WO2023122975A1 - 无线通信的方法、终端设备和网络设备 - Google Patents

无线通信的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2023122975A1
WO2023122975A1 PCT/CN2021/142142 CN2021142142W WO2023122975A1 WO 2023122975 A1 WO2023122975 A1 WO 2023122975A1 CN 2021142142 W CN2021142142 W CN 2021142142W WO 2023122975 A1 WO2023122975 A1 WO 2023122975A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
signal
target cell
trigger
terminal
Prior art date
Application number
PCT/CN2021/142142
Other languages
English (en)
French (fr)
Inventor
左志松
崔胜江
徐伟杰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/142142 priority Critical patent/WO2023122975A1/zh
Publication of WO2023122975A1 publication Critical patent/WO2023122975A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/08Interfaces between hierarchically different network devices between user and terminal device

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, relate to a wireless communication method, a terminal device, and a network device.
  • the embodiment of the present application provides a wireless communication method, terminal equipment, and network equipment.
  • registration and/or deregistration can be used to restrict The number of terminal multiplexing can solve the congestion problem caused by a large number of terminals simultaneously backscattering responses.
  • a wireless communication method includes:
  • the terminal device receives the first signal
  • the first signal is used to trigger the terminal device to register, or the first signal is used to trigger the terminal device to log out; the terminal device obtains energy through energy harvesting for communication and information collection and processing.
  • a wireless communication method in a second aspect, includes:
  • the network device sends a first signal to the terminal device
  • the first signal is used to trigger the terminal device to register, or the first signal is used to trigger the terminal device to log out; the terminal device obtains energy through energy harvesting for communication and information collection and processing.
  • a terminal device configured to execute the method in the first aspect above.
  • the terminal device includes a functional module for executing the method in the first aspect above.
  • a network device configured to execute the method in the second aspect above.
  • the network device includes a functional module for executing the method in the second aspect above.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to invoke and run the computer program stored in the memory to execute the method in the first aspect above.
  • a sixth aspect provides a network device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect above.
  • an apparatus for implementing the method in any one of the first aspect to the second aspect above.
  • the device includes: a processor, configured to invoke and run a computer program from the memory, so that the device installed with the device executes the method in any one of the above first to second aspects.
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method in any one of the above-mentioned first aspect to the second aspect.
  • a computer program product including computer program instructions, the computer program instructions causing a computer to execute the method in any one of the above first to second aspects.
  • a computer program which, when running on a computer, causes the computer to execute the method in any one of the above first to second aspects.
  • the network device triggers the terminal device to register or logout through the first signal, that is, the embodiment of the present application can limit the multiplexing of the terminal by registering and/or logging out in the case of limited multiplexing wireless resources. Quantity, so as to solve the congestion problem caused by a large number of terminals backscattering responses at the same time.
  • FIG. 1 is a schematic diagram of a communication system architecture applied in the present application.
  • Fig. 2 is a schematic diagram of an example zero-power communication system provided by the present application.
  • Fig. 3 is a schematic diagram of energy harvesting provided by the present application.
  • Fig. 4 is a schematic diagram of backscatter communication provided by the present application.
  • Fig. 5 is a circuit schematic diagram of resistive load modulation provided by the present application.
  • FIG. 6 is a schematic diagram of symmetrical frequency-shifted reflections generated in the transmitting frequency domain provided by the present application.
  • Fig. 7 is a schematic diagram of an energizing signal and a backscattering signal provided in the present application.
  • Fig. 8 is a schematic interaction flowchart of a wireless communication method provided according to an embodiment of the present application.
  • Fig. 9 is a schematic diagram of cell registration provided according to an embodiment of the present application.
  • Fig. 10 is a schematic diagram of resources of backscatter signals of multiple terminals provided according to an embodiment of the present application.
  • Fig. 11 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
  • Fig. 12 is a schematic block diagram of a network device provided according to an embodiment of the present application.
  • Fig. 13 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Fig. 14 is a schematic block diagram of a device provided according to an embodiment of the present application.
  • Fig. 15 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunications System
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • 5G fifth-generation communication
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in the embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, may also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and may also be applied to an independent (Standalone, SA) deployment Web scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent deployment Web scene
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where, Licensed spectrum can also be considered as non-shared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA , or a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite or a balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
  • the network device may also be a base station installed on land, water, and other locations.
  • the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device ( For example, a cell corresponding to a base station), the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell), and the small cell here may include: a metro cell (Metro cell), a micro cell (Micro cell), a pico cell ( Pico cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the transmission resources for example, frequency domain resources, or spectrum resources
  • the cell may be a network device (
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell)
  • the small cell here may include: a metro cell (Metro cell), a micro cell (Micro
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital assistant (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved Public Land Mobile Network (PLMN) network, terminal equipment in the cellular Internet of Things, terminal equipment in the cellular passive Internet of Things, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal Equipment
  • wireless terminal equipment in industrial control wireless terminal equipment in self driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • wireless terminal equipment in transportation safety wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device for communicating with a terminal device 120 (or called a communication terminal, terminal).
  • the network device 110 can provide communication coverage for a specific geographical area, and can communicate with terminal devices located in the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. This application The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include a network equipment 110 and a terminal equipment 120 with communication functions.
  • the network equipment 110 and the terminal equipment 120 may be the specific equipment described above, and will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • predefined or “preconfigured” can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • the application does not limit its specific implementation.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the field of communication, for example, it may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, or the Internet of Things protocol. No limit.
  • RFID Radio Frequency Identification
  • RFID tags are also called “radio frequency tags” or “electronic tags”.
  • the types of electronic tags can be divided into active electronic tags, passive electronic tags and semi-passive electronic tags.
  • Active electronic tags also known as active electronic tags, refer to the energy provided by the built-in battery of the electronic tag. Different from the passive radio frequency activation method, the tag can actively send information in the set frequency band.
  • Passive electronic tags also known as passive electronic tags, do not support built-in batteries.
  • the electronic tag antenna in the near field formed by the radiation of the reader antenna generates an induced current through electromagnetic induction, and the induced current drives the chip circuit of the electronic tag.
  • the chip circuit sends the identification information stored in the tag to the reader through the electronic tag antenna.
  • Semi-active electronic tags inherit the advantages of small size, light weight, low price and long service life of passive electronic tags.
  • the built-in battery supplies power to the RFID chip to increase the reading and writing distance of the tag and improve the reliability of communication.
  • the most basic RFID system is composed of electronic tags (TAG) and readers (Reader/Writer) two parts.
  • Electronic tag It is composed of coupling components and chips. Each electronic tag has a unique electronic code, which is placed on the measured target to achieve the purpose of marking the target object.
  • Reader It can not only read the information on the electronic tag, but also write the information on the electronic tag, and at the same time provide the electronic tag with the energy required for communication. as shown in picture 2. After the electronic tag enters the electromagnetic field, it receives the radio frequency signal sent by the reader. The passive electronic tag or passive electronic tag uses the energy obtained by the electromagnetic field generated in the space to transmit the information stored in the electronic tag. The reader reads the information and performs Decode to identify the electronic tag.
  • RFID is a zero-power communication.
  • This type of key technology for zero-power communication includes energy harvesting and backscatter communication as well as low-power computing.
  • a typical zero-power communication system includes a reader and a zero-power terminal.
  • the reader emits radio waves to provide energy to zero-power terminals.
  • the energy harvesting module installed in the zero-power terminal can collect the energy carried by the radio wave in the space (the radio wave emitted by the reader is shown in Figure 2), which is used to drive the low-power computing module and the zero-power terminal Enables backscatter communication.
  • the zero-power consumption terminal After the zero-power consumption terminal obtains energy, it can receive the control command of the reader and send data to the reader based on the backscattering method based on the control signaling.
  • the sent data may come from the data stored by the zero-power terminal itself (such as an identity or pre-written information, such as the production date, brand, manufacturer, etc. of the commodity).
  • the zero-power terminal can also be loaded with various sensors, so as to report the data collected by various sensors based on the zero-power mechanism.
  • Zero-power communication uses energy harvesting and backscatter communication technologies.
  • the zero-power communication network consists of network devices and zero-power terminals. As shown in Figure 2, the network device is used to send wireless power supply signals to zero-power terminals, downlink communication signals and receive backscattered signals from zero-power terminals.
  • a basic zero-power terminal includes an energy harvesting module, a backscatter communication module, and a low-power computing module.
  • the zero-power consumption terminal can also have a memory or a sensor for storing some basic information (such as item identification, etc.) or obtaining sensing data such as ambient temperature and ambient humidity.
  • the radio frequency energy collection module realizes the collection of space electromagnetic wave energy based on the principle of electromagnetic induction, and then obtains the energy required to drive zero-power terminals, such as driving low-power demodulation and modulation modules, sensors and memory read, etc. Therefore, zero-power terminals do not require traditional batteries.
  • the zero-power terminal receives the carrier signal sent by the network device, modulates the carrier signal, loads the information to be sent, and radiates the modulated signal from the antenna.
  • This information transmission process is called for backscatter communication.
  • Backscatter and load modulation functions are inseparable.
  • Load modulation adjusts and controls the circuit parameters of the oscillation circuit of the zero-power terminal according to the beat of the data flow, so that the parameters such as the impedance of the electronic tag change accordingly, thereby completing the modulation process.
  • the load modulation technology mainly includes resistive load modulation and capacitive load modulation.
  • the load In resistive load modulation, the load is connected in parallel with a resistor that is switched on or off based on the control of the binary data stream, as shown in Figure 5.
  • the on-off of the resistance will lead to the change of the circuit voltage, so the amplitude keying modulation (ASK) is realized, that is, the modulation and transmission of the signal is realized by adjusting the amplitude of the backscattering signal of the zero-power terminal.
  • ASK amplitude keying modulation
  • FSK frequency keying modulation
  • zero-power terminal performs information modulation on the incoming signal by means of load modulation, thereby realizing the backscatter communication process. Therefore, zero-power terminals have significant advantages:
  • the terminal does not actively transmit signals, so there is no need for complex radio frequency links, such as PAs, radio frequency filters, etc.;
  • the terminal does not need to actively generate high-frequency signals, so high-frequency crystal oscillators are not required;
  • RFID systems typically use one of the following encoding methods: reverse non-return-to-zero (NRZ) encoding, Manchester encoding, unipolar return-to-zero (Unipolar RZ) encoding, differential biphase (DBP) encoding, Differential encoding, pulse interval encoding (PIE), two-way spatial encoding (FM0), Miller (Miller) encoding and differential encoding, etc.
  • NRZ reverse non-return-to-zero
  • Manchester encoding Manchester encoding
  • unipolar return-to-zero (Unipolar RZ) encoding unipolar return-to-zero
  • DBP differential biphase
  • Differential encoding Differential encoding
  • PIE pulse interval encoding
  • FM0 two-way spatial encoding
  • Miller (Miller) encoding and differential encoding
  • zero-power terminals can be divided into passive zero-power terminals, semi-passive zero-power terminals, and active zero-power terminals based on the energy sources and usage methods of zero-power terminals.
