WO2024026771A1 - 接入认证的方法和设备 - Google Patents

接入认证的方法和设备 Download PDF

Info

Publication number
WO2024026771A1
WO2024026771A1 PCT/CN2022/110273 CN2022110273W WO2024026771A1 WO 2024026771 A1 WO2024026771 A1 WO 2024026771A1 CN 2022110273 W CN2022110273 W CN 2022110273W WO 2024026771 A1 WO2024026771 A1 WO 2024026771A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
frequency band
sent
access request
access
Prior art date
Application number
PCT/CN2022/110273
Other languages
English (en)
French (fr)
Inventor
胡荣贻
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/110273 priority Critical patent/WO2024026771A1/zh
Publication of WO2024026771A1 publication Critical patent/WO2024026771A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the embodiments of this application relate to the field of communications, and specifically to an access authentication method and device.
  • This application provides an access authentication method and device, which can realize access authentication of zero-power consumption devices.
  • the first aspect provides an access authentication method, including:
  • the first device sends target access request information to the second device, wherein the target access request information is sent through backscattering, or the target access request information is sent through backscattering and active transmission.
  • the target access request information is sent by the method, and the target access request information is used for the first device to access the second device.
  • the second aspect provides an access authentication method, including:
  • the second device sends target access response information to the first device, where the target access response information is sent through backscattering, or the access response information is sent through backscattering and active transmission. Sent, the target access response information is response information to a target access request signal, and the target access request information is used for the first device to access the second device.
  • a third aspect provides a terminal device for executing the method in the above first aspect or its respective implementations.
  • the terminal device includes a functional module for executing the method in the above-mentioned first aspect or its respective implementations.
  • a fourth aspect provides a network device for performing the method in the above second aspect or its respective implementations.
  • the network device includes a functional module for executing the method in the above second aspect or its respective implementations.
  • a terminal device including a processor and a memory.
  • the memory is used to store computer programs, and the processor is used to call and run the computer programs stored in the memory to execute the method in the above first aspect or its implementations.
  • a sixth aspect provides a network device, including a processor and a memory.
  • the memory is used to store computer programs, and the processor is used to call and run the computer programs stored in the memory, and execute the method in the above second aspect or its respective implementations.
  • a seventh aspect provides a chip for implementing any one of the above-mentioned first to second aspects or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from a memory, so that the device installed with the device executes any one of the above-mentioned first to second aspects or implementations thereof. method.
  • An eighth aspect provides a computer-readable storage medium for storing a computer program, the computer program causing the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation thereof.
  • a computer program product including computer program instructions, which cause a computer to execute any one of the above-mentioned first to second aspects or the method in each implementation thereof.
  • a tenth aspect provides a computer program that, when run on a computer, causes the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation thereof.
  • devices that support backscatter communication can use backscatter to send access authentication-related information (such as target access request information, target access response information ), thereby enabling access authentication for zero-power devices.
  • access authentication-related information such as target access request information, target access response information
  • Figure 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a zero-power communication system according to an example of the present application.
  • FIG. 3 is a schematic diagram of energy harvesting according to an embodiment of the present application.
  • Figure 4 is a schematic diagram of backscatter communication according to an embodiment of the present application.
  • Figure 5 is a circuit schematic diagram of resistive load modulation according to an embodiment of the present application.
  • Figure 6 is a schematic diagram of radio frequency index requirements of a receiver according to an embodiment of the present application.
  • Figure 7 is a schematic diagram of receiver blocking according to an embodiment of the present application.
  • Figure 8 is a schematic diagram of an access authentication method provided according to an embodiment of the present application.
  • Figure 9 is a schematic interaction diagram of another access authentication method provided according to an embodiment of the present application.
  • Figure 10 is a schematic interaction diagram of yet another access authentication method provided according to an embodiment of the present application.
  • Figure 11 is a schematic interaction diagram of yet another access authentication method provided according to an embodiment of the present application.
  • Figure 12 is a schematic interaction diagram of yet another access authentication method provided according to an embodiment of the present application.
  • Figure 13 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Figure 14 is a schematic block diagram of another communication device provided according to an embodiment of the present application.
  • Figure 15 is a schematic block diagram of yet another communication device provided according to an embodiment of the present application.
  • Figure 16 is a schematic block diagram of a chip provided according to an embodiment of the present application.
  • Figure 17 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • evolution system of NR system LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) unlicensed spectrum (NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunication System (UMTS), Wireless Local Area Networks (WLAN), wireless fidelity (Wireless Fidelity, WiFi), fifth-generation communication (5th-Generation, 5G) system, cellular Internet of Things system, cellular passive Internet of Things system or other communication systems, etc.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • the communication system in the embodiment of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) deployment scenario.
  • CA Carrier Aggregation
  • DC Dual Connectivity
  • SA standalone deployment scenario.
  • the communication system in the embodiment of the present application can be applied to the unlicensed spectrum, where the unlicensed spectrum can also be considered as a shared spectrum; or the communication system in the embodiment of the present application can also be applied to the licensed spectrum, where, Licensed spectrum can also be considered as unshared spectrum.
  • the embodiments of this application describe various embodiments in combination with network equipment and terminal equipment.
  • the terminal equipment may also be called user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • User Equipment User Equipment
  • the network device may be a device used to communicate with mobile devices.
  • the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA.
  • AP Access Point
  • BTS Base Transceiver Station
  • NodeB can be a base station (NodeB, NB) in WCDMA, or an evolutionary base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network Network equipment (gNB) or network equipment in the cellular Internet of Things, or network equipment in the cellular passive Internet of Things, or network equipment in the future evolved PLMN network or network equipment in the NTN network, etc.
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB in LTE
  • gNB NR network Network equipment
  • network equipment in the cellular Internet of Things or network equipment in the cellular passive Internet of Things, or network equipment in the future evolved PLMN network or network equipment in the NTN network, etc.
  • the network device may have mobile characteristics, for example, the network device may be a mobile device.
  • the network device can be a satellite or balloon station.
  • the satellite can be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geosynchronous orbit (geostationary earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite ) satellite, etc.
  • the network device may also be a base station installed on land, water, etc.
  • network equipment can provide services for a cell, and terminal equipment communicates with the network equipment through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell can be a network equipment ( For example, the cell corresponding to the base station), the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • the small cell here can include: urban cell (Metro cell), micro cell (Micro cell), pico cell ( Pico cell), femto cell (Femto cell), etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-rate data transmission services.
  • the terminal device can be a station (STATION, ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, or a personal digital assistant.
  • PDA Personal Digital Assistant
  • handheld devices with wireless communication capabilities computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or in the future Terminal equipment in the evolved Public Land Mobile Network (PLMN) network, terminal equipment in the cellular Internet of Things, terminal equipment in the cellular passive Internet of Things, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites). superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, or an augmented reality (Augmented Reality, AR) terminal.
  • Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones.
  • the communication system 100 may include a network device 110, which may be a device that communicates with a terminal device 120 (also referred to as a communication terminal or terminal).
  • the network device 110 can provide communication coverage for a specific geographical area and can communicate with terminal devices located within the coverage area.
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. This application The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • the communication device may include a network device 110 and a terminal device 120 with communication functions.
  • the network device 110 and the terminal device 120 may be the specific devices described above, which will not be described again here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in the embodiments of this application.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • correlate can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed, configuration and being. Configuration and other relationships.
  • predefinition can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • devices for example, including terminal devices and network devices.
  • predefined can refer to what is defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this.
  • Key technologies for zero-power communication include energy harvesting, backscatter communication and low-power technology.
  • a typical zero-power communication system (such as an RFID system) includes network equipment (such as a reader/writer of an RFID system) and zero-power devices (such as an electronic tag). Network equipment is used to send wireless power supply signals and downlink communication signals to zero-power devices and receive backscattered signals from zero-power devices.
  • a basic zero-power device includes an energy harvesting module, a backscatter communication module, and a low-power computing module.
  • zero-power devices can also have a memory or sensor to store some basic information (such as item identification, etc.) or sensing data such as ambient temperature and ambient humidity.
  • the energy harvesting module can collect the energy carried by radio waves in space (shown as radio waves emitted by network devices in Figure 2), and is used to drive low-power computing modules of zero-power devices and implement backscatter communications.
  • the zero-power consumption device After the zero-power consumption device obtains energy, it can receive control commands from the network device and send data to the network device in a backscattering manner based on control signaling.
  • the data sent can be data stored by the zero-power device itself (such as identification or pre-written information, such as the product's production date, brand, manufacturer, etc.).
  • Zero-power consumption devices can also be loaded with various sensors, so that the data collected by various sensors can be reported based on the zero-power consumption mechanism.
  • the RF energy collection module collects space electromagnetic wave energy based on the principle of electromagnetic induction, thereby obtaining the energy required to drive zero-power devices, such as driving low-power demodulation and modulation modules, sensors, and Memory reading, etc. Therefore, zero-power devices do not require traditional batteries.
  • the zero-power device receives the carrier signal sent by the network device, modulates the carrier signal, loads the information that needs to be sent, and radiates the modulated signal from the antenna.
  • This information transmission process is called for backscatter communications.
  • Backscatter and load modulation functions are inseparable.
  • Load modulation adjusts and controls the circuit parameters of the oscillation circuit of the zero-power device according to the rhythm of the data flow, so that the parameters such as the impedance of the zero-power device change accordingly, thereby completing the modulation process.
  • Load modulation technology mainly includes two methods: resistive load modulation and capacitive load modulation.
  • resistive load modulation the load is connected in parallel with a resistor, which is turned on or off based on control of a binary data stream, as shown in Figure 5.
  • the switching of the resistor will cause the circuit voltage to change, so amplitude keying modulation (ASK) is implemented, that is, the signal is modulated and transmitted by adjusting the amplitude of the backscattered signal from the zero-power device.
  • ASK amplitude keying modulation
  • capacitive load modulation the resonant frequency of the circuit can be changed by turning the capacitor on and off, achieving frequency keying modulation (FSK), that is, modulating the signal by adjusting the operating frequency of the backscattered signal of the zero-power device and transmission.
  • FSK frequency keying modulation
  • zero-power device uses load modulation to modulate the information of the incoming signal, thereby realizing the backscattering communication process. Therefore, zero-power devices have significant advantages:
  • Radio frequency identification systems usually use one of the following encoding methods: reverse non-return to zero (NRZ) encoding, Manchester encoding, unipolar return-to-zero encoding, differential biphase (DBP) encoding, differential encoding, Pulse interval encoding (PIE), bidirectional spatial encoding (FM0), Miller encoding, differential dynamic encoding, etc.
  • NRZ reverse non-return to zero
  • DBP differential biphase
  • PIE Pulse interval encoding
  • FM0 bidirectional spatial encoding
  • Miller encoding differential dynamic encoding
  • the energy supply signal, scheduling signal and carrier signal related to zero-power communication are described.
  • the energy supply signal is the energy source for energy harvesting by zero-power devices.
  • the energy supply signal carrier From the energy supply signal carrier, it can be a base station, a smartphone, a smart gateway, a charging station, a micro base station, etc.
  • the frequency bands of radio waves used for energy supply can be low frequency, medium frequency, high frequency, etc.
  • radio waves used for energy supply can be sine waves, square waves, triangle waves, pulses, rectangular waves, etc.
  • the energy supply signal can be a continuous wave or a discontinuous wave (that is, a certain time interruption is allowed).
  • the power supply signal may be an existing signal in the 3GPP standard.
  • Sounding Reference Signal SRS
  • Physical Uplink Shared Channel PUSCH
  • Physical Random Access Channel PRACH
  • Physical Uplink Control Channel PUCCH
  • Physical Downlink Control Channel PUCCH
  • Physical Downlink Shared Channel PDSCH
  • Physical Broadcast Channel PBCH
  • the energy supply signal can also be implemented by adding a new signal, for example, adding a signal dedicated to energy supply.
  • Trigger signals are used to trigger or schedule zero-power devices for data transmission.
  • the trigger signal carrier From the trigger signal carrier, it can be a base station, a smartphone, a smart gateway, etc.
  • the radio waves used for triggering or scheduling can be low frequency, medium frequency, high frequency, etc.
  • the radio waves used for triggering or scheduling can be sine waves, square waves, triangle waves, pulses, rectangular waves, etc.
  • the trigger signal can be a continuous wave or a discontinuous wave (that is, a certain time interruption is allowed).
  • the trigger signal may be an existing signal in the 3GPP standard.
  • SRS Session Detection
  • PUSCH Physical Uplink Control Channel
  • PRACH Physical Downlink Control Channel
  • PUCCH Physical Downlink Control Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Control Channel
  • PBCH Physical Broadcast Channel
  • WIFI Wireless Fidelity
  • the trigger signal can also be implemented by adding a new signal, for example, adding a new signal dedicated to triggering or scheduling.
  • the carrier signal is used by the zero-power device to generate a backscatter signal.
  • the zero-power device can modulate the received carrier signal to form a backscatter signal according to the information that needs to be sent.
  • the carrier signal carrier From the carrier signal carrier, it can be a base station, a smartphone, a smart gateway, etc.
  • the radio waves used as carrier signals can be low frequency, medium frequency, high frequency, etc.
  • the radio waves used as carrier signals can be sine waves, square waves, triangle waves, pulses, rectangular waves, etc.
  • the carrier signal can be a continuous wave or a discontinuous wave (that is, a certain time interruption is allowed).
  • the carrier signal may be an existing signal in the 3GPP standard.
  • SRS PUSCH
  • PRACH Physical Uplink Control Channel
  • PUCCH Physical Downlink Control Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Control Channel
  • PBCH Physical Broadcast Channel
  • WIFI Wireless Fidelity
  • the carrier signal can also be implemented by adding a new signal, for example, adding a carrier signal dedicated to generating a backscatter signal.
  • the energy supply signal, the scheduling signal and the carrier signal can be the same signal, or they can be different signals.
  • the energy supply signal can be used as the carrier signal
  • the scheduling signal can also be used. as carrier signal, etc.
  • zero-power devices can be divided into the following types:
  • Zero-power devices do not require built-in batteries. When zero-power devices are close to network devices (such as readers and writers in RFID systems), the zero-power devices are within the near field range formed by the antenna radiation of the network device. . Therefore, the zero-power device antenna generates an induced current through electromagnetic induction, and the induced current drives the low-power chip circuit of the zero-power device. Realizes the demodulation of the forward link signal and the signal modulation of the reverse link (or reflection link). For backscatter links, zero-power devices use backscatter implementations to transmit signals.
  • the passive zero-power device does not require a built-in battery to drive either the forward link or the reverse link, and is a true zero-power device.
  • RF circuit and baseband circuit are very simple, such as low-noise amplifier (LNA), power amplifier (PA), crystal oscillator, and analog-to-digital converter (Analog-to-Digital Converter, ADC). and other devices, so it has many advantages such as small size, light weight, very cheap price, long service life, etc.
  • LNA low-noise amplifier
  • PA power amplifier
  • ADC analog-to-digital converter
  • Semi-passive zero-power devices do not install conventional batteries themselves, but can use RF energy harvesting modules to collect radio wave energy and store the collected energy in an energy storage unit (such as a capacitor). After the energy storage unit obtains energy, it can drive the low-power chip circuit of the zero-power device. Realizes the demodulation of the forward link signal and the signal modulation of the reverse link. For backscatter links, zero-power devices use backscatter implementations to transmit signals.
  • the semi-passive zero-power device does not require a built-in battery to drive either the forward link or the reverse link.
  • the energy stored in the capacitor is used in operation, the energy comes from the radio collected by the energy harvesting module. energy, and is therefore a truly zero-power device.
  • Semi-passive zero-power devices inherit many advantages of passive zero-power devices, so they have many advantages such as small size, light weight, very cheap price, and long service life.
  • the zero-power devices used in some scenarios can also be active zero-power devices, and such devices can have built-in batteries. Batteries are used to drive low-power chip circuits in zero-power devices. Realizes the demodulation of the forward link signal and the signal modulation of the reverse link. But for backscatter links, zero-power devices use backscatter implementations to transmit signals. Therefore, the zero power consumption of this type of equipment is mainly reflected in the fact that signal transmission in the reverse link does not require the terminal's own power, but uses backscattering.
  • passive IoT devices can be based on zero-power communication technology, such as RFID technology, and can be extended on this basis to be suitable for cellular IoT.
  • Narrow Band Internet of Things (NB-IoT) terminals or enhanced Machine Type Communication (eMTC) terminals and traditional terminals in NR systems can coexist in the following three ways: In-band deployment, guard-band deployment, and standalone deployment modes.
  • NB-IoT Narrow Band Internet of Things
  • eMTC enhanced Machine Type Communication
  • the downlink signal sent to the zero-power device or the reflected signal of the zero-power device may fall into the adjacent band or within the band of the traditional terminal, forming an adjacent band.
  • the interference signal should meet the receiver RF index requirements of the traditional terminal, otherwise it will reduce the receiver performance and cause the receiver sensitivity to fall back (MSD).
  • the in-band mode it is first necessary to avoid co-channel interference between systems, that is, in-band interference.
  • the input power of wireless energy collected by zero-power terminals is generally at least -20dBm. Whether the transmitted signal and backscattered signal of the energy source will cause co-channel interference to other 4G/5G terminals in the same frequency band needs to be evaluated. .
  • the network needs to send strong signals so that the receiving power of zero-power terminals is above -20dBm. Such strong signals may affect the maximum performance of traditional terminals when deployed in-band. Input power, such as -15dBm. Therefore, it is necessary to evaluate the impact on traditional terminals and how to avoid related impacts.
  • zero-power devices are deployed in the same equipment as traditional terminals, the coexistence problem will be more complicated. It is also necessary to consider the additional interference caused by signals such as harmonics and intermodulation, and the impact on the performance of both receivers. In addition, there are coexistence issues with other WiFi, Bluetooth, Beidou and other systems, which also need to be analyzed more specifically based on the actual working frequency bands and modes. If the zero-power device exists in the form of an independent device, it only needs to meet the radio frequency index requirements for adjacent band and out-of-band spurious radiation of the transmitter and receiver.
  • WIFI devices can use Near Field Communication (NFC) technology for close authentication, but this method cannot meet the requirements for long distances.
  • NFC Near Field Communication
  • QR code scanning authentication although it is easy to implement, it is not suitable for batch access. Scenarios require a lot of manpower and time.
  • the gateway, WIFI hotspot or controller is replaced or powered off, how to re-enter the network for a large number of devices is also a problem.
  • FIG 8 is a schematic diagram of an access authentication method 200 according to an embodiment of the present application. As shown in Figure 8, the method 200 includes at least part of the following content:
  • the first device sends target access request information to the second device.
  • the second device receives the target access request information.
  • S220 The second device sends target access response information to the first device.
  • the first device receives the target access response information.
  • the first device may be called the access requesting device, the access requester, and the second device may be called the access authentication device, the accessee, etc.
  • the embodiments of the present application do not limit the power supply methods of the first device and the second device.
  • the first device has an energy storage unit that can supply its own energy, or the first device can also obtain energy through energy harvesting.
  • the second device has an energy storage unit that can supply its own energy, or the second device can also obtain energy through energy harvesting.
  • the target access request information is used by the first device to access the second device.
  • the target access response message is used to indicate the second device's response to the access request of the first device.
  • the first device may support backscatter communications and/or active transmit communications.
  • the first device supports transmitting signals using a backscattering method and/or an active transmission method.
  • the second device may support backscatter communications and/or active transmit communications.
  • the second device supports transmitting signals using a backscattering method and/or an active transmission method.
