くように積層体50を傾けて同様の成膜を行う。この過程により、積層体50の上面のみならず、左右両側面にも安定化層40が形成された超電導線材が得られる。   Next, a silver stabilization layer 40 was formed on the laminate 50 of the first substrate 10, the intermediate layer 20, and the superconducting layer 30 by a laser ablation method. At that time, as shown in FIG. 5A, film formation is performed by tilting the multilayer body 50 so that the superconducting layer 30 of the multilayer body 50 faces downward and the left side of the multilayer body 50 also faces the target. Thereafter, the stacked body 50 is tilted so that the right side surface of the stacked body 50 faces the target (not shown), and the same film formation is performed. Through this process, a superconducting wire in which the stabilization layer 40 is formed not only on the upper surface of the laminate 50 but also on the left and right side surfaces is obtained.

(実施例2)
次に、実施例1とは異なる構成の本発明線材を図2に基づいて説明する。この超電導線材も、下から順に、第一基板10、中間層20、超電導層30が積層されているが、第一基板上面の一部にのみ中間層20および超電導層30が形成されている。すなわち、第一基板10と中間層20との境界には段差があり、第一基板10の上面は中間層20および超電導層30が形成されていない箇所が露出されている。そして、超電導層30の上面および側面、中間層20の側面ならびに第一基板上面において中間層20および超電導層30が形成されていない露出面11を覆うように安定化層40が形成されている。ここでは、安定化層40の側面と第一基板10の側面とが面一となるように安定化層40を形成し、超電導線材の幅を基板の幅と同一としている。
(Example 2)
Next, the wire of the present invention having a configuration different from that of Example 1 will be described with reference to FIG. Also in this superconducting wire, the first substrate 10, the intermediate layer 20, and the superconducting layer 30 are laminated in order from the bottom, but the intermediate layer 20 and the superconducting layer 30 are formed only on a part of the upper surface of the first substrate. That is, there is a step at the boundary between the first substrate 10 and the intermediate layer 20, and the upper surface of the first substrate 10 is exposed at a location where the intermediate layer 20 and the superconducting layer 30 are not formed. Then, the stabilization layer 40 is formed so as to cover the upper surface and the side surface of the superconducting layer 30, the side surface of the intermediate layer 20, and the exposed surface 11 where the intermediate layer 20 and the superconducting layer 30 are not formed on the first substrate upper surface. Here, the stabilization layer 40 is formed so that the side surface of the stabilization layer 40 and the side surface of the first substrate 10 are flush with each other, and the width of the superconducting wire is made equal to the width of the substrate.

この構成によれば、安定化層40の形成領域をより少なくでき、かつ第一基板10と超電導層30との導通も確保することができる。特に、前記露出面11の幅を広くすれば、実施例1に比べて安定化層40と第一基板10との接触面積が大きいため、より確実に第一基板10と超電導層30との導通をとることができる。そのため、第一基板10を安定化層としても機能させることができ、一層安定して電流を流すことができる超電導線材を構成することができる。   According to this configuration, the formation region of the stabilization layer 40 can be reduced, and conduction between the first substrate 10 and the superconducting layer 30 can be ensured. In particular, if the width of the exposed surface 11 is increased, the contact area between the stabilization layer 40 and the first substrate 10 is larger than that in the first embodiment, so that the conduction between the first substrate 10 and the superconducting layer 30 can be ensured. Can be taken. Therefore, the first substrate 10 can also function as a stabilization layer, and a superconducting wire that can flow current more stably can be configured.