  • the zero-power terminal does not need a built-in battery.
  • the zero-power terminal When the zero-power terminal is close to a network device (such as a reader of an RFID system), the zero-power terminal is within the near-field range formed by the antenna radiation of the network device. Therefore, the antenna of the zero-power terminal generates an induced current through electromagnetic induction, and the induced current drives the low-power chip circuit of the zero-power terminal. Realize the demodulation of the forward link signal and the signal modulation of the reverse link. For the backscatter link, the zero-power terminal uses the backscatter implementation to transmit signals.
  • the passive zero-power terminal does not need a built-in battery to drive it, whether it is a forward link or a reverse link, and is a real zero-power terminal.
  • Passive zero-power terminals do not require batteries, and the RF circuit and baseband circuit are very simple, such as low-noise amplifier (LNA), power amplifier (PA), crystal oscillator, and analog-to-digital converter (Analog-to-Digital Converter, ADC). And other devices, so it has many advantages such as small size, light weight, very cheap price, and long service life.
  • LNA low-noise amplifier
  • PA power amplifier
  • ADC analog-to-digital converter
  • the semi-passive zero-power terminal itself does not install a conventional battery, but it can use the RF energy harvesting module to collect radio wave energy, and store the collected energy in an energy storage unit (such as a capacitor). After the energy storage unit obtains energy, it can drive the low-power chip circuit of the zero-power terminal. Realize the demodulation of the forward link signal and the signal modulation of the reverse link. For the backscatter link, the zero-power terminal uses the backscatter implementation to transmit signals.
  • the semi-passive zero-power terminal does not need a built-in battery to drive either the forward link or the reverse link.
  • the energy stored in the capacitor is used in the work, the energy comes from the radio collected by the energy harvesting module. Energy, so it is also a true zero-power terminal.
  • Semi-passive zero-power terminals inherit many advantages of passive zero-power terminals, so they have many advantages such as small size, light weight, very cheap price, and long service life.
  • the zero-power terminals used in some scenarios can also be active zero-power terminals, and such terminals can have built-in batteries.
  • the battery is used to drive the low-power chip circuit of the zero-power terminal. Realize the demodulation of the forward link signal and the signal modulation of the reverse link. But for the backscatter link, the zero-power terminal uses the backscatter implementation to transmit the signal. Therefore, the zero power consumption of this type of terminal is mainly reflected in the fact that the signal transmission of the reverse link does not require the power of the terminal itself, but uses backscattering.
  • Active zero-power consumption terminal built-in battery powers the RFID chip to increase the reading and writing distance of the tag and improve the reliability of communication. Therefore, it can be applied in some scenarios that require relatively high communication distance and read delay.
  • RSS positioning technology is a kind of method to achieve positioning based on the variation of signal strength with propagation distance.
  • the core of its positioning is to determine the target position according to the signal strength received by multiple reference nodes from the same target source.
  • RSS positioning technology is currently widely used in indoor positioning.
  • the traditional RSS positioning technology based on the geometric measurement method first needs to measure the signal strength RSS of the target received by each monitoring node, and then reversely calculate the propagation distance d between each node and the target according to the signal transmission attenuation model, and then estimate the signal source to be located relative geographic location.
  • passive IoT devices With the increase of 5G industry applications, there will be more and more types of connected objects and application scenarios, and there will be higher requirements for the price and power consumption of communication terminals.
  • the application of battery-free and low-cost passive IoT devices has become a key technology of cellular IoT, enriching the types and quantities of 5G network link terminals, and truly realizing the Internet of Everything.
  • passive IoT devices can be applied to cellular IoT based on existing zero-power consumption devices.
  • Subcarrier modulation means that the signal is first modulated on carrier 1, and for some reason, it is decided to perform another modulation, and then use this result to modulate another carrier 2 with a higher frequency.
  • Subcarrier modulation is a modulation method often used in RFID systems.
  • the zero-power terminal In a cellular network, traditional terminal equipment requires battery power. To introduce a zero-power terminal into a cellular network, it is necessary to provide an energy supply signal through a base station or other sources for the zero-power device to obtain energy.
  • the zero-power terminal provides a trigger signal and energy through a downlink (downlink, DL) frequency. The information is fed back to the base station at the uplink (UL) frequency by back scattering.
  • the transmit frequency domain will produce symmetrical frequency shift reflections, and only one of the frequency points will be picked up by techniques such as filters.
  • the existing RFID technology does not fully support the consideration of the time domain structure of the uplink and downlink of the cellular network.
  • the cellular network can flexibly configure resources of different frequencies.
  • the base station transmits signals on DL resources, and the corresponding terminal should transmit signals on UL resources.
  • DL and UL are separated by frequency.
  • the UL multiple terminals in the network reflect signals, and the multiplexing of multiple terminals becomes a key point. How to enable different terminals to occupy different resources, such as different positions in the time domain, frequency domain or even code domain, is a problem that needs to be solved.
  • this application proposes a solution to limit the number of multi-user multiplexing.
  • the number of terminal multiplexes can solve the congestion problem caused by a large number of simultaneous backscatter responses.
  • the signal for power supply in the cellular network and the signal for information transmission may be two signals or one signal.
  • the two signals may not be sent in the same frequency band, or may be sent in the same frequency point.
  • the base station of the cellular network continuously or intermittently sends the power supply signal in a certain frequency band, which is a continuous wave (Continuous wave, CW), such as a sine wave.
  • Zero-power terminals perform energy harvesting. After the zero-power consumption terminal obtains energy, it can perform corresponding functions such as signal reception, signal reflection, and measurement. In zero-power communication, the terminal performs backscatter communication by modulating the energy supply signal.
  • FIG. 8 is a schematic diagram of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 8 , the wireless communication method 200 includes at least part of the following:
  • the network device sends a first signal to the terminal device; where the first signal is used to trigger the terminal device to register, or the first signal is used to trigger the terminal device to log out; the terminal device obtains energy through energy harvesting For communication and information collection and processing;
  • the terminal device receives the first signal.
  • the terminal device obtains energy through energy collection for communication, information collection and processing. That is, before the network device communicates with the terminal device, it is first necessary to ensure that the terminal device receives radio waves for wireless energy supply and obtains wireless energy through energy harvesting.
  • This application mainly provides registration and deregistration methods to manage multiple zero-power terminals and control the number of terminals that respond at the same time. Specifically, for example, multiple zero-power terminals in the target cell are managed through registration and deregistration, and the number of terminals responding simultaneously in the target cell is controlled.
  • the terminal device is a zero-power consumption terminal. It should be understood that the present application does not limit the specific manner in which the terminal device obtains energy through energy harvesting. As an example but not a limitation, the terminal device may obtain energy through wireless energy supply methods such as radio frequency signals, solar energy, pressure or temperature.
  • the first signal may also be referred to as a trigger signal.
  • the terminal device may receive the first signal sent by the network device on a downlink channel.
  • the first signal is an energy supply signal of the terminal device. That is, the terminal device may obtain energy based on the first signal, and be triggered by the first signal to perform registration or deregistration.
  • the terminal device obtains energy through the energy supply signal continuously sent by the network device.
  • the continuously sent energy supply signal is a constant-amplitude continuous wave signal.
  • the energy required by the terminal device to send the first signal is obtained through energy harvesting.
  • the terminal device when the first signal is used to trigger the terminal device to register, the terminal device performs a registration operation.
  • the terminal device may send a signal for feeding back whether the registration is successful or not in a backscattering manner, which is not limited in the present application.
  • the terminal device when the first signal is used to trigger the terminal device to log out, the terminal device performs a logout operation. In this case, the terminal device may send a signal for feeding back whether the deregistration is successful through backscattering, or may not give feedback, which is not limited in the present application.
  • the first signal carries an identifier of the target cell. That is, the first signal is used to trigger the terminal device to register in the target cell, or the first signal is used to trigger the terminal device to log out in the target cell.
  • a large number of terminals are restricted from sending response reflection signals at the same time by triggering terminal registration and deregistration in the target cell.
  • the uplink and downlink time-domain multiplexing structure of the reflected response signal is the basis of multi-user detection. There are many zero-power devices introduced into cell registration, and users can be effectively managed and identified in a specific area (ie, the target cell).
  • the first signal carries the identity of the target cell through one of the following modulation methods: amplitude modulation, phase modulation, and frequency modulation. That is, the first signal may carry the identity of the target cell in a coding and modulation manner.
  • the terminal device determines whether to register or deregister in the target cell according to its stored registration information and the first signal.
  • the terminal device determines to register in the target cell, or the terminal device determines not to log out in the target cell.
  • the terminal device determines to register in the target cell.
  • the terminal device determines not to log out in the target cell.
  • the terminal device determines not to register in the target cell, or the terminal device determines to log out in the target cell.
  • the terminal device determines not to register in the target cell.
  • the terminal device determines to log out in the target cell.
  • the terminal device sends a second signal in a backscattering manner; wherein, the second signal is used to instruct the terminal device to determine to register or log out in the target cell, and the second signal carries the The identification of the end device.
  • the second signal carries the identifier of the terminal device through one of the following modulation methods: amplitude modulation, phase modulation, and frequency modulation. That is, the second signal may carry the identifier of the terminal device in a coding and modulation manner.
  • the terminal device in case the second signal is used to indicate that the terminal device is determined to register in the target cell, the terminal device receives a signal indicating a registration confirmation.
  • the terminal device in case the second signal is used to indicate that the terminal device determines to log out in the target cell, the terminal device receives a signal indicating a logout confirmation.
  • the terminal device receives a trigger signal sent by the network device at a downlink frequency point, where the trigger signal carries a cell identity (Identity, ID).
  • the terminal decides whether to register or not according to its stored registration information.
  • the terminal determines to register in the cell, the terminal sends a signal for instructing the terminal to determine to register in the cell through backscattering, carrying the terminal ID.
  • the terminal receives a registration confirmation signal from the network.
  • the terminal when the terminal has registered with the cell, the terminal sends a signal instructing the terminal to register in the cell through backscattering, carrying the terminal ID.
  • the signal sent by the terminal through the backscattering method does not carry the terminal ID.
  • the first signal carries the identity of the target cell, and when the first signal is used to trigger the terminal device to register, the terminal device receives M 1 first-type signals, and the M The first-type signals in one first-type signal are all used to trigger the terminal device to register, and M 1 is a positive integer; the terminal device performs a registration operation in the target cell, and the terminal device does not feedback whether the registration is successful. That is, the first signal is equal to one first-type signal among the M 1 first-type signals. In other words, the network equipment sends M 1 +1 first-type signals in total. In this case, the first type of signal may be a mandatory registration signal.
  • M 1 +1 ⁇ the first threshold.
  • the first threshold is stipulated by a protocol, or the first threshold is configured by a network device.
