WO2024071431A1 - Spherical alumina particles, production method of same, and resin composite composition comprising same - Google Patents

Spherical alumina particles, production method of same, and resin composite composition comprising same Download PDF

Info

Publication number
WO2024071431A1
WO2024071431A1 PCT/JP2023/035864 JP2023035864W WO2024071431A1 WO 2024071431 A1 WO2024071431 A1 WO 2024071431A1 JP 2023035864 W JP2023035864 W JP 2023035864W WO 2024071431 A1 WO2024071431 A1 WO 2024071431A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
spherical alumina
alumina
spherical
alumina particles
Prior art date
Application number
PCT/JP2023/035864
Other languages
French (fr)
Japanese (ja)
Inventor
竜太郎 沼尾
孝広 和田
睦人 田中
克昌 矢木
正徳 阿江
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Publication of WO2024071431A1 publication Critical patent/WO2024071431A1/en

Links

Definitions

  • the present invention relates to spherical alumina particles, in particular spherical alumina particles with a reduced surface residual Na concentration and low degree of aggregation, a method for producing the same, and a resin composite composition containing the same.
  • thermally conductive inorganic fillers are made from inexpensive aluminum hydroxide and aluminum oxide (hereafter referred to as alumina), as well as materials such as silicon carbide, boron nitride, and aluminum nitride, which are expected to have high thermal conductivity.
  • alumina in particular is often used as a thermally conductive inorganic filler because it is inexpensive and chemically stable.
  • the Bayer process is a widely known method for producing alumina.
  • bauxite is treated with caustic soda (sodium hydroxide) to dissolve aluminum as sodium aluminate, and impurities such as iron, titanium, and silicon are precipitated as red mud.
  • caustic soda sodium hydroxide
  • impurities such as iron, titanium, and silicon are precipitated as red mud.
  • This is filtered, and seeds of hydrous alumina Al 2 O 3.3H 2 O are added to the filtrate (sodium aluminate solution) and stirred for several days to precipitate hydrous alumina in the liquid, which is then recovered.
  • the recovered hydrous alumina is calcined to obtain high-purity alumina Al 2 O 3 .
  • the alumina is treated with caustic soda (sodium hydroxide), so sodium may remain in the finished product. If a large amount of sodium is present on the filler surface, it reacts with the resin or moisture in the air and releases hydroxide ions. These hydroxide ions react with the epoxy groups present in the epoxy resin, inhibiting the polymerization reaction between the resins and causing poor curing. Furthermore, if sodium or potassium ions are present in the resin composition created by kneading with the epoxy groups, the voltage resistance will be impaired. For these reasons, it is preferable for the amount of sodium to be small. In order to remove or reduce the sodium, the alumina is washed with water and then dried.
  • caustic soda sodium hydroxide
  • Patent Document 1 discloses an apparatus that can efficiently wash, filter, and dry powders such as alumina in the same container. More specifically, it proposes that by introducing compressed gas into the container, it is possible to wash, filter, and dry powders in the same container without the need for stirring blades inside the container. It also discloses the use of electrical or steam heating and microwave irradiation to improve the drying speed.
  • Patent Document 2 discloses fine spherical aluminum oxide powder using fine low-soda aluminum oxide as the raw material, with a maximum particle size of 7 ⁇ m or less and an average particle size in the range of 0.2 to 0.9 ⁇ m. It discloses that this powder is produced by subjecting the raw material powder to a strong crushing process before being introduced into the flame, and by continuously introducing the powder into the flame immediately after the agglomerated particles have been sufficiently crushed and dispersed, a spherical inorganic oxide powder free of coarse particles and with an average particle size of less than 1 ⁇ m can be stably obtained.
  • Patent Document 1 there is a risk that foreign matter from the crusher may be mixed (contaminated) into the alumina powder product as a result of the crushing process. There is no disclosure of the concentration of the sodium component in this powder.
  • the present invention was made in consideration of the above situation, and its purpose is to provide spherical alumina particles with a low surface residual Na concentration and low degree of aggregation, a method for producing the same, and a resin composite composition containing the same.
  • the inventors discovered that by drying the alumina slurry that has been washed with water using a specified method, it is possible to directly dry and powder the slurry without having to disintegrate it.
  • the gist of the present invention is as follows.
  • Spherical alumina particles having an average particle size of 0.4 to 1.9 ⁇ m, a specific surface area of 1.0 to 5.0 m 2 /g, a surface residual Na content of 20 ppm or less, a Na 2 O content of 1000 ppm or less, a degree of aggregation of 1.0% or less, and a circularity of 0.9 or more.
  • the method for producing spherical alumina particles comprising the steps of: [4] a raw material spherical alumina washing step of washing the raw material spherical alumina with water before the water slurry preparation step;
  • a resin composite composition comprising the spherical alumina particles according to [1] or [2].
  • the resin composite composition according to [5] further comprising at least one inorganic filler selected from amorphous spherical silica particles, crystalline spherical silica particles, titania particles, magnesia particles, aluminum nitride particles, boron nitride particles, barium titanate particles, calcium titanate particles, and carbon fibers.
  • the present invention provides spherical alumina particles with a low surface residual Na concentration and a small degree of agglomeration, and a resin composite composition containing the same. Because the spherical alumina particles have a low surface residual Na concentration, when used as a filler, poor curing and loss of voltage resistance can be avoided. In addition, because the degree of agglomeration is small, crushing is not necessary, and the introduction of foreign matter (contamination) due to crushing can be avoided. Furthermore, the spherical alumina particles can be easily manufactured by the manufacturing method that is one aspect of the present invention.
  • FIG. 1 is a schematic diagram showing the state of alumina particles in the case of conventional heat drying and in the case of freeze drying according to the present embodiment.
  • the spherical alumina particles according to one embodiment of the present invention have an average particle size of 0.4 to 1.9 ⁇ m. If the average particle size is less than 0.4 ⁇ m, the particles will tend to aggregate, and the fluidity of the resin composition will be significantly reduced when used as a filler, which is not preferable. If the average particle size exceeds 1.9 ⁇ m, the particles may get caught in the narrow space between the mounting substrate and the chip in semiconductor packages that are becoming smaller and thinner, which may cause the fluidity of the liquid encapsulant to decrease, resulting in a decrease in moldability.
  • the average particle size refers to the average particle size (D50), and means the median diameter D50 at 50% cumulative volume in the volume-based particle size distribution measured by the laser diffraction/scattering particle size distribution measurement method.
  • the laser diffraction/scattering particle size distribution measurement method is a method in which a dispersion liquid in which spherical alumina particles are dispersed is irradiated with laser light, and the particle size distribution is determined from the intensity distribution pattern of the diffracted/scattered light emitted from the dispersion liquid.
  • a laser diffraction/scattering particle size distribution measurement device "Mastersizer 3000" manufactured by Malvern
  • the average particle size of the raw material for spherical alumina particles can also be determined in a similar manner.
  • the spherical alumina particles have a specific surface area measured by the BET method of 1.0 m 2 /g or more and 5.0 m 2 /g or less.
  • the specific surface area of the spherical particles is less than 1.0 m2 /g, the particles are unlikely to form a close-packed structure, and the fluidity of the liquid encapsulant containing the particles may decrease.
  • the specific surface area of the spherical particles is more than 5.0 m2 /g, the particles may tend to aggregate more easily, and the fluidity of the liquid encapsulant may decrease.
  • the specific surface area is measured by the BET method. Typically, the specific surface area is measured by the following procedure. Approximately 5 g of a sample was weighed out and vacuum dried for 5 minutes at 250° C. Next, the sample was set in an automatic specific surface area measuring device (Macsorb, manufactured by Mountec Co., Ltd.), and the nitrogen gas adsorption amount was measured at a relative pressure P/P0 value of 0.291 at a measurement temperature of 77 K using pure nitrogen and a nitrogen-helium mixed gas (mixture ratio: nitrogen 30%, He 70%), and the BET specific surface area was calculated by the one-point method.
  • Macsorb manufactured by Mountec Co., Ltd.
  • the spherical alumina particles have a surface residual Na content of 20 ppm or less.
  • the surface residual Na referred to here means Na remaining attached to the alumina surface, and is measured by ion chromatography. If sodium is present in a large amount on the filler surface, i.e., on the alumina surface, it reacts with the resin or moisture in the air and releases hydroxide ions. These hydroxide ions react with the epoxy groups present in the epoxy resin, inhibiting the polymerization reaction between the resins and causing poor curing. Furthermore, if sodium ions or potassium ions are present in the resin composition prepared by kneading with the epoxy groups, the voltage resistance is impaired.
  • the amount of sodium remaining on the surface is measured by ion chromatography. Typically, the measurement is performed according to the following procedure. Add 4 g of sample and 40 ml of distilled water to a centrifuge tube, close the lid, and shake thoroughly to mix. After mixing, use a centrifuge to separate the sample and the sample solution. Separate the sample solution and use an ion chromatograph to analyze sodium ions. The ion chromatograph was made by Toa Medical Electronics.
  • the spherical alumina particles contain 1000 ppm or less of Na 2 O.
  • the contained Na 2 O referred to here is the total amount of Na present on the surface and inside of the alumina, and is quantified as the oxide Na 2 O using an atomic absorption spectrometer. If a large amount of Na 2 O is present in alumina, sodium is present not only on the surface of alumina but also inside, and when the alumina is heat-treated, the sodium component is liberated on the particle surface, which may increase the residual Na on the surface. If the Na 2 O content is 1000 ppm or less, the sodium content is low and liberation on the particle surface can be reduced.
  • the amount of Na 2 O contained in the alumina particles may be measured by elemental analysis known to those skilled in the art, for example, by using an atomic absorption spectrometer and converting the amount into oxide.
  • the spherical alumina particles have an agglomeration degree of 1.0% or less.
  • the degree of aggregation referred to here is an index showing whether particles are aggregated, and was measured by a sieving method.
  • the aggregation requires disintegration to separate the particles. Disintegration causes equipment wear and costs due to contact with the disintegration device.
  • the particles aggregate to each other, resulting in insufficient dispersion in the resin, which may deteriorate the fluidity and viscosity of the resin composition.
  • the degree of aggregation is 1.0% or less, it means that there are few lumps, which means that a disintegration operation is not necessary. From the above perspective, the lower the degree of aggregation, the more desirable it is, but since it is difficult to completely prevent aggregation, the lower limit may be 0.0001% or more.
  • the method for measuring the degree of cohesion is as follows. Two types of standard sieves with mesh sizes of 4.75 mm and 212 ⁇ m are stacked in order. The sieve with 212 ⁇ m mesh is placed at the bottom, and the sieves with gradually larger mesh sizes are stacked on top of it. 50 g of sample is placed on the top sieve with 4.75 mm mesh and set in a sieve shaker.
  • the sieve shaker used was an OCTAGON 200 manufactured by Endecotts. After setting the sieves, the vibration sieve was set to an amplitude of 5 and a shaking time of 3 minutes. After shaking was completed, the particle weights of the particles remaining on each sieve mesh and the particles that passed through the 212 ⁇ m mesh were measured. If the amount of particles on the 4.75 mm mesh is Ag, the amount of particles on the 212 um mesh is Bg, and the amount of particles that passed through the 212 um mesh is Cg, then the degree of agglomeration is calculated as A/(B+C) ⁇ 100(%).
  • the spherical alumina particles have a circularity of 0.90 or more.
  • the circularity may be 0.91 or more, 0.92 or more, or 0.93 or more.
  • the upper limit of the circularity is theoretically 1.0, but may be 0.98 or less, or 0.95 or less from the viewpoint of production management.
  • Circularity can be measured using an electron microscope or optical microscope and an image analyzer.
  • Sysmex FPIA These devices are used to measure the circularity of particles (perimeter of equivalent circle/perimeter of projected image of particle). The circularity of 100 or more particles is measured, and the average value is taken as the circularity of the powder.
  • the spherical alumina particles may have a gelatinization rate of 10.0% or less.
  • the alpha-alumina ratio refers to the ratio of alpha-alumina crystals in the crystalline phase.
  • Alumina is known to be crystalline, and alpha-alumina, ⁇ -alumina, and ⁇ -alumina are known as typical crystalline forms.
  • the spherical alumina particles which are one embodiment of the present invention, can be manufactured based on a thermal spraying method in which a raw material is put into a flame, melted, and then quenched, as described in detail below.
  • the obtained alumina can have a high amorphous ratio, and spherical alumina particles with an alpha-alumina ratio of 10.0% or less can be easily obtained.
  • the upper limit of the alpha-alumina ratio may be 5.0%, 3.0%, or 1.0%.
  • the lower limit of the alpha-alumina ratio is not particularly limited and may be 0.0%, but may be 0.1% or 0.4% from the viewpoint of the burden of manufacturing management and the thermal conductivity characteristics as a resin composite composition.
  • the alpha-conversion rate is measured using a powder X-ray diffractometer.
  • the integrated area of the obtained diffraction peaks is calculated, and the ratio of the diffraction peak area derived from alpha-alumina to the total is analyzed using the Rietveld method.
  • an X-ray diffraction pattern is obtained using a Bruker D2PHASER with 2 ⁇ in the range of 10° to 90°.
  • the alpha-conversion rate is calculated from the obtained pattern using a Bruker DIFFRAC. TOPAS by the Rietveld method.
  • the analysis is performed assuming that only three types of crystal phases, alpha-alumina, delta-alumina, and theta-alumina, are present, and the alpha-alumina content is calculated.
  • the purity of the aluminum oxide in the alumina particles is preferably 99.99% or more and 100.00% or less. If the purity of the aluminum oxide is less than 99.99%, the alumina particles tend to have an irregular shape.
  • ICP emission spectrometry ICP emission spectrometry
  • AES AES
  • SIMS SIMS
  • the amount of impurities in the alumina particles in this embodiment was measured by ICP emission spectrometry and atomic absorption spectrometry. The measurements were performed for each metal oxide according to the following JIS standard measurement method.
  • the purity of the alumina particles was calculated from the following formula: where the value is rounded off to two decimal places.
  • a method for producing spherical alumina particles which is a method for suitably producing the above-mentioned alumina particles and includes the following steps: (1) Manufacturing process of raw alumina. (2) A step of spheroidizing the raw alumina to produce raw spherical alumina. (3) a water slurry preparation step of mixing the raw material spherical alumina with water to prepare a water slurry containing the raw material spherical alumina; and (4) a drying step of drying the water slurry.
  • the raw material alumina can be produced by, for example, thermal decomposition of ammonium aluminum carbonate, vapor phase oxidation, deflagration, Bayer process, or hydrolysis of aluminum alkoxide.
  • the raw material alumina can be spheroidized by a flame fusion method to obtain raw material spherical alumina.
  • the flame fusion method is a type of known thermal spraying method in which particles are sprayed into a flame to make the particles spherical.
  • the average sphericity can be adjusted by the amount of fuel gas fed into the flame per unit time and the type of fuel gas.
  • the particle size of the spherical alumina powder can be adjusted by adjusting the particle size of the particles used.
  • the refrigerant is not particularly limited, but from the viewpoint of not reducing the purity of the spherical particles, a gas with few impurities and low activity such as air, nitrogen, or argon is preferable.
  • raw material spherical alumina may be produced by a deflagration method in which a chemical flame is formed by a burner in an atmosphere containing oxygen, and metallic aluminum powder is introduced into the chemical flame in an amount sufficient to form a dust cloud, causing a deflagration to produce spherical alumina particles.
  • the raw material spherical alumina is mixed with water to prepare a water slurry containing the raw material spherical alumina.
  • the water to be mixed is preferably distilled water or ion-exchanged water that does not contain sodium ions or chlorine ions as impurities.
  • the amount of the mixture can be appropriately adjusted taking into account the viscosity of the slurry, etc.
  • a raw material spherical alumina washing step may be performed in which the raw material spherical alumina is washed with water.
  • the washing water may be distilled water or ion-exchanged water that does not contain sodium ions or chlorine ions as impurities.
  • washing may be performed using a cleaning agent, a surfactant, or the like, depending on the target to be removed by washing.
  • the conditions such as the temperature, number of times, and time of washing can be appropriately adjusted to bring the alumina particles into a desired washing state.
  • the desired surface residual Na concentration and contained Na 2 O concentration can be obtained.
  • dehydration may be performed using a filter or the like until the desired particle concentration is reached.
  • the Na content and cleaning agent dissolved in the water can be washed away, thereby preventing re-adhesion after drying.
  • water may be further added to the raw material spherical alumina after washing to dissolve the remaining impurity components in the water.
  • dehydration can be performed again to wash away the impurity components attached to the alumina particle surface.
  • the efficiency of drying in the subsequent step can be increased by controlling the particle concentration to an arbitrary concentration.
  • FIG. 1 is a diagram showing the state of alumina particles in the case of conventional heat drying and in the case of freeze-drying of this embodiment.
  • the freeze-drying of this embodiment when the freeze-drying of this embodiment is performed, the alumina particles obtained are suppressed in aggregation, and there is no need to break up the agglomerates of alumina particles.
  • a breaker such as a mill is used to break up the agglomerates, and there is a risk of contamination from the breaker.
  • the heating temperature is low (10 to 90° C., more preferably 80° C.), the seepage of sodium from inside the particles is minimized, and therefore the amount of free sodium reattached to the powder surface after drying is reduced.
  • the slurry is sprayed into a high-temperature airflow of 100 to 300°C, and only the water content is evaporated, thereby extracting spherical alumina powder from the slurry.
  • the slurry is sprayed into a high-temperature airflow using a nozzle such as a two-fluid nozzle.
  • the sprayed slurry becomes fine droplets due to the dispersion effect in the airflow.
  • the airflow heat drying method has a very large surface area because the slurry is made into droplets using a nozzle.
  • the amount of heat received by the slurry is proportional to the surface area where the heat source and the slurry are in contact, so the water content of the droplets evaporates and dries in an instant. Since the drying time is shorter (about 0.01 to 10 seconds) than conventional heat drying methods, the seepage of sodium from inside the particles is minimized, and the amount of sodium that reattaches to the powder after drying is reduced. Furthermore, since the spherical alumina powder is sprayed into the airflow, the aggregation of the spherical alumina powder particles is suppressed, and there is no need to break up the agglomerates of alumina particles.
  • the composite composition of the finally obtained spherical alumina particles and resin can be produced.
  • the composition of the resin composite composition will be described in more detail below.
  • a slurry composition containing spherical alumina particles and a resin By using a slurry composition containing spherical alumina particles and a resin, it is possible to obtain resin composite compositions such as semiconductor encapsulants (particularly solid encapsulants) and interlayer insulating films. Furthermore, by curing these resin composite compositions, it is possible to obtain resin composites such as encapsulants (cured bodies) and substrates for semiconductor packages.
  • the resin composite composition for example, in addition to the spherical alumina particles and resin, a curing agent, a curing accelerator, a flame retardant, a silane coupling agent, etc. are mixed as necessary, and the mixture is compounded by a known method such as kneading. The mixture is then molded into pellets, films, etc., depending on the application.
  • inorganic fillers When producing the resin composite composition, other inorganic fillers may be blended in addition to the spherical alumina particles and resin.
  • the inorganic fillers include amorphous spherical silica particles, crystalline spherical silica particles, titania particles, magnesia particles, aluminum nitride particles, boron nitride particles, barium titanate particles, calcium titanate particles, and carbon fibers.
  • the blending ratio of the inorganic fillers can be adjusted appropriately depending on the application of the resin composite composition.
  • the resin composite composition when the resin composite composition is cured to produce a resin composite, for example, the resin composite composition is heated to melt it, processed into a shape according to the intended use, and then heated to a temperature higher than that at the time of melting to completely cure it.
  • a known method such as a transfer molding method can be used.
  • epoxy resin is not particularly limited, but for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthalene type epoxy resin, phenoxy type epoxy resin, etc. can be used.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin
  • biphenyl type epoxy resin phenol novolac type epoxy resin
  • cresol novolac type epoxy resin cresol novolac type epoxy resin
  • naphthalene type epoxy resin phenoxy type epoxy resin, etc.
  • epoxy resins having two or more epoxy groups in one molecule are preferred from the viewpoints of curability, heat resistance, etc.
  • biphenyl type epoxy resins phenol novolac type epoxy resins, orthocresol novolac type epoxy resins, epoxidized novolac resins of phenols and aldehydes, glycidyl ethers of bisphenol A, bisphenol F, bisphenol S, etc.
  • glycidyl ester acid epoxy resins obtained by reacting polybasic acids such as phthalic acid and dimer acid with epochlorohydrin, linear aliphatic epoxy resins, alicyclic epoxy resins, heterocyclic epoxy resins, alkyl-modified polyfunctional epoxy resins, ⁇ -naphthol novolac type epoxy resins, 1,6-dihydroxynaphthalene type epoxy resins, 2,7-dihydroxynaphthalene type epoxy resins, bishydroxybiphenyl type epoxy resins, and epoxy resins into which halogens such as bromine have been introduced to impart flame retardancy.
  • these epoxy resins having two or more epoxy groups in one molecule
  • resins other than epoxy resins can be used in applications other than composite materials for semiconductor encapsulation, such as prepregs for printed circuit boards and various engineering plastics, as resin composite compositions.
  • resins that can be used other than epoxy resins include silicone resins, phenolic resins, melamine resins, urea resins, unsaturated polyesters, fluororesins, polyamides such as polyimide, polyamideimide, and polyetherimide; polyesters such as polybutylene terephthalate and polyethylene terephthalate; polyphenylene sulfide, aromatic polyesters, polysulfones, liquid crystal polymers, polyethersulfones, polycarbonates, maleimide-modified resins, ABS resins, AAS (acrylonitrile-acrylic rubber-styrene) resins, and AES (acrylonitrile-ethylene-propylene-diene rubber-styrene) resins.
  • the curing agent used in the resin composite composition may be any known curing agent for curing the resin, for example, a phenol-based curing agent.
  • a phenol-based curing agent phenol novolac resin, alkylphenol novolac resin, polyvinylphenols, etc.
  • phenol novolac resin phenol novolac resin, alkylphenol novolac resin, polyvinylphenols, etc.
  • phenol novolac resin alkylphenol novolac resin
  • polyvinylphenols, etc. may be used alone or in combination of two or more kinds.
  • the amount of the phenolic hardener to be blended is preferably such that the equivalent ratio to the epoxy resin (phenolic hydroxyl group equivalent/epoxy group equivalent) is 0.1 or more and less than 1.0. This eliminates the residue of unreacted phenolic hardener and improves moisture absorption and heat resistance.
  • the amount of the spherical alumina particles of the present invention added to the resin composite composition is preferably large from the viewpoint of heat resistance and thermal expansion coefficient, but is usually appropriate to be 70% by mass or more and 95% by mass or less, preferably 80% by mass or more and 95% by mass or less, and more preferably 85% by mass or more and 95% by mass or less.
  • additives such as silane coupling agents, hardeners, colorants, hardening retarders, and other known additives can be used.
  • any known coupling agent may be used, but it is preferable to use one that has an epoxy-based functional group.
  • a slurry composition containing spherical alumina particles and resin can be used to produce heat dissipation sheets, heat dissipation grease, etc.
  • the spherical alumina particles, resin, and additives are appropriately mixed and compounded using a known method such as kneading.
  • the resulting composite is molded into a sheet using a known method.
  • known resins can be used as the resin for the resin composite composition, and specific examples include silicone resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyamide such as polyimide, polyamideimide, polyetherimide, polyester such as polybutylene terephthalate, polyethylene terephthalate, polyphenylene sulfide, aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber-styrene) resin, AES (acrylonitrile-ethylene-propylene-diene rubber-styrene) resin.
  • silicone resin there are no particular limitations on the silicone resin, but for example, peroxide curing type, addition curing type, condensation curing type, ultraviolet curing type, etc. can be used.
  • additives such as silane coupling agents, hardeners, colorants, hardening retarders, and other known additives can be used.
  • the spherical alumina particles, resin, and additives are appropriately mixed and compounded using a known method such as kneading.
  • the resin used in the heat dissipating grease is also called the base oil.
  • known resins can be used in the resin composite composition, specifically silicone resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyamides such as polyimide, polyamideimide, and polyetherimide; polyesters such as polybutylene terephthalate and polyethylene terephthalate; polyphenylene sulfide, aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide-modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber-styrene) resin, AES (acrylonitrile-ethylene-propylene-diene rubber-styrene) resin, mineral oil, synthetic hydrocarbon oil, ester oil, polyglycol oil, silicone oil, and fluorine oil.
  • silicone resin phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin
  • polyamides such as polyimide, polyamideimide, and polyetherimide
  • polyesters such
  • additives such as silane coupling agents, colorants, thickeners, and other known additives can be used.
  • the thickeners that can be used include known ones such as calcium soap, lithium soap, aluminum soap, calcium complex, aluminum complex, lithium complex, barium complex, bentonite, urea, PTFE, sodium terephthalamate, silica gel, and organic bentonite.
  • the raw spherical alumina particles (Materials 1 to 4) listed in Table 1 were prepared and mixed with water to make a water slurry.
  • the mixing ratio of ion-exchanged water and particles to make the water slurry was 200 kg of particle powder per 1000 L of water.
  • 300 kg of particle powder per 1000 L of ion-exchanged water was used.
  • 200 kg of particle powder per 1000 L of ion-exchanged water was used.
  • the water slurry was mixed and stirred for 20 minutes to 1 hour, and then filtered using an appropriate filter until the moisture content was about 60 to 80 wt%.
  • Examples 1 to 3 The prepared slurry was once pre-frozen at ⁇ 40° C., and then freeze-dried at 80° C. for 24 hours while the inside of the apparatus was degassed under vacuum.
  • Example 4 The prepared slurry was air-dried at 200° C. using a jet turbo dryer manufactured by Hiraiwa Iron Works.
  • the kneading conditions were 15 seconds of pre-kneading and 90 seconds of vacuum kneading. After kneading, the plastic container containing the kneaded product was placed in a water bath adjusted to 25 ° C. and cooled for 1 hour. 10 g of this resin composite composition was placed on a smooth-surfaced iron plate and tilted 60 ° to the horizontal direction to check the flow rate of the resin composite composition. As a result, after 5 hours of tilting, the resin composite composition flowed 15 cm or more, showing good fluidity.
  • the kneading conditions were 15 seconds of pre-kneading and 90 seconds of vacuum kneading. After kneading, the plastic container containing the kneaded product was placed in a water bath adjusted to 25 ° C. and cooled for 1 hour. 10 g of this resin composite composition was placed on a smooth-surfaced iron plate and tilted 60 ° to the horizontal direction to check the flow rate of the resin composite composition. As a result, after 5 hours of tilting, the resin composite composition flowed 15 cm or more, showing good fluidity.
  • the laser diffraction/scattering particle size distribution measurement method is a method in which a dispersion liquid in which spherical alumina particles are dispersed is irradiated with laser light, and the particle size distribution is obtained from the intensity distribution pattern of the diffracted/scattered light emitted from the dispersion liquid.
  • a laser diffraction/scattering particle size distribution measurement device "Mastersizer 3000" (manufactured by Malvern) was used.
  • the specific surface area was determined by applying the BET theory to the adsorption isotherm measured by the gas adsorption method (BET method). The specific surface area was measured using a specific surface area measuring device manufactured by Mountech Co., Ltd. under the trade name "Maxsorb Model HM-1208".
  • the amount of ionic impurities adhering to the surface can be measured using ion chromatography. 4 g of sample and 40 ml of distilled water are added to a centrifuge tube, the tube is covered and shaken thoroughly to mix. After mixing, the sample and sample solution are separated using a centrifuge. The sample solution is separated and analyzed for sodium ions using ion chromatography. The ion chromatography was performed using an ion chromatograph manufactured by Toa Medical Electronics.
  • the degree of agglomeration is calculated as A/(B+C) ⁇ 100(%).
  • the spherical alumina particles of the present invention have a low surface residual Na concentration, so when used as a filler, poor curing and loss of voltage resistance can be avoided. In addition, because the degree of aggregation is small, crushing is not necessary, and contamination due to crushing can be avoided. Therefore, as a filler, it can be suitably used in miniaturized and thinned semiconductor packages, etc. Furthermore, the spherical alumina particles can be easily manufactured by the manufacturing method which is one aspect of the present invention. A resin composite composition containing the spherical alumina particles exhibits good quality and can be used for other purposes as well as semiconductor encapsulation materials. Specifically, it can be used as a prepreg for printed circuit boards, various engineering plastics, etc.

