WO2024066312A1 - 泵体组件、压缩机组件和空调*** - Google Patents

泵体组件、压缩机组件和空调*** Download PDF

Info

Publication number
WO2024066312A1
WO2024066312A1 PCT/CN2023/090069 CN2023090069W WO2024066312A1 WO 2024066312 A1 WO2024066312 A1 WO 2024066312A1 CN 2023090069 W CN2023090069 W CN 2023090069W WO 2024066312 A1 WO2024066312 A1 WO 2024066312A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
pin
pump body
cylinder
body assembly
Prior art date
Application number
PCT/CN2023/090069
Other languages
English (en)
French (fr)
Inventor
赵旭敏
何庆南
苗旺
阙沛祯
牛玉婷
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2024066312A1 publication Critical patent/WO2024066312A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/18Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber
    • F04C28/22Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators

Definitions

  • the present application relates to the technical field of air compression, and in particular to a pump assembly, a compressor assembly and an air conditioning system.
  • variable capacity compressors Due to the high energy efficiency of variable capacity compressors, they are increasingly widely used in multi-split air conditioning systems.
  • Variable capacity compressors in related technologies generally use a vane tail sealing structure to pass high pressure or low pressure to achieve the operation or unloading of the variable capacity cylinder.
  • the tail of the variable capacity cylinder vane is connected to the suction pipe or exhaust pipe of the compressor, that is, the pin head can pass high pressure or low pressure, and the pin tail is always connected to the cylinder suction hole. Under the pressure difference between the upper and lower sides of the pin, the cylinder can be operated or unloaded.
  • the refrigerant oil in the compressor leaks into the lower cylinder through the gap due to the high pressure inside the shell and the low pressure inside the lower cylinder.
  • the lower cylinder is connected to the inside of the liquid distributor through the suction pipe connected to the lower cylinder, causing some refrigerant oil to accumulate inside the liquid distributor.
  • the refrigerant oil accumulates inside the liquid distributor, which, on the one hand, causes the oil level inside the compressor to decrease, resulting in insufficient lubrication and wear and failure of the compressor; on the other hand, the refrigerant oil enters the upper cylinder through the suction pipe connected to the upper cylinder, causing oil compression in the upper cylinder and reducing the actual working volume of the cylinder, resulting in reduced energy efficiency of the compressor.
  • a pump body assembly comprising a first cylinder, a second cylinder and an adjustment structure.
  • the first cylinder has a first air suction hole.
  • the second cylinder is a variable displacement cylinder, having a second air suction hole.
  • the adjustment structure is arranged corresponding to the second air suction hole, and is configured to close the second air suction hole when the second cylinder is unloaded, and to open the second air suction hole when the second cylinder is working.
  • the adjustment structure includes a first pin
  • the second cylinder includes a first pin hole connected to the second air suction hole
  • the first pin hole and the second air suction hole are cross-arranged, and the first pin can slide into the second air suction hole or slide out of the second air suction hole through the first pin hole.
  • the diameter of the first pin hole is D1
  • the diameter of the second air suction hole at the position of the first pin hole is D2. D1 ⁇ D2.
  • the pump body assembly also includes a first flange, which is arranged on the side of the second cylinder away from the first cylinder, and a first pin hole is opened on the side of the first flange facing the second cylinder.
  • the first pin hole on the first flange is arranged corresponding to the first pin hole on the second cylinder, and the first pin is slidably arranged in the first pin hole of the first flange.
  • the first flange is provided with a first pressure switching hole, which is arranged on a side of the first flange away from the second air suction hole.
  • the first pressure switching hole is connected to the first pin hole and is constructed to adjust the tail pressure of the first pin to control the first pin hole to open or close the second air suction hole.
  • a side of the first pin hole of the first flange away from the second air suction hole has a limiting structure to limit the first pin in the first pin hole.
  • the first pin hole of the first flange is a blind hole
  • a first pressure switching hole is formed at the bottom of the first pin hole
  • a diameter of the first pin hole is larger than a diameter of the first pressure switching hole
  • the pump body assembly includes a return structure, which is arranged in the first pin hole of the first flange and is located on the side of the first pin hole away from the second suction hole.
  • the return structure is constructed to provide a return force to the first pin to open the second suction hole.
  • the return structure is a tension spring or a magnet disposed at the bottom of the first pin hole, and a channel connecting the first pressure switching hole and the first pin hole is opened on the magnet.
  • the first pressure switching hole is a T-shaped hole, which penetrates the first flange axially and laterally at the same time.
  • a lower cover plate is provided on the side of the first flange away from the second cylinder, and the lower cover plate blocks the side of the first pressure switching hole that penetrates the first flange axially.
  • the pump body assembly further includes a variable capacity mechanism
  • the second cylinder is provided with a slide groove
  • a second slide plate is arranged in the slide groove
  • the variable capacity mechanism is constructed to load or unload the second slide plate.
  • the variable capacity mechanism includes a second pin, a second pin hole and a second elastic member.
  • the second pin hole is arranged in the first flange, and the second pin and the second elastic member are arranged in the second pin hole.
  • the second pin hole is constructed to be connected to the high-pressure refrigerant at the bottom, and the top of the second pin hole is connected to the slide groove at the tail of the second slide.
  • a second pressure switching hole for adjusting the pressure in the slide groove at the tail of the second slide is also provided on the first flange.
  • a limiting groove is provided at the bottom of the second slide. The second pin can be inserted into the limiting groove or disengaged from the limiting groove.
  • the second elastic member provides elastic force for the second pin to disengage from the limiting groove.
  • a compressor assembly including a compressor, the compressor including a pump body assembly, and the pump body assembly is the above-mentioned pump body assembly.
  • the compressor assembly further includes a liquid distributor, which is connected to the first air suction hole of the pump body assembly through a first air suction pipeline, and the liquid distributor is connected to the second air suction hole of the pump body assembly through a second air suction pipeline.
  • the compressor assembly when the pump assembly includes a first pressure switching hole, the compressor assembly further includes a first control circuit.
  • the first control circuit can be selectively communicated with a suction pipe of the liquid distributor or a discharge pipe of the compressor.
  • the compressor assembly when the pump body assembly includes a second pressure switching hole, the compressor assembly further includes a second control circuit, and the second control circuit can be selectively connected to the suction pipe of the dispenser or the exhaust pipe of the compressor.
  • an air conditioning system comprising the above-mentioned pump body assembly or the above-mentioned compressor assembly.
  • FIG1 shows a schematic cross-sectional structural diagram of a pump body assembly according to an embodiment of the present application.
  • FIG2 shows a cross-sectional structural diagram of the pump body assembly according to an embodiment of the present application when the first pin is in an unloaded state.
  • FIG3 shows a cross-sectional structural diagram of the pump body assembly according to an embodiment of the present application when the first pin is in a loaded state.
  • FIG. 4 shows a schematic structural diagram of a pressure-changing mechanism of a pump assembly according to an embodiment of the present application.
  • FIG5 is a schematic diagram showing the three-dimensional structure of the second cylinder of the pump body assembly of the embodiment of the present application.
  • FIG6 shows a schematic cross-sectional structural diagram of the second cylinder of the pump body assembly of the embodiment of the present application.
  • FIG. 7 is a schematic diagram showing the three-dimensional structure of the first flange of the pump body assembly according to an embodiment of the present application.
  • FIG8 shows a schematic cross-sectional structural diagram of the first flange of the pump body assembly according to an embodiment of the present application.
  • FIG. 9 shows a schematic structural diagram of a compressor assembly according to an embodiment of the present application.
  • FIG. 101 motor assembly; 102, pump assembly; 103, liquid distributor; 104, first air suction pipeline; 105, second air suction pipeline; 106, first control circuit; 107, second control circuit; 108, first solenoid valve; 109, second solenoid valve; 110, third solenoid valve; 111, fourth solenoid valve; 112, air suction pipe; 113, exhaust pipe; 201, crankshaft; 202, second flange; 203, first cylinder; 204, partition; 205, second cylinder; 206, first flange; 207, lower cover; 208, silencer; 209, first roller; 210, first elastic member; 211, first slide; 212, second roller; 213, second slide; 214, second pin; 215, second elastic member; 301, first air intake hole; 302, second air intake hole; 303, first pin; 304, first pressure switching hole; 305, second pressure switching hole; 306, first pin hole; 307, second pin hole; 30