  • the first signal carries the identity of the target cell, and when the first signal is used to trigger the terminal device to log off, the terminal device receives N 1 signals of the second type, and the N The second-type signals in one second-type signal are used to trigger the terminal device to log out, and N 1 is a positive integer; the terminal device performs a log-out operation in the target cell, and the terminal device does not feedback whether the log-out is successful. That is, the first signal is equal to one second-type signal among the N 1 second-type signals. In other words, the network equipment sends N 1 +1 second-type signals in total. In this case, the second type of signal may be a forced logout signal.
  • N 1 +1 ⁇ the second threshold.
  • the second threshold is stipulated by a protocol, or the second threshold is configured by a network device.
  • the ID of the target cell successfully deciphered overwrites the original stored cell ID.
  • the terminal device receives the logout trigger signal sent by the network device. After receiving the logout trigger signal, the terminal device logs out and deletes the target cell ID.
  • the terminal device when the first signal is used to trigger the terminal device to register, the terminal device receives M 2 first-type signals, and the first-type signals in the M 2 first-type signals are all It is used to trigger the terminal device to register, M 2 is a positive integer; and the terminal device performs a registration operation, and the terminal device does not feedback whether the registration is successful. That is, the first signal is equal to one first-type signal in the M 2 first-type signals. In other words, the network equipment sends M 2 +1 first-type signals in total. In this case, the first type of signal may be a mandatory registration signal.
  • the third threshold is stipulated by a protocol, or the third threshold is configured by a network device.
  • the terminal device when the first signal is used to trigger the terminal device to log off, the terminal device receives N 2 second-type signals, and the second-type signals in the N 2 second-type signals are all It is used to trigger the terminal device to log out, and N 2 is a positive integer; the terminal device performs a logout operation, and the terminal device does not feedback whether the logout is successful. That is, the first signal is equal to one second-type signal among the N 2 second-type signals. In other words, the network equipment sends N 2 +1 second-type signals in total. In this case, the second type of signal may be a forced logout signal.
  • N 2 +1 ⁇ the fourth threshold.
  • the fourth threshold is stipulated by a protocol, or the fourth threshold is configured by a network device.
  • the resources occupied by the signals sent by multiple terminal devices in the backscattering manner are the same, or the resources occupied by the signals sent by the multiple terminal devices in the backscattering manner are different; wherein, the multiple terminals
  • the device includes at least the terminal device.
  • the resource granularity includes at least one of the following: time domain, frequency domain and code domain.
  • the terminal device determines the time-frequency at which to send signals again through backscattering according to a random number generated by its random function resource location.
  • the resource granularity includes at least one of the following: time domain, frequency domain and code domain. That is, a terminal device among the plurality of terminal devices may use a random back-off method to determine a time-frequency resource position for sending a signal in a backscattering method again.
  • the terminal device determines whether to use backscatter Send a signal to the scatter mode.
  • the resource granularity includes at least one of the following: time domain, frequency domain and code domain. That is, a terminal device among the plurality of terminal devices may determine whether to send a signal in a backscatter manner by using a dichotomy method. Whether to register can be determined by sending multiple times.
  • the embodiment of the present application is used for multi-terminal registration management in a cell. It can also be used for multi-terminal registration management in a multi-cell network and roaming maintenance for terminals.
  • a backscatter communication energy source may be performed based on a third party energizing signal.
  • energy supply and triggering can also be integrated and sent as one node, or synthesized as one signal. This application is not limited to this.
  • the embodiment of the present application mainly solves the multiplexing of multiple users in a time-division structure, and can also use frequency division, code division, and backscatter communication processing combined in multiple ways.
  • the network device triggers the terminal device to register or logout through the first signal, that is, the embodiment of the present application can limit the The number of terminal multiplexing can solve the congestion problem caused by a large number of simultaneous backscatter responses.
  • the embodiment of the present application overcomes the limitation of terminal multiplexing in the existing zero-power communication technology, and solves the congestion problem of simultaneous backscatter responses from a large number of terminals in a cell.
  • the terminal device can effectively use limited time domain and frequency domain resources.
  • the number of reflected users is limited through terminal registration and storage. It can also greatly reduce the detection time of multiple users.
  • the time-domain structure of multiplexing users in the embodiment of the present application can overcome errors in timing/frequency/phase of terminals with zero power consumption. It can also overcome problems such as inconsistent timing advances of multiple users.
  • each terminal when a small number of multi-user time-frequency location conflicts occur, each terminal is identified and registered through further multi-user conflict resolution. Guarantee the effectiveness of reuse.
  • Fig. 11 shows a schematic block diagram of a terminal device 300 according to an embodiment of the present application.
  • the terminal device 300 includes:
  • a communication unit 310 configured to receive a first signal
  • the first signal is used to trigger the terminal device to register, or the first signal is used to trigger the terminal device to log out; the terminal device obtains energy through energy harvesting for communication and information collection and processing.
  • the first signal carries an identifier of the target cell.
  • the first signal carries the identity of the target cell through one of the following modulation methods: amplitude modulation, phase modulation, and frequency modulation.
  • the terminal device 300 also includes:
  • the processing unit 320 is configured to determine whether to register or deregister in the target cell according to the stored registration information and the first signal.
  • the processing unit 320 is specifically used for:
  • the registration information indicates that the terminal device is not registered in the target cell, determine to register in the target cell, or determine not to log out in the target cell; or,
  • the registration information indicates that the terminal device has registered in the target cell, it is determined not to register in the target cell, or the terminal device is determined to log out in the target cell.
  • the communication unit 310 is also configured to send the second signal through backscattering
  • the second signal is used to instruct the terminal equipment to determine to register or deregister in the target cell, and the second signal carries the identifier of the terminal equipment.
  • the second signal carries the identifier of the terminal device through one of the following modulation methods: amplitude modulation, phase modulation, and frequency modulation.
  • the communication unit 310 when the second signal is used to indicate that the terminal device is determined to register in the target cell, the communication unit 310 is further configured to receive a signal indicating registration confirmation; or,
  • the communication unit 310 is further configured to receive a signal used to indicate a logout confirmation.
  • the terminal device 300 further includes: a processing unit 320;
  • the communication unit 310 is further configured to receive M 1 first-type signals, and the first-type signals in the M 1 first-type signals are all used for Trigger the terminal device to register, M 1 is a positive integer;
  • the processing unit 320 is configured to perform a registration operation in the target cell, and the terminal device does not feed back whether the registration is successful.
  • M 1 +1 ⁇ the first threshold.
  • the terminal device 300 further includes: a processing unit 320;
  • the communication unit 310 is further configured to receive N 1 second-type signals, and the second-type signals in the N 1 second-type signals are all used for Trigger the terminal device to log out, N 1 is a positive integer;
  • the processing unit 320 is configured to perform a deregistration operation in the target cell, and the terminal device does not feed back whether the deregistration is successful.
  • N 1 +1 ⁇ the second threshold.
  • the terminal device 300 further includes: a processing unit 320;
  • the communication unit 310 is further configured to receive M 2 first-type signals, and the first-type signals in the M 2 first-type signals are all used for Trigger the terminal device to register, M 2 is a positive integer;
  • the processing unit 320 is configured to perform a registration operation, and the terminal device does not feed back whether the registration is successful.
  • the terminal device 300 further includes: a processing unit 320;
  • the communication unit 310 is further configured to receive N 2 second-type signals, and the second-type signals in the N 2 second-type signals are all used for Trigger the terminal device to log out, N 2 is a positive integer;
  • the processing unit 320 is configured to perform a logout operation, and the terminal device does not feed back whether the logout is successful.
  • N 2 +1 ⁇ the fourth threshold.
  • the terminal device 300 further includes: a processing unit 320;
  • the processing unit 320 is configured to perform a registration operation; or,
  • the processing unit 320 is configured to perform a logout operation.
  • the resources occupied by the signals sent by multiple terminal devices in the backscattering manner are the same, or the resources occupied by the signals sent by the multiple terminal devices in the backscattering manner are different;
  • the multiple terminal devices at least include the terminal device.
  • the terminal device 300 further includes: a processing unit 320;
  • the processing unit 320 is configured to determine a time-frequency resource position for sending signals through backscattering again according to a random number generated by its random function, Alternatively, the processing unit 320 is configured to determine whether to send the signal through backscattering according to the mask of the trigger signal sent by the network device matching the identifier of the terminal device.
  • the resource granularity includes at least one of the following: time domain, frequency domain and code domain.
  • the first signal is an energy supply signal of the terminal device.
  • the terminal device acquires energy through energy supply signals continuously sent by the network device.
  • the continuously transmitted energy supply signal is a constant amplitude continuous wave signal.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 300 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 300 are for realizing the method shown in FIG. 8 For the sake of brevity, the corresponding process of the terminal device in 200 will not be repeated here.
  • Fig. 12 shows a schematic block diagram of a network device 400 according to an embodiment of the present application.
  • the network device 400 includes:
  • a communication unit 410 configured to send a first signal to a terminal device
  • the first signal is used to trigger the terminal device to register, or the first signal is used to trigger the terminal device to log out; the terminal device obtains energy through energy harvesting for communication and information collection and processing.
  • the first signal carries an identifier of the target cell.
  • the first signal carries the identity of the target cell through one of the following modulation methods: amplitude modulation, phase modulation, and frequency modulation.
  • the first signal is used by the terminal device to determine whether to register or deregister in the target cell in combination with its stored registration information.
  • the first signal is used for the terminal device to determine to register in the target cell, or the first signal is used for The terminal device determines not to log out in the target cell; or,
  • the first signal is used for the terminal device to determine not to register in the target cell, or the first signal is used for the terminal device to determine to register in the target cell logout in the target cell.
  • the communication unit 410 is also configured to receive a second signal sent by the terminal device through backscattering
  • the second signal is used to instruct the terminal equipment to determine to register or deregister in the target cell, and the second signal carries the identifier of the terminal equipment.
  • the second signal carries the identifier of the terminal device through one of the following modulation methods: amplitude modulation, phase modulation, and frequency modulation.
  • the communication unit 410 when the second signal is used to indicate that the terminal device is determined to register in the target cell, the communication unit 410 is further configured to send a signal for indicating registration confirmation to the terminal device; or,
  • the communication unit 410 is further configured to send a signal for indicating a logout confirmation to the terminal device.
  • the network device 400 further includes: a processing unit 420;
  • the communication unit 410 is further configured to respectively send M 1 first-type signals to the terminal device, the first of the M 1 first-type signals Signals of this type are used to trigger the terminal device to register, and M 1 is a positive integer;
  • the processing unit 420 is configured not to expect the terminal device to feedback whether the registration in the target cell is successful.
  • M 1 +1 ⁇ the first threshold.
  • the network device 400 further includes: a processing unit 420;
  • the communication unit 410 is further configured to respectively send N 1 second-type signals to the terminal device, the second of the N 1 second-type signals Signals of this type are used to trigger the terminal device to log out, and N 1 is a positive integer;
  • the processing unit 420 is configured not to expect the terminal device to feedback whether the deregistration is successful in the target cell.
  • N 1 +1 ⁇ the second threshold.
