JP4810268B2 - Superconducting wire connection method and superconducting wire - Google Patents

Superconducting wire connection method and superconducting wire Download PDF

Info

Publication number
JP4810268B2
JP4810268B2 JP2006086808A JP2006086808A JP4810268B2 JP 4810268 B2 JP4810268 B2 JP 4810268B2 JP 2006086808 A JP2006086808 A JP 2006086808A JP 2006086808 A JP2006086808 A JP 2006086808A JP 4810268 B2 JP4810268 B2 JP 4810268B2
Authority
JP
Japan
Prior art keywords
superconducting wire
superconducting
layer
conductive metal
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006086808A
Other languages
Japanese (ja)
Other versions
JP2007266149A (en
Inventor
賢司 田崎
孝 矢澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006086808A priority Critical patent/JP4810268B2/en
Publication of JP2007266149A publication Critical patent/JP2007266149A/en
Application granted granted Critical
Publication of JP4810268B2 publication Critical patent/JP4810268B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は超電導線材の接続方法及びその接続方法を用いた超電導線材に関する。   The present invention relates to a superconducting wire connecting method and a superconducting wire using the connecting method.

超電導コイルは、例えば磁気共鳴画像診断装置(MRI)や、超電導磁気エネルギー貯蔵装置(SMES)などの種々の用途に用いることができる。大型の超電導コイルを作製する場合には、数km〜数10kmの長さの超電導電導線材が必要になる場合がある。しかしながら、接続のない1本の単長の超電導線材でこのような長さを確保することは、超電導線材の製造の観点から難しい場合が多い。特に、高温超電導線材においては、例えば現状使用されているBi2223銀シース線材では1km程度の単長の線材が最長であり、次世代の線材であるY系線材では、まだ1km長の線材の製造には至っていない。   The superconducting coil can be used for various applications such as a magnetic resonance diagnostic imaging apparatus (MRI) and a superconducting magnetic energy storage apparatus (SMES). When producing a large superconducting coil, a superconducting conductive wire having a length of several kilometers to several tens of kilometers may be required. However, it is often difficult to secure such a length with a single superconducting wire having no connection from the viewpoint of manufacturing the superconducting wire. In particular, in the high-temperature superconducting wire, for example, the currently used Bi2223 silver sheath wire has the longest length of a single-length wire of about 1 km, and the Y-type wire that is the next-generation wire still has a length of 1 km. Has not reached.

したがって、超電導コイルを製作する上では、超電導線材同士を接続することが必要であり、そのための技術は重要である。ここで、高温超電導線材、特に基板(基材)上に高温超電導層が形成された薄膜線材の場合、基板が高抵抗母材であり、かつ基板と高温超電導層との間に中間層と呼ばれるYSZ(イットリウム安定化ジルコニア)やCeOに代表される酸化物層が形成されているため、高温超電導線材同士の接続の際には、必ず基板側ではなく高温超電導層側同士を接続する必要がある。このような超電導接続技術の一部は、特許文献1にすでに示されている。 Therefore, in producing a superconducting coil, it is necessary to connect the superconducting wires to each other, and the technology for that is important. Here, in the case of a high-temperature superconducting wire, particularly a thin film wire in which a high-temperature superconducting layer is formed on a substrate (base material), the substrate is a high-resistance base material and is called an intermediate layer between the substrate and the high-temperature superconducting layer. Since an oxide layer typified by YSZ (yttrium-stabilized zirconia) or CeO 2 is formed, when connecting high-temperature superconducting wires to each other, it is necessary to always connect the high-temperature superconducting layer sides, not the substrate side. is there. A part of such a superconducting connection technique has already been disclosed in Patent Document 1.

また、超電導線材同士を極力低抵抗に接続するために、超電導線材同士の接続部に新たな超電導層を形成するという超電導接続技術については、特許文献2に記載されている。
特開2000−133067号公報 特開2005−63695号公報
Further, Patent Document 2 describes a superconducting connection technique in which a new superconducting layer is formed at a connection portion between superconducting wires in order to connect the superconducting wires as low resistance as possible.
JP 2000-133067 A JP 2005-63695 A

特許文献1には、超電導層と基板との間に、高抵抗材又は絶縁体である中間層の存在が示されており、接続部では、それぞれの基板は電気的に接続されていない状態である。この場合、例えば超電導線材で巻線されてなるコイルにおいて、例えばクエンチや熱暴走が発生したときに、基板側に電流を分流させることができない。そのため、特に臨界電流密度が高い高温超電導線材の場合は、コイルの安定性を維持するために高温超電導層側にさらに厚い安定化金属を配置するなどの処置をしなければならないことがある。高温超電導線材の元々の構成材を利用せずに新たに別の安定化金属を配置することは、コスト面、コイルサイズ面などで不利である。   Patent Document 1 shows the existence of an intermediate layer that is a high-resistance material or an insulator between a superconducting layer and a substrate, and in the connection portion, each substrate is not electrically connected. is there. In this case, for example, when a quench or thermal runaway occurs in a coil wound with a superconducting wire, for example, current cannot be shunted to the substrate side. Therefore, particularly in the case of a high-temperature superconducting wire having a high critical current density, it may be necessary to take measures such as arranging a thicker stabilizing metal on the high-temperature superconducting layer side in order to maintain the stability of the coil. It is disadvantageous in terms of cost, coil size and the like to newly arrange another stabilizing metal without using the original constituent material of the high-temperature superconducting wire.

また、特許文献2に記載の発明は、発明の本来の目的が低抵抗接続の方法であるため、接続プロセスが半田付けなどの接続方法と比較すると格段にコストと時間がかかるという問題がある。さらに、特許文献2の発明は基板を接続することを積極的な目的としていないため、100μm程度の基板の断面部分で電気的な接触を持たせているにすぎず、電流を分流させるために十分な接続面積が確保されていないという問題がある。   In addition, the invention described in Patent Document 2 has a problem that the connection process is much more costly and time consuming than the connection method such as soldering because the original object of the invention is a low resistance connection method. Further, since the invention of Patent Document 2 is not intended to connect the substrates positively, it is merely provided with electrical contact at the cross-sectional portion of the substrate of about 100 μm, and is sufficient to shunt current. There is a problem that a large connection area is not secured.

本発明はかかる従来の問題点を解決すべくなされたもので、超電導線材同士の接続において、超電導線材の超電導層と同様に、超電導層と基材についても電気的に接続し、クエンチや熱暴走が発生したときに、基材側に電流を分流させることができ、より低コストでコンパクトに所定の安定性を有する超電導線材の接続方法、その接続方法を用いた超電導線材及び超電導コイル装置を提供することを目的としている。   The present invention has been made to solve such conventional problems, and in the connection between superconducting wires, as well as the superconducting layer of the superconducting wire, the superconducting layer and the base material are electrically connected, and quenching and thermal runaway are performed. Provides a superconducting wire connecting method, a superconducting wire material and a superconducting coil device using the connecting method, which can divert current to the base material when the occurrence occurs, and is more compact and has a predetermined stability. The purpose is to do.

上記目的を達成するため、本発明の一実施形態である超電導線材の接続方法は、金属基材の片面に中間層を介して超電導層及び導電性金属層を順に積層形成してなる超電導線材の接続方法であって、接続すべき前記超電導線材それぞれにおける各接続端部の前記導電性金属層を互いに対向させて配置する配置工程と、前記各接続端部の各々の端面を覆うように前記各超電導線材のうち一方の金属基材から他方の導電性金属層にかけて、導電性金属からなる接続板を前記超電導線材と密接させて積重する積重工程と、前記各超電導線材同士及び前記各超電導線材と前記接続板とを接続する接続工程とを含むことを特徴とする。 In order to achieve the above object, a superconducting wire connecting method according to an embodiment of the present invention is a superconducting wire formed by sequentially laminating a superconducting layer and a conductive metal layer on one side of a metal substrate via an intermediate layer. It is a connection method, the disposing step of disposing the conductive metal layers of each connection end portion in each of the superconducting wires to be connected to face each other, and each of the connection end portions so as to cover each end face A stacking step of stacking a connection plate made of a conductive metal in close contact with the superconducting wire from one metal base material to the other conductive metal layer of the superconducting wire, the superconducting wires and the superconducting members A connection step of connecting the wire and the connection plate .

