WO2024065700A1 - 无线通信的方法和设备 - Google Patents

无线通信的方法和设备 Download PDF

Info

Publication number
WO2024065700A1
WO2024065700A1 PCT/CN2022/123333 CN2022123333W WO2024065700A1 WO 2024065700 A1 WO2024065700 A1 WO 2024065700A1 CN 2022123333 W CN2022123333 W CN 2022123333W WO 2024065700 A1 WO2024065700 A1 WO 2024065700A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
signal
information
sent
power
Prior art date
Application number
PCT/CN2022/123333
Other languages
English (en)
French (fr)
Inventor
贺传峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/123333 priority Critical patent/WO2024065700A1/zh
Publication of WO2024065700A1 publication Critical patent/WO2024065700A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the embodiments of the present application relate to the field of communications, and specifically to a method and device for wireless communications.
  • zero-power terminals need to harvest energy to drive themselves to work for data transmission. Therefore, how to supply energy to zero-power terminals is an urgent problem to be solved.
  • the present application provides a method and device for wireless communication, in which a network device can supply power to a second terminal through one or more terminals, thereby expanding the coverage of the power supply signal and improving the power level of the power supply signal reaching the second terminal.
  • a method for wireless communication comprising: a first terminal sends a second signal to a second terminal based on a first signal, wherein the second signal is used to power the second terminal, and the first signal is sent by a network device or a third terminal.
  • a wireless communication method comprising: a network device sends a first signal to a first terminal, the first signal is used by the first terminal to send a second signal, and the second signal is used to power the second terminal.
  • a method for wireless communication comprising: a second terminal sends first request information to a first terminal, wherein the first request information is used to request the first terminal to send a power supply signal.
  • a terminal device for executing the method in the above-mentioned first aspect or its various implementation modes.
  • the terminal device includes a functional module for executing the method in the above-mentioned first aspect or its various implementation modes.
  • a network device for executing the method in the second aspect or its various implementations.
  • the network device includes a functional module for executing the method in the above-mentioned second aspect or its various implementation modes.
  • a terminal device for executing the method in the above-mentioned first aspect or its various implementation modes.
  • the terminal device includes a functional module for executing the method in the above-mentioned third aspect or its various implementation modes.
  • a terminal device comprising a processor and a memory, wherein the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute the method in the first aspect or its implementation manners.
  • a network device comprising a processor and a memory, wherein the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect or its implementation manners.
  • a terminal device comprising a processor and a memory, wherein the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute the method in the third aspect or its implementations.
  • a chip for implementing the method in any one of the first to third aspects or their respective implementations.
  • the chip includes: a processor for calling and running a computer program from a memory, so that a device equipped with the device executes the method in any one of the first to third aspects or their respective implementations.
  • a computer-readable storage medium for storing a computer program, wherein the computer program enables a computer to execute the method in any one of the first to third aspects or any of its implementations.
  • a computer program product comprising computer program instructions, wherein the computer program instructions enable a computer to execute the method in any one of the first to third aspects above or in each of their implementations.
  • a computer program which, when executed on a computer, enables the computer to execute the method in any one of the first to third aspects or in each of its implementations.
  • the first terminal can send a second signal based on the first signal sent by the network device or the third terminal to supply power to the second terminal.
  • the network device and one or more terminals supply power to the second terminal in a relay manner, thereby expanding the coverage range of the power supply signal and improving the power level of the power supply signal reaching the second terminal.
  • FIG1 is a schematic diagram of a communication system architecture provided in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a zero-power communication system according to an example of the present application.
  • FIG. 3 is a schematic diagram of energy harvesting according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of backscatter communication according to an embodiment of the present application.
  • FIG. 5 is a circuit diagram of resistive load modulation according to an embodiment of the present application.
  • FIG6 is a schematic diagram of supplying energy to a zero-power consumption terminal by deploying energy supply nodes.
  • FIG. 7 is a schematic diagram of a wireless communication method provided according to an embodiment of the present application.
  • FIG8 is a schematic diagram of a network device extending the coverage of a power supply signal through a first type of terminal.
  • FIG9 is a schematic diagram of a network device extending the coverage of a power supply signal through multiple levels of first-class terminals.
  • FIG10 is a schematic diagram of a first type of terminal sending a power supply signal based on certain spatial characteristics.
  • FIG. 11 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a network device provided according to an embodiment of the present application.
  • FIG13 is a schematic block diagram of another terminal device provided according to an embodiment of the present application.
  • FIG14 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • FIG15 is a schematic block diagram of a chip provided according to an embodiment of the present application.
  • FIG16 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • NR system evolution system unlicensed spectrum
  • LTE-based access to unlicensed spectrum LTE-U
  • NR-based access to unlicensed spectrum NR-U
  • NTN non-terrestrial communication network
  • UMTS universal mobile communication system
  • WLAN wireless local area network
  • WiFi wireless fidelity
  • 5G fifth-generation communication
  • cellular Internet of Things system cellular passive Internet of Things system or other communication systems.
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V vehicle to vehicle
  • V2X vehicle to everything
  • the communication system in the embodiment of the present application can be applied to a carrier aggregation (CA) scenario, a dual connectivity (DC) scenario, or a standalone (SA) networking scenario.
  • CA carrier aggregation
  • DC dual connectivity
  • SA standalone
  • the communication system in the embodiment of the present application can be applied to an unlicensed spectrum, wherein the unlicensed spectrum can also be considered as a shared spectrum; or, the communication system in the embodiment of the present application can also be applied to an authorized spectrum, wherein the authorized spectrum can also be considered as an unshared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • UE user equipment
  • the network device may be a device for communicating with a mobile device.
  • the network device may be an access point (AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA, a base station (NodeB, NB) in WCDMA, an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and a network device (gNB) in an NR network, or a network device in a cellular Internet of Things, or a network device in a cellular passive Internet of Things, or a network device in a future evolved PLMN network or a network device in an NTN network, etc.
  • AP access point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • gNB network device in an NR network
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a high elliptical orbit (HEO) satellite, etc.
  • the network device may also be a base station set up in a location such as land or water.
  • a network device can provide services for a cell, and a terminal device communicates with the network device through transmission resources used by the cell (for example, frequency domain resources, or spectrum resources).
  • the cell can be a cell corresponding to a network device (for example, a base station), and the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cells here may include: metro cells, micro cells, pico cells, femto cells, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA) device, a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a wearable device, a terminal device in the next generation communication system such as the NR network, or a terminal device in the future evolved Public Land Mobile Network (PLMN) network, a terminal device in a cellular Internet of Things, a terminal device in a cellular passive Internet of Things, etc.
  • ST station
  • WLAN Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoors or outdoors, handheld, wearable or vehicle-mounted; it can also be deployed on the water surface (such as ships, etc.); it can also be deployed in the air (for example, on airplanes, balloons and satellites, etc.).
  • the terminal device may be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal device in industrial control, a wireless terminal device in self-driving, a wireless terminal device in remote medical, a wireless terminal device in smart grid, a wireless terminal device in transportation safety, a wireless terminal device in a smart city, or a wireless terminal device in a smart home, etc.
  • VR virtual reality
  • AR augmented reality
  • the terminal device may also be a wearable device.
  • Wearable devices may also be referred to as wearable smart devices, which are a general term for wearable devices that are intelligently designed and developed using wearable technology for daily wear, such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothes or accessories. Wearable devices are not only hardware devices, but also powerful functions achieved through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, and fully or partially independent of smartphones, such as smart watches or smart glasses, as well as devices that only focus on a certain type of application function and need to be used in conjunction with other devices such as smartphones, such as various types of smart bracelets and smart jewelry for vital sign monitoring.
  • the communication system 100 may include a network device 110, which may be a device that communicates with a terminal device 120 (or referred to as a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area and may communicate with terminal devices located in the coverage area.
  • FIG1 exemplarily shows a network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include another number of terminal devices within its coverage area, which is not limited in the embodiments of the present application.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • the device with communication function in the network/system in the embodiment of the present application can be called a communication device.
  • the communication device may include a network device 110 and a terminal device 120 with communication function, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here; the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobile management entity, which is not limited in the embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application can be a direct indication, an indirect indication, or an indication of an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association relationship between A and B.
  • corresponding may indicate a direct or indirect correspondence between two items, or an association relationship between the two items, or a relationship of indication and being indicated, configuration and being configured, etc.
  • pre-definition can be implemented by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in a device (for example, including a terminal device and a network device), and the present application does not limit the specific implementation method.
  • pre-definition can refer to what is defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include an LTE protocol, an NR protocol, and related protocols used in future communication systems, and the present application does not limit this.
  • RFID tags are also called “radio frequency tags” or “electronic tags”.
  • the types of electronic tags divided according to different power supply methods can include active electronic tags, passive electronic tags and semi-passive electronic tags. Active electronic tags, also known as active electronic tags, refer to the energy of electronic tags provided by batteries. The battery, memory and antenna together constitute active electronic tags. Unlike the activation method of passive radio frequency, information is sent through the set frequency band before the battery is replaced. Passive electronic tags, also known as passive electronic tags, do not support built-in batteries.
  • the tag When passive electronic tags are close to the reader, the tag is in the near field formed by the radiation of the reader antenna.
  • the electronic tag antenna generates an induced current through electromagnetic induction, and the induced current drives the electronic tag chip circuit.
  • the chip circuit sends the identification information stored in the tag to the reader through the electronic tag antenna.
  • Semi-active electronic tags inherit the advantages of passive electronic tags, such as small size, light weight, low price and long service life.
  • the built-in battery only provides power for a small number of circuits in the chip when there is no reader access. Only when the reader accesses, the built-in battery supplies power to the RFID chip to increase the reading and writing distance of the tag and improve the reliability of communication.
  • the most basic RFID system consists of two parts: an electronic tag (TAG) and a reader/writer.
  • the electronic tag consists of a coupling component and a chip.
  • Each electronic tag has a unique electronic code and is placed on the target to be measured to achieve the purpose of marking the target object.
  • the reader/writer can not only read the information on the electronic tag, but also write the information on the electronic tag, and provide the electronic tag with the energy required for communication. After the electronic tag enters the electromagnetic field, it receives the radio frequency signal emitted by the reader/writer.
  • the passive electronic tag or the passive electronic tag uses the energy obtained from the electromagnetic field generated in the space to transmit the information stored in the electronic tag.
  • the reader/writer reads the information and decodes it to identify the electronic tag.
  • Zero-power communication Communication based on zero-power terminals is referred to as zero-power communication.
  • a typical zero-power communication system (such as an RFID system) includes a network device (such as a reader/writer of an RFID system) and a zero-power terminal (such as an electronic tag).
  • the network device is used to send wireless power supply signals, downlink communication signals, and receive backscattered signals from the zero-power terminal to the zero-power terminal.
  • the zero-power terminal includes an energy collection module, a backscatter communication module, and a low-power computing module.
  • the zero-power terminal may also have a memory or sensor for storing some basic information (such as item identification, etc.) or sensor data such as ambient temperature and ambient humidity.
  • the energy collection module can collect energy carried by radio waves in space (radio waves emitted by network devices are shown in Figure 2) to drive the low-power computing module of the zero-power terminal and realize backscatter communication.
  • the zero-power terminal After the zero-power terminal obtains energy, it can receive control commands from the network device and send data to the network device based on the control signaling based on backscattering.
  • the data sent can be data stored in the zero-power terminal itself (such as identity identification or pre-written information, such as the production date, brand, manufacturer, etc. of the product).
  • the zero-power terminal can also load various sensors to report the data collected by various sensors based on the zero-power mechanism.
  • the RF energy harvesting module harvests electromagnetic wave energy in space based on the principle of electromagnetic induction, and then obtains the energy required to drive the zero-power terminal, such as driving low-power demodulation and modulation modules, sensors, and memory reading, etc. Therefore, the zero-power terminal does not require traditional batteries.
  • the zero-power terminal receives the carrier signal sent by the network device, modulates the carrier signal, loads the information to be sent and radiates the modulated signal from the antenna.
  • This information transmission process is called backscatter communication.
  • Backscatter and load modulation functions are inseparable.
  • Load modulation adjusts and controls the circuit parameters of the oscillation circuit of the zero-power terminal according to the beat of the data stream, so that the parameters such as the size of the zero-power terminal impedance change accordingly, thereby completing the modulation process.
  • Load modulation technology mainly includes two methods: resistive load modulation and capacitive load modulation.
  • a resistor In resistive load modulation, a resistor is connected in parallel to the load, and the resistor is turned on or off based on the control of the binary data stream, as shown in FIG5 .
  • the on-off of the resistor will cause the circuit voltage to change, so amplitude keying modulation (ASK) is realized, that is, the amplitude of the backscatter signal of the zero-power terminal is adjusted to achieve signal modulation and transmission.
  • ASK amplitude keying modulation
  • FSK frequency keying modulation
  • the zero-power terminal uses load modulation to modulate the incoming signal, thereby realizing the backscatter communication process. Therefore, the zero-power terminal has significant advantages:
  • the data transmitted by the zero-power terminal can be represented by different forms of codes to represent binary "1" and "0".
  • the wireless radio frequency identification system usually uses one of the following encoding methods: reverse non-return to zero (NRZ) encoding, Manchester encoding, unipolar return to zero encoding, differential bi-phase (DBP) encoding, differential encoding, pulse interval encoding (PIE), bidirectional space encoding (FM0), Miller encoding, differential encoding, etc.
  • NRZ reverse non-return to zero
  • DBP differential bi-phase
  • PIE pulse interval encoding
  • FM0 bidirectional space encoding
  • Miller encoding differential encoding
  • zero-power terminals can be divided into the following types:
  • Zero-power terminals do not need internal batteries.
  • a zero-power terminal When a zero-power terminal is close to a network device (such as a reader/writer in an RFID system), it is within the near field formed by the radiation of the network device antenna. Therefore, the zero-power terminal antenna generates an induced current through electromagnetic induction, and the induced current drives the low-power chip circuit of the zero-power terminal. This realizes the demodulation of the forward link signal and the modulation of the reverse link (or reflection link) signal.
  • the zero-power terminal uses the backscatter implementation method to transmit the signal.
  • the passive zero-power terminal does not require a built-in battery to drive either the forward link or the reverse link, and is a truly zero-power terminal.
  • Passive zero-power terminals do not require batteries, and the RF circuit and baseband circuit are very simple. For example, they do not require low-noise amplifiers (LNA), power amplifiers (PA), crystal oscillators, analog-to-digital converters (ADC) and other devices. Therefore, they have many advantages such as small size, light weight, very low price and long service life.
  • LNA low-noise amplifiers
  • PA power amplifiers
  • ADC analog-to-digital converters
  • the semi-passive zero-power terminal itself does not have a conventional battery installed, but can use an RF energy harvesting module to harvest radio wave energy and store the harvested energy in an energy storage unit (such as a capacitor). After the energy storage unit obtains energy, it can drive the low-power chip circuit of the zero-power terminal. It can realize the demodulation of the forward link signal and the modulation of the reverse link signal. For the backscatter link, the zero-power terminal uses the backscatter implementation method to transmit the signal.
  • the semi-passive zero-power terminal does not require a built-in battery to drive either the forward link or the reverse link. Although energy stored in capacitors is used in operation, the energy comes from the radio energy collected by the energy harvesting module. Therefore, it is also a true zero-power terminal.
  • Semi-passive zero-power consumption terminals inherit many advantages of passive zero-power consumption terminals, so they have many advantages such as small size, light weight, very cheap price and long service life.
  • the zero-power terminals used in some scenarios can also be active zero-power terminals, and such devices can have built-in batteries.
  • the battery is used to drive the low-power chip circuit of the zero-power terminal. It realizes the demodulation of the forward link signal and the signal modulation of the reverse link.
  • the zero-power terminal uses the backscatter implementation method to transmit the signal. Therefore, the zero power consumption of this type of device is mainly reflected in the fact that the signal transmission of the reverse link does not require the terminal's own power, but uses the backscatter method.
  • passive IoT devices can be based on zero-power communication technology, such as RFID technology, and can be extended on this basis to be suitable for cellular IoT.