Abstract

The purpose is to provide spherical alumina particles having low surface residual Na level and low agglomeration degree, a production method of the same and a resin composite composition comprising the same. Spherical alumina particles have an average diameter of 0.4-1.9 um, a specific surface area of 1.0-5.0 m2/g, a surface residual Na of 200 ppm or less, a Na2O content of 1,000 ppm or less, an agglomeration degree of 1.0% or less and a degree of circularity of 0.9 or more. A production method of the same and a resin composite composition comprising the same are also provided.

Description

球状アルミナ粒子、その製造方法、および、それを含有する樹脂複合組成物Spherical alumina particles, their production method, and resin composite composition containing the same
 本発明は、球状アルミナ粒子、特に表面残留Na濃度が低減され且つ凝集度が小さい球状アルミナ粒子、その製造方法、およびそれを含有する樹脂複合組成物に関する。 The present invention relates to spherical alumina particles, in particular spherical alumina particles with a reduced surface residual Na concentration and low degree of aggregation, a method for producing the same, and a resin composite composition containing the same.
 近年、携帯電話などの電子機器の高機能化、高速化によって、電子機器内部の電子部品から発せられる熱量が増大している。電子機器の正常な動作のために、発せられる熱を効率よく外部へ放散させることが重要な課題となっている。熱放散のために多用されているのが放熱シートや放熱接着剤と呼ばれるものである。これらは発熱体と放熱フィンの間に貼り付け或いは塗布し圧着することで発熱体と放熱フィンとの隙間をなくし、効率よく熱を発散することができる。また電子部品の内部にある、半導体自体も同様の高機能化、高速化による発熱が著しく、半導体を保護する封止材についても熱放散性を付与することが求められている。 In recent years, the amount of heat generated by electronic components inside electronic devices has increased due to the increasing functionality and speed of electronic devices such as mobile phones. To ensure that electronic devices operate normally, it is important to efficiently dissipate the generated heat to the outside. Heat dissipation sheets and heat dissipation adhesives are widely used for heat dissipation. These are attached or applied between the heating element and the heat dissipation fins and then pressed together to eliminate the gap between the heating element and the heat dissipation fins, allowing heat to be dissipated efficiently. Furthermore, the semiconductors themselves inside electronic components also generate significant amounts of heat due to their high functionality and high speed, and there is a demand for the encapsulating material that protects the semiconductors to also have heat dissipation properties.
 一般に放熱シートや放熱接着剤、半導体封止材は熱伝導性無機フィラーと樹脂とで構成されている。熱伝導性無機フィラーは安価な水酸化アルミニウムや酸化アルミニウム(以下、アルミナ)、さらに高熱伝導を期待した炭化ケイ素や窒化ホウ素、窒化アルミニウムといった素材が使われている。特にアルミナは安価であり化学的に安定であることから、熱伝導性無機フィラーとしてよく用いられる。 In general, heat dissipation sheets, heat dissipation adhesives, and semiconductor encapsulants are composed of thermally conductive inorganic fillers and resins. Thermally conductive inorganic fillers are made from inexpensive aluminum hydroxide and aluminum oxide (hereafter referred to as alumina), as well as materials such as silicon carbide, boron nitride, and aluminum nitride, which are expected to have high thermal conductivity. Alumina in particular is often used as a thermally conductive inorganic filler because it is inexpensive and chemically stable.
特開2012-21710号公報JP 2012-21710 A 特開2008-120673号公報JP 2008-120673 A
 アルミナの生産方法として、バイヤー法が広く知られている。バイヤー法では、ボーキサイトを苛性ソーダ(水酸化ナトリウム)で処理することにより、アルミニウムをアルミン酸ソーダとして溶解し、不純物の鉄,チタン,ケイ素などは赤泥として沈殿させる。これをろ別して、ろ液(アルミン酸ソーダ溶液)に含水アルミナAl・3HOの種子を入れて、数日攪拌することにより、液中に含水アルミナを沈殿させ、これを回収する。回収された含水アルミナをか焼することにより、高純度アルミナAlを得ることができる。 The Bayer process is a widely known method for producing alumina. In the Bayer process, bauxite is treated with caustic soda (sodium hydroxide) to dissolve aluminum as sodium aluminate, and impurities such as iron, titanium, and silicon are precipitated as red mud. This is filtered, and seeds of hydrous alumina Al 2 O 3.3H 2 O are added to the filtrate (sodium aluminate solution) and stirred for several days to precipitate hydrous alumina in the liquid, which is then recovered. The recovered hydrous alumina is calcined to obtain high-purity alumina Al 2 O 3 .
 バイヤー法では、苛性ソーダ(水酸化ナトリウム)で処理をしているので、製品のアルミナは、ナトリウムが残留することがある。ナトリウムがフィラー表面に多量に存在すると、樹脂や空気中の水分と反応し水酸化物イオンを放出する。この水酸化物イオンはエポキシ樹脂に存在するエポキシ基と反応し樹脂同士の重合反応を阻害し硬化不良の原因になる。またエポキシ基と混錬して作成された樹脂組成物中にナトリウムイオンやカリウムイオンが存在すると、耐電圧性が損なわれる。以上の点からナトリウムの量は少ない方が望ましい。そのナトリウムを除去または低減するために、アルミナは水洗処理を行った後に、乾燥処理が行われている。 In the Bayer process, the alumina is treated with caustic soda (sodium hydroxide), so sodium may remain in the finished product. If a large amount of sodium is present on the filler surface, it reacts with the resin or moisture in the air and releases hydroxide ions. These hydroxide ions react with the epoxy groups present in the epoxy resin, inhibiting the polymerization reaction between the resins and causing poor curing. Furthermore, if sodium or potassium ions are present in the resin composition created by kneading with the epoxy groups, the voltage resistance will be impaired. For these reasons, it is preferable for the amount of sodium to be small. In order to remove or reduce the sodium, the alumina is washed with water and then dried.
 特許文献1は、アルミナのような粉体を同一容器内で水洗、ろ過から乾燥まで効率的に行うことのできる装置について開示している。より詳しくは、容器内に圧縮気体を導入することで、容器内に攪拌羽根を必要とせずに、同一容器内で粉体を水洗、ろ過から乾燥まで行うことを提示している。また、乾燥速度を向上するために、電気や蒸気による加熱、マイクロ波の照射を用いること等を開示している。 Patent Document 1 discloses an apparatus that can efficiently wash, filter, and dry powders such as alumina in the same container. More specifically, it proposes that by introducing compressed gas into the container, it is possible to wash, filter, and dry powders in the same container without the need for stirring blades inside the container. It also discloses the use of electrical or steam heating and microwave irradiation to improve the drying speed.
 このように、水洗したアルミナスラリーを乾燥する際、加熱して乾燥することが多い。ただし、加熱乾燥処理における長時間の加熱によってアルミナ内部に残留するナトリウムイオンが外部へ移動し、洗浄によって清浄化されたアルミナ表面へ溶出してしまう恐れがある。また、スラリーに含まれるアルミナ粒子の粒子径が小さいものほど、加熱乾燥することによって粒子同士が凝集し、乾燥物が強固な凝集塊になる。凝集塊になることで、粉末化のために解砕が必要となる。解砕に伴い、製品となるアルミナ粉末中に、解砕機からの異物が混入(コンタミ)する恐れがある。 In this way, when drying the washed alumina slurry, it is often heated. However, prolonged heating during the heat drying process can cause sodium ions remaining inside the alumina to migrate to the outside and potentially dissolve onto the surface of the alumina that has been cleaned by washing. Furthermore, the smaller the particle size of the alumina particles contained in the slurry, the more likely they are to agglomerate together when heated and dried, resulting in the dried product becoming stronger agglomerates. These agglomerates require crushing in order to be turned into powder. Crushing can cause foreign matter from the crusher to become mixed (contaminated) into the alumina powder that is the product.
 また、特許文献2は、原料として微粒低ソーダ酸化アルミニウムを使用し最大粒子径が7μm以下、かつ平均粒子径が0.2~0.9μmの範囲である微粒球状酸化アルミニウム粉体を開示する。この粉体は、火炎中に原料粉体を導入する前に強力な解砕処理を実施し、凝集粒子を十分解砕・分散させた直後に連続的に火炎中に導入することで、粗粒がなく、平均粒子径1μm未満の球状無機酸化物粉体が安定的に得られると開示する。しかし、特許文献1と同様に、解砕に伴い、製品となるアルミナ粉末中に、解砕機からの異物が混入(コンタミ)する恐れがある。なお、この粉体のナトリウム成分の濃度について開示はない。 Patent Document 2 discloses fine spherical aluminum oxide powder using fine low-soda aluminum oxide as the raw material, with a maximum particle size of 7 μm or less and an average particle size in the range of 0.2 to 0.9 μm. It discloses that this powder is produced by subjecting the raw material powder to a strong crushing process before being introduced into the flame, and by continuously introducing the powder into the flame immediately after the agglomerated particles have been sufficiently crushed and dispersed, a spherical inorganic oxide powder free of coarse particles and with an average particle size of less than 1 μm can be stably obtained. However, as with Patent Document 1, there is a risk that foreign matter from the crusher may be mixed (contaminated) into the alumina powder product as a result of the crushing process. There is no disclosure of the concentration of the sodium component in this powder.
 本発明は、上記の状況に鑑みてなされたものであり、その目的は、表面残留Na濃度が低く且つ凝集度が小さい球状アルミナ粒子、その製造方法、およびそれを含有する樹脂複合組成物を提供することである。 The present invention was made in consideration of the above situation, and its purpose is to provide spherical alumina particles with a low surface residual Na concentration and low degree of aggregation, a method for producing the same, and a resin composite composition containing the same.
 本発明者らは、所定の方法で水洗したアルミナスラリーを乾燥することによって、解砕を行わずともスラリーを直接乾燥、粉末化が可能であることを見出した。 The inventors discovered that by drying the alumina slurry that has been washed with water using a specified method, it is possible to directly dry and powder the slurry without having to disintegrate it.
 上記の知見に基づく、本発明の要旨は以下のとおりである。
[1] 平均粒径が0.4~1.9um,比表面積が1.0~5.0m/g、表面残留Naが20ppm以下,含有NaOが1000ppm以下、凝集度が1.0%以下、円形度が0.9以上である、球状アルミナ粒子。
[2] α化率が10.0%以下であることを特徴とする[1]に記載の球状アルミナ粒子。
Based on the above findings, the gist of the present invention is as follows.
[1] Spherical alumina particles having an average particle size of 0.4 to 1.9 μm, a specific surface area of 1.0 to 5.0 m 2 /g, a surface residual Na content of 20 ppm or less, a Na 2 O content of 1000 ppm or less, a degree of aggregation of 1.0% or less, and a circularity of 0.9 or more.
[2] The spherical alumina particles according to [1], characterized in that the gelatinization rate is 10.0% or less.
[3] 原料球状アルミナと水を混合して、前記原料球状アルミナを含む水スラリーを調製する水スラリー調製工程と、
 前記水スラリーを乾燥する乾燥工程と、
 を有する、球状アルミナ粒子の製造方法。
[4] 前記水スラリー調製工程の前に、前記原料球状アルミナを水洗浄する原料球状アルミナ洗浄工程、
 を有する、[3]に記載の球状アルミナ粒子の製造方法。
[3] A water slurry preparation step of mixing raw spherical alumina with water to prepare a water slurry containing the raw spherical alumina;
a drying step of drying the water slurry;
The method for producing spherical alumina particles comprising the steps of:
[4] a raw material spherical alumina washing step of washing the raw material spherical alumina with water before the water slurry preparation step;
The method for producing spherical alumina particles according to [3],
[5] [1]または[2]に記載の球状アルミナ粒子を含有していることを特徴とする樹脂複合組成物。
[6] 非晶質球状シリカ粒子、結晶質球状シリカ粒子、チタニア粒子、マグネシア粒子、窒化アルミニウム粒子、窒化ホウ素粒子、チタン酸バリウム粒子、チタン酸カルシウム粒子、カーボンファイバーから選ばれる、少なくとも1種類以上の無機フィラーをさらに含有する、[5]に記載の樹脂複合組成物。
[5] A resin composite composition comprising the spherical alumina particles according to [1] or [2].
[6] The resin composite composition according to [5], further comprising at least one inorganic filler selected from amorphous spherical silica particles, crystalline spherical silica particles, titania particles, magnesia particles, aluminum nitride particles, boron nitride particles, barium titanate particles, calcium titanate particles, and carbon fibers.
 本発明により、表面残留Na濃度が低く且つ凝集度が小さい球状アルミナ粒子、およびそれを含有する樹脂複合組成物が得られる。当該球状アルミナ粒子は、表面残留Na濃度が低いので、フィラーとして用いた場合に、硬化不良や耐電圧性の喪失を回避することができる。また、凝集度が小さいために、解砕が不要であり、解砕による異物の混入(コンタミ)を回避することができる。さらに、本発明の一態様である製造方法により、当該球状アルミナ粒子を容易に製造することができる。 The present invention provides spherical alumina particles with a low surface residual Na concentration and a small degree of agglomeration, and a resin composite composition containing the same. Because the spherical alumina particles have a low surface residual Na concentration, when used as a filler, poor curing and loss of voltage resistance can be avoided. In addition, because the degree of agglomeration is small, crushing is not necessary, and the introduction of foreign matter (contamination) due to crushing can be avoided. Furthermore, the spherical alumina particles can be easily manufactured by the manufacturing method that is one aspect of the present invention.
図1は、従来の加熱乾燥の場合と、本実施態様の凍結乾燥の場合での、アルミナ粒子の状態を模式的に表した図であるFIG. 1 is a schematic diagram showing the state of alumina particles in the case of conventional heat drying and in the case of freeze drying according to the present embodiment.
[球状アルミナ粒子] [Spherical alumina particles]
(平均粒径)
 本発明の一実施態様である、球状アルミナ粒子は、平均粒径が0.4~1.9umである。平均粒径が0.4μm未満であると、粒子の凝集性が大きくなり、フィラーとして用いたときなどに樹脂組成物の流動性が著しく低下するため、好ましくない。平均粒径が1.9μmを超えると、小型化・薄型化の進んだ半導体パッケージ等において、実装基板とチップとの狭小部に粒子が引っかかってしまい、液状封止材の流動性が悪くなって成型性が低下することがある。
(Average particle size)
The spherical alumina particles according to one embodiment of the present invention have an average particle size of 0.4 to 1.9 μm. If the average particle size is less than 0.4 μm, the particles will tend to aggregate, and the fluidity of the resin composition will be significantly reduced when used as a filler, which is not preferable. If the average particle size exceeds 1.9 μm, the particles may get caught in the narrow space between the mounting substrate and the chip in semiconductor packages that are becoming smaller and thinner, which may cause the fluidity of the liquid encapsulant to decrease, resulting in a decrease in moldability.