  • At least one of the first device and the second device supports backscatter communication.
  • Case 1 The first device supports backscatter communication and the second device does not support backscatter communication.
  • Case 2 The first device does not support backscatter communication and the second device supports backscatter communication.
  • Case 3 The first device supports backscatter communication, and the second device supports backscatter communication.
  • the device when a device (eg, a first device or a second device) supports backscatter communication, the device may include a functional module for backscatter communication, such as a backscatter transmitter.
  • the functional module for backscatter communication may be built into the device, or may be installed later, which is not limited in this application.
  • the functional module for backscatter communication can be equipped with an Ambient enabled Internet of Things (A-IOT) tag.
  • A-IOT Ambient enabled Internet of Things
  • the device when a device (such as a first device or a second device) supports active transmission communication, the device may be equipped with a functional module for actively transmitting signals, such as a PA, LNA, local oscillator, crystal oscillator, transistor or Tunnel diodes, etc.
  • a functional module for actively transmitting signals such as a PA, LNA, local oscillator, crystal oscillator, transistor or Tunnel diodes, etc.
  • the above-mentioned functional module for active transmission communication can also be used to amplify the backscattered signal in some cases to increase the communication distance of the backscattered signal.
  • the backscattered signal is amplified (eg, reverse amplified) through a PA or LNA, a transistor, or a tunnel diode to increase the communication distance of the backscattered signal.
  • the device when the device supports active transmit communication and backscatter communication, the device may include a functional module for backscatter communication and a functional module for active transmit communication, for example, having a main transmitter and a backscatter communication module. scatter transmitter.
  • the backscatter transmitter supports the use of backscatter mode for signal transmission. This backscatter transmitter cannot transmit signals autonomously and needs to modulate and reflect the received signal to carry the information to be sent.
  • the main transmitter and the backscatter transmitter may be independent modules, or the main transmitter and the backscatter transmitter may be considered to include different functional modules in the device.
  • the main transmitter may include Power amplifier, local oscillator, crystal oscillator, LNA and other functional modules, while the backscatter transmitter does not need to include the above functional modules.
  • different signal sending methods can correspond to whether specific functional modules of the transmitter are enabled.
  • the specific functional module may include functional modules for actively transmitting signals, such as power amplifier, local oscillator, crystal oscillator, LNA, etc.
  • the use of PA corresponds to the active transmission method, which requires consuming additional energy to achieve longer communication distances.
  • whether a local oscillator is used can also correspond to different signal transmission methods.
  • the active transmission mode generates and modulates the transmission signal through the local oscillator of the transmitter, which does not depend on the external carrier signal.
  • the backscatter method does not use the local oscillator of the transmitter to generate the transmission signal, but relies on the external carrier signal for modulation.
  • the first device may have the following structural units:
  • the first device may have the following structural units:
  • Low-power receiver or low-complexity receiver
  • backscatter transmitter main receiver (or traditional receiver), main transmitter (or traditional transmitter).
  • the second device may have the following structural units:
  • the second device may have the following structural units:
  • Low-power receiver or low-complexity receiver
  • backscatter transmitter main receiver (or traditional receiver), main transmitter (or traditional transmitter).
  • the low-power receiver and the backscatter transmitter may be independent structural units, or may be attached to the main receiver and main transmitter.
  • the first device may be a zero-power consumption device, a terminal device that supports backscatter communication, or may be a traditional terminal.
  • the second device may be a zero-power device, a network device that supports backscatter communication, or may be a traditional network device.
  • the first device may include, but is not limited to, at least one of the following:
  • Mobile phones tablets, headsets, mice, AR glasses, VR glasses, drones.
  • the second device may include, but is not limited to, at least one of the following:
  • Base station AP, router, remote control, smart key.
  • zero-power consumption devices can be classified based on the complexity of the device, energy supply mode, communication mode, modulation mode and other characteristics.
  • a zero-power device may be a terminal with at least one of the following characteristics: low complexity, support for environmental power supply, support for power supply by other devices, backscattering, new waveform (or simple waveform), low complexity Modulation methods such as Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK), Phase Shift Keying (PSK), On-Off Keying (OOK) ).
  • ASK Amplitude Shift Keying
  • FSK Frequency Shift Keying
  • PSK Phase Shift Keying
  • OOK On-Off Keying
  • zero-power consumption devices may also be called low-power consumption devices, ambient energy enabled (Ambient Power Enabled, AMP) devices, devices based on energy collection, etc.
  • AMP Ambient Power Enabled
  • the embodiment of the present application does not limit the specific source of the carrier signal used for backscattering.
  • the nearest signal can be used as the carrier signal for backscattering, or alternatively, A dedicated carrier signal may be used for backscattering, or a radio signal in the environment may be used as the carrier signal, and the present application is not limited thereto.
  • the target access request information is sent through a backscatter mode, or the target access request information is sent through a backscatter mode and an active transmission mode.
  • the target access request information may be sent in a backscatter manner.
  • the target access request information is sent through the backscatter mode and the active transmission mode.
  • the target access request information is sent through backscattering and active transmission, which may include:
  • Different parts (or different bits) of the target access request information are sent through backscattering and active transmission respectively.
  • the first part of the target access request message is sent by backscattering, and the second part is sent by active reflection.
  • the target access request information may also be sent through active transmission.
  • the first device may send the target access request information through active transmission.
  • the target access response information is sent through a backscatter mode, or the target access response information is sent through a backscatter mode and an active transmission mode.
  • the target access response information may be sent in a backscatter manner.
  • the target access response information is sent through the backscatter mode and the active transmission mode.
  • the target access response information is sent through backscattering and active transmission, which may include:
  • Different parts (or different bits) of the target access response information are sent through backscattering and active transmission respectively.
  • the first part of the target access response message is sent by backscattering, and the second part is sent by active reflection.
  • the target access response information may also be sent through active transmission.
  • the second device may send the target access response information through active transmission.
  • the target access request information and the target access response information can be sent in the following manner.
  • Method 1 The target access request information can be sent through backscattering, or the target access request information can be sent through backscattering and active transmission, and the target access response information can be sent through active transmission. of.
  • Method 2 The target access request information can be sent through active transmission, and the target access response information can be sent through backscattering, or the target access response information can be sent through backscattering and active transmission. of.
  • Method 3-1 The target access request information can be sent through backscattering, or the target access request information can be sent through backscattering and active transmission; the target access response information can be sent through backscattering. The target access response information is sent through backscattering and active transmission.
  • Method 3-2 The target access request information can be sent through backscattering, or the target access request information can be sent through backscattering and active transmission; the target access response information can be sent through active transmission. Sent.
  • Method 3-3 The target access request information can be sent through active transmission; the target access response information can be sent through backscattering, or the target access response information can be sent through backscattering and active transmission. Sent.
  • the access requesting device when the access requesting device supports backscatter communication, the access requesting device at least uses the backscattering method to send the access request information.
  • NFC which is close to authentication, it has the advantage of longer distance communication.
  • QR code scanning authentication it has the advantage of easy operation.
  • the access authentication device When the access authentication device supports backscatter communication, the access authentication device at least uses the backscatter method to send access response information. In this way, when the access authentication device is powered off, the backscatter communication module of the access authentication device can be used to achieve re-entry of the auxiliary access requesting device into the network.
  • the target access response information may be sent in a specific frequency band.
  • the specific frequency band may be a frequency band used for backscatter communication, or a dedicated frequency band for reflection scatter communication, or a working frequency band of the first device.
  • the target access request information may include part or all of the information sent by the access requesting device to the access authentication device during the access authentication process, and the target access response information may include access authentication This application does not limit part or all of the information sent by the access authentication device to the access requesting device during the process.
  • the target access request information includes at least one of the following:
  • First access request information used to request access to the second device
  • the second access request information is used to respond to the inquiry information of the second device, where the inquiry information is the response information of the first access request information.
  • the first access request information and the second access request information are sent through the same sending method.
  • both the first access request information and the second access request information are sent in a backscatter manner.
  • both the first access request information and the second access request information are sent through the backscatter mode, or through the backscatter mode and active transmission mode. Sent by launch mode.
  • both the first access request information and the second access request information are sent through active transmission.
  • the first access request information and the second access request information are sent through different sending methods.
  • the first access request information and the second access request information may be sent in the following three ways:
  • One of the first access request information and the second access request information is sent through backscattering, and the other is sent through active transmission;
  • One of the first access request information and the second access request information is sent through backscattering, and the other is sent through active transmission and backscattering;
  • One of the first access request information and the second access request information is sent through active transmission, and the other is sent through active transmission and backscattering.
  • the target access response information includes at least one of the following:
  • the query information and the access authentication result information of the second device are sent through the same sending method.
  • both the query information and the access authentication result information of the second device are sent through the backscatter method.
  • the query information and access authentication result information of the second device are both sent through the backscattering method, or through the backscattering method and active transmission. sent by way.
  • both the query information and the access authentication result information of the second device are sent through active transmission.
  • the query information and the access authentication result information of the second device are sent through different sending methods.
  • the second device's query information and access authentication result information can be sent in the following three ways:
  • One of the query information and the access authentication result information of the second device is sent through backscattering, and the other is sent through active transmission;
  • One of the query information and the access authentication result information of the second device is sent through the backscattering method, and the other is sent through the active transmission method and the backscattering method;
  • One of the query information and the access authentication result information of the second device is sent through active transmission, and the other is sent through active transmission and backscattering.
  • the first access request information includes at least one of the following:
  • Identification information (Identify, ID) of the first device, and service information requested to be transmitted by the first device (such as service type, service priority, etc.).
  • the first access request information may be sent through signals in the 3GPP standard, or may be sent through WIFI signals, Bluetooth signals, etc., which is not limited in this application.
  • the first device may use a signal in the 3GPP standard, or a WIFI signal or a Bluetooth signal as a carrier signal to perform backscattering.
  • the first access request information is sent in the first frequency band.
  • the first frequency band is a public frequency band.
  • the first frequency band is a specific frequency band.
  • a dedicated frequency band for backscatter communications, or an operating frequency band of the first device is a specific frequency band.
  • the first frequency band is a specific frequency band.
  • a dedicated frequency band for backscatter communications, or an operating frequency band of the first device is a specific frequency band.
  • the query information of the second device is also called challenge information, pre-admission information, admission information, and authorization information.
  • the query information of the second device includes at least one of the following:
  • the second device's identification information (ID), query code (or challenge code), and available access frequency band information.
  • the interrogation code may be characterized by a specific frequency band or a specific signal.
  • the interrogation code may be a specific pseudo-random sequence or pilot signal.
  • the challenge code may be key-related information, such as an asymmetric key or a symmetric key, or key verification information.
  • the key can be a fixed key, a dynamic key or third-party authorization information.
  • available access band information may be used to indicate frequency bands available for transmitting the requested service.
  • the inquiry information of the second device is sent through a specific signal, and the specific signal can be used as a carrier signal of the second access request information.
  • the second device can send a specific signal to the first device, the specific signal is used to carry the query information of the second device, and the specific signal is also used as a carrier signal of the second access request information, that is, The first device may backscatter the specific signal to send the second access request information.
  • the query information of the second device is sent in a broadcast, multicast or unicast manner.
  • the second device can send query information through broadcast or multicast.
  • the second device can send query information through unicast or multicast.
  • the multiple devices when multiple devices request access, the multiple devices may be multiplexed, for example, frequency-division multiplexing (FDM), or time-division multiplexing (Time-division multiplexing). division multiplexing (TDM) or code division multiplexing (Code-division multiplexing (CDM)), this application does not limit this.
  • FDM frequency-division multiplexing
  • Time-division multiplexing Time-division multiplexing
  • TDM division multiplexing
  • CDM code division multiplexing
  • the query information of the second device is sent in the second frequency band.
  • the second frequency band is a public frequency band or any frequency band.
  • the second frequency band is a specific frequency band.
  • the dedicated frequency band for backscatter communication the available access frequency band, and the operating frequency band of the first device.
  • the second access request information includes at least one of the following:
  • the identification information of the first device the service information requested to be transmitted by the first device (such as service type, service priority, etc.), the key-related information determined according to the query information of the second device, the second device Identification information (ID) of the device.
  • the service information requested to be transmitted by the first device such as service type, service priority, etc.
  • the key-related information determined according to the query information of the second device the second device Identification information (ID) of the device.
  • the key-related information determined according to the query information of the second device may refer to:
  • the key or key verification information obtained from the second device's challenge message or,
  • the key or key verification information decrypted according to the query information of the second device decrypted according to the query information of the second device.
  • the second access request information is sent in the third frequency band.
  • the third frequency band is a specific frequency band.
  • the dedicated frequency band for backscatter communication, the available access frequency band, and the operating frequency band of the first device are a specific frequency band.
  • the query information and the second access request information of the second device are sent on different frequency bands, or are sent on the same frequency band. That is, the second frequency band and the third frequency band may be the same or different.
  • the access authentication result information is sent on the fourth frequency band.
  • the fourth frequency band is a specific frequency band.
  • the dedicated frequency band for backscatter communication the available access frequency band, and the operating frequency band of the first device.
  • access authentication result information may be used to indicate access completion.
  • it can also be used to indicate the admitted (or available) frequency band and/or the occupation duration information of the available frequency band, etc.
  • the frequency band can also be replaced by a channel, a channel, a carrier, etc.
  • a first frequency band and a second frequency band can be configured, where the first frequency band is used to send uplink signals using the backscatter method. , the second frequency band is used to send downlink signals using backscattering.
  • the first frequency band may be a Supplementary uplink (SUL) frequency band
  • the second frequency band may be a Supplementary downlink (SDL) frequency band.
  • corresponding frequency bands for backscatter communication can also be configured according to different multi-access modes or duplex modes, such as configuring the backscatter communication frequency band corresponding to the FDD mode, the backscattering communication frequency band corresponding to the TDD mode, or Backscatter communication frequency band corresponding to fullduplex mode, etc.
  • the access authentication method according to the embodiment of the present application will be described in conjunction with the aforementioned case 1, case 2 and case 3.
  • Figure 9 is a schematic interaction diagram of an access authentication method according to an embodiment of the present application.
  • the second device supports backscatter communications and the first device does not support backscatter communications.
  • the first device does not support backscatter communications.
  • the working frequency band of the first device may include channel a, channel b, and channel c
  • the working frequency band of the second device may include channel a, channel b, and channel c
  • the first device sends first access request information to the second device.
  • the first device may send the first access request information on a public channel (for example, channel a).
  • a public channel for example, channel a
  • the first access request information may be considered as a trigger signal for access authentication.
  • the first access request information may be used to trigger the second device to send access feedback information.
  • the first access request information may be sent through a WIFI signal, or through a Bluetooth signal, or through a signal in the 3GPP standard, which is not limited in this application.
  • the first access request information is sent based on the first connection between the first device and the second device.
  • the first connection may be a WIFI connection, a Bluetooth connection, or a connection in the 3GPP standard.
  • a second connection is established between the first device and the second device, where the first connection and the second connection may be the same, or they may be different.
  • the second device sends query information through backscattering.
  • the second device can interpret the first access request information and learn the access request of the first device. Furthermore, the query information can be sent through backscattering.
  • the query message is sent on channel b.
  • channel b is used to send the query information.
  • the inquiry information may also be sent on channel a.
  • the query information may include identification information of the second device, key-related information, available channel information (for example, including channel c), etc.
  • the first device sends second access request information.
  • the first device after receiving the access feedback information from the second device, the first device requests access from the first device a second time.
  • the second access request information is sent on channel c.
  • the second access request information may be sent through a WIFI signal, or through a Bluetooth signal, or through a signal in the 3GPP standard, which is not limited in this application.
  • the second access request information includes at least one of the following:
  • the identification information of the first device the service information requested to be transmitted by the first device, key related information, and the identification information of the second device.
  • the second device sends access authentication result information.
  • the access authentication result information may be sent on channel c.
  • the access authentication result information may also be sent on channel X, where the channel X belongs to the working frequency band of the first device and the second device.
  • the second device may perform access authentication on the first device according to the information in the second access request information, and further feed back the access authentication result.
  • first device and the second device may perform service transmission on channel c.
  • Figure 10 is a schematic interaction diagram of another access authentication method according to an embodiment of the present application.
  • the second device supports backscatter communications and the first device does not support backscatter communications.
  • the first device does not support backscatter communications.
  • the working frequency band of the first device may include channel d
  • the working frequency band of the second device may include channel d
  • the first device sends first access request information to the second device.
  • the first device may send the first access request information on a specific channel (for example, channel d).
  • a specific channel for example, channel d
  • the specific channel d may be a dedicated channel used for backscatter communications.
  • the first access request information may be considered as a trigger signal for access authentication.
  • the first access request information may be used to trigger the second device to send access feedback information.
  • the first access request information may be sent through a WIFI signal, or through a Bluetooth signal, or through a signal in the 3GPP standard, which is not limited in this application.
  • the first access request information is sent based on the first connection between the first device and the second device.
  • the first connection may be a WIFI connection, a Bluetooth connection, or a connection in the 3GPP standard.
  • a second connection is established between the first device and the second device, where the first connection and the second connection may be the same, or they may be different.
  • the second device sends query information through backscattering.
  • the second device can interpret the first access request information and learn the access request of the first device. Furthermore, the query information can be sent through backscattering.
  • the query message is sent on channel d.
  • the query information may include identification information of the second device, key related information, available channel information (for example, channel d), etc.