上記目的を達成するため、本発明の他の実施形態である超電導線材の接続方法は、金属基材の一方の面に中間層を介して超電導層及び導電性金属層を順に積層形成してなる超電導線材の接続方法であって、接続すべき前記超電導線材の接続端部の端面同士を突き合わせる配置工程と、前記接続端部を覆うように、前記各超電導線材の導電性金属層上に、前記各超電導線材とは別の超電導線材を、それぞれの導電性金属層の面が対向するように積重する第1の積重工程と、前記各超電導線材の前記金属基材の他方の面上に、第1の導電性金属からなる接続板が対向するように積重する第2の積重工程と、前記接続すべき超電導線材の端部又は長手方向の少なくとも1箇所において、前記超電導線材の導電性金属層と前記別の超電導線材の前記金属基材とを第2の導電性金属からなる接続板により接触させる接触工程と、前記各超電導線材と前記別の超電導線材、前記各超電導線材と前記第1の接続板、及び前記第2の接続板と前記超電導線材および前記別の超電導線材を、それぞれ接続する接続工程とを含むことを特徴とする。 In order to achieve the above object, a superconducting wire connecting method according to another embodiment of the present invention is formed by sequentially laminating a superconducting layer and a conductive metal layer on one surface of a metal substrate via an intermediate layer. A superconducting wire connecting method, an arrangement step of connecting end faces of connecting end portions of the superconducting wire to be connected, and a conductive metal layer of each superconducting wire so as to cover the connecting end portions, A first stacking step of stacking superconducting wires different from the respective superconducting wires such that the surfaces of the respective conductive metal layers face each other; and on the other surface of the metal base of each of the superconducting wires And a second stacking step in which the connection plates made of the first conductive metal are stacked so as to face each other, and at least one end of the superconducting wire to be connected or at least one position in the longitudinal direction of the superconducting wire. The gold of the conductive metal layer and the another superconducting wire A contact step of contacting the base material with a connection plate made of a second conductive metal, each of the superconducting wires and the other superconducting wire, each of the superconducting wires and the first connection plate, and the second connection; A connection step of connecting the plate, the superconducting wire, and the other superconducting wire, respectively .

本発明によれば、超電導層と基材についても電気的に接続したので、クエンチや熱暴走が発生したときに、基材側に電流を分流させることができ、所定の安定性を有する超電導線材の接続を提供することができる。   According to the present invention, since the superconducting layer and the substrate are also electrically connected, when quenching or thermal runaway occurs, a current can be shunted to the substrate side, and the superconducting wire having a predetermined stability Connection can be provided.

以下に、本発明を実施するための形態について図面に基づいて説明する。図1は、本発明の第1の実施形態に係る超電導線材の接続構造を示す断面図である。
超電導線材1は、金属基材2の片面に中間層3を介して超電導層4及び導電性金属層5が順次積層して形成されている。
EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated based on drawing. FIG. 1 is a cross-sectional view showing a superconducting wire connection structure according to a first embodiment of the present invention.
The superconducting wire 1 is formed by sequentially laminating a superconducting layer 4 and a conductive metal layer 5 on one side of a metal base 2 via an intermediate layer 3.

金属基材2は、使用する超電導線材1の種類、材質、厚さなどによって適宜決めることができる。具体的には、銀、白金、ステンレス鋼、銅、Ni−W合金、Ni−Fe合金、例えばハステロイなどのニッケル基合金などの各種金属材料を用いることができるが、ニッケル基合金が好ましい。金属基材2は通常、板状の形状であり、その厚さは用途に応じて決めることができるが、通常50〜100μm程度である。また、金属基材2は通常高抵抗層である。
金属基材2は、超電導層4の異常時、例えば何らかの擾乱による温度上昇によるクエンチ現象や熱暴走などの超電導層4の異常発生時において超電導層4に流れている電流が、例えば導電性金属からなる接続板6を介して分流されて、超電導層4のジュール熱による焼けなどによる損傷などを防止できる。
The metal substrate 2 can be appropriately determined depending on the type, material, thickness, etc. of the superconducting wire 1 to be used. Specifically, various metal materials such as silver, platinum, stainless steel, copper, Ni—W alloy, Ni—Fe alloy, and nickel-based alloys such as Hastelloy can be used, and nickel-based alloys are preferable. The metal substrate 2 is usually plate-shaped and its thickness can be determined according to the application, but is usually about 50 to 100 μm. The metal substrate 2 is usually a high resistance layer.
When the superconducting layer 4 is abnormal, for example, a current flowing in the superconducting layer 4 when an abnormality occurs in the superconducting layer 4 such as a quench phenomenon due to a temperature rise due to some disturbance or a thermal runaway occurs from the conductive metal, for example. It is possible to prevent the superconducting layer 4 from being damaged by Joule heat or the like by being divided through the connecting plate 6.

中間層3を構成する材料は、例えば熱膨張係数が金属基材2よりも超電導層3の熱膨張係数に近い、YSZ(イットリウム安定化ジルコニア)、SrTiO、MgO、Al、LaAlO、LaGaO、YAlO、ZrOなどのセラミックス結晶体からなる中間層を用いることができる。これらの中でもできる限り結晶配向性の整ったものを用いることが好ましい。中間層3は、通常金属基材2と超電導層4とを絶縁するものである。中間層3の厚さは用途に応じて適宜決めることができるが、通常10〜800nm程度である。 The material constituting the intermediate layer 3 is, for example, YSZ (yttrium stabilized zirconia), SrTiO 3 , MgO, Al 2 O 3 , LaAlO 3 whose thermal expansion coefficient is closer to that of the superconducting layer 3 than the metal substrate 2. An intermediate layer made of a ceramic crystal such as LaGaO 3 , YAlO 3 , or ZrO 2 can be used. Among these, it is preferable to use a material with as much crystal orientation as possible. The intermediate layer 3 normally insulates the metal substrate 2 and the superconducting layer 4. Although the thickness of the intermediate | middle layer 3 can be suitably determined according to a use, it is about 10-800 nm normally.

超電導層4を構成する超電導体は、金属基材2上に中間層3を介して積層される超電導層4を形成できる超電導体である。これらの超電導体としては、高温超電導体が挙げられる。高温超電導体としては、イットリウム系高温超電導体、例えばYBCO系の酸化物超電導体、ホルミウム系高温超電導体、例えばHoBCO系の酸化物超電導体、RE123(Y、Nd、Sm等の希土類元素)系超電導体、A−B−Cu−O系(ただし、AはLa、Ce、Y、Sc、Ybなどの周期律表IIIa族元素の1種以上を示し、BはSr、Baなどの周期律表IIa族元素の1種以上を示す)の酸化物超電導体などが挙げられる。
超電導層4は、金属基材2上に中間層3を介して、例えば化学気相蒸着法(CVD法)等によって、YBCOなどの超電導体の薄膜を形成して製造することができる。このような超電導層4の厚さは用途に応じて適宜決めることができるが、通常1μ程度の厚さである。
The superconductor constituting the superconducting layer 4 is a superconductor capable of forming the superconducting layer 4 laminated on the metal substrate 2 via the intermediate layer 3. These superconductors include high temperature superconductors. Examples of the high-temperature superconductor include yttrium-based high-temperature superconductors, such as YBCO-based oxide superconductors, holmium-based high-temperature superconductors, such as HoBCO-based oxide superconductors, RE123 (rare earth elements such as Y, Nd, and Sm) -based superconductors. Body, AB-Cu-O system (where A is one or more elements of Group IIIa elements of the periodic table such as La, Ce, Y, Sc, Yb, and B is periodic table IIa of Sr, Ba, etc.) An oxide superconductor of one or more group elements).
The superconducting layer 4 can be manufactured by forming a thin film of a superconductor such as YBCO on the metal substrate 2 through the intermediate layer 3 by, for example, chemical vapor deposition (CVD). The thickness of such a superconducting layer 4 can be appropriately determined according to the application, but is usually about 1 μm.