 ここで、平均粒径とは、平均粒子径(D50)を指し、レーザー回折・散乱式粒度分布測定法により測定した、体積基準の粒度分布において、累積体積が50%のメジアン径D50を意味する。なお、レーザー回折・散乱式粒度分布測定法は、球状アルミナ粒子を分散させた分散液にレーザー光を照射し、分散液から発せられる回折・散乱光の強度分布パターンから粒度分布を求める方法である。本発明では、レーザー回折・散乱式粒度分布測定装置「Mastersizer3000」(Malvern社製)を用いる。なお、球状アルミナ粒子の原料についても、同様にその平均粒子径を求めることができる。 Here, the average particle size refers to the average particle size (D50), and means the median diameter D50 at 50% cumulative volume in the volume-based particle size distribution measured by the laser diffraction/scattering particle size distribution measurement method. The laser diffraction/scattering particle size distribution measurement method is a method in which a dispersion liquid in which spherical alumina particles are dispersed is irradiated with laser light, and the particle size distribution is determined from the intensity distribution pattern of the diffracted/scattered light emitted from the dispersion liquid. In the present invention, a laser diffraction/scattering particle size distribution measurement device "Mastersizer 3000" (manufactured by Malvern) is used. The average particle size of the raw material for spherical alumina particles can also be determined in a similar manner.
 (比表面積)
 本発明の一実施態様では、球状アルミナ粒子は、BET法により測定された比表面積が1.0m/g以上5.0m/g以下である。
(Specific surface area)
In one embodiment of the present invention, the spherical alumina particles have a specific surface area measured by the BET method of 1.0 m 2 /g or more and 5.0 m 2 /g or less.
 球状粒子の比表面積が1.0m/g未満であると、粒子が細密充填構造を形成しにくくなるために、当該粒子を含む液状封止材の流動性が低下することがある。一方、球状粒子の比表面積が5.0m/g超であると、粒子間の凝集傾向が増して同様に液状封止材の流動性が低下することがある。 If the specific surface area of the spherical particles is less than 1.0 m2 /g, the particles are unlikely to form a close-packed structure, and the fluidity of the liquid encapsulant containing the particles may decrease. On the other hand, if the specific surface area of the spherical particles is more than 5.0 m2 /g, the particles may tend to aggregate more easily, and the fluidity of the liquid encapsulant may decrease.
 比表面積はBET法にて測定する。典型的には、以下の手順で比表面積を測定する。
 約5gの試料を測り採り、250℃で5分真空乾燥した。ついで、自動比表面積測定装置(マウンテック社製、Macsorb)に試料をセットし、純窒素及び窒素-ヘリウム混合ガス(混合比率窒素30%、He70%)を用いて77Kの測定温度で相対圧P/P0が0.291の値の窒素ガス吸着量を測定し、1点法にてBET比表面積を算出する。
The specific surface area is measured by the BET method. Typically, the specific surface area is measured by the following procedure.
Approximately 5 g of a sample was weighed out and vacuum dried for 5 minutes at 250° C. Next, the sample was set in an automatic specific surface area measuring device (Macsorb, manufactured by Mountec Co., Ltd.), and the nitrogen gas adsorption amount was measured at a relative pressure P/P0 value of 0.291 at a measurement temperature of 77 K using pure nitrogen and a nitrogen-helium mixed gas (mixture ratio: nitrogen 30%, He 70%), and the BET specific surface area was calculated by the one-point method.
 (表面残留Na)
 本発明の一実施態様では、球状アルミナ粒子は、表面残留Naが20ppm以下である。 ここでいう表面残留Naとはアルミナ表面に付着残留しているNaのことであり、イオンクロマトグラフによって測定した。
 ナトリウムがフィラー表面、すなわちアルミナ表面に多量に存在すると、樹脂や空気中の水分と反応し水酸化物イオンを放出する。この水酸化物イオンはエポキシ樹脂に存在するエポキシ基と反応し樹脂同士の重合反応を阻害し硬化不良の原因になる。またエポキシ基と混錬して作成された樹脂組成物中にナトリウムイオンやカリウムイオンが存在すると、耐電圧性が損なわれる。ナトリウムが20ppm以下であれば、硬化不良や耐電圧性の喪失を回避することができる。上記の観点から、ナトリウムは低いほど好ましいが、完全に除去することはコスト負担が大きいので0.1ppm以上とする。
 表面に残留するナトリウムはイオンクロマトグラフにて測定する。典型的には、以下の手順で測定する。
遠沈管に試料4gと蒸留水40mlを加え、蓋をして十分に振って混合する。混合した後、遠心分離器を用いて試料と試料溶液に分離させる。試料溶液を分取しイオンクロマトグラフを用いて、ナトリウムイオンを分析する。イオンクロマトグラフには東亜医用電子製イオンクロマトグラフで測定した。
(Surface Residual Na)
In one embodiment of the present invention, the spherical alumina particles have a surface residual Na content of 20 ppm or less. The surface residual Na referred to here means Na remaining attached to the alumina surface, and is measured by ion chromatography.
If sodium is present in a large amount on the filler surface, i.e., on the alumina surface, it reacts with the resin or moisture in the air and releases hydroxide ions. These hydroxide ions react with the epoxy groups present in the epoxy resin, inhibiting the polymerization reaction between the resins and causing poor curing. Furthermore, if sodium ions or potassium ions are present in the resin composition prepared by kneading with the epoxy groups, the voltage resistance is impaired. If the sodium content is 20 ppm or less, poor curing and loss of voltage resistance can be avoided. From the above viewpoint, the lower the sodium content, the better, but since complete removal is costly, the content is set to 0.1 ppm or more.
The amount of sodium remaining on the surface is measured by ion chromatography. Typically, the measurement is performed according to the following procedure.
Add 4 g of sample and 40 ml of distilled water to a centrifuge tube, close the lid, and shake thoroughly to mix. After mixing, use a centrifuge to separate the sample and the sample solution. Separate the sample solution and use an ion chromatograph to analyze sodium ions. The ion chromatograph was made by Toa Medical Electronics.
 (含有NaO)
 本発明の一実施態様では、球状アルミナ粒子は、含有NaOが1000ppm以下である。
 ここでいう含有NaOはアルミナの表面及び内部に存在するNa分の総量であり、原子吸光度計によって酸化物であるNaOとして定量化したものである。
 NaOがアルミナ中に多量に存在するとアルミナ表面だけでなく内部にもナトリウムが存在しており、アルミナを加熱処理した際にナトリウム成分が粒子表面に遊離してしまい、表面残留Naが高くなる恐れがある。含有NaOが1000ppm以下であればナトリウム分が低く、粒子表面への遊離を減らすことができる。含有NaOは低ければ低いほど好ましいが、完全に除去することは製造管理上困難なため、その下限値は50ppm以上としてもよい。
 含有NaOの測定方法は、アルミナ粒子が含有する酸化ナトリウムの量は、当業者に公知の元素分析法を用いればよく、例えば、原子吸光光度計により行い、酸化物換算をする。
(Containing Na2O )
In one embodiment of the present invention, the spherical alumina particles contain 1000 ppm or less of Na 2 O.
The contained Na 2 O referred to here is the total amount of Na present on the surface and inside of the alumina, and is quantified as the oxide Na 2 O using an atomic absorption spectrometer.
If a large amount of Na 2 O is present in alumina, sodium is present not only on the surface of alumina but also inside, and when the alumina is heat-treated, the sodium component is liberated on the particle surface, which may increase the residual Na on the surface. If the Na 2 O content is 1000 ppm or less, the sodium content is low and liberation on the particle surface can be reduced. The lower the Na 2 O content, the better, but since it is difficult to completely remove it in terms of production management, the lower limit may be set to 50 ppm or more.
The amount of Na 2 O contained in the alumina particles may be measured by elemental analysis known to those skilled in the art, for example, by using an atomic absorption spectrometer and converting the amount into oxide.
 (凝集度)
 本発明の一実施態様では、球状アルミナ粒子は、凝集度が1.0%以下である。
 ここでいう凝集度とは粒子が凝集しているかを指す指標であり、篩分けによる測定方法によって測定した。
 アルミナの水洗スラリーを加熱乾燥することによって、粒子同士が凝集し大きな塊になってしまう。凝集することによって粒子同士を引き離すために解砕する必要がある。解砕することによって解砕装置との接触による設備摩耗やコストがかかってしまう。また粒子同士が凝集することによって樹脂への分散が不十分なために樹脂組成物の流動性や粘性が悪化する恐れもある。凝集度が1.0%以下であれば塊が少ないことを意味し、解砕作業が不要になることを意味する。上記の観点から凝集度は低ければ低いほど望ましいが、凝集を完全に防ぐことは困難なため、その下限値は0.0001%以上としてもよい。
 凝集度の測定方法は以下のとおりである。
 4.75mm,212μmの2種類の網目の標準ふるいを順番に重ねる。重ねる順番は212μmの網目の篩を一番下にし、その上に篩目が徐々に大きくなるように重ねる。一番上段の4.75mmの網目の篩の上に、試料を50gのせ、ふるい振とう機にセットする。使用したふるい振とう機はEndecotts社製OCTAGON200を用いた。ふるいをセットした後、振とう篩機の設定を振幅5、振とう時間3分とした。振とう完了後、各ふるい網上に残っている粒子と212umの網目を通過した粒子の粒子重量を計測した。4.75mmの網目の網上粒子量をAg、212umの網目の網上粒子量をBg、212umの網目を通過した粒子量をCgとすると、(凝集度)=A/(B+C)×100(%)と計算する。
(Cohesion)
In one embodiment of the present invention, the spherical alumina particles have an agglomeration degree of 1.0% or less.
The degree of aggregation referred to here is an index showing whether particles are aggregated, and was measured by a sieving method.
When the washed slurry of alumina is heated and dried, the particles aggregate to form large lumps. The aggregation requires disintegration to separate the particles. Disintegration causes equipment wear and costs due to contact with the disintegration device. In addition, the particles aggregate to each other, resulting in insufficient dispersion in the resin, which may deteriorate the fluidity and viscosity of the resin composition. If the degree of aggregation is 1.0% or less, it means that there are few lumps, which means that a disintegration operation is not necessary. From the above perspective, the lower the degree of aggregation, the more desirable it is, but since it is difficult to completely prevent aggregation, the lower limit may be 0.0001% or more.
The method for measuring the degree of cohesion is as follows.
Two types of standard sieves with mesh sizes of 4.75 mm and 212 μm are stacked in order. The sieve with 212 μm mesh is placed at the bottom, and the sieves with gradually larger mesh sizes are stacked on top of it. 50 g of sample is placed on the top sieve with 4.75 mm mesh and set in a sieve shaker. The sieve shaker used was an OCTAGON 200 manufactured by Endecotts. After setting the sieves, the vibration sieve was set to an amplitude of 5 and a shaking time of 3 minutes. After shaking was completed, the particle weights of the particles remaining on each sieve mesh and the particles that passed through the 212 μm mesh were measured. If the amount of particles on the 4.75 mm mesh is Ag, the amount of particles on the 212 um mesh is Bg, and the amount of particles that passed through the 212 um mesh is Cg, then the degree of agglomeration is calculated as A/(B+C)×100(%).
 (円形度)
 本発明の一実施態様では、球状アルミナ粒子は、円形度が0.90以上である。
球状粒子の円形度が高いほど、当該アルミナ粒子を含む樹脂複合組成物の粘度を低下させ、成形性も向上させることができる。円形度は、0.91以上であってもよく、0.92以上であってもよく、0.93以上であってもよい。円形度の上限は理論的には1.0であるが、製造管理の観点から0.98以下、または0.95以下としてもよい。
(Circularity)
In one embodiment of the present invention, the spherical alumina particles have a circularity of 0.90 or more.
The higher the circularity of the spherical particles, the lower the viscosity of the resin composite composition containing the alumina particles and the more improved the moldability. The circularity may be 0.91 or more, 0.92 or more, or 0.93 or more. The upper limit of the circularity is theoretically 1.0, but may be 0.98 or less, or 0.95 or less from the viewpoint of production management.
 円形度の測定は電子顕微鏡や光学顕微鏡と画像解析装置を用いて測定することができる。例えばシスメックス社製FPIA等である。これら装置を用いて粒子の円形度(相当円の周囲長/粒子の投映像の周囲長)を測定する。100個以上の粒子について円形度を測定し、その平均値をその粉末の円形度とする。 Circularity can be measured using an electron microscope or optical microscope and an image analyzer. For example, Sysmex FPIA. These devices are used to measure the circularity of particles (perimeter of equivalent circle/perimeter of projected image of particle). The circularity of 100 or more particles is measured, and the average value is taken as the circularity of the powder.
 (α化率)
 本発明の一実施態様では、球状アルミナ粒子は、α化率が10.0%以下であってもよい。
 ここで、α化率とは、結晶質相の内のα-アルミナ結晶の割合を指す。アルミナは結晶質となることが知られており、典型的な結晶質の形態としてα-アルミナ、θ-アルミナ、δ-アルミナが知られている。本発明の一実施形態である、球状アルミナ粒子は、詳細は後述するが、原料を火炎中に投入して溶融させた後、急冷する溶射法に基づいて、製造することができる。その場合、得られるアルミナは非晶質の割合を多くすることができ、容易に、α化率が10.0%以下の球状アルミナ粒子を得ることができる。α化率の上限は、5.0%であってもよく、3.0%であってもよく、1.0%であってもよい。α化率の下限は、特に制限されるものではなく、0.0%であってもよいが、製造管理の負担の観点及び樹脂複合組成物としての熱伝導率特性の観点から、0.1%であってもよく、0.4%であってもよい。
(Alpha conversion rate)
In one embodiment of the present invention, the spherical alumina particles may have a gelatinization rate of 10.0% or less.
Here, the alpha-alumina ratio refers to the ratio of alpha-alumina crystals in the crystalline phase. Alumina is known to be crystalline, and alpha-alumina, θ-alumina, and δ-alumina are known as typical crystalline forms. The spherical alumina particles, which are one embodiment of the present invention, can be manufactured based on a thermal spraying method in which a raw material is put into a flame, melted, and then quenched, as described in detail below. In this case, the obtained alumina can have a high amorphous ratio, and spherical alumina particles with an alpha-alumina ratio of 10.0% or less can be easily obtained. The upper limit of the alpha-alumina ratio may be 5.0%, 3.0%, or 1.0%. The lower limit of the alpha-alumina ratio is not particularly limited and may be 0.0%, but may be 0.1% or 0.4% from the viewpoint of the burden of manufacturing management and the thermal conductivity characteristics as a resin composite composition.
