WO2021031004A1 - 载波测量方法和装置 - Google Patents

载波测量方法和装置 Download PDF

Info

Publication number
WO2021031004A1
WO2021031004A1 PCT/CN2019/101177 CN2019101177W WO2021031004A1 WO 2021031004 A1 WO2021031004 A1 WO 2021031004A1 CN 2019101177 W CN2019101177 W CN 2019101177W WO 2021031004 A1 WO2021031004 A1 WO 2021031004A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
target frequency
measurement
information
target
Prior art date
Application number
PCT/CN2019/101177
Other languages
English (en)
French (fr)
Inventor
张力
韩静
王瑞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980099095.8A priority Critical patent/CN114208262B/zh
Priority to PCT/CN2019/101177 priority patent/WO2021031004A1/zh
Publication of WO2021031004A1 publication Critical patent/WO2021031004A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • This application relates to communication technology, and in particular to a method and device for carrier measurement.
  • Carrier Aggregation improves the bandwidth by combining multiple independent carrier channels to increase the data rate and capacity.
  • Carrier aggregation has been adopted in Evolved Universal Terrestrial Radio Access (E-UTRA) and will become one of the key technologies of New Radio (NR).
  • the NR physical layer can support aggregation of up to 16 carriers to achieve higher-speed transmission.
  • Dual Connectivity means that a terminal device can simultaneously use the wireless resources of at least two different base stations (divided into a master station and a slave station) in a connected state. Dual connectivity is different from carrier aggregation, which is mainly manifested in the different layers of data offload and aggregation.
  • the base station configures a secondary cell (SCell) or a primary secondary cell (PSCell) to the terminal device based on the measurement result reported by the terminal device to implement the establishment of CA or DC.
  • SCell secondary cell
  • PSCell primary secondary cell
  • the communication protocol version 15 (Rel-15) introduced advance measurement.
  • the measurement behavior of the terminal equipment is as follows: For overlapping carriers, if the condition of the serving cell is lower than a threshold, the terminal equipment Perform normal reselection measurement on the target frequency measured in advance, that is, periodic measurement; if the condition of the serving cell is higher than a threshold, the terminal device performs a measurement on the target frequency measured in advance. For non-overlapping carriers, the terminal device performs a measurement on the target frequency measured in advance.
  • the above-mentioned pre-measurement method cannot meet the performance requirements of NR, such as high data transmission rate and low delay.
  • This application provides a carrier measurement method and device to meet the performance requirements of NR.
  • an embodiment of the present application provides a carrier measurement method.
  • the method may include: a terminal device receives a first message sent by a network device, the first message includes first information, and the first information is used to indicate at least one target Frequency, the at least one target frequency includes a first target frequency and a second target frequency; the terminal device performs periodic measurement at the first target frequency; when the terminal device enters the connected state, the terminal device sends the network device The measurement result of the first target frequency; wherein, the network evaluation index of the first frequency band combination is higher than the network evaluation index of the second frequency band combination, and the first frequency band combination is the first target frequency and the service frequency forming the carrier supported by the terminal device Aggregate CA or dual-connection DC frequency band combination, and the second frequency band combination is a CA or DC frequency band combination composed of the second target frequency and the service frequency.
  • the terminal device can distinguish different targets Frequency, to improve the measurement performance for the first target frequency to ensure the validity and accuracy of the measurement result of the first target frequency, so that the network device can accurately configure the secondary carrier or primary and secondary carrier for the terminal device based on the measurement result to meet the NR pair Performance requirements such as high data transmission rate, low latency, and high reliability.
  • the first target frequency is the frequency of the new wireless NR
  • the first The target frequency and the service frequency form an EN-DC band combination supported by the terminal equipment
  • the service frequency is an NR frequency
  • the first target frequency is an E-UTRA frequency
  • the first The target frequency and the service frequency form an NE-DC band combination supported by the terminal device
  • the service frequency is an NR frequency
  • the first target frequency is an NR frequency
  • the first target frequency is an NR frequency
  • the first target frequency And the service frequency form an NR-DC frequency band combination supported by the terminal device.
  • the first target frequency that can be combined with the service frequency to form an EN-DC band combination, or NE-DC band combination, or NR-DC band combination is periodically measured, so that the network device is based on the measurement result , Accurately configure the secondary carrier or primary and secondary carrier for terminal equipment to meet NR's performance requirements for high data transmission rate, low latency, and high reliability.
  • the first message further includes second information, and the second information is used to indicate at least one combination of CA or DC frequency bands, and the first target frequency and the service frequency
  • the CA or DC frequency band combination that constitutes the support of the terminal device is one or more of the at least one CA or DC frequency band combination.
  • the first target frequency is determined based on the CA or DC frequency band combination indicated by the network device, so that the first target frequency for the terminal device to perform periodic measurement and the secondary carrier or the network device preference configuration
  • the primary and secondary carriers are correlated to improve the accuracy and effectiveness of the first target frequency, thereby improving the efficiency of the network device in configuring the secondary carrier or primary and secondary carrier to the terminal device.
  • the method further includes: the terminal device performs a one-time measurement at the second target frequency.
  • the first message further includes third information, and the third information is used to indicate the allowable measurement bandwidth of the at least one target frequency, and the first target frequency The allowable measurement bandwidth meets the first preset condition.
  • the first preset condition as the screening condition among the target frequencies that need to be periodically measured, the first target frequency that satisfies the first preset condition is filtered out, and the first target frequency is periodically performed
  • the measurement can control the number of target frequency points that the terminal device performs periodic measurement during the advance measurement process, thereby reducing the complexity and power consumption of the advance measurement.
  • the terminal device performing periodic measurement at the first target frequency includes: the terminal device performing periodic measurement at the first target frequency at a first preset interval Periodic measurement; wherein the first preset interval is determined according to the measurement interval of reselection measurement, the number of reselection measurement and periodic measurement frequencies, and the scaling factor.
  • the terminal device performs periodic measurement at the first target frequency at a first preset interval, so that the power consumption of the terminal device in the advance measurement process can be controlled through the first preset interval.
  • the first message further includes fourth information, and the fourth information is used to instruct a terminal device to perform synchronization signal block SSB identification, and the terminal device is in the first Periodic measurement of a target frequency includes: the terminal device identifies the SSB at the first target frequency according to the fourth information, and performs periodic measurement on the identified SSB and the known SSB; the first The measurement result of the target frequency includes the measurement result of the SSB that meets the measurement report condition.
  • the terminal device is instructed to perform SSB recognition through the fourth information, the terminal device recognizes the SSB at the first target frequency, and measures the recognized SSB and the known SSB.
  • the terminal equipment sends the measurement results of the SSB that meet the measurement reporting conditions to the network equipment, thereby achieving SSB-level measurement reporting.
  • the network equipment realizes the rapid establishment of CA or DC based on the measurement results to meet the high data transmission rate and low latency of NR. Demand.
  • the terminal device recognizing the SSB at the first target frequency according to the fourth information includes: the terminal device at the first target frequency at a second preset interval A target frequency identification SSB; wherein the second preset interval is determined according to the measurement interval of reselection measurement, the number of reselection measurement and periodic measurement frequencies, and the scaling factor.
  • the network device instructs the terminal device to perform SSB recognition, and the terminal device recognizes a new SSB, thereby discovering a new beam and measuring it to ensure the validity and accuracy of the measurement results reported by the terminal device .
  • the first message further includes fifth information, and the fifth information is used to indicate the scaling factor.
  • inventions of the present application provide a carrier measurement method.
  • the method may include: a network device sends a first message to a terminal device, where the first message includes first information, and the first information is used to indicate at least one Target frequency, the at least one target frequency includes a first target frequency and a second target frequency; the network device receives a measurement result of the first target frequency sent by the terminal device that has entered the connected state, and the measurement result is The result of periodic measurement performed by the terminal device at the first target frequency; wherein the network evaluation index of the first frequency band combination is higher than the network evaluation index of the second frequency band combination, and the first frequency band combination is the first
  • the target frequency and the service frequency of the terminal device form a carrier aggregation CA or dual-connection DC frequency band combination supported by the terminal device, and the second frequency band combination is a CA or DC formed by the second target frequency and the service frequency Frequency band combination.
  • the first message further includes second information, and the second information is used to indicate at least one combination of CA or DC frequency bands, and the at least one first target frequency and Service frequency composition
  • the CA or DC frequency band combination supported by the terminal device is one or more of the at least one CA or DC frequency band combination.
  • the first message further includes third information, and the third information is used to indicate the allowable measurement bandwidth of the at least one target frequency, and the first target frequency The allowable measurement bandwidth meets the first preset condition.
  • the first message further includes fourth information, and the fourth information is used to instruct the terminal device to perform synchronization signal block SSB identification.
  • the first message further includes fifth information, and the fifth information is used to indicate a scaling factor, and the scaling factor is used to configure the terminal device to operate in the The first preset interval during which the first target frequency is periodically measured or the second preset interval during which the terminal device performs SSB identification at the first target frequency.
  • an embodiment of the present application provides a carrier measurement method.
  • the method may include: a terminal device receives a first message sent by a network device, the first message includes first information, and the first information is used to instruct the terminal
  • the device recognizes the synchronization signal block SSB; the terminal device recognizes the SSB at the target frequency, and measures the identified SSB and the known SSB; when the terminal device enters the connected state, the terminal device sends to the network device The measurement result of the SSB that meets the measurement report condition.
  • the terminal device is instructed to perform SSB identification through the first information, the terminal device recognizes the SSB at the target frequency, and measures the identified SSB and the known SSB.
  • the terminal device Send the SSB measurement results to the network equipment to achieve SSB-level measurement reporting.