導電性金属層5の材質は、銀、ステンレス、銅、SUS(例えば、SUS304)などが挙げられる。導電性金属層5の厚さは、用途に応じて適宜決めることができるが、通常10〜100μm程度であり、例えば50μmである。
導電性金属層5と超電導層4との間には、例えば、銀の蒸着層が形成されていてもよい。この場合銀の蒸着層の厚さは適宜決めることができ、例えば10μm程度とすることができる。
Examples of the material of the conductive metal layer 5 include silver, stainless steel, copper, and SUS (for example, SUS304). The thickness of the conductive metal layer 5 can be appropriately determined according to the application, but is usually about 10 to 100 μm, for example, 50 μm.
For example, a silver deposition layer may be formed between the conductive metal layer 5 and the superconducting layer 4. In this case, the thickness of the silver vapor deposition layer can be determined as appropriate, and can be, for example, about 10 μm.

一方の超電導線材1aと他方の超電導線材1bの接続部(接続端部)の重複部の長さ、いわゆるラップ長(W)は、用途に応じて適宜決めることができる。ラップ長(W)は、必要とされる接続部の強度によっても異なるが、通常5cm以上、例えば5〜10cm程度あればよい。   The length of the overlapping portion of the connection portion (connection end portion) between one superconducting wire 1a and the other superconducting wire 1b, so-called wrap length (W), can be appropriately determined according to the application. The wrap length (W) varies depending on the required strength of the connecting portion, but is usually 5 cm or more, for example, about 5 to 10 cm.

次に、導電性金属からなる接続板6について説明する。導電性金属からなる接続板6は、銀、銅などの導電性の材質の金属からなる。導電性金属からなる接続板6は、絶縁性の中間層3を介して存在する金属基材2と超電導層4とを電気的に接続する。したがって、例えばクエンチや熱暴走が発生したときに、超電導層4から金属基材2に電流を分流することができる。また、導電性金属からなる接続板6は、各超電導線材1a、1bの接続の界面部分(接続端部)の強度を向上させることができる。
導電性金属からなる接続板6の長さ、厚さ及び形状などは、用途に応じて適宜決めることができる。例えばその長さは、ラップ長(W)の半分以上の長さとすることができる。
Next, the connection plate 6 made of a conductive metal will be described. The connection plate 6 made of a conductive metal is made of a conductive metal such as silver or copper. The connection plate 6 made of a conductive metal electrically connects the metal substrate 2 and the superconducting layer 4 existing via the insulating intermediate layer 3. Therefore, for example, when quenching or thermal runaway occurs, current can be shunted from the superconducting layer 4 to the metal substrate 2. Further, the connection plate 6 made of a conductive metal can improve the strength of the interface portion (connection end portion) of the connection between the superconducting wires 1a and 1b.
The length, thickness, shape, and the like of the connection plate 6 made of a conductive metal can be appropriately determined according to the application. For example, the length can be set to a length of half or more of the wrap length (W).

次に、複数の(ここでは2本の)超電導線材1a、1bの接続方法について説明する。まず、接続すべき超電導線材1a、1bの各接続端部を導電性金属層5をそれぞれ対向させて配置する。次に、このように重ねて配置された接続端部を覆うように超電導線材の一方の金属基材2から他方の導電性金属層5にかけて、導電性金属からなる接続板6を各超電導線材1a、1bと密接させて積重する。そして、各超電導線材同士及び各超電導線材と接続板とを接続する。   Next, a method of connecting a plurality of (here, two) superconducting wires 1a and 1b will be described. First, the connection end portions of the superconducting wires 1a and 1b to be connected are arranged with the conductive metal layer 5 facing each other. Next, a connection plate 6 made of a conductive metal is applied to each superconducting wire 1a from one metal substrate 2 of the superconducting wire to the other conductive metal layer 5 so as to cover the connection end portions arranged in this manner. 1b is stacked closely. And each superconducting wire and each superconducting wire and a connection board are connected.

各超電導線材同士及び各超電導線材と導電性金属からなる接続板とを接続する方法としては、これらを電気的に接続できる方法であればいずれの方法を使用することができる。例えば、半田付け、拡散接合などを用いて接続することができる。   As a method for connecting the respective superconducting wires and each superconducting wire and a connection plate made of a conductive metal, any method can be used as long as these can be electrically connected. For example, the connection can be made using soldering, diffusion bonding, or the like.

例えば、半田付けを用いて接続する場合には、一方の超電導線材1aの導電性金属層5の接続される接続端部に半田を配置し、他方の超電導線材1bの導電性金属層5の接続される接続端部を、この半田上に対向して重ね合わせて配置し、加熱又は場合により加圧下で加熱することにより半田を溶融させて接続する。
使用する半田は、超電導線材1の種類、導電性金属層5の種類などに応じて適宜決めることができる。半田としては、例えば、銀、銅、インジウム、すず−銀系半田、すず−銅系半田、すず−鉛半田、インジウム−銀系半田、すず−インジウム系半田、すず−ビスマス系、すず−ビスマス−インジウム系半田などの半田を使用することができる。また、半田付けの条件は、使用する半田の種類などに応じて適宜決めることができる。
For example, when connecting using soldering, solder is placed at the connection end of the superconducting wire 1a to which the conductive metal layer 5 is connected, and the conductive metal layer 5 of the other superconducting wire 1b is connected. The connected end portions are arranged so as to oppose each other on the solder, and the solder is melted and connected by heating or, optionally, heating under pressure.
The solder to be used can be appropriately determined according to the type of the superconducting wire 1 and the type of the conductive metal layer 5. For example, silver, copper, indium, tin-silver solder, tin-copper solder, tin-lead solder, indium-silver solder, tin-indium solder, tin-bismuth, tin-bismuth-- Solder such as indium solder can be used. The soldering conditions can be determined as appropriate according to the type of solder used.

また、例えば拡散接合を用いて接合する場合には、一方の超電導線材1aの導電性金属層5の接続される接続端部と、他方の超電導線材1bの導電性金属層5の接続される接続端部を対向して重ね合わせて配置し、加熱又は場合により加圧下で加熱することにより接続する。拡散接合の条件は、使用する超電導線材1の種類、導電性金属層5の種類などに応じて適宜決めることができる。   For example, in the case of bonding using diffusion bonding, a connection end portion to which the conductive metal layer 5 of one superconducting wire 1a is connected and a connection to which the conductive metal layer 5 of the other superconducting wire 1b is connected. The ends are arranged so as to oppose each other and connected by heating or optionally heating under pressure. The conditions for diffusion bonding can be appropriately determined according to the type of superconducting wire 1 used, the type of conductive metal layer 5, and the like.

このように、超電導層と金属基材とを確実に電気的に接続することにより、クエンチや熱暴走などが発生したときに、超電導層から金属基材に電流を分流することができ、より低コストでコンパクトに所定の安定性を有する超電導線材の接続構造を提供することができる。また、各超電導線材の接続の界面部分の強度を向上させることができる。   In this way, by reliably connecting the superconducting layer and the metal base material, current can be shunted from the superconducting layer to the metal base material when a quench or thermal runaway occurs. A superconducting wire connecting structure having a predetermined stability can be provided in a compact and cost-effective manner. Moreover, the strength of the interface portion of the connection of each superconducting wire can be improved.

次に、本発明の第2の実施形態について説明する。図2は、本発明の第2の実施形態に係る超電導線材の接続構造を示す断面図である。   Next, a second embodiment of the present invention will be described. FIG. 2 is a cross-sectional view showing a superconducting wire connection structure according to a second embodiment of the present invention.

この実施形態に係る超電導線材の接続構造は、超電導線材1において、各超電導線材の金属基材2の、中間層3が形成されている面とは反対側に安定化金属層7が形成されている。安定化金属層7は、例えば銅、銀などの材質からなる。安定化金属層7の厚さは、用途に応じて適宜きめることができる。例えば、50〜100μm程度とすることができる。安定化金属層7は、例えば半田付け、拡散接合などの方法により接続される。   In the superconducting wire connecting structure according to this embodiment, in the superconducting wire 1, a stabilizing metal layer 7 is formed on the opposite side of the surface of the metal base 2 of each superconducting wire from which the intermediate layer 3 is formed. Yes. The stabilizing metal layer 7 is made of a material such as copper or silver. The thickness of the stabilizing metal layer 7 can be appropriately determined depending on the application. For example, the thickness can be about 50 to 100 μm. The stabilizing metal layer 7 is connected by a method such as soldering or diffusion bonding.