  • the main purpose of the embodiments of the present application is to provide a pump body assembly, a compressor assembly and an air-conditioning system, which can prevent the compressor from leaking refrigerant oil into the liquid distributor when in a single-cylinder operating mode, causing the oil level inside the compressor to decrease and the upper cylinder to pressurize the oil.
  • the pump body assembly includes a first cylinder 203, a second cylinder 205, and an adjustment structure.
  • the first cylinder 203 has a first air suction hole 301.
  • the second cylinder 205 is a variable displacement cylinder, having a second air suction hole 302.
  • the adjustment structure is arranged corresponding to the second air suction hole 302, and is configured to close the second air suction hole 302 when the second cylinder 205 is unloaded, and open the second air suction hole 302 when the second cylinder 205 is working.
  • the pump body assembly can use the adjustment structure to close the second air intake hole 302, so that the second cylinder 205, which is a variable-volume cylinder, disconnects the connection between the working volume and the liquid distributor 103 when in the unloading state, cutting off the flow path of the refrigerant oil.
  • This can prevent the refrigerant oil from leaking into the liquid distributor 103 through the second cylinder 205 when the compressor is in a single-cylinder working mode, causing the internal oil level of the compressor to decrease and the upper cylinder to pressurize the oil, thereby improving the working energy efficiency of the compressor.
  • the adjustment structure includes a first pin 303
  • the second cylinder 205 includes a first pin hole 306 connected to the second air intake hole 302.
  • the first pin hole 306 and the second air intake hole 302 are cross-arranged.
  • the first pin 303 can slide into the second air intake hole 302 or slide out of the second air intake hole 302 through the first pin hole 306.
  • the diameter of the first pin hole 306 is D1
  • the diameter of the second air intake hole 302 at the position of the first pin hole 306 is D2, and D1 ⁇ D2.
  • the center line of the first pin hole 306 on the second cylinder 205 intersects and is perpendicular to the center line of the second air intake hole 302, so that the first pin hole 306 is aligned with the center of the second air intake hole 302 without offset.
  • the shape of the first pin hole 306 is adapted to the first pin 303, which can avoid air leakage or oil leakage from the matching gap between the first pin 303 and the first pin hole 306.
  • the diameter D1 of the first pin hole 306 is greater than or equal to the diameter D2 of the second air intake hole 302, the diameter D2 of the first pin hole 306 is greater than or equal to the diameter D1 of the second air intake hole 302.
  • the diameter D2 at the position can enable the first pin 303 entering the first pin hole 306 to completely block the second air intake hole 302 when reaching the working position, and completely cut off the connection between the liquid distributor 103 and the working volume of the second cylinder 205, thereby effectively avoiding the problem of the refrigerant oil flowing to the liquid distributor 103 through the second cylinder 205 when the second cylinder 205 is unloaded, thereby improving the working energy efficiency of the compressor.
  • the pump body assembly also includes a first flange 206, which is arranged on the side of the second cylinder 205 away from the first cylinder 203.
  • the first flange 206 is provided with a first pin hole 306 on the side facing the second cylinder 205.
  • the first pin hole 306 on the first flange 206 is arranged corresponding to the first pin hole 306 on the second cylinder 205, and the first pin 303 is slidably arranged in the first pin hole 306 of the first flange 206.
  • the pump body assembly also includes a crankshaft 201, the first cylinder 203 is the upper cylinder, the second cylinder 205 is the lower cylinder, the first flange 206 is the lower flange, and a partition 204 is arranged between the first cylinder 203 and the second cylinder 205.
  • the first cylinder 203, the partition 204, the second cylinder 205 and the first flange 206 are all sleeved on the crankshaft 201 and are arranged in sequence along the axial direction of the crankshaft 201.
  • a first pin hole 306 is also provided on the first flange 206. The first pin hole 306 on the first flange 206 is aligned with the first pin hole 306 on the second cylinder 205.
  • the first pin 303 can be simultaneously provided in the first pin holes 306 on the first flange 206 and the second cylinder 205.
  • the overall length of the first pin hole 306 can be increased, the installation of the first pin 303 is facilitated, and sufficient movement space can be provided for the movement of the first pin 303, thereby better meeting the on-off control requirements of the second air intake hole 302.
  • the first pin hole 306 is disposed vertically, and the first pin 303 is slidably disposed in the first pin hole 306 along the vertical direction.
  • the first pin hole 306 can be expanded on the side of the first pin hole 306 away from the second air intake hole 302, so that the diameter of a section of the first pin hole 306 on this side is larger than the diameter of the first pin 303, and a clearance fit is formed between the hole wall of the first pin hole 306 and the first pin 303 at this section, thereby reducing the contact area between the first pin 303 and the hole wall of the first pin hole 306.
  • the diameter of the first pin hole 306 on the second cylinder 205 should be the same as that of the first pin 303, so that a sealing fit is formed between the two, thereby effectively preventing the refrigerant leakage problem.
  • the first flange 206 is provided with a first pressure switching hole 304, and the first pressure switching hole 304 is arranged on a side of the first flange 206 away from the second air intake hole 302.
  • the first pressure switching hole 304 is connected to the first pin hole 306 and is constructed to adjust the tail pressure of the first pin 303 to control the first pin hole 306 to open or close the second air intake hole 302.
  • the first pressure switching hole 304 can be selectively connected to high-pressure gas or low-pressure gas, and the high-pressure gas or low-pressure gas can come from the inside of the compressor or from the outside of the compressor. By selecting the gas to be passed into the first pressure switching hole 304, the refrigerant pressure at the tail of the first pin 303 can be adjusted, so that the first pin 303 can be moved to the Slide upward into the second air intake hole 302 to disconnect the second air intake hole 302, or slide downward out of the second air intake hole 302 to connect the second air intake hole 302.
  • the second air intake hole 302 is an air intake channel and the low-pressure gaseous refrigerant in the liquid distributor 103 is sucked in, it can be basically considered that the second air intake hole 302 is in a constant low-pressure state. At this time, when the second cylinder 205 is in an unloading state, high-pressure gas can be introduced into the first pressure switching hole 304.
  • the first pin 303 moves upward and is inserted into the second air intake hole 302, thereby blocking the second air intake hole 302 and preventing the refrigeration oil from entering the liquid distributor 103 from the second cylinder 205 through the second air intake hole 302; when the second cylinder 205 is in a working state, low-pressure gas can be introduced into the first pressure switching hole 304, the gas pressure at both ends of the first pin hole 306 is balanced, the first pin 303 slides down and escapes from the second air intake hole 302, so that the second air intake hole 302 is in a connected state, thereby ensuring the normal operation of the second cylinder 205.
  • a side of the first pin hole 306 of the first flange 206 away from the second air suction hole 302 has a limiting structure to limit the first pin 303 in the first pin hole 306 .
  • the first pin hole 306 of the first flange 206 is a blind hole, and a first pressure switching hole 304 is provided at the bottom of the first pin hole 306.
  • the first pin hole 306 is set as a blind hole, and a first pressure switching hole 304 is provided at the bottom of the first pin hole 306.
  • the diameter of the first pin hole 306 is larger than the diameter of the first pressure switching hole 304, and a step hole can be formed at the bottom of the first pin hole 306 by utilizing the diameter difference between the first pin hole 306 and the first pressure switching hole 304.
  • the step hole serves as a limiting structure, and can not only utilize the step of the step hole to form a stopper for positioning the first pin 303, but also utilize the first pressure switching hole 304 to achieve pressure adjustment at the bottom of the first pin 303.
  • a return structure is provided at the bottom of the first pin hole 306 , and the return structure is configured to provide a return force to the first pin 303 to open the second air suction hole 302 .
  • the function of the return structure is that when the friction force increases abnormally due to mutual wear between parts or other factors, causing the first pin 303 to be unable to completely return to the first pin hole 306 by its own gravity, the return structure can assist the first pin 303 to move up and down, thereby enhancing the reliability of the adjustment structure.
  • the return structure is a tension spring or a magnet 308 arranged at the bottom of the first pin hole 306.
  • the return structure is the magnet 308, a channel connecting the first pressure switching hole 304 and the first pin hole 306 is opened on the magnet 308, so as not to affect the high-pressure gas from pushing the first pin 303 upward.
  • the magnet 308 may be a ring-shaped structure or a plurality of block-shaped structures, and the plurality of block-shaped structures are arranged at intervals along the circumferential direction.