  • the network equipment implements the rapid establishment of CA or DC based on the measurement results to meet NR's requirements for high data transmission rate, low latency and other performance.
  • the first message further includes second information, and the second information is used to indicate the allowable measurement bandwidth of the target frequency, and the allowable measurement bandwidth of the target frequency Meet the first preset condition.
  • the target frequency that meets the first preset condition is selected, and the target frequency is identified by SSB, so that the terminal device can be controlled in advance Power consumption during measurement.
  • the terminal device recognizing the SSB at the target frequency includes: the terminal device recognizing the SSB at the target frequency at a first preset interval; wherein, the first The preset interval is determined according to the measurement interval of reselection measurement, the number of reselection measurement and periodic measurement frequencies, and the scaling factor.
  • the power consumption of the terminal device in the advance measurement process can be controlled through the first preset interval.
  • the first message further includes third information, and the third information is used to indicate the scaling factor.
  • an embodiment of the present application provides a carrier measurement method.
  • the method may include: a network device sends a first message to a terminal device, the first message includes first information, and the first information is used to instruct the terminal device Perform synchronization signal block SSB identification; the network device receives the measurement result of the SSB sent by the terminal device that enters the connected state; the measurement result of the SSB is that the terminal device recognizes the SSB at the target frequency, and the identified SSB Result of measurement with known SSB.
  • the first message further includes second information, and the second information is used to indicate the allowable measurement bandwidth of the target frequency, and the allowable measurement bandwidth of the target frequency Meet the second preset condition.
  • the first message further includes third information, and the third information is used to indicate a scaling factor, and the scaling factor is used to configure a first preset interval.
  • a fifth aspect provides a terminal device, which is configured to execute the communication method in the first aspect or any possible implementation of the first aspect, or to execute any of the third aspect or the third aspect.
  • the communication method in a possible implementation.
  • the terminal device may include a module for executing the first aspect or the communication method in any possible implementation of the first aspect, or the terminal device may include a module for executing the third aspect or the third aspect.
  • the module of the communication method in any possible implementation of the aspect.
  • a sixth aspect provides a terminal device, the terminal device includes a memory and a processor, the memory is used to store instructions, the processor is used to execute the instructions stored in the memory, and the instructions stored in the memory Execution causes the processor to execute the communication method in the foregoing first aspect or any possible implementation of the first aspect, or is used to execute the communication method in the foregoing third aspect or any possible implementation of the third aspect .
  • a seventh aspect provides a computer-readable storage medium on which a computer program is stored.
  • the program is executed by a processor, the method in the first aspect or any one of the possible implementation manners of the first aspect is implemented, or the first aspect is implemented.
  • An eighth aspect provides a network device, the network device is configured to execute the communication method in the second aspect or any possible implementation of the second aspect, or to execute any of the fourth aspect or the fourth aspect.
  • the communication method in a possible implementation.
  • the network device may include a module for executing the communication method in the second aspect or any possible implementation of the second aspect, or may include a module for executing any of the fourth aspect or the fourth aspect.
  • a ninth aspect provides a network device, the network device includes a memory and a processor, the memory is used to store instructions, the processor is used to execute the instructions stored in the memory, and the instructions stored in the memory The execution causes the processor to execute the method in the second aspect or any possible implementation manner of the second aspect, or execute the method in the fourth aspect or any possible implementation manner of the fourth aspect.
  • a tenth aspect provides a computer-readable storage medium on which a computer program is stored.
  • the program is executed by a processor, the method in the second aspect or any one of the possible implementation manners of the second aspect is implemented, or the first The fourth aspect or the method in any possible implementation of the fourth aspect.
  • a first message is sent to a terminal device through a network device.
  • the first message includes first information.
  • the first information is used to indicate at least one target frequency.
  • the at least one target frequency may include the first For the target frequency and the second target frequency, the terminal device performs periodic measurement at the first target frequency.
  • the terminal device sends the measurement result of the first target frequency to the network device, thereby achieving CA or DC based on the measurement result Rapid establishment. Since the network evaluation index of the first frequency band combination composed of the first target frequency is higher than the network evaluation index of the first frequency band combination composed of the first target frequency, the terminal device can distinguish different target frequencies and improve the first target frequency. Measurement performance to ensure the validity and accuracy of the measurement result of the first target frequency, so that the network device can accurately configure the secondary carrier or primary and secondary carrier for the terminal device based on the measurement result to meet the high data transmission rate and low latency of NR. Performance requirements.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the application
  • FIG. 2 is a schematic flowchart of a carrier measurement method according to an embodiment of the application
  • FIG. 3 is a schematic flowchart of another carrier measurement method according to an embodiment of the application.
  • FIG. 4 is a schematic flow chart of another carrier measurement method according to an embodiment of the application.
  • FIG. 5 is a schematic block diagram of a communication device 500 according to an embodiment of the application.
  • FIG. 6 is a schematic block diagram of a communication device 600 according to an embodiment of the application.
  • FIG. 7 is a schematic block diagram of a communication device 700 according to an embodiment of the application.
  • FIG. 8 is a schematic block diagram of a communication device 800 according to an embodiment of the application.
  • FIG. 9 is a schematic block diagram of a communication device provided by an embodiment of the application.
  • FIG. 10 is another schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 11 is still another schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 12 is another schematic block diagram of a communication device provided by an embodiment of this application.
  • first and second in this application are only used for the purpose of distinguishing description, and cannot be understood as indicating or implying relative importance, nor as indicating or implying order.
  • the terms “including” and “having” and any variations of them are intended to cover non-exclusive inclusion, for example, a series of steps or units are included.
  • the method, system, product, or device is not necessarily limited to those clearly listed steps or units, but may include other steps or units that are not clearly listed or are inherent to these processes, methods, products, or devices.
  • At least one (item) refers to one or more, and “multiple” refers to two or more.
  • “And/or” is used to describe the association relationship of associated objects, indicating that there can be three types of relationships, for example, “A and/or B” can mean: only A, only B, and both A and B , Where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects are in an “or” relationship.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • At least one (a) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, and c can be single or multiple.
  • the embodiment of the present application relates to a terminal device.
  • the terminal device may be a device that includes wireless transceiver functions and can cooperate with network devices to provide users with communication services.
  • terminal equipment may refer to User Equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication equipment, User agent or user device.
  • UE User Equipment
  • the terminal device may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), and a wireless Handheld devices with communication functions, computing devices, or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in future 5G networks or networks after 5G, etc. are not limited in the embodiments of the present application.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • a network device can be a device used to communicate with terminal devices.
  • it can be a base station (Base Transceiver Station, BTS) in a GSM system or CDMA, a base station (NodeB, NB) in a WCDMA system, or Evolutional Node B (eNB or eNodeB) in the LTE system
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • eNB or eNodeB Evolutional Node B
  • the network equipment can be a relay station, access point, in-vehicle equipment, wearable equipment, and network-side equipment in the future 5G network or networks after 5G.
  • Network equipment in the future evolved PLMN network etc.
  • the network equipment involved in the embodiments of the present application may also be referred to as a radio access network (Radio Access Network, RAN) equipment.
  • the RAN equipment is connected to the terminal equipment and is used to receive data from the terminal equipment and send it to the core network equipment.
  • RAN equipment corresponds to different equipment in different communication systems. For example, it corresponds to base station and base station controller in 2G system, corresponds to base station and radio network controller (RNC) in 3G system, and corresponds to evolution in 4G system.
  • Evolutional Node B (eNB) corresponds to a 5G system in a 5G system, such as the access network equipment (for example, gNB, CU, DU) in the New Radio Access Technology (NR).
  • the network evaluation index involved in the embodiment of the present application is used to indicate the performance of the wireless communication network, and the network evaluation index may include at least one of throughput or connection reliability.
  • throughput refers to the amount of data received or sent in a unit time, which is usually determined by the available bandwidth and channel conditions.
  • Connection reliability refers to the probability of connection interruption or call drop, which is usually caused by insufficient network coverage or network failure.
  • the dual connectivity (DC) in the embodiments of this application may include LTE-NR dual connectivity (E-UTRA NR Dual Connectivity, EN-DC), NR-LTE dual connectivity (NR E-UTRA Dual Connectivity, NE-DC), NR- Different dual connection forms such as DC.
  • EN-DC refers to the dual connection of E-UTRA's radio access network and NR
  • NE-DC refers to the dual connection of NR and E-UTRA's radio access network
  • NR-DC refers to the dual connection of NR and NR.
  • the DC network evaluation index is higher than the non-DC network evaluation index.
  • the DC connection reliability is higher than the non-DC connection reliability.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • the application scenario may include a terminal device 110, a network device 121, and a network device 122.
  • the terminal device 110 may be any of the above-mentioned terminal devices.
  • the network device 121 and the network device 122 may be any of the above-mentioned network devices.
  • the terminal device can use the carrier measurement method of the present application to distinguish different target frequencies in the advance measurement process to improve the measurement performance for important target frequencies, thereby achieving rapid establishment of CA or DC based on the measurement results.
  • the important target frequency can be a frequency that can form a dual connection with the service frequency of the terminal device, or can be a frequency that can form a CA/DC band combination indicated by the network device with the service frequency of the terminal device.
  • the coverage area of the network device 110 may include one cell or multiple cells.
  • Fig. 2 is a schematic flowchart of a carrier measurement method according to an embodiment of the application. As shown in Fig. 2, the method in this embodiment involves network equipment and terminal equipment, and the method may include:
  • Step 101 The network device sends a first message to the terminal device.
  • the terminal device receives the first message sent by the network device.