  • the network device 400 further includes: a processing unit 420;
  • the communication unit 410 is further configured to respectively send M 2 first-type signals to the terminal device, the first of the M 2 first-type signals Both signals are used to trigger the terminal device to register, and M 2 is a positive integer;
  • the network processing unit 420 is configured not to expect the terminal device to report whether the registration is successful.
  • the network device 400 further includes: a processing unit 420;
  • the communication unit 410 is further configured to respectively send N 2 second-type signals to the terminal device, the second of the N 2 second-type signals Signals of this type are used to trigger the terminal device to log out, and N 2 is a positive integer;
  • the processing unit 420 is configured not to expect the terminal device to feedback whether the logout is successful.
  • N 2 +1 ⁇ the fourth threshold.
  • the resources occupied by the signals sent by multiple terminal devices to the network device through backscatter are the same, or the resources occupied by the signals sent by multiple terminal devices to the network device through backscatter different;
  • the multiple terminal devices at least include the terminal device.
  • the time-frequency resource position where the terminal device sends signals again through backscattering is based on the randomness of the terminal device.
  • the random number generated by the function, or whether the terminal device sends the signal through the backscattering method is determined based on the mask of the trigger signal sent by the network device matching the identity of the terminal device.
  • the resource granularity includes at least one of the following: time domain, frequency domain and code domain.
  • the first signal is an energy supply signal of the terminal device.
  • the network device powers the terminal device by continuously sending the power supply signal.
  • the continuously transmitted energy supply signal is a constant amplitude continuous wave signal.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the network device 400 may correspond to the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 400 are to realize the method shown in FIG. 8 For the sake of brevity, the corresponding processes of the network devices in 200 will not be repeated here.
  • FIG. 13 is a schematic structural diagram of a communication device 500 provided in an embodiment of the present application.
  • the communication device 500 shown in FIG. 13 includes a processor 510, and the processor 510 can invoke and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 500 may further include a memory 520 .
  • the processor 510 can invoke and run a computer program from the memory 520, so as to implement the method in the embodiment of the present application.
  • the memory 520 may be an independent device independent of the processor 510 , or may be integrated in the processor 510 .
  • the communication device 500 may further include a transceiver 530, and the processor 510 may control the transceiver 530 to communicate with other devices, specifically, to send information or data to other devices, or Receive messages or data from other devices.
  • the transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include antennas, and the number of antennas may be one or more.
  • the communication device 500 may specifically be the network device of the embodiment of the present application, and the communication device 500 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, the Let me repeat.
  • the communication device 500 may specifically be the terminal device in the embodiment of the present application, and the communication device 500 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application.
  • the Let me repeat the Let me repeat.
  • Fig. 14 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 600 shown in FIG. 14 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the device 600 may further include a memory 620 .
  • the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method in the embodiment of the present application.
  • the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
  • the device 600 may further include an input interface 630 .
  • the processor 610 can control the input interface 630 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the device 600 may further include an output interface 640 .
  • the processor 610 can control the output interface 640 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the device can be applied to the network device in the embodiments of the present application, and the device can implement the corresponding processes implemented by the network device in the methods of the embodiments of the present application. For the sake of brevity, details are not repeated here.
  • the device can be applied to the terminal device in the embodiment of the present application, and the device can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it may be a system-on-a-chip, a system-on-a-chip, a system-on-a-chip, or a system-on-a-chip.
  • Fig. 15 is a schematic block diagram of a communication system 700 provided by an embodiment of the present application. As shown in FIG. 15 , the communication system 700 includes a terminal device 710 and a network device 720 .
  • the terminal device 710 can be used to realize the corresponding functions realized by the terminal device in the above method
  • the network device 720 can be used to realize the corresponding functions realized by the network device in the above method, for the sake of brevity, no longer repeat.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, and the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, I won't repeat them here.
  • the computer-readable storage medium can be applied to the terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the terminal device in the various methods of the embodiments of the present application. For the sake of brevity, I won't repeat them here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For brevity, This will not be repeated here.