この実施形態によれば、安定化金属層7は、金属基材2に面して存在しているので、例えば、超電導層4にクエンチや熱暴走が発生したときに、金属基材2の他に、安定化金属層7にも電流を分流することができるので、より安定性を有する超電導線材の接続構造を提供することができる。   According to this embodiment, since the stabilizing metal layer 7 is present facing the metal substrate 2, for example, when quenching or thermal runaway occurs in the superconducting layer 4, In addition, since the current can also be shunted to the stabilized metal layer 7, it is possible to provide a superconducting wire connecting structure having more stability.

次に、本発明の第3の実施形態における図3乃至図5に基づいて説明する。図3は、この実施形態における各超電導線材の接続構造を示す断面図、図4は、この実施形態における超電導線材の端部における接続構造を示す断面図、図5は、この実施形態における超電導線材の長手方向における少なくとも1箇所での接続構造を示す断面図である。   Next, a description will be given based on FIGS. 3 to 5 in the third embodiment of the present invention. 3 is a cross-sectional view showing the connection structure of each superconducting wire in this embodiment, FIG. 4 is a cross-sectional view showing the connection structure at the end of the superconducting wire in this embodiment, and FIG. 5 is a superconducting wire in this embodiment. It is sectional drawing which shows the connection structure in the at least 1 place in the longitudinal direction.

まず、この実施形態において図3に示される複数の(ここでは2本の)超電導線材1a、1bの接続について説明する。この実施形態における別の超電導線材11は、金属基材12、中間層13、超電導層14、導電性金属層15が順次積層されて形成される。この実施形態において、別の超電導線材11は、超電導線材1と異なるものであっても、同種のものであってもよいが、製造が容易であるため同種のものが好ましい。別の超電導線材11の長さは、用途に応じて適宜決めることができるが、通常5cm〜10cm程度である。   First, connection of a plurality (here, two) of superconducting wires 1a and 1b shown in FIG. 3 in this embodiment will be described. Another superconducting wire 11 in this embodiment is formed by sequentially laminating a metal substrate 12, an intermediate layer 13, a superconducting layer 14, and a conductive metal layer 15. In this embodiment, another superconducting wire 11 may be different from the superconducting wire 1 or may be the same type, but the same type is preferable because it is easy to manufacture. The length of another superconducting wire 11 can be appropriately determined according to the application, but is usually about 5 cm to 10 cm.

まず、接続すべき超電導線材1a、1bの接続端部の端面同士を突き合わせて配置する。次に、この接続端部を覆うように、各超電導線材1a、1bの導電性金属層5上に、各超電導線材1a、1bとは別の超電導線材11を、それぞれの導電性金属層5及び15の面が対向するように積重する。さらに、この接続端部を覆うように、各超電導線材1a、1bの金属基材2上に、導電性金属からなる接続板8を積重する。そして、各超電導線材1a、1bと別の超電導線材11、及び各超電導線材1a、1bと導電性金属からなる接続板8とをそれぞれ接続する。ここで、接続する方法としては、本発明の第1の実施形態と同様に、半田付け、拡散接合を用いて電気的に接続を行うことができる。また、突き合わされて配置された各超電導線材1a、1bは、別の超電導線材11を介して電流が流れるので、各超電導線材1a、1bの端面同士は接触していても又は接触していなくてもよい。また、各超電導線材1a、1bの端面同士は電気的に接続、例えば半田付け若しくは拡散接合されていても又はされていなくてもよい。   First, the end surfaces of the connection end portions of the superconducting wires 1a and 1b to be connected are arranged to face each other. Next, superconducting wires 11 different from the respective superconducting wires 1a and 1b are placed on the conductive metal layers 5 of the respective superconducting wires 1a and 1b so as to cover the connection end portions. The 15 surfaces are stacked so that they face each other. Furthermore, a connection plate 8 made of a conductive metal is stacked on the metal base 2 of each superconducting wire 1a, 1b so as to cover this connection end. And each superconducting wire 1a, 1b and another superconducting wire 11, and each superconducting wire 1a, 1b and the connection board 8 which consists of an electroconductive metal are each connected. Here, as a method of connection, similarly to the first embodiment of the present invention, electrical connection can be performed using soldering and diffusion bonding. Moreover, since each superconducting wire 1a, 1b arrange | positioned face-to-face, an electric current flows through another superconducting wire 11, even if the end surfaces of each superconducting wire 1a, 1b are contacting, it is not contacting. Also good. Further, the end surfaces of each superconducting wire 1a, 1b may or may not be electrically connected, for example, soldered or diffusion bonded.

このように各超電導線材1a、1b同士を突き合わせ、別の超電導線材11を介して電気的に接続することにより、接続による超電導線材の長手方向での面の反転がないので、超電導線材の製造性が向上する。   Thus, since each superconducting wire 1a, 1b is faced | matched and it electrically connects via another superconducting wire 11, there is no inversion of the surface in the longitudinal direction of the superconducting wire by connection, Therefore Manufacturability of a superconducting wire Will improve.

次に、この実施形態において図4で示される超電導線材の接続について説明する。まず、図4(a)に示すように、金属基材2、中間層3、超電導層4及び導電性金属層5が順次積層して形成される超電導線材1は、その端部において、導電性金属層5を介して金属端子21と電気的に接続されている。金属端子21は、導電性金属、例えば銀、銅で構成される。金属端子21から、導電性金属層5を介して超電導層4に電流が流れる。   Next, the connection of the superconducting wire shown in FIG. 4 in this embodiment will be described. First, as shown in FIG. 4 (a), the superconducting wire 1 formed by sequentially laminating the metal substrate 2, the intermediate layer 3, the superconducting layer 4 and the conductive metal layer 5 is electrically conductive at the end. The metal terminal 21 is electrically connected through the metal layer 5. The metal terminal 21 is made of a conductive metal such as silver or copper. A current flows from the metal terminal 21 to the superconducting layer 4 through the conductive metal layer 5.

超電導線材1の端部、すなわち金属端子21の少なくとも一方において、超電導線材1の金属基材2と金属端子21が、導電性金属からなる接続板22を介して電気的に接続される。導電性金属からなる接続板22は、その材質及び接続方法などは、本発明の第1の実施形態における導電性金属からなる接続板6と同様である。接続する方法としては、例えば半田付け、拡散接合などが挙げられる。   In at least one of the ends of the superconducting wire 1, that is, the metal terminal 21, the metal base 2 and the metal terminal 21 of the superconducting wire 1 are electrically connected via a connection plate 22 made of a conductive metal. The connection plate 22 made of a conductive metal is the same in material and connection method as the connection plate 6 made of a conductive metal in the first embodiment of the present invention. Examples of the connection method include soldering and diffusion bonding.

図4(b)は、超電導線材1が、その端部において、金属基材2を介して金属端子21と接続されている。図4(b)では、超電導線材1の端部、すなわち金属端子21の両方において、超電導線材1の導電性金属層5と金属端子21が、導電性金属からなる接続板22を介して電気的に接続される。これは、金属端子21から超電導層4へ電流が流れるために、超電導線材1の端部の両方において、導電性金属からなる接続板22で接続する必要があるからである。図4(a)及び図4(b)において、超電導線材1の端部とは、超電導線材1が接続された線材である場合には、その線材の末端部を意味する。
図4(a)の接続構造と図4(b)の接続構造のうち、図4(a)の接続構造の方が製造が容易なため、また、超電導線材1の端部における金属端子21と導電性金属からなる接続板22との接続が少なくとも一方でよいため好ましい。
In FIG. 4B, the superconducting wire 1 is connected to the metal terminal 21 via the metal base 2 at the end. In FIG. 4 (b), the conductive metal layer 5 and the metal terminal 21 of the superconducting wire 1 are electrically connected to each other through the connection plate 22 made of a conductive metal at both ends of the superconducting wire 1, that is, the metal terminal 21. Connected to. This is because a current flows from the metal terminal 21 to the superconducting layer 4, so that it is necessary to connect the connection plate 22 made of a conductive metal at both ends of the superconducting wire 1. 4 (a) and 4 (b), the end portion of the superconducting wire 1 means the end portion of the wire when the superconducting wire 1 is connected to the wire.
Of the connection structure of FIG. 4 (a) and the connection structure of FIG. 4 (b), the connection structure of FIG. 4 (a) is easier to manufacture, and the metal terminal 21 at the end of the superconducting wire 1 The connection with the connection plate 22 made of a conductive metal is preferable because at least one of the connections is sufficient.