  • the first message may include first information, which is used to indicate at least one target frequency.
  • the first message may be a radio resource control (Radio Resource Control) release message or a system message, which is not described one by one in the embodiments of this application.
  • the at least one target frequency may be the target frequency in the advance measurement process.
  • Step 102 The terminal device performs periodic measurement at the first target frequency.
  • the aforementioned at least one target frequency may include a first target frequency and a second target frequency.
  • the number of the first target frequency may be one or more, and the number of the second target frequency may be one or more.
  • the network evaluation index of the first frequency band combination is higher than the network evaluation index of the second frequency band combination.
  • the first frequency band combination is the CA or DC frequency band combination supported by the terminal device composed of the first target frequency and the service frequency.
  • the frequency band combination is a CA or DC frequency band combination composed of the second target frequency and the service frequency.
  • the service frequency is the frequency of the cell where the terminal device resides.
  • the throughput of the first frequency band combination is higher than the throughput of the second frequency band combination.
  • the terminal device can distinguish different target frequencies in at least one target frequency to improve measurement performance for important target frequencies.
  • the important target frequency is a CA with a higher network evaluation index that can be combined with the service frequency.
  • the target frequency of the DC band combination that is, the first target frequency
  • the terminal device performs periodic measurement at the first target frequency. For example, a terminal device in an idle state or an inactive state performs periodic measurement at the first target frequency.
  • the terminal device of this embodiment may determine that frequency 1 is the first target frequency, so as to perform periodic measurement on frequency 1.
  • Step 103 When the terminal device enters the connected state, the terminal device sends the measurement result of the first target frequency to the network device.
  • the network device receives the measurement result of the first target frequency sent by the terminal device in the connected state.
  • the measurement result of the first target frequency may include one of reference signal receiving power (Reference Signal Receiving Power, RSRP) or reference signal receiving quality (Reference Signal Receiving Quality, RSRQ) of each cell of the first target frequency. Multiple.
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • the terminal device in the idle state or the inactive state can perform periodic measurement of the first target frequency through the above step 102, and switch from the idle state or the inactive state to the connected state. After the state, the measurement result of the first target frequency can be reported to the network device.
  • periodic measurement can avoid the problem of invalid measurement results in one-time measurements.
  • the invalid measurement results are usually caused by the time when the one-time measurement occurs far away from the time when the terminal device enters the connected state. The result is invalid.
  • the terminal device may also perform a one-time measurement at the second target frequency.
  • a first message is sent to a terminal device through a network device.
  • the first message includes first information.
  • the first information is used to indicate at least one target frequency.
  • the at least one target frequency may include the first target frequency and the second target frequency.
  • the terminal device performs periodic measurement at the first target frequency.
  • the terminal device sends the measurement result of the first target frequency to the network device, thereby achieving rapid establishment of CA or DC based on the measurement result. Since the network evaluation index of the first frequency band combination composed of the first target frequency is higher than the network evaluation index of the first frequency band combination composed of the first target frequency, the terminal device can distinguish different target frequencies and improve the first target frequency.
  • Measurement performance to ensure the validity and accuracy of the measurement result of the first target frequency, so that the network device can accurately configure the secondary carrier or primary and secondary carrier for the terminal device based on the measurement result to meet the requirements of NR for high data transmission rate, low latency, Performance requirements such as high reliability.
  • the first target frequency is an NR frequency
  • the first target frequency and the service frequency form an EN-DC band combination supported by the terminal device
  • the service frequency is the NR frequency
  • the first target frequency is the E-UTRA frequency
  • the first target frequency and the service frequency form the NE-DC band combination supported by the terminal equipment
  • the service frequency is the NR frequency
  • the first target frequency is an NR frequency
  • the first target frequency and the service frequency form an NR-DC frequency band combination supported by the terminal device.
  • the terminal device can determine the first target frequency in the foregoing embodiment according to the CA/DC combination of the service frequency and each target frequency indicated by the network device.
  • the service frequency of the terminal equipment is the E-UTRA frequency
  • the terminal equipment supports the EN-DC frequency band combination composed of the NR frequency and the service frequency
  • the terminal device may determine that the above-mentioned first target frequency is the frequency of the NR. If another E-UTRA frequency exists in the at least one target frequency, the terminal device determines that the second target frequency is the frequency of the other E-UTRA.
  • the terminal equipment When the service frequency of the terminal equipment is the NR frequency, if the E-UTRA frequency exists in the at least one target frequency mentioned above, and the terminal equipment supports the NE-DC band combination composed of the E-UTRA frequency and the service frequency, the terminal equipment It can be determined that the above-mentioned first target frequency is the frequency of the E-UTRA. If there is an NR frequency in the at least one target frequency, and the terminal device supports the NR-DC frequency band combination composed of the NR frequency and the service frequency, the terminal device may determine that the first target frequency is the NR frequency. If another NR frequency exists in the at least one target frequency, the terminal device determines that the second target frequency is the frequency of the other NR.
  • the terminal device may determine the first target frequency in the foregoing embodiment based on at least one combination of CA or DC frequency bands indicated by the network device.
  • the terminal device may determine the first target frequency in the foregoing embodiment based on at least one combination of CA or DC frequency bands indicated by the network device.
  • Fig. 3 is a schematic flowchart of another carrier measurement method according to an embodiment of the application. As shown in Fig. 3, the method in this embodiment involves network equipment and terminal equipment, and the method may include:
  • Step 201 The network device sends a first message to the terminal device.
  • the first message may also include second information, and the second information is used to indicate at least one CA or DC band combination.
  • Step 202 The terminal device determines the first target frequency and the second target frequency according to the first information and the second information.
  • the first information is used to indicate at least one target frequency
  • the terminal device may determine the first target frequency according to the CA/DC frequency band combination composed of the at least one target frequency and the service frequency, and the CA or DC frequency band combination indicated by the second information .
  • a CA/D frequency band combination can be formed, and the formed CA/D frequency band combination belongs to the CA or DC frequency band combination indicated by the second information ,
  • the one or more target frequencies are the first target frequency, and the other frequencies in the at least one target frequency are the second target frequencies.
  • the at least one target frequency indicated by the first information is frequency 1, frequency 2, and frequency 3.
  • frequency 1 and the service frequency (frequency 4) can form EN-DC
  • the frequency band combination is EN-DC of frequency 1 and frequency 4.
  • the terminal device can determine that the first target frequency is frequency 1 and the second target frequency is frequency 2 and frequency 3 according to the first information and the second information.
  • Step 203 The terminal device performs periodic measurement at the first target frequency.
  • Step 204 The terminal device performs a one-time measurement at the second target frequency.
  • step 203 and step 204 are not limited by the size of the sequence number.
  • Step 205 When the terminal device enters the connected state, the terminal device sends the measurement results of the first target frequency and the second target frequency to the network device.
  • step 205 can refer to step 103 of the embodiment shown in FIG. 2, which will not be repeated here.
  • a first message is sent to a terminal device through a network device, the first message includes first information and second information, the first information is used to indicate at least one target frequency, and the second information is used to indicate at least one CA Or the DC band combination, the terminal device determines the first target frequency and the second target frequency according to the first information and the second information, the terminal device performs periodic measurement at the first target frequency, and performs a one-time measurement at the second target frequency.
  • the terminal device sends the measurement results of the first target frequency and the second target frequency to the network device, thereby achieving rapid establishment of CA or DC based on the measurement results.
  • the terminal device can distinguish different target frequencies and improve the first target frequency. Measurement performance to ensure the validity and accuracy of the measurement result of the first target frequency, so that the network device can accurately configure the secondary carrier or primary and secondary carrier for the terminal device based on the measurement result to meet the high data transmission rate and low latency of NR. Performance requirements.
  • the first target frequency is determined based on the CA or DC frequency band combination indicated by the network device, so that the first target frequency that the terminal device performs periodic measurement is associated with the secondary carrier or primary and secondary carrier that the network device prefers to configure,
  • the accuracy and effectiveness of the first target frequency are improved, and the efficiency of the network device in configuring the secondary carrier or the primary and secondary carrier to the terminal device can be improved.
  • the first message in the embodiment of the present application may further include third information, and the third information is used to indicate the allowable measurement bandwidth of at least one target frequency, and the allowable measurement bandwidth of the first target frequency is Meet the first preset condition.
  • the first preset condition may be that the allowable measurement bandwidth is greater than a preset threshold, or the first preset condition may be that the number of first target frequencies is X, and the allowable measurement bandwidth of the first target frequency is greater than other The target frequency that needs to be periodically measured.
  • X can be predefined or reported by the terminal device.
  • the terminal device may determine the foregoing first target frequency according to the first information and the third information.
  • the specific implementation may be that the terminal device determines the target frequency that needs to be periodically measured according to the service frequency and the CA/DC combination of each target frequency indicated by the first information, and the terminal device determines the target that needs to be periodically measured Whether the number of frequencies is greater than X.
  • the terminal device selects X target frequencies from the target frequencies that need to be periodically measured as the first target frequency, and the X target frequencies are those that need to be periodically measured. X frequencies with a larger measurement bandwidth are allowed in the target frequency.
  • the target frequency that needs to be periodically measured is used as the first target frequency.
  • the terminal device may determine the foregoing first target frequency according to the first information, the second information, and the third information.
  • the terminal device determines the target frequency that needs to be periodically measured according to the service frequency and the CA/DC combination of each target frequency indicated by the first information, and the CA/DC combination indicated by the second information, and the terminal device determines the need to perform periodic measurement.
  • the terminal device determines the need to perform periodic measurement. Whether the number of periodically measured target frequencies is greater than X.
