WO2024066134A1 - 液体处理*** - Google Patents

液体处理*** Download PDF

Info

Publication number
WO2024066134A1
WO2024066134A1 PCT/CN2023/071635 CN2023071635W WO2024066134A1 WO 2024066134 A1 WO2024066134 A1 WO 2024066134A1 CN 2023071635 W CN2023071635 W CN 2023071635W WO 2024066134 A1 WO2024066134 A1 WO 2024066134A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
distiller
vapor
separator
outlet
Prior art date
Application number
PCT/CN2023/071635
Other languages
English (en)
French (fr)
Inventor
李岳桓
Original Assignee
睿锝水资源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 睿锝水资源科技股份有限公司 filed Critical 睿锝水资源科技股份有限公司
Publication of WO2024066134A1 publication Critical patent/WO2024066134A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/041Treatment of water, waste water, or sewage by heating by distillation or evaporation by means of vapour compression
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/043Details
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery

Definitions

  • the present invention relates to a liquid treatment system, and more particularly to a treatment system for concentrating wastewater by distillation.
  • Distillers are widely used in wastewater concentration treatment, and are used in conjunction with steam compressors to recover heat energy using Mechanical Vapor Recompression (MVR) technology to improve energy efficiency.
  • MVR Mechanical Vapor Recompression
  • the liquid in the distiller will evaporate into steam due to heat, and will be replenished into the distiller when the amount of liquid is lower than a certain level.
  • most general distiller designs are horizontal shell and tube heat exchangers, shell and tube distiller or jacketed distiller. After the water is vaporized in the distiller, the substances originally remaining in the water are easily attached to the heat exchange surface, resulting in reduced heat exchange efficiency and energy recovery that is not as expected. A large amount of steam must be added to compensate. In addition, insufficient steam generation puts the steam compressor in a poor working environment, resulting in an increased probability of damage to the steam compressor.
  • steam generated by a boiler is usually used to supplement the pipeline between the steam compressor and the distiller. Due to the high steam pressure generated by the boiler, it is easy to cause the steam to flow back to the steam compressor, resulting in a decrease in the efficiency of the steam compressor and an increased probability of damage.
  • the object of the present invention is to provide a liquid processing system which can reduce energy consumption and lower maintenance costs.
  • the liquid treatment system of the present invention comprises a distiller, a vapor-liquid separator, a steam compressor, and a liquid conveyor.
  • a heat exchange unit is arranged inside the distiller, and the raw liquid can enter the distiller.
  • the heat exchange unit heats the liquid in the distiller to form a vapor-liquid mixture, and the vapor-liquid mixture flows out of the distiller and enters the vapor-liquid separator, and is separated into a reflux vapor and a concentrated liquid by the vapor-liquid separator.
  • the reflux vapor flows out of the vapor-liquid separator and is pressurized by the steam compressor and sent to the distiller, and leaves the distiller after forming a condensed liquid.
  • the concentrated liquid is a concentrate of the raw liquid, part of which can flow out of the vapor-liquid separator and be sent to the distiller by the liquid conveyor, so that the liquid in the distiller continues to cover the heat exchange unit, and part of which can leave the vapor-liquid separator.
  • the distiller comprises a first shell, a heat exchange unit, a first liquid inlet of the distiller, a second liquid inlet of the distiller, a vapor inlet of the distiller, a vapor-liquid outlet of the distiller, and a first liquid outlet of the distiller.
  • a first space is formed inside the first shell.
  • the heat exchange unit is arranged in the first shell, and a second space is formed inside, and the first space and the second space are not connected to each other.
  • the first liquid inlet of the distiller is arranged on the first shell, communicated with the first space, and close to the bottom of the heat exchange unit.
  • the second liquid inlet of the distiller is arranged on the first shell, communicated with the first space, and close to the bottom of the heat exchange unit.
  • the vapor inlet of the distiller is arranged on the first shell, communicated with the second space.
  • the vapor-liquid outlet of the distiller is arranged on the first shell, communicated with the first space.
  • the first liquid outlet of the distiller is arranged on the first shell, communicated with the second space.
  • the vapor-liquid separator comprises a second shell, a vapor-liquid inlet of the separator, a vapor outlet of the separator, a first liquid outlet of the separator, and a second liquid outlet of the separator.
  • the vapor-liquid inlet of the separator is arranged on the second shell, communicated with the vapor-liquid outlet of the distiller.
  • the vapor outlet of the separator is arranged on the second shell, and close to the top of the second shell.
  • the first liquid outlet of the separator is arranged on the second shell and is close to the bottom of the second shell.
  • the second liquid outlet of the separator is arranged on the second shell and is close to the bottom of the second shell.
  • the steam compressor includes a compressor gas inlet and a compressor gas outlet, the compressor gas inlet is connected to the separator gas outlet, and the compressor gas outlet is connected to the distiller gas inlet.
  • the liquid conveyor includes a liquid conveyor inlet and a liquid conveyor outlet, the liquid conveyor inlet is connected to the first liquid outlet of the separator, and the liquid conveyor outlet is connected to the second liquid inlet of the distiller. The raw liquid enters the distiller from the first liquid inlet of the distiller.
  • the vapor-liquid mixture flows out of the distiller from the vapor-liquid outlet of the distiller and enters the vapor-liquid separator from the vapor-liquid inlet of the separator.
  • the reflux gas flows out of the vapor-liquid separator from the separator gas outlet, enters the steam compressor through the compressor inlet, is pressurized by the steam compressor, leaves the steam compressor through the compressor outlet, enters the distiller from the gas inlet of the distiller, forms a condensed liquid, and leaves the distiller from the first liquid outlet of the distiller.
  • Part of the concentrated liquid can flow out of the vapor-liquid separator from the first liquid outlet of the separator, enter the liquid conveyor from the liquid conveyor inlet, be conveyed by the liquid conveyor to leave the liquid conveyor through the liquid conveyor outlet, and enter the distiller from the second liquid inlet of the distiller, so that the liquid in the distiller continuously covers the heat exchange unit.
  • Part of the concentrated liquid can leave the vapor-liquid separator from the second liquid outlet of the separator.
  • the liquid treatment system further comprises a steam supplier for supplying steam to the gas-liquid separator.
  • the vapor-liquid separator further comprises a separator steam inlet, and the steam enters the vapor-liquid separator through the separator steam inlet.
  • the liquid processing system of the present invention comprises a distiller, a vapor-liquid separator, a steam compressor, and a steam supplier.
  • a heat exchange unit is arranged inside the distiller, and the raw liquid can enter the distiller.
  • the heat exchange unit heats the liquid in the distiller to form a vapor-liquid mixture.
  • the vapor-liquid mixture flows out of the distiller and enters the vapor-liquid separator, and is separated into a reflux vapor and a concentrated liquid by the vapor-liquid separator.
  • the reflux vapor flows out of the vapor-liquid separator and is pressurized by the steam compressor and sent into the distiller, and leaves the distiller after forming a condensed liquid.
  • the concentrated liquid is a concentrate of the raw liquid, part of which can flow out of the vapor-liquid separator and enter the distiller, and part of which can leave the vapor-liquid separator.
  • the steam supplier is used to supply steam to the vapor-liquid separator.
  • the distiller comprises a first shell, a heat exchange unit, a first liquid inlet of the distiller, a vapor inlet of the distiller, a vapor-liquid outlet of the distiller, and a first liquid outlet of the distiller.
  • a first space is formed inside the first shell.
  • the heat exchange unit is arranged in the first shell, and a second space is formed inside, and the first space and the second space are not connected to each other.
  • the first liquid inlet of the distiller is arranged on the first shell, communicated with the first space, and close to the bottom of the heat exchange unit.
  • the vapor inlet of the distiller is arranged on the first shell, communicated with the second space.
  • the vapor-liquid outlet of the distiller is arranged on the first shell, communicated with the first space.
  • the first liquid outlet of the distiller is arranged on the first shell, communicated with the second space.
  • the vapor-liquid separator comprises a second shell, a vapor-liquid inlet of the separator, a vapor outlet of the separator, a first liquid outlet of the separator, a second liquid outlet of the separator, and a vapor inlet of the separator.