  • the first device sends second access request information.
  • the first device after receiving the access feedback information from the second device, the first device requests access from the first device a second time.
  • the second access request information is sent on channel d.
  • the second access request information may be sent through a WIFI signal, or through a Bluetooth signal, or through a signal in the 3GPP standard, which is not limited in this application.
  • the second access request information includes at least one of the following:
  • the identification information of the first device the service information requested to be transmitted by the first device, key related information, and the identification information of the second device.
  • the second device sends access authentication result information.
  • the access authentication result information may be sent on frequency band d.
  • the second device may perform access authentication on the first device according to the information in the second access request information, and further feed back the access authentication result.
  • first device and the second device may perform service transmission on channel d.
  • Figures 9 and 10 only take the query information of the second device sent through the backscattering method as an example for illustration.
  • the access authentication result information may also be sent through the backscattering method, or , the query information is sent through the active transmission method, and the access authentication result information is sent through the backscattering method, or the above backscattering method can also be replaced by the backscattering method and the active transmission method.
  • Figure 11 is a schematic interaction diagram of yet another access authentication method according to an embodiment of the present application.
  • the first device supports backscatter communications and the second device does not support backscatter communications.
  • the second device does not support backscatter communications.
  • the working frequency band of the first device may include channel e, channel f, and channel g
  • the working frequency band of the second device may include channel e, channel f, and channel g
  • the first device sends first access request information to the second device.
  • the first access request information may be sent on channel e.
  • the first access request information may be considered as a trigger signal for access authentication.
  • the first access request information may be used to trigger the second device to send access feedback information.
  • the first access request information may be sent through a WIFI signal, or through a Bluetooth signal, or through a signal in the 3GPP standard, which is not limited in this application.
  • the first access request information is sent based on the first connection between the first device and the second device.
  • the first connection may be a WIFI connection, a Bluetooth connection, or a connection in the 3GPP standard.
  • a second connection is established between the first device and the second device, where the first connection and the second connection may be the same, or they may be different.
  • the second device sends query information.
  • the second device can interpret the first access request information and learn the access request of the first device. Further, query information can be sent.
  • the query message is sent on a specific channel.
  • the query message is sent on channel f.
  • the query information may include identification information of the second device, key-related information, available channel information (such as channel g and channel e), etc.
  • the query information may be sent by broadcast or multicast.
  • the second device broadcasts or multicasts access authorization information (such as key information) on a specific channel, or sends a specific signal to instruct the device requesting access. Make inquiries.
  • access authorization information such as key information
  • the specific channel may be a working channel of the first device, or a dedicated channel for backscatter communication.
  • the first device sends second access request information.
  • the first device after receiving feedback information from the second device or receiving a specific signal on a specific frequency band, the first device sends the second access request information through backscattering.
  • the second access request information may be sent by backscattering using the signal in step S322 as a carrier signal, which is not limited in this application.
  • the second access request information may be sent on channel f.
  • the second access request information may also be sent on channel e.
  • the second access request information includes at least one of the following:
  • the identification information of the first device the service information requested to be transmitted by the first device, key-related information, and the identification information of the second device.
  • the second device sends access authentication result information.
  • the second device can add the identification information of the first device to the whitelist, and then the device corresponding to the identification information runs password-free access or uses the whitelist way to access. Provide further feedback on the access authentication results.
  • the access authentication result information may be sent on frequency band g or channel e or channel f.
  • first device and the second device may perform service transmission on channel g or channel e.
  • FIG. 11 only takes the second access request information sent through the backscattering method as an example for illustration.
  • the first access request information may also be sent through the backscattering method, or the third access request information may be sent through the backscattering method.
  • the second access request information is sent through the active transmission method, and the first access request information is sent through the backscattering method.
  • the above backscattering method can also be replaced by the backscattering method and the active transmission method.
  • FIG 12 is a schematic interaction diagram of yet another access authentication method according to an embodiment of the present application.
  • both the first device and the second device support backscatter communications.
  • the working frequency band of the first device may include channel h, channel i, and channel j
  • the working frequency band of the second device may include channel h, channel i, and channel j
  • the first device sends first access request information to the second device.
  • the first device may send the first access request information on channel h.
  • the channel h may be a dedicated channel for backscatter communications.
  • the first access request information may be considered as a trigger signal for access authentication.
  • the first access request information may be used to trigger the second device to send access feedback information.
  • the first access request information may be sent through a WIFI signal, or through a Bluetooth signal, or through a signal in the 3GPP standard, which is not limited in this application.
  • the first access request information is sent based on the first connection between the first device and the second device.
  • the first connection may be a WIFI connection, a Bluetooth connection, or a connection in the 3GPP standard.
  • a second connection is established between the first device and the second device, where the first connection and the second connection may be the same, or they may be different.
  • the second device sends query information.
  • the second device can interpret the first access request information and learn the access request of the first device.
  • the query information can be sent through backscattering.
  • the signal in S331 can be used as a carrier signal for backscattering to send the inquiry information.
  • the query information is sent on a specific channel (eg channel i).
  • the channel i may be a dedicated channel for backscatter communications.
  • channel h and channel i may be the same.
  • the query information may include identification information of the second device, key-related information, available channel information (such as channel i and frequency band j), etc.
  • the query information may be sent by broadcast or multicast.
  • the second device broadcasts or multicasts access authorization information (such as key information) on a specific channel, or sends a specific signal to instruct the device requesting access. Make inquiries.
  • access authorization information such as key information
  • the first device sends second access request information.
  • the first device after receiving feedback information from the second device or receiving a specific signal on a specific frequency band, the first device sends the second access request information through backscattering.
  • the second access request information may be sent using the signal in step S322 as a carrier signal, which is not limited in this application.
  • the second access request information includes at least one of the following:
  • the identification information of the first device the service information requested to be transmitted by the first device, key related information, and the identification information of the second device.
  • the second access request information is sent on channel i.
  • the second device sends access authentication result information.
  • the second device can add the identification information of the first device to the whitelist, and then the device corresponding to the identification information runs password-free access or uses the whitelist way to access.
  • the access authentication result information may be sent on frequency band j.
  • channel j may be an available access channel.
  • the access authentication result information may be sent on frequency band i.
  • channel i may be a dedicated channel for backscatter communications.
  • the access authentication result information may be sent on frequency band h.
  • the channel h may be a dedicated channel for backscatter communications.
  • the first device and the second device may perform service transmission on channel i or channel j.
  • Figure 12 only takes the query information and the second access request information of the second device sent through the backscattering method as an example for illustration.
  • the first access request information and/or the access authentication result The information may also be sent through backscattering, or the query information and the second access request information of the second device are sent through active transmission, and the first access request information and access authentication result information are sent through backscattering. Transmitted in the forward scattering mode, or the above-mentioned backscattering mode can also be replaced by the backscattering mode and the active emission mode.
  • a device that supports backscatter communication can use backscatter mode to send access authentication related information (such as the aforementioned target access request information, target access response information),
  • access authentication related information such as the aforementioned target access request information, target access response information
  • NFC proximity authentication it has the advantage of longer-distance communication.
  • QR code scanning authentication it does not require dynamic passwords and has the advantage of easy operation.
  • access authentication devices that support backscatter communication can send access authentication related information to the access requesting device through the backscatter communication module when the power is off, thereby assisting in the re-establishment of the access requesting device. Access the network.
  • the device to be accessed can send information required for access verification through a specific channel, such as ID information, service information, and/or available channel information, etc.
  • the access request information (such as the aforementioned first access request information, second access request information) may be sent on a common access channel (that is, a dedicated channel for non-backscatter communication), Alternatively, it may be sent on a dedicated channel for backscatter communications.
  • the access request information (such as the aforementioned first access request information, second access request information) may be sent through active transmission, or may be sent through backscattering, or , or it can be sent through backscattering and active emission.
  • access response information (such as query information or access authentication result information) may be sent on a dedicated channel for backscatter communication, or may be sent on other available access channels.
  • access response information (such as query information or access authentication result information) may be sent through active transmission, or may be sent through backscattering, or may be sent through reflection. Sent to scattering mode and active emission mode.
  • Figure 13 shows a schematic block diagram of a communication device 400 according to an embodiment of the present application.
  • the communication device 400 includes:
  • the communication unit 410 is configured to send target access request information to the second device, where the target access request information is sent through backscattering, or the target access request information is sent through backscattering. and is sent in an active transmission mode, and the target access request information is used by the communication device to access the second device.
  • the target access request information includes at least one of the following:
  • First access request information used to request access to the second device
  • the second access request information is used to respond to the inquiry information of the second device, where the inquiry information is the response information of the first access request information.
  • the first access request information includes at least one of the following:
  • Identification information of the communication device and service information requested to be transmitted by the communication device.
  • the query information of the second device includes at least one of the following: identification information of the second device, key related information, and available access frequency band information.
  • the query information of the second device is sent in a broadcast, multicast or unicast manner.
  • the inquiry information of the second device is sent through a specific signal, and the specific signal is used as a carrier signal of the second access request information.
  • the second access request information includes at least one of the following:
  • the identification information of the communication device The identification information of the communication device, the service information requested to be transmitted by the communication device, the key-related information determined based on the query information of the second device, and the identification information of the second device.
  • the first access request information is sent in the first frequency band; and/or
  • the query information of the second device is sent in the second frequency band; and/or
  • the second access request information is sent in the third frequency band.
  • the first frequency band is a public frequency band
  • the first frequency band is the working frequency band of the first device.
  • the first frequency band is a dedicated frequency band for backscatter communication.
  • the second frequency band is the working frequency band of the first device.
  • the second frequency band is an available access frequency band, or,
  • the second frequency band is any frequency band.
  • the third frequency band is an available access frequency band
  • the third frequency band is a dedicated frequency band for backscatter communication.
  • the query information of the second device is sent through active transmission; or
  • the query information of the second device is sent by backscattering; or
  • the query information of the second device is sent through backscattering and active transmission.
  • the communication unit 410 is further configured to receive access authentication result information sent by the second device.
  • the access authentication result information is sent on a fourth frequency band, which is an available access frequency band, or a dedicated frequency band for backscatter communications.
  • the access authentication result information is sent through active transmission; or
  • the access authentication result information is sent through backscattering; or
  • the access authentication result information is sent through backscattering and active transmission.
  • the communication device includes a backscatter transmitter, and the backscatter transmitter is used to transmit signals in a backscatter manner.
  • the communication device includes a backscatter transmitter and a main transmitter.
  • the backscatter transmitter is used to transmit signals in a backscatter mode
  • the main transmitter is used to use active transmission. method to send signals.
  • the above-mentioned communication unit may be a communication interface or transceiver, or an input/output interface of a communication chip or a system on a chip.
  • the above-mentioned processing unit may be one or more processors.
  • the communication device 400 may correspond to the first device in the method embodiment of the present application, and the above and other operations and/or functions of the various units in the communication device 400 are respectively to implement FIG. 8 to FIG.
  • the corresponding process of the first device in the method embodiment shown in 12 will not be described again for the sake of simplicity.
  • Figure 14 shows a schematic block diagram of a communication device 500 according to an embodiment of the present application.
  • the communication device 500 includes:
  • the communication unit 510 is configured to send target access response information to the first device, where the target access response information is sent through backscattering, or the access response information is sent through backscattering and Sent in an active transmission mode, the target access response information is the response information of the target access request signal, and the target access request information is used for the first device to access the communication device.
  • the target access request information includes at least one of the following:
  • First access request information used to request access to the communication device
  • the second access request information is used to respond to the inquiry information of the communication device, where the inquiry information is the response information of the first access request information.
  • the target access response information includes at least one of the following:
  • the first access request information includes at least one of the following:
  • Identification information of the first device and service information requested to be transmitted by the first device.
  • the query information of the communication device includes at least one of the following: identification information of the communication device, key-related information, and available access frequency band information.
  • the query information of the communication device is sent in a broadcast, multicast or unicast manner.
  • the inquiry information of the communication device is sent through a specific signal, and the specific signal is used as a carrier signal of the second access request information.
  • the second access request information includes at least one of the following:
  • the identification information of the first device The identification information of the first device, the service information requested to be transmitted by the first device, the key-related information determined according to the query information of the communication device, and the identification information of the communication device.
  • the first access request information is sent through active transmission; or
  • the first access request information is sent by backscattering; or
  • the first access request information is sent through backscattering and active transmission.
  • the second access request information is sent through active transmission; or
  • the second access request information is sent by backscattering; or
  • the second access request information is sent through backscattering and active transmission.
  • the first access request information is sent in the first frequency band; and/or
  • the inquiry information of the communication device is sent in the second frequency band; and/or
  • the second access request information is sent in the third frequency band; and/or
  • the access authentication result information is sent on the fourth frequency band.
  • the first frequency band is a public frequency band
  • the first frequency band is the working frequency band of the first device.
  • the first frequency band is a dedicated frequency band for backscatter communication.
  • the second frequency band is the working frequency band of the first device.
  • the second frequency band is an available access frequency band, or,
  • the second frequency band is any frequency band.
  • the third frequency band is an available access frequency band
  • the third frequency band is a dedicated frequency band for backscatter communication.
  • the fourth frequency band is an available access frequency band, or a dedicated frequency band for backscatter communications.
  • the communication device includes a backscatter transmitter, and the backscatter transmitter is used to transmit signals in a backscatter manner.
  • the communication device includes a backscatter transmitter and a main transmitter.
  • the backscatter transmitter is used to transmit signals in a backscatter mode
  • the main transmitter is used to use active transmission. method to send signals.
  • the above-mentioned communication unit may be a communication interface or transceiver, or an input/output interface of a communication chip or a system on a chip.
  • the above-mentioned processing unit may be one or more processors.
  • the communication device 500 may correspond to the second device in the method embodiment of the present application, and the above and other operations and/or functions of the various units in the communication device 500 are respectively to implement FIG. 8 to FIG.
  • the corresponding process of the second device in the method embodiment shown in 12 will not be described again for the sake of simplicity.
  • Figure 15 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in Figure 15 includes a processor 610.
  • the processor 610 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 can call and run the computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated into the processor 610 .
  • the communication device 600 may also include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 600 may specifically be the first device in the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the first device in the various methods of the embodiment of the present application. For the sake of brevity, no details are provided here. Again.
  • the communication device 600 may specifically be the second device in the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the second device in the various methods of the embodiment of the present application. For the sake of brevity, no details are provided here. Again.
  • Figure 16 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in Figure 16 includes a processor 710.
  • the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 700 may also include a memory 720 .
  • the processor 710 can call and run the computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated into the processor 710 .
  • the chip 700 may also include an input interface 730.
  • the processor 710 can control the input interface 730 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 700 may also include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the first device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the first device in the various methods of the embodiment of the present application.
  • the details will not be described again.
  • the chip can be applied to the second device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the second device in the various methods of the embodiment of the present application.
  • the details will not be described again.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Figure 17 is a schematic block diagram of a communication system 900 provided by an embodiment of the present application. As shown in Figure 17, the communication system 900 includes a first device 910 and a second device 920.
  • the first device 910 can be used to implement the corresponding functions implemented by the first device in the above method
  • the second device 920 can be used to implement the corresponding functions implemented by the second device in the above method. For simplicity, in This will not be described again.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available processors.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the first device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the first device in the various methods of the embodiment of the present application.
  • I won’t go into details here.
  • the computer-readable storage medium can be applied to the second device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the second device in the various methods of the embodiment of the present application.
  • I won’t go into details here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the first device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the first device in the various methods of the embodiment of the present application. For simplicity, in This will not be described again.
  • the computer program product can be applied to the second device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the second device in the various methods of the embodiment of the present application. For simplicity, in This will not be described again.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the first device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the first device in each method of the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the first device in each method of the embodiment of the present application.
  • the computer program can be applied to the second device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the second device in the various methods of the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the second device in the various methods of the embodiment of the present application.
  • the computer program For the sake of brevity, no further details will be given here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种接入认证的方法和设备,该方法包括:第一设备向第二设备发送目标接入请求信息,其中,所述目标接入请求信息是通过反向散射方式发送的,或者,所述目标接入请求信息是通过反向散射方式和主动发射方式发送的,所述目标接入请求信息用于所述第一设备接入所述第二设备。