 α化率は、粉末X線回折装置を用いて測定する。得られた回折ピークの積分面積を求め、その合計に対してαアルミナ由来の回折ピーク面積の割合をリートベルト法によって解析する。具体的にはBruker社製のD2PHASERを用いてX線回折パターンを2θが10°から90°の範囲で取得する。取得したパターンをBruker社製のDIFFRAC.TOPASを用いてリートベルト法にてα化率を算出する。算出の際にはαアルミナ、δアルミナ、θアルミナの3種類の結晶相のみが存在すると仮定して解析し、αアルミナの含有率を算出する。 The alpha-conversion rate is measured using a powder X-ray diffractometer. The integrated area of the obtained diffraction peaks is calculated, and the ratio of the diffraction peak area derived from alpha-alumina to the total is analyzed using the Rietveld method. Specifically, an X-ray diffraction pattern is obtained using a Bruker D2PHASER with 2θ in the range of 10° to 90°. The alpha-conversion rate is calculated from the obtained pattern using a Bruker DIFFRAC. TOPAS by the Rietveld method. When calculating, the analysis is performed assuming that only three types of crystal phases, alpha-alumina, delta-alumina, and theta-alumina, are present, and the alpha-alumina content is calculated.
 (純度)
 アルミナ微子の酸化アルミニウムの純度が99.99%以上100.00%以下であることが好ましい。酸化アルミニウムの純度が99.99%より小さいと、アルミナ粒子が不定形形状になりやすい。
(purity)
The purity of the aluminum oxide in the alumina particles is preferably 99.99% or more and 100.00% or less. If the purity of the aluminum oxide is less than 99.99%, the alumina particles tend to have an irregular shape.
 アルミナ微粒子の純度を測定する装置の具体例としては、高感度で不純物レベルの定量が可能なICP発光分析や、AES、SIMSのごとき分析装置が使用可能である。本実施例のアルミナ粒子中の不純物量測定はICP発光分析法および原子吸光法による分析を行った。なお、測定は、各金属酸化物について下記のJIS規格の測定方法に従って行った。
・Fe(%):硫酸(1+3)加圧酸分解、ICP法
(JIS R 1649)
・SiO(%):炭酸ナトリウム-ほう酸融解、ICP法
(JIS H 1901)
・NaO(%):硫酸(1+3)加圧酸分解、原子吸光光度法
(JIS R 1649)
 また、アルミナ粒子の純度は下記式より算出した。尚、少数点以下第3位を四捨五入した値と定義する。
Specific examples of devices for measuring the purity of alumina fine particles include ICP emission spectrometry, AES, and SIMS, which are capable of quantifying impurity levels with high sensitivity. The amount of impurities in the alumina particles in this embodiment was measured by ICP emission spectrometry and atomic absorption spectrometry. The measurements were performed for each metal oxide according to the following JIS standard measurement method.
Fe2O3 (%): sulfuric acid (1+3) pressure acid decomposition, ICP method (JIS R 1649)
SiO 2 (%): Sodium carbonate-boric acid fusion, ICP method (JIS H 1901)
Na 2 O (%): sulfuric acid (1+3) pressure acid decomposition, atomic absorption spectrometry (JIS R 1649)
The purity of the alumina particles was calculated from the following formula: where the value is rounded off to two decimal places.
 アルミナ粒子の純度[Al(%)]=
   100(%)-[Fe(%)]-[SiO(%)]-[NaO(%)]
Purity of alumina particles [Al 2 O 3 (%)] =
100(%) - [ Fe2O3 (%)] - [ SiO2 (%) ] - [ Na2O (%)]
[球状アルミナ粒子の製造方法]
 本発明の一実施態様では、球状アルミナ粒子の製造方法が提供される。当該製造方法は、上述したアルミナ粒子を好適に製造できる方法であり、以下の工程を含む。
(1)原料アルミナの製造工程。
(2)原料アルミナを球状化し原料球状アルミナを製造する工程。
(3) 原料球状アルミナと水を混合して、前記原料球状アルミナを含む水スラリーを調製する水スラリー調製工程、および
(4)前記水スラリーを乾燥する、乾燥工程。
[Method of producing spherical alumina particles]
In one embodiment of the present invention, there is provided a method for producing spherical alumina particles, which is a method for suitably producing the above-mentioned alumina particles and includes the following steps:
(1) Manufacturing process of raw alumina.
(2) A step of spheroidizing the raw alumina to produce raw spherical alumina.
(3) a water slurry preparation step of mixing the raw material spherical alumina with water to prepare a water slurry containing the raw material spherical alumina; and (4) a drying step of drying the water slurry.
 (原料アルミナ)
 原料アルミナの製造方法としては、アンモニウムアルミニウム炭酸塩の熱分解法、気相酸化法、爆燃法、バイヤー法、アルミニウムアルコキシドの加水分解法等を用いて製造される。
(Raw alumina)
The raw material alumina can be produced by, for example, thermal decomposition of ammonium aluminum carbonate, vapor phase oxidation, deflagration, Bayer process, or hydrolysis of aluminum alkoxide.
 (原料球状アルミナ)
 原料アルミナは、火炎溶融法によって球状化して、原料球状アルミナとすることができる。
 火炎溶融法は、公知の溶射方法の一種であり、粒子を火炎中に噴射して、前記粒子を球状化する。このとき、時間当たりの火炎への投入量や燃料ガス種によって平均球形度を調整することができる。また使用する粒子の粒径を調整することで、球状アルミナ粉末の粒径を調整することができる。冷媒は特に制限されるものではないが、球状粒子の純度を低下させないという観点から、不純物が少なく低活性の空気や窒素やアルゴン等の気体が望ましい。
 また酸素を含む雰囲気中でバーナーにより化学炎を形成し、この化学炎中に金属アルミニウム粉末を粉塵雲が形成される程度の量投入し、爆燃を起こして球状のアルミナ粒子を得る爆燃法によって原料球状アルミナを製造してもよい。
(Raw material spherical alumina)
The raw material alumina can be spheroidized by a flame fusion method to obtain raw material spherical alumina.
The flame fusion method is a type of known thermal spraying method in which particles are sprayed into a flame to make the particles spherical. In this case, the average sphericity can be adjusted by the amount of fuel gas fed into the flame per unit time and the type of fuel gas. The particle size of the spherical alumina powder can be adjusted by adjusting the particle size of the particles used. The refrigerant is not particularly limited, but from the viewpoint of not reducing the purity of the spherical particles, a gas with few impurities and low activity such as air, nitrogen, or argon is preferable.
Alternatively, raw material spherical alumina may be produced by a deflagration method in which a chemical flame is formed by a burner in an atmosphere containing oxygen, and metallic aluminum powder is introduced into the chemical flame in an amount sufficient to form a dust cloud, causing a deflagration to produce spherical alumina particles.
 (水スラリー)
 上述の原料球状アルミナと水を混合して、原料球状アルミナを含む水スラリーを調製する。混合する水は、球状粒子の純度を低下させないという観点から、不純物としてナトリウムイオンや塩素イオンなどを含まない蒸留水やイオン交換水が望ましい。混合量は、スラリーの粘度等を考慮して適宜調整することができる。
(Water slurry)
The raw material spherical alumina is mixed with water to prepare a water slurry containing the raw material spherical alumina. From the viewpoint of not lowering the purity of the spherical particles, the water to be mixed is preferably distilled water or ion-exchanged water that does not contain sodium ions or chlorine ions as impurities. The amount of the mixture can be appropriately adjusted taking into account the viscosity of the slurry, etc.
 (洗浄)
 水スラリー調製工程の前に、前記原料球状アルミナを水洗浄する原料球状アルミナ洗浄工程を行ってもよい。洗浄水は、スラリー水と同様、不純物としてナトリウムイオンや塩素イオンなどを含まない蒸留水やイオン交換水を用いてもよい。あるいは、洗浄によって除去したい対象に応じて、洗浄剤や界面活性剤等と用いて、洗浄を行ってもよい。洗浄の温度、回数、時間等の条件を適宜調整して、アルミナ粒子を所望の洗浄状態とすることができる。典型的には、所望の表面残留Na濃度および含有NaO濃度を得るようにすることができる。洗浄後はフィルターなどを用いて任意の粒子濃度になるまで脱水をおこなってもよい。脱水を行うことによって水中に溶解しているNa分や洗浄剤を洗い流すことで乾燥後の再付着を予防することができる。また洗浄後の原料球状アルミナにさらに水を加え、残留している不純物成分を水に溶解させてもよい。水を加えた場合は再び脱水を行うことで、アルミナ粒子表面に付着する不純物成分を洗い流すことができる。高純度化に加え、任意の粒子濃度に制御することで後工程の乾燥の効率を上げることができる。
(Washing)
Before the water slurry preparation step, a raw material spherical alumina washing step may be performed in which the raw material spherical alumina is washed with water. As with the slurry water, the washing water may be distilled water or ion-exchanged water that does not contain sodium ions or chlorine ions as impurities. Alternatively, washing may be performed using a cleaning agent, a surfactant, or the like, depending on the target to be removed by washing. The conditions such as the temperature, number of times, and time of washing can be appropriately adjusted to bring the alumina particles into a desired washing state. Typically, the desired surface residual Na concentration and contained Na 2 O concentration can be obtained. After washing, dehydration may be performed using a filter or the like until the desired particle concentration is reached. By performing dehydration, the Na content and cleaning agent dissolved in the water can be washed away, thereby preventing re-adhesion after drying. In addition, water may be further added to the raw material spherical alumina after washing to dissolve the remaining impurity components in the water. When water is added, dehydration can be performed again to wash away the impurity components attached to the alumina particle surface. In addition to high purification, the efficiency of drying in the subsequent step can be increased by controlling the particle concentration to an arbitrary concentration.
 (乾燥)
 原料球状アルミナを含む水スラリーから球状アルミナを取り出すために、水分を乾燥除去させる。従来の乾燥は、静置したスラリーを長時間加熱することにより、スラリーから水分を蒸発させるものである。このとき、加熱が進むにつれて、スラリー中の水分は蒸発して減少するので、スラリー中でアルミナ粒子どうしの距離が狭くなる。スラリーから水分が完全に離脱したときに、アルミナ粒子どうしは接触しており、強固な凝集体を形成することがある。さらに長時間スラリーを加熱することによって、スラリーに含まれる球状アルミナ粒子内部からナトリウム分が表面に移動し、粒子表面に遊離することがある。これに対して、本実施態様では、原料球状アルミナを含む水スラリーを気流加熱乾燥あるいは凍結乾燥する。
(Drying)
In order to extract spherical alumina from an aqueous slurry containing raw spherical alumina, the water is dried and removed. Conventional drying involves heating the slurry that has been left stationary for a long period of time to evaporate the water from the slurry. As the heating proceeds, the water in the slurry evaporates and decreases, so the distance between the alumina particles in the slurry becomes narrower. When the water is completely removed from the slurry, the alumina particles are in contact with each other and may form strong aggregates. Furthermore, by heating the slurry for a long period of time, sodium may move from the inside of the spherical alumina particles contained in the slurry to the surface and become liberated on the particle surface. In contrast, in this embodiment, the aqueous slurry containing the raw spherical alumina is dried by airflow heating or freeze-dried.
 (凍結乾燥)
 凍結乾燥では、水分が凍結によって固定化され、それに伴いアルミナ粒子も固定化される。凍結乾燥により、水分は昇華により、徐々に系(スラリー)から離脱していくが、アルミナ粒子は固定されているので、アルミナ粒子どうしの距離はある程度保たれ、接触や凝集が抑制される。つまり、乾燥が完了し、スラリーから水分が完全に離脱したときに、アルミナ粒子どうしの接触は最小限になり、凝集が生じにくい。図1は、従来の加熱乾燥の場合と、本実施態様の凍結乾燥の場合での、アルミナ粒子の状態を模式的に表した図である。このように、本実施態様の凍結乾燥を行った場合、得られるアルミナ粒子は凝集が抑えられており、アルミナ粒子の凝集塊を解砕する必要もない。一般に、凝集物の解砕にはミル等の解砕装置が用いられ、解砕装置からの異物混入(コンタミ)のおそれがある。しかしながら、本実施態様では、解砕する必要もないので、当然のことながら、解砕による異物混入(コンタミ)が抑制される。さらに加熱温度が低い(10~90℃、より好ましい上限は80℃)ため、粒子内部からのナトリウム分の染み出しが最低限に抑えられるため、乾燥後の粉末表面に遊離再付着するナトリウムは少なくなる。
(freeze drying)
In freeze-drying, the moisture is fixed by freezing, and the alumina particles are also fixed accordingly. By freeze-drying, the moisture gradually leaves the system (slurry) by sublimation, but since the alumina particles are fixed, the distance between the alumina particles is maintained to a certain extent, and contact and aggregation are suppressed. In other words, when the drying is completed and the moisture is completely removed from the slurry, the contact between the alumina particles is minimized, and aggregation is unlikely to occur. FIG. 1 is a diagram showing the state of alumina particles in the case of conventional heat drying and in the case of freeze-drying of this embodiment. In this way, when the freeze-drying of this embodiment is performed, the alumina particles obtained are suppressed in aggregation, and there is no need to break up the agglomerates of alumina particles. In general, a breaker such as a mill is used to break up the agglomerates, and there is a risk of contamination from the breaker. However, in this embodiment, there is no need to break up the agglomerates, so naturally, the introduction of foreign matter (contamination) due to breaking up is suppressed. Furthermore, since the heating temperature is low (10 to 90° C., more preferably 80° C.), the seepage of sodium from inside the particles is minimized, and therefore the amount of free sodium reattached to the powder surface after drying is reduced.
 (気流加熱乾燥)
気流加熱乾燥では、スラリーを100~300℃の高温の気流中に噴霧することによって水分のみを蒸発させることでスラリーから球状アルミナ粉末を取り出す方法である。スラリーを二流体ノズルのようなノズルで高温の気流中に噴霧する。噴霧されたスラリーは気流中の分散効果によって微細な液滴になる。従来の加熱乾燥法に比べて、気流加熱乾燥法はノズルによってスラリーを液滴にしていることによって非常に大きな表面積を持つことになる。スラリーが受ける熱量は熱源とスラリーが接している表面積に比例しているため、液滴の水分は瞬く間に蒸発乾燥する。従来の加熱乾燥法に比べて乾燥時間が短い(0.01秒~10秒程度)ため、粒子内部からのナトリウム分の染み出しが最低限に抑えられるため、乾燥後の粉末に遊離再付着するナトリウムは少なくなる。さらに、球状アルミナ粉末は、気流中に噴霧されているので、球状アルミナ粉末どうしの凝集が抑えられており、アルミナ粒子の凝集塊を解砕する必要もない。
(Air flow heating drying)
In the airflow heat drying method, the slurry is sprayed into a high-temperature airflow of 100 to 300°C, and only the water content is evaporated, thereby extracting spherical alumina powder from the slurry. The slurry is sprayed into a high-temperature airflow using a nozzle such as a two-fluid nozzle. The sprayed slurry becomes fine droplets due to the dispersion effect in the airflow. Compared to conventional heat drying methods, the airflow heat drying method has a very large surface area because the slurry is made into droplets using a nozzle. The amount of heat received by the slurry is proportional to the surface area where the heat source and the slurry are in contact, so the water content of the droplets evaporates and dries in an instant. Since the drying time is shorter (about 0.01 to 10 seconds) than conventional heat drying methods, the seepage of sodium from inside the particles is minimized, and the amount of sodium that reattaches to the powder after drying is reduced. Furthermore, since the spherical alumina powder is sprayed into the airflow, the aggregation of the spherical alumina powder particles is suppressed, and there is no need to break up the agglomerates of alumina particles.