  • the vapor-liquid inlet of the separator is arranged on the second shell, communicated with the vapor-liquid outlet of the distiller.
  • the vapor outlet of the separator is arranged on the second shell, and close to the top of the second shell.
  • the first liquid outlet of the separator is arranged on the second shell, and close to the bottom of the second shell.
  • the second liquid outlet of the separator is arranged on the second shell and is close to the bottom of the second shell.
  • Steam enters the vapor-liquid separator from the separator vapor inlet.
  • the steam compressor includes a compressor vapor inlet and a compressor vapor outlet, the compressor vapor inlet is connected to the separator vapor outlet, and the compressor vapor outlet is connected to the distiller vapor inlet.
  • the raw liquid enters the distiller from the first liquid inlet of the distiller.
  • the vapor-liquid mixture flows out of the distiller from the distiller vapor-liquid outlet and enters the vapor-liquid separator from the separator vapor-liquid inlet.
  • the reflux vapor flows out of the vapor-liquid separator from the separator vapor outlet, enters the steam compressor through the compressor inlet, is pressurized by the steam compressor, leaves the steam compressor through the compressor outlet, enters the distiller from the distiller vapor inlet, forms a condensed liquid, and leaves the distiller from the first liquid outlet of the distiller.
  • Part of the concentrated liquid can flow out from the first liquid outlet of the separator and enter the distiller from the second liquid inlet of the distiller.
  • Part of the concentrated liquid can leave the vapor-liquid separator from the second liquid outlet of the separator.
  • the liquid processing system further comprises a liquid conveyor, and part of the concentrated liquid can flow out of the vapor-liquid separator and be conveyed into the distiller by the liquid conveyor, so that the liquid in the distiller continuously covers the heat exchange unit.
  • the distiller further comprises a second liquid inlet of the distiller, which is arranged on the first shell, communicated with the first space, and is close to the bottom of the heat exchange unit.
  • the liquid conveyor comprises a liquid conveyor inlet and a liquid conveyor outlet, the liquid conveyor inlet is communicated with the first liquid outlet of the separator, and the liquid conveyor outlet is communicated with the second liquid inlet of the distiller.
  • Part of the concentrated liquid can flow out of the vapor-liquid separator from the first liquid outlet of the separator, enter the liquid conveyor from the liquid conveyor inlet, be transported by the liquid conveyor to leave the liquid conveyor through the liquid conveyor outlet, and enter the distiller from the second liquid inlet of the distiller, so that the liquid in the distiller continuously covers the heat exchange unit.
  • the vapor-liquid outlet of the distiller is located at a higher level than the heat exchange unit.
  • the distiller further comprises a second liquid outlet of the distiller, and part of the liquid in the distiller can leave the distiller through the second liquid outlet of the distiller and merge with the concentrated liquid leaving the vapor-liquid separator through the second liquid outlet of the separator.
  • FIG. 1 is a schematic diagram of an embodiment of a liquid treatment system of the present invention.
  • FIG. 2 is a schematic diagram of another embodiment of the liquid processing system of the present invention.
  • FIG. 3 is a schematic diagram of another embodiment of the liquid processing system of the present invention.
  • FIG. 4 is a schematic diagram of a liquid treatment system according to a different embodiment of the present invention.
  • connection can refer to physical and/or electrical connection.
  • electrical connection or “coupling” can be the presence of other elements between two elements.
  • first, second, third, etc. can be used to describe various elements, components, regions, layers and/or parts in this article, these elements, components, regions, layers and/or parts should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or part from another element, component, region, layer or part. Therefore, the "first element”, “component”, “region”, “layer” or “part” discussed below can be referred to as a second element, component, region, layer or part without departing from the teachings of this article.
  • relative terms such as “lower” or “bottom” and “upper” or “top” may be used herein to describe the relationship of one element to another element, as shown in the figures. It should be understood that relative terms are intended to include different orientations of the device in addition to the orientation shown in the figures. For example, if the device in one figure is turned over, the element described as being on the “lower” side of the other elements will be oriented on the “upper” side of the other elements. Therefore, the exemplary term “lower” can include both “lower” and “upper” orientations, depending on the specific orientation of the figure.
  • “about”, “approximately”, or “substantially” includes the stated value and an average value within an acceptable deviation range of a particular value determined by one of ordinary skill in the art, taking into account the measurement in question and the particular amount of error associated with the measurement (i.e., the limitations of the measurement system). For example, “about” can mean within one or more standard deviations of the stated value, or within ⁇ 30%, ⁇ 20%, ⁇ 10%, ⁇ 5%. Furthermore, as used herein, “about”, “approximately”, or “substantially” can select a more acceptable deviation range or standard deviation depending on the optical property, etching property or other property, and can apply to all properties without a single standard deviation.
  • the liquid processing system 900 of the present invention comprises a distiller 100, a vapor-liquid separator 200, a steam compressor 300, and a liquid conveyor 400.
  • a heat exchange unit 120 is provided inside the distiller 100.
  • the raw liquid can enter the distiller 100.
  • the heat exchange unit 120 heats the liquid in the distiller 100 to form a vapor-liquid mixture.
  • the vapor-liquid mixture flows out of the distiller 100 and enters the vapor-liquid separator 200, and is separated into a reflux vapor and a concentrated liquid by the vapor-liquid separator 200.
  • the reflux vapor flows out of the vapor-liquid separator 200 and is pressurized and sent to the distiller 100 by the steam compressor 300, and leaves the distiller 100 after forming a condensed liquid.
  • the concentrated liquid is a concentrate of the raw liquid, part of which can flow out of the vapor-liquid separator 200 and be sent to the distiller 100 by the liquid conveyor 400, so that the liquid in the distiller 100 continues to cover the heat exchange unit 120, and part of which can leave the vapor-liquid separator 200.
  • the distiller 100 is a plate heat exchanger, and the raw liquid is a salt solution.
  • the steam can enter the heat exchange unit 121 and perform heat exchange with the liquid on the outer surface of the heat exchange unit 121 (i.e., heat the liquid) and then condense into water. After the liquid is heated, a mixture of a salt solution and steam is formed. After entering the vapor-liquid separator 200, the mixture is separated into steam (reflux vapor) and concentrated salt solution (concentrated liquid) by the vapor-liquid separator 200.
  • the steam flows out of the vapor-liquid separator 200, it is pressurized by the steam compressor 300 and sent to the heat exchange unit 120 of the distiller 100 for heat exchange, that is, the steam heat energy is recovered using the mechanical vapor recompression (MVR) technology.
  • MVR mechanical vapor recompression
  • the steam performs heat exchange in the heat exchange unit 120, it forms a condensed liquid and leaves the distiller 100.
  • Part of the concentrated salt aqueous solution can flow out of the vapor-liquid separator 200 and be sent to the distiller 100 by a liquid conveyor 400 such as a pump, and part of it can leave the vapor-liquid separator 200 as a treated liquid.
  • the distiller 100 can be a different type of heat exchanger such as a tubular type
  • the raw liquid can be a solution other than the salt aqueous solution
  • the solute is not limited to salts
  • the solvent is not limited to water.
  • the distiller 100 includes a first shell 110, a heat exchange unit 120, a distiller first liquid inlet 101, a distiller second liquid inlet 102, a distiller gas inlet 103, a distiller gas-liquid outlet 104, and a distiller first liquid outlet 105.
  • a first space 111 is formed inside the first shell 110.
  • the heat exchange unit 120 is disposed in the first shell 110, and a second space 121 is formed inside.
  • the first space 111 and the second space 121 are not connected to each other.
  • the distiller first liquid inlet 101 is disposed on the first shell 100, communicates with the first space 111, and is close to the bottom of the heat exchange unit 120.
  • the distiller second liquid inlet 102 is disposed on the first shell 100, communicates with the first space 111, and is close to the bottom of the heat exchange unit 120.
  • the distiller gas inlet 103 is disposed on the first shell 100, communicates with the second space 121.
  • the distiller gas-liquid outlet 104 is disposed on the first shell 100, and communicates with the first space 111.
  • the distiller first liquid outlet 105 is disposed on the first shell 100 and communicates with the second space 121 .