  • the magnet 308 When the magnet 308 is an annular structure, it can be fixed to the first pin hole 306 by interference fit or by gluing. When the magnet 308 is a block structure, it can be fixed to the bottom of the first pin hole 306 by gluing, or it can be screwed and fixed by other methods.
  • the first pressure switching hole 304 is a T-shaped hole.
  • the first pressure switching hole 304 is axially and The first flange 206 is laterally penetrated, and a lower cover plate 207 is provided on a side of the first flange 206 away from the second cylinder 205 .
  • the lower cover plate 207 blocks the first pressure switching hole 304 that penetrates the first flange 206 along the axial direction.
  • the first pressure switching hole 304 is a T-shaped hole, including an axial hole and a radial hole, wherein the axial hole and the radial hole are connected to each other, and the axial hole extends to the first pin hole 306 to achieve communication with the first pin hole 306.
  • the radial hole penetrates the side wall of the first flange 206 in the radial direction, so as to facilitate communication with the gas outside the compressor.
  • the axial hole end of the first pressure switching hole 304 is blocked by the lower cover plate 207, so it cannot maintain communication with the inner cavity of the compressor, so that the internal pressure of the first pressure switching hole 304 will not be affected by the inner cavity pressure of the compressor, but will only be affected by the external gas pressure, so the control accuracy is higher.
  • the pump assembly further includes a variable capacity mechanism
  • the second cylinder 205 is provided with a slide groove
  • a second slide plate 213 is arranged in the slide groove
  • the variable capacity mechanism is configured to load or unload the second slide plate 213 .
  • the working state of the second cylinder 205 can be effectively controlled.
  • the variable capacity mechanism includes a second pin 214, a second pin hole 307 and a second elastic member 215.
  • the second pin hole 307 is arranged in the first flange 206.
  • the second pin 214 and the second elastic member 215 are arranged in the second pin hole 307.
  • the second pin hole 307 is constructed to be connected to the high-pressure refrigerant at the bottom, and the top of the second pin hole 307 is connected to the slide groove at the tail of the second slide 213.
  • the first flange 206 is also provided with a second pressure switching hole 305 for adjusting the pressure in the slide groove at the tail of the second slide 213.
  • a limiting groove is arranged at the bottom of the second slide 213.
  • the second pin 214 can be inserted into the limiting groove or disengaged from the limiting groove.
  • the second elastic member 215 provides elastic force for the second pin 214 to disengage from the limiting groove.
  • the bottom of the second pin hole 307 is always connected to the high pressure inside the compressor housing, that is, the bottom of the second pin 214 always maintains high pressure, so the sliding position of the second pin 214 can be adjusted by the top pressure and the action of auxiliary components such as springs.
  • the tail slot of the second slide plate 213 of the second cylinder 205 is a closed cavity and can be selectively connected to high-pressure gas or low-pressure gas through a solenoid valve.
  • the refrigerant pressure at the top of the second pin hole 307 can be adjusted by the refrigerant introduced into the slide groove at the tail of the second slide plate 213.
  • the refrigerant introduced into the slide groove at the tail of the second slide plate 213 is low-pressure refrigerant
  • the refrigerant in the second pin hole 307 is low-pressure refrigerant. Therefore, under the pressure of the high-pressure refrigerant at the bottom of the first pin hole 306, the second pin 213 is pressed against the second pin hole 307.
  • the variable-volume cylinder 14 slides upward to lock the second slide plate 213, and the variable-volume cylinder is in an unloading state; when the second cylinder 205 is working, the refrigerant introduced into the slide groove at the tail of the second slide plate 213 is a high-pressure refrigerant, and the refrigerant located in the second pin hole 307 at this time is a high-pressure refrigerant. Therefore, under the pressure of the second elastic member 215 at the top of the second pin 214, the second pin 214 slides downward and completely retreats into the second pin hole 307, thereby unlocking the second slide plate 213, and the variable-volume cylinder is in a working state.
  • the pump assembly further comprises a second flange 202, a muffler 208, a first roller 209, a first slide 211, a first elastic member 210, and a second roller 212.
  • the second flange 202, the first cylinder 203, the partition 204, the second cylinder 205, the first flange 206, and the lower cover 207 are assembled together by screws.
  • the first cylinder 203, the first roller 209, the first slide 211, and the first elastic member 210 together constitute a first compression component, which is in communication with the first air intake line 104.
  • the second cylinder 205, the second roller 212, and the second slide 213 together constitute a second compression component, which is in communication with the second air intake line 105.
  • the compressor assembly includes a compressor, and the compressor includes a pump body assembly 102 , and the pump body assembly 102 is the above-mentioned pump body assembly.
  • the compressor further comprises a motor assembly 101, which is drivingly connected to the pump assembly to drive the crankshaft 201 of the pump assembly to rotate.
  • the compressor assembly further includes a liquid separator 103 , which is connected to the first air suction hole 301 of the pump body assembly 102 via a first air suction line 104 , and is connected to the second air suction hole 302 of the pump body assembly 102 via a second air suction line 105 .
  • the compressor assembly when the pump assembly 102 includes the first pressure switching hole 304, the compressor assembly further includes a first control circuit 106, and the first control circuit 106 can selectively communicate with the suction pipe 112 of the liquid distributor 103 or the exhaust pipe 113 of the compressor.
  • the first pressure switching hole 304 can be selectively connected to the suction pipe 112 of the liquid distributor 103 through the first solenoid valve 108 , and can be selectively connected to the exhaust pipe 113 of the compressor through the second solenoid valve 109 .
  • the compressor assembly when the pump assembly 102 includes the second pressure switching hole 305, the compressor assembly further includes a second control circuit 107, and the second control circuit 107 can selectively communicate with the suction pipe 112 of the liquid distributor 103 or the exhaust pipe 113 of the compressor.
  • the second pressure switching hole 305 can be selectively connected to the suction pipe 112 of the liquid distributor 103 through the third solenoid valve 110 , and can be selectively connected to the exhaust pipe 113 of the compressor through the fourth solenoid valve 111 .
  • the low-pressure refrigerant When the compressor assembly is working, the low-pressure refrigerant enters the liquid distributor 103 through the suction pipe 112, and enters the pump assembly 102 through the first suction pipeline 104 and the second suction pipeline 105 respectively. After being compressed, the high-pressure refrigerant is discharged from the compressor through the exhaust pipe 113.
  • the switches of the first solenoid valve 108 and the second solenoid valve 109 By controlling the switches of the first solenoid valve 108 and the second solenoid valve 109, the high-pressure gaseous refrigerant or the low-pressure gaseous refrigerant can be selectively introduced into the first control loop 106.
  • the switches of the third solenoid valve 110 and the fourth solenoid valve 111 By controlling the switches of the third solenoid valve 110 and the fourth solenoid valve 111, the high-pressure gaseous refrigerant or the low-pressure gaseous refrigerant can be selectively introduced into the second control loop 107.
  • the upper part of the second pin 214 is connected with the tail of the second slide 213 to form a closed space, which can be selectively connected with the suction pipe 112 or the exhaust pipe 113 through the second control loop 107. That is, low-pressure gaseous refrigerant or high-pressure gaseous refrigerant can be selectively introduced.
  • the second pin 214 When the upper part of the second pin 214 is at low pressure, the second pin 214 completely pushes the second slide plate 213 upward, and the second compression component is in an unloading state.
  • the upper part of the second pin 214 is at high pressure, the second pin 214 is completely retracted into the second pin hole 307 by gravity and the action of the second elastic member 215, and the second compression component is in a working state.
  • the first solenoid valve 108 and the fourth solenoid valve 111 are in an open state, and the second solenoid valve 109 and the third solenoid valve 110 are in a closed state.
  • the first pressure switching hole 304 is connected to the suction pipe 112 through the first control circuit 106, and both the upper and lower sides of the first pin 303 are in a low pressure state. Under the action of its own gravity, it completely retreats into the first pin hole 306, and the low-pressure refrigerant can normally enter the second compression component for compression.
  • the first solenoid valve 108 and the fourth solenoid valve 111 are in the closed state, and the second solenoid valve 109 and the third solenoid valve 110 are in the open state.
  • the first pressure switching hole 304 is connected to the exhaust pipe 113 through the first control circuit 106.
  • the lower side of the first pin 303 is high pressure, which pushes the first pin 303 upward to separate the second cylinder 205 from the liquid distributor 103, thereby preventing the refrigerant oil from leaking into the liquid distributor 103, and improving the reliability and energy efficiency of the compressor.
  • an air conditioning system includes the above-mentioned pump body assembly or the above-mentioned compressor assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