  • the computer program product can be applied to the terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application, and when the computer program is run on the computer, the computer executes the corresponding process implemented by the network device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the terminal device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信的方法、终端设备和网络设备,在同时需要识别的终端较多,且仅具有有限的复用无线资源的情况下,可以通过注册和/或注销来限制终端复用的数量,可以解决大量终端同时反向散射应答所带来的拥塞问题。该无线通信的方法,包括:终端设备接收第一信号;其中,该第一信号用于触发该终端设备进行注册,或者,该第一信号用于触发该终端设备进行注销;该终端设备通过能量采集获得能量以用于通信和信息采集及处理。

Description

无线通信的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信的方法、终端设备和网络设备。
背景技术
对于蜂窝无源物联网场景,网络中存在多个终端通过反向散射方式发送信号,多个终端通过能量采集获得能量以用于通信和信息采集及处理。在同时需要识别的终端较多,且仅具有有限的复用无线资源的情况下,如何限制多终端复用的数量,是一个亟待解决的问题。
发明内容
本申请实施例提供了一种无线通信的方法、终端设备和网络设备,在同时需要识别的终端较多,且仅具有有限的复用无线资源的情况下,可以通过注册和/或注销来限制终端复用的数量,可以解决大量终端同时反向散射应答所带来的拥塞问题。
第一方面,提供了一种无线通信的方法,该方法包括:
终端设备接收第一信号;
其中,该第一信号用于触发该终端设备进行注册,或者,该第一信号用于触发该终端设备进行注销;该终端设备通过能量采集获得能量以用于通信和信息采集及处理。
第二方面,提供了一种无线通信的方法,该方法包括:
网络设备向终端设备发送第一信号;
其中,该第一信号用于触发该终端设备进行注册,或者,该第一信号用于触发该终端设备进行注销;该终端设备通过能量采集获得能量以用于通信和信息采集及处理。
第三方面,提供了一种终端设备,用于执行上述第一方面中的方法。
具体地,该终端设备包括用于执行上述第一方面中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面中的方法。
具体地,该网络设备包括用于执行上述第二方面中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中的任一方面中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
通过上述技术方案,网络设备通过第一信号触发终端设备进行注册或注销,也即,本申请实施例可以在有限的复用无线资源的情况下,通过注册和/或注销来限制终端复用的数量,从而可以解决大量终端同时反向散射应答所带来的拥塞问题。
附图说明
图1是本申请应用的一种通信***架构的示意性图。
图2是本申请提供的一个示例的零功耗通信***的示意图。
图3是本申请提供的能量采集的原理图。
图4是本申请提供的反向散射通信的原理图。
图5是本申请提供的电阻负载调制的电路原理图。
图6是本申请提供的发射频域产生对称的频移反射的示意性图。
图7是本申请提供的供能信号和反向散射信号的示意性图。
图8是根据本申请实施例提供的一种无线通信的方法的示意***互流程图。
图9是根据本申请实施例提供的一种小区注册的示意性图。
图10是根据本申请实施例提供的一种多个终端的反向散射信号的资源的示意性图。
图11是根据本申请实施例提供的一种终端设备的示意性框图。
图12是根据本申请实施例提供的一种网络设备的示意性框图。
图13是根据本申请实施例提供的一种通信设备的示意性框图。
图14是根据本申请实施例提供的一种装置的示意性框图。
图15是根据本申请实施例提供的一种通信***的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、先进的长期演进(Advanced long term evolution,LTE-A)***、新无线(New Radio,NR)***、NR***的演进***、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)***、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)***、非地面通信网络(Non-Terrestrial Networks,NTN)***、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)***,蜂窝物联网***,蜂窝无源物联网***或其他通信***等。
通常来说,传统的通信***支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信***将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信***。
可选地,本申请实施例中的通信***可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信***可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信***也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者,蜂窝物联网中的网络设备,或者,蜂窝无源物联网中的网络设备,或者,未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到 无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信***例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备,蜂窝物联网中的终端设备,蜂窝无源物联网中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
示例性的,本申请实施例应用的通信***100如图1所示。该通信***100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信***100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信***100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/***中具有通信功能的设备可称为通信设备。以图1示出的通信***100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信***100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信***中的相关协议,也可以是物联网协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
近年来,零功耗设备的应用越来越广泛。一种典型的零功耗设备是无线射频识别(Radio Frequency Identification,RFID),它是利用收发端无线电耦合的方式,实现无接触的标签信息自动传输与识别的技术。这包括了近距离的电感耦合和远距离的电磁耦合。RFID标签又称为“射频标签”或“电子标签”。根据供电方式的不同来划分的电子标签的类型,可以分为有源电子标签,无源电子标签和半无源电子标签。有源电子标签,又称为主动式电子标签,是指电子标签内置电池提供工作的能量。不同于被动射频的激活方式,标签可主动在设定频段发送信息。无源电子标签,又称为被动式电子标签, 其不支持内装电池。无源电子标签接近读写器时,处于读写器天线辐射形成的近场范围内的电子标签天线通过电磁感应产生感应电流,感应电流驱动电子标签芯片电路。芯片电路通过电子标签天线将存储在标签中的标识信息发送给读写器。半主动式电子标签继承了无源电子标签体积小、重量轻、价格低、使用寿命长的优点,内置的电池在没有读写器访问的时候,只为芯片内很少的电路提供电源,只有在读写器访问时,内置电池向RFID芯片供电,以增加标签的读写距离,提高通信的可靠性。
作为一种无线通信技术,最基本的RFID***是由电子标签(TAG)和读写器(Reader/Writer)两部分构成。电子标签:它由耦合组件及芯片构成,每个电子标签都有独特的电子编码,放在被测目标上以达到标记目标物体的目的。读写器:不仅能够读取电子标签上的信息,而且还能够写入电子标签上的信息,同时为电子标签提供通信所需要的能量。如图2所示。电子标签进入电磁场后,接收读写器发出的射频信号,无源电子标签或者被动电子标签利用空间中产生的电磁场得到的能量,将电子标签存储的信息传送出去,读写器读取信息并且进行解码,从而识别电子标签。
RFID是一种零功耗通信。这类零功耗通信关键技术,包括了能量采集和反向散射通信以及低功耗计算。如图2所示,一个典型的零功耗通信***包括读写器和零功耗终端。读写器发射无线电波,用于向零功耗终端提供能量。安装在零功耗终端的能量采集模块可以采集空间中的无线电波携带的能量(图2中所示为读写器发射的无线电波),用于驱动零功耗终端的低功耗计算模块和实现反向散射通信。零功耗终端获得能量后,可以接收读写器的控制命令并基于控制信令基于后向散射的方式向读写器发送数据。所发送的数据可以来自于零功耗终端自身存储的数据(如身份标识或预先写入的信息,如商品的生产日期、品牌、生产厂家等)。零功耗终端也可以加载各类传感器,从而基于零功耗机制将各类传感器采集的数据上报。
零功耗通信采用能量采集和反向散射通信技术。零功耗通信网络由网络设备和零功耗终端构成。如图2所示,网络设备用于向零功耗终端发送无线供能信号,下行通信信号以及接收零功耗终端的反向散射信号。一个基本的零功耗终端包含能量采集模块,反向散射通信模块以及低功耗计算模块。此外,零功耗终端还可具备一个存储器或传感器,用于存储一些基本信息(如物品标识等)或获取环境温度、环境湿度等传感数据。
以下,对零功耗通信中的关键技术进行说明。
无线射频能量采集(Radio Frequency Power Harvesting)
如图3所示,射频能量采集模块基于电磁感应原理实现对空间电磁波能量的采集,进而获得驱动零功耗终端工作所需的能量,例如用于驱动低功耗解调以及调制模块、传感器以及内存读取等。因此,零功耗终端无需传统电池。
反向散射通信(Back Scattering)
如图4所示,零功耗终端接收网络设备发送的载波信号,并对所述载波信号进行调制,加载需要发送的信息并将调制后的信号从天线辐射出去,这一信息传输过程称之为反向散射通信。反向散射和负载调制功能密不可分。负载调制通过对零功耗终端的振荡回路的电路参数按照数据流的节拍进行调节和控制,使电子标签阻抗的大小等参数随之改变,从而完成调制的过程。负载调制技术主要包括电阻负载调制和电容负载调制两种方式。在电阻负载调制中,负载并联一个电阻,该电阻基于二进制数据流的控制接通或断开,如图5所示。电阻的通断会导致电路电压的变化,因此实现幅度键控调制(ASK),即通过调整零功耗终端的反向散射信号的幅度大小实现信号的调制与传输。类似地,在电容负载调制中,通过电容的通断可以实现电路谐振频率的变化,实现频率键控调制(FSK),即通过调整零功耗终端的反向散射信号的工作频率实现信号的调制与传输。
可见,零功耗终端借助于负载调制的方式,对来波信号进行信息调制,从而实现反向散射通信过程。因此,零功耗终端具有显著的优点:
(1)终端不主动发射信号,因此不需要复杂的射频链路,如PA、射频滤波器等;
(2)终端不需要主动产生高频信号,因此不需要高频晶振;
(3)借助反向散射通信,终端信号传输不需要消耗终端自身能量。2、射频能量采集(RF Power Harvesting)。
编码技术
电子标签传输的数据,可以用不同形式的代码来表示二进制的“1”和“0”。无线射频识别***通常使用下列编码方法中的一种:反向不归零(NRZ)编码、曼彻斯特(Manchester)编码、单极性归零(Unipolar RZ)编码、差动双相(DBP)编码、差动编码、脉冲间隔编码(PIE)、双向空间编码(FM0)、米勒(Miller)编码利差动编码等。通俗来说,是采用不同的脉冲信号表示0和1。
在一些场景中,基于零功耗终端的能量来源以及使用方式,可以将零功耗终端分为无源零功耗终端、半无源零功耗终端和有源零功耗终端。
无源零功耗终端
零功耗终端不需要内装电池,零功耗终端接近网络设备(如RFID***的读写器)时,零功耗终端处于网络设备天线辐射形成的近场范围内。因此,零功耗终端天线通过电磁感应产生感应电流,感应电流驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及反向链路的信号调制等工作。对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。
可以看出,无源零功耗终端无论是前向链路还是反向链路都不需要内置电池来驱动,是一种真正意义的零功耗终端。
无源零功耗终端不需要电池,射频电路以及基带电路都非常简单,例如不需要低噪放(LNA),功放(PA),晶振,模数转换器(Analog-to-Digital Converter,ADC)等器件,因此具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
半无源零功耗终端
半无源零功耗终端自身也不安装常规电池,但可使用RF能量采集模块采集无线电波能量,同时将采集的能量存储于一个储能单元(如电容)中。储能单元获得能量后,可以驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及反向链路的信号调制等工作。对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。
可以看出,半无源零功耗终端无论是前向链路还是反向链路都不需要内置电池来驱动,虽然工作中使用了电容储存的能量,但能量来源于能量采集模块采集的无线电能量,因此也是一种真正意义的零功耗终端。
半无源零功耗终端继承了无源零功耗终端的诸多优点,因此具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
有源零功耗终端
有些场景下使用的零功耗终端也可以为有源零功耗终端,此类终端可以内置电池。电池用于驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及反向链路的信号调制等工作。但对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。因此,这类终端的零功耗主要体现于反向链路的信号传输不需要终端自身功率,而是使用反向散射的方式。
有源零功耗终端,内置电池向RFID芯片供电,以增加标签的读写距离,提高通信的可靠性。因此在一些对通信距离,读取时延等方面要求相对较高的场景得以应用。
接收信号强度(Received Signal Strength,RSS)定位