  • the distiller gas inlet 103 and the distiller first liquid outlet 105 are substantially communicated with the heat exchange unit 120 .
  • the vapor-liquid separator 200 includes a second shell 210, a separator vapor-liquid inlet 201, a separator vapor outlet 202, a separator first liquid outlet 203, and a separator second liquid outlet 204.
  • the separator vapor-liquid inlet 201 is disposed on the second shell 210 and communicates with the vapor-liquid outlet 104 of the distiller.
  • the separator vapor outlet 202 is disposed on the second shell 210 and is close to the top of the second shell 210.
  • the separator first liquid outlet 203 is disposed on the second shell 210 and is close to the bottom of the second shell 210.
  • the separator second liquid outlet 204 is disposed on the second shell 210 and is close to the bottom of the second shell 210.
  • the steam compressor 300 includes a compressor vapor inlet 301 and a compressor vapor outlet 302, wherein the compressor vapor inlet 301 is communicated with the separator vapor outlet 202, and the compressor vapor outlet 302 is communicated with the vapor inlet 103 of the distiller.
  • the liquid conveyor 400 comprises a liquid conveyor inlet 401 and a liquid conveyor outlet 402 .
  • the liquid conveyor inlet 401 is communicated with the first liquid outlet 203 of the separator, and the liquid conveyor outlet 402 is communicated with the second liquid inlet 102 of the distiller.
  • the raw liquid enters the distiller 100 through the distiller first liquid inlet 101.
  • the vapor-liquid mixture flows out of the distiller 100 through the distiller vapor-liquid outlet 104, and enters the vapor-liquid separator 200 through the separator vapor-liquid inlet 201.
  • the lighter reflux vapor can flow out of the vapor-liquid separator 200 through the separator vapor outlet 202 near the top, enter the steam compressor 300 through the compressor inlet 301, and leave the steam compressor 300 through the compressor outlet 302 after being pressurized by the steam compressor 300, and enter the heat exchange unit 120 of the distiller 100 through the distiller vapor inlet 103, and leave the heat exchange unit 120 of the distiller 100 through the distiller first liquid outlet 105 after forming condensed liquid.
  • the heavier concentrated liquid will be located in the lower half of the vapor-liquid separator 200.
  • Part of the concentrated liquid can flow out of the vapor-liquid separator 200 through the first liquid outlet 203 of the separator, enter the liquid conveyor 400 through the liquid conveyor inlet 401, be transported by the liquid conveyor 400 to leave the liquid conveyor 400 through the liquid conveyor outlet 402, and enter the distiller 100 through the second liquid inlet 106 of the distiller, so that the liquid in the distiller 100 continues to cover the heat exchange unit 120.
  • the liquid level is higher than the heat exchange unit 120, that is, the heat exchange unit 120 is immersed in the liquid.
  • Part of the concentrated liquid can leave the vapor-liquid separator 200 through the second liquid outlet 204 of the separator.
  • the vapor-liquid separator 200 may further include a vapor-liquid separation element 220 such as a hydrophobic membrane to enhance the vapor-liquid separation effect.
  • the liquid treatment system 900 of the present invention since the liquid in the distiller 100 continuously covers the heat exchange unit 120, the heat exchange surface of the heat exchange unit 120 is not easy to generate scale, which can avoid the reduction of heat exchange efficiency and the increase of energy consumption, and can also ensure that sufficient steam is generated, so that the steam compressor is in a good working environment and the probability of damage to the steam compressor is reduced. Therefore, the liquid treatment system 900 of the present invention can reduce energy consumption and reduce maintenance costs.
  • the liquid treatment system 900 of the present invention transports part of the concentrated liquid in the vapor-liquid separator 200 back to the distiller 100 through the liquid conveyor 400, so that the liquid in the distiller 100 can continue to cover the heat exchange unit 120 without reducing the concentration of the liquid in the distiller 100.
  • the method of solving the energy waste caused by the fixed compression ratio in the present invention is to monitor the boiling temperature of the raw water during the distillation process at any time, so that the temperature difference between the cold and hot ends is as small as possible.
  • the temperature difference between the cold and hot ends is designed to be 3°C.
  • the compression ratio of the steam compressor 300 is controlled at 1.15, so that the steam temperature of the hot end (steam flow space) is controlled at 105°C; when the boiling temperature of the cold end is 108°C, the compression ratio is controlled to 1.55, so that the temperature of the hot end is 111°C.
  • the method is to install a control proportional valve at the steam compressor outlet 302.
  • the proportional valve outlet becomes larger, the compression ratio will be reduced; when the proportional valve outlet becomes smaller, the compression ratio will be increased, so as to control the compression ratio and obtain the desired boost amplitude.
  • the liquid treatment system of the present invention comprises a distiller 100, a vapor-liquid separator 200, a steam compressor 300, and a steam supplier 500.
  • a heat exchange unit 120 is provided inside the distiller 100, and the raw liquid can enter the distiller 100.
  • the heat exchange unit 120 heats the liquid in the distiller 100 to form a vapor-liquid mixture.
  • the vapor-liquid mixture flows out of the distiller 100 and enters the vapor-liquid separator 200, and is separated into a reflux vapor and a concentrated liquid by the vapor-liquid separator 200.
  • the reflux vapor flows out of the vapor-liquid separator 200 and is pressurized and sent to the distiller 100 by the steam compressor 300, and leaves the distiller 100 after forming a condensed liquid.
  • the concentrated liquid is a concentrate of the raw liquid, part of which can flow out of the vapor-liquid separator 200 and enter the distiller 100, and part of which can leave the vapor-liquid separator 200.
  • the steam supplier 500 is used to supply steam to the vapor-liquid separator 200.
  • the configurations of the distiller 100 and the steam compressor 300 are respectively the same as the configurations of the distiller 100 and the steam compressor 300 in the embodiment shown in FIG1 .
  • the vapor-liquid separator 200 is substantially the same as the vapor-liquid separator 200 in the embodiment shown in FIG1 , and further comprises a separator steam inlet 205.
  • the steam supplied by the steam supplier 500 enters the vapor-liquid separator 200 through the separator steam inlet 205.
  • the liquid treatment system 900 may include a liquid conveyor 400 and a steam supplier 500 at the same time, that is, it has the aforementioned two technical features of “concentrated liquid is conveyed by the liquid conveyor 400 so that the liquid in the distiller 100 continuously covers the heat exchange unit 120” and “the steam supplier 500 supplies steam into the vapor-liquid separator 200”, and thus has the aforementioned advantages of not being easy to generate scale and no steam flowing back to the steam compressor.
  • the liquid treatment system 900 may further include other heat exchangers to further recover heat energy.
  • the condensed liquid leaving the distiller 100 from the first liquid outlet 105 of the distiller and the concentrated liquid leaving the vapor-liquid separator 200 from the second liquid outlet 204 of the separator are both at high temperatures. Therefore, before the raw liquid flowing out of the raw material tank 610 enters the distiller 100, it may be respectively heat exchanged with the above two through the heat exchangers 810 and 820 to recover heat energy and increase its own temperature. It may also be further stored in the raw liquid transfer tank 620 to be transported into the distiller 100.
  • the condensed liquid leaving the distiller 100 from the first liquid outlet 105 of the distiller may be further stored in the condensed liquid transfer tank 720 and then transported to the condensed liquid storage tank 710.
  • the concentrated liquid leaving the vapor-liquid separator 200 from the second liquid outlet 204 of the separator may be transported to the treated liquid storage tank 730.
  • the liquid processing system of the present invention comprises a distiller, a vapor-liquid separator, a steam compressor, and a liquid conveyor.
  • a heat exchange unit is arranged inside the distiller, and the raw liquid can enter the distiller.
  • the heat exchange unit heats the liquid in the distiller to form a vapor-liquid mixture.
  • the vapor-liquid mixture flows out of the distiller and enters the vapor-liquid separator, and is separated into a reflux vapor and a concentrated liquid by the vapor-liquid separator.
  • the reflux vapor flows out of the vapor-liquid separator and is pressurized by the steam compressor and sent to the distiller, and leaves the distiller after forming a condensed liquid.
  • the concentrated liquid is a concentrate of the raw liquid, part of which can flow out of the vapor-liquid separator and be sent to the distiller by the liquid conveyor, so that the liquid in the distiller continues to cover the heat exchange unit, and part of which can leave from the vapor-liquid separator.
  • the liquid processing system of the present invention can reduce energy consumption and maintenance costs.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Ventilation (AREA)