Description

接入认证的方法和设备 技术领域
本申请实施例涉及通信领域,具体涉及一种接入认证的方法和设备。
背景技术
在相关技术中,传统终端的连接入网需要授权认证,当引入零功耗设备之后,如何进行零功耗设备的接入认证是一项亟需解决的问题。
发明内容
本申请提供了一种接入认证的方法和设备,能够实现零功耗设备的接入认证。
第一方面,提供了一种接入认证的方法,包括:
第一设备向第二设备发送目标接入请求信息,其中,所述目标接入请求信息是通过反向散射方式发送的,或者,所述目标接入请求信息是通过反向散射方式和主动发射方式发送的,所述目标接入请求信息用于所述第一设备接入所述第二设备。
第二方面,提供了一种接入认证的方法,包括:
第二设备向第一设备发送目标接入响应信息,其中,所述目标接入响应信息是通过反向散射方式发送的,或者,所述接入响应信息是通过反向散射方式和主动发射方式发送的,所述目标接入响应信息是目标接入请求信号的响应信息,所述目标接入请求信息用于所述第一设备接入所述第二设备。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,在接入认证中,支持反向散射通信的设备(例如零功耗设备)可以采用反向散射方式发送接入认证相关信息(例如目标接入请求信息,目标接入响应信息),从而能够实现对零功耗设备的接入认证。
附图说明
图1是本申请实施例提供的一种通信***架构的示意性图。
图2是根据本申请一个示例的零功耗通信***的示意图。
图3是根据本申请一个实施例的能量采集的原理图。
图4是根据本申请一个实施例的反向散射通信的原理图。
图5是根据本申请一个实施例的电阻负载调制的电路原理图。
图6是根据本申请一个实施例的接收机的射频指标要求示意图。
图7是根据本申请一个实施例的接收机阻塞的示意图。
图8是根据本申请实施例提供的一种接入认证的方法的示意性图。
图9是根据本申请实施例提供的另一种接入认证的方法的示意***互图。
图10是根据本申请实施例提供的又一种接入认证的方法的示意***互图。
图11是根据本申请实施例提供的又一种接入认证的方法的示意***互图。
图12是根据本申请实施例提供的再一种接入认证的方法的示意***互图。
图13是根据本申请实施例提供的一种通信设备的示意性框图。
图14是根据本申请实施例提供的另一种通信设备的示意性框图。
图15是根据本申请实施例提供的又一种通信设备的示意性框图。
图16是根据本申请实施例提供的一种芯片的示意性框图。
图17是根据本申请实施例提供的一种通信***的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、先进的长期演进(Advanced long term evolution,LTE-A)***、新无线(New Radio,NR)***、NR***的演进***、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)***、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)***、非地面通信网络(Non-Terrestrial Networks,NTN)***、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)***,蜂窝物联网***,蜂窝无源物联网***或其他通信***等。
通常来说,传统的通信***支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信***将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信***。
可选地,本申请实施例中的通信***可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信***可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信***也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者,蜂窝物联网中的网络设备,或者,蜂窝无源物联网中的网络设备,或者,未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数 字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信***例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备,蜂窝物联网中的终端设备,蜂窝无源物联网中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
示例性的,本申请实施例应用的通信***100如图1所示。该通信***100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信***100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信***100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/***中具有通信功能的设备可称为通信设备。以图1示出的通信***100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信***100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,"预定义"可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信***中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,对本申请的相关技术进行说明。
一、零功耗通信
零功耗通信的关键技术包括能量采集、反向散射通信以及低功耗技术。
如图2所示,一种典型的零功耗通信***(例如RFID***)包括网络设备(如RFID***的读写器)和零功耗设备(例如如电子标签)。网络设备用于向零功耗设备发送无线供能信号,下行通信信号以及接收零功耗设备的反向散射信号。一种基本的零功耗设备包括能量采集模块,反向散射通信模块以及低功耗计算模块。此外,零功耗设备还可具备一个存储器或传感器,用于存储一些基本信息(如物品标识等)或环境温度、环境湿度等传感数据。
例如,能量采集模块可以采集空间中的无线电波携带的能量(图2中所示为网络设备发射的无线电波),用于驱动零功耗设备的低功耗计算模块和实现反向散射通信。零功耗设备获得能量后,可以接收网络设备的控制命令并基于控制信令基于反向散射的方式向网络设备发送数据。所发送的数据可以为零功耗设备自身存储的数据(如身份标识或预先写入的信息,如商品的生产日期、品牌、生产厂家等)。零功耗设备也可以加载各类传感器,从而基于零功耗机制将各类传感器采集的数据上报。
以下,对零功耗通信中的关键技术进行说明。
1、射频能量采集(RF Power Harvesting)
如图3所示,射频能量采集模块基于电磁感应原理实现对空间电磁波能量的采集,进而获得驱动零功耗设备工作所需的能量,例如用于驱动低功耗解调以及调制模块、传感器以及内存读取等。因此,零功耗设备无需传统电池。
2、反向散射通信(Back Scattering)
如图4所示,零功耗设备接收网络设备发送的载波信号,并对所述载波信号进行调制,加载需要发送的信息并将调制后的信号从天线辐射出去,这一信息传输过程称之为反向散射通信。反向散射和负载调制功能密不可分。负载调制通过对零功耗设备的振荡回路的电路参数按照数据流的节拍进行调节和控制,使零功耗设备阻抗的大小等参数随之改变,从而完成调制的过程。负载调制技术主要包括电阻负载调制和电容负载调制两种方式。在电阻负载调制中,负载并联一个电阻,该电阻基于二进制数据流的控制接通或断开,如图5所示。电阻的通断会导致电路电压的变化,因此实现幅度键控调制(ASK),即通过调整零功耗设备的反向散射信号的幅度大小实现信号的调制与传输。类似地,在电容负载调制中,通过电容的通断可以实现电路谐振频率的变化,实现频率键控调制(FSK),即通过调整零功耗设备的反向散射信号的工作频率实现信号的调制与传输。
可见,零功耗设备借助于负载调制的方式,对来波信号进行信息调制,从而实现反向散射通信过程。因此,零功耗设备具有显著的优点:
(1)不主动发射信号,因此不需要复杂的射频链路,如PA、射频滤波器等;
(2)不需要主动产生高频信号,因此不需要高频晶振;
(3)借助反向散射通信,终端信号传输不需要消耗终端自身能量。
3、编码技术
零功耗设备传输的数据,可以用不同形式的代码来表示二进制的“1”和“0”。无线射频识别***通常使用下列编码方法中的一种:反向不归零(NRZ)编码、曼彻斯特(Manchester)编码、单极性归零编码、差动双相(DBP)编码、差动编码、脉冲间隔编码(PIE)、双向空间编码(FM0)、米勒(Miller)编码利差动编码等。通俗来说,不同的编码技术是采用不同的脉冲信号表示0和1。
为便于理解本申请实施例,对零功耗通信相关的供能信号、调度信号和载波信号进行说明。
1、供能信号
供能信号为零功耗设备进行能量采集的能量来源。
从供能信号载体上,可以是基站、智能手机、智能网关、充电站、微基站等。
从频段上,用作供能的无线电波的频段可以是低频、中频、高频等。
从波形上,用作供能的无线电波可以是正弦波、方波、三角波、脉冲、矩形波等。
此外,供能信号可以是连续波,也可以是非连续波(即允许一定的时间中断)。
可选地,供能信号可以是3GPP标准中的已有信号。例如探测参考信号(Sounding Reference Signal,SRS),物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、物理随机接入信道(Physical Random Access Channel,PRACH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)、物理下行控制信道(Physical Downlink Control Channel,PDCCH)、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、物理广播信道(Physical Broadcast Channel,PBCH)等,或者也可以是WIFI信号或蓝牙信号。
可选地,供能信号也可以通过新增信号实现,例如新增专用于供能的信号。
2、触发信号或称调度信号
触发信号用于触发或调度零功耗设备进行数据传输。
从触发信号载体上,可以是基站、智能手机、智能网关等。
从频段上,用作触发或调度的无线电波可以是低频、中频、高频等。
从波形上,用作触发或调度的无线电波可以是正弦波、方波、三角波、脉冲、矩形波等。
此外,该触发信号可以是连续波,也可以是非连续波(即允许一定的时间中断)。
可选地,触发信号可能是3GPP标准中的已有信号。例如SRS,PUSCH、PRACH、PUCCH、PDCCH、PDSCH、PBCH,或者WIFI信号或蓝牙信号等。
可选地,触发信号也可以通过新增信号实现,例如新增专用于触发或调度的信号。
3、载波信号
载波信号用于零功耗设备产生反向散射信号,例如,零功耗设备可以根据需要发送的信息对接收到的载波信号进行调制以形成反向散射信号。
从载波信号载体上,可以是基站、智能手机、智能网关等。
从频段上,用作载波信号的无线电波可以是低频、中频、高频等。
从波形上,用作载波信号的无线电波可以是正弦波、方波、三角波、脉冲、矩形波等。
此外,该载波信号可以是连续波,也可以是非连续波(即允许一定的时间中断)。
可选地,载波信号可能是3GPP标准中的已有信号。例如SRS,PUSCH、PRACH、PUCCH、PDCCH、PDSCH、PBCH,或者WIFI信号或蓝牙信号等。
可选地,载波信号也可以通过新增信号实现,例如新增专用产生反向散射信号的载波信号。
需要说明的是,在本申请实施例中,供能信号,调度信号和载波信号可以是同一信号,或者,也可以是不同的信号,例如,供能信号可以作为载波信号,调度信号也可以用作载波信号等。
在一些场景中,基于零功耗设备的能量来源以及使用方式,可以将零功耗设备分为如下类型:
1、无源零功耗设备
零功耗设备(如RFID***的电子标签)不需要内装电池,零功耗设备接近网络设备(如RFID***的读写器)时,零功耗设备处于网络设备天线辐射形成的近场范围内。因此,零功耗设备天线通过电磁感应产生感应电流,感应电流驱动零功耗设备的低功耗芯片电路。实现对前向链路信号的解调,以及反向链路(或称反射链路)的信号调制等工作。对于反向散射链路,零功耗设备使用反向散射实现方式进行信号的传输。
可以看出,无源零功耗设备无论是前向链路还是反向链路都不需要内置电池来驱动,是一种真正意义的零功耗设备。
无源零功耗设备不需要电池,射频电路以及基带电路都非常简单,例如不需要低噪放(LNA),功放(PA),晶振,模数转换器(Analog-to-Digital Converter,ADC)等器件,因此具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
2、半无源零功耗设备
半无源零功耗设备自身也不安装常规电池,但可使用RF能量采集模块采集无线电波能量,同时将采集的能量存储于一个储能单元(如电容)中。储能单元获得能量后,可以驱动零功耗设备的低功耗芯片电路。实现对前向链路信号的解调,以及反向链路的信号调制等工作。对于反向散射链路,零功耗设备使用反向散射实现方式进行信号的传输。
可以看出,半无源零功耗设备无论是前向链路还是反向链路都不需要内置电池来驱动,虽然工作中使用了电容储存的能量,但能量来源于能量采集模块采集的无线电能量,因此也是一种真正意义的零功耗设备。
半无源零功耗设备继承了无源零功耗设备的诸多优点,因此具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
3、有源零功耗设备
有些场景下使用的零功耗设备也可以为有源零功耗设备,此类设备可以内置电池。电池用于驱动零功耗设备的低功耗芯片电路。实现对前向链路信号的解调,以及反向链路的信号调制等工作。但对于反向散射链路,零功耗设备使用反向散射实现方式进行信号的传输。因此,这类设备的零功耗主要体现于反向链路的信号传输不需要终端自身功率,而是使用反向散射的方式。
二、蜂窝无源物联网
随着5G行业应用的增加,连接物的种类和应用场景越来越多,对通信终端的成本和功耗也将有更高要求,免电池、低成本的无源物联网设备的应用成为蜂窝物联网的关键技术,充实5G网络链接终端类型和数量,真正实现万物互联。其中无源物联网设备可以基于零功耗通信技术,如RFID技术,并在此基础上进行延伸,以适用于蜂窝物联网。
三、零功耗设备和传统终端的共存
在一些场景中,窄带物联网(Narrow Band Internet of Things,NB-IoT)终端或增强的机器类型通信(enhanced Machine Type Communication,eMTC)终端和NR***中的传统终端可以由如下三种共存方式:带内部署、保护带部署和独立部署模式。
由于在4G或5G***中的传统终端的接收机灵敏度相对零功耗终端要低很多,研究零功耗通信***和传统蜂窝通信网络的共存干扰问题十分重要。
由于零功耗设备能力采集和反向散射的特性,研究零功耗通信***和传统蜂窝网络***的共存, 最重要的是分析共存对两种***中的终端的接收机性能的影响。如图6所示,包括带内灵敏度(in channel sensitivity,ICS)、最大输入功率(Maximum input level)、邻带选择性(Adjacent channel selectivity,ACS)、阻塞(blocking)(例如带内(In-band)阻塞,带外(out-of-band)阻塞和窄带(narrow-band)阻塞)以及杂散(Spurious response)等指标要求。
不论零功耗设备部署在带内,保护带或独立模式,向零功耗设备发送的下行信号或零功耗设备的反射信号,都有可能落到传统终端的邻带或者带内,形成邻带干扰或带内阻塞,如图7所示。此时干扰信号应满足传统终端的接收机射频指标要求,否则将降低接收机性能,导致接收机灵敏度的回退(MSD)。
特别地,若采用采用带内模式,首先需要避免***间的同频干扰,也即带内干扰。零功耗终端采集无线能量的入射功率(input power)一般在至少-20dBm,能量源的发射信号和反向散射的信号,是否会对同频段上的其他4G/5G终端造成同频干扰需要评估。例如,从无线供能的角度,网络需要发送较强的信号以使得零功耗终端的接收功率在-20dBm以上,如此强的信号可能导致在使用带内部署时,可能会影响传统终端的最大输入功率,如-15dBm。因此需要评估对传统终端的影响以及如何规避相关影响。
如果零功耗设备与传统终端共设备部署,那么共存问题会更加复杂,还需要考虑谐波和互调等信号带来的额外干扰,对二者接收机性能的影响。此外,还有与其他WiFi、蓝牙、北斗等***的共存问题,也需要更根据实际工作频段和模式具体分析。如果零功耗设备以独立设备的形式存在,那么只需要满足发射机、接收机的邻带和带外杂散辐射的射频指标要求即可。
在相关技术中,传统终端的连接入网需要授权认证,当引入零功耗设备之后,如何进行零功耗设备的接入认证是一项亟需解决的问题。
在相关技术中,WIFI设备可以使用近场通讯(Near Field Communication,NFC)技术进行贴近认证,但是此方式无法满足较远距离,对于二维码扫码认证,虽然实现方便,但是对于批量接入的场景需要消耗大量的人力和时间。另外,在网关、WIFI热点或控制器更换或断电的情况下,如何实现大量设备的重新入网也是一个问题。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图8是根据本申请实施例的接入认证的方法200的示意性图,如图8所示,该方法200包括如下至少部分内容:
S210,第一设备向第二设备发送目标接入请求信息。
对应地,第二设备接收目标接入请求信息。
S220,第二设备向第一设备发送目标接入响应信息。
对应地,第一设备接收目标接入响应信息。
在本申请实施例中,第一设备或称请求接入设备,请求接入者,第二设备或称接入认证设备,被接入者等。
应理解,本申请实施例并不限定第一设备和第二设备的供能方式。例如第一设备具有储能单元可以进行自身的供能,或者,第一设备也可以通过能量采集获得能量。例如第二设备具有储能单元可以进行自身的供能,或者,第二设备也可以通过能量采集获得能量。
在一些实施例中,目标接入请求信息用于第一设备接入第二设备。
在一些实施例中,目标接入响应消息用于指示第二设备对第一设备的接入请求的响应。
在一些实施例中,第一设备可以支持反向散射通信和/或主动发射通信。
即,第一设备支持采用反向散射方式和/或主动发射方式进行信号的发送。
在一些实施例中,第二设备可以支持反向散射通信和/或主动发射通信。
即,第二设备支持采用反向散射方式和/或主动发射方式进行信号的发送。
在本申请实施例中,第一设备和第二设备中至少有一方支持反向散射通信。
情况1:第一设备支持反向散射通信,第二设备不支持反向散射通信。
情况2:第一设备不支持反向散射通信,第二设备支持反向散射通信。
情况3:第一设备支持反向散射通信,第二设备支持反向散射通信。