  • the energy supply signal is an energy source for energy collection by the zero-power terminal.
  • the frequency band of radio waves used for energy supply can be low frequency, medium frequency, high frequency, etc.
  • the radio waves used for power supply can be sine waves, square waves, triangle waves, pulses, rectangular waves, etc.
  • the power supply signal can be a continuous wave or a discontinuous wave (ie, a certain period of interruption is allowed).
  • the power supply signal may be an existing signal in the 3GPP standard, such as a sounding reference signal (SRS), a physical uplink shared channel (PUSCH), a physical random access channel (PRACH), a physical uplink control channel (PUCCH), a physical downlink control channel (PDCCH), a physical downlink shared channel (PDSCH), a physical broadcast channel (PBCH), etc., or may be a WIFI signal or a Bluetooth signal.
  • SRS sounding reference signal
  • PUSCH physical uplink shared channel
  • PRACH physical random access channel
  • PUCCH physical uplink control channel
  • PUCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • PBCH physical broadcast channel
  • the energy supply signal may also be implemented by a newly defined signal, such as a newly defined signal dedicated to energy supply.
  • the trigger signal is used to trigger or schedule the zero-power terminal to transmit data.
  • the radio waves used for triggering or scheduling can be low frequency, medium frequency, high frequency, etc.
  • the radio wave used for triggering or scheduling can be a sine wave, square wave, triangle wave, pulse, rectangular wave, etc.
  • the trigger signal can be a continuous wave or a discontinuous wave (ie, a certain period of interruption is allowed).
  • the trigger signal may be an existing signal in the 3GPP standard, such as SRS, PUSCH, PRACH, PUCCH, PDCCH, PDSCH, PBCH, or a WIFI signal or a Bluetooth signal.
  • the trigger signal may also be implemented by a newly defined signal, such as a newly defined signal dedicated to triggering or scheduling.
  • the carrier signal is used by the zero-power terminal to generate a backscatter signal.
  • the zero-power terminal can modulate the received carrier signal according to the information to be sent to form a backscatter signal.
  • the radio waves used as carrier signals can be low frequency, medium frequency, high frequency, etc.
  • the radio wave used as a carrier signal can be a sine wave, square wave, triangle wave, pulse, rectangular wave, etc.
  • the carrier signal can be a continuous wave or a discontinuous wave (ie, a certain period of interruption is allowed).
  • the carrier signal may be an existing signal in the 3GPP standard, such as SRS, PUSCH, PRACH, PUCCH, PDCCH, PDSCH, PBCH, or WIFI signal, Bluetooth signal, zigbee signal, etc.
  • the carrier signal may also be implemented by a newly defined signal, such as a newly defined carrier signal dedicated to generating a backscatter signal.
  • the power supply signal, the scheduling signal and the carrier signal can be the same signal, or can also be different signals.
  • the power supply signal can be used as a carrier signal
  • the scheduling signal can also be used as a carrier signal, etc.
  • the transmission power of network equipment is generally not too large. For example, in the ISM frequency band where RFID works, the maximum transmission power is 30dBm. Therefore, considering the radio propagation loss in space, the transmission distance of passive zero-power terminals is generally in the range of 10m to tens of meters.
  • the semi-passive zero-power terminal has the potential to significantly extend the communication distance. This is because the semi-passive zero-power terminal can use the energy harvesting module to collect radio waves, so it can continuously obtain radio energy and store it in the energy storage unit. After the energy storage unit obtains enough energy, it can drive the low-power circuit to work for operations such as forward link signal demodulation and reverse link signal modulation. Therefore, at this time, the semi-passive zero-power terminal is equivalent to an active terminal, and its downlink coverage depends on the receiver sensitivity of the downlink signal (usually far below the RF energy harvesting threshold). Based on the current process, the energy harvesting module can harvest energy and input electrical energy into the energy storage unit when the received radio signal strength is not less than -30dBm.
  • the forward link coverage of the semi-passive zero-power terminal depends on the energy harvesting threshold (such as -30dBm).
  • the received radio signal strength is relaxed from -20dBm to -30dBm, so a 10dB link budget gain can be obtained, so the downlink coverage can be improved by more than 3 times.
  • semi-passive zero-power terminals also face the problem of reduced charging efficiency.
  • the energy that can be collected and stored by the energy harvesting module is greatly reduced.
  • the received signal strength is -30dBm, that is, 1 microwatt
  • the energy that can be collected and stored is far less than 1 microwatt (the energy harvesting efficiency is greatly reduced).
  • the low-power circuit of the zero-power terminal may need to consume an average power of 10uW.
  • the network equipment since the network equipment has a higher receiver sensitivity, which can reach -95dBm, its coverage is much larger than that of the forward link.
  • the forward link coverage will be limited by the power level of the wireless signal reaching the zero-power terminal, rather than the receiver sensitivity of the zero-power terminal, which will cause the effective coverage of the forward link to be relatively low. At the same time, it also causes an imbalance between the forward link coverage and the reverse link coverage.
  • one implementation method is to deploy dedicated power supply nodes so that the forward link is no longer limited by the distance of wireless signal power supply. As shown in Figure 6, multiple power supply nodes are deployed within the coverage range of the network equipment.
  • the zero-power terminal can be powered by the wireless signals sent by the nearby power supply nodes, thereby receiving the information carried by the forward link, which improves the coverage of the forward link.
  • FIG. 7 is a schematic diagram of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 7 , the method 200 includes at least part of the following contents:
  • a first terminal receives a first signal sent by a network device or a third terminal.
  • the first terminal sends a second signal to the second terminal based on the first signal, where the second signal is used to power the second terminal.
  • the first terminal and the third terminal are also called power supply terminals, that is, terminals that send power supply signals.
  • the second terminal or energy collection terminal, is a terminal that receives an energy supply signal.
  • the first terminal may have a signal amplifier for amplifying the transmitted signal to achieve a greater transmission distance of the signal.
  • the first terminal may have an energy storage unit, which may utilize environmental energy for energy storage, or may utilize radio signals for energy storage, etc. Therefore, the first terminal may utilize the stored energy to drive a low-power computing circuit and a signal amplifier to transmit a signal.
  • the signal amplifier may be a PA, an LNA, a triode, a tunnel diode, etc. Among them, the LNA has a very low noise coefficient and is suitable for amplifying weak signals.
  • the first terminal may have a backscatter communication module for sending signals by backscattering.
  • the first terminal further includes an active transmission communication module for performing data transmission in an active transmission manner.
  • the second terminal may collect energy through wireless signals, for example, the second terminal may be a passive zero-power terminal or a semi-passive zero-power terminal.
  • the second terminal may have a backscatter communication module for sending signals through backscatter.
  • the first terminal, the second terminal, and the third terminal are zero-power consumption terminals.
  • the first terminal may be an ambient energy-based device, such as an ambient power enabled IoT (AMP IoT) device, or a communication device in a cellular network, or a communication device in a non-cellular network, where the non-cellular network may include but is not limited to a WIFI system, a Bluetooth system, a Zigbee system, a Lora system, etc.
  • AMP IoT ambient power enabled IoT
  • a communication device in a cellular network or a communication device in a non-cellular network, where the non-cellular network may include but is not limited to a WIFI system, a Bluetooth system, a Zigbee system, a Lora system, etc.
  • the second terminal can be an environmental energy-based device, such as an AMP IoT device, or a communication device in a cellular network (such as a device with energy supply requirements in a cellular network), or a communication device in a non-cellular network (such as a device with energy supply requirements in a non-cellular network).
  • the non-cellular network may include but is not limited to a WIFI system, a Bluetooth system, a Zigbee system, a Lora system, etc.
  • the third terminal may be an environmental energy-based device, such as an AMP IoT device, or a communication device in a cellular network, or a communication device in a non-cellular network, which non-cellular network may include but is not limited to a WIFI system, a Bluetooth system, a Zigbee system, a Lora system, etc.
  • an environmental energy-based device such as an AMP IoT device, or a communication device in a cellular network, or a communication device in a non-cellular network, which non-cellular network may include but is not limited to a WIFI system, a Bluetooth system, a Zigbee system, a Lora system, etc.
  • first terminal and the third terminal may be terminals of one type, denoted as first type terminals, and the second terminal may be terminals of another type, denoted as second type terminals.
  • the first type of terminal has higher capability than the second type of terminal.
  • the first type of terminal is an active zero power consumption terminal or a semi-passive zero power consumption terminal.
  • the second type of terminal is a semi-passive zero power consumption terminal or a passive zero power consumption terminal.
  • the first type of terminal has more energy sources than the second type of terminal, or the first type of terminal can collect more energy than the second type of terminal.
  • the first type of terminal can collect energy based on environmental energy and radio signals
  • the second type of terminal can collect energy based on radio signals.
  • the first type of terminal has a signal amplifier
  • the second type of terminal does not have a signal amplifier
  • the first type of terminal has a backscatter communication module and an active transmission communication module
  • the second type of terminal has a backscatter communication module, wherein the backscatter communication module is used to send signals by backscattering, and the active transmission communication module is used to transmit data by active transmission.
  • the first terminal and the second terminal may be independent devices, or may be different functional modules of a third-type terminal.
  • the first terminal includes an amplifier module of a third-type terminal
  • the second terminal includes a communication module of a third-type terminal, such as a backscatter communication module.
  • the first terminal also includes an energy storage module of a third-type terminal.
  • the first terminal, the second terminal, and the third terminal may be independent devices, or may be different functional modules of the fourth type of terminal.
  • the first terminal and the third terminal may include an amplifier module of the fourth type of terminal
  • the second terminal may include a communication module of the fourth type of terminal, such as a backscatter communication module.
  • the first terminal and the third terminal also include an energy storage module of the fourth type of terminal.
  • the first terminal is used to expand the coverage of the power supply signal, for example, to expand the coverage of the first signal to the coverage of the first signal and the second signal.
  • the first terminal may have a strong energy collection capability, and the size requirements may be relaxed.
  • the first terminal may have a large-area light energy collection module, a dual-band antenna, an antenna array with more antenna units, etc.
  • the dual-band antenna can collect energy in two frequency bands, and can collect energy in frequency bands with rich wireless signals, such as GSM, 3G frequency bands, WiFi and Bluetooth frequency bands, digital TV broadcast frequency bands, etc.
  • the antenna array can generate a higher antenna gain and increase the power of the received wireless signal. Energy collection based on solar energy can have a higher power conversion efficiency.
  • the first terminal can also be a battery-powered or power-powered device.
  • the network device may send information to the second terminal via the forward link during a period in which the first terminal sends the second signal.
  • energy collection can be based on the first signal, or it can also be independent of the wireless signal, for example, energy collection can be performed through environmental energy such as light energy, heat energy, etc.
  • the second signal is an amplified signal.
  • the first terminal supplies energy to the second terminal by sending the amplified signal, which is conducive to increasing the transmission distance of the sent second signal and the power level of the second signal reaching the second terminal, thereby improving the coverage of the forward link.
  • the second signal is sent after amplifying the first signal.
  • the first terminal may amplify the received first signal through an LNA, and send the second signal using the amplified first signal.
  • the amplification factor of the LNA of the first terminal may be fixed, or may be flexibly adjusted to meet coverage requirements of different types.
  • the second signal is sent via backscatter.
  • the second signal is sent by the first terminal after amplifying and backscattering the first signal.
  • the second signal is a backscattered signal obtained by amplifying the first signal as the incident signal.
  • the second signal is sent by the first terminal after amplifying the first signal through LNA through backscattering.
  • the second signal is sent by active transmission.
  • the first signal may be a power supply signal of the second signal and/or a control signal (or scheduling signal) of the second signal. That is, the first signal may be used to supply power to the transmission of the second signal, or may also be used to control (or schedule) the transmission of the second signal.
  • the first terminal may also perform energy harvesting on the control signal of the second signal to store energy for the transmission of the second signal.
  • S210 may include:
  • the first terminal collects energy based on the first signal, and actively sends a second signal based on the collected energy.
  • the first terminal may collect energy based on the first signal, and actively send the second signal after storing enough energy.
  • S210 may include:
  • the first terminal actively sends the second signal based on the control of the first signal.
  • the first terminal may actively send the second signal after receiving the first signal.
  • the energy source of the first terminal may be the first signal, or may be environmental energy, such as solar energy, thermal energy, mechanical energy, etc.
  • the first signal is sent by a network device.
  • the network device directly supplies energy to the second terminal through the first signal, the coverage distance of the energy supply signal is limited by the strength of the first signal.
  • the network device by deploying a first-class terminal, the network device can send a second signal based on the first signal through the first-class terminal, and supply energy to the second-class terminal through the second signal, thereby expanding the coverage range of the energy supply signal. In this way, the network device can supply energy to a second-class terminal at a longer distance through one or more first-class terminals, so that the power level of the energy supply signal reaching the second-class terminal meets the working requirements of the second-class terminal.
  • the first type of terminal can be deployed based on factors such as the strength of the power supply signal, the attenuation of the power supply signal, the minimum power required for the second terminal to operate (for example, the power required to drive a low-power circuit), etc.
  • the signal power reaching the second type of terminal needs to be at least -20dBm.
  • the first type of terminal can be deployed on the path before the received power of the first signal attenuates to -20dB, so that the first type of terminal can send an amplified second signal based on the first signal, thereby further extending the coverage distance of the power supply signal.
  • the first type of terminal uses a backscattering method to send a second signal.
  • the low-power circuit driving the second type of terminal consumes 10 milliwatts
  • the maximum transmission power of the network device is 27dBm
  • the power level decays to -20dBm
  • the amplification capacity of the LNA of the first type of terminal is 30dB, and the backscattering will have a loss of 5dB compared to the incident signal.
  • the second signal sent by the first type of terminal in a backscattering manner can have a gain of 25dB compared to the power of the first signal. That is, when the first signal reaches -20dB, after backscattering by the first type of terminal, a second signal with a power of 5dBm is formed.
  • the coverage range that the second signal can extend is the distance to which it decays to -20dBm, at which time the first signal will decay to -45dBm. Assuming that -45dBm is the receiver sensitivity of the second type of terminal, the communication coverage of the forward link can be met, and the second type of terminal can demodulate the forward link signal sent by the network device through the power supply of the second signal.
  • the first type of terminal can be deployed in a place where the receiving power of the first signal is greater than -20dBm, and the second type of terminal (such as terminal 1, terminal 2, terminal 3) that is closer to the network device can be directly powered by the first signal sent by the network device. If the second type of terminal (such as terminal 4) that is farther away is powered by the first signal, the power of the first signal reaching terminal 4 is -45dBm and cannot drive the terminal 4 to work, and the power supply signal amplified by the first type of terminal is used to power terminal 4, and the power of the power supply signal reaching terminal 4 is -20dBm, which can drive terminal 4 to work.
  • the second type of terminal such as terminal 4 that is farther away is powered by the first signal
  • the power of the first signal reaching terminal 4 is -45dBm and cannot drive the terminal 4 to work
  • the power supply signal amplified by the first type of terminal is used to power terminal 4, and the power of the power supply signal reaching terminal 4 is -20dBm, which can drive terminal 4 to work.
  • the coverage of the power supply signal can also be expanded by multi-stage amplification (or relay). That is, the network device can supply power to the second type terminal through a first type terminal or multiple first type terminals.
  • the network device is a first-level power supply device
  • the first terminal may be the next-level power supply device of the network device, that is, the second-level power supply device.
  • the first terminal may amplify the power supply signal sent by the network device and send the next-level power supply signal.
  • the power supply signal sent by the first terminal may directly supply power to the second terminal.
  • more levels of power supply equipment may be deployed to supply power to a second terminal at a farther distance.
  • the first signal may be sent by a third terminal.
  • the third terminal is one of the multi-stage power supply devices
  • the first terminal is the next-stage power supply device of the third terminal.
  • the first terminal can amplify the power supply signal sent by the third terminal and send the next-stage power supply signal.
  • multiple levels of first-class terminals may be deployed within the coverage of the forward link of the network device to expand the coverage of the power supply signal, thereby ensuring that the coverage of the power supply signal matches the coverage of the forward link.
  • a first-level first-class terminal can generate a gain of 25dB
  • two-level first-class terminals can generate a gain of 50dB by relaying.
  • the incident first power supply signal power of the first-level first-class terminal is -20dBm
  • a second power supply signal with a power of 5dBm is generated.
  • the incident second power supply signal power of the second-level first-class terminal is -20dBm
  • a third power supply signal with a power of 5dBm is generated.
  • the third power supply signal may cover as far as the third power supply signal attenuates to -20dBm, where the first power supply signal attenuates to -70dBm. Therefore, through the amplification of two-level first-class terminals, the coverage of the forward link can be further expanded, which can meet the coverage range of the receiver sensitivity of -70dBm.
  • the frequency of the second signal is the same as the frequency of the first signal.
  • the frequency of the second signal and the frequency of the first signal have a first frequency offset.
  • the first terminal may also perform a certain frequency shift on the incident first signal, so as to generate power supply signals of different frequencies according to demand.
  • the transmission of the second signal has certain spatial characteristics or spatial relationships.
  • the second signal is transmitted based on the first spatial information.
  • the first spatial information may include but is not limited to direction information, beam information, and a spatial domain transmission filter.
  • the first terminal transmits the second signal based on certain spatial characteristics, which can make the power of the second signal concentrated in a certain spatial direction and enhance the coverage of the second signal in the spatial direction. As shown in Figure 10, the power supply signal sent by the first terminal can be concentrated in a certain spatial direction to cover the second terminal in a specific spatial direction.