  • the terminal device selects X target frequencies from the target frequencies that need to be periodically measured as the first target frequency, and the X target frequencies are those that need to be periodically measured. X frequencies with a larger measurement bandwidth are allowed in the target frequency.
  • the target frequency that needs to be periodically measured is used as the first target frequency.
  • the first target frequency that satisfies the first preset condition is filtered out, and the first target frequency is periodically measured, thereby The number of target frequency points that the terminal device performs periodic measurement during the advance measurement process can be controlled, thereby reducing the complexity and power consumption of the advance measurement.
  • an achievable manner of the foregoing step 102 or the foregoing step 203 may be: the terminal device performs periodic measurement at a first target frequency at a first preset interval, where the first preset interval is based on The measurement interval of reselection measurement, the number of reselection measurement and periodic measurement frequencies, and the scaling factor are determined.
  • the scaling factor may also be referred to as a scaling factor measured in advance, and the scaling factor may be predefined or indicated by the network device through the fifth information, and the fifth information may be carried in the foregoing first message.
  • the first preset interval may be Nfreq*N*Tmeasure, where Tmeasure is the measurement interval of reselection measurement, Nfreq is the sum of the frequency of reselection measurement and periodic measurement, and N is the scaling factor.
  • the terminal device performs periodic measurement at the first target frequency at the first preset interval, so that the power consumption of the terminal device in the advance measurement process can be controlled through the first preset interval.
  • the foregoing first message may further include fourth information, which is used to instruct the terminal device to perform synchronization signal block (Synchronization signal block, SSB) identification.
  • fourth information which is used to instruct the terminal device to perform synchronization signal block (Synchronization signal block, SSB) identification.
  • SSB Synchronization signal block
  • One of the foregoing step 102 or the foregoing step 203 may be The implementation manner is: the terminal device recognizes the SSB at the first target frequency according to the fourth information, and performs periodic measurement on the recognized SSB and the known SSB.
  • the measurement result of the first target frequency in the foregoing step 103 or the foregoing step 205 may include the measurement result of the SSB meeting the measurement report condition.
  • the fourth information may be one bit, for example, 1 indicates that the terminal device performs SSB recognition, and 0 indicates that the terminal device does not perform SSB recognition.
  • the network device instructs the terminal device not to perform SSB identification
  • the terminal device can perform periodic measurement on the known SSB.
  • one achievable way for the terminal device to identify the SSB at the first target frequency is: the terminal device can identify the SSB at the first target frequency at a second preset interval, where the second preset interval is Determined according to the measurement interval of reselection measurement, the number of reselection measurement and periodic measurement frequencies, and the scaling factor.
  • the network device instructs the terminal device to perform SSB recognition, and the terminal device recognizes a new SSB, thereby discovering a new beam (beam), and measuring it to ensure the validity and accuracy of the measurement result reported by the terminal device .
  • a cell In NR, in order to enhance coverage, a cell will use multiple beams. Due to the movement or rotation of the terminal device, the known beams may not be visible, and new transmitted beams may become visible at the same time. Therefore, it is meaningful to identify the new SSB.
  • the network device of the present application can instruct the terminal device whether to perform SSB identification in the advance measurement process. For specific explanation, please refer to the following embodiments.
  • Fig. 4 is a schematic flowchart of another carrier measurement method according to an embodiment of the application. As shown in Fig. 4, the method in this embodiment involves network equipment and terminal equipment, and the method may include:
  • Step 301 The network device sends a first message to the terminal device.
  • the terminal device receives the first message sent by the network device.
  • the first message includes fourth information, and the fourth information is used to instruct the terminal device to perform SSB identification.
  • the first message may also include first information and/or third information. Among them, specific explanations of the first information and the third information can be referred to the above-mentioned embodiments, and will not be repeated here.
  • the fourth information may be an independent information element, for example, a bit; or, the fourth information may be an implicit indication, that is, the terminal device may determine the fourth information according to other indication information, for example, through Instruct the terminal device to report an implicit indication of the beam level for advance measurement.
  • Step 302 The terminal equipment identifies the SSB at the target frequency, and measures the identified SSB and the known SSB.
  • the target frequency may be at least one target frequency indicated by the foregoing first information.
  • the fourth information is one bit, 0 indicates that the terminal device does not perform SSB recognition, and 1 indicates that the terminal device performs SSB recognition.
  • the terminal device recognizes the SSB at the target frequency, that is, discovers a new beam, and measures the recognized new SSB and the known SSB.
  • the measurement can be a periodic measurement or a one-time measurement.
  • the terminal device measures the known SSB.
  • the fourth information is an implicit indication, by instructing the terminal device to report the beam level for advance measurement, implicitly instructing the terminal device to perform SSB recognition, and by instructing the terminal device not to report the beam level for advance measurement, Implicitly instructs the terminal device not to perform SSB recognition.
  • the terminal device recognizes the SSB at the target frequency, that is, discovers a new beam, and measures the recognized new SSB and the known SSB.
  • the terminal device is implicitly instructed not to perform SSB identification, the terminal device measures the known SSB.
  • Step 303 When the terminal device enters the connected state, the terminal device sends the SSB measurement result to the network device.
  • the network device receives the SSB measurement result sent by the terminal device in the connected state.
  • the measurement result of the SSB may include the measurement result of the identified new SSB of the target frequency and the measurement result of the known SSB.
  • the measurement result may include one or more of RSRP or RSRQ.
  • the first message may further include third information, and the third information is used to indicate the allowable measurement bandwidth of the target frequency.
  • the allowable measurement bandwidth of the target frequency in this embodiment meets the second preset condition.
  • the second preset condition may be that the allowable measurement bandwidth is greater than a preset threshold, or the second preset condition may be that the number of target frequencies is Y, and the allowable measurement bandwidth of the target frequency is greater than other SSB identification Target frequency.
  • Y can be predefined or reported by the terminal device.
  • the terminal device may determine to perform SSB identification at the target frequency according to the fourth information.
  • the specific implementation may be that the terminal device determines the target frequency for SSB identification based on the fourth information, and the terminal device determines whether the number of target frequencies for SSB identification is greater than Y.
  • the terminal device selects Y frequencies from the target frequencies for SSB recognition as target frequencies, and the Y target frequencies are the allowable measurement bandwidth of the target frequencies for SSB recognition. The larger Y frequencies.
  • the target frequency for SSB recognition is used as the target frequency in step 302.
  • an achievable way for the terminal device to recognize the SSB at the target frequency may be: the terminal device recognizes the SSB at the target frequency at a second preset interval, where the second preset interval is measured according to reselection.
  • the measurement interval, the frequency of reselection measurement and periodic measurement, and the scaling factor are determined.
  • the second preset interval may be Nfreq*N*Tmeasure, where Tmeasure is the measurement interval of reselection measurement, Nfreq is the sum of the frequency of reselection measurement and periodic measurement, and N is the scaling factor.
  • the scaling factor may be indicated by the network device.
  • a first message is sent to a terminal device through a network device.
  • the first message includes fourth information.
  • the fourth information is used to instruct the terminal device to perform SSB recognition.
  • the terminal device recognizes the SSB at the target frequency, and then SSB and the known SSB are measured.
  • the terminal device sends the measurement result of the SSB to the network device to realize the measurement report at the SSB level.
  • the network device realizes the rapid establishment of CA or DC based on the measurement result. Meet NR's requirements for high data transmission rate, low latency and other performance.
  • the target frequency that meets the second preset condition is filtered out, and SSB identification is performed on the target frequency, thereby controlling the power consumption of the terminal device in the advance measurement process.
  • the power consumption of the terminal device in the advance measurement process can be controlled through the second preset interval.
  • FIG. 5 is a schematic block diagram of a communication device 500 provided by an embodiment of the application.
  • the communication device 500 may include:
  • the transceiver module 510 is configured to receive a first message sent by a network device, the first message includes first information, the first information is used to indicate at least one target frequency, and the at least one target frequency includes a first target frequency and a second target frequency.
  • the processing module 520 is configured to perform periodic measurement at the first target frequency through the transceiver module 510.
  • the processing module 520 is further configured to send the measurement result of the first target frequency to the network device through the transceiver module 510 when the communication device 500 enters the connected state.
  • the network evaluation index of the first frequency band combination is higher than the network evaluation index of the second frequency band combination
  • the first frequency band combination is the carrier aggregation CA or dual-connection DC frequency band combination supported by the communication device 500 composed of the first target frequency and the service frequency
  • the second frequency band combination is a CA or DC frequency band combination composed of the second target frequency and the service frequency.
  • the first target frequency is the frequency of the new wireless NR, and the first target frequency and the service frequency form the communication device 500 Supported EN-DC band combination; or, when the service frequency is a frequency of NR, the first target frequency is the frequency of E-UTRA, and the first target frequency and the service frequency form the NE-supported by the communication device 500 DC frequency band combination; or, when the service frequency is an NR frequency, the first target frequency is an NR frequency, and the first target frequency and the service frequency form an NR-DC frequency band combination supported by the communication device 500.
  • the first message further includes second information, which is used to indicate at least one CA or DC frequency band combination, and the first target frequency and the service frequency form the CA or DC frequency band supported by the communication device 500 The combination is one or more of the at least one CA or DC frequency band combination.
  • the processing module 520 is further configured to perform a one-time measurement at the second target frequency through the transceiver module 510.
  • the first message further includes third information, the third information being used to indicate the allowable measurement bandwidth of the at least one target frequency, and the allowable measurement bandwidth of the first target frequency meets the first preset condition.
  • the processing module 520 is configured to perform periodic measurement at the first target frequency at a first preset interval through the transceiver module 510; wherein, the first preset interval is a measurement based on reselection measurement The interval, reselection measurement and periodic measurement frequency number, and scaling factor are determined.