[樹脂複合組成物]
 本発明の一実施態様によって、最終的に得られた球状アルミナ粒子と樹脂との複合組成物を製造することができる。樹脂複合組成物の組成等について、以下により詳細に説明する。
[Resin composite composition]
According to one embodiment of the present invention, the composite composition of the finally obtained spherical alumina particles and resin can be produced. The composition of the resin composite composition will be described in more detail below.
 球状アルミナ粒子と樹脂とを含むスラリー組成物を用いて、半導体封止材(特に固形封止材)、層間絶縁フィルム等の樹脂複合組成物を得ることができる。さらには、これらの樹脂複合体組成物を硬化させることで、封止材(硬化体)、半導体パッケージ用基板等の樹脂複合体を得ることができる。 By using a slurry composition containing spherical alumina particles and a resin, it is possible to obtain resin composite compositions such as semiconductor encapsulants (particularly solid encapsulants) and interlayer insulating films. Furthermore, by curing these resin composite compositions, it is possible to obtain resin composites such as encapsulants (cured bodies) and substrates for semiconductor packages.
 前記樹脂複合組成物を製造する場合、例えば、球状アルミナ粒子及び樹脂の他に、硬化剤、硬化促進剤、難燃剤、シランカップリング剤等を必要により配合し、混錬等の公知の方法で複合化する。そして、ペレット状、フィルム状等、用途に応じて成型する。 When producing the resin composite composition, for example, in addition to the spherical alumina particles and resin, a curing agent, a curing accelerator, a flame retardant, a silane coupling agent, etc. are mixed as necessary, and the mixture is compounded by a known method such as kneading. The mixture is then molded into pellets, films, etc., depending on the application.
 また、前記樹脂複合組成物を製造する場合、球状アルミナ粒子及び樹脂の他に、他の無機フィラーを配合してもよい、前記無機フィラーとしては、非晶質球状シリカ粒子、結晶質球状シリカ粒子、チタニア粒子、マグネシア粒子、窒化アルミニウム粒子、窒化ホウ素粒子、チタン酸バリウム粒子、チタン酸カルシウム粒子、カーボンファイバーが挙げられる。前記無機フィラーの配合比は、樹脂複合組成物の用途に応じて適宜調整できる。 When producing the resin composite composition, other inorganic fillers may be blended in addition to the spherical alumina particles and resin. Examples of the inorganic fillers include amorphous spherical silica particles, crystalline spherical silica particles, titania particles, magnesia particles, aluminum nitride particles, boron nitride particles, barium titanate particles, calcium titanate particles, and carbon fibers. The blending ratio of the inorganic fillers can be adjusted appropriately depending on the application of the resin composite composition.
 さらに、前記樹脂複合組成物を硬化して樹脂複合体を製造する場合、例えば、樹脂複合組成物に熱を加えて溶融して、用途に応じた形状に加工し、溶融時よりも高い熱を加えて完全に硬化させる。この場合、トランスファーモールド法等の公知の方法を使用することができる。 Furthermore, when the resin composite composition is cured to produce a resin composite, for example, the resin composite composition is heated to melt it, processed into a shape according to the intended use, and then heated to a temperature higher than that at the time of melting to completely cure it. In this case, a known method such as a transfer molding method can be used.
 例えば、パッケージ用基板や層間絶縁フィルム等の半導体関連材料を製造する場合には、樹脂複合組成物に使用する樹脂として、公知の樹脂が適用できるが、エポキシ樹脂を採用することが好ましい。エポキシ樹脂は、特に限定されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノキシ型エポキシ樹脂等を用いることができる。これらの中の1種類を単独で用いることもできるし、異なる分子量を有する2種類以上を併用することもできる。これらの中でも、硬化性、耐熱性等の観点から、1分子中にエポキシ基を2個以上有するエポキシ樹脂が好ましい。具体的には、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、フェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールF及びビスフェノールS等のグリシジルエーテル、フタル酸やダイマー酸等の多塩基酸とエポクロルヒドリンとの反応により得られるグリシジルエステル酸エポキシ樹脂、線状脂肪族エポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、アルキル変性多官能エポキシ樹脂、β-ナフトールノボラック型エポキシ樹脂、1,6-ジヒドロキシナフタレン型エポキシ樹脂、2,7-ジヒドロキシナフタレン型エポキシ樹脂、ビスヒドロキシビフェニル型エポキシ樹脂、更には難燃性を付与するために臭素等のハロゲンを導入したエポキシ樹脂等が挙げられる。これら1分子中にエポキシ基を2個以上有するエポキシ樹脂中でも特にビスフェノールA型エポキシ樹脂が好ましい。 For example, when manufacturing semiconductor-related materials such as packaging substrates and interlayer insulating films, known resins can be used as the resin for the resin composite composition, but it is preferable to use an epoxy resin. The epoxy resin is not particularly limited, but for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthalene type epoxy resin, phenoxy type epoxy resin, etc. can be used. One of these can be used alone, or two or more types with different molecular weights can be used in combination. Among these, epoxy resins having two or more epoxy groups in one molecule are preferred from the viewpoints of curability, heat resistance, etc. Specifically, biphenyl type epoxy resins, phenol novolac type epoxy resins, orthocresol novolac type epoxy resins, epoxidized novolac resins of phenols and aldehydes, glycidyl ethers of bisphenol A, bisphenol F, bisphenol S, etc., glycidyl ester acid epoxy resins obtained by reacting polybasic acids such as phthalic acid and dimer acid with epochlorohydrin, linear aliphatic epoxy resins, alicyclic epoxy resins, heterocyclic epoxy resins, alkyl-modified polyfunctional epoxy resins, β-naphthol novolac type epoxy resins, 1,6-dihydroxynaphthalene type epoxy resins, 2,7-dihydroxynaphthalene type epoxy resins, bishydroxybiphenyl type epoxy resins, and epoxy resins into which halogens such as bromine have been introduced to impart flame retardancy. Among these epoxy resins having two or more epoxy groups in one molecule, bisphenol A type epoxy resins are particularly preferred.
 また、半導体封止材用複合材料以外の用途、例えば、プリント基板用のプリプレグ、各種エンジニアプラスチックス等の樹脂複合組成物に使用する樹脂としては、エポキシ系以外の樹脂も適用できる。具体的には、エポキシ樹脂の他には、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド;ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル;ポリフェニレンスルフィド、芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変成樹脂、ABS樹脂、AAS(アクリロニトリルーアクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂が挙げられる。 In addition, resins other than epoxy resins can be used in applications other than composite materials for semiconductor encapsulation, such as prepregs for printed circuit boards and various engineering plastics, as resin composite compositions. Specific examples of resins that can be used other than epoxy resins include silicone resins, phenolic resins, melamine resins, urea resins, unsaturated polyesters, fluororesins, polyamides such as polyimide, polyamideimide, and polyetherimide; polyesters such as polybutylene terephthalate and polyethylene terephthalate; polyphenylene sulfide, aromatic polyesters, polysulfones, liquid crystal polymers, polyethersulfones, polycarbonates, maleimide-modified resins, ABS resins, AAS (acrylonitrile-acrylic rubber-styrene) resins, and AES (acrylonitrile-ethylene-propylene-diene rubber-styrene) resins.
 樹脂複合組成物に用いられる硬化剤としては、前記樹脂を硬化するために、公知の硬化剤を用いればよいが、例えばフェノール系硬化剤を使用することができる。フェノール系硬化剤としては、フェノールノボラック樹脂、アルキルフェノールノボラック樹脂、ポリビニルフェノール類等を、単独あるいは2種以上組み合わせて使用することができる。 The curing agent used in the resin composite composition may be any known curing agent for curing the resin, for example, a phenol-based curing agent. As the phenol-based curing agent, phenol novolac resin, alkylphenol novolac resin, polyvinylphenols, etc., may be used alone or in combination of two or more kinds.
 前記フェノール硬化剤の配合量は、エポキシ樹脂との当量比(フェノール性水酸基当量/エポキシ基当量)が0.1以上、1.0未満が好ましい。これにより、未反応のフェノール硬化剤の残留がなくなり、吸湿耐熱性が向上する。 The amount of the phenolic hardener to be blended is preferably such that the equivalent ratio to the epoxy resin (phenolic hydroxyl group equivalent/epoxy group equivalent) is 0.1 or more and less than 1.0. This eliminates the residue of unreacted phenolic hardener and improves moisture absorption and heat resistance.
 本発明の球状アルミナ粒子の、樹脂複合組成物における添加量は、耐熱性、熱膨張率の観点から、多いことが好ましいが、通常、70質量%以上95質量%以下、好ましくは80質量%以上95質量%以下、更に好ましくは85質量%以上95質量%以下であるのが適当である。これは、球状アルミナ粒子の配合量が少なすぎると、封止材料の強度向上や熱膨張抑制などの効果が得られにくいためであり、また逆に多すぎると、球状アルミナ粒子の表面処理に関わらず複合材料において球状アルミナ粒子の凝集による偏析が起きやすく、複合材料の粘度も大きくなりすぎるなどの問題から、封止材料として実用が困難となるためである。 The amount of the spherical alumina particles of the present invention added to the resin composite composition is preferably large from the viewpoint of heat resistance and thermal expansion coefficient, but is usually appropriate to be 70% by mass or more and 95% by mass or less, preferably 80% by mass or more and 95% by mass or less, and more preferably 85% by mass or more and 95% by mass or less. This is because if the amount of spherical alumina particles is too small, it is difficult to obtain effects such as improving the strength of the sealing material and suppressing thermal expansion, and conversely, if the amount is too large, segregation due to aggregation of the spherical alumina particles is likely to occur in the composite material regardless of the surface treatment of the spherical alumina particles, and the viscosity of the composite material becomes too high, making it difficult to use it as a sealing material.
 また樹脂のほかに、添加材、例えばシランカップリング剤、硬化剤、着色剤、硬化遅延材等の公知の添加剤を使用することができる。 In addition to the resin, additives such as silane coupling agents, hardeners, colorants, hardening retarders, and other known additives can be used.
 また、シランカップリング剤については、公知のカップリング剤を用いればよいが、エポキシ系官能基を有するものが好ましい。 As for the silane coupling agent, any known coupling agent may be used, but it is preferable to use one that has an epoxy-based functional group.
 球状アルミナ粒子と樹脂とを含むスラリー組成物を用いて、放熱シート、放熱グリース等を得ることができる。 A slurry composition containing spherical alumina particles and resin can be used to produce heat dissipation sheets, heat dissipation grease, etc.
 前記放熱シートを得る際には、球状アルミナ粒子と、樹脂のほかに、添加剤を適宜配合し、混錬等の公知の方法で複合化する。得られた複合体を公知の方法で、シート状に成型する。 When obtaining the heat dissipation sheet, the spherical alumina particles, resin, and additives are appropriately mixed and compounded using a known method such as kneading. The resulting composite is molded into a sheet using a known method.
 例えば、放熱シートを製造する場合には、樹脂複合組成物に使用する樹脂として、公知の樹脂が適用できるが、具体的にシリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド;ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル;ポリフェニレンスルフィド、芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変成樹脂、ABS樹脂、AAS(アクリロニトリルーアクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂が挙げられる。中でもシリコーン樹脂を用いることが好ましい。シリコーン樹脂は特に限定されないが、例えば、過酸化物硬化型、付加硬化型、縮合硬化型、紫外線硬化型等を用いることができる。 For example, when manufacturing a heat dissipation sheet, known resins can be used as the resin for the resin composite composition, and specific examples include silicone resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyamide such as polyimide, polyamideimide, polyetherimide, polyester such as polybutylene terephthalate, polyethylene terephthalate, polyphenylene sulfide, aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber-styrene) resin, AES (acrylonitrile-ethylene-propylene-diene rubber-styrene) resin. Of these, it is preferable to use silicone resin. There are no particular limitations on the silicone resin, but for example, peroxide curing type, addition curing type, condensation curing type, ultraviolet curing type, etc. can be used.
 また樹脂のほかに、添加材、例えばシランカップリング剤、硬化剤、着色剤、硬化遅延材等の公知の添加剤を使用することができる。 In addition to the resin, additives such as silane coupling agents, hardeners, colorants, hardening retarders, and other known additives can be used.
 前記放熱グリースを得る際には、球状アルミナ粒子と、樹脂のほかに、添加剤を適宜配合し、混錬等の公知の方法で複合化する。ここで、放熱グリースに使用する樹脂は基油ともいう。 When obtaining the heat dissipating grease, the spherical alumina particles, resin, and additives are appropriately mixed and compounded using a known method such as kneading. Here, the resin used in the heat dissipating grease is also called the base oil.
 例えば、放熱グリースを製造する場合には、樹脂複合組成物に使用する樹脂として、公知の樹脂ができるが、具体的にはシリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド;ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル;ポリフェニレンスルフィド、芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変成樹脂、ABS樹脂、AAS(アクリロニトリルーアクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂、鉱油、合成炭化水素油、エステル油、ポリグリコール油、シリコーン油、フッ素油が挙げられる。 For example, when manufacturing heat dissipating grease, known resins can be used in the resin composite composition, specifically silicone resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyamides such as polyimide, polyamideimide, and polyetherimide; polyesters such as polybutylene terephthalate and polyethylene terephthalate; polyphenylene sulfide, aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide-modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber-styrene) resin, AES (acrylonitrile-ethylene-propylene-diene rubber-styrene) resin, mineral oil, synthetic hydrocarbon oil, ester oil, polyglycol oil, silicone oil, and fluorine oil.