このように超電導線材1の端部において、金属端子21と導電性金属からなる接続板22とが電気的に接続されることにより、超電導層4と金属基材2とが電気的に接続される。   In this way, at the end of the superconducting wire 1, the metal terminal 21 and the connection plate 22 made of conductive metal are electrically connected, so that the superconducting layer 4 and the metal substrate 2 are electrically connected. .

次に、この実施形態において図5に示される超電導線材の接続について説明する。図5は、超電導線材1の長手方向における所定の箇所において導電性金属からなる接続板23で超電導線材1の超電導層4と金属基材2とを接続する構造の断面図である。金属基材2、中間層3、超電導層4、及び導電性金属層5が順次積層して形成される超電導線材1のうち、絶縁性の中間層3を介して存在する導電性金属からなる基材2と超電導層4とを、超電導線材1の長手方向の所定の箇所において、導電性金属からなる接続板23によって接触させ、電気的に接続する。   Next, the connection of the superconducting wire shown in FIG. 5 in this embodiment will be described. FIG. 5 is a cross-sectional view of a structure in which the superconducting layer 4 of the superconducting wire 1 and the metal substrate 2 are connected by a connecting plate 23 made of a conductive metal at a predetermined location in the longitudinal direction of the superconducting wire 1. Of the superconducting wire 1 formed by sequentially laminating the metal substrate 2, the intermediate layer 3, the superconducting layer 4, and the conductive metal layer 5, a group made of a conductive metal existing via the insulating intermediate layer 3. The material 2 and the superconducting layer 4 are brought into contact with each other at a predetermined position in the longitudinal direction of the superconducting wire 1 by a connecting plate 23 made of a conductive metal, and are electrically connected.

導電性金属からなる接続板23の材質としては、本発明の第1の実施態様における導電性金属からなる接続板6と同様であり、銀、銅などが挙げられる。また、導電性金属からなる接続板(接続部)23は、超電導線材1の超電導層4と金属基材2とを接続できる形状であればいずれの形状も使用することができる。例えば、図5に示されるような断面形状がコの字型の形状のものや、内部が空洞である長方形形状のものなどを使用できる。
この導電性金属からなる接続板23による電気的な接続は、金属基材2と超電導層4とを電気的に接続できる方法を用いることができる。例えば、半田付け、拡散接合などを用いることができる。
The material of the connection plate 23 made of a conductive metal is the same as that of the connection plate 6 made of a conductive metal in the first embodiment of the present invention, and examples thereof include silver and copper. In addition, the connecting plate (connecting portion) 23 made of a conductive metal can use any shape as long as it can connect the superconducting layer 4 of the superconducting wire 1 and the metal substrate 2. For example, a U-shaped cross section as shown in FIG. 5 or a rectangular shape having a hollow inside can be used.
For the electrical connection by the connection plate 23 made of a conductive metal, a method capable of electrically connecting the metal substrate 2 and the superconducting layer 4 can be used. For example, soldering or diffusion bonding can be used.

この導電性金属からなる接続板23による電気的な接続の箇所は、超電導線材1の長手方向において1箇所以上であればよいが、複数個所において接続することにより、例えばクエンチの発生時に、より迅速に電流を超電導層4から金属基材2に流すことができる。なお、この実施形態における超電導層4から金属基材2に流すための超電導線材の接続は、図4の超電導線材1の端部(金属端子21)における接続及び図5の超電導線材1の長手方向における所定の箇所の接続のうちの少なくともいずれか一方の接続があればよいが、これらの両方の接続を有することもできる。この場合、例えばクエンチの発生時に、さらにより迅速に電流を超電導層4から金属基材2に流すことができるため好ましい。   The electrical connection by the connecting plate 23 made of the conductive metal may be at least one place in the longitudinal direction of the superconducting wire 1, but by connecting at a plurality of places, for example, more quickly when a quench occurs. A current can be passed from the superconducting layer 4 to the metal substrate 2. In addition, the connection of the superconducting wire for flowing from the superconducting layer 4 to the metal substrate 2 in this embodiment is the connection at the end (metal terminal 21) of the superconducting wire 1 in FIG. 4 and the longitudinal direction of the superconducting wire 1 in FIG. It is sufficient if there is at least one of the connections at a predetermined location in FIG. 1, but it is also possible to have both of these connections. In this case, for example, when quenching occurs, it is preferable because a current can flow from the superconducting layer 4 to the metal substrate 2 even more rapidly.

この実施形態における超電導線材の接続は、図3に示すように各超電導線材1a、1bを接続し、かつ、図4及び/又は図5に示されるように超電導線材1の端部及び/又は超電導線材1の長手方向の少なくとも1箇所で導電性金属からなる接続板22及び/又は23を介して超電導線材1の超電導層4と金属基材2とが接続される構成を有する。図3に示すような超電導線材1a、1bの接続により、超電導線材の接続により長手方向における超電導線材の面の反転がないので、超電導線材の製造性が向上し、図4及び/又は図5に示すような超電導線材1の超電導層4と金属基材2との接続により、例えばクエンチの発生時に、電流を超電導層4から金属基材2に電流を分流することができ、より低コストでコンパクトに所定の安定性を有する超電導線材の接続構造を提供することができる。   The superconducting wires in this embodiment are connected by connecting the superconducting wires 1a and 1b as shown in FIG. 3, and the end of the superconducting wire 1 and / or superconducting as shown in FIGS. 4 and / or 5. The superconducting layer 4 of the superconducting wire 1 and the metal substrate 2 are connected to each other through a connecting plate 22 and / or 23 made of a conductive metal at least at one place in the longitudinal direction of the wire 1. By connecting the superconducting wires 1a and 1b as shown in FIG. 3, there is no inversion of the surface of the superconducting wire in the longitudinal direction due to the connection of the superconducting wires, so that the manufacturability of the superconducting wire is improved, and FIG. 4 and / or FIG. By connecting the superconducting layer 4 of the superconducting wire 1 and the metal base 2 as shown, for example, when a quench occurs, the current can be shunted from the superconducting layer 4 to the metal base 2, which is more compact at a lower cost. In addition, a superconducting wire connecting structure having a predetermined stability can be provided.

次に、本発明の第4の実施形態について図6に基づいて説明する。図6は、この実施形態における超電導線材の接続構造を示す断面図である。この実施形態は、本発明の第3の実施形態における図3に示す超電導線材の接続構造に対応する接続構造である。   Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 6 is a cross-sectional view showing the connection structure of the superconducting wire in this embodiment. This embodiment is a connection structure corresponding to the connection structure of the superconducting wire shown in FIG. 3 in the third embodiment of the present invention.

この実施形態では、図3に示すような超電導線材1a、1bの接続構造に、さらに導電性金属からなる接続板6で接続する接続構造を有する。図6に示すように、別の超電導線材11の両側の接続端部を覆うように別の超電導線材11の金属基材12から各超電導線材1a、1bの導電性金属層5にかけて、導電性金属からなる接続板6が密接されて積重される。導電性金属からなる接続板6は、図6に示されるように2つの導電性金属からなる接続板6からなるものであってもよく、一体となった1つの導電性金属からなる接続板6であってもよい。   In this embodiment, the connection structure of the superconducting wires 1a and 1b as shown in FIG. 3 is further connected by a connection plate 6 made of a conductive metal. As shown in FIG. 6, a conductive metal is formed from the metal substrate 12 of another superconducting wire 11 to the conductive metal layer 5 of each superconducting wire 1 a, 1 b so as to cover the connection ends on both sides of the other superconducting wire 11. The connection plates 6 made of are closely stacked and stacked. As shown in FIG. 6, the connection plate 6 made of a conductive metal may be made of a connection plate 6 made of two conductive metals, or the connection plate 6 made of one conductive metal that is integrated. It may be.