  • the first message further includes fourth information
  • the fourth information is used to instruct the communication device 500 to perform synchronization signal block SSB identification
  • the processing module 520 is used to perform synchronization signal block SSB identification based on the fourth information.
  • the SSB is identified by the transceiver module 510, and the identified SSB and the known SSB are periodically measured; the measurement result of the first target frequency includes the measurement result of the SSB meeting the measurement report condition.
  • the processing module 520 is configured to identify the SSB through the transceiver module 510 at the first target frequency at a second preset interval; wherein, the second preset interval is a measurement interval according to reselection measurement, Determined by the number of frequencies of reselection measurement and periodic measurement, and the scaling factor.
  • the first message further includes fifth information, and the fifth information is used to indicate the scaling factor.
  • processing module 520 in the embodiment of the present application may be implemented by a processor or processor-related circuit components
  • transceiver module 510 may be implemented by a transceiver or transceiver-related circuit components.
  • an embodiment of the present application also provides a communication device 600.
  • the communication device 600 includes a processor 610, a memory 620, and a transceiver 630.
  • the memory 620 stores instructions or programs, and the processor 610 is used to execute Instructions or programs stored in the memory 620.
  • the processor 610 is configured to execute the operations performed by the processing module 520 in the foregoing embodiment
  • the transceiver 630 is configured to execute the operations performed by the transceiver module 510 in the foregoing embodiment.
  • the communication device 500 or the communication device 600 may correspond to the terminal equipment in the carrier measurement method described in FIG. 2 or FIG. 3 in the embodiment of the present application, and the communication device 500 or the communication device 600
  • the operation and/or function of each module is to realize the corresponding process of each method in FIG. 2 or FIG. 3, and for the sake of brevity, it will not be repeated here.
  • FIG. 7 is a schematic flowchart of a communication device 700 provided by an embodiment of the application.
  • the communication device 700 includes:
  • the processing module 710 is configured to send a first message to the terminal device through the transceiver module 720, the first message includes first information, the first information is used to indicate at least one target frequency, and the at least one target frequency includes the first target frequency and The second target frequency.
  • the transceiver module 720 is further configured to receive the measurement result of the first target frequency sent by the terminal device that has entered the connected state, and the measurement result is the result of the terminal device performing periodic measurement at the first target frequency.
  • the network evaluation index of the first frequency band combination is higher than the network evaluation index of the second frequency band combination
  • the first frequency band combination is the carrier aggregation CA or dual supported by the terminal device by the first target frequency and the service frequency of the terminal device.
  • Connect a DC frequency band combination and the second frequency band combination is a CA or DC frequency band combination composed of the second target frequency and the service frequency.
  • the first message further includes second information, the second information is used to indicate at least one CA or DC frequency band combination, and the at least one first target frequency and the service frequency form the CA or DC supported by the terminal device.
  • the frequency band combination is one or more of the at least one CA or DC frequency band combination.
  • the first message further includes third information, the third information being used to indicate the allowable measurement bandwidth of the at least one target frequency, and the allowable measurement bandwidth of the first target frequency meets the first preset condition.
  • the first message further includes fourth information, which is used to instruct the terminal device to perform synchronization signal block SSB identification.
  • the first message further includes fifth information, the fifth information is used to indicate a scaling factor, and the scaling factor is used to configure the first preset interval or the second preset interval.
  • processing module 710 in the embodiment of the present application may be implemented by a processor or a processor-related circuit component
  • transceiver module 720 may be implemented by a transceiver or a transceiver-related circuit component.
  • an embodiment of the present application also provides a communication device 800.
  • the communication device 800 includes a processor 810, a memory 820, and a transceiver 830.
  • the memory 820 stores instructions or programs, and the processor 810 is used to execute Instructions or programs stored in the memory 820.
  • the processor 810 is configured to execute the operations performed by the processing module 710 in the foregoing embodiment
  • the transceiver 830 is configured to execute the operations performed by the transceiver module 720 in the foregoing embodiment.
  • the communication device 700 or the communication device 800 may correspond to the network device in FIG. 2 or FIG. 3 in the embodiment of the present application, and the operation of each module in the communication device 700 or the communication device 800 and/ Or the function is to realize the corresponding process of each method in FIG. 2 or FIG. 3, and for the sake of brevity, it will not be repeated here.
  • An embodiment of the present application also provides a communication device.
  • the device may include: a transceiver module configured to receive a first message sent by a network device, the first message including first information, and the first information is used to instruct the communication device to perform Synchronization signal block SSB identification; processing module, used to identify SSB at the target frequency through the transceiver module, and measure the identified SSB and known SSB, when the communication device enters the connected state, the transceiver module sends to the network equipment SSB measurement results.
  • the first message further includes second information, the second information is used to indicate the allowable measurement bandwidth of the target frequency, and the allowable measurement bandwidth of the target frequency meets the first preset condition.
  • the processing module is configured to identify the SSB through the transceiver module at the target frequency at a first preset interval; wherein, the first preset interval is a measurement interval according to reselection measurement, reselection measurement and periodic measurement The number of frequencies and the scaling factor are determined.
  • the first message further includes third information, and the third information is used to indicate the scaling factor.
  • processing module in the foregoing embodiments may be implemented by a processor or processor-related circuit components
  • transceiver module may be implemented by a transceiver or transceiver-related circuit components.
  • the communication device may correspond to the terminal device in the embodiment shown in FIG. 4 of the embodiment of the present application, and the operation and/or function of each module in the terminal device is to implement FIG. 4 For the sake of brevity, the corresponding process in, will not be repeated here.
  • An embodiment of the present application also provides a communication device.
  • the communication device includes: a processing module for sending a first message to a terminal device through the transceiver module, the first message including first information, and the first information is used to instruct the terminal device Perform synchronization signal block SSB identification; the transceiver module is also used to receive the measurement result of the SSB sent by the terminal device that enters the connected state; the measurement result of the SSB is that the terminal device recognizes the SSB at the target frequency, and compares the identified SSB and the Known SSB is the measurement result.
  • the first message further includes third information, the third information is used to indicate a scaling factor, and the scaling factor is used to configure the first preset interval.
  • processing module in the foregoing embodiments may be implemented by a processor or processor-related circuit components
  • transceiver module may be implemented by a transceiver or transceiver-related circuit components.
  • the communication device may correspond to the network device in the embodiment shown in FIG. 4 of the embodiment of the present application, and the operations and/or functions of the various modules in the network device are respectively for implementing FIG. 4
  • the corresponding process in will not be repeated here.
  • the embodiment of the present application also provides a communication device, which may be a terminal device or a circuit.
  • the communication device may be used to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 9 shows a simplified structural diagram of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • only one memory and processor are shown in FIG. 9. In actual terminal equipment products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device
  • the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 910 and a processing unit 920.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 910 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 910 can be regarded as the sending unit, that is, the transceiver unit 910 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, receiver, or receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 910 is configured to perform sending and receiving operations on the terminal device side in the foregoing method embodiment
  • processing unit 920 is configured to perform other operations on the terminal device in the foregoing method embodiment except for the transceiving operation.
  • the transceiving unit 910 is used to perform the receiving operation on the terminal device side in step 101 in FIG. 2, and/or the transceiving unit 910 is also used to perform other transceiving operations on the terminal device side in the embodiment of the present application.
  • step. The processing unit 920 is configured to execute step 102 in FIG. 2, and/or the processing unit 1120 is further configured to execute other processing steps on the terminal device side in the embodiment of the present application.
  • the transceiver unit 910 is configured to perform the receiving operation on the terminal device side in step 201 or the sending operation on the terminal device side in step 205 in FIG. 3, and/or the transceiver unit 920 is also configured to perform Other transceiving steps on the terminal device side in the embodiment of this application.
  • the processing unit 920 is configured to execute step 202, step 203, and step 204 in FIG. 3, and/or the processing unit 920 is also configured to execute other processing steps on the terminal device side in the embodiment of the present application.
  • the transceiver unit 910 is configured to perform the receiving operation on the terminal device side in step 301 or the sending operation on the terminal device side in step 303 in FIG. 4, and/or the transceiver unit 910 is also configured to perform Other transceiving steps on the terminal device side in the embodiment of this application.
  • the processing unit 920 is configured to execute step 302 in FIG. 4, and/or the processing unit 920 is further configured to execute other processing steps on the terminal device side in the embodiment of the present application.
  • the device may include a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit and/or a communication interface;
  • the processing unit is an integrated processor or microprocessor or integrated circuit.
  • the device can perform functions similar to the processor 610 in FIG. 6.
  • the device includes a processor 1010, a data sending processor 1020, and a data receiving processor 1030.
  • the processing module 520 in the foregoing embodiment may be the processor 1010 in FIG. 10 and completes corresponding functions.
  • the transceiver module 510 in the foregoing embodiment may be the sending data processor 1220 and/or the receiving data processor 1230 in FIG. 10.
  • the channel encoder and the channel decoder are shown in FIG. 10, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are only illustrative.
  • the processing device 1100 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in this embodiment can be used as a modulation subsystem therein.
  • the modulation subsystem may include a processor 1103 and an interface 1104.
  • the processor 1103 completes the function of the aforementioned processing module 520
  • the interface 1104 completes the function of the aforementioned transceiver module 510.
  • the modulation subsystem includes a memory 1106, a processor 1103, and a program stored in the memory 1106 and capable of running on the processor.
  • the processor 1103 executes the program on the terminal device side in the above method embodiment. Methods.