 また樹脂のほかに、添加材、例えばシランカップリング剤、着色剤、増ちょう剤等の公知の添加剤を使用することができる。増ちょう剤は、カルシウム石けん、リチウム石けん、アルミニウム石けん、カルシウムコンプレックス、アルミニウムコンプレックス、リチウムコンプレックス、バリウムコンプレックス、ベントナイト、ウレア、PTFE、ナトリウムテレフタラメート、シリカゲル、有機化ベントナイト等の公知のものを使用できる。 In addition to the resin, additives such as silane coupling agents, colorants, thickeners, and other known additives can be used. The thickeners that can be used include known ones such as calcium soap, lithium soap, aluminum soap, calcium complex, aluminum complex, lithium complex, barium complex, bentonite, urea, PTFE, sodium terephthalamate, silica gel, and organic bentonite.
 以下の実施例・比較例を通じて、本発明について説明する。ただし、本発明は、以下の実施例に限定して解釈されるものではない。 The present invention will be explained through the following examples and comparative examples. However, the present invention should not be interpreted as being limited to the following examples.
 表1に記載の原料球状アルミナ粒子(素材1~素材4)を用意し、それらを水と混合して、水スラリーとした。水スラリーを作成する際のイオン交換水と粒子の混合率は、素材1,2を使用する場合は水を1000Lに対し、粒子粉末を200kg混合した。素材3を使用する際はイオン交換水を1000Lに対し、粒子粉末を300kgとした。素材4を使用する際はイオン交換水を1000Lに対し、粒子粉末を200kgとした。水スラリーを20分~1時間程度混合撹拌した後、適当なフィルターを用いてろ過し、水分量を60~80wt%程度になるまでろ過した。 The raw spherical alumina particles (Materials 1 to 4) listed in Table 1 were prepared and mixed with water to make a water slurry. When using Materials 1 and 2, the mixing ratio of ion-exchanged water and particles to make the water slurry was 200 kg of particle powder per 1000 L of water. When using Material 3, 300 kg of particle powder per 1000 L of ion-exchanged water was used. When using Material 4, 200 kg of particle powder per 1000 L of ion-exchanged water was used. The water slurry was mixed and stirred for 20 minutes to 1 hour, and then filtered using an appropriate filter until the moisture content was about 60 to 80 wt%.
 (実施例1~3)
 調整したスラリーを-40℃の条件下で一度予備凍結した。その後装置内を真空脱気しながら、80℃で24時間凍結乾燥した。
(Examples 1 to 3)
The prepared slurry was once pre-frozen at −40° C., and then freeze-dried at 80° C. for 24 hours while the inside of the apparatus was degassed under vacuum.
 (実施例4)
 調整したスラリーを平岩鉄工所製ジェットターボドライヤーを用いて200℃で気流乾燥した。
Example 4
The prepared slurry was air-dried at 200° C. using a jet turbo dryer manufactured by Hiraiwa Iron Works.
 (比較例1~3)
 調整したスラリーを気流なしの状態でオーブン内に静置し、加熱乾燥法により乾燥した。乾燥条件は230℃、40時間の条件で乾燥した。
(Comparative Examples 1 to 3)
The prepared slurry was placed in an oven without airflow and dried by a heat drying method at 230° C. for 40 hours.
 (比較例4)
 素材4を使用して調整したスラリーを実施例1と同様の条件にて凍結乾燥した。
(Comparative Example 4)
The slurry prepared using Material 4 was freeze-dried under the same conditions as in Example 1.
 (比較例5)
 素材1を使用して調整したスラリーを-40℃の条件下で一度予備凍結した。その後装置内を真空脱気しながら、95℃で24時間凍結乾燥した。
(Comparative Example 5)
The slurry prepared using Material 1 was once pre-frozen at −40° C. Then, the inside of the apparatus was vacuum degassed and freeze-dried at 95° C. for 24 hours.
 (比較例6)
 素材1を使用して調整したスラリーを平岩鉄工所製ジェットターボドライヤーを用いて350℃で気流乾燥した。
(Comparative Example 6)
The slurry prepared using Material 1 was dried by airflow at 350° C. using a jet turbo dryer manufactured by Hiraiwa Iron Works.
 (実施例5)
 実施例1で得られた球状アルミナ粒子と窒化アルミニウム粒子(D50=30μm)とを、(球状アルミナ粒子の配合重量):(窒化アルミニウム粒子の配合重量)=90:10となるように混合し、球状アルミナ粒子混合物Aを作製した。さらに、樹脂複合組成物における球状アルミナ粒子混合物Aの添加量が90質量%となるように、球状アルミナ粒子混合物Aとダウ東レ製シリコーン樹脂CY52-276A液とを混合し、シンキー製真空混錬機「泡取り練太郎」にて真空混錬し、樹脂複合組成物を得た。混錬条件は予備混錬15秒、真空混錬90秒にて実施した。混錬後、混錬物の入ったプラスチック製容器を25℃に調整したウォーターバスに入れ1時間冷却した。この樹脂複合組成物10gを表面が平滑な鉄板にのせて水平方向に対して60°傾け樹脂複合組成物の流れ度合いを確認した。その結果、傾けて5時間後にこの樹脂複合組成物が15cm以上流れ、良好な流動性を示した。
Example 5
The spherical alumina particles and aluminum nitride particles (D50 = 30 μm) obtained in Example 1 were mixed so that the ratio of the spherical alumina particles to the aluminum nitride particles was 90:10, to prepare a spherical alumina particle mixture A. Furthermore, the spherical alumina particle mixture A was mixed with Dow Toray's silicone resin CY52-276A liquid so that the amount of the spherical alumina particle mixture A added in the resin composite composition was 90 mass%, and the mixture was vacuum-kneaded using a Thinky vacuum kneader "Awatori Rentaro" to obtain a resin composite composition. The kneading conditions were 15 seconds of pre-kneading and 90 seconds of vacuum kneading. After kneading, the plastic container containing the kneaded product was placed in a water bath adjusted to 25 ° C. and cooled for 1 hour. 10 g of this resin composite composition was placed on a smooth-surfaced iron plate and tilted 60 ° to the horizontal direction to check the flow rate of the resin composite composition. As a result, after 5 hours of tilting, the resin composite composition flowed 15 cm or more, showing good fluidity.
 (実施例6)
  実施例2で得られた球状アルミナ粒子と窒化ホウ素粒子(D50=20μm)とを、(球状アルミナ粒子の配合重量):(窒化ホウ粒子の配合重量)=90:10となるように混合し、球状アルミナ粒子混合物Bを作製した。さらに、樹脂複合組成物における球状アルミナ粒子混合物Bの添加量が90質量%となるように、球状アルミナ粒子混合物Bとダウ東レ製シリコーン樹脂CY52-276A液とを混合し、シンキー製真空混錬機「泡取り練太郎」にて真空混錬し、樹脂複合組成物を得た。混錬条件は予備混錬15秒、真空混錬90秒にて実施した。混錬後、混錬物の入ったプラスチック製容器を25℃に調整したウォーターバスに入れ1時間冷却した。この樹脂複合組成物10gを表面が平滑な鉄板にのせて水平方向に対して60°傾け樹脂複合組成物の流れ度合いを確認した。その結果、傾けて5時間後にこの樹脂複合組成物が15cm以上流れ、良好な流動性を示した。
Example 6
The spherical alumina particles obtained in Example 2 and boron nitride particles (D50 = 20 μm) were mixed so that the ratio of the spherical alumina particles to the boron nitride particles was 90:10, to prepare a spherical alumina particle mixture B. Furthermore, the spherical alumina particle mixture B was mixed with Dow Toray's silicone resin CY52-276A liquid so that the amount of the spherical alumina particle mixture B added in the resin composite composition was 90 mass%, and the mixture was vacuum-kneaded using a Thinky vacuum kneader "Awatori Rentaro" to obtain a resin composite composition. The kneading conditions were 15 seconds of pre-kneading and 90 seconds of vacuum kneading. After kneading, the plastic container containing the kneaded product was placed in a water bath adjusted to 25 ° C. and cooled for 1 hour. 10 g of this resin composite composition was placed on a smooth-surfaced iron plate and tilted 60 ° to the horizontal direction to check the flow rate of the resin composite composition. As a result, after 5 hours of tilting, the resin composite composition flowed 15 cm or more, showing good fluidity.
 それぞれの条件で得られた(乾燥された)球状アルミナ粒子の物性値を、表2に示す。 The physical properties of the (dried) spherical alumina particles obtained under each condition are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 各物性値の測定方法を以下に記す。 The measurement methods for each physical property are described below.
(レーザー回折散乱法による平均粒径)
 レーザー回折・散乱式粒度分布測定法は、球状アルミナ粒子を分散させた分散液にレーザー光を照射し、分散液から発せられる回折・散乱光の強度分布パターンから粒度分布を求める方法である。本発明では、レーザー回折・散乱式粒度分布測定装置「Mastersizer3000」(Malvern社製)を用いた。
(Average particle size measured by laser diffraction scattering method)
The laser diffraction/scattering particle size distribution measurement method is a method in which a dispersion liquid in which spherical alumina particles are dispersed is irradiated with laser light, and the particle size distribution is obtained from the intensity distribution pattern of the diffracted/scattered light emitted from the dispersion liquid. In the present invention, a laser diffraction/scattering particle size distribution measurement device "Mastersizer 3000" (manufactured by Malvern) was used.
(比表面積)
 ガス吸着法により測定した吸着等温線にBET理論を適用して、比表面積(BET値)を求めた(BET法)。比表面積測定機として、マウンテック社製商品名「マックソーブ モデルHM-1208」を用いて測定した。
(Specific surface area)
The specific surface area (BET value) was determined by applying the BET theory to the adsorption isotherm measured by the gas adsorption method (BET method). The specific surface area was measured using a specific surface area measuring device manufactured by Mountech Co., Ltd. under the trade name "Maxsorb Model HM-1208".
 (表面残留Na)
 表面に付着するイオン性不純物量はイオンクロマトグラフを用いて測定することができる。遠沈管に試料4gと蒸留水40mlを加え、蓋をして十分に振って混合する。混合した後、遠心分離器を用いて試料と試料溶液に分離させる。試料溶液を分取しイオンクロマトグラフを用いて、ナトリウムイオンを分析する。イオンクロマトグラフには東亜医用電子製イオンクロマトグラフで測定した。
(Surface Residual Na)
The amount of ionic impurities adhering to the surface can be measured using ion chromatography. 4 g of sample and 40 ml of distilled water are added to a centrifuge tube, the tube is covered and shaken thoroughly to mix. After mixing, the sample and sample solution are separated using a centrifuge. The sample solution is separated and analyzed for sodium ions using ion chromatography. The ion chromatography was performed using an ion chromatograph manufactured by Toa Medical Electronics.
 (含有NaO)
 試料0.5gを加圧容器に入れ、硫酸(1+3)を10ml加え蓋をした後、加熱乾燥炉にて230℃の温度で16時間加熱する。加熱した溶液を放冷後、溶液を100mlにメスアップした後、原子吸光光度計にて測定した。なお、硫酸(1+3)とは、濃硫酸1に対して純水を体積比で3加えて希釈した溶液を指す。
(Containing Na2O )
0.5 g of sample was placed in a pressure vessel, 10 ml of sulfuric acid (1+3) was added, the vessel was closed, and the vessel was heated in a heating and drying furnace at 230°C for 16 hours. After the heated solution was allowed to cool, the solution was diluted to 100 ml and then measured with an atomic absorption spectrophotometer. Note that sulfuric acid (1+3) refers to a solution obtained by diluting 1 part concentrated sulfuric acid with 3 parts pure water by volume.
 (凝集度)
 4.75mm,212μmの2種類の網目の標準ふるいを順番に重ねる。重ねる順番は212μmの網目の篩を一番下にし、その上に篩目が徐々に大きくなるように重ねる。一番上段の4.75mmの網目の篩の上に、試料を50gのせ、ふるい振とう機にセットする。使用したふるい振とう機はEndecotts社製OCTAGON200を用いた。ふるいをセットした後、振とう篩機の設定を振幅5、振とう時間3分とした。振とう完了後、各ふるい網上に残っている粒子と212umの網目を通過した粒子の粒子重量を計測した。4.75mmの網目の網上粒子量をAg、212umの網目の網上粒子量をBg、212umの網目を通過した粒子量をCgとすると、(凝集度)=A/(B+C)×100(%)と計算する。
(Cohesion)
Two types of standard sieves with mesh sizes of 4.75 mm and 212 μm are stacked in order. The sieve with 212 μm mesh is placed at the bottom, and the sieves with gradually larger mesh sizes are stacked on top of it. 50 g of sample is placed on the top sieve with 4.75 mm mesh and set in a sieve shaker. The sieve shaker used was an Endecotts OCTAGON 200. After the sieves were set, the vibration sieve was set to an amplitude of 5 and a shaking time of 3 minutes. After the shaking was completed, the particle weights of the particles remaining on each sieve mesh and the particles that passed through the 212 μm mesh were measured. If the amount of particles on the 4.75 mm mesh is Ag, the amount of particles on the 212 um mesh is Bg, and the amount of particles that passed through the 212 um mesh is Cg, then the degree of agglomeration is calculated as A/(B+C)×100(%).
 上記の実施例を通じて、表面残留Na濃度が低く且つ凝集度が小さい球状アルミナ粒子、を得られることを確認した。また、当該球状アルミナ粒子を含有する樹脂複合組成物、を得られることを確認した。 Through the above examples, it was confirmed that it was possible to obtain spherical alumina particles with a low surface residual Na concentration and a small degree of aggregation. It was also confirmed that it was possible to obtain a resin composite composition containing the spherical alumina particles.
 本発明の球状アルミナ粒子は、表面残留Na濃度が低いので、フィラーとして用いた場合に、硬化不良や耐電圧性の喪失を回避することができる。また、凝集度が小さいために、解砕が不要であり、解砕による異物の混入(コンタミ)を回避することができる。ゆえに、フィラーとして、小型化・薄型化された半導体パッケージ等に好適に利用できる。さらに、本発明の一態様である製造方法により、当該球状アルミナ粒子を容易に製造することができる。当該球状アルミナ粒子を含有する樹脂複合組成物は、良好な品質を示し、半導体封止用材に限定されず、他の用途にも用いることができる。具体的には、プリント基板用のプリプレグや、各種エンジニアリングプラスチックス等として使用することも可能である。 The spherical alumina particles of the present invention have a low surface residual Na concentration, so when used as a filler, poor curing and loss of voltage resistance can be avoided. In addition, because the degree of aggregation is small, crushing is not necessary, and contamination due to crushing can be avoided. Therefore, as a filler, it can be suitably used in miniaturized and thinned semiconductor packages, etc. Furthermore, the spherical alumina particles can be easily manufactured by the manufacturing method which is one aspect of the present invention. A resin composite composition containing the spherical alumina particles exhibits good quality and can be used for other purposes as well as semiconductor encapsulation materials. Specifically, it can be used as a prepreg for printed circuit boards, various engineering plastics, etc.