  • the transmitting antenna of the first terminal may be designed to have a strong gain in a certain spatial direction, so that the transmission power of the second signal sent by the first terminal can be concentrated in the certain spatial direction.
  • the transmitting antenna of the first terminal may be implemented by an antenna array.
  • the spatial attribute of the second signal can be set according to demand. For example, when it is necessary to power the second terminal within the first spatial range, the second signal is sent based on the first spatial information; when it is necessary to power the second terminal within the second spatial range, the second signal is sent based on the second spatial information.
  • the first signal is sent periodically.
  • the second signal is sent periodically.
  • the sending period of the second signal may be configured by the network device or predefined.
  • the second signal may be sent according to a certain pattern.
  • the pattern may be configured by the network device or may be predefined.
  • the second signal may be a basic energy supply signal, or an actively sent energy supply signal, which is used to ensure the basic energy supply requirement of the second terminal.
  • the second signal is sent based on triggering (or control, scheduling).
  • the method 200 further includes:
  • the first terminal receives first information sent by a network device, where the first information is used to control the first terminal to send a second signal.
  • the first information may be carried in the first signal.
  • the first information is control information of the second signal, which is used to indicate the transmission parameters of the power supply signal, or the transmission parameters of the power supply signal expected by the network device.
  • the first signal includes but is not limited to at least one of the following: spatial information of the power supply signal, transmission duration information of the power supply signal, and transmission power information of the power supply signal.
  • the network device can control the sending parameters of the power supply signal sent by the first terminal, such as the spatial information used to send the power supply signal, the sending duration information, the sending power and other information.
  • the network device may control the first terminal to send the second signal.
  • the network device may send first information to the first terminal.
  • the first terminal since the first terminal needs to collect energy to send the energy supply signal, for example, the first terminal can send the energy supply signal for a certain period of time based on the energy collected over a period of time. Therefore, the energy supply duration of the first terminal is limited by the energy collection efficiency and energy storage state of the first terminal.
  • the method 200 further includes:
  • the first terminal sends second information to the network device, where the second information is used to indicate capability information of the first terminal for sending the second signal, or sending parameters of the second signal supported by the first terminal.
  • the second information includes but is not limited to at least one of the following:
  • the first terminal supports spatial information of a power supply signal sent
  • the transmission duration information of the energy supply signal supported by the first terminal that is, how long the first terminal supports the transmission of the energy supply signal
  • the transmission power information of the power supply signal supported by the first terminal that is, the power with which the first terminal supports sending the power supply signal.
  • the second information may be determined based on information such as the current energy storage state, energy collection efficiency, and power consumption of sending an energy supply signal of the first terminal.
  • the second information may be sent after the first information.
  • the first terminal determines that the energy collection capability or energy storage status of the first terminal can meet the sending parameters of the power supply signal required by the first information, and then can send second information to the network device to indicate the sending parameters of the power supply signal supported by the second terminal.
  • the first information may be sent after the second information.
  • the network device may determine the first information according to the second information to control the first terminal to send the power supply signal using appropriate sending parameters.
  • the method 200 further includes:
  • the second terminal sends a first request message to the first terminal or the network device, where the first request message is used to request the first terminal or the network device to send a power supply signal.
  • the second terminal may collect energy from the second signal to send the first request information.
  • the second signal can be used to ensure that the second terminal sends the first request information.
  • the network device or the first terminal may provide an additional power supply signal to the second terminal according to the first request information, thereby ensuring subsequent data transmission of the second terminal.
  • the first request information is sent by the second terminal under specific conditions (e.g., there is an instantaneous energy supply demand, etc.). For example, when there is data to be transmitted, the second signal is insufficient to meet the energy supply demand of the second terminal, and the second terminal can request an additional energy supply signal through the first request information.
  • specific conditions e.g., there is an instantaneous energy supply demand, etc.
  • the first request information includes at least one of the following:
  • the first indication information may be 1 bit.
  • the first request information may be sent in a backscattering manner.
  • the second terminal may use the power supply signal as a carrier signal for backscattering, or may use a dedicated carrier signal for backscattering to send the first request information.
  • the method 200 further includes:
  • the first terminal sends a fourth signal based on the third signal, the fourth signal is used to power the second terminal, and the fourth signal is sent based on the first request information, wherein the third signal may be sent by a network device or a third terminal.
  • the network device may control the first terminal to supply power to the second terminal. For example, the network device sends a third signal to the first terminal, and further, the first terminal sends a fourth signal based on the third signal.
  • the first terminal when it receives the first request information, it can send the fourth signal based on the third signal of the network device or the third device.
  • the fourth signal can be considered as an additional energy supply signal, or a passively sent energy supply signal (e.g., a request-based energy supply signal), or an on-demand energy supply signal.
  • the fourth signal can be used to ensure the instantaneous energy supply demand of the second terminal, or an urgent energy supply demand, etc.
  • the fourth signal may be sent based on certain spatial information.
  • the transmission period of the second signal is greater than the transmission period of the fourth signal. That is, the transmission of the additional energy supply signal is more frequent than the transmission of the basic energy supply signal, which is conducive to ensuring that the second terminal obtains sufficient energy for data transmission.
  • the duration of the second signal is shorter than the duration of the fourth signal. That is, the sending time of the additional power supply signal is longer than the sending time of the basic power supply signal, which is conducive to ensuring that the second terminal obtains sufficient energy for data transmission.
  • the transmission power of the fourth signal is greater than the transmission power of the second signal. That is, the strength of the additional energy supply signal is greater than the strength of the basic energy supply signal, which is beneficial to improving the energy collection efficiency of the second terminal and ensuring that the second terminal obtains sufficient energy for data transmission.
  • the third signal is sent periodically.
  • the fourth signal is sent periodically.
  • the first terminal can send a second signal based on the first signal sent by the network device or the third terminal to power the second terminal.
  • the network device and one or more terminals power the second terminal in a relay manner, thereby expanding the coverage range of the power supply signal and improving the power level of the power supply signal reaching the second terminal, so that the coverage range of the power supply signal matches the coverage range of the forward link.
  • the first terminal may provide an additional energy supply signal to the second terminal based on the request of the second terminal, which is helpful to meet the instantaneous energy demand of the second terminal.
  • FIG11 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • the communication unit 410 is used to send a second signal to the second terminal based on the first signal, where the second signal is used to power the second terminal, and the first signal is sent by a network device or a third terminal.
  • the second signal is an amplified signal.
  • the second signal is sent by the terminal device after amplifying and backscattering the first signal.
  • the second signal is sent by the terminal device through active transmission.
  • the second signal is sent by the terminal device based on energy obtained by energy harvesting from the first signal.
  • the first signal is used to control the terminal device to send the second signal.
  • the frequency of the second signal is the same as the frequency of the first signal.
  • the frequency of the second signal and the frequency of the first signal have a first frequency offset.
  • the second signal is sent based on the first spatial information.
  • the communication unit 410 is further configured to:
  • the first information includes at least one of the following:
  • Spatial information of the energy supply signal transmission duration information of the energy supply signal, and transmission power information of the energy supply signal.
  • the communication unit 410 is further used for: the terminal device sends second information to the network device, where the second information is used to indicate capability information of the terminal device to send the second signal.
  • the second information includes at least one of the following:
  • the terminal device supports spatial information of the energy supply signal to be sent
  • the transmission power information of the power supply signal supported by the terminal device is the transmission power information of the power supply signal supported by the terminal device.
  • the first signal is sent periodically.
  • the second signal is sent periodically.
  • the communication unit 410 is further configured to:
  • the first request information includes at least one of the following:
  • the communication unit 410 is further used to: send a fourth signal based on the third signal, the fourth signal is used to power the second terminal, and the fourth signal is sent based on the first request information.
  • the sending period of the second signal is greater than the sending period of the fourth signal
  • the duration of the second signal is shorter than the duration of the fourth signal.
  • the communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system on chip.
  • terminal device 500 may correspond to the first terminal in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 500 are respectively for implementing the corresponding processes of the first terminal in the method shown in Figures 7 to 10, which will not be repeated here for the sake of brevity.
  • Fig. 12 shows a schematic block diagram of a network device 500 according to an embodiment of the present application.
  • the network device 500 includes:
  • the communication unit 510 is used to send a first signal to a first terminal, where the first signal is used for the first terminal to send a second signal, and the second signal is used to power a second terminal.
  • the first signal is sent periodically.
  • the communication unit 510 is further configured to:
  • the first information includes at least one of the following:
  • Spatial information of the energy supply signal transmission duration information of the energy supply signal, and transmission power information of the energy supply signal.
  • the communication unit 510 is further configured to:
  • Second information sent by the first terminal is received, where the second information is used to indicate capability information of the first terminal to send the second signal.
  • the second information includes at least one of the following:
  • the first terminal supports spatial information of a power supply signal sent
  • the transmission power information of the power supply signal supported by the first terminal is the transmission power information of the power supply signal supported by the first terminal.
  • the communication unit 510 is further configured to:
  • the communication unit 510 is further configured to:
  • a third signal is sent to the first terminal, where the third signal is used for the first terminal to send a fourth signal, where the fourth signal is used to power the second terminal.
  • the third signal is sent based on the first request information.
  • the communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system on chip.
  • the processing unit may be one or more processors.
  • the network device 500 may correspond to the network device in the embodiment of the method of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 500 are respectively for realizing the corresponding processes of the network device in the method shown in Figures 7 to 10. For the sake of brevity, they will not be repeated here.
  • FIG13 shows a schematic block diagram of a terminal device 600 according to an embodiment of the present application.
  • the terminal device 600 includes:
  • the communication unit 610 is used to send first request information to the first terminal, where the first request information is used to request the first terminal to send a power supply signal.
  • the first request information includes at least one of the following:
  • the communication unit 610 is further configured to:
  • a fourth signal sent by the first terminal is received, where the fourth signal is used by the terminal device to collect energy.
  • the fourth signal is sent based on the first request information.
  • the communication unit 610 is further configured to:
  • a second signal sent by the first terminal is received, where the second signal is used for energy collection by the terminal device.
  • the first request information is sent based on energy obtained by energy harvesting from the second signal.
  • the communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system on chip.
  • terminal device 600 may correspond to the second terminal in the embodiment of the method of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 600 are respectively for implementing the corresponding processes of the second terminal in the method shown in Figures 7 to 10. For the sake of brevity, they will not be repeated here.
  • Fig. 14 is a schematic structural diagram of a communication device 700 provided in an embodiment of the present application.
  • the communication device 700 shown in Fig. 14 includes a processor 710, and the processor 710 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated into the processor 710 .
  • the communication device 700 may further include a transceiver 730 , and the processor 710 may control the transceiver 730 to communicate with other devices, specifically, may send information or data to other devices, or receive information or data sent by other devices.
  • the transceiver 730 may include a transmitter and a receiver.
  • the transceiver 730 may further include an antenna, and the number of the antennas may be one or more.
  • the communication device 700 may specifically be a network device of an embodiment of the present application, and the communication device 700 may implement corresponding processes implemented by the network device in each method of the embodiment of the present application, which will not be described in detail here for the sake of brevity.
  • the communication device 700 may specifically be a mobile terminal/terminal device of an embodiment of the present application, and the communication device 700 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, which will not be described again for the sake of brevity.
  • Fig. 15 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 800 shown in Fig. 15 includes a processor 810, and the processor 810 can call and run a computer program from a memory to implement the method according to the embodiment of the present application.
  • the chip 800 may further include a memory 820.
  • the processor 810 may call and run a computer program from the memory 820 to implement the method in the embodiment of the present application.
  • the memory 820 may be a separate device independent of the processor 810 , or may be integrated into the processor 810 .
  • the chip 800 may further include an input interface 830.
  • the processor 810 may control the input interface 830 to communicate with other devices or chips, and specifically, may obtain information or data sent by other devices or chips.
  • the chip 800 may further include an output interface 840.
  • the processor 810 may control the output interface 840 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • Fig. 16 is a schematic block diagram of a communication system 900 provided in an embodiment of the present application.
  • the communication system 900 includes a network device 910 , a first terminal 920 , and a second terminal 930 .
  • the network device 910 can be used to implement the corresponding functions implemented by the network device in the above method
  • the first terminal 920 can be used to implement the corresponding functions implemented by the first terminal in the above method
  • the second terminal 930 can be used to implement the corresponding functions implemented by the second terminal in the above method.
  • the network device 910 can be used to implement the corresponding functions implemented by the network device in the above method
  • the first terminal 920 can be used to implement the corresponding functions implemented by the first terminal in the above method
  • the second terminal 930 can be used to implement the corresponding functions implemented by the second terminal in the above method.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed by the hardware integrated logic circuit in the processor or the instruction in the form of software.
  • the above processor can be a general processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps and logic block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general processor can be a microprocessor or the processor can also be any conventional processor, etc.
  • the steps of the method disclosed in the embodiment of the present application can be directly embodied as a hardware decoding processor to perform, or the hardware and software modules in the decoding processor can be combined to perform.
  • the software module can be located in a mature storage medium in the field such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application can be a volatile memory or a non-volatile memory, or can include both volatile and non-volatile memories.
  • the non-volatile memory can be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory can be a random access memory (RAM), which is used as an external cache.
  • RAM Direct Rambus RAM
  • SRAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced SDRAM
  • SLDRAM Synchlink DRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • An embodiment of the present application also provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For the sake of brevity, they are not repeated here.
  • the computer-readable storage medium can be applied to the first terminal in the embodiment of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the first terminal in the various methods of the embodiment of the present application. For the sake of brevity, they are not repeated here.
  • the computer-readable storage medium can be applied to the second terminal in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the second terminal in the various methods of the embodiments of the present application. For the sake of brevity, they are not repeated here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For the sake of brevity, they are not repeated here.
  • the computer program product can be applied to the first terminal in the embodiment of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the first terminal in the various methods of the embodiment of the present application. For the sake of brevity, they are not repeated here.
  • the computer program product may be applied to the second terminal in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the second terminal in the various methods in the embodiments of the present application, which will not be described in detail here for the sake of brevity.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program runs on a computer, the computer executes the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For the sake of brevity, they are not described here.
  • the computer program can be applied to the first terminal in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes the corresponding processes implemented by the first terminal in the various methods of the embodiment of the present application. For the sake of brevity, they are not repeated here.
  • the computer program can be applied to the second terminal in the embodiments of the present application.
  • the computer program runs on the computer, the computer executes the corresponding processes implemented by the second terminal in the various methods of the embodiments of the present application. For the sake of brevity, they are not repeated here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be essentially or partly embodied in the form of a software product that contributes to the prior art.
  • the computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线通信的方法和设备,该方法包括:第一终端基于第一信号向第二终端发送第二信号,所述第二信号用于给所述第二终端供能,所述第一信号是网络设备或第三终端发送的。