Abstract

提供一种液体处理***,包含蒸馏器、汽液分离器、蒸汽压缩机、以及液体输送器。蒸馏器内部设置有热交换单元,原料液体可进入蒸馏器,热交换单元对蒸馏器中的液体加热以形成汽液混合物,汽液混合物流出蒸馏器并进入汽液分离器,由汽液分离器分离为回流汽体以及浓缩液体。回流汽体流出汽液分离器并由蒸汽压缩机加压及送入蒸馏器,并于形成冷凝液体后离开蒸馏器。浓缩液体为原料液体的浓缩物,部分可流出汽液分离器并由液体输送器送入蒸馏器,使蒸馏器中的液体持续覆盖热交换单元,部分可由汽液分离器离开。

Description

液体处理*** 技术领域
本发明是关于液体处理***,尤其是关于将废水以蒸馏方式浓缩的处理***。
背景技术
蒸馏器广泛用于废水的浓缩处理中,并且搭配蒸汽压缩机,使用机械蒸汽再压缩(Mechanical Vapor Recompression,MVR)技术回收热能以提高能量效率。
现有技术中,蒸馏器内的液体会受热蒸发成蒸汽,并在液体的量低于一定程度时补充进入蒸馏器。然而,以一般蒸馏器设计多为卧式壳管式热交换器、列管式蒸馏器或夹套式蒸馏器,水在蒸馏器中汽化以后,原残存于水中的物质容易结构附着于热交换面上,造成热交换效率降低而使得能源回收不如预期,必须补充大量蒸汽来弥补。此外,还因为造成蒸汽产生不足,让蒸汽压缩机处于不佳的工作环境中,导致蒸汽压缩机的损坏机率提高。而现有技术中通常使用锅炉产生的蒸汽补充于蒸汽压缩机及蒸馏器之间的管路,由于锅炉产生的蒸汽压力大,容易造成蒸汽逆向前往蒸汽压缩机,导致蒸汽压缩机效率下降、损坏机率提高。
另一方面,蒸汽压缩机在应用时通常以固定压缩比的方式来增压,此时冷热端常因温差过大而造成压缩比过大,使得能耗增加。综上所述,现有技术中包含蒸馏器以及蒸汽压缩机的液体处理***有改善空间。
发明的公开
本发明的目的在于提供一种液体处理***,可减少能耗,降低维护成本。
本发明的液体处理***包含蒸馏器、汽液分离器、蒸汽压缩机、以及液体输送器。蒸馏器内部设置有热交换单元,原料液体可进入蒸馏器,热交换 单元对蒸馏器中的液体加热以形成汽液混合物,汽液混合物流出蒸馏器并进入汽液分离器,由汽液分离器分离为回流汽体以及浓缩液体。回流汽体流出汽液分离器并由蒸汽压缩机加压及送入蒸馏器,并于形成冷凝液体后离开蒸馏器。浓缩液体为原料液体的浓缩物,部分可流出汽液分离器并由液体输送器送入蒸馏器,使蒸馏器中的液体持续覆盖热交换单元,部分可由汽液分离器离开。
在一实施例中,蒸馏器包含第一壳体、热交换单元、蒸馏器第一液体入口、蒸馏器第二液体入口、蒸馏器汽体入口、蒸馏器汽液出口、以及蒸馏器第一液体出口。第一壳体内部形成第一空间。热交换单元设置于第一壳体内,内部形成第二空间,第一空间及第二空间互不连通。蒸馏器第一液体入口设置于第一壳体上,与第一空间连通,且靠近热交换单元下方。蒸馏器第二液体入口设置于第一壳体上,与第一空间连通,且靠近热交换单元下方。蒸馏器汽体入口设置于第一壳体上,与第二空间连通。蒸馏器汽液出口设置于第一壳体上,与第一空间连通。蒸馏器第一液体出口设置于第一壳体上,与第二空间连通。汽液分离器包含第二壳体、分离器汽液入口、分离器汽体出口、分离器第一液体出口、以及分离器第二液体出口。分离器汽液入口设置于第二壳体上,与蒸馏器汽液出口连通。分离器汽体出口设置于第二壳体上,且靠近第二壳体上方。分离器第一液体出口设置于第二壳体上,且靠近第二壳体下方。分离器第二液体出口设置于第二壳体上,且靠近第二壳体下方。蒸汽压缩机包含压缩机汽体入口以及压缩机汽体出口,压缩机汽体入口与分离器汽体出口连通,压缩机汽体出口与蒸馏器汽体入口连通。液体输送器包含液体输送器入口以及液体输送器出口,液体输送器入口与分离器第一液体出口连通,液体输送器出口与蒸馏器第二液体入口连通。原料液体由蒸馏器第一液体入口进入蒸馏器。汽液混合物由蒸馏器汽液出口流出蒸馏器,并由分离器汽液入口进入汽液分离器。回流汽体由分离器汽体出口流出汽液分离器,通过压缩机入口进入蒸汽压缩机,由蒸汽压缩机加压通过压缩机出口离开蒸汽压缩机,并由蒸馏器汽体入口进入蒸馏器,形成冷凝液体后由蒸馏器 第一液体出口离开蒸馏器。部分的浓缩液体可由分离器第一液体出口流出汽液分离器,由液体输送器入口进入液体输送器,通过液体输送器输送以通过液体输送器出口离开液体输送器,并由蒸馏器第二液体入口进入该蒸馏器,使蒸馏器中的液体持续覆盖热交换单元。部分的浓缩液体可由分离器第二液体出口离开汽液分离器。
在一实施例中,液体处理***进一步包含蒸汽供应器,用于供应蒸汽至汽液分离器。
在一实施例中,汽液分离器进一步包含分离器蒸汽入口,蒸汽由分离器蒸汽入口进入汽液分离器。
本发明的液体处理***包含蒸馏器、汽液分离器、蒸汽压缩机、以及蒸汽供应器。蒸馏器内部设置有热交换单元,原料液体可进入蒸馏器,热交换单元对蒸馏器中的液体加热以形成汽液混合物。汽液混合物流出蒸馏器并进入汽液分离器,由汽液分离器分离为回流汽体以及浓缩液体。回流汽体流出汽液分离器并由蒸汽压缩机加压及送入蒸馏器,并于形成冷凝液体后离开蒸馏器。浓缩液体为原料液体的浓缩物,部分可流出汽液分离器并进入蒸馏器,部分可由汽液分离器离开。蒸汽供应器用于供应蒸汽至汽液分离器。
在一实施例中,蒸馏器包含第一壳体、热交换单元、蒸馏器第一液体入口、蒸馏器汽体入口、蒸馏器汽液出口、以及蒸馏器第一液体出口。第一壳体内部形成第一空间。热交换单元设置于第一壳体内,内部形成第二空间,第一空间及第二空间互不连通。蒸馏器第一液体入口设置于第一壳体上,与第一空间连通,且靠近热交换单元下方。蒸馏器汽体入口设置于第一壳体上,与第二空间连通。蒸馏器汽液出口设置于第一壳体上,与第一空间连通。蒸馏器第一液体出口设置于第一壳体上,与第二空间连通。汽液分离器包含第二壳体、分离器汽液入口、分离器汽体出口、分离器第一液体出口、分离器第二液体出口、以及分离器蒸汽入口。分离器汽液入口设置于第二壳体上,与蒸馏器汽液出口连通。分离器汽体出口设置于第二壳体上,且靠近第二壳体上方。分离器第一液体出口设置于第二壳体上,且靠近第二壳体下方。分 离器第二液体出口设置于第二壳体上,且靠近第二壳体下方。蒸汽由分离器蒸汽入口进入汽液分离器。蒸汽压缩机包含压缩机汽体入口以及压缩机汽体出口,压缩机汽体入口与分离器汽体出口连通,压缩机汽体出口与蒸馏器汽体入口连通。原料液体由蒸馏器第一液体入口进入蒸馏器。汽液混合物由蒸馏器汽液出口流出蒸馏器,并由分离器汽液入口进入汽液分离器。回流汽体由分离器汽体出口流出汽液分离器,通过压缩机入口进入蒸汽压缩机,由蒸汽压缩机加压通过压缩机出口离开蒸汽压缩机,并由蒸馏器汽体入口进入蒸馏器,形成冷凝液体后由蒸馏器第一液体出口离开蒸馏器。部分的浓缩液体可由分离器第一液体出口流出,并由蒸馏器第二液体入口进入蒸馏器。部分的浓缩液体可由分离器第二液体出口离开汽液分离器。
在一实施例中,液体处理***进一步包含液体输送器,部分的浓缩液体可流出汽液分离器并由液体输送器送入蒸馏器,使蒸馏器中的液体持续覆盖热交换单元。