RSS定位技术是依据信号强度随传播距离的变化规律实现定位的一类方法,其定位核心是根据多个参考节点接收同一目标源的信号强度来实现目标位置的确定。RSS定位技术目前被广泛应用于室内定位。传统的基于几何测量法的RSS定位技术首先需要测出各监测节点接收到目标的信号强度RSS,然后根据信号传输衰减模型逆向推算出各节点与目标间的传播距离d,进而估算待定位信号源的相对地理位置。
蜂窝无源物联网
随着5G行业应用增加,连接物的种类和应用场景越来越多,对通信终端的价格和功耗也将有更高要求。免电池、低成本的无源物联网设备的应用成为蜂窝物联网的关键技术,充实5G网络链接终端类型和数量,真正实现万物互联。其中无源物联网设备可以基于现有的零功耗设备,运用于蜂窝物联网。
副载波调制
副载波调制是指首先把信号调制在载波1上,处于某种原因,决定再进行一次调制,于是用这个结果再去调制另外一个频率更高的载波2。副载波调制是RFID***经常采用的一种调制方式。
为了便于理解本申请实施例,以下对本申请所解决的问题进行说明。
在蜂窝网络中,传统的终端设备需要电池供电。在蜂窝网络中引入零功耗终端,则需要通过基站或其他来源提供供能信号,用于零功耗设备获得能量。在图6中,零功耗终端通过下行(downlink,DL)频率提供触发信号和能量。通过反向散射(back scattering)在上行(uplink,UL)频率向基站反馈信息。图6中发射频域会产生对称的频移反射,通过滤波器等技术仅拾取其中一个频点。
现有的RFID技术没有充分支持考虑蜂窝网的上下行的时域结构。以NR***为例子,蜂窝网可以灵活地配置不同频率的资源。在频分双工(Frequency Division Duplex,FDD)的双工方式下,基站在DL资源上传输信号,相应的终端应该在UL资源上传输信号。DL和UL通过频率的方式分开。在UL上,网络中有多个终端进行反射信号,多个终端的复用问题成为关关键。如何能够让不同的终端占用不同的资源,如时域,频域甚至是码域的不同位置,是需要解决的问题。当蜂窝网同时需要识别的终端较多时如何使用一种机制在有限的复用无线资源中感知/记录大量的终端,也是其中需要克服 的困难。因此需要研究一种方法限制多用户复用的数量。
基于上述技术问题,本申请提出了一种限制多用户复用数量的方案,在同时需要识别的终端较多,且仅具有有限的复用无线资源的情况下,可以通过注册和/或注销来限制终端复用的数量,可以解决大量终端同时反向散射应答所带来的拥塞问题。
在本申请实施例中,如图7所示,蜂窝网络中供能的信号和用于信息传输的信号(如触发信号),可以是两个信号,也可以是一个信号。这两个信号可以不在一个频段发送,也可以在同一个频点发送。蜂窝网络的基站在某个频段持续或者间歇性的发送供能信号,是一种连续波(Continuous wave,CW),例如正弦波。零功耗终端进行能量采集。零功耗终端获得能量之后,可以进行相应的对应的信号接收,信号反射以及测量等功能。在零功耗通信中,终端是通过对供能信号进行调制,进行反向散射通信。
图8是根据本申请实施例的无线通信的方法200的示意性图,如图8所示,该无线通信的方法200包括如下至少部分内容:
S210,网络设备向终端设备发送第一信号;其中,该第一信号用于触发该终端设备进行注册,或者,该第一信号用于触发该终端设备进行注销;该终端设备通过能量采集获得能量以用于通信和信息采集及处理;
S220,该终端设备接收该第一信号。
在本申请实施例中,终端设备通过能量采集获得能量以用于通信和信息采集及处理。也即,网络设备在与终端设备通信之前,首选需要保证终端设备接收到用于无线供能的无线电波并通过能量采集的方式获得无线能量。
本申请主要提供注册和注销的方式管理多个零功耗终端,控制同时应答的终端数量。具体例如,通过注册和注销的方式管理目标小区内的多个零功耗终端,控制目标小区内同时应答的终端数量。
在一些实施例中,该终端设备为零功耗终端。应理解,本申请并不限定终端设备通过能量采集获得能量的具体方式。作为示例而非限定,终端设备可以通过无线射频信号,太阳能,压力或温度等无线供能方式获得能量。
在一些实施例中,该第一信号也可以称之为触发信号。
具体地,该终端设备可以在下行信道上接收该网络设备发送的该第一信号。
在一些实施例中,该第一信号为该终端设备的供能信号。也即,该终端设备可以基于该第一信号获得能量,以及通过该第一信号触发进行注册或注销。
在一些实施例中,该终端设备通过该网络设备连续发送的供能信号获取能量。具体例如,该连续发送的供能信号为恒幅连续波信号。
在一些实施例中,该终端设备发送该第一信号所需的能量通过能量采集获得。
在一些实施例中,在该第一信号用于触发该终端设备进行注册的情况下,该终端设备执行注册操作。此种情况下,该终端设备可以通过反向散射方式发送用于反馈是否注册成功的信号,也可以不反馈,本申请对此并不限定。
在一些实施例中,在该第一信号用于触发该终端设备进行注销的情况下,该终端设备执行注销操作。此种情况下,该终端设备可以通过反向散射方式发送用于反馈是否注销成功的信号,也可以不反馈,本申请对此并不限定。
在一些实施例中,该第一信号中携带有目标小区的标识。也即,该第一信号用于触发该终端设备在该目标小区进行注册,或者,该第一信号用于触发该终端设备在该目标小区进行注销。
在本申请实施例中,通过触发目标小区中的终端注册和注销的方式限制大量的终端同时发送应答反射信号。进一步的,反射应答信号以上下行的时域复用结构为多用户检测的基础。引入小区注册的零功耗设备较多,用户能够被有效地在特定区域(即目标小区)内管理识别。
在一些实施例中,该第一信号通过以下调制方式之一携带该目标小区的标识:幅度调制、相位调制、频率调制。也即,该第一信号可以通过编码调制方式携带该目标小区的标识。
在一些实施例中,在该第一信号中携带有目标小区的标识的情况下,该终端设备根据其存储的注册信息和该第一信号确定是否在该目标小区中注册或注销。
具体例如,在该注册信息指示该终端设备未在该目标小区中注册的情况下,该终端设备确定在该目标小区中注册,或者,该终端设备确定不在该目标小区中注销。
例如,在该第一信号用于触发该终端设备进行注册,且在该注册信息指示该终端设备未在该目标小区中注册的情况下,该终端设备确定在该目标小区中注册。
又例如,在该第一信号用于触发该终端设备进行注销,且在该注册信息指示该终端设备未在该目标小区中注册的情况下,该终端设备确定不在该目标小区中注销。
具体例如,在该注册信息指示该终端设备已在该目标小区中注册的情况下,该终端设备确定不在 该目标小区中注册,或者,该终端设备确定在该目标小区中注销。
例如,在该第一信号用于触发该终端设备进行注册,且在该注册信息指示该终端设备已在该目标小区中注册的情况下,该终端设备确定不在该目标小区中注册。
又例如,在该第一信号用于触发该终端设备进行注销,且在该注册信息指示该终端设备已在该目标小区中注册的情况下,该终端设备确定在该目标小区中注销。
在一些实施例中,该终端设备通过反向散射方式发送第二信号;其中,该第二信号用于指示该终端设备确定在该目标小区中注册或注销,且该第二信号中携带有该终端设备的标识。
在一些实施例中,该第二信号通过以下调制方式之一携带该终端设备的标识:幅度调制、相位调制、频率调制。也即,该第二信号可以通过编码调制方式携带该终端设备的标识。
在一些实施例中,在该第二信号用于指示该终端设备确定在该目标小区中注册的情况下,该终端设备接收用于指示注册确认的信号。
在一些实施例中,在该第二信号用于指示该终端设备确定在该目标小区中注销的情况下,该终端设备接收用于指示注销确认的信号。
具体例如,如图9所示,终端设备在下行频点上接收网络设备发送的触发信号,其中,该触发信号携带小区标识(Identity,ID)。终端根据其存储的注册信息决定是否注册。在终端确定在小区中注册的情况下,终端通过反向散射方式发送用于指示终端确定在小区中注册的信号,携带终端ID。终端接收网络的注册确认信号。具体如图9所示,在终端已注册小区的情况下,终端通过反向散射方式发送用于指示终端确定在小区中注册的信号,携带终端ID。在终端未注册小区的情况下,终端通过反向散射方式发送的信号不携带终端ID。
在一些实施例中,该第一信号中携带有目标小区的标识,且在该第一信号用于触发该终端设备进行注册的情况下,该终端设备接收M 1个第一类信号,该M 1个第一类信号中的第一类信号均用于触发该终端设备进行注册,M 1为正整数;该终端设备在该目标小区中执行注册操作,且该终端设备不反馈是否注册成功。也即,该第一信号等同于该M 1个第一类信号中的一个第一类信号。换句话说,该网设备总共发送了M 1+1个第一类信号。此种情况下,该第一类信号可以是强制注册信号。
在一些实施例中,M 1+1≤第一门限值。
具体地,该第一门限值由协议约定,或者,该第一门限值由网络设备配置。
在一些实施例中,该第一信号中携带有目标小区的标识,且在该第一信号用于触发该终端设备进行注销的情况下,该终端设备接收N 1个第二类信号,该N 1个第二类信号中的第二类信号均用于触发该终端设备进行注销,N 1为正整数;该终端设备在该目标小区中执行注销操作,且该终端设备不反馈是否注销成功。也即,该第一信号等同于该N 1个第二类信号中的一个第二类信号。换句话说,该网设备总共发送了N 1+1个第二类信号。此种情况下,该第二类信号可以是强制注销信号。
在一些实施例中,N 1+1≤第二门限值。
具体地,该第二门限值由协议约定,或者,该第二门限值由网络设备配置。
在一些实施例中,终端设备在收到新的注册触发信号之后,成功解出的目标小区的标识覆盖原存储小区ID。
在一些实施例中,终端设备接收网络设备发送的注销触发信号。终端设备收到注销触发信号后注销并删除目标小区ID。
在一些实施例中,在该第一信号用于触发该终端设备进行注册的情况下,该终端设备接收M 2个第一类信号,该M 2个第一类信号中的第一类信号均用于触发该终端设备进行注册,M 2为正整数;以及该终端设备执行注册操作,且该终端设备不反馈是否注册成功。也即,该第一信号等同于该M 2个第一类信号中的一个第一类信号。换句话说,该网设备总共发送了M 2+1个第一类信号。此种情况下,该第一类信号可以是强制注册信号。
在一些实施例中,M 2+1≤第三门限值。
具体地,该第三门限值由协议约定,或者,该第三门限值由网络设备配置。
在一些实施例中,在该第一信号用于触发该终端设备进行注销的情况下,该终端设备接收N 2个第二类信号,该N 2个第二类信号中的第二类信号均用于触发该终端设备进行注销,N 2为正整数;该终端设备执行注销操作,且该终端设备不反馈是否注销成功。也即,该第一信号等同于该N 2个第二类信号中的一个第二类信号。换句话说,该网设备总共发送了N 2+1个第二类信号。此种情况下,该第二类信号可以是强制注销信号。
在一些实施例中,N 2+1≤第四门限值。
具体地,该第四门限值由协议约定,或者,该第四门限值由网络设备配置。
在一些实施例中,多个终端设备通过反向散射方式发送的信号所占用的资源相同,或者,多个终 端设备通过反向散射方式发送的信号所占用的资源不同;其中,该多个终端设备至少包括该终端设备。如图10所示,该资源的粒度包括以下至少之一:时域、频域和码域。
在一些实施例中,在该多个终端设备通过反向散射方式发送信号时发生资源冲突的情况下,该终端设备根据其随机函数生成的随机数确定再次通过反向散射方式发送信号的时频资源位置。该资源的粒度包括以下至少之一:时域、频域和码域。也即,该多个终端设备中的终端设备可以采用随机回退的方式确定再次通过反向散射方式发送信号的时频资源位置。
在一些实施例中,在该多个终端设备通过反向散射方式发送信号时发生资源冲突的情况下,该终端设备根据网络设备发送的触发信号的掩码匹配该终端设备的标识确定是否通过反向散射方式发送信号。该资源的粒度包括以下至少之一:时域、频域和码域。也即,该多个终端设备中的终端设备可以采用二分法确定是否通过反向散射方式发送信号。可以通过多次发送确定是否注册。
本申请实施例用于小区内的多终端注册管理。也可以用于多小区网络的多终端注册管理,以及终端的漫游维护。
在一些实施例中,可以基于第三方供能信号作为反向散射通信能量源进行。同样,也可以将供能和触发集成,合为一个节点发送,或者合成为一个信号。本申请对此并不限定。
本申请实施例主要是解决时分的结构复用多个用户,同样可以用频分、码分以及多种方式结合的反向散射通信的处理。
因此,在本申请实施例中,网络设备通过第一信号触发终端设备进行注册或注销,也即,本申请实施例可以在有限的复用无线资源的情况下,通过注册和/或注销来限制终端复用的数量,从而可以解决大量终端同时反向散射应答所带来的拥塞问题。
本申请实施例克服了现有零功耗通信技术的终端复用的限制,解决了在小区中大量终端同时反向散射应答的拥塞问题。通过本申请实施例,终端设备可以有效地使用有限的时域和频域资源。
本申请实施例通过终端注册存储的方式限制了反射的用户次数。也可以极大减少多用户的检测时间。此外,本申请实施例的复用用户的时域结构可以克服零功耗的终端定时/频率/相位的误差。还可以克服多个用户的定时提前不一致等问题。
本申请实施例在少量的多用户时频位置冲突时,通过进一步的多用户冲突解决来识别和注册每个终端。保证复用的有效性。
上文结合图8至图10,详细描述了本申请的方法实施例,下文结合图11至图12,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图11示出了根据本申请实施例的终端设备300的示意性框图。如图11所示,终端设备300包括:
通信单元310,用于接收第一信号;
其中,该第一信号用于触发该终端设备进行注册,或者,该第一信号用于触发该终端设备进行注销;该终端设备通过能量采集获得能量以用于通信和信息采集及处理。
在一些实施例中,该第一信号中携带有目标小区的标识。
在一些实施例中,该第一信号通过以下调制方式之一携带该目标小区的标识:幅度调制、相位调制、频率调制。
在一些实施例中,该终端设备300还包括:
处理单元320,用于根据其存储的注册信息和该第一信号确定是否在该目标小区中注册或注销。
在一些实施例中,该处理单元320具体用于:
在该注册信息指示该终端设备未在该目标小区中注册的情况下,确定在该目标小区中注册,或者,该终端设备确定不在该目标小区中注销;或者,
在该注册信息指示该终端设备已在该目标小区中注册的情况下,确定不在该目标小区中注册,或者,该终端设备确定在该目标小区中注销。
在一些实施例中,该通信单元310还用于通过反向散射方式发送第二信号;
其中,该第二信号用于指示该终端设备确定在该目标小区中注册或注销,且该第二信号中携带有该终端设备的标识。
在一些实施例中,该第二信号通过以下调制方式之一携带该终端设备的标识:幅度调制、相位调制、频率调制。
在一些实施例中,在该第二信号用于指示该终端设备确定在该目标小区中注册的情况下,该通信单元310还用于接收用于指示注册确认的信号;或者,
在该第二信号用于指示该终端设备确定在该目标小区中注销的情况下,该通信单元310还用于接收用于指示注销确认的信号。
在一些实施例中,该终端设备300还包括:处理单元320;