Claims (6)

  1.  平均粒径が0.4~1.9um,比表面積が1.0~5.0m/g、表面残留Naが20ppm以下,含有NaOが1000ppm以下、凝集度が1.0%以下、円形度が0.9以上である、球状アルミナ粒子。 Spherical alumina particles having an average particle size of 0.4 to 1.9 μm, a specific surface area of 1.0 to 5.0 m 2 /g, a surface residual Na content of 20 ppm or less, a Na 2 O content of 1000 ppm or less, a degree of aggregation of 1.0% or less, and a circularity of 0.9 or more.
  2.  α化率が10.0%以下であることを特徴とする請求項1に記載の球状アルミナ粒子。 Spherical alumina particles according to claim 1, characterized in that the alpha conversion rate is 10.0% or less.
  3.  原料球状アルミナと水を混合して、前記原料球状アルミナを含む水スラリーを調製する水スラリー調製工程と、
     前記水スラリーを乾燥する乾燥工程と、
     を有する、球状アルミナ粒子の製造方法。
    a water slurry preparation step of mixing raw spherical alumina with water to prepare a water slurry containing the raw spherical alumina;
    a drying step of drying the water slurry;
    The method for producing spherical alumina particles comprising the steps of:
  4.  前記水スラリー調製工程の前に、前記原料球状アルミナを水洗浄する原料球状アルミナ洗浄工程、
     を有する、請求項3に記載の球状アルミナ粒子の製造方法。
    a raw material spherical alumina washing step of washing the raw material spherical alumina with water before the water slurry preparation step;
    The method for producing spherical alumina particles according to claim 3, comprising the steps of:
  5.  請求項1または2に記載の球状アルミナ粒子を含有していることを特徴とする樹脂複合組成物。 A resin composite composition containing the spherical alumina particles according to claim 1 or 2.
  6.  非晶質球状シリカ粒子、結晶質球状シリカ粒子、チタニア粒子、マグネシア粒子、窒化アルミニウム粒子、窒化ホウ素粒子、チタン酸バリウム粒子、チタン酸カルシウム粒子、カーボンファイバーから選ばれる、少なくとも1種類以上の無機フィラーをさらに含有する、請求項5に記載の樹脂複合組成物。 The resin composite composition according to claim 5, further comprising at least one inorganic filler selected from amorphous spherical silica particles, crystalline spherical silica particles, titania particles, magnesia particles, aluminum nitride particles, boron nitride particles, barium titanate particles, calcium titanate particles, and carbon fibers.
PCT/JP2023/035864 2022-09-30 2023-10-02 Spherical alumina particles, production method of same, and resin composite composition comprising same WO2024071431A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-158958 2022-09-30
JP2022158958 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024071431A1 true WO2024071431A1 (en) 2024-04-04