在一实施例中,蒸馏器进一步包含蒸馏器第二液体入口,设置于第一壳体上,与该第一空间连通,且靠近热交换单元下方。液体输送器包含液体输送器入口以及液体输送器出口,液体输送器入口与分离器第一液体出口连通,液体输送器出口与蒸馏器第二液体入口连通。部分的浓缩液体可由分离器第一液体出口流出汽液分离器,由液体输送器入口进入液体输送器,通过液体输送器输送以通过液体输送器出口离开液体输送器,并由蒸馏器第二液体入口进入蒸馏器,使蒸馏器中的液体持续覆盖热交换单元。
在一实施例中,蒸馏器汽液出口的水平位置高于热交换单元。
在一实施例中,蒸馏器进一步包含蒸馏器第二液体出口,部分蒸馏器中的液体可由蒸馏器第二液体出口离开蒸馏器,并与由分离器第二液体出口离开汽液分离器的浓缩液体合流。
附图的简要说明
图1为本发明液体处理***的实施例示意图。
图2为本发明液体处理***的另一实施例示意图。
图3为本发明液体处理***的又一实施例示意图。
图4为本发明液体处理***的不同实施例示意图。
主要元件符号说明:
100...蒸馏器
101...蒸馏器第一液体入口
102...蒸馏器第二液体入口
103...蒸馏器汽体入口
104...蒸馏器汽液出口
105...蒸馏器第一液体出口
106...蒸馏器第二液体入口
110...第一壳体
111...第一空间
120...热交换单元
121...第二空间
200...汽液分离器
201...分离器汽液入口
202...分离器汽体出口
203...分离器第一液体出口
204...分离器第二液体出口
205...分离器蒸汽入口
210...第二壳体
220...汽液分离元件
300...蒸汽压缩机
301...压缩机汽体入口
302...压缩机汽体出口
400...液体输送器
401...液体输送器入口
402...液体输送器出口
500...蒸汽供应器
610...原料槽
620...原料液体中转槽
710...冷凝液体储存槽
720...冷凝液体中转槽
730...处理后液体储槽
810...热交换器
820...热交换器
900...液体处理***
实现本发明的最佳方式
以下通过特定的具体实施例并配合说明书附图以说明本发明所公开的连接组件的实施方式,本领域技术人员可由本说明书所公开的内容了解本发明的优点与效果。然而,以下所公开的内容并非用以限制本发明的保护范围,在不悖离本发明构思精神的原则下,本领域技术人员可基于不同观点与应用以其他不同实施例实现本发明。在附图中,为了清楚起见,放大了层、膜、面板、区域等的厚度。在整个说明书中,相同的附图标记表示相同的元件。应当理解,当诸如层、膜、区域或基板的元件被称为在另一元件“上”或“连接到”另一元件时,其可以直接在另一元件上或与另一元件连接,或者中间元件可以也存在。相反,当元件被称为“直接在另一元件上”或“直接连接到”另一元件时,不存在中间元件。如本文所使用的,“连接”可以指物理及/或电性连接。再者,“电性连接”或“耦合”可为二元件间存在其它元件。
应当理解,尽管术语“第一”、“第二”、“第三”等在本文中可以用于描述各种元件、部件、区域、层及/或部分,但是这些元件、部件、区域、 层及/或部分不应受这些术语的限制。这些术语仅用于将一个元件、部件、区域、层或部分与另一个元件、部件、区域、层或部分区分开。因此,下面讨论的“第一元件”、“部件”、“区域”、“层”或“部分”可以被称为第二元件、部件、区域、层或部分而不脱离本文的教导。
此外,诸如“下”或“底部”和“上”或“顶部”的相对术语可在本文中用于描述一个元件与另一元件的关系,如图所示。应当理解,相对术语旨在包括除了图中所示的方位之外的装置的不同方位。例如,如果一个附图中的装置翻转,则被描述为在其他元件的“下”侧的元件将被定向在其他元件的“上”侧。因此,示例性术语“下”可以包括“下”和“上”的取向,取决于附图的特定取向。类似地,如果一个附图中的装置翻转,则被描述为在其它元件“下方”或“下方”的元件将被定向为在其它元件“上方”。因此,示例性术语“下面”或“下面”可以包括上方和下方的取向。
本文使用的“约”、“近似”、或“实质上”包括所述值和在本领域普通技术人员确定的特定值的可接受的偏差范围内的平均值,考虑到所讨论的测量和与测量相关的误差的特定数量(即,测量***的限制)。例如,“约”可以表示在所述值的一个或多个标准偏差内,或±30%、±20%、±10%、±5%内。再者,本文使用的“约”、“近似”或“实质上”可依光学性质、蚀刻性质或其它性质,来选择较可接受的偏差范围或标准偏差,而可不用一个标准偏差适用全部性质。
如图1所示的实施例,本发明的液体处理***900包含蒸馏器100、汽液分离器200、蒸汽压缩机300、以及液体输送器400。蒸馏器100内部设置有热交换单元120,原料液体可进入蒸馏器100,热交换单元120对蒸馏器100中的液体加热以形成汽液混合物,汽液混合物流出蒸馏器100并进入汽液分离器200,由汽液分离器200分离为回流汽体以及浓缩液体。回流汽体流出汽液分离器200并由蒸汽压缩机300加压及送入蒸馏器100,并于形成冷凝液体后离开蒸馏器100。浓缩液体为原料液体的浓缩物,部分可流出汽液分离器200并由液体输送器400送入蒸馏器100,使蒸馏器100中的液 体持续覆盖热交换单元120,部分可由汽液分离器200离开。
进一步而言,如图1所示的实施例,在一实施例中,蒸馏器100为板式热交换器,原料液体为盐类水溶液。蒸汽可进入热交换单元121并与热交换单元121外表面的液体进行热交换(亦即对液体加热)而后冷凝成水。液体被加热后形成盐类水溶液及蒸汽的混合物,进入汽液分离器200后,由汽液分离器200分离为蒸汽(回流汽体)以及浓缩盐类水溶液(浓缩液体)。蒸汽流出汽液分离器200后通过蒸汽压缩机300加压及送入蒸馏器100的热交换单元120进行热交换,亦即使用机械蒸汽再压缩(Mechanical Vapor Recompression,MVR)技术回收蒸汽热能。蒸汽在热交换单元120进行热交换后形成冷凝液体,并离开蒸馏器100。浓缩盐类水溶液部分可流出汽液分离器200并由例如帮浦的液体输送器400送入蒸馏器100,部分可由汽液分离器200离开作为处理后液体。在不同实施例中,蒸馏器100可为例如管式等不同种类的热交换器,原料液体可为盐类水溶液以外的溶液,溶质不限于盐类,溶剂不限为水。
更具体而言,如图1所示的实施例,蒸馏器100包含第一壳体110、热交换单元120、蒸馏器第一液体入口101、蒸馏器第二液体入口102、蒸馏器汽体入口103、蒸馏器汽液出口104、以及蒸馏器第一液体出口105。第一壳体110内部形成第一空间111。热交换单元120设置于第一壳体110内,内部形成第二空间121,第一空间111及第二空间121互不连通。蒸馏器第一液体入口101设置于第一壳体100上,与第一空间111连通,且靠近热交换单元120下方。蒸馏器第二液体入口102设置于第一壳体100上,与第一空间111连通,且靠近热交换单元120下方。蒸馏器汽体入口103设置于第一壳体100上,与第二空间121连通。蒸馏器汽液出口104设置于第一壳体100上,与第一空间111连通。蒸馏器第一液体出口105设置于第一壳体100上,与第二空间121连通。其中,蒸馏器汽体入口103以及蒸馏器第一液体出口105实质上连通于热交换单元120。