このような線材の製造方法を図6に基づいて説明する。まず、ハステロイC-276の第一基板10(幅10mm、長さ550mm、厚さ0.1mm)を用意する。この第一基板10の上面に、第一基板10との相互拡散を防ぐための中間層20として、YSZをISD法で形成する。その際、第一基板10とターゲットの間にマスク60を介在し、基板10上の所定箇所のみ中間層20が形成されるようにする。続いて、中間層20を形成した第一基板10上にISD法でY1Ba2Cu3O7-x膜の形成を行なう。この超電導層30の成膜でも中間層付き第一基板10とターゲットの間にマスク60を介在し、中間層20の上面のみに超電導層30が形成されるようにする。中間層20と超電導層30の形成に用いるISD法では、YSZまたはY1Ba2Cu3O7-xの焼結体をターゲットとし、真空中でターゲットにエキシマレーザを照射してプラズマを発生させ、第一基板10上に中間層20を、または中間層20上に超電導層30を形成する。その成膜装置は、真空チャンバー内に成膜対象テープの送出装置と巻取装置を設け、送出装置から送り出した成膜対象テープを装置内で所定の速度で移動させながら巻取装置で巻き取り、移動中の成膜対象テープに連続成膜処理を行なえる。形成した中間層20の厚みは1μm、超電導層30の厚みは1μmである。 A manufacturing method of such a wire will be described with reference to FIG. First, a first substrate 10 (width 10 mm, length 550 mm, thickness 0.1 mm) of Hastelloy C-276 is prepared. YSZ is formed on the upper surface of the first substrate 10 as an intermediate layer 20 for preventing mutual diffusion with the first substrate 10 by the ISD method. At that time, a mask 60 is interposed between the first substrate 10 and the target so that the intermediate layer 20 is formed only at a predetermined position on the substrate 10. Subsequently, a Y 1 Ba 2 Cu 3 O 7-x film is formed by the ISD method on the first substrate 10 on which the intermediate layer 20 is formed. Even in the formation of the superconducting layer 30, a mask 60 is interposed between the first substrate 10 with the intermediate layer and the target so that the superconducting layer 30 is formed only on the upper surface of the intermediate layer 20. In the ISD method used to form the intermediate layer 20 and the superconducting layer 30, a YSZ or Y 1 Ba 2 Cu 3 O 7-x sintered body is used as a target, and the target is irradiated with an excimer laser in vacuum to generate plasma. Then, the intermediate layer 20 is formed on the first substrate 10 or the superconducting layer 30 is formed on the intermediate layer 20. The film forming apparatus is provided with a film forming tape feeding device and a winding device in a vacuum chamber, and the film forming tape fed from the feeding device is wound by the winding device while moving at a predetermined speed in the device. The continuous film forming process can be performed on the moving film forming target tape. The formed intermediate layer 20 has a thickness of 1 μm, and the superconducting layer 30 has a thickness of 1 μm.

次に、この第一基板10、中間層20、超電導層30の積層体50にレーザーアブレーション法により銀の安定化層40を形成した。ここでは、ターゲットと成膜対象、つまり中間層20と超電導層40が部分的に形成された第一基板10を水平に配して対向させ、超電導層30の上面および側面、中間層20の側面ならびに第一基板上面において中間層20および超電導層30が形成されていない露出面11のみに安定化層40を成膜する。この過程により、第一基板上面において超電導層30と第一基板10とが安定化層40を介して導通された超電導線材が得られる。   Next, a silver stabilization layer 40 was formed on the laminate 50 of the first substrate 10, the intermediate layer 20, and the superconducting layer 30 by a laser ablation method. Here, the target and the film formation target, that is, the first substrate 10 on which the intermediate layer 20 and the superconducting layer 40 are partially formed are horizontally arranged to face each other, and the upper surface and side surfaces of the superconducting layer 30 and the side surfaces of the intermediate layer 20 In addition, the stabilization layer 40 is formed only on the exposed surface 11 where the intermediate layer 20 and the superconducting layer 30 are not formed on the upper surface of the first substrate. Through this process, a superconducting wire in which the superconducting layer 30 and the first substrate 10 are electrically connected via the stabilization layer 40 on the upper surface of the first substrate is obtained.

(実施例3)
さらに、実施例1とは異なる構成の本発明線材を図3に基づいて説明する。この超電導線材も、下から順に、第一基板10、中間層20、超電導層30が積層されているが、これら積層体の全周に安定化層40が形成されている点で実施例1とは異なっている。他の構成および第一基板10を安定化層としても機能させることができ、一層安定して電流を流すことができることは実施例1と同様である。
(Example 3)
Furthermore, the wire of the present invention having a configuration different from that of the first embodiment will be described with reference to FIG. In this superconducting wire, the first substrate 10, the intermediate layer 20, and the superconducting layer 30 are laminated in this order from the bottom, but in the point that the stabilizing layer 40 is formed on the entire circumference of these laminates, Is different. Other configurations and the first substrate 10 can function as a stabilization layer, and the current can flow more stably as in the first embodiment.