在一些实施例中,在设备(例如第一设备或第二设备)支持反向散射通信时,该设备可以包括用于反向散射通信的功能模块,例如反向散射发射机。可选地,该用于反向散射通信的功能模块可以是该设备自带的,或者,也可以后期安装的,本申请对此不作限定。可选地,该用于反向散射通信的功能模块可以带有环境使能物联网(Ambient enabled Internet of Things,A-IOT)标签。
在一些实施例中,在设备(例如第一设备或第二设备)支持主动发射通信时,该设备可以具备用于主动发射信号的功能模块,例如PA,LNA,本地振荡器,晶振,三极管或隧道二极管等。
可选地,上述用于主动发射通信的功能模块在一些情况下也可以用于放大反向散射信号,以增大反向散射信号的通信距离。例如,通过PA或LNA,三极管或隧道二极管放大反向散射信号(例如反向放大),以增大反向散射信号的通信距离。
在一些实施例中,在设备支持主动发射通信和反向散射通信时,该设备可以包括用于反向散射通信的功能模块,以及用于主动发射通信的功能模块,例如具有主发射机和反向散射发射机。可选地,反向散射发射机支持采用反向散射方式进行信号的发送。该反向散射发射机不能自主发射信号,需要对接收到的信号进行调制并进行反射,从而承载待发送信息。
在一些实施例中,主发射机和反向散射发射机可以是独立的模块,或者,可以认为主发射机和反向散射发射机包括设备中的不同的功能模块,例如,主发射机可以包括功率放大器、本地振荡器、晶振、LNA等功能模块,而反向散射发射机可以不包括上述功能模块。
换言之,不同的信号发送方式,可以对应发射机的特定功能模块是否启用。可选地,该特定功能模块可以包括用于主动发射信号的功能模块,例如功率放大器、本地振荡器、晶振、LNA等。例如,对于反向散射方式或主动发射方式,一种区别在于是否使用PA对信号进行放大。其中,PA的使用对应于主动发射方式,这需要消耗额外的能量来实现更远的通信距离。而不使用PA,仅对载波信号进行反向散射,则对应于反向散射方式。再例如,本地振荡器的是否使用也可以对应不同的信号发送方式。其中,主动发射方式通过发射机的本地振荡器产生发射信号,并进行调制,其不依赖于外部的载波信号。反向散射方式,不使用发射机的本地振荡器产生发射信号,而是依赖于外部的载波信号,并进行调制。
在一些实施例中,第一设备可以具有以下结构单元:
低功耗接收机(或者低复杂度的接收机)、反向散射发射机。
在另一些实施例中,第一设备可以具有以下结构单元:
低功耗接收机(或者低复杂度的接收机)、反向散射发射机、主接收机(或者说,传统接收机)、主发射机(或者说,传统发射机)。
在一些实施例中,第二设备可以具有以下结构单元:
低功耗接收机(或者低复杂度的接收机)、反向散射发射机。
在另一些实施例中,第二设备可以具有以下结构单元:
低功耗接收机(或者低复杂度的接收机)、反向散射发射机、主接收机(或者说,传统接收机)、主发射机(或者说,传统发射机)。
可选地,低功耗接收机和反向散射发射机可以是独立的结构单元,或者,也可以是依附在主接收机和主发射机上。
应理解,本申请实施例并不限定第一设备和第二设备的具体实现。
在一些实施例中,第一设备可以是零功耗设备,支持反向散射通信的终端设备,或者,也可以为传统终端。
在一些实施例中,第二设备可以是零功耗设备,支持反向散射通信的网络设备,或者,也可以为传统网络设备。
作为示例而非限定,第一设备可以包括但不限于以下至少之一:
手机,平板,耳机,鼠标,AR眼镜、VR眼镜,无人机。
作为示例而非限定,第二设备可以包括但不限于以下至少之一:
基站,AP,路由器,遥控器,智能钥匙。
需要说明的是,本申请对于零功耗设备的具体划分方式不作限定,例如零功耗设备可以是基于设备的复杂度,供能方式,通信方式,调制方式等特征划分的。例如,零功耗设备可以是具有如下特征中的至少之一的终端:低复杂度、支持环境供能、支持其他设备供能,反向散射、新的波形(或简单波形)、低复杂度的调制方式例如,幅度键控(Amplitude Shift Keying,ASK)、频移键控(Frequency Shift Keying,FSK),相移键控(Phase Shift Keying,PSK),开关键控(On-Off Keying,OOK)。
应理解,本申请实施例对于零功耗设备的命名不作限定,例如也可以称为低功耗设备,环境能量使能(Ambient Power Enabled,AMP)设备、基于能量收集的设备等。
应理解,在信息通过反向散射方式发送时,本申请实施例并不限定用于反向散射的载波信号的具体来源,例如可以利用最近的一个信号作为载波信号进行反向散射,或者,也可以利用专用的载波信号进行反向散射,或者,也可以利用环境中的无线电信号作为载波信号,本申请并不限于此。
在一些实施例中,目标接入请求信息是通过反向散射方式发送的,或者,目标接入请求信息是通过反向散射方式和主动发射方式发送的。
可选地,在第一设备支持反向散射通信,或者,第一设备支持反向散射通信和主动发射通信的情况下,目标接入请求信息可以是通过反向散射方式发送的。
可选地,在第一设备支持反向散射通信和主动发射通信的情况下,目标接入请求信息是通过反向散射方式和主动发射方式发送的。
在一些实施例中,目标接入请求信息是通过反向散射方式和主动发射方式发送的可以包括:
目标接入请求信息的不同部分(或不同比特)是分别通过反向散射方式和主动发射方式发送的。
例如,目标接入请求信息的第一部分是通过反向散射方式发送的,第二部分是通过主动反射方式发送的。
在另一些实施例中,目标接入请求信息也可以是通过主动发射方式发送的。
例如,在第一设备支持主动发射通信的情况下,第一设备可以通过主动发射方式发送目标接入请求信息。
在一些实施例中,目标接入响应信息是通过反向散射方式发送的,或者,目标接入响应信息是通过反向散射方式和主动发射方式发送的。
可选地,在第二设备支持反向散射通信,或者,第二设备支持反向散射通信和主动发射通信的情况下,目标接入响应信息可以是通过反向散射方式发送的。
可选地,在第二设备支持反向散射通信和主动发射通信的情况下,目标接入响应信息是通过反向散射方式和主动发射方式发送的。
在一些实施例中,目标接入响应信息是通过反向散射方式和主动发射方式发送的可以包括:
目标接入响应信息的不同部分(或不同比特)是分别通过反向散射方式和主动发射方式发送的。
例如,目标接入响应信息的第一部分是通过反向散射方式发送的,第二部分是通过主动反射方式发送的。
在另一些实施例中,目标接入响应信息也可以是通过主动发射方式发送的。
例如,在第二设备支持主动发射通信的情况下,第二设备可以通过主动发射方式发送目标接入响应信息。
综上,目标接入请求信息和目标接入响应信息可以具有如下发送方式。
对于情况1:
方式1:目标接入请求信息可以是通过反向散射方式发送的,或者,目标接入请求信息是通过反向散射方式和主动发射方式发送的,目标接入响应信息可以是通过主动发射方式发送的。
对于情况2:
方式2:目标接入请求信息可以是通过主动发射方式发送的,目标接入响应信息可以是通过反向散射方式发送的,或者,目标接入响应信息是通过反向散射方式和主动发射方式发送的。
对于情况3:
方式3-1:目标接入请求信息可以是通过反向散射方式发送的,或者,目标接入请求信息是通过反向散射方式和主动发射方式发送的;目标接入响应信息是通过反向散射方式发送的,或者,目标接入响应信息是通过反向散射方式和主动发射方式发送的。
方式3-2:目标接入请求信息可以是通过反向散射方式发送的,或者,目标接入请求信息是通过反向散射方式和主动发射方式发送的;目标接入响应信息是通过主动发射方式发送的。
方式3-3:目标接入请求信息可以是通过主动发射方式发送的;目标接入响应信息是通过反向散射方式发送的,或者,目标接入响应信息是通过反向散射方式和主动发射方式发送的。
因此,在本申请实施例中,在接入请求设备支持反向散射通信的情况下,接入请求设备至少使用反向散射方式发送接入请求信息。相对于NFC贴近认证,具有较远距离的通信优势。相对于二维码扫码认证,具有操作方便的优势。在接入认证设备支持反向散射通信的情况下,接入认证设备至少使用反向散射方式发送接入响应信息。这样,在接入认证设备断电的情况下,可以通过接入认证设备的反向散射通信模块实现辅助接入请求设备的重新入网。
在一些实施例中,目标接入响应信息可以是在特定频段发送的。
可选地,该特定频段可以是用于反向散射通信的频段,或者说,反射散射通信的专用频段,或者,第一设备的工作频段。
应理解,在本申请实施例中,目标接入请求信息可以包括接入认证过程中接入请求设备向接入认证设备发送的信息中的部分或全部,目标接入响应信息可以包括接入认证过程中接入认证设备向接入请求设备发送的信息中的部分或全部,本申请对此不作限定。
在一些实施例中,所述目标接入请求信息包括以下中的至少之一:
第一接入请求信息,用于请求接入所述第二设备;
第二接入请求信息,用于应答所述第二设备的询问信息,所述询问信息是所述第一接入请求信息的应答信息。
在一些实施例中,第一接入请求信息和第二接入请求信息是通过相同的发送方式发送的。
例如,在第一设备仅支持反向散射通信的情况下,第一接入请求信息和第二接入请求信息均是通过反向散射方式发送的。
例如,在第一设备支持反向散射通信和主动发射通信的情况下,第一接入请求信息和第二接入请求信息均是通过反向散射方式发送的,或通过反向散射方式和主动发射方式发送的。
例如,在第一设备仅支持主动发射通信的情况下,第一接入请求信息和第二接入请求信息均是通过主动发射方式发送的。
在一些实施例中,第一接入请求信息和第二接入请求信息是通过不同的发送方式发送的。
例如,在第一设备支持反向散射通信和主动发射通信的情况下,第一接入请求信息和第二接入请求信息的发送方式可以有如下三种:
1、第一接入请求信息和第二接入请求信息中的一个是通过反向散射方式发送的,另一个是通过主动发射方式发送的;
2、第一接入请求信息和第二接入请求信息中的一个是通过反向散射方式发送的,另一个是通过主动发射方式和反向散射方式发送的;
3、第一接入请求信息和第二接入请求信息中的一个是通过主动发射方式发送的,另一个是通过主动发射方式和反向散射方式发送的。
在一些实施例中,所述目标接入响应信息包括以下中的至少之一:
所述第二设备的询问信息;
接入认证结果信息。
在一些实施例中,所述第二设备的询问信息和接入认证结果信息是通过相同的发送方式发送的。
例如,在第二设备仅支持反向散射通信的情况下,第二设备的询问信息和接入认证结果信息均是通过反向散射方式发送的。
例如,在第二设备支持反向散射通信和主动发射通信的情况下,第二设备的询问信息和接入认证结果信息均是通过反向散射方式发送的,或通过反向散射方式和主动发射方式发送的。
例如,在第二设备仅支持主动发射通信的情况下,第二设备的询问信息和接入认证结果信息均是通过主动发射方式发送的。
在一些实施例中,第二设备的询问信息和接入认证结果信息是通过不同的发送方式发送的。
例如,在第二设备支持反向散射通信和主动发射通信的情况下,第二设备的询问信息和接入认证结果信息的发送方式可以有如下三种:
1、第二设备的询问信息和接入认证结果信息中的一个是通过反向散射方式发送的,另一个是通过主动发射方式发送的;
2、第二设备的询问信息和接入认证结果信息中的一个是通过反向散射方式发送的,另一个是通过主动发射方式和反向散射方式发送的;
3、第二设备的询问信息和接入认证结果信息中的一个是通过主动发射方式发送的,另一个是通过主动发射方式和反向散射方式发送的。
在一些实施例中,所述第一接入请求信息包括以下中的至少之一:
第一设备的标识信息(Identify,ID),第一设备请求传输的业务信息(例如业务类型,业务优先级等)。
在一些实施例中,第一接入请求信息可以是通过3GPP标准中的信号发送的,或者,也可以是通过WIFI信号,蓝牙信号等发送的,本申请对此不作限定。
可选地,当第一接入请求信息通过反向散射方式发送时,第一设备可以利用3GPP标准中的信号,或WIFI信号或蓝牙信号等作为载波信号进行反向散射。
在一些实施例中,所述第一接入请求信息是在第一频段发送的。
可选地,所述第一频段为公共频段。
可选地,所述第一频段为特定频段。例如,反向散射通信的专用频段,或第一设备的工作频段。
在一些实施例中,所述第二设备的询问信息,或称挑战信息,预准入信息,准入信息,授权信息。
在一些实施例中,所述第二设备的询问信息包括以下中的至少之一:
所述第二设备的标识信息(ID),询问码(或称挑战码),可用的接入频段信息。
在一些实施例中,询问码可以是通过特定频段或特定信号表征的。
在一些实施例中,询问码可以是特定伪随机序列或导频信号。
在一些实施例中,询问码可以是密钥相关信息,例如非对称密钥或对称密钥,或者,密钥校验信息。可选地,该密钥可以是固定密钥,动态密钥或第三方授权信息。
在一些实施例中,可用的接入频段信息可以用于指示可用于传输请求的业务的频段。
在一些实施例中,第二设备的询问信息是通过特定信号发送的,该特定信号可以用作第二接入请求信息的载波信号。
即,第二设备可以向第一设备发送特定信号,该特定信号用于承载第二设备的询问信息,同时该特定信号还用于用作第二接入请求信息的载波信号,也就是说,第一设备可以对该特定信号进行反向散射以发送第二接入请求信息。
在一些实施例中,第二设备的询问信息是采用广播、组播或单播方式发送的。
例如,在大量设备请求接入的情况下,第二设备可以通过广播或组播方式发送询问信息。
又例如,在少量设备请求接入的情况下,第二设备可以通过单播或组播方式发送询问信息。
在一些实施例中,当有多个设备请求接入时,该多个设备可以是多址的,例如,频分复用(frequency-division multiplexing,FDM)的,或者,时分复用(Time-division multiplexing,TDM)的,或码分复用(Code-division multiplexing,CDM)的,本申请对此不作限定。
在一些实施例中,第二设备的询问信息是在第二频段发送的。
可选地,所述第二频段为公共频段,或任意频段。
可选地,所述第二频段为特定频段。例如,反向散射通信的专用频段,可用的接入频段,第一设备的工作频段。
在一些实施例中,所述第二接入请求信息包括以下中的至少之一:
所述第一设备的标识信息,所述第一设备请求传输的业务信息(例如业务类型,业务优先级等)、根据所述第二设备的询问信息确定的密钥相关信息,所述第二设备的标识信息(ID)。
可选地,根据所述第二设备的询问信息确定的密钥相关信息可以指:
从第二设备的询问信息中获得的密钥或密钥校验信息,或者,
根据第二设备的询问信息解密出来的密钥或密钥校验信息。
在一些实施例中,第二接入请求信息是在第三频段发送的。
可选地,第三频段为特定频段。例如,反向散射通信的专用频段,可用的接入频段,第一设备的工作频段。
在一些实施例中,第二设备的询问信息和第二接入请求信息是在不同的频段上发送的,或者,是在相同的频段上发送的。即第二频段和第三频段可以是相同的,或不同的。
在一些实施例中,接入认证结果信息是在第四频段上发送的。
可选地,所述第四频段为特定频段。例如,反向散射通信的专用频段,可用的接入频段,第一设备的工作频段。
在一些实施例中,接入认证结果信息可以用于指示接入完成。可选地,还可以用于指示准入的(或者说可用的)频段和/或可用频段的占用时长信息等。
应理解,在本申请实施例中,频段也可以替换为频道,或信道,或载波等。
需要说明的是,本申请实施例并不限定反向散射通信的专用频段的配置方式,例如,可以配置第一频段和第二频段,其中,第一频段用于使用反向散射方式发送上行信号,第二频段用于使用反向散射方式发送下行信号。可选地,第一频段可以是辅助上行(Supplementary uplink,SUL)频段,第二频段可以是辅助下行(Supplementary downlink,SDL)频段。或者,也可以根据不同的多址模式或双工模式分别配置对应的用于反向散射通信的频段,例如配置FDD模式对应的反向散射通信频段,TDD模式对应的反向散射通信频段,或全双工(fullduplex)模式对应的反向散射通信频段等。以下,结合前述情况1,情况2和情况3对根据本申请实施例的接入认证方法进行说明。
图9是根据本申请实施例的一种接入认证方法的示意***互图。在图9的示例中,第二设备支持反向散射通信,第一设备不支持反向散射通信。对应前述情况2。
可选地,在该示例中,第一设备的工作频段可以包括频道a,频道b,频道c,第二设备的工作频段可以包括频道a,频道b,频道c。
如图9所示,可以包括如下步骤:
S301,第一设备向第二设备发送第一接入请求信息。
可选地,第一设备可以是公共频道(例如频道a)上发送第一接入请求信息。
可选地,第一接入请求信息可以认为是接入认证的触发信号。
可选地,第一接入请求信息可以用于触发第二设备发送接入反馈信息。
可选地,第一接入请求信息可以是通过WIFI信号发送的,或者,通过蓝牙信号发送的,或者,通过3GPP标准中的信号发送的,本申请对此不作限定。
可选地,第一接入请求信息是基于第一设备和第二设备之间的第一连接发送的。
可选地,第一连接可以是WIFI连接,蓝牙连接,或者,3GPP标准中的连接。
可选地,在接入认证成功之后第一设备和第二设备之间建立第二连接,其中,第一连接和第二连接可以相同,或者,也可以不同。
S302,第二设备通过反向散射方式发送询问信息。
例如,第二设备在接收到第一接入请求信息之后,可以解读该第一接入请求信息,获知第一设备的接入请求。进一步地,可以通过反向散射方式发送询问信息。
可选地,该询问信息是在频道b上发送的。例如,在频道a被占用的情况下,使用频道b发送该询问信息。
可选地,该询问信息也可以是在频道a上发送的。
可选地,该询问信息中可以包括第二设备的标识信息,密钥相关信息,可用频道信息(例如包括频道c)等。
S303,第一设备发送第二接入请求信息。
具体地,第一设备在接收到第二设备的接入反馈信息之后,向第一设备二次请求接入。
可选地,第二接入请求信息是在频道c上发送的。
可选地,第二接入请求信息可以是通过WIFI信号发送的,或者,通过蓝牙信号发送的,或者,通过3GPP标准中的信号发送的,本申请对此不作限定。
可选地,第二接入请求信息包括以下中的至少之一:
所述第一设备的标识信息,所述第一设备请求传输的业务信息,密钥相关信息,所述第二设备的标识信息。
S304,第二设备发送接入认证结果信息。
可选地,接入认证结果信息可以在频道c上发送的。
可选地,该接入认证结果信息也可以是在频道X上发送的,其中,该频道X属于第一设备和第二设备的工作频段。
可选地,所述第二设备可以根据第二接入请求信息中的信息对第一设备进行接入认证,进一步反馈接入认证结果。
进一步地,第一设备和第二设备可以在频道c进行业务传输。
图10是根据本申请实施例的另一种接入认证方法的示意***互图。在图10的示例中,第二设备支持反向散射通信,第一设备不支持反向散射通信。对应前述情况2。
可选地,在该示例中,第一设备的工作频段可以包括频道d,第二设备的工作频段可以包括频道d。
如图10所示,可以包括如下步骤:
S311,第一设备向第二设备发送第一接入请求信息。
可选地,第一设备可以是特定频道(例如频道d)上发送第一接入请求信息。
可选地,特定频道d可以是用于反向散射通信的专用频道。
可选地,第一接入请求信息可以认为是接入认证的触发信号。
可选地,第一接入请求信息可以用于触发第二设备发送接入反馈信息。
可选地,第一接入请求信息可以是通过WIFI信号发送的,或者,通过蓝牙信号发送的,或者,通过3GPP标准中的信号发送的,本申请对此不作限定。
可选地,第一接入请求信息是基于第一设备和第二设备之间的第一连接发送的。
可选地,第一连接可以是WIFI连接,蓝牙连接,或者,3GPP标准中的连接。