如图1所示的实施例,汽液分离器200包含第二壳体210、分离器汽液 入口201、分离器汽体出口202、分离器第一液体出口203、以及分离器第二液体出口204。分离器汽液入口201设置于第二壳体210上,与蒸馏器汽液出口104连通。分离器汽体出口202设置于第二壳体210上,且靠近第二壳体210上方。分离器第一液体出口203设置于第二壳体210上,且靠近第二壳体210下方。分离器第二液体出口204设置于第二壳体210上,且靠近第二壳体210下方。蒸汽压缩机300包含压缩机汽体入口301以及压缩机汽体出口302,压缩机汽体入口301与分离器汽体出口202连通,压缩机汽体出口302与蒸馏器汽体入口103连通。液体输送器400包含液体输送器入口401以及液体输送器出口402,液体输送器入口401与分离器第一液体出口203连通,液体输送器出口402与蒸馏器第二液体入口102连通。
如图1所示的实施例,原料液体由蒸馏器第一液体入口101进入蒸馏器100。汽液混合物由蒸馏器汽液出口104流出蒸馏器100,并由分离器汽液入口201进入汽液分离器200。由于重力的关系,较轻的回流汽体可由靠近上方的分离器汽体出口202流出汽液分离器200,通过压缩机入口301进入蒸汽压缩机300,由蒸汽压缩机300加压通过压缩机出口302离开蒸汽压缩机300,并由蒸馏器汽体入口103进入蒸馏器100的热交换单元120,形成冷凝液体后由蒸馏器第一液体出口105离开蒸馏器100的热交换单元120。较重的浓缩液体会位于汽液分离器200的下半部,部分的浓缩液体可由分离器第一液体出口203流出汽液分离器200,由液体输送器入口401进入液体输送器400,通过液体输送器400输送以通过液体输送器出口402离开液体输送器400,并由蒸馏器第二液体入口106进入蒸馏器100,使蒸馏器100中的液体持续覆盖热交换单元120。具体而言是让液体的液面高于热交换单元120,亦即让热交换单元120沉浸在液体中。部分的浓缩液体可由分离器第二液体出口204离开汽液分离器200。在一实施例中,汽液分离器200可进一步包含例如疏水膜的汽液分离元件220,用于提升汽液分离的效果。
基于上述,在本发明的液体处理***900中,由于蒸馏器100中的液体持续覆盖热交换单元120,热交换单元120的热交换面不易生成水垢,可避 免热交换效率降低以及能耗增加,还可确保蒸汽足量产生,让蒸汽压缩机处于良好的工作环境中,减少蒸汽压缩机的损坏机率。因此,本发明的液体处理***900可减少能耗,降低维护成本。以不同角度来看,本发明的液体处理***900是通过液体输送器400输送汽液分离器200中部分的浓缩液体回到蒸馏器100中,因此可使蒸馏器100中的液体持续覆盖热交换单元120而不会使蒸馏器100中的液体的浓度下降。
另一方面,本发明中解决固定压缩比造成能源虚耗的方式为随时监控蒸馏过程中原水沸腾的温度,让冷热端温差愈小愈好。举例而言,当蒸馏环境压力控制在1bar时,冷热端温差设计为3℃,当冷端(原水流动空间)沸腾温度为102℃时,将蒸汽压缩机300的压缩比控制在1.15,使得热端(蒸汽流动空间)蒸汽温度控制在105℃;当冷端沸腾温度为108℃时,控制压缩比为1.55,使得热端温度为111℃。作法为在蒸汽压缩机出口302加装控制比例阀,当比例阀出口变大时会促使压缩比变小;比例阀出口变小时会促使压缩比变大,以此来控制压缩比,进而得到所要的增压幅度。
如图2所示的另一实施例,本发明的液体处理***包含蒸馏器100、汽液分离器200、蒸汽压缩机300、以及蒸汽供应器500。蒸馏器100内部设置有热交换单元120,原料液体可进入蒸馏器100,热交换单元120对蒸馏器100中的液体加热以形成汽液混合物。汽液混合物流出蒸馏器100并进入汽液分离器200,由汽液分离器200分离为回流汽体以及浓缩液体。回流汽体流出汽液分离器200并由蒸汽压缩机300加压及送入蒸馏器100,并于形成冷凝液体后离开蒸馏器100。浓缩液体为原料液体的浓缩物,部分可流出汽液分离器200并进入蒸馏器100,部分可由汽液分离器200离开。蒸汽供应器500用于供应蒸汽至汽液分离器200。
更具体而言,如图2所示的实施例,其中蒸馏器100以及蒸汽压缩机300的配置分别与图1所示的实施例中的蒸馏器100以及蒸汽压缩机300的配置相同。汽液分离器200与图1所示的实施例中的汽液分离器200大致相同,进一步包含分离器蒸汽入口205。蒸汽供应器500供应的蒸汽由分离器 蒸汽入口205进入汽液分离器200。与现有技术相比,由于补充的蒸汽是进入汽液分离器200而非进入蒸汽压缩机及蒸馏器之间的管路,因此不会产生蒸汽逆向前往蒸汽压缩机导致蒸汽压缩机效率下降、损坏机率提高的情形。
如图3所示的实施例,液体处理***900可同时包含液体输送器400以及蒸汽供应器500,亦即同时具有前述“通过液体输送器400输送浓缩液体使蒸馏器100中的液体持续覆盖热交换单元120”以及“蒸汽供应器500供应蒸汽进入汽液分离器200”两个技术特征,因此兼具有前述不易生成水垢以及无蒸汽逆向前往蒸汽压缩机的优点。
如图4所示的不同实施例,液体处理***900可进一步设置其他热交换器以进一步回收热能。例如,由蒸馏器第一液体出口105离开蒸馏器100的冷凝液体以及由分离器第二液体出口204离开汽液分离器200的浓缩液体,两者的温度均高,因此由原料槽610流出的原料液体在进入蒸馏器100前,可分别通过热交换器810、820与上述两者进行热交换以回收热能,提升自身温度,并且可进一步储存于原料液体中转槽620,待输送进入蒸馏器100。由蒸馏器第一液体出口105离开蒸馏器100的冷凝液体可进一步储存于冷凝液体中转槽720,然后再输送到冷凝液体储存槽710。由分离器第二液体出口204离开汽液分离器200的浓缩液体可输送到处理后液体储槽730。
本发明已由上述相关实施例加以描述,然而上述实施例仅为实施本发明的范例。必需指出的是,已公开的实施例并未限制本发明的范围。相反地,包含于申请文件所要求的范围的精神及范围的修改及均等设置均包含于本发明的范围内。
工业应用性
本发明的液体处理***包含蒸馏器、汽液分离器、蒸汽压缩机、以及液体输送器。蒸馏器内部设置有热交换单元,原料液体可进入蒸馏器,热交换单元对蒸馏器中的液体加热以形成汽液混合物,汽液混合物流出蒸馏器并进入汽液分离器,由汽液分离器分离为回流汽体以及浓缩液体。回流汽体流出 汽液分离器并由蒸汽压缩机加压及送入蒸馏器,并于形成冷凝液体后离开蒸馏器。浓缩液体为原料液体的浓缩物,部分可流出汽液分离器并由液体输送器送入蒸馏器,使蒸馏器中的液体持续覆盖热交换单元,部分可由汽液分离器离开。本发明的液体处理***可以减少能耗,降低维护成本。