このような線材の製造方法を図5(B)に基づいて説明する。第一基板10を用意し、その上に中間層20、超電導層30を形成し、得られた積層体50の上面と側面に安定化層40を形成するところまでは実施例1と同様である。その後、得られた積層体50に無電解メッキを行って、積層体50の全周を覆う安定化層を形成する。   A method for manufacturing such a wire will be described with reference to FIG. The first substrate 10 is prepared, the intermediate layer 20 and the superconducting layer 30 are formed thereon, and the same process as in Example 1 is performed until the stabilization layer 40 is formed on the upper and side surfaces of the obtained laminate 50. . Thereafter, electroless plating is performed on the obtained laminate 50 to form a stabilization layer that covers the entire circumference of the laminate 50.

実施例3の構成によれば、実施例1はもちろん、実施例2に比べても安定化層40と第一基板10との接触面積を大きくできるため、より確実に第一基板10と超電導層30との導通をとることができる。さらに、実施例2に比べて線材全体に占める超電導層30の断面積が大きく、より大きな電流容量を確保できる。   According to the configuration of the third embodiment, the contact area between the stabilization layer 40 and the first substrate 10 can be increased as compared with the first embodiment as well as the first embodiment. Conductivity with 30 can be taken. Furthermore, compared with Example 2, the cross-sectional area of the superconducting layer 30 occupying the whole wire is large, and a larger current capacity can be secured.

(実施例4)
さらに、実施例1とは異なる構成の本発明線材を図4に基づいて説明する。この超電導線材も、下から順に、第一基板10、中間層20、超電導層30が積層されているが、超電導層30の上面に安定化層40Aを挟んで第二基板70が配され、この第一基板10から第二基板70までの積層体の上面および左右両側面に安定化層40Bが形成されている。ここでは第二基板70として厚さ0.1μmの銅テープを用いている。
(Example 4)
Further, the wire of the present invention having a configuration different from that of the first embodiment will be described with reference to FIG. In this superconducting wire, the first substrate 10, the intermediate layer 20, and the superconducting layer 30 are laminated in order from the bottom, and the second substrate 70 is disposed on the upper surface of the superconducting layer 30 with the stabilization layer 40A interposed therebetween. Stabilization layers 40B are formed on the top surface and the left and right side surfaces of the laminate from the first substrate 10 to the second substrate 70. Here, a copper tape having a thickness of 0.1 μm is used as the second substrate 70.

この構成によれば、超電導層30の上下面に合計2枚の基板10,70が配され、かつ安定化層を介して導通されているため、両基板10,70を安定化層として機能させることができ、より大電流を安定化層および両基板10,70に流すことができる。特に、第一基板10では、中間層や超電導層作製時に表面酸化などの影響を受けて抵抗が増加する可能性が考えられるが、第二基板70はこのような悪影響を受けないため、より確実に低抵抗を保持して超電導線材に利用することができる。   According to this configuration, since the two substrates 10 and 70 are arranged on the upper and lower surfaces of the superconducting layer 30 and are conducted through the stabilization layer, both the substrates 10 and 70 function as the stabilization layer. And a larger current can flow through the stabilization layer and both substrates 10,70. In particular, in the first substrate 10, there is a possibility that the resistance increases due to the influence of surface oxidation during the production of the intermediate layer or the superconducting layer, but the second substrate 70 is not affected by such an adverse effect, so it is more reliable. It can be used as a superconducting wire while maintaining low resistance.

このような線材の製造方法を図7(A)に基づいて説明する。第一基板10を用意し、その上に中間層20、超電導層30を形成し、得られた積層体50の上面に安定化層40Aを形成する。次に、この安定化層40A上に厚さ0.1mmの第二基板70を接合する。この接合は、接合面に部分的に銀ペーストを配して行った。第一基板10から第二基板70までの積層体51が形成できれば、その後の安定化層40Bの形成は、実施例1と同様である。つまり、左右それぞれに積層体51を傾けて安定化層40Bの成膜を行う。これにより、第一基板10から第二基板70までの積層体51の上面、左右両側面に安定化層40Bが形成された超電導線材を得ることができる。   A method for manufacturing such a wire will be described with reference to FIG. The first substrate 10 is prepared, the intermediate layer 20 and the superconducting layer 30 are formed thereon, and the stabilization layer 40A is formed on the upper surface of the obtained laminate 50. Next, a second substrate 70 having a thickness of 0.1 mm is bonded onto the stabilization layer 40A. This bonding was performed by partially arranging a silver paste on the bonding surface. If the stacked body 51 from the first substrate 10 to the second substrate 70 can be formed, the subsequent formation of the stabilization layer 40B is the same as in the first embodiment. That is, the stabilization layer 40B is formed by tilting the stacked body 51 to the left and right. As a result, it is possible to obtain a superconducting wire in which the stabilization layer 40B is formed on the upper surface and the left and right side surfaces of the laminate 51 from the first substrate 10 to the second substrate 70.