  • the memory 1106 can be nonvolatile or volatile, and its location can be located inside the modulation subsystem or in the processing device 1100, as long as the memory 1106 can be connected to the The processor 1103 is sufficient.
  • a computer-readable storage medium is provided, and an instruction is stored thereon.
  • the instruction is executed, the method on the terminal device side in the foregoing method embodiment is executed.
  • a computer program product containing instructions is provided, and when the instructions are executed, the method on the terminal device side in the foregoing method embodiment is executed.
  • the network device may be as shown in FIG. 12, and the device 1200 includes one or more radio frequency units, such as a remote radio unit (RRU) 1210 and one or more basebands A unit (baseband unit, BBU) (also referred to as a digital unit, digital unit, DU) 1220.
  • the RRU 1210 may be called a transceiver module, which corresponds to the transceiver module 720 in FIG. 7.
  • the transceiver module may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 1211 ⁇ RF unit 1212.
  • the RRU 1210 part is mainly used for sending and receiving of radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending first information to terminal equipment.
  • the 1210 part of the BBU is mainly used for baseband processing and control of the base station.
  • the RRU 1210 and the BBU 1220 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1220 is the control center of the base station, and may also be called a processing module, which may correspond to the processing module 710 in FIG. 7, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing module
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing first information.
  • the BBU 1220 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network (such as an LTE network) of a single access standard, or support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1220 also includes a memory 1221 and a processor 1222.
  • the memory 1221 is used to store necessary instructions and data.
  • the processor 1222 is used to control the base station to perform necessary actions, for example, used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 1221 and the processor 1222 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the processor mentioned in the embodiment of the present invention may be a central processing unit (Central Processing Unit, CPU), or may also be other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application-specific integrated circuits ( Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present invention may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM, SLDRAM synchronous connection dynamic random access memory
  • DR RAM Direct Rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种载波测量方法和装置。本申请的载波测量方法可以包括:网络设备向终端设备发送第一消息,该第一消息包括第一信息,该第一信息用于指示至少一个目标频率,该至少一个目标频率可以包括第一目标频率和第二目标频率,终端设备在第一目标频率进行周期性测量,在终端设备进入连接态时,终端设备向网络设备发送第一目标频率的测量结果,从而基于测量结果实现CA或DC的快速建立。本申请终端设备可以区分不同的目标频率,为第一目标频率提高测量性能,以保证第一目标频率的测量结果的有效性和准确性,使得网络设备基于测量结果,为终端设备准确配置辅载波或主辅载波,以满足NR对高数据传输速率、低延迟等性能的需求。

Description

载波测量方法和装置 技术领域
本申请涉及通信技术,尤其涉及一种载波测量方法和装置。
背景技术
载波聚合(Carrier Aggregation,CA),通过组合多个独立的载波信道来提升带宽,来实现提升数据速率和容量。载波聚合已在演进通用陆地无线电接入(Evolved Universal Terrestrial Radio Access,E-UTRA)中采用,并且将成为新无线(New Radio,NR)的关键技术之一。NR物理层可支持聚合多达16个载波,以实现更高速传输。双连接(Dual Connectivity,DC),指终端设备在连接态下可同时使用至少两个不同基站的无线资源(分为主站和从站)。双连接不同于载波聚合,主要表现在数据分流和聚合所在的层不一样。
基站基于终端设备上报的测量结果向终端设备配置辅小区(SCell)或主辅小区(PSCell),以实现CA或DC的建立。为了实现快速的配置SCell,通信协议版本15(Rel-15)中引入了提前测量,终端设备的测量行为如下:对于重叠载波(overlapping carrier),如果服务小区的条件低于一个门限,终端设备在该提前测量的目标频率上进行正常的重选测量,即周期性测量;如果服务小区的条件高于一个门限,终端设备在该提前测量的目标频率上进行一次测量。对于非重叠载波(non-overlapping carrier),终端设备在该提前测量的目标频率上进行一次测量。
然而,上述提前测量的方式,无法满足NR的性能需求,例如,高数据传输速率、低延迟等。
发明内容
本申请提供一种载波测量方法和装置,以满足NR的性能需求。
第一方面,本申请实施例提供一种载波测量方法,该方法可以包括:终端设备接收网络设备发送的第一消息,该第一消息包括第一信息,该第一信息用于指示至少一个目标频率,该至少一个目标频率包括第一目标频率和第二目标频率;该终端设备在该第一目标频率进行周期性测量;在该终端设备进入连接态时,该终端设备向该网络设备发送该第一目标频率的测量结果;其中,第一频段组合的网络评价指标高于第二频段组合的网络评价指标,该第一频段组合为该第一目标频率与服务频率组成该终端设备支持的载波聚合CA或双连接DC频段组合,该第二频段组合为该第二目标频率与服务频率组成的CA或DC频段组合。
在本申请提供的方案中,由于第一目标频率所组成的第一频段组合的网络评价指标高于第一目标频率所组成的第一频段组合的网络评价指标,所以终端设备可以区分不同的目标频率,为第一目标频率提高测量性能,以保证第一目标频率的测量结果的有效性和准确性,使得网络设备基于测量结果,为终端设备准确配置辅载波或主辅载波,以满足NR对高数据传输速率、低延迟、高可靠性等性能的需求。
结合第一方面,在一种可能的实现方式中,当所述服务频率为演进通用陆地无线电接入E-UTRA的频率时,所述第一目标频率为新无线NR的频率,所述第一目标频率与所述服务频率组成所述终端设备支持的EN-DC频段组合;或者,当所述服务频率为NR的频率时,所述第一目标频率为E-UTRA的频率,所述第一目标频率与所述服务频率组成所述终端设备支持的NE-DC频段组合;或者,当所述服务频率为NR的频率时,所述第一目标频率为NR的频率,所述第一目标频率与所述服务频率组成所述终端设备支持的NR-DC频段组合。
在本申请提供的方案中,通过对可以与服务频率组成EN-DC频段组合、或NE-DC频段组合、或NR-DC频段组合的第一目标频率进行周期性测量,使得网络设备基于测量结果,为终端设备准确配置辅载波或主辅载波,以满足NR对高数据传输速率、低延迟、高可靠性等性能的需求。
结合第一方面,在一种可能的实现方式中,所述第一消息还包括第二信息,所述第二信息用于指示至少一个CA或DC频段组合,所述第一目标频率与服务频率组成所述终端设备支持的CA或DC频段组合为所述至少一个CA或DC频段组合中的一项或多项。