Description

无线通信的方法和设备 技术领域
本申请实施例涉及通信领域,具体涉及一种无线通信的方法和设备。
背景技术
在零功耗通信中,零功耗终端需要进行能量采集驱动自身进行工作以进行数据传输,因此,如何对零功耗终端进行供能是一项亟需解决的问题。
发明内容
本申请提供了一种无线通信的方法和设备,网络设备可以通过一个或多个终端给第二终端供能,能够扩展供能信号的覆盖范围,提升供能信号到达第二终端处的功率水平。
第一方面,提供了一种无线通信的方法,包括:第一终端基于第一信号向第二终端发送第二信号,所述第二信号用于给所述第二终端供能,所述第一信号是网络设备或第三终端发送的。
第二方面,提供了一种无线通信的方法,包括:网络设备向第一终端发送第一信号,所述第一信号用于所述第一终端发送第二信号,所述第二信号用于给第二终端供能。
第三方面,提供了一种无线通信的方法,包括:第二终端向第一终端发送第一请求信息,所述第一请求信息用于请求所述第一终端发送供能信号。
第四方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第六方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第三方面或其各实现方式中的方法的功能模块。
第七方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第八方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第九方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第三方面或其各实现方式中的方法。
第十方面,提供了一种芯片,用于实现上述第一方面至第三方面中的任一方面或其各实现方式中的方法。具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第三方面中的任一方面或其各实现方式中的方法。
第十一方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第三方面中的任一方面或其各实现方式中的方法。
第十二方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第三方面中的任一方面或其各实现方式中的方法。
第十三方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第三方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,第一终端可以基于网络设备或第三终端发送的第一信号发送第二信号,给第二终端供能,这样,网络设备和一个或多个终端(例如,第一终端,或者,第一终端和第三终端)通过接力的方式给第二终端供能,从而能够扩展供能信号的覆盖范围,提升供能信号到达第二终端处的功率水平。
附图说明
图1是本申请实施例提供的一种通信***架构的示意性图。
图2是根据本申请一个示例的零功耗通信***的示意图。
图3是根据本申请一个实施例的能量采集的原理图。
图4是根据本申请一个实施例的反向散射通信的原理图。
图5是根据本申请一个实施例的电阻负载调制的电路原理图。
图6是通过部署供能节点给零功耗终端供能的示意性图。
图7是根据本申请实施例提供的一种无线通信的方法的示意性图。
图8是网络设备通过第一类终端扩展供能信号的覆盖范围的示意性图。
图9是网络设备通过多级第一类终端扩展供能信号的覆盖范围的示意性图。
图10是第一类终端基于一定的空间特性发送供能信号的示意性图。
图11是根据本申请实施例提供的一种终端设备的示意性框图。
图12是根据本申请实施例提供的一种网络设备的示意性框图。
图13是根据本申请实施例提供的另一种终端设备的示意性框图。
图14是根据本申请实施例提供的一种通信设备的示意性框图。
图15是根据本申请实施例提供的一种芯片的示意性框图。
图16是根据本申请实施例提供的一种通信***的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、先进的长期演进(Advanced long term evolution,LTE-A)***、新无线(New Radio,NR)***、NR***的演进***、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)***、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)***、非地面通信网络(Non-Terrestrial Networks,NTN)***、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)***,蜂窝物联网***,蜂窝无源物联网***或其他通信***等。
通常来说,传统的通信***支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信***将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信***。
可选地,本申请实施例中的通信***可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信***可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信***也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者,蜂窝物联网中的网络设备,或者,蜂窝无源物联网中的网络设备,或者,未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信***例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备,蜂窝物联网中的终端设备,蜂窝无源物联网中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
示例性的,本申请实施例应用的通信***100如图1所示。该通信***100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信***100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信***100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/***中具有通信功能的设备可称为通信设备。以图1示出的通信***100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信***100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,"预定义"可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信***中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,对本申请的相关技术进行说明。
一、零功耗通信
近年来,零功耗终端的应用越来越广泛。一种典型的零功耗终端是射频识别(Radio Frequency Identification,RFID),它是利用无线射频信号空间耦合的方式,实现无接触的标签信息自动传输与识别的技术。RFID标签又称为“射频标签”或“电子标签”。根据供电方式的不同来划分的电子标签的类型,可以包括有源电子标签,无源电子标签和半无源电子标签。有源电子标签,又称为主动式 电子标签,是指电子标签工作的能量由电池提供,电池、内存与天线一起构成有源电子标签,不同于被动射频的激活方式,在电池更换前一直通过设定频段发送信息。无源电子标签,又称为被动式电子标签,其不支持内装电池,无源电子标签接近读写器时,标签处于读写器天线辐射形成的近场范围内电子标签天线通过电磁感应产生感应电流,感应电流驱动电子标签芯片电路。芯片电路通过电子标签天线将存储在标签中的标识信息发送给读写器。半主动式电子标签继承了无源电子标签体积小、重量轻、价格低、使用寿命长的优点,内置的电池在没有读写器访问的时候,只为芯片内很少的电路提供电源,只有在读写器访问时,内置电池向RFID芯片供电,以增加标签的读写距离较远,提高通信的可靠性。
最基本的RFID***是由电子标签(TAG)和读写器(Reader/Writer)两部分构成。其中,电子标签由耦合组件及芯片构成,每个电子标签都有独特的电子编码,放在被测目标上以达到标记目标物体的目的。读写器不仅能够读取电子标签上的信息,而且还能够写入电子标签上的信息,同时为电子标签提供通信所需要的能量。电子标签进入电磁场后,接收读写器发出的射频信号,无源电子标签或者被动电子标签利用空间中产生的电磁场得到的能量,将电子标签存储的信息传送出去,读写器读取信息并且进行解码,从而识别电子标签。
基于零功耗终端的通信简称零功耗通信。
如图2所示,一种典型的零功耗通信***(例如RFID***)包括网络设备(如RFID***的读写器)和零功耗终端(例如如电子标签)。网络设备用于向零功耗终端发送无线供能信号,下行通信信号以及接收零功耗终端的反向散射信号。可选地,零功耗终端包括能量采集模块,反向散射通信模块以及低功耗计算模块。此外,零功耗终端还可具备一个存储器或传感器,用于存储一些基本信息(如物品标识等)或环境温度、环境湿度等传感数据。
例如,能量采集模块可以采集空间中的无线电波携带的能量(图2中所示为网络设备发射的无线电波),用于驱动零功耗终端的低功耗计算模块和实现反向散射通信。零功耗终端获得能量后,可以接收网络设备的控制命令并基于控制信令基于反向散射的方式向网络设备发送数据。所发送的数据可以为零功耗终端自身存储的数据(如身份标识或预先写入的信息,如商品的生产日期、品牌、生产厂家等)。零功耗终端也可以加载各类传感器,从而基于零功耗机制将各类传感器采集的数据上报。
以下,对零功耗通信中的关键技术进行说明。
1、射频能量采集(RF Power Harvesting)
如图3所示,射频能量采集模块基于电磁感应原理实现对空间电磁波能量的采集,进而获得驱动零功耗终端工作所需的能量,例如用于驱动低功耗解调以及调制模块、传感器以及内存读取等。因此,零功耗终端无需传统电池。
2、反向散射通信(Back Scattering)
如图4所示,零功耗终端接收网络设备发送的载波信号,并对所述载波信号进行调制,加载需要发送的信息并将调制后的信号从天线辐射出去,这一信息传输过程称之为反向散射通信。反向散射和负载调制功能密不可分。负载调制通过对零功耗终端的振荡回路的电路参数按照数据流的节拍进行调节和控制,使零功耗终端阻抗的大小等参数随之改变,从而完成调制的过程。负载调制技术主要包括电阻负载调制和电容负载调制两种方式。在电阻负载调制中,负载并联一个电阻,该电阻基于二进制数据流的控制接通或断开,如图5所示。电阻的通断会导致电路电压的变化,因此实现幅度键控调制(ASK),即通过调整零功耗终端的反向散射信号的幅度大小实现信号的调制与传输。类似地,在电容负载调制中,通过电容的通断可以实现电路谐振频率的变化,实现频率键控调制(FSK),即通过调整零功耗终端的反向散射信号的工作频率实现信号的调制与传输。
可见,零功耗终端借助于负载调制的方式,对来波信号进行信息调制,从而实现反向散射通信过程。因此,零功耗终端具有显著的优点:
(1)不主动发射信号,因此不需要复杂的射频链路,如PA、射频滤波器等;
(2)不需要主动产生高频信号,因此不需要高频晶振;
(3)借助反向散射通信,终端信号传输不需要消耗终端自身能量。
3、编码技术
零功耗终端传输的数据,可以用不同形式的代码来表示二进制的“1”和“0”。无线射频识别***通常使用下列编码方法中的一种:反向不归零(NRZ)编码、曼彻斯特(Manchester)编码、单极性归零编码、差动双相(DBP)编码、差动编码、脉冲间隔编码(PIE)、双向空间编码(FM0)、米勒(Miller)编码利差动编码等。通俗来说,不同的编码技术是采用不同的脉冲信号表示0和1。
在一些场景中,基于零功耗终端的能量来源以及使用方式,可以将零功耗终端分为如下类型:
1、无源零功耗终端
零功耗终端(如RFID***的电子标签)不需要内装电池,零功耗终端接近网络设备(如RFID***的读写器)时,零功耗终端处于网络设备天线辐射形成的近场范围内。因此,零功耗终端天线通过电磁感应产生感应电流,感应电流驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及反向链路(或称反射链路)的信号调制等工作。对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。
可以看出,无源零功耗终端无论是前向链路还是反向链路都不需要内置电池来驱动,是一种真正意义的零功耗终端。
无源零功耗终端不需要电池,射频电路以及基带电路都非常简单,例如不需要低噪放(LNA),功放(PA),晶振,模数转换器(Analog-to-Digital Converter,ADC)等器件,因此具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
2、半无源零功耗终端
半无源零功耗终端自身也不安装常规电池,但可使用RF能量采集模块采集无线电波能量,同时将采集的能量存储于一个储能单元(如电容)中。储能单元获得能量后,可以驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及反向链路的信号调制等工作。对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。
可以看出,半无源零功耗终端无论是前向链路还是反向链路都不需要内置电池来驱动,虽然工作中使用了电容储存的能量,但能量来源于能量采集模块采集的无线电能量,因此也是一种真正意义的零功耗终端。
半无源零功耗终端继承了无源零功耗终端的诸多优点,因此具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
3、有源零功耗终端
有些场景下使用的零功耗终端也可以为有源零功耗终端,此类设备可以内置电池。电池用于驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及反向链路的信号调制等工作。但对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。因此,这类设备的零功耗主要体现于反向链路的信号传输不需要终端自身功率,而是使用反向散射的方式。
二、蜂窝无源物联网
随着5G行业应用的增加,连接物的种类和应用场景越来越多,对通信终端的成本和功耗也将有更高要求,免电池、低成本的无源物联网设备的应用成为蜂窝物联网的关键技术,充实5G网络链接终端类型和数量,真正实现万物互联。其中无源物联网设备可以基于零功耗通信技术,如RFID技术,并在此基础上进行延伸,以适用于蜂窝物联网。
为便于理解本申请实施例,对零功耗通信相关的供能信号、调度信号和载波信号进行说明。
1、供能信号
供能信号为零功耗终端进行能量采集的一种能量来源。
从频段上,用作供能的无线电波的频段可以是低频、中频、高频等。
从波形上,用作供能的无线电波可以是正弦波、方波、三角波、脉冲、矩形波等。
此外,供能信号可以是连续波,也可以是非连续波(即允许一定的时间中断)。
可选地,供能信号可以是3GPP标准中的已有信号。例如探测参考信号(Sounding Reference Signal,SRS),物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、物理随机接入信道(Physical Random Access Channel,PRACH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)、物理下行控制信道(Physical Downlink Control Channel,PDCCH)、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、物理广播信道(Physical Broadcast Channel,PBCH)等,或者也可以是WIFI信号或蓝牙信号。
可选地,供能信号也可以通过新定义信号实现,例如新定义专用于供能的信号。
2、触发信号或称调度信号
触发信号用于触发或调度零功耗终端进行数据传输。