Claims (10)

  1. 一种液体处理***,其特征在于,包含:
    一蒸馏器,内部设置有一热交换单元;
    一汽液分离器;
    一蒸汽压缩机;
    一液体输送器;
    其中,一原料液体可进入该蒸馏器,该热交换单元对该蒸馏器中的液体加热以形成一汽液混合物,该汽液混合物流出该蒸馏器并进入该汽液分离器,由该汽液分离器分离为一回流汽体以及一浓缩液体,该回流汽体流出该汽液分离器并由该蒸汽压缩机加压及送入该蒸馏器,并于形成一冷凝液体后离开该蒸馏器,该浓缩液体为该原料液体的浓缩物,部分可流出该汽液分离器并由该液体输送器送入该蒸馏器,使该蒸馏器中的液体持续覆盖该热交换单元,部分可由该汽液分离器离开。
  2. 如权利要求1所述的液体处理***,其特征在于,
    该蒸馏器包含:
    一第一壳体,内部形成一第一空间;
    该热交换单元设置于该第一壳体内,内部形成一第二空间,该第一空间及该第二空间互不连通;
    一蒸馏器第一液体入口,设置于该第一壳体上,与该第一空间连通,且靠近该热交换单元下方;
    一蒸馏器第二液体入口,设置于该第一壳体上,与该第一空间连通,且靠近该热交换单元下方;
    一蒸馏器汽体入口,设置于该第一壳体上,与该第二空间连通;
    一蒸馏器汽液出口,设置于该第一壳体上,与该第一空间连通;
    一蒸馏器第一液体出口,设置于该第一壳体上,与该第二空间连通;
    该汽液分离器,包含:
    一第二壳体;
    一分离器汽液入口,设置于该第二壳体上,与该蒸馏器汽液出口连通;
    一分离器汽体出口,设置于该第二壳体上,且靠近该第二壳体上方;
    一分离器第一液体出口,设置于该第二壳体上,且靠近该第二壳体下方;
    一分离器第二液体出口,设置于该第二壳体上,且靠近该第二壳体下方;
    该蒸汽压缩机,包含:
    一压缩机汽体入口,与该分离器汽体出口连通;
    一压缩机汽体出口,与该蒸馏器汽体入口连通;
    该液体输送器,包含:
    一液体输送器入口,与该分离器第一液体出口连通;
    一液体输送器出口,与该蒸馏器第二液体入口连通;
    其中该原料液体由该蒸馏器第一液体入口进入该蒸馏器,该汽液混合物由该蒸馏器汽液出口流出该蒸馏器,并由该分离器汽液入口进入该汽液分离器,该回流汽体由该分离器汽体出口流出该汽液分离器,通过该压缩机入口进入该蒸汽压缩机,由该蒸汽压缩机加压通过该压缩机出口离开该蒸汽压缩机,并由该蒸馏器汽体入口进入该蒸馏器,形成该冷凝液体后由该蒸馏器第一液体出口离开该蒸馏器,部分的该浓缩液体可由该分离器第一液体出口流出该汽液分离器,由该液体输送器入口进入该液体输送器,通过该液体输送器输送以通过该液体输送器出口离开该液体输送器,并由该蒸馏器第二液体入口进入该蒸馏器,使该蒸馏器中的液体持续覆盖该热交换单元,部分的该浓缩液体可由该分离器第二液体出口离开该汽液分离器。
  3. 如权利要求2所述的液体处理***,其特征在于,进一步包含一蒸汽供应器,用于供应一蒸汽至该汽液分离器。
  4. 如权利要求3所述的液体处理***,其特征在于,该汽液分离器进一步包含一分离器蒸汽入口,该蒸汽由该分离器蒸汽入口进入该汽液分离器。
  5. 一种液体处理***,其特征在于,包含:
    一蒸馏器,内部设置有一热交换单元;
    一汽液分离器;
    一蒸汽压缩机;
    一蒸汽供应器;
    其中,一原料液体可进入该蒸馏器,该热交换单元对该蒸馏器中的液体加热以形成一汽液混合物,该汽液混合物流出该蒸馏器并进入该汽液分离器,由该汽液分离器分离为一回流汽体以及一浓缩液体,该回流汽体流出该汽液分离器并由该蒸汽压缩机加压及送入该蒸馏器,并于形成一冷凝液体后离开该蒸馏器,该浓缩液体为该原料液体的浓缩物,部分可流出该汽液分离器并进入该蒸馏器,部分可由该汽液分离器离开,该蒸汽供应器用于供应一蒸汽至该汽液分离器。
  6. 如权利要求5所述的液体处理***,其特征在于,
    该蒸馏器包含:
    一第一壳体,内部形成一第一空间;
    该热交换单元设置于该第一壳体内,内部形成一第二空间,该第一空间及该第二空间互不连通;
    一蒸馏器第一液体入口,设置于该第一壳体上,与该第一空间连通,且靠近该热交换单元下方;
    一蒸馏器汽体入口,设置于该第一壳体上,与该第二空间连通;
    一蒸馏器汽液出口,设置于该第一壳体上,与该第一空间连通;
    一蒸馏器第一液体出口,设置于该第一壳体上,与该第二空间连通;
    该汽液分离器,包含:
    一第二壳体;
    一分离器汽液入口,设置于该第二壳体上,与该蒸馏器汽液出口连通;
    一分离器汽体出口,设置于该第二壳体上,且靠近该第二壳体上方;
    一分离器第一液体出口,设置于该第二壳体上,且靠近该第二壳体下方;
    一分离器第二液体出口,设置于该第二壳体上,且靠近该第二壳体下方;
    一分离器蒸汽入口,该蒸汽由该分离器蒸汽入口进入该汽液分离器;
    该蒸汽压缩机,包含:
    一压缩机汽体入口,与该分离器汽体出口连通;
    一压缩机汽体出口,与该蒸馏器汽体入口连通;
    其中该原料液体由该蒸馏器第一液体入口进入该蒸馏器,该汽液混合物由该蒸馏器汽液出口流出该蒸馏器,并由该分离器汽液入口进入该汽液分离器,该回流汽体由该分离器汽体出口流出该汽液分离器,通过该压缩机入口进入该蒸汽压缩机,由该蒸汽压缩机加压通过该压缩机出口离开该蒸汽压缩机,并由该蒸馏器汽体入口进入该蒸馏器,形成该冷凝液体后由该蒸馏器第一液体出口离开该蒸馏器,部分的该浓缩液体可由该分离器第一液体出口流出,并由该蒸馏器第二液体入口进入该蒸馏器,部分的该浓缩液体可由该分离器第二液体出口离开该汽液分离器。
  7. 如权利要求6所述的液体处理***,其特征在于,进一步包含一液体输送器,部分的该浓缩液体可流出该汽液分离器并由该液体输送器送入该蒸馏器,使该蒸馏器中的液体持续覆盖该热交换单元。
  8. 如权利要求7所述的液体处理***,其特征在于,
    该蒸馏器进一步包含一蒸馏器第二液体入口,设置于该第一壳体上,与该第一空间连通,且靠近该热交换单元下方;
    该液体输送器,包含:
    一液体输送器入口,与该分离器第一液体出口连通;
    一液体输送器出口,与该蒸馏器第二液体入口连通;
    部分的该浓缩液体可由该分离器第一液体出口流出该汽液分离器,由该液体输送器入口进入该液体输送器,通过该液体输送器输送以通过该液体输送器出口离开该液体输送器,并由该蒸馏器第二液体入口进入该蒸馏器,使该蒸馏器中的液体持续覆盖该热交换单元。
  9. 如权利要求2或6所述的液体处理***,其特征在于,该蒸馏器汽液出口的水平位置高于该热交换单元。
  10. 如权利要求2或6所述的液体处理***,其特征在于,该蒸馏器进 一步包含一蒸馏器第二液体出口,部分该蒸馏器中的液体可由该蒸馏器第二液体出口离开该蒸馏器,并与由该分离器第二液体出口离开该汽液分离器的该浓缩液体合流。
PCT/CN2023/071635 2022-07-13 2023-01-10 液体处理*** WO2024066134A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
TW111126353A TWI834218B (zh) 2022-07-13 2022-07-13 液體處理系統
CN202211176057.8A CN117430186A (zh) 2022-07-13 2022-09-26 液体处理***
CN202211176057.8 2022-09-26