このようにこの実施形態においては、導電性金属からなる接続板が接続されることにより、超電導線材の接続がより確実になり、超電導線材の接続の界面部分の強度がさらに増大する。   Thus, in this embodiment, by connecting the connection plate made of a conductive metal, the connection of the superconducting wire becomes more reliable, and the strength of the interface portion of the connection of the superconducting wire further increases.

次に、本発明の第5の実施形態について図7に基づいて説明する。図7は、この実施形態における超電導線材の接続構造を示す断面図である。この実施形態は、本発明の第3の実施形態における図3に示す各超電導線材の接続構造に対応する接続構造である。   Next, a fifth embodiment of the present invention will be described with reference to FIG. FIG. 7 is a cross-sectional view showing a connection structure of superconducting wires in this embodiment. This embodiment is a connection structure corresponding to the connection structure of each superconducting wire shown in FIG. 3 in the third embodiment of the present invention.

この実施の形態では、図7に示すように、複数本(図面では2本)の超電導線材1a、1bの導電性金属層5が同じ向きになるような方向で突き合わせ、超電導線材1a、1bの導電性金属層5の接続端部と重なるように、導電性金属板、すなわち安定化金属層24を配置する。各超電導線材1a、1bの金属基材2は、導電性金属からなる接続板8を配置して電気的に接続する。安定化金属層24と超電導線材1の導電性金属層5との接続は、これらを電気的に接続できる方法、例えば半田付け、拡散接合などを使用することができる。
安定化金属層24は、導電性の材料から形成され、各超電導線材1a、1bの超電導層4の電気的な接続を行なえる材質のものであればよい。これらのうち、抵抗率の少ない金属、例えば銅、銀が好ましい。安定化金属層24の厚さ及び長さは使用される超電導線材の種類などに応じて適宜決めることができる。
In this embodiment, as shown in FIG. 7, a plurality (two in the drawing) of superconducting wires 1a and 1b are butted in the direction in which the conductive metal layers 5 are in the same direction. A conductive metal plate, that is, a stabilizing metal layer 24 is disposed so as to overlap the connection end portion of the conductive metal layer 5. The metal base 2 of each of the superconducting wires 1a and 1b is electrically connected by arranging a connection plate 8 made of a conductive metal. The stabilization metal layer 24 and the conductive metal layer 5 of the superconducting wire 1 can be connected by a method capable of electrically connecting them, such as soldering or diffusion bonding.
The stabilizing metal layer 24 may be made of a conductive material and may be made of a material that can electrically connect the superconducting layers 4 of the superconducting wires 1a and 1b. Of these, metals with low resistivity, such as copper and silver, are preferred. The thickness and length of the stabilizing metal layer 24 can be appropriately determined according to the type of superconducting wire used.

この実施の形態によればより低コストで超電導線材の接続構造を提供することができる。   According to this embodiment, it is possible to provide a superconducting wire connecting structure at lower cost.

次に、本発明の内容を実施例に基づいて説明する。   Next, the contents of the present invention will be described based on examples.

(実施例1)
2本の超電導線材を用意した。超電導線材は、ハステロイテープ上にイオンビームアシストスパッタリング法によりYSZ(イットリウム安定化ジルコニア)面配向中間層(厚さ200nm)を形成したテープ状部材(幅2cm×長さ10m×厚さ100μm)上に、厚さ1μmのY−Ba−Cu−O系の超電導層を形成し、さらにその上に厚さ10μmの銀の蒸着層を介して厚さ50μmの銅層が形成されたものを用いた。
次いで、一方の超電導線材の銅層の表面の接続端部にスズ−銀系半田を配置し、この半田が配置された接続端部上に他方の超電導線材の銅層の表面の接続端部を重ね合わせた。
さらに、この接続端部を覆うように超電導線材の一方のハステロイから他方の銅層にかけて、銅製の接続板を、半田を用いて各超電導線材と密接させて積重した。
250℃の加熱による半田付けにより電気的に接続して、図1に示すような超電導線材の接続構造を得た。ここで一方の超電導線材と他方の超電導線材の接続端部のラップ長(W)は5cmであった。また、接続端部の半田の厚みは、10μmであった。
この結果、一方の超電導線材の超電導層と他方の超電導線材のハステロイ(基材)との良好な接続が得られた。また、超電導線材の接続端部の接合強度が向上した。
(Example 1)
Two superconducting wires were prepared. The superconducting wire is formed on a tape-like member (width 2 cm × length 10 m × thickness 100 μm) in which a YSZ (yttrium stabilized zirconia) plane orientation intermediate layer (thickness 200 nm) is formed on a Hastelloy tape by an ion beam assisted sputtering method. Then, a Y-Ba-Cu-O-based superconducting layer having a thickness of 1 μm was formed, and a copper layer having a thickness of 50 μm was formed thereon via a silver deposited layer having a thickness of 10 μm.
Next, tin-silver solder is placed on the connection end of the surface of the copper layer of one superconducting wire, and the connection end of the surface of the copper layer of the other superconducting wire is placed on the connection end where this solder is placed. Superimposed.
Further, a copper connection plate was stacked in close contact with each superconducting wire using solder from one hastelloy of the superconducting wire to the other copper layer so as to cover the connection end.
Electrical connection was made by soldering by heating at 250 ° C. to obtain a superconducting wire connection structure as shown in FIG. Here, the wrap length (W) of the connection end of one superconducting wire and the other superconducting wire was 5 cm. Moreover, the thickness of the solder at the connection end was 10 μm.
As a result, a good connection between the superconducting layer of one superconducting wire and the Hastelloy (base material) of the other superconducting wire was obtained. Moreover, the joining strength of the connection end of the superconducting wire was improved.

(比較例1)
銅製の接続板を使用しない以外は、実施例1と同様にして超電導線材の接続構造を得た。
この結果、一方の超電導線材の超電導層と他方の超電導線材の基材層の間の良好な接続構造を得ることができなかった。
(Comparative Example 1)
A superconducting wire connection structure was obtained in the same manner as in Example 1 except that a copper connection plate was not used.
As a result, it was not possible to obtain a good connection structure between the superconducting layer of one superconducting wire and the base layer of the other superconducting wire.

(実施例2)
実施例1と同様の2本の超電導線材を用意した。これらの2本の超電導線材の接続端部の端面同士を突き合わせ、接続端部を覆うように、各超電導線材の銅層上に、この超電導線材と同種の超電導線材(長さ:5cm)を、スズ−銀系半田を介して、それぞれの銅層の面が対向するように、積重した。次に、各超電導線材のハステロイ(基材)上に、銅製の接続板(長さ:5cm)が対向するように積重した。
さらに、超電導線材の中央近部において、超電導層とハステロイ(基材)とを、スズ−銀系半田を介して、断面形状がコの字型の銅製の接続板を接触させた。250℃の加熱による半田付けにより電気的に接続して、図3及び図5に示すような超電導線材の接続構造を得た。
この結果、超電導線材の接続による長手方向における超電導線材の面の反転がないので、超電導線材の製造性が向上し、超電導線材の超電導層とハステロイ(基材)との良好な接続が得られた。
(Example 2)
Two superconducting wires similar to those in Example 1 were prepared. The end surfaces of the connecting end portions of these two superconducting wires are butted together, and on the copper layer of each superconducting wire, a superconducting wire of the same kind as this superconducting wire (length: 5 cm) is covered. Stacking was performed so that the surfaces of the respective copper layers faced each other through tin-silver solder. Next, it piled up so that the copper connection board (length: 5 cm) might oppose on the Hastelloy (base material) of each superconducting wire.
Further, in the vicinity of the center of the superconducting wire, the superconducting layer and Hastelloy (base material) were brought into contact with a copper connection plate having a U-shaped cross section through a tin-silver solder. Electrical connection was made by soldering by heating at 250 ° C. to obtain a superconducting wire connection structure as shown in FIGS.
As a result, since there is no inversion of the surface of the superconducting wire in the longitudinal direction due to the connection of the superconducting wire, the manufacturability of the superconducting wire is improved, and a good connection between the superconducting layer of the superconducting wire and Hastelloy (base material) is obtained. .