从频段上,用作触发或调度的无线电波可以是低频、中频、高频等。
从波形上,用作触发或调度的无线电波可以是正弦波、方波、三角波、脉冲、矩形波等。
此外,该触发信号可以是连续波,也可以是非连续波(即允许一定的时间中断)。
可选地,触发信号可能是3GPP标准中的已有信号。例如SRS,PUSCH、PRACH、PUCCH、PDCCH、PDSCH、PBCH,或者WIFI信号或蓝牙信号等。
可选地,触发信号也可以通过新定义信号实现,例如新定义专用于触发或调度的信号。
3、载波信号
载波信号用于零功耗终端产生反向散射信号,例如,零功耗终端可以根据需要发送的信息对接收到的载波信号进行调制以形成反向散射信号。
从频段上,用作载波信号的无线电波可以是低频、中频、高频等。
从波形上,用作载波信号的无线电波可以是正弦波、方波、三角波、脉冲、矩形波等。
此外,该载波信号可以是连续波,也可以是非连续波(即允许一定的时间中断)。
可选地,载波信号可能是3GPP标准中的已有信号。例如SRS,PUSCH、PRACH、PUCCH、PDCCH、PDSCH、PBCH,或者,WIFI信号、蓝牙信号、zigbee信号等。
可选地,载波信号也可以通过新定义信号实现,例如新定义专用产生反向散射信号的载波信号。
需要说明的是,在本申请实施例中,供能信号,调度信号和载波信号可以是同一信号,或者,也可以是不同的信号,例如,供能信号可以作为载波信号,调度信号也可以用作载波信号等。
在实际网络部署中,无源零功耗通信技术面临的一个技术瓶颈是前向链路的覆盖距离受限,主要原因在于前向链路的通信距离受限于到达零功耗终端处的无线信号的信号强度,基于现有的实现工艺,一般零功耗终端需要消耗10uw(微瓦)的功率以驱动低功耗电路。这意味着到达零功耗终端的信号功率至少需要为-20dBm。受限于无线电监管的要求,网络设备的发射功率一般不能太大,例如在RFID工作的ISM频段,最大发射功率为30dBm。因此,考虑到空间的无线电传播损耗,无源零功耗终端的传输距离一般在10m至几十米的范围。
而半无源零功耗终端具有显著扩展通信距离的潜力,这是由于,半无源零功耗终端可以使用能量采集模块收集无线电波,因此可以源源不断获取无线电能量并储存于储能单元中。储能单元获得足够的能量后,可以驱动低功耗电路工作用于前向链路的信号解调以及反向链路的信号调制等操作。因此,此时,半无源零功耗终端就等效于一个有源终端,其下行的覆盖取决于下行信号的接收机灵敏度(通常远低于RF能量采集门限)。基于目前的工艺,能量采集模块可以在接收的无线电信号强度不低于-30dBm时可以进行能量采集并将电能输入到储能单元。因此,半无源零功耗终端的前向链路的覆盖取决于能量采集门限(如-30dBm),相对无源零功耗终端,接收的无线电信号强度从-20dBm放松到-30dBm,因此可以获得10dB的链路预算增益,因此可以提升多于3倍的下行覆盖。
然而,在提升前向链路覆盖的同时,半无源零功耗终端也面临充电效率下降的问题。随着接收信号强度的下降,能量采集模块可采集并储存的能量大幅降低。如,在接收信号强度为-30dBm时,也即1微瓦时,可采集并存储的能量远不及1微瓦(能量采集效率大幅下降)。另一方面,如前所述,零功耗终端的低功耗电路可能需要消耗10uw的平均功率。
对于反向链路来说,由于网络设备具有较高的接收机灵敏度,可以达到-95dBm,其覆盖范围较前向链路要大得多。对于无源零功耗终端和半无源零功耗终端,如果其工作所需的能量来源于收集无线信号的能量,那么其前向链路的覆盖将受限于无线信号到达零功耗终端的功率水平,而不是零功耗终端的接收机灵敏度,这将造成前向链路的有效覆盖比较低。同时也造成了前向链路覆盖和反向链路覆盖的不平衡。
在一些场景中,对于依赖于无线信号供能的零功耗终端,为了提高前向链路的覆盖,一种实现方法是部署专门的供能节点,使前向链路不再受限于无线信号供能的距离。如图6所示,网络设备的覆盖范围内部署了多个供能节点,零功耗终端可以通过附近的供能节点发送的无线信号供能,从而接收前向链路承载的信息,提高了前向链路的覆盖。
但是供能节点的部署成本比较高,需要进行布线、供电和安装,并进行后期的维护。并且,这种供能方法也不节能,供能效率较低。因此,如何对零功耗终端进行供能以降低供能开销是一项亟需解决的问题。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图7是根据本申请实施例的无线通信的方法200的示意性图,如图7所示,该方法200包括如下至少部分内容:
S201,第一终端接收网络设备或第三终端发送的第一信号。
S210,第一终端基于第一信号向第二终端发送第二信号,所述第二信号用于给所述第二终端供能。
在一些实施例中,第一终端、第三终端或称供能终端,即发送供能信号的终端。
在一些实施例中,第二终端或称能量采集终端,即接收供能信号的终端。
在一些实施例中,第一终端可以具有信号放大器,用于对发射的信号进行放大以实现信号的更大的传输距离。
在一些实施例中,第一终端可以具有储能单元,该储能单元可以利用环境能量进行储能,或者, 也可以利用无线电信号进行储能等。因此,第一终端可以利用储存的能力驱动低功耗计算电路以及信号放大器进行信号的发送。可选地,该信号放大器可以是PA、LNA,三极管、隧道二极管等。其中,LNA具有很低的噪声系数,适用于对微弱信号的放大。
在一些实施例中,第一终端可以具有反向散射通信模块,用于通过反向散射方式进行信号的发送。
可选地,第一终端还具有主动发射通信模块,用于采用主动发射方式进行数据传输。
在一些实施例中,第二终端可以通过无线信号进行能量采集,例如第二终端可以是无源零功耗终端或半无源零功耗终端。可选地,该第二终端可以具有反向散射通信模块,用于通过反向散射方式进行信号的发送。
在一些实施例中,第一终端、第二终端和第三终端为零功耗终端。
在一些实施例中,第一终端可以为基于环境能量的设备,例如环境能量使能IoT(Ambient Power Enabled IoT,AMP IoT)设备,或者,蜂窝网络中的通信设备,或者,非蜂窝网络中的通信设备,该非蜂窝网络例如可以包括但不限于WIFI***,蓝牙***,Zigbee***,Lora***等。
在一些实施例中,第二终端可以为基于环境能量的设备,例如AMP IoT设备,或者,蜂窝网络中的通信设备(例如蜂窝网络中的具有供能需求的设备),或者,非蜂窝网络中的通信设备(例如非蜂窝网络中的具有供能需求的设备),该非蜂窝网络例如可以包括但不限于WIFI***,蓝牙***,Zigbee***,Lora***等。
在一些实施例中,第三终端可以为基于环境能量的设备,例如AMP IoT设备,或者,蜂窝网络中的通信设备,或者,非蜂窝网络中的通信设备,该非蜂窝网络例如可以包括但不限于WIFI***,蓝牙***,Zigbee***,Lora***等。
在一些实施例中,第一终端和第三终端可以为一类终端,记为第一类终端,第二终端可以为另一类终端,记为第二类终端。
在一些实施例中,第一类终端的能力高于第二类终端。例如,第一类终端为有源零功耗终端或半无源零功耗终端。第二类终端为半无源零功耗终端或无源零功耗终端。
例如,第一类终端的能量来源多于第二类终端,或者,第一类终端的能量收集能量高于第二类终端。作为示例,第一类终端可以基于环境能量和无线电信号进行能量采集,第二类终端基于无线电信号进行能量采集。
又例如,第一类终端具有信号放大器,第二类终端不具有信号放大器。
再例如,第一类终端具有反向散射通信模块和主动发射通信模块,第二类终端具有反向散射通信模块,其中,反向散射通信模块用于通过反向散射方式进行信号的发送,主动发射通信模块用于采用主动发射方式进行数据传输。
在一些实施例中,第一终端和第二终端可以是独立的设备,或者,也可以是一个第三类终端的不同的功能模块。例如第一终端包括第三类终端的放大器模块,第二终端包括第三类终端的通信模块,例如反向散射通信模块。可选地,第一终端还包括第三类终端的储能模块。
在一些实施例中,第一终端、第二终端和第三终端可以是独立的设备,或者,也可以是第四类终端的不同的功能模块。例如,第一终端和第三终端可以包括第四类终端的放大器模块,第二终端可以包括第四类终端的通信模块,例如反向散射通信模块。可选地,第一终端和第三终端还包括第四类终端的储能模块。
在一些实施例中,第一终端用于扩展供能信号的覆盖范围,例如将第一信号的覆盖范围扩展到第一信号和第二信号的覆盖范围。例如,第一终端可以具有较强的能量收集能力,在尺寸上的要求可以放松。例如,第一终端可以具有大面积的光能采集模块,具备双频天线,具备更多天线单元的天线阵列等。其中,例如,双频天线可以在两个频段进行能量收集,可以在无线信号较丰富的频段上进行能量收集,如GSM、3G频段,WiFi和蓝牙频段,数字电视广播频段等。天线阵列可以产生较高的天线增益,提高接收到的无线信号的功率。基于太阳能的能量收集可以具有更到的功率转换效率。可选地,第一终端还可以是由电池供电的,或者是电源供电的设备。
在一些实施例中,网络设备可以在第一终端发送第二信号期间,通过前向链路向第二终端发送信息。
应理解,本申请实施例并不限定第一终端的能量采集方式。例如可以基于第一信号进行能量采集,或者,也可以不依赖于无线信号,例如可以通过光能、热能等环境能量进行能量采集。
在一些实施例中,第二信号是经放大处理的信号。第一终端通过发送经放大处理的信号给第二终端供能,有利于提升发送的第二信号的传输距离,以及提升第二信号到达第二终端的功率水平,从而提升前向链路的覆盖。
在一些实施例中,第二信号是对第一信号进行放大处理后发送的。
例如,第一终端可以通过LNA对接收到的第一信号进行放大处理,利用经放大处理的第一信号发送第二信号。
可选地,第一终端的LNA的放大系数可以是固定的,或者,也可以是灵活调整的,以满足不同要求的覆盖范围。
在一些实施例中,第二信号是通过反向散射方式发送的。
例如,第二信号是所述第一终端对第一信号进行放大和反向散射处理发送的。
也就是说,第二信号是将第一信号作为入射信号经过放大处理后的反向散射信号。
在一个具体实施例中,第二信号是第一终端可以通过反向散射方式对第一信号经过LNA放大后发送的。
在一些实施例中,第二信号是通过主动发射方式发送的。
此情况下,第一信号可以为第二信号的供能信号和/或第二信号的控制信号(或者说,调度信号)。即,第一信号可以用于给第二信号的发送供能,或者,也可以用于控制(或者说调度)第二信号的发送。可选地,第一终端也可以对第二信号的控制信号进行能量采集以给第二信号的发送储能。
在一些实施例中,S210可以包括:
第一终端基于第一信号进行能量采集,基于采集的能量主动发送第二信号。
例如,第一终端可以基于第一信号进行能量采集,当储存够足够的能量后,主动发送第二信号。
在一些实施例中,S210可以包括:
第一终端基于第一信号的控制,主动发送第二信号。
例如,第一终端可以在接收到第一信号之后,主动发送第二信号。此情况下,第一终端的能量来源可以是第一信号,或者,也可以是环境能量,例如太阳能,热能,机械能等。
在本申请一些实施例中,第一信号是网络设备发送的。当网络设备通过第一信号直接给第二终端供能时,供能信号的覆盖距离受限于第一信号的强度。在本申请实施例中,通过部署第一类终端,网络设备可以通过第一类终端基于第一信号发送第二信号,通过第二信号给第二类终端供能,从而能够扩展供能信号的的覆盖范围,这样,网络设备可以通过一个或多个第一类终端为更远距离的第二类终端供能,使得供能信号到达第二类终端的功率水平满足第二类终端的工作要求。
在一些实施例中,可以根据供能信号的强度、供能信号的衰减情况、第二终端工作所需的最小功率(例如驱动低功耗电路需要消耗的功率)等因素进行第一类终端的部署。
例如,若驱动第二类终端的低功耗电路工作需要消耗10毫瓦,这就意味着到达第二类终端的信号功率最少需要-20dBm,则可以在第一信号的接收功率衰减到-20dB之前的路径上部署第一类终端,从而第一类终端可以基于第一信号发送经放大处理的第二信号,从而能够进一步扩展供能信号的覆盖距离。
结合图8举例说明,在图8的示例中,第一类终端采用反向散射方式发送第二信号,假设驱动第二类终端的低功耗电路工作需要消耗10毫瓦,网络设备的最大发射功率为27dBm,其发送的第一信号随着传输距离的增加而衰减,当功率水平衰减到-20dBm时,经过第一类终端放大并反向散射,第一类终端具有的LNA的放大能力是30dB,反向散射会比入射信号有5dB的损失。因此,经过第一类终端采用反向散射方式发送的第二信号可以相比第一信号的功率有25dB的增益。即第一信号达到-20dB时,经过第一类终端反向散射后,形成功率为5dBm的第二信号。该第二信号可以扩展的覆盖范围为其衰减到-20dBm的距离,此时第一信号将衰减到-45dBm。假设-45dBm为第二类终端的接收机灵敏度,则可以满足前向链路的通信覆盖,第二类终端可以通过第二信号的供能,解调网络设备发送的前向链路信号。可选地,如图8所示,第一类终端可以部署在第一信号的接收功率大于-20dBm的地方,距离网络设备较近的第二类终端(例如终端1、终端2、终端3)可以直接通过网络设备发送的第一信号供能。如果通过第一信号给距离较远的第二类终端(例如终端4)供能,则第一信号到达终端4的功率为-45dBm无法驱动该终端4工作,而通过第一类终端放大的供能信号对终端4进行供能,该供能信号到达终端4的功率为-20dBm,可以驱动终端4工作。
在本申请一些实施例中,还可以通过多级放大的方式(或者说,接力的方式)扩展供能信号的覆盖范围。也就是说,网络设备可以通过一个第一类终端,或者,多个第一类终端给第二类终端供能。
例如,网络设备是第一级供能设备,第一终端可以是网络设备的下一级供能设备,即第二级供能设备,第一终端可以对网络设备发送的供能信号进行放大处理发送下一级供能信号,第一终端发送的供能信号可以直接给第二终端供能,或者,还可以部署更多级供能设备,用于给更远距离的第二终端供能。
在本申请一些实施例中,第一信号可以是第三终端发送的。
例如,第三终端是多级供能设备中的其中一级供能设备,第一终端是第三终端的下一级供能设备,第一终端可以对第三终端发送的供能信号进行放大处理发送下一级供能信号。
在一些实施例中,可以在网络设备的前向链路的覆盖范围内部署多级第一类终端,用来扩展供能信号的覆盖,从而保证供能信号的覆盖与前向链路的覆盖相匹配。
以一级第一类终端可以产生25dB的增益为例,在理想情况下,两级第一类终端通过接力的方式可以产生50dB的增益。如图9所示,第一级第一类终端的入射的第一供能信号功率为-20dBm,经过第一级第一类终端的放大,产生功率为5dBm的第二供能信号。第二级第一类终端的入射的第二供能信号功率为-20dBm,经过第二级第一类终端的放大,产生功率为5dBm的第三供能信号。第三供能信号可能最远覆盖到第三供能信号衰减到-20dBm处,此处第一供能信号衰减到-70dBm。因此,通过两级第一类终端的放大,可以进一步扩展前向链路的覆盖,可以满足接收机灵敏度为-70dBm的覆盖范围。
在一些实施例中,所述第二信号的频率和所述第一信号的频率相同。
在另一些实施例中,所述第二信号的频率和所述第一信号的频率具有第一频率偏移。
例如,第一终端除了对入射的第一信号进行信号放大之外,还可以对入射的第一信号进行一定的频率偏移,从而能够根据需求产生不同频率的供能信号。
在一些实施例中,所述第二信号的发送具有一定的空间特性或空间关系。例如,第二信号是基于第一空间信息发送的。可选地,该第一空间信息可以包括但不限于方向信息、波束信息、空域发送滤波器(spatial domain transmission filter)。可选地,第一终端基于一定的空间特性发送第二信号,能够使得第二信号的功率集中在一定的空间方向上,增强第二信号在该空间方向上的覆盖。如图10所示,第一终端发送的供能信号可以集中在一定的空间方向上,覆盖特定的空间方向上的第二终端。
在一些实施例中,第一终端的发送天线可以被设计为在一定的空间方向上具有较强的增益,这样,从而使得第一终端发送的第二信号的发射功率可以集中在一定的空间方向上。可选地,第一终端的发送天线可以通过天线阵列实现。
在一些实施例中,第二信号的空间属性可以是根据需求设置的,例如在需要对第一空间范围内的第二终端供能时,基于第一空间信息发送第二信号,在需要对第二空间范围内的第二终端供能时,基于第二空间信息发送第二信号。
在一些实施例中,第一信号是周期性发送的。
在一些实施例中,第二信号是周期性发送的。
可选地,第二信号的发送周期可以是网络设备配置的,或预定义的。
可选地,第二信号可以是按照一定的图样(pattern)发送的,可选地,该图样可以是网络设备配置的的,或者,预定义的。
在一些实施例中,第二信号可以为基本的供能信号,或者,主动发送的供能信号。该供能信号用于保证第二终端基本的供能需求。
在一些实施例中,第二信号是基于触发(或者说,控制,调度)发送的。