本申请提供了一种泵体组件、压缩机组件和空调***。该泵体组件包括:第一气缸(203),具有第一吸气孔(301);第二气缸(205),为变容缸,具有第二吸气孔(302);调节结构,对应于第二吸气孔(302)设置,被构造为能够在第二气缸(205)卸载时封闭第二吸气孔(302),在第二气缸(205)工作时打开第二吸气孔(302)。

Description

泵体组件、压缩机组件和空调***
相关申请
本申请要求2022年09月27日申请的,申请号为202211182913.0,名称为“泵体组件、压缩机组件和空调***”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及空气压缩技术领域,特别涉及一种泵体组件、压缩机组件和空调***。
背景技术
由于变容压缩机具有高能效的特点,其被越来越广泛用于多联机空气调节***。相关技术的变容压缩机一般采用滑片尾部密封结构,通入高压或低压以实现变容缸的工作或卸载。相关技术的变容机构,变容气缸滑片尾部与压缩机吸气管或排气管连通,即销钉头部可以通入高压或低压,而销钉尾部始终与气缸吸气孔保持连通,在销钉上下两侧压差作用下,可以实现气缸的工作或卸载。
当压缩机处于单缸运行模式时,由于壳体内部为高压,下气缸内部为低压,导致压缩机内的冷冻油通过间隙泄露至下气缸内。而下气缸又通过与下气缸连通的吸气管路与分液器内部连通,导致分液器内部会积聚一部分冷冻油。
分液器内部积聚冷冻油,一方面引起压缩机内部油位降低,润滑不足,导致压缩机磨损失效;另一方面,冷冻油通过与上气缸连通的吸气管路进入上气缸内,引起上气缸压油,且使得气缸实际工作容积减小,导致压缩机能效降低。
发明内容
根据本申请的一方面,提供了一种泵体组件,包括第一气缸、第二气缸以及调节结构。第一气缸具有第一吸气孔。第二气缸为变容缸,具有第二吸气孔。调节结构对应于第二吸气孔设置,被构造为能够在第二气缸卸载时封闭第二吸气孔,在第二气缸工作时打开第二吸气孔。
在一些实施例中,调节结构包括第一销钉,第二气缸包括连通至第二吸气孔的第一销孔,第一销孔与第二吸气孔交叉设置,第一销钉能够经第一销孔滑入第二吸气孔或从第二吸气孔滑出。
在一些实施例中,第一销孔的直径为D1,第二吸气孔在第一销孔位置处的直径为D2, D1≥D2。
在一些实施例中,泵体组件还包括第一法兰,第一法兰设置在第二气缸远离第一气缸的一侧,第一法兰朝向第二气缸的一侧开设有第一销孔,第一法兰上的第一销孔与第二气缸上的第一销孔对应设置,第一销钉滑动设置在第一法兰的第一销孔内。
在一些实施例中,第一法兰设置有第一压力切换孔,第一压力切换孔设置在第一法兰远离第二吸气孔的一侧,第一压力切换孔与第一销孔连通,并被构造为调节第一销钉的尾部压力,以控制第一销孔打开或者封闭第二吸气孔。
在一些实施例中,第一法兰的第一销孔远离第二吸气孔的一侧具有限位结构,以将第一销钉限位在第一销孔中。
在一些实施例中,第一法兰的第一销孔为盲孔,第一销孔的底部开设有第一压力切换孔,第一销孔的直径大于第一压力切换孔的直径。
在一些实施例中,泵体组件包括回位结构,回位结构设置在第一法兰的第一销孔中,位于第一销孔远离第二吸气孔的一侧,回位结构被构造为向第一销钉提供打开第二吸气孔的回位作用力。
在一些实施例中,回位结构为设置在第一销孔底部的拉力弹簧或磁铁,磁铁上开设有连通第一压力切换孔和第一销孔的通道。
在一些实施例中,第一压力切换孔为T形孔,第一压力切换孔同时沿轴向和侧向贯通第一法兰,第一法兰远离第二气缸的一侧设置有下盖板,下盖板封挡第一压力切换孔沿轴向贯穿第一法兰的一侧。
在一些实施例中,泵体组件还包括变容机构,第二气缸开设有滑槽,滑槽内设置有第二滑片,变容机构被构造为对第二滑片进行加载或卸载。
在一些实施例中,变容机构包括第二销钉、第二销孔和第二弹性件,第二销孔设置于第一法兰内,第二销钉和第二弹性件设置于第二销孔内,第二销孔被构造为底部与高压制冷剂连通,第二销孔的顶部与第二滑片尾部的滑槽连通,第一法兰上还设置有调节第二滑片尾部的滑槽内压力的第二压力切换孔,第二滑片底部设置有限位槽,第二销钉能够卡入限位槽或者从限位槽脱出,第二弹性件为第二销钉提供脱出限位槽的弹性力。
根据本申请的另一方面,提供了一种压缩机组件,包括压缩机,压缩机包括泵体组件,该泵体组件为上述的泵体组件。
在一些实施例中,压缩机组件还包括分液器,分液器通过第一吸气管路与泵体组件的第一吸气孔连通,分液器通过第二吸气管路与泵体组件的第二吸气孔连通。
在一些实施例中,泵体组件包括第一压力切换孔时,压缩机组件还包括第一控制回路, 第一控制回路能够选择地与分液器的吸气管或压缩机的排气管连通。
在一些实施例中,泵体组件包括第二压力切换孔时,压缩机组件还包括第二控制回路,第二控制回路能够选择地与分液器的吸气管或压缩机的排气管连通。
根据本申请的另一方面,提供了一种空调***,包括上述的泵体组件或上述的压缩机组件。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1示出了本申请的实施例的泵体组件的剖视结构示意图。
图2示出了本申请的实施例的泵体组件在第一销钉处于卸载状态时的剖视结构图。
图3示出了本申请的实施例的泵体组件在第一销钉处于加载状态时的剖视结构图。
图4示出了本申请的实施例的泵体组件的变压机构的结构示意图。
图5示出了本申请的实施例的泵体组件的第二气缸的立体结构示意图。
图6示出了本申请的实施例的泵体组件的第二气缸的剖视结构示意图。
图7示出了本申请的实施例的泵体组件的第一法兰的立体结构示意图。
图8示出了本申请的实施例的泵体组件的第一法兰的剖视结构示意图。
图9示出了本申请的实施例的压缩机组件的结构示意图。
其中,上述附图包括以下附图标记:
101、电机组件;102、泵体组件;103、分液器;104、第一吸气管路;105、第二吸
气管路;106、第一控制回路;107、第二控制回路;108、第一电磁阀;109、第二电磁阀;110、第三电磁阀;111、第四电磁阀;112、吸气管;113、排气管;201、曲轴;202、第二法兰;203、第一气缸;204、隔板;205、第二气缸;206、第一法兰;207、下盖板;208、消音器;209、第一滚子;210、第一弹性件;211、第一滑片;212、第二滚子;213、第二滑片;214、第二销钉;215、第二弹性件;301、第一吸气孔;302、第二吸气孔;303、第一销钉;304、第一压力切换孔;305、第二压力切换孔;306、第一销孔;307、第二销孔;308、磁铁。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。