本発明の第1の実施形態に係る超電導線材の接続構造を示す断面図である。It is sectional drawing which shows the connection structure of the superconducting wire which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る超電導線材の接続構造を示す断面図である。It is sectional drawing which shows the connection structure of the superconducting wire which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態における超電導線材の接続構造を示す断面図である。It is sectional drawing which shows the connection structure of the superconducting wire in the 3rd Embodiment of this invention. 本発明の第3の実施形態における超電導線材の端部における接続構造を示す断面図である。It is sectional drawing which shows the connection structure in the edge part of the superconducting wire in the 3rd Embodiment of this invention. 本発明の第3の実施形態における超電導線材の長手方向の所定の箇所における接続構造を示す断面図である。It is sectional drawing which shows the connection structure in the predetermined location of the longitudinal direction of the superconducting wire in the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る超電導線材の接続構造を示す断面図である。It is sectional drawing which shows the connection structure of the superconducting wire which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る超電導線材の接続構造を示す断面図である。It is sectional drawing which shows the connection structure of the superconducting wire which concerns on the 5th Embodiment of this invention.

符号の説明Explanation of symbols

1,1a,1b…超電導線材、2…金属基材、3…中間層、4…超電導層、5…導電性金属層、6…導電性金属からなる接続板、7…安定化金属層、8…導電性金属からなる接続板、11…別の超電導線材、12…金属基材、13…中間層、14…超電導層、15…導電性金属層、21…金属端子、22…導電性金属からなる接続板、23…導電性金属からなる接続板、24…安定化金属層 DESCRIPTION OF SYMBOLS 1, 1a, 1b ... Superconducting wire, 2 ... Metal base material, 3 ... Intermediate | middle layer, 4 ... Superconducting layer, 5 ... Conductive metal layer, 6 ... Connection board which consists of conductive metals, 7 ... Stabilized metal layer, 8 ... Connecting plate made of conductive metal, 11 ... other superconducting wire, 12 ... metal substrate, 13 ... intermediate layer, 14 ... superconducting layer, 15 ... conductive metal layer, 21 ... metal terminal, 22 ... from conductive metal Connecting plate, 23 ... connecting plate made of conductive metal, 24 ... stabilizing metal layer

Claims (4)

金属基材の片面に中間層を介して超電導層及び導電性金属層を順に積層形成してなる超電導線材の接続方法であって、
接続すべき前記超電導線材それぞれにおける各接続端部前記導電性金属層を互いに対向させて配置する配置工程と、
前記接続端部の各々の端面を覆うように前記超電導線材のうち一方の金属基材から他方の導電性金属層にかけて、導電性金属からなる接続板を前記超電導線材と密接させて積重する積重工程と、
前記各超電導線材同士及び前記各超電導線材と前記接続板とを接続する接続工程と
を含むことを特徴とする超電導線材の接続方法。
A superconducting wire connecting method in which a superconducting layer and a conductive metal layer are sequentially laminated on one side of a metal substrate via an intermediate layer,
An arrangement step of arranging each other not face to the conductive metal layer of the connection end portion in the superconducting wire, respectively to be connected,
Wherein toward the connection end portion of each of the end faces of the respective superconducting wires while the other of the conductive metal layer from the metal substrate of the covering of the connection plate made of a conductive metal in intimate contact with said superconducting wire stacking Stacking process,
A method of connecting superconducting wires, comprising connecting each of the superconducting wires and connecting each of the superconducting wires and the connecting plate.
金属基材の一方の面に中間層を介して超電導層及び導電性金属層を順に積層形成してなる超電導線材の接続方法であって、
接続すべき前記超電導線材の接続端部の端面同士を突き合わせる配置工程と、
前記接続端部を覆うように、前記各超電導線材の導電性金属層上に、前記各超電導線材とは別の超電導線材を、それぞれの導電性金属層の面が対向するように積重する第1の積重工程と、
前記各超電導線材の前記金属基材の他方の面上に、第1の導電性金属からなる接続板が対向するように積重する第2の積重工程と、
前記接続すべき超電導線材の端部又は長手方向の少なくとも1箇所において、前記超電導線材の導電性金属層前記別の超電導線材の前記金属基材とを第2の導電性金属からなる接続板により接触させる接触工程と、
前記各超電導線材と前記別の超電導線材、前記各超電導線材と前記第1の接続板、及び前記第2の接続板と前記超電導線材および前記別の超電導線材を、それぞれ接続する接続工程と
を含むことを特徴とする超電導線材の接続方法。
A superconducting wire connecting method in which a superconducting layer and a conductive metal layer are sequentially laminated on one surface of a metal substrate via an intermediate layer,
Arrangement step of abutting the end faces of the connecting end of the superconducting wire to be connected;
So as to cover the connection end portion, the conductive metal layer of the superconducting wire, said another superconducting wire and the superconducting wire, the surface of each of the conductive metal layer is stacked so as to face 1 stacking process,
A second stacking step of stacking the connection plates made of the first conductive metal on the other surface of the metal substrate of each superconducting wire,
At least at one end of the superconducting wire to be connected or in the longitudinal direction, the conductive metal layer of the superconducting wire and the metal substrate of the other superconducting wire are connected by a connecting plate made of a second conductive metal. A contact process for contacting;
And connecting each of the superconducting wires and the other superconducting wire, connecting each of the superconducting wires and the first connecting plate, and the second connecting plate , the superconducting wire, and the other superconducting wire. A superconducting wire connecting method characterized by the above.
前記第1の積重工程が、前記別の超電導線材とは異種の導電性金属板を、各超電導線材の導電性金属層上に、対向するように積重する
ことを特徴とする請求項2に記載の超電導線材の接続方法。
3. The first stacking step stacks a conductive metal plate different from the other superconducting wire on the conductive metal layer of each superconducting wire so as to face each other. The connection method of the superconducting wire described in 1.
請求項1乃至3のいずれか1項に記載の接続方法の少なくとも1つを用いて接続された接続部を有することを特徴とする超電導線材。   A superconducting wire comprising a connecting portion connected by using at least one of the connecting methods according to any one of claims 1 to 3.
JP2006086808A 2006-03-28 2006-03-28 Superconducting wire connection method and superconducting wire Active JP4810268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006086808A JP4810268B2 (en) 2006-03-28 2006-03-28 Superconducting wire connection method and superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006086808A JP4810268B2 (en) 2006-03-28 2006-03-28 Superconducting wire connection method and superconducting wire

Publications (2)

Publication Number Publication Date
JP2007266149A JP2007266149A (en) 2007-10-11
JP4810268B2 true JP4810268B2 (en) 2011-11-09

Family

ID=38638868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006086808A Active JP4810268B2 (en) 2006-03-28 2006-03-28 Superconducting wire connection method and superconducting wire

Country Status (1)

Country Link
JP (1) JP4810268B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038826A1 (en) 2015-09-04 2017-03-09 株式会社フジクラ Connection structure body for oxide superconducting wire material and method for manufacturing same
CN107438887A (en) * 2016-03-11 2017-12-05 住友电气工业株式会社 Superconducting line and the method for manufacturing superconducting line
US10706991B2 (en) 2015-02-12 2020-07-07 Sumitomo Electric Industries, Ltd. Method for producing a superconducting wire material lengthened