可选地,在接入认证成功之后第一设备和第二设备之间建立第二连接,其中,第一连接和第二连接可以相同,或者,也可以不同。
S312,第二设备通过反向散射方式发送询问信息。
例如,第二设备在接收到第一接入请求信息之后,可以解读该第一接入请求信息,获知第一设备的接入请求。进一步地,可以通过反向散射方式发送询问信息。
可选地,询问信息是在频道d上发送的。
可选地,该询问信息中可以包括第二设备的标识信息,密钥相关信息,可用频道信息(例如频道d)等。
S313,第一设备发送第二接入请求信息。
具体地,第一设备在接收到第二设备的接入反馈信息之后,向第一设备二次请求接入。
可选地,第二接入请求信息是在频道d上发送的。
可选地,第二接入请求信息可以是通过WIFI信号发送的,或者,通过蓝牙信号发送的,或者,通过3GPP标准中的信号发送的,本申请对此不作限定。
可选地,第二接入请求信息包括以下中的至少之一:
所述第一设备的标识信息,所述第一设备请求传输的业务信息,密钥相关信息,所述第二设备的标识信息。
S314,第二设备发送接入认证结果信息。
可选地,接入认证结果信息可以在频段d上发送的。
可选地,所述第二设备可以根据第二接入请求信息中的信息对第一设备进行接入认证,进一步反馈接入认证结果。
进一步地,第一设备和第二设备可以在频道d上进行业务传输。
应理解,图9和图10仅以第二设备的询问信息通过反向散射方式发送为例进行说明,在其他实施例中,接入认证结果信息也可以是通过反向散射方式发送的,或者,询问信息是通过主动发射方式发送的,接入认证结果信息是通过反向散射方式发送的,或者,上述反向散射方式也可以替换为反向散射方式和主动发射方式。
图11是根据本申请实施例的又一种接入认证方法的示意***互图。在图11的示例中,第一设备支持反向散射通信,第二设备不支持反向散射通信。对应前述情况1。
可选地,在该示例中,第一设备的工作频段可以包括频道e,频道f,频道g,第二设备的工作频段可以包括频道e,频道f,频道g。
如图11所示,可以包括如下步骤:
S321,第一设备向第二设备发送第一接入请求信息。
可选地,第一接入请求信息可以是在频道e上发送的。
可选地,第一接入请求信息可以认为是接入认证的触发信号。
可选地,第一接入请求信息可以用于触发第二设备发送接入反馈信息。
可选地,第一接入请求信息可以是通过WIFI信号发送的,或者,通过蓝牙信号发送的,或者,通过3GPP标准中的信号发送的,本申请对此不作限定。
可选地,第一接入请求信息是基于第一设备和第二设备之间的第一连接发送的。
可选地,第一连接可以是WIFI连接,蓝牙连接,或者,3GPP标准中的连接。
可选地,在接入认证成功之后第一设备和第二设备之间建立第二连接,其中,第一连接和第二连接可以相同,或者,也可以不同。
S322,第二设备发送询问信息。
具体地,第二设备在接收到第一接入请求信息之后,可以解读该第一接入请求信息,获知第一设备的接入请求。进一步地,可以发送询问信息。
可选地,询问信息是在特定频道上发送的。
可选地,该询问信息是在频道f上发送的。
可选地,该询问信息中可以包括第二设备的标识信息,密钥相关信息,可用频道信息(例如频道g和频道e)等。
可选地,询问信息可以是通过广播或组播方式发送的。
例如,在有大量设备请求接入时,第二设备则在特定频道上广播或组播准入的授权信息(例如密钥信息),或者,发送特定信号,用于指示对请求接入的设备进行问询。
可选地,所述特定频道可以是第一设备的工作频道,或者,反向散射通信的专用频道。
S323,第一设备发送第二接入请求信息。
例如,第一设备在特定频段上接收到第二设备的反馈信息或接收到特定信号之后,通过反向散射方式发送第二接入请求信息。
可选地,第二接入请求信息可以是利用步骤S322中的信号作为载波信号进行反向散射发送的,本申请对此不作限定。
可选地,第二接入请求信息可以是在频道f上发送的。
可选地,第二接入请求信息也可以是在频道e上发送的。
可选地,第二接入请求信息包括以下中的至少之一:
所述第一设备的标识信息,所述第一设备请求传输的业务信息,密钥相关信息,所述第二设备的 标识信息。
S324,第二设备发送接入认证结果信息。
可选地,第二设备在接收到第一设备的第二接入请求信息之后,可以将第一设备的标识信息添加到白名单,则该标识信息对应的设备运行免密接入或以白名单方式接入。进一步反馈接入认证结果。
可选地,接入认证结果信息可以在频段g或者频道e或频道f上发送的。
进一步地,第一设备和第二设备可以在频道g或频道e进行业务传输。
应理解,图11仅以第二接入请求信息通过反向散射方式发送为例进行说明,在其他实施例中,第一接入请求信息也可以是通过反向散射方式发送的,或者,第二接入请求信息是通过主动发射方式发送的,第一接入请求信息是通过反向散射方式发送的,或者,上述反向散射方式也可以替换为反向散射方式和主动发射方式。
图12是根据本申请实施例的又一种接入认证方法的示意***互图。在图12的示例中,第一设备和第二设备均支持反向散射通信。对应前述情况3。
可选地,在该示例中,第一设备的工作频段可以包括频道h,频道i,频道j,第二设备的工作频段可以包括频道h,频道i,频道j。
如图12所示,可以包括如下步骤:
S331,第一设备向第二设备发送第一接入请求信息。
可选地,第一设备可以是频道h上发送第一接入请求信息。
可选地,该频道h可以是反向散射通信的专用频道。
可选地,第一接入请求信息可以认为是接入认证的触发信号。
可选地,第一接入请求信息可以用于触发第二设备发送接入反馈信息。
可选地,第一接入请求信息可以是通过WIFI信号发送的,或者,通过蓝牙信号发送的,或者,通过3GPP标准中的信号发送的,本申请对此不作限定。
可选地,第一接入请求信息是基于第一设备和第二设备之间的第一连接发送的。
可选地,第一连接可以是WIFI连接,蓝牙连接,或者,3GPP标准中的连接。
可选地,在接入认证成功之后第一设备和第二设备之间建立第二连接,其中,第一连接和第二连接可以相同,或者,也可以不同。
S332,第二设备发送询问信息。
例如,第二设备在接收到第一接入请求信息之后,可以解读该第一接入请求信息,获知第一设备的接入请求。进一步地,可以通过反向散射方式发送询问信息。例如可以利用S331中的信号作为载波信号进行反向散射来发送询问信息。
可选地,询问信息是在特定频道(例如频道i)上发送的。
可选地,该频道i可以是反向散射通信的专用频道。
可选地,频道h和频道i可以相同。
可选地,该询问信息中可以包括第二设备的标识信息,密钥相关信息,可用频道信息(例如频道i和频段j)等。
可选地,询问信息可以是通过广播或组播方式发送的。
例如,在有大量设备请求接入时,第二设备则在特定频道上广播或组播准入的授权信息(例如密钥信息),或者,发送特定信号,用于指示对请求接入的设备进行问询。
S333,第一设备发送第二接入请求信息。
例如,第一设备在特定频段上接收到第二设备的反馈信息或接收到特定信号之后,通过反向散射方式发送第二接入请求信息。
可选地,第二接入请求信息可以是利用步骤S322中的信号作为载波信号发送的,本申请对此不作限定。
可选地,第二接入请求信息包括以下中的至少之一:
所述第一设备的标识信息,所述第一设备请求传输的业务信息,密钥相关信息,所述第二设备的标识信息。
可选地,第二接入请求信息是在频道i上发送的。
S334,第二设备发送接入认证结果信息。
可选地,第二设备在接收到第一设备的第二接入请求信息之后,可以将第一设备的标识信息添加到白名单,则该标识信息对应的设备运行免密接入或以白名单方式接入。进一步反馈接入认证结果。可选地,接入认证结果信息可以在频段j上发送的。可选地,该频道j可以是可用的接入频道。
可选地,接入认证结果信息可以在频段i上发送的。可选地,该频道i可以是反向散射通信的专 用频道。
可选地,接入认证结果信息可以在频段h上发送的。可选地,该频道h可以是反向散射通信的专用频道。进一步地,第一设备和第二设备可以在频道i或频道j进行业务传输。
应理解,图12仅以第二设备的询问信息和第二接入请求信息通过反向散射方式发送为例进行说明,在其他实施例中,第一接入请求信息和/或接入认证结果信息也可以是通过反向散射方式发送的,或者,第二设备的询问信息和第二接入请求信息是通过主动发射方式发送的,第一接入请求信息和接入认证结果信息是通过反向散射方式发送的,或者,上述反向散射方式也可以替换为反向散射方式和主动发射方式。
综上,在申请实施例中,在接入认证中,支持反向散射通信的设备可以采用反向散射方式发送接入认证相关信息(例如前述目标接入请求信息,目标接入响应信息),相对于NFC贴近认证,具有较远距离通信的优势,相对于二维码扫码认证,无需动态密码,具有操作方便的优势。
在一些场景中,支持反向散射通信的接入认证设备可以在掉电的情况下,通过反向散射通信模块向接入请求设备发送接入认证相关信息,从而能够辅助接入请求设备的重新入网。
在一些实现方式中,待接入设备可以通过特定频道发送接入验证所需的信息,例如ID信息,业务信息,和/或可用频道信息等。
在一些实现方式中,接入请求信息(例如前述第一接入请求信息,第二接入请求信息)可以是在普通的接入频道(即非反向散射通信的专用频道)上发送的,或者,也可以是在反向散射通信的专用频道上发送的。
在一些实现方式中,接入请求信息(例如前述第一接入请求信息,第二接入请求信息)可以是通过主动发射方式发送的,或者,也可以是通过反向散射方式发送的,或者,也可以是通过反向散射方式和主动发射方式发送的。
在一些实现方式中,接入响应信息(例如询问信息或接入认证结果信息)可以是在反向散射通信的专用频道,或者,也可以是在其他可用的接入频道上发送的。
在一些实现方式中,接入响应信息(例如询问信息或接入认证结果信息)可以是通过主动发射方式发送的,或者,也可以是通过反向散射方式发送的,或者,也可以是通过反向散射方式和主动发射方式发送的。
上文结合图8至图12,详细描述了本申请的方法实施例,下文结合图13至图17,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图13示出了根据本申请实施例的通信设备400的示意性框图。如图13所示,该通信设备400包括:
通信单元410,用于向第二设备发送目标接入请求信息,其中,所述目标接入请求信息是通过反向散射方式发送的,或者,所述目标接入请求信息是通过反向散射方式和主动发射方式发送的,所述目标接入请求信息用于所述通信设备接入所述第二设备。
在一些实施例中,所述目标接入请求信息包括以下中的至少之一:
第一接入请求信息,用于请求接入所述第二设备;
第二接入请求信息,用于应答所述第二设备的询问信息,所述询问信息是所述第一接入请求信息的应答信息。
在一些实施例中,所述第一接入请求信息包括以下中的至少之一:
所述通信设备的标识信息,所述通信设备请求传输的业务信息。
在一些实施例中,所述第二设备的询问信息包括以下中的至少之一:所述第二设备的标识信息,密钥相关信息,可用的接入频段信息。
在一些实施例中,所述第二设备的询问信息是采用广播、组播或单播方式发送的。
在一些实施例中,所述第二设备的询问信息是通过特定信号发送的,所述特定信号用作所述第二接入请求信息的载波信号。
在一些实施例中,所述第二接入请求信息包括以下中的至少之一:
所述通信设备的标识信息,所述通信设备请求传输的业务信息、根据所述第二设备的询问信息确定的密钥相关信息,所述第二设备的标识信息。
在一些实施例中,所述第一接入请求信息是在第一频段发送的;和/或
所述第二设备的询问信息是在第二频段发送的;和/或
所述第二接入请求信息是在第三频段发送的。
在一些实施例中,所述第一频段为公共频段;或者
所述第一频段是所述第一设备的工作频段;或者
所述第一频段为反向散射通信的专用频段。
在一些实施例中,所述第二频段是所述第一设备的工作频段;或者
所述第二频段是可用的接入频段,或者,
所述第二频段是任意频段。
在一些实施例中,所述第三频段是可用的接入频段;或者
所述第三频段是反向散射通信的专用频段。
在一些实施例中,所述第二设备的询问信息是通过主动发射方式发送的;或者
所述第二设备的询问信息是通过反向散射方式发送的;或者
所述第二设备的询问信息是通过反向散射方式和主动发射方式发送的。
在一些实施例中,所述通信单元410还用于:接收所述第二设备发送的接入认证结果信息。
在一些实施例中,接入认证结果信息是在第四频段上发送的,所述第四频段是可用的接入频段,或反向散射通信的专用频段。
在一些实施例中,所述接入认证结果信息是通过主动发射方式发送的;或者
所述接入认证结果信息是通过反向散射方式发送的;或者
所述接入认证结果信息是通过反向散射方式和主动发射方式发送的。
在一些实施例中,所述通信设备包括反向散射发射机,所述反向散射发射机用于采用反向散射方式进行信号的发送。
在一些实施例中,所述通信设备包括反向散射发射机和主发射机,所述反向散射发射机用于采用反向散射方式进行信号的发送,所述主发射机用于采用主动发射方式进行信号的发送。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上***的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的通信设备400可对应于本申请方法实施例中的第一设备,并且通信设备400中的各个单元的上述和其它操作和/或功能分别为了实现图8至图12所示方法实施例中第一设备的相应流程,为了简洁,在此不再赘述。
图14示出了根据本申请实施例的通信设备500的示意性框图。如图14所示,该通信设备500包括:
通信单元510,用于向第一设备发送目标接入响应信息,其中,所述目标接入响应信息是通过反向散射方式发送的,或者,所述接入响应信息是通过反向散射方式和主动发射方式发送的,所述目标接入响应信息是目标接入请求信号的响应信息,所述目标接入请求信息用于所述第一设备接入所述通信设备。
在一些实施例中,所述目标接入请求信息包括以下中的至少之一:
第一接入请求信息,用于请求接入所述通信设备;
第二接入请求信息,用于应答所述通信设备的询问信息,所述询问信息是所述第一接入请求信息的应答信息。
在一些实施例中,所述目标接入响应信息包括以下中的至少之一:
所述通信设备的询问信息;
接入认证结果信息。
在一些实施例中,所述第一接入请求信息包括以下中的至少之一:
所述第一设备的标识信息,所述第一设备请求传输的业务信息。
在一些实施例中,所述通信设备的询问信息包括以下中的至少之一:所述通信设备的标识信息,密钥相关信息,可用的接入频段信息。
在一些实施例中,所述通信设备的询问信息是采用广播、组播或单播方式发送的。
在一些实施例中,所述通信设备的询问信息是通过特定信号发送的,所述特定信号用作所述第二接入请求信息的载波信号。
在一些实施例中,所述第二接入请求信息包括以下中的至少之一:
所述第一设备的标识信息,所述第一设备请求传输的业务信息,根据所述通信设备的询问信息确定的密钥相关信息,所述通信设备的标识信息。
在一些实施例中,所述第一接入请求信息是通过主动发射方式发送的;或者
所述第一接入请求信息是通过反向散射方式发送的;或者
所述第一接入请求信息是通过反向散射方式和主动发射方式发送的。
在一些实施例中,所述第二接入请求信息是通过主动发射方式发送的;或者
所述第二接入请求信息是通过反向散射方式发送的;或者
所述第二接入请求信息是通过反向散射方式和主动发射方式发送的。
在一些实施例中,所述第一接入请求信息是在第一频段发送的;和/或
所述通信设备的询问信息是在第二频段发送的;和/或
所述第二接入请求信息是在第三频段发送的;和/或
所述接入认证结果信息是在第四频段上发送的。
在一些实施例中,所述第一频段为公共频段;或者
所述第一频段是所述第一设备的工作频段;或者
所述第一频段为反向散射通信的专用频段。
在一些实施例中,所述第二频段是所述第一设备的工作频段;或者
所述第二频段是可用的接入频段,或者,
所述第二频段是任意频段。
在一些实施例中,所述第三频段是可用的接入频段;或者
所述第三频段是反向散射通信的专用频段。
在一些实施例中,所述第四频段是可用的接入频段,或反向散射通信的专用频段。
在一些实施例中,所述通信设备包括反向散射发射机,所述反向散射发射机用于采用反向散射方式进行信号的发送。
在一些实施例中,所述通信设备包括反向散射发射机和主发射机,所述反向散射发射机用于采用反向散射方式进行信号的发送,所述主发射机用于采用主动发射方式进行信号的发送。可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上***的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的通信设备500可对应于本申请方法实施例中的第二设备,并且通信设备500中的各个单元的上述和其它操作和/或功能分别为了实现图8至图12所示方法实施例中第二设备的相应流程,为了简洁,在此不再赘述。
图15是本申请实施例提供的一种通信设备600示意性结构图。图15所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图15所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图15所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的第一设备,并且该通信设备600可以实现本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的第二设备,并且该通信设备600可以实现本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
图16是本申请实施例的芯片的示意性结构图。图16所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图16所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的第一设备,并且该芯片可以实现本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的第二设备,并且该芯片可以实现本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
图17是本申请实施例提供的一种通信***900的示意性框图。如图17所示,该通信***900包 括第一设备910和第二设备920。
其中,该第一设备910可以用于实现上述方法中由第一设备实现的相应的功能,以及该第二设备920可以用于实现上述方法中由第二设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的第一设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的第二设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的第一设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的第二设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的第一设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的第二设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (58)