Publications (1)

Publication Number Publication Date
WO2024066134A1 true WO2024066134A1 (zh) 2024-04-04

Family

ID=89554173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071635 WO2024066134A1 (zh) 2022-07-13 2023-01-10 液体处理***

Country Status (3)

Country Link
CN (1) CN117430186A (zh)
TW (1) TWI834218B (zh)
WO (1) WO2024066134A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002100504A2 (en) * 2001-06-11 2002-12-19 Tecnicas Modulares E Industriales, S.A. Distiller for liquids, liquids distillation method and equipment for treating sewage, which equipment includes said distiller
CN201701761U (zh) * 2010-02-03 2011-01-12 张国林 一种机械蒸汽压缩蒸发设备
US20160083266A1 (en) * 2013-06-05 2016-03-24 Ohkawara Kakohki Co., Ltd. Seawater desalination device and seawater desalination method
TWM542020U (zh) * 2016-11-10 2017-05-21 Chung-Heng Liao 蒸汽加熱式污物處理設備
CN110393934A (zh) * 2019-08-21 2019-11-01 长沙中联重科环境产业有限公司 Mvr循环蒸发***及蒸发方法
CN215876263U (zh) * 2021-09-08 2022-02-22 广州市迈源科技有限公司 一种蒸发器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109319996A (zh) * 2018-10-29 2019-02-12 泰兴锦汇化工有限公司 一种高盐高cod废水的处理方法
CN110404411B (zh) * 2019-07-22 2024-04-19 珠海格力电器股份有限公司 一种带余热回收耦合mvr的膜蒸馏***及方法
TWI717841B (zh) * 2019-09-18 2021-02-01 袁文全 自體清潔之蒸餾水設備

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002100504A2 (en) * 2001-06-11 2002-12-19 Tecnicas Modulares E Industriales, S.A. Distiller for liquids, liquids distillation method and equipment for treating sewage, which equipment includes said distiller
CN201701761U (zh) * 2010-02-03 2011-01-12 张国林 一种机械蒸汽压缩蒸发设备
US20160083266A1 (en) * 2013-06-05 2016-03-24 Ohkawara Kakohki Co., Ltd. Seawater desalination device and seawater desalination method
TWM542020U (zh) * 2016-11-10 2017-05-21 Chung-Heng Liao 蒸汽加熱式污物處理設備
CN110393934A (zh) * 2019-08-21 2019-11-01 长沙中联重科环境产业有限公司 Mvr循环蒸发***及蒸发方法
CN215876263U (zh) * 2021-09-08 2022-02-22 广州市迈源科技有限公司 一种蒸发器

Also Published As

Publication number Publication date
TWI834218B (zh) 2024-03-01
TW202402684A (zh) 2024-01-16
CN117430186A (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
TWI532523B (zh) Solution treatment device
CN208182649U (zh) 电镀废水的mvr处理装备
WO2011085669A1 (zh) 低温热能驱动负压蒸发水溶液蒸馏分离装置和获得蒸馏水的方法
JPH0490882A (ja) 蒸留装置
US10294122B2 (en) Seawater desalination device and seawater desalination method
CN106315717B (zh) 一种mvr废水蒸发浓缩装置
CN104399266A (zh) 一种mvr蒸发装置及分压蒸发方法
CN216584265U (zh) 一种低放废液热泵蒸发处理***
WO2024066134A1 (zh) 液体处理***
CN207671727U (zh) 一种结晶分离罐及蒸发结晶***
CN109173309A (zh) 一种mvr热浓缩循环蒸发***
CN108671571A (zh) 磷酸浓缩***及工艺
CN106185842B (zh) 一种钛白废酸浓缩装置
CN108815869A (zh) 液体提纯装置
CN205973788U (zh) 一种以蒸汽热泵作为热源用于双氧水提浓生产的装置
CN212832917U (zh) 一种烟气脱硫废水蒸发设备
CN204778912U (zh) 一种蒸发式液体浓缩处理***
CN108569736A (zh) 一种基于燃料电池余热驱动的海水淡化***
CN208340142U (zh) 一种用于玻璃基板处理后的剥离液的再生***
JP6692059B2 (ja) 濃縮装置および濃縮方法
JPH03202101A (ja) 蒸発方法及びその装置
CN206214805U (zh) 一种多效蒸发***
JP7044458B1 (ja) 濃縮装置
US20190184305A1 (en) Water distilling and purifying unit and variants thereof
CN208166585U (zh) 氨气产出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23869398

Country of ref document: EP

Kind code of ref document: A1