在本申请一些实施例中,所述方法200还包括:
所述第一终端接收网络设备发送的第一信息,所述第一信息用于控制第一终端发送第二信号。
可选地,当第一信号用于控制第一终端发送第二信号时,第一信息可以承载在所述第一信号中。
可选地,所述第一信息为所述第二信号的控制信息,用于指示供能信号的发送参数,或者,网络设备期望的供能信号的发送参数。例如第一信号包括但不限于以下中的至少一项:供能信号的空间信息,供能信号的发送时长信息,供能信号的发送功率信息。
即,网络设备可以控制第一终端发送供能信号的发送参数,例如发送供能信号所使用的空间信息,发送时长信息,发送功率等信息。
可选地,在网络设备需要和第二终端通信时,网络设备可以控制第一终端发送第二信号。
例如,在网络设备需要和第二终端通信时,网络设备可以向第一终端发送第一信息。
在一些实施例中,由于第一终端需要进行能量采集来发送供能信号,例如,第一终端可以基于一段时间收集的能量,进行一定时间的供能信号的发送。因此,第一终端的供能时长受限于第一终端的能量采集效率、储能状态。
在本申请一些实施例中,所述方法200还包括:
所述第一终端向网络设备发送第二信息,所述第二信息用于指示所述第一终端发送所述第二信号的能力信息,或者,第一终端支持的第二信号的发送参数。
作为示例,所述第二信息包括但不限于以下中的至少一项:
所述第一终端支持发送的供能信号的空间信息;
所述第一终端支持的供能信号的发送时长信息,即第一终端支持发送多长时间的供能信号;
所述第一终端支持的供能信号的发送功率信息,即第一终端支持以多大功率发送供能信号。
可选地,第二信息可以是根据第一终端当前的储能状态、能量采集效率、发送供能信号的功耗等信息确定的。
可选地,第二信息可以是在第一信息之后发送的。
例如,在接收到网络设备发送的第一信息之后,第一终端确定第一终端的能量采集能力或储能状态可以满足第一信息要求的供能信号的发送参数,则可以向网络设备发送第二信息,用于指示第二终端支持的供能信号的发送参数。
可选地,第一信息可以是在第二信息之后发送的。
例如,网络设备在接收到第二信息之后,可以根据第二信息确定第一信息,以控制第一终端采用合适的发送参数发送供能信号。
在本申请一些实施例中,所述方法200还包括:
第二终端向第一终端或网络设备发送第一请求信息,所述第一请求信息用于请求所述第一终端或网络设备发送供能信号。
在一些实施例中,第二终端可以对第二信号进行能量采集来发送第一请求信息。
也就是说,第二信号可以用于保证第二终端对于第一请求信息的发送。
可选地,网络设备或第一终端接收到该第一请求信息之后,可以根据第一请求信息给第二终端提供额外的供能信号,从而保证第二终端的后续的数据传输。
在一些实施例中,第一请求信息是第二终端在特定条件(例如存在瞬时的供能需求等)下发送的。例如在有数据待传输时,第二信号不足以满足第二终端的供能需求,第二终端可以通过第一请求信息请求额外的供能信号。
在一些实施例中,所述第一请求信息包括以下中的至少一项:
请求发送的供能信号的时间长度、请求发送的供能信号的发送周期、请求发送的供能信号的强度、请求发送的供能信号的空间信息、所述第二终端的能量采集能力、所述第二终端待传输的业务类型、所述第二终端待传输的业务的持续时间、所述第二终端待传输的业务的数据量、第一指示信息,其中,所述第一指示信息用于指示所述第二终端请求所述第一终端发送供能信号或者用于指示所述第二终端有数据待传输。
可选地,第一指示信息可以为1比特。
可选地,第一请求信息可以是采用反向散射方式发送的。
可选地,第二终端可以利用供能信号作为载波信号进行反向散射,或者,也可以利用专用的载波信号进行反向散射来发送第一请求信息。
在本申请一些实施例中,所述方法200还包括:
所述第一终端基于第三信号发送第四信号,所述第四信号用于给所述第二终端供能,所述第四信号是基于所述第一请求信息发送的,其中,第三信号可以是网络设备或第三终端发送的。
例如,网络设备在接收到第一请求信息的情况下,可以控制第一终端给第二终端供能。例如,网络设备向第一终端发送第三信号,进一步地,第一终端基于第三信号发送第四信号。
又例如,第一终端在接收到第一请求信息的情况下,可以基于网络设备或第三设备的第三信号发送第四信号。
在一些实施例中,第四信号可以认为是额外的供能信号,或者,被动发送的供能信号(例如基于请求的供能信号),或者,按需发送的供能信号。该第四信号可以用于保证第二终端瞬时的供能需求,或者,急需的供能需求等。
在一些实施例中,第四信号可以是基于一定的空间信息发送的。
在一些实施例中,所述第二信号的发送周期大于所述第四信号的发送周期。也就是说,额外供能信号的发送相对于基本供能信号的发送更加频繁,有利于保证第二终端获得足够的用于数据传输的能量。
在一些实施例中,所述第二信号的持续时间小于所述第四信号的持续时间。也就是说,额外供能信号的发送时间相对于基本供能信号的发送时间更长,有利于保证第二终端获得足够的用于数据传输的能量。
在一些实施例中,第四信号的发射功率大于第二信号的发射功率。也就是说,额外供能信号的强度相对于基本供能信号的强度更大,有利于提升第二终端的能量采集效率,保证第二终端获得足够的用于数据传输的能量。
在一些实施例中,第三信号是周期性发送的。
在一些实施例中,第四信号是周期性发送的。
综上,在本申请实施例中,第一终端可以基于网络设备或第三终端发送的第一信号发送第二信号,给第二终端供能,这样,网络设备和一个或多个终端(例如,第一终端,或者,第一终端和第三终端)通过接力的方式给第二终端供能,从而能够扩展供能信号的覆盖范围,提升供能信号到达第二终端处的功率水平,使得供能信号的覆盖范围和前向链路的覆盖范围相匹配。
进一步地,第一终端可以基于第二终端的请求,给第二终端提供额外的供能信号,有利于满足第二终端的瞬时的能量需求。
上文结合图7至图10,详细描述了本申请的方法实施例,下文结合图11至图16,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图11示出了根据本申请实施例的终端设备400的示意性框图。如图11所示,该终端设备400包括:
通信单元410,用于基于第一信号向第二终端发送第二信号,所述第二信号用于给所述第二终端供能,所述第一信号是网络设备或第三终端发送的。
在一些实施例中,所述第二信号是经放大处理的信号。
在一些实施例中,第二信号是所述终端设备对所述第一信号进行放大和反向散射处理发送的。
在一些实施例中,所述第二信号是所述终端设备通过主动发射方式发送的。
在一些实施例中,所述第二信号是所述终端设备基于所述第一信号进行能量采集获得的能量发送的。
在一些实施例中,所述第一信号用于控制所述终端设备发送所述第二信号。
在一些实施例中,所述第二信号的频率和所述第一信号的频率相同。
在一些实施例中,所述第二信号的频率和所述第一信号的频率具有第一频率偏移。
在一些实施例中,所述第二信号是基于第一空间信息发送的。
在一些实施例中,所述通信单元410还用于:
接收网络设备发送的第一信息,所述第一信息用于控制所述终端设备发送所述第二信号。
在一些实施例中,所述第一信息包括以下中的至少一项:
供能信号的空间信息,供能信号的发送时长信息,供能信号的发送功率信息。
在一些实施例中,所述通信单元410还用于:所述终端设备向网络设备发送第二信息,所述第二信息用于指示所述终端设备发送所述第二信号的能力信息。
在一些实施例中,所述第二信息包括以下中的至少一项:
所述终端设备支持发送的供能信号的空间信息;
所述终端设备支持的供能信号的发送时长信息;
所述终端设备支持的供能信号的发送功率信息。
在一些实施例中,所述第一信号是周期性发送的。
在一些实施例中,所述第二信号是周期性发送的。
在一些实施例中,所述通信单元410还用于:
接收所述第二终端的第一请求信息,所述第一请求信息用于请求所述终端设备发送供能信号。
在一些实施例中,所述第一请求信息包括以下中的至少一项:
请求发送的供能信号的时间长度、请求发送的供能信号的发送周期、请求发送的供能信号的强度、请求发送的供能信号的空间信息、所述第二终端的能量采集能力、所述第二终端待传输的业务类型、所述第二终端待传输的业务的持续时间、所述第二终端待传输的业务的数据量、第一指示信息,其中,所述第一指示信息用于指示所述第二终端请求所述终端设备发送供能信号或者用于指示所述第二终端有数据待传输。
在一些实施例中,所述通信单元410还用于:基于第三信号发送第四信号,所述第四信号用于给所述第二终端供能,所述第四信号是基于所述第一请求信息发送的。
在一些实施例中,所述第二信号的发送周期大于所述第四信号的发送周期;和/或
所述第二信号的持续时间小于所述第四信号的持续时间。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上***的输入输出接口。
应理解,根据本申请实施例的终端设备500可对应于本申请方法实施例中的第一终端,并且终端设备500中的各个单元的上述和其它操作和/或功能分别为了实现图7至图10所示方法中第一终端的相应流程,为了简洁,在此不再赘述。
图12示出了根据本申请实施例的网络设备500的示意性框图。如图12所示,该网络设备500包 括:
通信单元510,用于向第一终端发送第一信号,所述第一信号用于所述第一终端发送第二信号,所述第二信号用于给第二终端供能。
在一些实施例中,所述第一信号是周期性发送的。
在一些实施例中,所述通信单元510还用于:
向所述第一终端发送第一信息,所述第一信息用于控制所述第一终端发送所述第二信号。
在一些实施例中,所述第一信息包括以下中的至少一项:
供能信号的空间信息,供能信号的发送时长信息,供能信号的发送功率信息。
在一些实施例中,所述通信单元510还用于:
接收所述第一终端发送的第二信息,所述第二信息用于指示所述第一终端发送所述第二信号的能力信息。
在一些实施例中,所述第二信息包括以下中的至少一项:
所述第一终端支持发送的供能信号的空间信息;
所述第一终端支持的供能信号的发送时长信息;
所述第一终端支持的供能信号的发送功率信息。
在一些实施例中,所述通信单元510还用于:
接收所述第二终端发送的第一请求信息,所述第一请求信息用于请求所述网络设备发送供能信号。
在一些实施例中,所述通信单元510还用于:
向第一终端发送第三信号,所述第三信号用于所述第一终端发送第四信号,所述第四信号用于给第二终端供能。
在一些实施例中,所述第三信号是基于所述第一请求信息发送的。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上***的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备500可对应于本申请方法实施例中的网络设备,并且网络设备500中的各个单元的上述和其它操作和/或功能分别为了实现图7至图10所示方法中网络设备的相应流程,为了简洁,在此不再赘述。
图13示出了根据本申请实施例的终端设备600的示意性框图。如图13所示,该终端设备600包括:
通信单元610,用于向第一终端发送第一请求信息,所述第一请求信息用于请求所述第一终端发送供能信号。
在一些实施例中,所述第一请求信息包括以下中的至少一项:
请求发送的供能信号的时间长度、请求发送的供能信号的发送周期、请求发送的供能信号的强度、请求发送的供能信号的空间信息、所述终端设备的能量采集能力、所述终端设备待传输的业务类型、所述终端设备待传输的业务的持续时间、所述终端设备待传输的业务的数据量、第一指示信息,其中,所述第一指示信息用于指示所述终端设备请求所述第一终端发送供能信号或者用于指示所述终端设备有数据待传输。
在一些实施例中,所述通信单元610还用于:
接收所述第一终端发送的第四信号,所述第四信号用于所述终端设备进行能量采集。
在一些实施例中,所述第四信号是基于所述第一请求信息发送的。
在一些实施例中,所述通信单元610还用于:
接收所述第一终端发送的第二信号,所述第二信号用于所述终端设备进行能量采集。
在一些实施例中,所述第一请求信息是基于对所述第二信号进行能量采集获得的能量发送的。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上***的输入输出接口。
应理解,根据本申请实施例的终端设备600可对应于本申请方法实施例中的第二终端,并且终端设备600中的各个单元的上述和其它操作和/或功能分别为了实现图7至图10所示方法中第二终端的相应流程,为了简洁,在此不再赘述。
图14是本申请实施例提供的一种通信设备700示意性结构图。图14所示的通信设备700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图14所示,通信设备700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,如图14所示,通信设备700还可以包括收发器730,处理器710可以控制该收发器730与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器730可以包括发射机和接收机。收发器730还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备700具体可为本申请实施例的网络设备,并且该通信设备700可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备700具体可为本申请实施例的移动终端/终端设备,并且该通信设备700可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图15是本申请实施例的芯片的示意性结构图。图15所示的芯片800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图41所示,芯片800还可以包括存储器820。其中,处理器810可以从存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
可选地,该芯片800还可以包括输入接口830。其中,处理器810可以控制该输入接口830与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片800还可以包括输出接口840。其中,处理器810可以控制该输出接口840与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
图16是本申请实施例提供的一种通信***900的示意性框图。如图16所示,该通信***900包括网络设备910、第一终端920和第二终端930。
其中,该网络设备910可以用于实现上述方法中由网络设备实现的相应的功能,该第一终端920可以用于实现上述方法中由第一终端实现的相应的功能,以及该第二终端930可以用于实现上述方法中由第二终端实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动 态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的第一终端,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第一终端实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的第二终端,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第二终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的第一终端,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第一终端实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的第二终端,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第二终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的第一终端,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第一终端实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的第二终端,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第二终端实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (44)