在该第一信号用于触发该终端设备进行注册的情况下,该通信单元310还用于接收M 1个第一类信号,该M 1个第一类信号中的第一类信号均用于触发该终端设备进行注册,M 1为正整数;
该处理单元320用于在该目标小区中执行注册操作,且该终端设备不反馈是否注册成功。
在一些实施例中,M 1+1≤第一门限值。
在一些实施例中,该终端设备300还包括:处理单元320;
在该第一信号用于触发该终端设备进行注销的情况下,该通信单元310还用于接收N 1个第二类信号,该N 1个第二类信号中的第二类信号均用于触发该终端设备进行注销,N 1为正整数;
该处理单元320用于在该目标小区中执行注销操作,且该终端设备不反馈是否注销成功。
在一些实施例中,N 1+1≤第二门限值。
在一些实施例中,该终端设备300还包括:处理单元320;
在该第一信号用于触发该终端设备进行注册的情况下,该通信单元310还用于接收M 2个第一类信号,该M 2个第一类信号中的第一类信号均用于触发该终端设备进行注册,M 2为正整数;
该处理单元320用于执行注册操作,且该终端设备不反馈是否注册成功。
在一些实施例中,M 2+1≤第三门限值。
在一些实施例中,该终端设备300还包括:处理单元320;
在该第一信号用于触发该终端设备进行注销的情况下,该通信单元310还用于接收N 2个第二类信号,该N 2个第二类信号中的第二类信号均用于触发该终端设备进行注销,N 2为正整数;
该处理单元320用于执行注销操作,且该终端设备不反馈是否注销成功。
在一些实施例中,N 2+1≤第四门限值。
在一些实施例中,该终端设备300还包括:处理单元320;
在该第一信号用于触发该终端设备进行注册的情况下,该处理单元320用于执行注册操作;或者,
在该第一信号用于触发该终端设备进行注销的情况下,该处理单元320用于执行注销操作。
在一些实施例中,多个终端设备通过反向散射方式发送的信号所占用的资源相同,或者,多个终端设备通过反向散射方式发送的信号所占用的资源不同;
其中,该多个终端设备至少包括该终端设备。
在一些实施例中,该终端设备300还包括:处理单元320;
在该多个终端设备通过反向散射方式发送信号时发生资源冲突的情况下,该处理单元320用于根据其随机函数生成的随机数确定再次通过反向散射方式发送信号的时频资源位置,或者,该处理单元320用于根据网络设备发送的触发信号的掩码匹配该终端设备的标识确定是否通过反向散射方式发送信号。
在一些实施例中,该资源的粒度包括以下至少之一:时域、频域和码域。
在一些实施例中,该第一信号为该终端设备的供能信号。
在一些实施例中,该终端设备通过网络设备连续发送的供能信号获取能量。
在一些实施例中,该连续发送的供能信号为恒幅连续波信号。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上***的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备300可对应于本申请方法实施例中的终端设备,并且终端设备300中的各个单元的上述和其它操作和/或功能分别为了实现图8所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图12示出了根据本申请实施例的网络设备400的示意性框图。如图12所示,网络设备400包括:
通信单元410,用于向终端设备发送第一信号;
其中,该第一信号用于触发该终端设备进行注册,或者,该第一信号用于触发该终端设备进行注销;该终端设备通过能量采集获得能量以用于通信和信息采集及处理。
在一些实施例中,该第一信号中携带有目标小区的标识。
在一些实施例中,该第一信号通过以下调制方式之一携带该目标小区的标识:幅度调制、相位调制、频率调制。
在一些实施例中,该第一信号用于该终端设备结合其存储的注册信息确定是否在该目标小区中注册或注销。
在一些实施例中,在该注册信息指示该终端设备未在该目标小区中注册的情况下,该第一信号用于该终端设备确定在该目标小区中注册,或者,该第一信号用于该终端设备确定不在该目标小区中注销;或者,
在该注册信息指示该终端设备已在该目标小区中注册的情况下,该第一信号用于该终端设备确定 不在该目标小区中注册,或者,该第一信号用于该终端设备确定在该目标小区中注销。
在一些实施例中,该通信单元410还用于接收该终端设备通过反向散射方式发送的第二信号;
其中,该第二信号用于指示该终端设备确定在该目标小区中注册或注销,且该第二信号中携带有该终端设备的标识。
在一些实施例中,该第二信号通过以下调制方式之一携带该终端设备的标识:幅度调制、相位调制、频率调制。
在一些实施例中,在该第二信号用于指示该终端设备确定在该目标小区中注册的情况下,该通信单元410还用于向该终端设备发送用于指示注册确认的信号;或者,
在该第二信号用于指示该终端设备确定在该目标小区中注销的情况下,该通信单元410还用于向该终端设备发送用于指示注销确认的信号。
在一些实施例中,该网络设备400还包括:处理单元420;
在该第一信号用于触发该终端设备进行注册的情况下,该通信单元410还用于分别向该终端设备发送M 1个第一类信号,该M 1个第一类信号中的第一类信号均用于触发该终端设备进行注册,M 1为正整数;
该处理单元420用于不期待该终端设备反馈在该目标小区中是否注册成功。
在一些实施例中,M 1+1≤第一门限值。
在一些实施例中,该网络设备400还包括:处理单元420;
在该第一信号用于触发该终端设备进行注销的情况下,该通信单元410还用于分别向该终端设备发送N 1个第二类信号,该N 1个第二类信号中的第二类信号均用于触发该终端设备进行注销,N 1为正整数;
该处理单元420用于不期待该终端设备反馈在该目标小区中否注销成功。
在一些实施例中,N 1+1≤第二门限值。
在一些实施例中,该网络设备400还包括:处理单元420;
在该第一信号用于触发该终端设备进行注册的情况下,该通信单元410还用于分别向该终端设备发送M 2个第一类信号,该M 2个第一类信号中的第一类信号均用于触发该终端设备进行注册,M 2为正整数;
该网处理单元420用于不期待该终端设备反馈是否注册成功。
在一些实施例中,M 2+1≤第三门限值。
在一些实施例中,该网络设备400还包括:处理单元420;
在该第一信号用于触发该终端设备进行注销的情况下,该通信单元410还用于分别向该终端设备发送N 2个第二类信号,该N 2个第二类信号中的第二类信号均用于触发该终端设备进行注销,N 2为正整数;
该处理单元420用于不期待该终端设备反馈是否注销成功。
在一些实施例中,N 2+1≤第四门限值。
在一些实施例中,多个终端设备通过反向散射方式向该网络设备发送的信号所占用的资源相同,或者,多个终端设备通过反向散射方式向该网络设备发送的信号所占用的资源不同;
其中,该多个终端设备至少包括该终端设备。
在一些实施例中,在该多个终端设备通过反向散射方式发送信号时发生资源冲突的情况下,该终端设备再次通过反向散射方式发送信号的时频资源位置是基于该终端设备的随机函数生成的随机数确定的,或者,该终端设备是否通过反向散射方式发送信号是基于上述网络设备发送的触发信号的掩码匹配该终端设备的标识确定的。
在一些实施例中,该资源的粒度包括以下至少之一:时域、频域和码域。
在一些实施例中,该第一信号为该终端设备的供能信号。
在一些实施例中,该网络设备通过连续发送的供能信号为该终端设备供能。
在一些实施例中,该连续发送的供能信号为恒幅连续波信号。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上***的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备400可对应于本申请方法实施例中的网络设备,并且网络设备400中的各个单元的上述和其它操作和/或功能分别为了实现图8所示方法200中网络设备的相应流程,为了简洁,在此不再赘述。
图13是本申请实施例提供的一种通信设备500示意性结构图。图13所示的通信设备500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图13所示,通信设备500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
在一些实施例中,如图13所示,通信设备500还可以包括收发器530,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,该通信设备500具体可为本申请实施例的网络设备,并且该通信设备500可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备500具体可为本申请实施例的终端设备,并且该通信设备500可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图14是本申请实施例的装置的示意性结构图。图14所示的装置600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图14所示,装置600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
在一些实施例中,该装置600还可以包括输入接口630。其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一些实施例中,该装置600还可以包括输出接口640。其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一些实施例中,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,本申请实施例提到的装置也可以是芯片。例如可以是***级芯片,***芯片,芯片***或片上***芯片等。
图15是本申请实施例提供的一种通信***700的示意性框图。如图15所示,该通信***700包括终端设备710和网络设备720。
其中,该终端设备710可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备720可以用于实现上述方法中由网络设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
在一些实施例中,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (53)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备接收第一信号;
    其中,所述第一信号用于触发所述终端设备进行注册,或者,所述第一信号用于触发所述终端设备进行注销;所述终端设备通过能量采集获得能量以用于通信和信息采集及处理。
  2. 如权利要求1所述的方法,其特征在于,所述第一信号中携带有目标小区的标识。
  3. 如权利要求2所述的方法,其特征在于,
    所述第一信号通过以下调制方式之一携带所述目标小区的标识:幅度调制、相位调制、频率调制。
  4. 如权利要求2或3所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据其存储的注册信息和所述第一信号确定是否在所述目标小区中注册或注销。
  5. 如权利要求4所述的方法,其特征在于,所述终端设备根据其存储的注册信息和所述第一信号确定是否在所述目标小区中注册或注销,包括:
    在所述注册信息指示所述终端设备未在所述目标小区中注册的情况下,所述终端设备确定在所述目标小区中注册,或者,所述终端设备确定不在所述目标小区中注销;或者,
    在所述注册信息指示所述终端设备已在所述目标小区中注册的情况下,所述终端设备确定不在所述目标小区中注册,或者,所述终端设备确定在所述目标小区中注销。
  6. 如权利要求4或5所述的方法,其特征在于,所述方法还包括:
    所述终端设备通过反向散射方式发送第二信号;
    其中,所述第二信号用于指示所述终端设备确定在所述目标小区中注册或注销,且所述第二信号中携带有所述终端设备的标识。
  7. 如权利要求6所述的方法,其特征在于,
    所述第二信号通过以下调制方式之一携带所述终端设备的标识:幅度调制、相位调制、频率调制。
  8. 如权利要求6或7所述的方法,其特征在于,所述方法还包括:
    在所述第二信号用于指示所述终端设备确定在所述目标小区中注册的情况下,所述终端设备接收用于指示注册确认的信号;或者,
    在所述第二信号用于指示所述终端设备确定在所述目标小区中注销的情况下,所述终端设备接收用于指示注销确认的信号。
  9. 如权利要求2或3所述的方法,其特征在于,在所述第一信号用于触发所述终端设备进行注册的情况下,所述方法还包括:
    所述终端设备接收M 1个第一类信号,所述M 1个第一类信号中的第一类信号均用于触发所述终端设备进行注册,M 1为正整数;
    所述终端设备在所述目标小区中执行注册操作,且所述终端设备不反馈是否注册成功。
  10. 如权利要求9所述的方法,其特征在于,M 1+1≤第一门限值。
  11. 如权利要求2或3所述的方法,其特征在于,在所述第一信号用于触发所述终端设备进行注销的情况下,所述方法还包括:
    所述终端设备接收N 1个第二类信号,所述N 1个第二类信号中的第二类信号均用于触发所述终端设备进行注销,N 1为正整数;
    所述终端设备在所述目标小区中执行注销操作,且所述终端设备不反馈是否注销成功。
  12. 如权利要求11所述的方法,其特征在于,N 1+1≤第二门限值。
  13. 如权利要求1所述的方法,其特征在于,在所述第一信号用于触发所述终端设备进行注册的情况下,所述方法还包括:
    所述终端设备接收M 2个第一类信号,所述M 2个第一类信号中的第一类信号均用于触发所述终端设备进行注册,M 2为正整数;
    所述终端设备执行注册操作,且所述终端设备不反馈是否注册成功。
  14. 如权利要求13所述的方法,其特征在于,M 2+1≤第三门限值。
  15. 如权利要求1所述的方法,其特征在于,在所述第一信号用于触发所述终端设备进行注销的情况下,所述方法还包括:
    所述终端设备接收N 2个第二类信号,所述N 2个第二类信号中的第二类信号均用于触发所述终端设备进行注销,N 2为正整数;
    所述终端设备执行注销操作,且所述终端设备不反馈是否注销成功。
  16. 如权利要求15所述的方法,其特征在于,N 2+1≤第四门限值。
  17. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述第一信号用于触发所述终端设备进行注册的情况下,所述终端设备执行注册操作;或者,
    在所述第一信号用于触发所述终端设备进行注销的情况下,所述终端设备执行注销操作。
  18. 如权利要求1至17中任一项所述的方法,其特征在于,
    多个终端设备通过反向散射方式发送的信号所占用的资源相同,或者,多个终端设备通过反向散射方式发送的信号所占用的资源不同;
    其中,所述多个终端设备至少包括所述终端设备。