本申请实施例的主要目的在于提供一种泵体组件、压缩机组件和空调***,能够避免压缩机在单缸工作模式下,将冷冻油泄漏至分液器内,导致压缩机内部油位降低以及上气缸压油的问题。
结合参见图1至图9所示,根据本申请的实施例,泵体组件包括第一气缸203、第二气缸205以及调节结构。第一气缸203具有第一吸气孔301。第二气缸205为变容缸,具有第二吸气孔302。调节结构对应于第二吸气孔302设置,被构造为能够在第二气缸205卸载时封闭第二吸气孔302,在第二气缸205工作时打开第二吸气孔302。
该泵体组件在第二气缸205卸载时,能够利用调节结构关闭第二吸气孔302,使得作为变容气缸的第二气缸205在处于卸载状态时断开工作容积与分液器103的连通关系,截断冷冻油的流通路径,能够避免压缩机在单缸工作模式下,冷冻油通过第二气缸205泄漏至分液器103内,导致压缩机内部油位降低以及上气缸压油的问题,提高压缩机的工作能效。
在一个实施例中,调节结构包括第一销钉303,第二气缸205包括连通至第二吸气孔302的第一销孔306,第一销孔306与第二吸气孔302交叉设置,第一销钉303能够经第一销孔306滑入第二吸气孔302或从第二吸气孔302滑出,第一销孔306的直径为D1,第二吸气孔302在第一销孔306位置处的直径为D2,D1≥D2。
在本实施例中,第二气缸205上的第一销孔306的中心线与第二吸气孔302的中心线相交并且垂直,使得第一销孔306与第二吸气孔302中心对正,不会发生偏移,第一销孔306的形状与第一销钉303相适配,能够避免从第一销钉303和第一销孔306的配合间隙发生漏气或者漏油,同时,由于第一销孔306的直径D1大于或等于第二吸气孔302在该 位置处的直径D2,因此能够使得进入第一销孔306内的第一销钉303在到达工作位置时,能够完全封挡第二吸气孔302,彻底隔断分液器103与第二气缸205的工作容积之间的连通,从而有效避免第二气缸205卸载时冷冻油经第二气缸205流动至分液器103的问题,提高压缩机的工作能效。
在一个实施例中,泵体组件还包括第一法兰206,第一法兰206设置在第二气缸205远离第一气缸203的一侧,第一法兰206朝向第二气缸205的一侧开设有第一销孔306,第一法兰206上的第一销孔306与第二气缸205上的第一销孔306对应设置,第一销钉303滑动设置在第一法兰206的第一销孔306内。
在本实施例中,泵体组件还包括曲轴201,第一气缸203为上气缸,第二气缸205为下气缸,第一法兰206为下法兰,在第一气缸203和第二气缸205之间设置有隔板204,第一气缸203、隔板204、第二气缸205和第一法兰206均套设在曲轴201上,并沿着曲轴201的轴向依次设置。在第一法兰206上也设置有第一销孔306,第一法兰206上的第一销孔306与第二气缸205上的第一销孔306对齐,第一销钉303可以同时设置在第一法兰206和第二气缸205上的第一销孔306内,通过在第一法兰206上设置第一销孔306,能够加大第一销孔306的整体长度,方便进行第一销钉303的安装设置,并能够为第一销钉303的运动提供足够的运动空间,更好地满足第二吸气孔302的通断控制需求。
在本实施例中,第一销孔306上下设置,第一销钉303沿上下方向能够滑动地设置在第一销孔306内。
为了减小第一销钉303在第一销孔306内的滑动摩擦,在第一销孔306远离第二吸气孔302的一侧可以对第一销孔306进行扩孔处理,使得该侧的一段第一销孔306的直径大于第一销钉303的直径,在该段位置第一销孔306的孔壁与第一销钉303之间形成间隙配合,从而减小第一销钉303与第一销孔306的孔壁之间的接触面。
位于第二气缸205上的第一销孔306的孔径应该与第一销钉303相同,使得两者之间形成密封配合,有效防止发生制冷剂泄漏的问题。
在一个实施例中,第一法兰206设置有第一压力切换孔304,第一压力切换孔304设置在第一法兰206远离第二吸气孔302的一侧,第一压力切换孔304与第一销孔306连通,并被构造为调节第一销钉303的尾部压力,以控制第一销孔306打开或者封闭第二吸气孔302。
该第一压力切换孔304能够选择地与高压气体或者低压气体连通,高压气体或者低压气体可以来源于压缩机内部,也可以来源于压缩机外部,通过选择通入第一压力切换孔304内的气体,能够实现对第一销钉303尾部的制冷剂压力的调节,使得第一销钉303能够向 上滑入第二吸气孔302内断开第二吸气孔302的连通,或者向下滑出第二吸气孔302外,使得第二吸气孔302连通。
在本实施例中,由于第二吸气孔302为吸气通道,吸入的为分液器103内的低压气态制冷剂,因此基本上可以认为第二吸气孔302为恒定低压状态,此时,当第二气缸205处于卸载状态时,可以向第一压力切换孔304内通入高压气体,在高压气体的作用下,第一销钉303上行,卡入到第二吸气孔302内,隔断第二吸气孔302,放置冷冻油从第二气缸205经第二吸气孔302进入分液器103;当第二气缸205处于工作状态时,此时可以向第一压力切换孔304内通入低压气体,第一销孔306两端的气体压力平衡,第一销钉303下滑,脱出第二吸气孔302,使得第二吸气孔302处于连通状态,保证第二气缸205的正常运行。
在一个实施例中,第一法兰206的第一销孔306远离第二吸气孔302的一侧具有限位结构,以将第一销钉303限位在第一销孔306中。
在一个实施例中,第一法兰206的第一销孔306为盲孔,第一销孔306的底部开设有第一压力切换孔304。在本实施例中,将第一销孔306设置为盲孔,并且在第一销孔306的底部开设第一压力切换孔304,第一销孔306的直径大于第一压力切换孔304的直径,能够利用第一销孔306和第一压力切换孔304的直径差在第一销孔306的底部形成台阶孔,台阶孔作为限位结构,既可以利用台阶孔的台阶对第一销钉303形成止挡定位,又可以利用第一压力切换孔304实现对第一销钉303底部的压力调节。
在一个实施例中,第一销孔306的底部设置有回位结构,回位结构被构造为向第一销钉303提供打开第二吸气孔302的回位作用力。
回位结构的作用为,当由于零件之间互相磨损或其它因素导致的摩擦力异常增大时,导致第一销钉303不能依靠自身重力作用完全退回第一销孔306时,回位结构可以辅助第一销钉303上下移动,增强调节结构的可靠性。
在一个实施例中,回位结构为设置在第一销孔306底部的拉力弹簧或磁铁308,当回位结构为磁铁308时,磁铁308上开设有连通第一压力切换孔304和第一销孔306的通道,从而不会影响高压气体将第一销钉303向上顶起。
磁铁308可以为环形结构,也可以为多个块状结构,多个块状结构沿周向间隔设置。