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4697128B2 (en) * 2006-11-30 2011-06-08 住友電気工業株式会社 Superconducting coil
KR100945201B1 (en) * 2007-10-31 2010-03-03 한국전기연구원 Superconductor tape with stabilizer and method thereof
JP5118990B2 (en) * 2008-02-05 2013-01-16 中部電力株式会社 Superconducting tape wire and defect repair method
JP5416924B2 (en) * 2008-06-18 2014-02-12 株式会社東芝 Superconducting wire and method for manufacturing the same
JP5175640B2 (en) * 2008-06-30 2013-04-03 株式会社東芝 Superconducting coil
JP5405069B2 (en) * 2008-08-14 2014-02-05 公益財団法人国際超電導産業技術研究センター Tape-shaped oxide superconductor and substrate used therefor
JP5375042B2 (en) * 2008-11-17 2013-12-25 富士電機株式会社 Superconducting coil for induction equipment
WO2010126099A1 (en) 2009-04-28 2010-11-04 財団法人 国際超電導産業技術研究センター Current terminal structure of superconducting wire material and superconducting cable having this current terminal structure
JP5297271B2 (en) * 2009-06-09 2013-09-25 住友電気工業株式会社 Intermediate connection structure of superconducting cable
JP5007841B2 (en) * 2009-06-18 2012-08-22 住友電気工業株式会社 Superconducting wire connecting method and connecting device
JP5268805B2 (en) * 2009-07-08 2013-08-21 株式会社東芝 Superconducting wire connection structure and superconducting coil device
JP5552805B2 (en) * 2009-12-14 2014-07-16 富士電機株式会社 Oxide superconducting wire connection method
JP5548441B2 (en) * 2009-12-24 2014-07-16 株式会社フジクラ Superconducting connection structure, superconducting wire connecting method, superconducting coil device
JP5568361B2 (en) * 2010-04-16 2014-08-06 株式会社フジクラ Superconducting wire electrode joint structure, superconducting wire, and superconducting coil
JP5548108B2 (en) * 2010-11-22 2014-07-16 株式会社神戸製鋼所 Oxide superconducting solenoid coil and method for manufacturing the same
JP6040515B2 (en) * 2011-03-17 2016-12-07 富士電機株式会社 Superconducting coil manufacturing method
JP2013122981A (en) * 2011-12-12 2013-06-20 Hitachi Ltd Superconducting magnet and method for connecting superconducting wire rod
EP2728591B1 (en) 2012-05-02 2018-04-25 Furukawa Electric Co., Ltd. Superconducting wire material, superconducting wire material connection structure, superconducting wire material connection method, and treatment method of superconducting wire material end
DK2709224T3 (en) * 2012-09-14 2018-04-30 Nexans Arrangement for electrically conductive connection by two superconducting conductors
WO2014104333A1 (en) * 2012-12-28 2014-07-03 株式会社フジクラ Connection structure of oxide superconducting wires, method for producing same, and superconducting device
EP2945168B1 (en) 2013-01-09 2017-12-06 Fujikura Ltd. Oxide superconducting wire, connection structure thereof, and superconducting device
KR101535844B1 (en) * 2013-12-09 2015-07-13 케이조인스(주) METHOD OF SPLICING AND REINFORCING OF SPLICING PART FOR PERSISTENT CURRENT MODE OF 2G ReBCO HIGH TEMPERATURE SUPERCONDUCTORS
JP6364235B2 (en) * 2014-05-21 2018-07-25 中部電力株式会社 Superconducting coil electrode structure
JP6356048B2 (en) * 2014-11-12 2018-07-11 古河電気工業株式会社 Superconducting wire connection structure, superconducting cable, superconducting coil, and superconducting wire connection processing method
CN110582815B (en) * 2017-05-19 2021-01-01 住友电气工业株式会社 Superconducting wire, superconducting coil, superconducting magnet, and superconducting device
KR102453489B1 (en) * 2018-04-10 2022-10-11 한국전기연구원 High-temperature superconducting wire with superconducting layer laminated and method for manufacturing the same
WO2021112250A1 (en) * 2019-12-05 2021-06-10 古河電気工業株式会社 Structure for connecting high-temperature superconducting wire materials, method for forming same, high-temperature superconducting wire material, and high-temperature superconducting coil

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6231965A (en) * 1985-08-01 1987-02-10 住友電気工業株式会社 Joint sleeve for superconductor
JPS63292519A (en) * 1987-05-26 1988-11-29 Hitachi Cable Ltd Current bus
JP2550188B2 (en) * 1988-11-25 1996-11-06 株式会社日立製作所 Oxide-based high temperature superconductor, joining method and brazing material
CA2038012A1 (en) * 1990-03-14 1991-09-15 Hideki Shimizu Oxide superconductor lamination and method of manufacturing the same
JP2721266B2 (en) * 1990-08-16 1998-03-04 古河電気工業株式会社 Superconducting cable connection
EP1042820B1 (en) * 1997-12-19 2003-03-12 Siemens Aktiengesellschaft SUPERCONDUCTOR STRUCTURE WITH HIGH-T c? SUPERCONDUCTOR MATERIAL, METHOD FOR PRODUCING SAID STRUCTURE AND CURRENT-LIMITING DEVICE WITH A STRUCTURE OF THIS TYPE
JP3717683B2 (en) * 1998-10-30 2005-11-16 株式会社フジクラ Connection structure and connection method of oxide superconducting conductor
US6159905A (en) * 1999-06-02 2000-12-12 Buzcek; David M. Methods for joining high temperature superconducting components with negligible critical current degradation and articles of manufacture in accordance therewith
US7071148B1 (en) * 2005-04-08 2006-07-04 Superpower, Inc. Joined superconductive articles

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10706991B2 (en) 2015-02-12 2020-07-07 Sumitomo Electric Industries, Ltd. Method for producing a superconducting wire material lengthened
WO2017038826A1 (en) 2015-09-04 2017-03-09 株式会社フジクラ Connection structure body for oxide superconducting wire material and method for manufacturing same
US10530070B2 (en) 2015-09-04 2020-01-07 Fujikura Ltd. Connecting structure of oxide superconducting wire and method of manufacturing the same
CN107438887A (en) * 2016-03-11 2017-12-05 住友电气工业株式会社 Superconducting line and the method for manufacturing superconducting line
CN107438887B (en) * 2016-03-11 2020-05-22 住友电气工业株式会社 Superconducting wire and method for manufacturing superconducting wire

Also Published As

Publication number Publication date
JP2007266149A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP4810268B2 (en) Superconducting wire connection method and superconducting wire
KR101968074B1 (en) Structure to reduce electroplated stabilizer content
EP1449265B1 (en) Superconductor cables and coils
JP4845040B2 (en) Thin film superconducting wire connection method and connection structure thereof
EP2741370A1 (en) Method for joining second generation rebco high temperature superconductors using partial micro-melting diffusion welding by direct contact of high temperature superconductors and for recovering superconducting characteristics by oxygen supply annealing heat treatment
WO2013164918A1 (en) Superconducting wire connection structure, superconducting wire connection method, and superconducting wire for connecting
JP5568361B2 (en) Superconducting wire electrode joint structure, superconducting wire, and superconducting coil
JP2008140930A (en) Superconductive coil
US20200028061A1 (en) Connection structure
KR101653891B1 (en) Superconducting wire material, superconducting wire material connection structure, superconducting wire material connection method, and terminal treatment method of superconducting wire material
KR20150097509A (en) Superconducting coil device comprising coil winding and contacts
WO2015129272A1 (en) Terminal structure for superconducting cable and method for manufacturing same
JP5548441B2 (en) Superconducting connection structure, superconducting wire connecting method, superconducting coil device
WO2010126099A1 (en) Current terminal structure of superconducting wire material and superconducting cable having this current terminal structure
JP6873848B2 (en) Superconducting coil
JP2012256744A (en) Superconductive coil
US20200343652A1 (en) Joined superconducting tape
JP2014154320A (en) Connection structure of oxide superconductive wire rod and superconductive apparatus
JP6101490B2 (en) Oxide superconducting wire connection structure and superconducting equipment
JP2005044636A (en) Superconductive wire rod
JP6818578B2 (en) Superconducting cable connection
JP4634954B2 (en) Superconducting device
JP5701247B2 (en) Oxide superconducting wire connection structure and connection method
JP4634908B2 (en) High temperature superconducting coil
JP2018055990A (en) Superconductive current lead and oxide superconducting wire material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4810268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151