さらに、図7(B)に示すように、得られた超電導線材に無電解メッキを行って、第一基板10から第二基板70までの積層体51の全周を覆う安定化層40Bを形成してもよい。   Further, as shown in FIG. 7B, the obtained superconducting wire is subjected to electroless plating to form a stabilization layer 40B covering the entire circumference of the laminate 51 from the first substrate 10 to the second substrate 70. May be.

以上説明したように、本発明超電導線材は、基板を安定化層として利用することで、線材サイズの大型化を極力抑え、かつ低コストで必要な安定化を実現できる。従って、ケーブルやマグネットなど、高い臨界電流密度が求められている分野での有効利用が期待される。   As described above, the superconducting wire of the present invention can achieve necessary stabilization at a low cost while suppressing the increase in wire size as much as possible by using the substrate as a stabilization layer. Therefore, it is expected to be effectively used in fields where high critical current density is required, such as cables and magnets.

実施例1にかかる本発明超電導線材の模式断面図である。1 is a schematic cross-sectional view of a superconducting wire of the present invention according to Example 1. FIG. 実施例2にかかる本発明超電導線材の模式断面図である。It is a schematic cross section of the superconducting wire of the present invention according to Example 2. 実施例3にかかる本発明超電導線材の模式断面図である。It is a schematic cross section of the superconducting wire of the present invention according to Example 3. 実施例4にかかる本発明超電導線材の模式断面図である。It is a schematic cross section of the superconducting wire of the present invention according to Example 4. (A)は実施例1の線材の製法を示す説明図、(B)は実施例3の線材の製法を示す説明図である。(A) is explanatory drawing which shows the manufacturing method of the wire of Example 1, (B) is explanatory drawing which shows the manufacturing method of the wire of Example 3. FIG. 実施例2の線材の製法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the wire of Example 2. FIG. (A)は実施例4の線材の製法を示す説明図、(B)はさらに線材の全周に安定化層を形成する製法を示す説明図である。(A) is explanatory drawing which shows the manufacturing method of the wire of Example 4, (B) is further explanatory drawing which shows the manufacturing method which forms a stabilization layer in the perimeter of a wire. 従来の超電導線材の模式断面図である。It is a schematic cross section of the conventional superconducting wire.

符号の説明Explanation of symbols

10 第一基板
11 露出面
20 中間層
30 超電導層
40 安定化層
40A 安定化層
40B 安定化層
50 積層体
51 積層体
60 マスク
70 第二基板
10 First board
11 Exposed surface
20 middle class
30 Superconducting layer
40 Stabilization layer
40A stabilization layer
40B stabilization layer
50 laminates
51 Laminate
60 mask
70 Second board

Claims (5)