  1. 一种接入认证的方法,其特征在于,包括:
    第一设备向第二设备发送目标接入请求信息,其中,所述目标接入请求信息是通过反向散射方式发送的,或者,所述目标接入请求信息是通过反向散射方式和主动发射方式发送的,所述目标接入请求信息用于所述第一设备接入所述第二设备。
  2. 根据权利要求1所述的方法,其特征在于,所述目标接入请求信息包括以下中的至少之一:
    第一接入请求信息,用于请求接入所述第二设备;
    第二接入请求信息,用于应答所述第二设备的询问信息,所述询问信息是所述第一接入请求信息的应答信息。
  3. 根据权利要求2所述的方法,其特征在于,所述第一接入请求信息包括以下中的至少之一:
    所述第一设备的标识信息,所述第一设备请求传输的业务信息。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第二设备的询问信息包括以下中的至少之一:所述第二设备的标识信息,密钥相关信息,可用的接入频段信息。
  5. 根据权利要求2-4中任一项所述的方法,其特征在于,所述第二设备的询问信息是采用广播、组播或单播方式发送的。
  6. 根据权利要求2-5中任一项所述的方法,其特征在于,所述第二设备的询问信息是通过特定信号发送的,所述特定信号用作所述第二接入请求信息的载波信号。
  7. 根据权利要求2-6中任一项所述的方法,其特征在于,所述第二接入请求信息包括以下中的至少之一:
    所述第一设备的标识信息,所述第一设备请求传输的业务信息,根据所述第二设备的询问信息确定的密钥相关信息,所述第二设备的标识信息。
  8. 根据权利要求2-7中任一项所述的方法,其特征在于,
    所述第一接入请求信息是在第一频段发送的;和/或
    所述第二设备的询问信息是在第二频段发送的;和/或
    所述第二接入请求信息是在第三频段发送的。
  9. 根据权利要求8所述的方法,其特征在于,
    所述第一频段为公共频段;或者
    所述第一频段是所述第一设备的工作频段;或者
    所述第一频段为反向散射通信的专用频段。
  10. 根据权利要求8或9所述的方法,其特征在于,
    所述第二频段是所述第一设备的工作频段;或者
    所述第二频段是可用的接入频段,或者,
    所述第二频段是任意频段。
  11. 根据权利要求8-10中任一项所述的方法,其特征在于,
    所述第三频段是可用的接入频段;或者
    所述第三频段是反向散射通信的专用频段。
  12. 根据权利要求2-11中任一项所述的方法,其特征在于,
    所述第二设备的询问信息是通过主动发射方式发送的;或者
    所述第二设备的询问信息是通过反向散射方式发送的;或者
    所述第二设备的询问信息是通过反向散射方式和主动发射方式发送的。
  13. 根据权利要求1-12中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收所述第二设备发送的接入认证结果信息。
  14. 根据权利要求13所述的方法,其特征在于,所述接入认证结果信息是在第四频段上发送的,所述第四频段是可用的接入频段,或反向散射通信的专用频段。
  15. 根据权利要求13或14所述的方法,其特征在于,
    所述接入认证结果信息是通过主动发射方式发送的;或者
    所述接入认证结果信息是通过反向散射方式发送的;或者
    所述接入认证结果信息是通过反向散射方式和主动发射方式发送的。
  16. 根据权利要求1-15中任一项所述的方法,其特征在于,所述第一设备包括反向散射发射机,所述反向散射发射机用于采用反向散射方式进行信号的发送。
  17. 根据权利要求1-15中任一项所述的方法,其特征在于,所述第一设备包括反向散射发射机和主发射机,所述反向散射发射机用于采用反向散射方式进行信号的发送,所述主发射机用于采用主 动发射方式进行信号的发送。
  18. 一种接入认证的方法,其特征在于,包括:
    第二设备向第一设备发送目标接入响应信息,其中,所述目标接入响应信息是通过反向散射方式发送的,或者,所述接入响应信息是通过反向散射方式和主动发射方式发送的,所述目标接入响应信息是目标接入请求信号的响应信息,所述目标接入请求信息用于所述第一设备接入所述第二设备。
  19. 根据权利要求18所述的方法,其特征在于,所述目标接入请求信息包括以下中的至少之一:
    第一接入请求信息,用于请求接入所述第二设备;
    第二接入请求信息,用于应答所述第二设备的询问信息,所述询问信息是所述第一接入请求信息的应答信息。
  20. 根据权利要求19所述的方法,其特征在于,所述目标接入响应信息包括以下中的至少之一:
    所述第二设备的询问信息;
    接入认证结果信息。
  21. 根据权利要求19或20所述的方法,其特征在于,所述第一接入请求信息包括以下中的至少之一:
    所述第一设备的标识信息,所述第一设备请求传输的业务信息。
  22. 根据权利要求19-21中任一项所述的方法,其特征在于,所述第二设备的询问信息包括以下中的至少之一:所述第二设备的标识信息,密钥相关信息,可用的接入频段信息。
  23. 根据权利要求19-22中任一项所述的方法,其特征在于,所述第二设备的询问信息是采用广播、组播或单播方式发送的。
  24. 根据权利要求19-23中任一项所述的方法,其特征在于,所述第二设备的询问信息是通过特定信号发送的,所述特定信号用作所述第二接入请求信息的载波信号。
  25. 根据权利要求19-24中任一项所述的方法,其特征在于,所述第二接入请求信息包括以下中的至少之一:
    所述第一设备的标识信息,所述第一设备请求传输的业务信息,根据所述第二设备的询问信息确定的密钥相关信息,所述第二设备的标识信息。
  26. 根据权利要求19-25中任一项所述的方法,其特征在于,
    所述第一接入请求信息是通过主动发射方式发送的;或者
    所述第一接入请求信息是通过反向散射方式发送的;或者
    所述第一接入请求信息是通过反向散射方式和主动发射方式发送的。
  27. 根据权利要求19-26中任一项所述的方法,其特征在于,
    所述第二接入请求信息是通过主动发射方式发送的;或者
    所述第二接入请求信息是通过反向散射方式发送的;或者
    所述第二接入请求信息是通过反向散射方式和主动发射方式发送的。
  28. 根据权利要求19-27中任一项所述的方法,其特征在于,
    所述第一接入请求信息是在第一频段发送的;和/或
    所述第二设备的询问信息是在第二频段发送的;和/或
    所述第二接入请求信息是在第三频段发送的;和/或
    所述接入认证结果信息是在第四频段上发送的。
  29. 根据权利要求28所述的方法,其特征在于,
    所述第一频段为公共频段;或者
    所述第一频段是所述第一设备的工作频段;或者
    所述第一频段为反向散射通信的专用频段。
  30. 根据权利要求28或29所述的方法,其特征在于,
    所述第二频段是所述第一设备的工作频段;或者
    所述第二频段是可用的接入频段,或者,
    所述第二频段是任意频段。
  31. 根据权利要求28-30中任一项所述的方法,其特征在于,
    所述第三频段是可用的接入频段;或者
    所述第三频段是反向散射通信的专用频段。
  32. 根据权利要求28-31中任一项所述的方法,其特征在于,所述第四频段是可用的接入频段,或反向散射通信的专用频段。
  33. 根据权利要求18-32中任一项所述的方法,其特征在于,所述第二设备包括反向散射发射机, 所述反向散射发射机用于采用反向散射方式进行信号的发送。
  34. 根据权利要求18-32中任一项所述的方法,其特征在于,所述第二设备包括反向散射发射机和主发射机,所述反向散射发射机用于采用反向散射方式进行信号的发送,所述主发射机用于采用主动发射方式进行信号的发送。
  35. 一种通信设备,其特征在于,包括:
    通信单元,用于向第二设备发送目标接入请求信息,其中,所述目标接入请求信息是通过反向散射方式发送的,或者,所述目标接入请求信息是通过反向散射方式和主动发射方式发送的,所述目标接入请求信息用于所述通信设备接入所述第二设备。
  36. 根据权利要求35所述的通信设备,其特征在于,所述目标接入请求信息包括以下中的至少之一:
    第一接入请求信息,用于请求接入所述第二设备;
    第二接入请求信息,用于应答所述第二设备的询问信息,所述询问信息是所述第一接入请求信息的应答信息。
  37. 根据权利要求36所述的通信设备,其特征在于,所述第一接入请求信息包括以下中的至少之一:
    所述通信设备的标识信息,所述通信设备请求传输的业务信息。
  38. 根据权利要求36或37所述的通信设备,其特征在于,所述第二设备的询问信息包括以下中的至少之一:所述第二设备的标识信息,密钥相关信息,可用的接入频段信息。
  39. 根据权利要求36-38中任一项所述的通信设备,其特征在于,所述第二设备的询问信息是采用广播、组播或单播方式发送的。
  40. 根据权利要求36-39中任一项所述的通信设备,其特征在于,所述第二设备的询问信息是通过特定信号发送的,所述特定信号用作所述第二接入请求信息的载波信号。
  41. 根据权利要求36-40中任一项所述的通信设备,其特征在于,所述第二接入请求信息包括以下中的至少之一:
    所述通信设备的标识信息,所述通信设备请求传输的业务信息,根据所述第二设备的询问信息确定的密钥相关信息,所述第二设备的标识信息。
  42. 根据权利要求36-41中任一项所述的通信设备,其特征在于,
    所述第一接入请求信息是在第一频段发送的;和/或
    所述第二设备的询问信息是在第二频段发送的;和/或
    所述第二接入请求信息是在第三频段发送的。
  43. 根据权利要求42所述的通信设备,其特征在于,
    所述第一频段为公共频段;或者
    所述第一频段是所述通信设备的工作频段;或者
    所述第一频段为反向散射通信的专用频段。
  44. 根据权利要求42或43所述的通信设备,其特征在于,
    所述第二频段是所述通信设备的工作频段;或者
    所述第二频段是可用的接入频段,或者,
    所述第二频段是任意频段。
  45. 根据权利要求42-44中任一项所述的通信设备,其特征在于,
    所述第三频段是可用的接入频段;或者
    所述第三频段是反向散射通信的专用频段。
  46. 根据权利要求36-45中任一项所述的通信设备,其特征在于,
    所述第二设备的询问信息是通过主动发射方式发送的;或者
    所述第二设备的询问信息是通过反向散射方式发送的;或者
    所述第二设备的询问信息是通过反向散射方式和主动发射方式发送的。
  47. 根据权利要求35-46中任一项所述的通信设备,其特征在于,所述通信单元还用于:
    接收所述第二设备发送的接入认证结果信息。
  48. 根据权利要求47所述的通信设备,其特征在于,所述接入认证结果信息是在第四频段上发送的,所述第四频段是可用的接入频段,或反向散射通信的专用频段。
  49. 根据权利要求47或48所述的通信设备,其特征在于,
    所述接入认证结果信息是通过主动发射方式发送的;或者
    所述接入认证结果信息是通过反向散射方式发送的;或者
    所述接入认证结果信息是通过反向散射方式和主动发射方式发送的。
  50. 根据权利要求35-49中任一项所述的通信设备,其特征在于,所述通信设备包括反向散射发射机,所述反向散射发射机用于采用反向散射方式进行信号的发送。
  51. 根据权利要求35-49中任一项所述的通信设备,其特征在于,所述通信设备包括反向散射发射机和主发射机,所述反向散射发射机用于采用反向散射方式进行信号的发送,所述主发射机用于采用主动发射方式进行信号的发送。
  52. 一种通信设备,其特征在于,包括:
    通信单元,用于向第一设备发送目标接入响应信息,其中,所述目标接入响应信息是通过反向散射方式发送的,或者,所述接入响应信息是通过反向散射方式和主动发射方式发送的,所述目标接入响应信息是目标接入请求信号的响应信息,所述目标接入请求信息用于所述第一设备接入所述通信设备。
  53. 一种通信设备,其特征在于,包括:处理器、收发器和存储器,该存储器用于存储计算机程序,所述收发器用于与其他设备进行通信,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述通信设备执行如权利要求1至17中任一项所述的方法。
  54. 一种通信设备,其特征在于,包括:处理器、收发器和存储器,该存储器用于存储计算机程序,所述收发器用于与其他设备进行通信,所述处理器用于调用并运行所述存储器中存储的计算机程序,以控制所述通信设备执行如权利要求18至34中任一项所述的方法。
  55. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至17中任一项所述的方法,或如权利要求18至34中任一项所述的方法。
  56. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至17中任一项所述的方法,或如权利要求18至34中任一项所述的方法。
  57. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至17中任一项所述的方法,或如权利要求18至34中任一项所述的方法。
  58. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至17中任一项所述的方法,或如权利要求18至34中任一项所述的方法。
PCT/CN2022/110273 2022-08-04 2022-08-04 接入认证的方法和设备 WO2024026771A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/110273 WO2024026771A1 (zh) 2022-08-04 2022-08-04 接入认证的方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/110273 WO2024026771A1 (zh) 2022-08-04 2022-08-04 接入认证的方法和设备