  19. 如权利要求18所述的方法,其特征在于,所述方法还包括:
    在所述多个终端设备通过反向散射方式发送信号时发生资源冲突的情况下,所述终端设备根据其随机函数生成的随机数确定再次通过反向散射方式发送信号的时频资源位置,或者,所述终端设备根据网络设备发送的触发信号的掩码匹配所述终端设备的标识确定是否通过反向散射方式发送信号。
  20. 如权利要求18或19所述的方法,其特征在于,
    所述资源的粒度包括以下至少之一:时域、频域和码域。
  21. 如权利要求1至20中任一项所述的方法,其特征在于,所述第一信号为所述终端设备的供能信号。
  22. 如权利要求1至21中任一项所述的方法,其特征在于,
    所述终端设备通过网络设备连续发送的供能信号获取能量。
  23. 如权利要求22所述的方法,其特征在于,所述连续发送的供能信号为恒幅连续波信号。
  24. 一种无线通信的方法,其特征在于,包括:
    网络设备向终端设备发送第一信号;
    其中,所述第一信号用于触发所述终端设备进行注册,或者,所述第一信号用于触发所述终端设备进行注销;所述终端设备通过能量采集获得能量以用于通信和信息采集及处理。
  25. 如权利要求24所述的方法,其特征在于,所述第一信号中携带有目标小区的标识。
  26. 如权利要求25所述的方法,其特征在于,
    所述第一信号通过以下调制方式之一携带所述目标小区的标识:幅度调制、相位调制、频率调制。
  27. 如权利要求25或26所述的方法,其特征在于,
    所述第一信号用于所述终端设备结合其存储的注册信息确定是否在所述目标小区中注册或注销。
  28. 如权利要求27所述的方法,其特征在于,
    在所述注册信息指示所述终端设备未在所述目标小区中注册的情况下,所述第一信号用于所述终端设备确定在所述目标小区中注册,或者,所述第一信号用于所述终端设备确定不在所述目标小区中注销;或者,
    在所述注册信息指示所述终端设备已在所述目标小区中注册的情况下,所述第一信号用于所述终端设备确定不在所述目标小区中注册,或者,所述第一信号用于所述终端设备确定在所述目标小区中注销。
  29. 如权利要求27或28所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备通过反向散射方式发送的第二信号;
    其中,所述第二信号用于指示所述终端设备确定在所述目标小区中注册或注销,且所述第二信号中携带有所述终端设备的标识。
  30. 如权利要求29所述的方法,其特征在于,
    所述第二信号通过以下调制方式之一携带所述终端设备的标识:幅度调制、相位调制、频率调制。
  31. 如权利要求29或30所述的方法,其特征在于,所述方法还包括:
    在所述第二信号用于指示所述终端设备确定在所述目标小区中注册的情况下,所述网络设备向所述终端设备发送用于指示注册确认的信号;或者,
    在所述第二信号用于指示所述终端设备确定在所述目标小区中注销的情况下,所述网络设备向所述终端设备发送用于指示注销确认的信号。
  32. 如权利要求25或26所述的方法,其特征在于,在所述第一信号用于触发所述终端设备进行注册的情况下,所述方法还包括:
    所述网络设备分别向所述终端设备发送M 1个第一类信号,所述M 1个第一类信号中的第一类信号均用于触发所述终端设备进行注册,M 1为正整数;
    所述网络设备不期待所述终端设备反馈在所述目标小区中是否注册成功。
  33. 如权利要求32所述的方法,其特征在于,M 1+1≤第一门限值。
  34. 如权利要求25或26所述的方法,其特征在于,在所述第一信号用于触发所述终端设备进行注销的情况下,所述方法还包括:
    所述网络设备分别向所述终端设备发送N 1个第二类信号,所述N 1个第二类信号中的第二类信号均用于触发所述终端设备进行注销,N 1为正整数;
    所述网络设备不期待所述终端设备反馈在所述目标小区中否注销成功。
  35. 如权利要求34所述的方法,其特征在于,N 1+1≤第二门限值。
  36. 如权利要求24所述的方法,其特征在于,在所述第一信号用于触发所述终端设备进行注册的情况下,所述方法还包括:
    所述网络设备分别向所述终端设备发送M 2个第一类信号,所述M 2个第一类信号中的第一类信号均用于触发所述终端设备进行注册,M 2为正整数;
    所述网络设备不期待所述终端设备反馈是否注册成功。
  37. 如权利要求36所述的方法,其特征在于,M 2+1≤第三门限值。
  38. 如权利要求24所述的方法,其特征在于,在所述第一信号用于触发所述终端设备进行注销的情况下,所述方法还包括:
    所述网络设备分别向所述终端设备发送N 2个第二类信号,所述N 2个第二类信号中的第二类信号均用于触发所述终端设备进行注销,N 2为正整数;
    所述网络设备不期待所述终端设备反馈是否注销成功。
  39. 如权利要求38所述的方法,其特征在于,N 2+1≤第四门限值。
  40. 如权利要求24至39中任一项所述的方法,其特征在于,
    多个终端设备通过反向散射方式向所述网络设备发送的信号所占用的资源相同,或者,多个终端设备通过反向散射方式向所述网络设备发送的信号所占用的资源不同;
    其中,所述多个终端设备至少包括所述终端设备。
  41. 如权利要求40所述的方法,其特征在于,
    在所述多个终端设备通过反向散射方式发送信号时发生资源冲突的情况下,所述终端设备再次通过反向散射方式发送信号的时频资源位置是基于所述终端设备的随机函数生成的随机数确定的,或者,所述终端设备是否通过反向散射方式发送信号是基于上述网络设备发送的触发信号的掩码匹配所述终端设备的标识确定的。
  42. 如权利要求40或41所述的方法,其特征在于,
    所述资源的粒度包括以下至少之一:时域、频域和码域。
  43. 如权利要求24至42中任一项所述的方法,其特征在于,所述第一信号为所述终端设备的供能信号。
  44. 如权利要求24至43中任一项所述的方法,其特征在于,
    所述网络设备通过连续发送的供能信号为所述终端设备供能。
  45. 如权利要求44所述的方法,其特征在于,所述连续发送的供能信号为恒幅连续波信号。
  46. 一种终端设备,其特征在于,包括:
    通信单元,用于接收第一信号;
    其中,所述第一信号用于触发所述终端设备进行注册,或者,所述第一信号用于触发所述终端设备进行注销;所述终端设备通过能量采集获得能量以用于通信和信息采集及处理。
  47. 一种网络设备,其特征在于,包括:
    通信单元,用于向终端设备发送第一信号;
    其中,所述第一信号用于触发所述终端设备进行注册,或者,所述第一信号用于触发所述终端设备进行注销;所述终端设备通过能量采集获得能量以用于通信和信息采集及处理。
  48. 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述终端设备执行如权利要求1至23中任一项所述的方法。
  49. 一种网络设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述终端设备执行如权利要求24至45中任一项所述的方法。
  50. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至23中任一项所述的方法,或者,执行如权利要求24至45中任一项所述的方法。
  51. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至23中任一项所述的方法,或者,执行如权利要求24至45中任一项所述的方法。
  52. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执 行如权利要求1至23中任一项所述的方法,或者,执行如权利要求24至45中任一项所述的方法。
  53. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至23中任一项所述的方法,或者,执行如权利要求24至45中任一项所述的方法。
PCT/CN2021/142142 2021-12-28 2021-12-28 无线通信的方法、终端设备和网络设备 WO2023122975A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142142 WO2023122975A1 (zh) 2021-12-28 2021-12-28 无线通信的方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142142 WO2023122975A1 (zh) 2021-12-28 2021-12-28 无线通信的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2023122975A1 true WO2023122975A1 (zh) 2023-07-06

Family

ID=86996900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142142 WO2023122975A1 (zh) 2021-12-28 2021-12-28 无线通信的方法、终端设备和网络设备

Country Status (1)

Country Link
WO (1) WO2023122975A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117676853A (zh) * 2024-02-01 2024-03-08 成都天传科技有限公司 一种无源无线密集传感分时数据采集方法及***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080143555A1 (en) * 2001-10-17 2008-06-19 Jim Allen System and Synchronization Process for Inductive Loops in a Multilane Environment
CN102474909A (zh) * 2010-04-14 2012-05-23 松下电器产业株式会社 终端装置及其注册方法
CN104936132A (zh) * 2015-05-29 2015-09-23 广东欧珀移动通信有限公司 机器类型通信的方法、终端以及基站
CN112564777A (zh) * 2020-12-07 2021-03-26 成都大学 一种协助激励接收同步的反向散射通信***及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080143555A1 (en) * 2001-10-17 2008-06-19 Jim Allen System and Synchronization Process for Inductive Loops in a Multilane Environment
CN102474909A (zh) * 2010-04-14 2012-05-23 松下电器产业株式会社 终端装置及其注册方法
CN104936132A (zh) * 2015-05-29 2015-09-23 广东欧珀移动通信有限公司 机器类型通信的方法、终端以及基站
CN112564777A (zh) * 2020-12-07 2021-03-26 成都大学 一种协助激励接收同步的反向散射通信***及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117676853A (zh) * 2024-02-01 2024-03-08 成都天传科技有限公司 一种无源无线密集传感分时数据采集方法及***
CN117676853B (zh) * 2024-02-01 2024-04-26 成都天传科技有限公司 一种无源无线密集传感分时数据采集方法及***

Similar Documents

Publication Publication Date Title
WO2023272442A1 (zh) 无线通信的方法、终端设备和网络设备
US20240129868A1 (en) Method for wireless communication, terminal device, and communication device
WO2023122975A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023151045A1 (zh) 反向散射通信的方法及设备
WO2023015572A1 (zh) 无线通信的方法和设备
WO2023000175A1 (zh) 无线通信方法、第一设备和第二设备
WO2023225788A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023004583A1 (zh) 无线通信的方法和终端设备
WO2024148511A1 (zh) 无线通信的方法和设备
WO2023000209A1 (zh) 无线通信方法、终端设备和网络设备
WO2023070260A1 (zh) 无线通信的方法及设备
WO2023039754A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023193192A1 (zh) 无线通信的方法及设备
EP4407828A1 (en) Wireless communication method and device
WO2023070453A1 (zh) 无线通信方法、第一设备和第二设备
WO2023184534A1 (zh) 无线通信的方法及设备
WO2023159495A1 (zh) 通信方法、终端设备、网络设备、芯片和存储介质
WO2023279236A1 (zh) 无线通信的方法和设备
WO2023159484A1 (zh) 信道侦听方法和通信设备
WO2023173379A1 (zh) 数据传输方法、第一设备和第二设备
WO2023173438A1 (zh) 数据传输方法、第一设备和第二设备
WO2023010341A1 (zh) 无线通信方法、终端设备和网络设备
WO2023065336A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024026771A1 (zh) 接入认证的方法和设备
WO2023137718A1 (zh) 同步控制方法、终端设备、网络设备、芯片和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969354

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024012921

Country of ref document: BR