  1. 一种无线通信的方法,其特征在于,包括:
    第一终端基于第一信号向第二终端发送第二信号,所述第二信号用于给所述第二终端供能,所述第一信号是网络设备或第三终端发送的。
  2. 根据权利要求1所述的方法,其特征在于,所述第二信号是经放大处理的信号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二信号是所述第一终端对所述第一信号进行放大和反向散射处理发送的。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第二信号是所述第一终端通过主动发射方式发送的。
  5. 根据权利要求4所述的方法,其特征在于,所述第二信号是所述第一终端基于所述第一信号进行能量采集获得的能量发送的。
  6. 根据权利要求4或5所述的方法,其特征在于,所述第一信号用于控制所述第一终端发送所述第二信号。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述第二信号的频率和所述第一信号的频率相同。
  8. 根据权利要求1-6中任一项所述的方法,其特征在于,所述第二信号的频率和所述第一信号的频率具有第一频率偏移。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述第二信号是基于第一空间信息发送的。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端接收网络设备发送的第一信息,所述第一信息用于控制所述第一终端发送所述第二信号。
  11. 根据权利要求10所述的方法,其特征在于,所述第一信息包括以下中的至少一项:
    供能信号的空间信息,供能信号的发送时长信息,供能信号的发送功率信息。
  12. 根据权利要求1-11中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端向网络设备发送第二信息,所述第二信息用于指示所述第一终端发送所述第二信号的能力信息。
  13. 根据权利要求12所述的方法,其特征在于,所述第二信息包括以下中的至少一项:
    所述第一终端支持发送的供能信号的空间信息;
    所述第一终端支持的供能信号的发送时长信息;
    所述第一终端支持的供能信号的发送功率信息。
  14. 根据权利要求1-13中任一项所述的方法,其特征在于,所述第一信号是周期性发送的。
  15. 根据权利要求1-14中任一项所述的方法,其特征在于,所述第二信号是周期性发送的。
  16. 根据权利要求1-15中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端接收所述第二终端的第一请求信息,所述第一请求信息用于请求所述第一终端发送供能信号。
  17. 根据权利要求16所述的方法,其特征在于,所述第一请求信息包括以下中的至少一项:
    请求发送的供能信号的时间长度、请求发送的供能信号的发送周期、请求发送的供能信号的强度、请求发送的供能信号的空间信息、所述第二终端的能量采集能力、所述第二终端待传输的业务类型、所述第二终端待传输的业务的持续时间、所述第二终端待传输的业务的数据量、第一指示信息,其中,所述第一指示信息用于指示所述第二终端请求所述第一终端发送供能信号或者用于指示所述第二终端有数据待传输。
  18. 根据权利要求16或17中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端基于第三信号发送第四信号,所述第四信号用于给所述第二终端供能,所述第四信号是基于所述第一请求信息发送的。
  19. 根据权利要求18所述的方法,其特征在于,
    所述第二信号的发送周期大于所述第四信号的发送周期;和/或
    所述第二信号的持续时间小于所述第四信号的持续时间。
  20. 一种无线通信的方法,其特征在于,包括:
    网络设备向第一终端发送第一信号,所述第一信号用于所述第一终端发送第二信号,所述第二信号用于给第二终端供能。
  21. 根据权利要求20所述的方法,其特征在于,所述第一信号是周期性发送的。
  22. 根据权利要求20或21所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述第一终端发送第一信息,所述第一信息用于控制所述第一终端发送所述第二信号。
  23. 根据权利要求22所述的方法,其特征在于,所述第一信息包括以下中的至少一项:
    供能信号的空间信息,供能信号的发送时长信息,供能信号的发送功率信息。
  24. 根据权利要求20-23中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述第一终端发送的第二信息,所述第二信息用于指示所述第一终端发送所述第二信号的能力信息。
  25. 根据权利要求24所述的方法,其特征在于,所述第二信息包括以下中的至少一项:
    所述第一终端支持发送的供能信号的空间信息;
    所述第一终端支持的供能信号的发送时长信息;
    所述第一终端支持的供能信号的发送功率信息。
  26. 根据权利要求20-25中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述第二终端发送的第一请求信息,所述第一请求信息用于请求所述网络设备发送供能信号。
  27. 根据权利要求26所述的方法,其特征在于,所述方法还包括:
    所述网络设备向第一终端发送第三信号,所述第三信号用于所述第一终端发送第四信号,所述第四信号用于给第二终端供能。
  28. 根据权利要求27所述的方法,其特征在于,所述第三信号是基于所述第一请求信息发送的。
  29. 一种无线通信的方法,其特征在于,包括:
    第二终端向第一终端发送第一请求信息,所述第一请求信息用于请求所述第一终端发送供能信号。
  30. 根据权利要求29所述的方法,其特征在于,所述第一请求信息包括以下中的至少一项:
    请求发送的供能信号的时间长度、请求发送的供能信号的发送周期、请求发送的供能信号的强度、请求发送的供能信号的空间信息、所述第二终端的能量采集能力、所述第二终端待传输的业务类型、所述第二终端待传输的业务的持续时间、所述第二终端待传输的业务的数据量、第一指示信息,其中,所述第一指示信息用于指示所述第二终端请求所述第一终端发送供能信号或者用于指示所述第二终端有数据待传输。
  31. 根据权利要求29或30所述的方法,其特征在于,所述方法还包括:
    所述第二终端接收所述第一终端发送的第四信号,所述第四信号用于所述第二终端进行能量采集。
  32. 根据权利要求31所述的方法,其特征在于,所述第四信号是基于所述第一请求信息发送的。
  33. 根据权利要求29-32中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二终端接收所述第一终端发送的第二信号,所述第二信号用于所述第二终端进行能量采集。
  34. 根据权利要求33所述的方法,其特征在于,所述第一请求信息是基于对所述第二信号进行能量采集获得的能量发送的。
  35. 一种终端设备,其特征在于,包括:
    通信单元,用于基于第一信号向第二终端发送第二信号,所述第二信号用于给所述第二终端供能,所述第一信号是网络设备或第三终端发送的。
  36. 一种网络设备,其特征在于,包括:
    通信单元,用于向第一终端发送第一信号,所述第一信号用于所述第一终端发送第二信号,所述第二信号用于给第二终端供能。
  37. 一种终端设备,其特征在于,包括:
    通信单元,用于向第一终端发送第一请求信息,所述第一请求信息用于请求所述第一终端发送供能信号。
  38. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至19中任一项所述的方法。
  39. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求20至28中任一项所述的方法。
  40. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求29至34中任一项所述的方法。
  41. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至19中任一项所述的方法,或如权利要求20至28中任一项所述的方法,或如权利要求29至34中任一项所述的方法。
  42. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至19中任一项所述的方法,或如权利要求20至28中任一项所述的方法,或如权利要求29至34中任一项所述的方法。
  43. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至19中任一项所述的方法,或如权利要求20至28中任一项所述的方法,或如权利要求29至34中任一项所述的方法。
  44. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至19中任一项所述的方法,或如权利要求20至28中任一项所述的方法,或如权利要求29至34中任一项所述的方法。
PCT/CN2022/123333 2022-09-30 2022-09-30 无线通信的方法和设备 WO2024065700A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/123333 WO2024065700A1 (zh) 2022-09-30 2022-09-30 无线通信的方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/123333 WO2024065700A1 (zh) 2022-09-30 2022-09-30 无线通信的方法和设备