当磁铁308为环形结构时,可以与第一销孔306之间通过过盈配合进行固定,或者是通过胶粘方式固定。当磁铁308为块状结构时,可以通过胶粘方式固定在第一销孔306底部,也可以通过其他方式继续拧固定。
在一个实施例中,第一压力切换孔304为T形孔,第一压力切换孔304同时沿轴向和 侧向贯通第一法兰206,第一法兰206远离第二气缸205的一侧设置有下盖板207,下盖板207封挡第一压力切换孔304沿轴向贯穿第一法兰206的一侧。
在本实施例中,第一压力切换孔304为T形孔,包括轴向孔和径向孔,其中轴向孔和径向孔相互连通,且轴向孔延伸至第一销孔306处,与第一销孔306实现连通。径向孔沿径向贯穿第一法兰206的侧壁,方便与压缩机外的气体进行连通。
第一压力切换孔304的轴向孔端部被下盖板207封堵,因此无法与压缩机的内腔保持连通,使得第一压力切换孔304的内部压力不会受到压缩机的内腔压力影响,只会受到外接气体压力的影响,因此控制精度更高。
在一个实施例中,泵体组件还包括变容机构,第二气缸205开设有滑槽,滑槽内设置有第二滑片213,变容机构被构造为对第二滑片213进行加载或卸载。
通过变容机构对第一滑片211进行加载或者卸载,可以有效控制第二气缸205的工作状态。
在一个实施例中,变容机构包括第二销钉214、第二销孔307和第二弹性件215,第二销孔307设置于第一法兰206内,第二销钉214和第二弹性件215设置于第二销孔307内,第二销孔307被构造为底部与高压制冷剂连通,第二销孔307的顶部与第二滑片213尾部的滑槽连通,第一法兰206上还设置有调节第二滑片213尾部的滑槽内压力的第二压力切换孔305,第二滑片213底部设置有限位槽,第二销钉214能够卡入限位槽或者从限位槽脱出,第二弹性件215为第二销钉214提供脱出限位槽的弹性力。
在本实施例中,第二销孔307的底部始终与压缩机的壳体内部高压连通,即第二销钉214的底部始终保持高压,因此,第二销钉214的滑动位置可以通过顶部压力以及辅助部件例如弹簧的作用而进行调节。第二气缸205的第二滑片213的尾部滑槽为密闭腔体,并通过电磁阀可选择地与高压气体或者低压气体连通。
由于第二滑片213尾部的滑槽与第二销孔307的顶部连通,因此可以利用第二滑片213尾部的滑槽内通入的制冷剂对第二销孔307的顶部制冷剂压力进行调节,由于第二气缸205卸载时,第二滑片213尾部的滑槽内通入的制冷剂为低压制冷剂,而此时位于第二销孔307内的制冷剂为低压制冷剂,因此在第一销孔306底部的高压制冷剂的压力作用下,第二销钉214向上滑动,将第二滑片213锁止,变容气缸处于卸载状态;第二气缸205工作时,第二滑片213尾部的滑槽内通入的制冷剂为高压制冷剂,而此时位于第二销孔307内的制冷剂为高压制冷剂,因此在第二销钉214顶部的第二弹性件215的压力作用下,第二销钉214向下滑动,完全退回第二销孔307中,对第二滑片213进行解锁,变容气缸处于工作状态。
在一个实施例中,泵体组件还包括第二法兰202、消音器208、第一滚子209、第一滑片211、第一弹性件210、第二滚子212,第二法兰202、第一气缸203、隔板204、第二气缸205、第一法兰206以及下盖板207通过螺钉组装在一起。第一气缸203、第一滚子209、第一滑片211和第一弹性件210共同组成第一压缩部件,与第一吸气管路104连通。第二气缸205、第二滚子212和第二滑片213共同组成第二压缩部件,与第二吸气管路105连通。
结合参见图9所示,根据本申请的实施例,压缩机组件包括压缩机,压缩机包括泵体组件102,该泵体组件102为上述的泵体组件。
压缩机还包括电机组件101,电机组件101与泵体组件驱动连接,驱动泵体组件的曲轴201转动。
在一个实施例中,压缩机组件还包括分液器103,分液器103通过第一吸气管路104与泵体组件102的第一吸气孔301连通,分液器103通过第二吸气管路105与泵体组件102的第二吸气孔302连通。
在一个实施例中,泵体组件102包括第一压力切换孔304时,压缩机组件还包括第一控制回路106,第一控制回路106能够选择地与分液器103的吸气管112或压缩机的排气管113连通。
在本实施例中,第一压力切换孔304通过第一电磁阀108与分液器103的吸气管112可选择连通,通过第二电磁阀109与压缩机的排气管113可选择连通。
在一个实施例中,泵体组件102包括第二压力切换孔305时,压缩机组件还包括第二控制回路107,第二控制回路107能够选择地与分液器103的吸气管112或压缩机的排气管113连通。
在本实施例中,第二压力切换孔305通过第三电磁阀110与分液器103的吸气管112可选择连通,通过第四电磁阀111与压缩机的排气管113可选择连通。
压缩机组件工作时,低压制冷剂经吸气管112进入分液器103中,分别通过第一吸气管路104、第二吸气管路105进入泵体组件102,经压缩后,高压制冷剂通过排气管113排出压缩机。通过控制第一电磁阀108、第二电磁阀109的开关,可以选择性地将高压气态制冷剂或低压气态制冷剂通入第一控制回路106中。通过控制第三电磁阀110、第四电磁阀111的开关,可以选择性地将高压气态制冷剂或低压气态制冷剂通入第二控制回路107中。
由于第二销钉214底部始终保持高压,而第二销钉214上部与第二滑片213尾部连通共同组成密闭空间,其通过第二控制回路107可以选择地与吸气管112或排气管113连通, 即可以选择性地通入低压气态制冷剂或高压气态制冷剂。当第二销钉214上部低压时,第二销钉214向上完全将第二滑片213顶住,第二压缩部件处于卸载状态。当第二销钉214上部为高压时,第二销钉214受到重力以及第二弹性件215的作用完全退回第二销孔307中,第二压缩部件处于工作状态。
当第二压缩部件处于工作模式时,第一电磁阀108和第四电磁阀111处于开启状态,第二电磁阀109和第三电磁阀110处于关闭状态。第一压力切换孔304通过第一控制回路106与吸气管112连通,第一销钉303上、下两侧均为低压状态,其受自身重力的作用,完全退回第一销孔306内,低压制冷剂可以正常进入第二压缩部件进行压缩。
当第二压缩部件处于卸载模式时,第一电磁阀108和第四电磁阀111处于关闭状态,第二电磁阀109和第三电磁阀110处于开启状态。第一压力切换孔304通过第一控制回路106与排气管113连通,第一销钉303下侧为高压,将第一销钉303向上顶起,使第二气缸205与分液器103分隔开,从而避免冷冻油泄露至分液器103内,提升压缩机的可靠性和能效。
根据本申请的实施例,空调***包括上述的泵体组件或上述的压缩机组件。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (17)