Publications (1)

Publication Number Publication Date
WO2024026771A1 true WO2024026771A1 (zh) 2024-02-08

Family

ID=89848203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110273 WO2024026771A1 (zh) 2022-08-04 2022-08-04 接入认证的方法和设备

Country Status (1)

Country Link
WO (1) WO2024026771A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107426722A (zh) * 2016-05-23 2017-12-01 北京京东尚科信息技术有限公司 接入方法、智能设备、配置服务器和认证服务器
US20200204251A1 (en) * 2018-12-19 2020-06-25 Pusan National University Industry-University Cooperation Foundation Multi-Access Method and Apparatus for Lora Tag Using Backscatter Communication
CN113207174A (zh) * 2021-03-19 2021-08-03 西安电子科技大学 一种反向散射通信方法、装置及***
US20210368439A1 (en) * 2020-05-19 2021-11-25 Qualcomm Incorporated Wlan wake up radio with backscattering
CN114731197A (zh) * 2020-02-20 2022-07-08 Oppo广东移动通信有限公司 一种基于反向散射的传输方法、电子设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107426722A (zh) * 2016-05-23 2017-12-01 北京京东尚科信息技术有限公司 接入方法、智能设备、配置服务器和认证服务器
US20200204251A1 (en) * 2018-12-19 2020-06-25 Pusan National University Industry-University Cooperation Foundation Multi-Access Method and Apparatus for Lora Tag Using Backscatter Communication
CN114731197A (zh) * 2020-02-20 2022-07-08 Oppo广东移动通信有限公司 一种基于反向散射的传输方法、电子设备及存储介质
US20210368439A1 (en) * 2020-05-19 2021-11-25 Qualcomm Incorporated Wlan wake up radio with backscattering
CN113207174A (zh) * 2021-03-19 2021-08-03 西安电子科技大学 一种反向散射通信方法、装置及***

Similar Documents

Publication Publication Date Title
US20240179639A1 (en) Wireless communication method and device
WO2023122975A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024026771A1 (zh) 接入认证的方法和设备
WO2023272442A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023004714A1 (zh) 无线通信方法及设备
WO2023193192A1 (zh) 无线通信的方法及设备
WO2023193255A1 (zh) 无线通信的方法和设备
WO2023184534A1 (zh) 无线通信的方法及设备
US20240137194A1 (en) Method and device for wireless communication
WO2024065267A1 (zh) 无线通信的方法和设备
WO2023168687A1 (zh) 无线通信方法、终端设备及载波发送设备
WO2024040403A1 (zh) 无线通信的方法和设备
WO2023236144A1 (zh) 无线通信的方法和设备
WO2023173438A1 (zh) 数据传输方法、第一设备和第二设备
WO2024098424A1 (zh) 无线通信的方法及设备
WO2023168698A1 (zh) 信息传输方法、终端设备和网络设备
US20240137930A1 (en) Wireless communication method, terminal device, and communication device
WO2024098404A1 (zh) 无线通信的方法和设备
WO2023225788A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024082267A1 (zh) 无线通信的方法和设备
WO2024007312A1 (zh) 无线通信的方法和终端设备
US20240224224A1 (en) Wireless communication method, and device
WO2024040402A1 (zh) 无线通信的方法和设备
WO2024103317A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023070453A1 (zh) 无线通信方法、第一设备和第二设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953580

Country of ref document: EP

Kind code of ref document: A1