Publications (1)

Publication Number Publication Date
WO2024065700A1 true WO2024065700A1 (zh) 2024-04-04

Family

ID=90475650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123333 WO2024065700A1 (zh) 2022-09-30 2022-09-30 无线通信的方法和设备

Country Status (1)

Country Link
WO (1) WO2024065700A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021164024A1 (zh) * 2020-02-21 2021-08-26 Oppo广东移动通信有限公司 物品定位方法、终端、无源rfid标签及rfid读卡器
CN114080065A (zh) * 2020-08-10 2022-02-22 维沃移动通信有限公司 非连续发送方法、信号发送处理方法及相关设备
CN114374406A (zh) * 2020-10-14 2022-04-19 维沃移动通信有限公司 信号发送和信号接收方法、终端及通信设备
CN114698071A (zh) * 2020-12-31 2022-07-01 维沃移动通信有限公司 能量提供方法、装置及通信设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021164024A1 (zh) * 2020-02-21 2021-08-26 Oppo广东移动通信有限公司 物品定位方法、终端、无源rfid标签及rfid读卡器
CN114080065A (zh) * 2020-08-10 2022-02-22 维沃移动通信有限公司 非连续发送方法、信号发送处理方法及相关设备
CN114374406A (zh) * 2020-10-14 2022-04-19 维沃移动通信有限公司 信号发送和信号接收方法、终端及通信设备
CN114698071A (zh) * 2020-12-31 2022-07-01 维沃移动通信有限公司 能量提供方法、装置及通信设备

Similar Documents

Publication Publication Date Title
WO2023272442A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023122975A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024065700A1 (zh) 无线通信的方法和设备
WO2023015572A1 (zh) 无线通信的方法和设备
WO2024082267A1 (zh) 无线通信的方法和设备
WO2024065267A1 (zh) 无线通信的方法和设备
WO2024007312A1 (zh) 无线通信的方法和终端设备
WO2023019571A1 (zh) 无线通信的方法和设备
WO2024148511A1 (zh) 无线通信的方法和设备
WO2023193192A1 (zh) 无线通信的方法及设备
WO2023024073A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023283758A1 (zh) 无线通信方法、终端设备和通信设备
WO2024040403A1 (zh) 无线通信的方法和设备
WO2023070260A1 (zh) 无线通信的方法及设备
WO2024098424A1 (zh) 无线通信的方法及设备
WO2023193255A1 (zh) 无线通信的方法和设备
WO2024026771A1 (zh) 接入认证的方法和设备
WO2023236144A1 (zh) 无线通信的方法和设备
WO2023283757A1 (zh) 无线通信方法、终端设备和通信设备
WO2023141974A1 (zh) 通讯状态的指示方法、终端设备和网络设备
WO2023004747A1 (zh) 无线通信方法、终端设备和网络设备
WO2024040402A1 (zh) 无线通信的方法和设备
WO2024098404A1 (zh) 无线通信的方法和设备
WO2023065336A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023000231A1 (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960319

Country of ref document: EP

Kind code of ref document: A1