  1. 一种泵体组件,其特征在于,包括:
    第一气缸(203),具有第一吸气孔(301);
    第二气缸(205),为变容缸,具有第二吸气孔(302);以及
    调节结构,对应于所述第二吸气孔(302)设置,被构造为能够在所述第二气缸(205)卸载时封闭所述第二吸气孔(302),在所述第二气缸(205)工作时打开所述第二吸气孔(302)。
  2. 根据权利要求1所述的泵体组件,其特征在于,所述调节结构包括第一销钉(303),所述第二气缸(205)包括连通至所述第二吸气孔(302)的第一销孔(306),所述第一销孔(306)与所述第二吸气孔(302)交叉设置,所述第一销钉(303)能够经所述第一销孔(306)滑入所述第二吸气孔(302)或从所述第二吸气孔(302)滑出。
  3. 根据权利要求2所述的泵体组件,其特征在于,所述第一销孔(306)的直径为D1,所述第二吸气孔(302)在所述第一销孔(306)位置处的直径为D2,D1≥D2。
  4. 根据权利要求2或3所述的泵体组件,其特征在于,所述泵体组件还包括第一法兰(206),所述第一法兰(206)设置在所述第二气缸(205)远离所述第一气缸(203)的一侧,所述第一法兰(206)朝向所述第二气缸(205)的一侧开设有所述第一销孔(306),所述第一法兰(206)上的所述第一销孔(306)与所述第二气缸(205)上的第一销孔(306)对应设置,所述第一销钉(303)滑动设置在所述第一法兰(206)的第一销孔(306)内。
  5. 根据权利要求4所述的泵体组件,其特征在于,所述第一法兰(206)设置有第一压力切换孔(304),所述第一压力切换孔(304)设置在所述第一法兰(206)远离所述第二吸气孔(302)的一侧,所述第一压力切换孔(304)与所述第一销孔(306)连通,并被构造为调节所述第一销钉(303)的尾部压力,以控制所述第一销孔(306)打开或者封闭所述第二吸气孔(302)。
  6. 根据权利要求5所述的泵体组件,其特征在于,所述第一法兰(206)的所述第一销孔(306)远离所述第二吸气孔(302)的一侧具有限位结构,以将所述第一销钉(303)限位在所述第一销孔(306)中。
  7. 根据权利要求5所述的泵体组件,其特征在于,所述第一法兰(206)的所述第一销孔(306)为盲孔,所述第一销孔(306)的底部开设有所述第一压力切换孔(304),所述第一销孔(306)的直径大于所述第一压力切换孔(304)的直径。
  8. 根据权利要求5至7任一项所述的泵体组件,其特征在于,还包括回位结构,所述 回位结构设置在所述第一法兰(206)的所述第一销孔(306)中,位于所述第一销孔(306)远离所述第二吸气孔(302)的一侧,所述回位结构被构造为向所述第一销钉(303)提供打开所述第二吸气孔(302)的回位作用力。
  9. 根据权利要求8所述的泵体组件,其特征在于,所述回位结构为设置在所述第一销孔(306)底部的拉力弹簧或磁铁(308),所述磁铁(308)上开设有连通所述第一压力切换孔(304)和所述第一销孔(306)的通道。
  10. 根据权利要求5至9任一项所述的泵体组件,其特征在于,所述第一压力切换孔(304)为T形孔,所述第一压力切换孔(304)同时沿轴向和侧向贯通所述第一法兰(206),所述第一法兰(206)远离所述第二气缸(205)的一侧设置有下盖板(207),所述下盖板(207)封挡所述第一压力切换孔(304)沿轴向贯穿所述第一法兰(206)的一侧。
  11. 根据权利要求4至8中任一项所述的泵体组件,其特征在于,所述泵体组件还包括变容机构,所述第二气缸(205)开设有滑槽,所述滑槽内设置有第二滑片(213),所述变容机构被构造为对所述第二滑片(213)进行加载或卸载。
  12. 根据权利要求11所述的泵体组件,其特征在于,所述变容机构包括第二销钉(214)、第二销孔(307)和第二弹性件(215),所述第二销孔(307)设置于所述第一法兰(206)内,所述第二销钉(214)和所述第二弹性件(215)设置于所述第二销孔(307)内,所述第二销孔(307)被构造为底部与高压制冷剂连通,所述第二销孔(307)的顶部与所述第二滑片(213)尾部的所述滑槽连通,所述第一法兰(206)上还设置有调节所述第二滑片(213)尾部的所述滑槽内压力的第二压力切换孔(305),所述第二滑片(213)底部设置有限位槽,所述第二销钉(214)能够卡入所述限位槽或者从所述限位槽脱出,所述第二弹性件(215)为所述第二销钉(214)提供脱出所述限位槽的弹性力。
  13. 一种压缩机组件,包括压缩机,所述压缩机包括泵体组件(102),其特征在于,所述泵体组件(102)为权利要求1至12中任一项所述的泵体组件。
  14. 根据权利要求13所述的压缩机组件,其特征在于,所述压缩机组件还包括分液器(103),所述分液器(103)通过第一吸气管路(104)与所述泵体组件(102)的第一吸气孔(301)连通,所述分液器(103)通过第二吸气管路(105)与所述泵体组件(102)的第二吸气孔(302)连通。
  15. 根据权利要求14所述的压缩机组件,其特征在于,所述泵体组件(102)包括第一压力切换孔(304)时,所述压缩机组件还包括第一控制回路(106),所述第一控制回路(106)能够选择地与所述分液器(103)的吸气管(112)或所述压缩机的排气管(113)连通。
  16. 根据权利要求14所述的压缩机组件,其特征在于,所述泵体组件(102)包括第二压力切换孔(305)时,所述压缩机组件还包括第二控制回路(107),所述第二控制回路(107)能够选择地与所述分液器(103)的吸气管(112)或所述压缩机的排气管(113)连通。
  17. 一种空调***,其特征在于,包括权利要求1至12中任一项所述的泵体组件或权利要求13至16中任一项所述的压缩机组件。
PCT/CN2023/090069 2022-09-27 2023-04-23 泵体组件、压缩机组件和空调*** WO2024066312A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211182913.0 2022-09-27
CN202211182913.0A CN115467829A (zh) 2022-09-27 2022-09-27 泵体组件、压缩机组件和空调***