在本申请提供的方案中,该第一目标频率为基于网络设备所指示的CA或DC频段组合确定的,从而使得终端设备进行周期性测量的第一目标频率与网络设备偏好配置的辅载波或主辅载波相关联,提升第一目标频率的准确性和有效性,进而可以提升网络设备向终端设备配置辅载波或主辅载波的效率。
结合第一方面,在一种可能的实现方式中,所述方法还包括:所述终端设备在所述第二目标频率进行一次性测量。
在本申请提供的方案中,通过对网络评价指标较低的第二目标频率进行一次性测量,可以降低提前测量的复杂度和功耗。
结合第一方面,在一种可能的实现方式中,所述第一消息还包括第三信息,所述第三信息用于指示所述至少一个目标频率的允许测量带宽,所述第一目标频率的允许测量带宽满足第一预设条件。
在本申请的方案中,通过在需要进行周期性测量的目标频率中以第一预设条件为筛选条件,筛选出满足第一预设条件的第一目标频率,对第一目标频率进行周期性测量,从而可以控制终端设备在提前测量过程中进行周期性测量的目标频点个数,进而降低提前测量的复杂度和功耗。
结合第一方面,在一种可能的实现方式中,所述终端设备在所述第一目标频率进行周期性测量,包括:所述终端设备以第一预设间隔在所述第一目标频率进行周期性测量;其中,所述第一预设间隔为根据重选测量的测量间隔、重选测量和周期性测量的频率个数、以及缩放因子确定的。
在本申请的方案中,终端设备以第一预设间隔在第一目标频率进行周期性测量,从而可以通过第一预设间隔控制终端设备在提前测量过程中的功耗。
结合第一方面,在一种可能的实现方式中,所述第一消息还包括第四信息,所述第四信息用于指示终端设备进行同步信号块SSB识别,所述终端设备在所述第一目标频率进行周期性测量,包括:所述终端设备根据所述第四信息在所述第一目标频率识 别SSB,并对识别到的SSB和已知的SSB进行周期性测量;所述第一目标频率的测量结果包括满足测量上报条件的SSB的测量结果。
在本申请的方案中,通过第四信息指示终端设备进行SSB识别,终端设备在第一目标频率识别SSB,并对识别到的SSB和已知的SSB进行测量,在终端设备进入连接态时,终端设备向网络设备发送满足测量上报条件的SSB的测量结果,从而实现SSB级别的测量上报,网络设备基于测量结果实现CA或DC的快速建立,以满足NR对高数据传输速率、低延迟等性能的需求。
结合第一方面,在一种可能的实现方式中,所述终端设备根据所述第四信息在所述第一目标频率识别SSB,包括:所述终端设备以第二预设间隔在所述第一目标频率识别SSB;其中,所述第二预设间隔为根据重选测量的测量间隔、重选测量和周期性测量的频率个数、以及缩放因子确定的。
在本申请的方案中,通过网络设备指示终端设备进行SSB识别,终端设备识别新的SSB,从而发现新的波束,并对其进行测量,以保证终端设备上报的测量结果的有效性和准确性。
结合第一方面,在一种可能的实现方式中,所述第一消息还包括第五信息,所述第五信息用于指示所述缩放因子。
第二方面,本申请实施例提供一种载波测量方法,该方法可以包括:网络设备向终端设备发送第一消息,所述第一消息包括第一信息,所述第一信息用于指示至少一个目标频率,所述至少一个目标频率包括第一目标频率和第二目标频率;所述网络设备接收进入连接态的所述终端设备发送的所述第一目标频率的测量结果,所述测量结果为所述终端设备在所述第一目标频率进行周期性测量的结果;其中,第一频段组合的网络评价指标高于第二频段组合的网络评价指标,所述第一频段组合为所述第一目标频率与所述终端设备的服务频率组成所述终端设备支持的载波聚合CA或双连接DC频段组合,所述第二频段组合为所述第二目标频率与所述服务频率组成的CA或DC频段组合。
结合第二方面,在一种可能的实现方式中,所述第一消息还包括第二信息,所述第二信息用于指示至少一个CA或DC频段组合,所述至少一个第一目标频率与服务频率组成所述终端设备支持的CA或DC频段组合为所述至少一个CA或DC频段组合中的一项或多项。
结合第二方面,在一种可能的实现方式中,所述第一消息还包括第三信息,所述第三信息用于指示所述至少一个目标频率的允许测量带宽,所述第一目标频率的允许测量带宽满足第一预设条件。
结合第二方面,在一种可能的实现方式中,所述第一消息还包括第四信息,所述第四信息用于指示终端设备进行同步信号块SSB识别。
结合第二方面,在一种可能的实现方式中,所述第一消息还包括第五信息,所述第五信息用于指示缩放因子,所述缩放因子用于配置所述终端设备在所述第一目标频率进行周期性测量的第一预设间隔或所述终端设备在所述第一目标频率进行SSB识别的第二预设间隔。
第三方面,本申请实施例提供一种载波测量方法,该方法可以包括:终端设备接 收网络设备发送的第一消息,所述第一消息包括第一信息,所述第一信息用于指示终端设备进行同步信号块SSB识别;所述终端设备在目标频率识别SSB,并对识别到的SSB和已知的SSB进行测量;在所述终端设备进入连接态时,所述终端设备向网络设备发送满足测量上报条件的SSB的测量结果。
在本申请的方案中,通过第一信息指示终端设备进行SSB识别,终端设备在目标频率识别SSB,并对识别到的SSB和已知的SSB进行测量,在终端设备进入连接态时,终端设备向网络设备发送SSB的测量结果,从而实现SSB级别的测量上报,网络设备基于测量结果实现CA或DC的快速建立,以满足NR对高数据传输速率、低延迟等性能的需求。
结合第三方面,在一种可能的实现方式中,所述第一消息还包括第二信息,所述第二信息用于指示所述目标频率的允许测量带宽,所述目标频率的允许测量带宽满足第一预设条件。
本申请提供的方案中,通过在需要进行目标频率中以第一预设条件为筛选条件,筛选出满足第一预设条件的目标频率,对目标频率进行SSB识别,从而可以控制终端设备在提前测量过程中的功耗。
结合第三方面,在一种可能的实现方式中,所述终端设备在目标频率识别SSB,包括:所述终端设备以第一预设间隔在所述目标频率识别SSB;其中,所述第一预设间隔为根据重选测量的测量间隔、重选测量和周期性测量的频率个数、以及缩放因子确定的。
本申请提供的方案中,通过以第一预设间隔在目标频率进行SSB识别,从而可以通过第一预设间隔控制终端设备在提前测量过程中的功耗。
结合第三方面,在一种可能的实现方式中,所述第一消息还包括第三信息,所述第三信息用于指示所述缩放因子。
第四方面,本申请实施例提供一种载波测量方法,该方法可以包括:网络设备向终端设备发送第一消息,所述第一消息包括第一信息,所述第一信息用于指示终端设备进行同步信号块SSB识别;所述网络设备接收进入连接态的所述终端设备发送的SSB的测量结果;所述SSB的测量结果为所述终端设备在目标频率识别SSB,并对识别到的SSB和已知的SSB进行测量的结果。
结合第四方面,在一种可能的实现方式中,所述第一消息还包括第二信息,所述第二信息用于指示所述目标频率的允许测量带宽,所述目标频率的允许测量带宽满足第二预设条件。
结合第四方面,在一种可能的实现方式中,所述第一消息还包括第三信息,所述第三信息用于指示缩放因子,所述缩放因子用于配置第一预设间隔。
第五方面提供一种终端设备,所述终端设备用于执行上述第一方面或第一方面的任一可能的实现方式中的通信方法,或者用于执行上述第三方面或第三方面的任一可能的实现方式中的通信方法。具体地,所述终端设备可以包括用于执行第一方面或第一方面的任一可能的实现方式中的通信方法的模块,或者,所述终端设备可以包括用于执行第三方面或第三方面的任一可能的实现方式中的通信方法的模块。
第六方面提供一种终端设备,所述终端设备包括存储器和处理器,所述存储器用 于存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得所述处理器执行上述第一方面或第一方面的任一可能的实现方式中的通信方法,或者用于执行上述第三方面或第三方面的任一可能的实现方式中的通信方法。
第七方面提供一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现第一方面或第一方面的任一可能的实现方式中的方法,或者,实现第三方面或第三方面的任一可能的实现方式中的方法。
第八方面提供一种网络设备,所述网络设备用于执行上述第二方面或第二方面的任一可能的实现方式中的通信方法,或者用于执行上述第四方面或第四方面的任一可能的实现方式中的通信方法。具体地,所述网络设备可以包括用于执行第二方面或第二方面的任一可能的实现方式中的通信方法的模块,或者可以包括用于执行上述第四方面或第四方面的任一可能的实现方式中的通信方法的模块。
第九方面提供一种网络设备,所述网络设备包括存储器和处理器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得所述处理器执行第二方面或第二方面的任一可能的实现方式中的方法,或者,执行第四方面或第四方面的任一可能的实现方式中的方法。
第十方面提供一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现第二方面或第二方面的任一可能的实现方式中的方法,或者,实现第四方面或第四方面的任一可能的实现方式中的方法。
本申请的载波测量方法和装置,通过网络设备向终端设备发送第一消息,该第一消息包括第一信息,该第一信息用于指示至少一个目标频率,该至少一个目标频率可以包括第一目标频率和第二目标频率,终端设备在第一目标频率进行周期性测量,在终端设备进入连接态时,终端设备向网络设备发送第一目标频率的测量结果,从而基于测量结果实现CA或DC的快速建立。由于第一目标频率所组成的第一频段组合的网络评价指标高于第一目标频率所组成的第一频段组合的网络评价指标,所以终端设备可以区分不同的目标频率,为第一目标频率提高测量性能,以保证第一目标频率的测量结果的有效性和准确性,使得网络设备基于测量结果,为终端设备准确配置辅载波或主辅载波,以满足NR对高数据传输速率、低延迟等性能的需求。
附图说明
图1为本申请实施例的一种应用场景的示意图;
图2为本申请实施例的一种载波测量方法的示意性流程图;
图3为本申请实施例的另一种载波测量方法的示意性流程图;
图4为本申请实施例的另一种载波测量方法的示意性流程;
图5为本申请实施例提供的通信装置500的示意性框图;
图6为本申请实施例提供的通信装置600的示意性框图;
图7为本申请实施例提供的通信装置700的示意性框图;
图8为本申请实施例提供的通信装置800的示意性框图;
图9为本申请实施例提供的通信装置的示意性框图;
图10为本申请实施例提供的通信装置的另一示意性框图;
图11为本申请实施例提供的通信装置的再一示意性框图;
图12为本申请实施例提供的通信装置的又一示意性框图。
具体实施方式
本申请的术语“第一”、“第二”等仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
本申请实施例涉及终端设备。终端设备可以为包含无线收发功能、且可以与网络设备配合为用户提供通讯服务的设备。具体地,终端设备可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。例如,终端设备可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络或5G之后的网络中的终端设备等,本申请实施例对此不作限定。