導電性の第一基板と、
第一基板上に形成された中間層と、
中間層上に形成された超電導層と、
前記第一基板および超電導層の双方に導通される安定化層とを有することを特徴とする超電導線材。
A conductive first substrate;
An intermediate layer formed on the first substrate;
A superconducting layer formed on the intermediate layer;
A superconducting wire comprising a stabilizing layer that is conducted to both the first substrate and the superconducting layer.
前記安定化層は、超電導層の上面ならびに第一基板、中間層、超電導層の各側面を覆う金属膜であることを特徴とする請求項1に記載の超電導線材。   2. The superconducting wire according to claim 1, wherein the stabilization layer is a metal film that covers an upper surface of the superconducting layer and side surfaces of the first substrate, the intermediate layer, and the superconducting layer. 前記中間層は第一基板表面の一部に積層され、
前記安定化層は超電導層の上面および側面、中間層の側面ならびに第一基板上面において中間層および超電導層が形成されていない露出面を覆う金属膜であることを特徴とする請求項1に記載の超電導線材。
The intermediate layer is laminated on a part of the surface of the first substrate,
The said stabilization layer is a metal film which covers the exposed surface in which the intermediate | middle layer and superconducting layer are not formed in the upper surface and side surface of a superconducting layer, the side surface of an intermediate | middle layer, and the 1st board | substrate upper surface. Superconducting wire.
前記第一基板との間に超電導層を挟みこむ導電性の第二基板を有し、
前記安定化層は、第二基板の上面ならびに第一基板、中間層、超電導層、第二基板の各側面を覆う金属膜であることを特徴とする請求項1に記載の超電導線材。
A conductive second substrate sandwiching a superconducting layer with the first substrate;
2. The superconducting wire according to claim 1, wherein the stabilization layer is a metal film that covers an upper surface of the second substrate and side surfaces of the first substrate, the intermediate layer, the superconducting layer, and the second substrate.
安定化層は、超電導線材の上下面と側面を覆う金属膜であることを特徴とする請求項1に記載の超電導線材。   The superconducting wire according to claim 1, wherein the stabilization layer is a metal film that covers the upper and lower surfaces and side surfaces of the superconducting wire.
JP2003277885A 2003-07-22 2003-07-22 Superconductive wire rod Pending JP2005044636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003277885A JP2005044636A (en) 2003-07-22 2003-07-22 Superconductive wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003277885A JP2005044636A (en) 2003-07-22 2003-07-22 Superconductive wire rod

Publications (1)

Publication Number Publication Date
JP2005044636A true JP2005044636A (en) 2005-02-17

Family

ID=34264472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003277885A Pending JP2005044636A (en) 2003-07-22 2003-07-22 Superconductive wire rod

Country Status (1)

Country Link
JP (1) JP2005044636A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227167A (en) * 2006-02-23 2007-09-06 Toshiba Corp Superconductive wire material, and superconductive device using the same
JP2007273201A (en) * 2006-03-31 2007-10-18 Toshiba Corp Superconductive device
WO2007135831A1 (en) * 2006-05-18 2007-11-29 Sumitomo Electric Industries, Ltd. Superconducting thin film material and method for producing superconducting thin film material
JP2010044969A (en) * 2008-08-14 2010-02-25 International Superconductivity Technology Center Tape-shaped oxide superconductor, and board used for the same
JP2010176892A (en) * 2009-01-27 2010-08-12 Sumitomo Electric Ind Ltd Superconductive wire and method of manufacturing the same
JP2010218730A (en) * 2009-03-13 2010-09-30 Sumitomo Electric Ind Ltd Superconducting wire rod and method of manufacturing the same
KR101027761B1 (en) 2008-12-17 2011-04-07 한국전기연구원 Superconductor wire and method of joining superconductor wires
JP2011244536A (en) * 2010-05-14 2011-12-01 Toyota Motor Corp Superconducting motor
WO2014208843A1 (en) * 2013-06-28 2014-12-31 한국전기연구원 Superconducting wire material having laminated structure and manufacturing method therefor
WO2015064284A1 (en) * 2013-11-01 2015-05-07 住友電気工業株式会社 Thin-film superconducting wire rod and superconducting device
WO2015133505A1 (en) * 2014-03-07 2015-09-11 住友電気工業株式会社 Oxide superconducting thin film wire and method for producing same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227167A (en) * 2006-02-23 2007-09-06 Toshiba Corp Superconductive wire material, and superconductive device using the same
JP2007273201A (en) * 2006-03-31 2007-10-18 Toshiba Corp Superconductive device
JP4634954B2 (en) * 2006-03-31 2011-02-16 株式会社東芝 Superconducting device
WO2007135831A1 (en) * 2006-05-18 2007-11-29 Sumitomo Electric Industries, Ltd. Superconducting thin film material and method for producing superconducting thin film material
JP2007311194A (en) * 2006-05-18 2007-11-29 Sumitomo Electric Ind Ltd Superconducting thin film material and its manufacturing method
KR101069080B1 (en) 2006-05-18 2011-09-29 스미토모 덴키 고교 가부시키가이샤 Superconductive thin film material and method of manufacturing the same
JP2010044969A (en) * 2008-08-14 2010-02-25 International Superconductivity Technology Center Tape-shaped oxide superconductor, and board used for the same
KR101027761B1 (en) 2008-12-17 2011-04-07 한국전기연구원 Superconductor wire and method of joining superconductor wires
JP2010176892A (en) * 2009-01-27 2010-08-12 Sumitomo Electric Ind Ltd Superconductive wire and method of manufacturing the same
JP2010218730A (en) * 2009-03-13 2010-09-30 Sumitomo Electric Ind Ltd Superconducting wire rod and method of manufacturing the same
JP2011244536A (en) * 2010-05-14 2011-12-01 Toyota Motor Corp Superconducting motor
WO2014208843A1 (en) * 2013-06-28 2014-12-31 한국전기연구원 Superconducting wire material having laminated structure and manufacturing method therefor
KR101556562B1 (en) * 2013-06-28 2015-10-02 한국전기연구원 LaminatedStructures For Superconducting Wires And Methods Thereof
US10319500B2 (en) 2013-06-28 2019-06-11 Korea Electrotechnology Research Institute Superconducting wire material having laminated structure and manufacturing method therefor
WO2015064284A1 (en) * 2013-11-01 2015-05-07 住友電気工業株式会社 Thin-film superconducting wire rod and superconducting device
WO2015133505A1 (en) * 2014-03-07 2015-09-11 住友電気工業株式会社 Oxide superconducting thin film wire and method for producing same
CN105940465A (en) * 2014-03-07 2016-09-14 住友电气工业株式会社 Oxide superconducting thin film wire and method for producing same
KR20160130378A (en) * 2014-03-07 2016-11-11 스미토모 덴키 고교 가부시키가이샤 Oxide superconducting thin film wire and method for producing same
JPWO2015133505A1 (en) * 2014-03-07 2017-04-06 住友電気工業株式会社 Oxide superconducting thin film wire and manufacturing method thereof
US9978481B2 (en) 2014-03-07 2018-05-22 Sumitomo Electric Industries, Ltd. Oxide superconducting thin film wire and method for producing same
KR102266022B1 (en) * 2014-03-07 2021-06-16 스미토모 덴키 고교 가부시키가이샤 Oxide superconducting thin film wire and method for producing same