Family

ID=90478229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035864 WO2024071431A1 (en) 2022-09-30 2023-10-02 Spherical alumina particles, production method of same, and resin composite composition comprising same

Country Status (1)

Country Link
WO (1) WO2024071431A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041170A1 (en) * 2004-10-15 2006-04-20 Ngk Insulators, Ltd. Method for producing porous structure
JP2006199579A (en) * 2004-12-24 2006-08-03 Micron:Kk Spherical alumina powder and its production method
JP2007008730A (en) * 2005-06-28 2007-01-18 Denki Kagaku Kogyo Kk Spherical alumina powder, method for producing the same, and its use
JP2009062244A (en) * 2007-09-07 2009-03-26 Nissan Motor Co Ltd Particle-dispersion solution, resin composition therefrom and methods for preparing them
JP2009090272A (en) * 2007-09-20 2009-04-30 Nissan Motor Co Ltd Methods for producing particle-dispersed sol and particle-dispersed resin composition
JP2012020900A (en) * 2010-07-14 2012-02-02 Denki Kagaku Kogyo Kk Spherical alumina powder, and method of production and application thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041170A1 (en) * 2004-10-15 2006-04-20 Ngk Insulators, Ltd. Method for producing porous structure
JP2006199579A (en) * 2004-12-24 2006-08-03 Micron:Kk Spherical alumina powder and its production method
JP2007008730A (en) * 2005-06-28 2007-01-18 Denki Kagaku Kogyo Kk Spherical alumina powder, method for producing the same, and its use
JP2009062244A (en) * 2007-09-07 2009-03-26 Nissan Motor Co Ltd Particle-dispersion solution, resin composition therefrom and methods for preparing them
JP2009090272A (en) * 2007-09-20 2009-04-30 Nissan Motor Co Ltd Methods for producing particle-dispersed sol and particle-dispersed resin composition
JP2012020900A (en) * 2010-07-14 2012-02-02 Denki Kagaku Kogyo Kk Spherical alumina powder, and method of production and application thereof

Similar Documents

Publication Publication Date Title
JP6934344B2 (en) Powder for spherical silica filler and its manufacturing method
US11254820B2 (en) Process for manufacturing boron nitride agglomerates
TWI734552B (en) Manufacturing method of silicon dioxide-coated boron nitride particles and manufacturing method of heat-dissipating resin composition
WO2020241902A1 (en) Spherical crystalline silica particles, spherical silica particle mixture, and composite material
CN113165874B (en) Hexagonal boron nitride powder, resin composition, resin sheet, and method for producing hexagonal boron nitride powder
WO2018123571A1 (en) Hexagonal boron nitride powder and method for producing same
KR101952993B1 (en) Process for producing heat-resistant aluminum hydroxide
WO2024071431A1 (en) Spherical alumina particles, production method of same, and resin composite composition comprising same
JP5410095B2 (en) Amorphous siliceous powder, method for producing the same, and semiconductor sealing material
CN112752732B (en) Spherical magnesium oxide, method for producing same, thermally conductive filler, and resin composition
WO2021235530A1 (en) Spherical crystalline silica particles and method for producing same
JP2023146761A (en) Spherical alumina particle, method for producing the same, surface treatment method for spherical alumina particle raw material, resin composite composition including spherical alumina particle, and resin composite composition
WO2020203710A1 (en) Spherical magnesium oxide, method for producing same, heat-conductive filler, and resin composition
JP6612919B2 (en) Amorphous silica powder, resin composition, and semiconductor encapsulant
JP7468808B1 (en) Gahnite particles and method for producing same
WO2024071430A1 (en) Spherical alumina particles, manufacturing method therefor, and resin composite composition containing same
KR20230150345A (en) silicon dioxide powder
JP7302115B2 (en) Hexagonal boron nitride powder and resin composition
JP2021113270A (en) Resin composition, method for producing resin composition, and inorganic particles used therefor
KR102646023B1 (en) Spherical alumina particle mixture and method for producing the same, and resin composite composition and resin composite containing the spherical alumina particle mixture
JP2020121895A (en) ZIRCONIUM β-PHOSPHATE SULFATE PARTICLES AND METHOD FOR PRODUCING THE SAME
WO2023182511A1 (en) Spherical crystalline silica particles, method for producing same, and resin composite composition and resin composite containing same
JP2004224618A (en) Manufacturing process of spherical aluminum nitride filler
TW202406850A (en) Zinc spinel particles and manufacturing method thereof, resin composition and molded article
CN117295689A (en) Inorganic oxide powder, method for producing same, and resin composition