Publications (1)

Publication Number Publication Date
WO2024066312A1 true WO2024066312A1 (zh) 2024-04-04

Family

ID=84335825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090069 WO2024066312A1 (zh) 2022-09-27 2023-04-23 泵体组件、压缩机组件和空调***

Country Status (2)

Country Link
CN (1) CN115467829A (zh)
WO (1) WO2024066312A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115467829A (zh) * 2022-09-27 2022-12-13 珠海格力电器股份有限公司 泵体组件、压缩机组件和空调***

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005171897A (ja) * 2003-12-11 2005-06-30 Toshiba Kyaria Kk 冷凍サイクル装置
CN103244412A (zh) * 2012-02-06 2013-08-14 珠海格力节能环保制冷技术研究中心有限公司 双转子变容压缩机
CN103486032A (zh) * 2012-06-14 2014-01-01 珠海格力节能环保制冷技术研究中心有限公司 双级变容量压缩机及空调器
CN105443382A (zh) * 2014-06-09 2016-03-30 珠海格力节能环保制冷技术研究中心有限公司 压缩机及空调器
CN105570133A (zh) * 2016-02-02 2016-05-11 广东美芝制冷设备有限公司 变容式压缩机和具有其的制冷装置
CN105570138A (zh) * 2016-02-02 2016-05-11 广东美芝制冷设备有限公司 变容式压缩机和具有其的制冷装置
CN105570134A (zh) * 2016-02-02 2016-05-11 广东美芝制冷设备有限公司 变容式压缩机和具有其的制冷装置
CN115467829A (zh) * 2022-09-27 2022-12-13 珠海格力电器股份有限公司 泵体组件、压缩机组件和空调***
CN218376877U (zh) * 2022-09-27 2023-01-24 珠海格力电器股份有限公司 泵体组件、压缩机组件和空调***

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005171897A (ja) * 2003-12-11 2005-06-30 Toshiba Kyaria Kk 冷凍サイクル装置
CN103244412A (zh) * 2012-02-06 2013-08-14 珠海格力节能环保制冷技术研究中心有限公司 双转子变容压缩机
CN103486032A (zh) * 2012-06-14 2014-01-01 珠海格力节能环保制冷技术研究中心有限公司 双级变容量压缩机及空调器
CN105443382A (zh) * 2014-06-09 2016-03-30 珠海格力节能环保制冷技术研究中心有限公司 压缩机及空调器
CN105570133A (zh) * 2016-02-02 2016-05-11 广东美芝制冷设备有限公司 变容式压缩机和具有其的制冷装置
CN105570138A (zh) * 2016-02-02 2016-05-11 广东美芝制冷设备有限公司 变容式压缩机和具有其的制冷装置
CN105570134A (zh) * 2016-02-02 2016-05-11 广东美芝制冷设备有限公司 变容式压缩机和具有其的制冷装置
CN115467829A (zh) * 2022-09-27 2022-12-13 珠海格力电器股份有限公司 泵体组件、压缩机组件和空调***
CN218376877U (zh) * 2022-09-27 2023-01-24 珠海格力电器股份有限公司 泵体组件、压缩机组件和空调***

Also Published As

Publication number Publication date
CN115467829A (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
JP6581313B2 (ja) 圧縮機及びそれを備えた冷凍システム
KR102045694B1 (ko) 이중 가변 용량 압축기 및 이를 구비하는 에어컨 시스템
USRE42966E1 (en) Tandem compressors with discharge valve on connecting lines
WO2024066312A1 (zh) 泵体组件、压缩机组件和空调***
KR101986965B1 (ko) 압축기와 열교환 시스템
US20120192583A1 (en) Suction Cutoff Unloader Valve For Compressor Capacity Control
CN110578689A (zh) 压缩机及具有其的空调***
JP6446542B2 (ja) 可変容量型圧縮機及びこれを備える冷凍装置
CN218376877U (zh) 泵体组件、压缩机组件和空调***
CN111379705B (zh) 压缩机、压缩机的运行控制方法和制冷设备
WO2021128905A1 (zh) 泵体组件及变容压缩机
JP7012881B2 (ja) スクロール圧縮機
JP3481243B2 (ja) 小型冷凍システム用始動装置
CN107806415B (zh) 压缩机组件和具有其的制冷装置
WO2019171508A1 (ja) ロータリ圧縮機
JP3009255B2 (ja) 給油式スクリュー圧縮機の吸込み絞り弁
US7972120B2 (en) Discharge system for compressors
CN112049769B (zh) 活塞压缩机和制冷设备
JPH09256958A (ja) 圧縮機の起動負荷低減装置
CN220769715U (zh) 压缩机及空调***
CN112211819B (zh) 一种旋转式压缩机以及方法
CN108869287B (zh) 变容压缩机构、压缩机及空调器
CN109236651B (zh) 一种变容压缩机及其空调***
CN114992127A (zh) 压缩机前盖组件、涡旋压缩机、空调器
KR100539826B1 (ko) 용량 가변형 회전식 압축기의 바이패스밸브 조립체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23869568

Country of ref document: EP

Kind code of ref document: A1