Similar Documents

Publication Publication Date Title
JP4697128B2 (en) Superconducting coil
JP4810268B2 (en) Superconducting wire connection method and superconducting wire
US8142881B2 (en) Mesh-type stabilizer for filamentary coated superconductors
US7496390B2 (en) Low ac loss filamentary coated superconductors
US20060073975A1 (en) Stacked filamentary coated superconductors
JP2009507358A (en) High temperature superconducting wire and coil
JP5568361B2 (en) Superconducting wire electrode joint structure, superconducting wire, and superconducting coil
JP2001527298A5 (en)
JP2001527298A (en) Superconductor with superconducting material having high critical temperature, method of manufacturing the same, and current limiting device with the superconductor
JP6178779B2 (en) Superconducting wire connection structure and manufacturing method of superconducting wire connection structure
JPH07335051A (en) Oxide superconductive tape with stabilizing layer and manufacture thereof
JP5548441B2 (en) Superconducting connection structure, superconducting wire connecting method, superconducting coil device
JP2005044636A (en) Superconductive wire rod
JP2023508619A (en) Manufacturing method of superconducting wire
JP3568561B2 (en) Structure of oxide superconductor with stabilizing metal layer
JP4182832B2 (en) Superconducting plate connection method and connection part thereof
CN111357126A (en) Splicing superconducting tapes
JP5675232B2 (en) Superconducting current lead
WO2012039444A1 (en) Oxide superconductor wire material and method for producing same
JP2011258696A (en) Superconducting coil and method for manufacturing the same
US10886040B2 (en) Superconducting wire
JP2012064323A (en) Superconductive current lead
JP2010044969A (en) Tape-shaped oxide superconductor, and board used for the same
JP2013030317A (en) Oxide superconducting laminated body, oxide superconducting wire material, and manufacturing method of oxide superconducting wire material
JPH0773759A (en) Manufacture of oxide superconductive tape with stabilized metallic layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090205