本申请实施例还涉及网络设备。网络设备可以是用于与终端设备进行通信的设备,例如,可以是GSM***或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA***中的基站(NodeB,NB),还可以是LTE***中的演进型基站(Evolutional Node B,eNB或eNodeB),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络或5G之后的网络中的网络侧设备或未来演进的PLMN网络中的网络设备等。
本申请实施例中涉及的网络设备也可称为无线接入网(Radio Access Network,RAN)设备。RAN设备与终端设备连接,用于接收终端设备的数据并发送给核心网设备。RAN设备在不同通信***中对应不同的设备,例如,在2G***中对应基站与基站控制器,在3G***中对应基站与无线网络控制器(Radio Network Controller,RNC),在4G***中对应演进型基站(Evolutional Node B,eNB),在5G***中对应5G***,如新无线接入***(New Radio Access Technology,NR)中的接入网设备(例如gNB, CU,DU)。
本申请实施例所涉及的网络评价指标,用于表示无线通信网络性能,该网络评价指标可以包括吞吐量(throughput)或连接可靠性中至少一项。其中,吞吐量(throughput)指在单位时间内接收或发送的数据量,通常由可用的带宽、信道条件等决定。连接可靠性指发生连接中断或掉话的概率,连接中断或掉话通常由网络覆盖不足或网络故障引起。
本申请实施例的双连接(DC)可以包括LTE-NR双连接(E-UTRA NR Dual Connectivity,EN-DC)、NR-LTE双连接(NR E-UTRA Dual Connectivity,NE-DC)、NR-DC等不同的双连接形式。其中,EN-DC指E-UTRA的无线接入网与NR的双连接,NE-DC指NR与E-UTRA的无线接入网的双连接,NR-DC指NR与NR的双连接。
举例而言,DC的网络评价指标高于非DC的网络评价指标,示例性的,DC的连接可靠性高于非DC的连接可靠性。
示例性的,图1为本申请实施例的一种应用场景的示意图,如图1所示,该应用场景可以包括终端设备110、网络设备121和网络设备122。其中,该终端设备110可以是上述任一形式的终端设备,相应的,该网络设备121和网络设备122可以是上述任一形式的网络设备。该终端设备可以通过本申请的载波测量方法,通过在提前测量过程中,区分不同的目标频率,为重要的目标频率提高测量性能,从而基于测量结果实现CA或DC的快速建立。例如,该重要的目标频率可以是与终端设备的服务频率可以组成双连接的频率,或者可以是与终端设备的服务频率可以组成网络设备所指示的CA/DC频段组合的频率。其具体解释说明可以参见下述实施例的解释说明。网络设备110的覆盖范围内可以包括一个小区,也可以包括多个小区。
需要说明的是,图1中以两个网络设备作为举例说明,其应用场景不以此作为限制。
图2为本申请实施例的一种载波测量方法的示意性流程图,如图2所示,本实施例的方法涉及网络设备和终端设备,该方法可以包括:
步骤101、网络设备向终端设备发送第一消息。
终端设备接收网络设备发送的第一消息。该第一消息可以包括第一信息,该第一信息用于指示至少一个目标频率。
示例性的,该第一消息可以是无线资源控制(Radio Resource Control)释放消息、或者***消息,本申请实施例不一一举例说明。该至少一个目标频率可以是提前测量过程中的目标频率。
步骤102、终端设备在第一目标频率进行周期性测量。
上述至少一个目标频率可以包括第一目标频率和第二目标频率。其中,该第一目标频率的个数可以是一个或多个,该第二目标频率的个数可以是一个或多个。其中,第一频段组合的网络评价指标高于第二频段组合的网络评价指标,该第一频段组合为该第一目标频率与服务频率组成的终端设备支持的CA或DC频段组合,该第二频段组合为该第二目标频率与服务频率组成的CA或DC频段组合。该服务频率为终端设 备驻留的小区的频率。例如,该第一频段组合的吞吐量高于第二频段组合的吞吐量。
示例性的,终端设备可以在至少一个目标频率中区分不同的目标频率,为重要的目标频率提高测量性能,本实施例中该重要的目标频率为可以与服务频率组成网络评价指标较高的CA或DC频段组合的目标频率,即第一目标频率,终端设备在该第一目标频率进行周期性测量。例如,处于空闲(idle)态或非激活(inactive)态的终端设备在该第一目标频率进行周期性测量。
以该至少一个目标频率包括频率1和频率2为例做举例说明,其中,频率1和服务频率可以组成终端设备支持的DC频段组合,频率2和服务频率不能组成终端设备支持的DC频段组合,本实施例的终端设备可以确定频率1为第一目标频率,从而对频率1进行周期性测量。
步骤103、在终端设备进入连接态时,终端设备向网络设备发送第一目标频率的测量结果。
网络设备接收进入连接态的终端设备发送的第一目标频率的测量结果。例如,该第一目标频率的测量结果可以包括该第一目标频率的各个小区的参考信号接收功率(Reference Signal Receiving Power,RSRP)或参考信号接收质量(Reference Signal Receiving Quality,RSRQ)中一项或多项。
本实施例中终端设备在空闲(idle)态或非激活(inactive)态可以通过上述步骤102进行第一目标频率的周期性测量,由空闲(idle)态或非激活(inactive)态切换至连接态后,可以向网络设备上报第一目标频率的测量结果。
需要说明的是,周期性测量可以避免一次性测量所存在的测量结果无效的问题,该测量结果无效通常是由于一次性测量发生的时间距离终端设备进入连接态的时间较远,从而导致的测量结果无效。
在一些实施例中,终端设备还可以在该第二目标频率进行一次性测量。
本实施例,通过网络设备向终端设备发送第一消息,该第一消息包括第一信息,该第一信息用于指示至少一个目标频率,该至少一个目标频率可以包括第一目标频率和第二目标频率,终端设备在第一目标频率进行周期性测量,在终端设备进入连接态时,终端设备向网络设备发送第一目标频率的测量结果,从而基于测量结果实现CA或DC的快速建立。由于第一目标频率所组成的第一频段组合的网络评价指标高于第一目标频率所组成的第一频段组合的网络评价指标,所以终端设备可以区分不同的目标频率,为第一目标频率提高测量性能,以保证第一目标频率的测量结果的有效性和准确性,使得网络设备基于测量结果,为终端设备准确配置辅载波或主辅载波,以满足NR对高数据传输速率、低延迟、高可靠性等性能的需求。
在一些实施例中,当上述服务频率为E-UTRA的频率时,该第一目标频率为NR的频率,该第一目标频率与该服务频率组成终端设备支持的EN-DC频段组合;或者,当服务频率为NR的频率时,该第一目标频率为E-UTRA的频率,该第一目标频率与该服务频率组成终端设备支持的NE-DC频段组合;或者,当服务频率为NR的频率时,该第一目标频率为NR的频率,该第一目标频率与该服务频率组成终端设备支持的NR-DC频段组合。
一种可实现方式,终端设备可以根据服务频率和网络设备所指示的各个目标频率的CA/DC组合情况,确定上述实施例中的第一目标频率。
示例性的,当终端设备的服务频率为E-UTRA的频率时,如果上述至少一个目标频率中存在NR的频率,且终端设备支持该NR的频率与服务频率组成的EN-DC频段组合,则终端设备可以确定上述第一目标频率为该NR的频率。如果上述至少一个目标频率中存在其他E-UTRA的频率,则终端设备确定上述第二目标频率为该其他E-UTRA的频率。
当终端设备的服务频率为NR的频率时,如果上述至少一个目标频率中存在E-UTRA的频率,且终端设备支持该E-UTRA的频率与服务频率组成的NE-DC频段组合,则终端设备可以确定上述第一目标频率为该E-UTRA的频率。如果上述至少一个目标频率中存在NR的频率,且终端设备支持该NR的频率与服务频率组成的NR-DC频段组合,则终端设备可以确定上述第一目标频率为该NR的频率。如果上述至少一个目标频率中存在其他NR的频率,则终端设备确定上述第二目标频率为该其他NR的频率。
另一种可实现方式,终端设备可以基于网络设备指示的至少一个CA或DC频段组合,确定上述实施例中的第一目标频率。其具体解释说明,可以参见下述图3所示实施例。
图3为本申请实施例的另一种载波测量方法的示意性流程图,如图3所示,本实施例的方法涉及网络设备和终端设备,该方法可以包括:
步骤201、网络设备向终端设备发送第一消息。
其中,步骤201的解释说明可以参见图2所示实施例的步骤101,其在上述步骤101的基础上,该第一消息还可以包括第二信息,该第二信息用于指示至少一个CA或DC频段组合。
步骤202、终端设备根据第一信息和第二信息确定第一目标频率和第二目标频率。
该第一信息用于指示至少一个目标频率,终端设备可以根据该至少一个目标频率和服务频率所组成的CA/DC频段组合、以及第二信息所指示的CA或DC频段组合确定第一目标频率。
示例性的,如果该至少一个目标频率中存在一个或多个目标频率和服务频率可以组成CA/D频段组合,且所组成的CA/D频段组合属于第二信息所指示的CA或DC频段组合,则该一个或多个目标频率为第一目标频率,该至少一个目标频率中的其他频率为第二目标频率。
举例而言,第一信息所指示的至少一个目标频率为频率1、频率2和频率3,其中,频率1和服务频率(频率4)可以组成EN-DC,第二信息所指示的CA或DC频段组合为频率1和频率4的EN-DC,终端设备根据第一信息和第二信息可以确定第一目标频率为频率1,第二目标频率为频率2和频率3。
步骤203、终端设备在第一目标频率进行周期性测量。
步骤204、终端设备在第二目标频率进行一次性测量。
需要说明的是,步骤203和步骤204的执行顺序不以序号大小作为限制。
步骤205、在终端设备进入连接态时,终端设备向网络设备发送第一目标频率和 第二目标频率的测量结果。
其中,步骤205的解释说明可以参见图2所示实施例的步骤103,此处不再赘述。
本实施例,通过网络设备向终端设备发送第一消息,该第一消息包括第一信息和第二信息,该第一信息用于指示至少一个目标频率,该第二信息用于指示至少一个CA或DC频段组合,终端设备根据第一信息和第二信息确定第一目标频率和第二目标频率,终端设备在第一目标频率进行周期性测量,在第二目标频率进行一次性测量,在终端设备进入连接态时,终端设备向网络设备发送第一目标频率和第二目标频率的测量结果,从而基于测量结果实现CA或DC的快速建立。由于第一目标频率所组成的第一频段组合的网络评价指标高于第一目标频率所组成的第一频段组合的网络评价指标,所以终端设备可以区分不同的目标频率,为第一目标频率提高测量性能,以保证第一目标频率的测量结果的有效性和准确性,使得网络设备基于测量结果,为终端设备准确配置辅载波或主辅载波,以满足NR对高数据传输速率、低延迟等性能的需求。
并且,该第一目标频率为基于网络设备所指示的CA或DC频段组合确定的,从而使得终端设备进行周期性测量的第一目标频率与网络设备偏好配置的辅载波或主辅载波相关联,提升第一目标频率的准确性和有效性,进而可以提升网络设备向终端设备配置辅载波或主辅载波的效率。
在上述任一实施例的基础上,本申请实施例的第一消息还可以包括第三信息,该第三信息用于指示至少一个目标频率的允许测量带宽,上述第一目标频率的允许测量带宽满足第一预设条件。例如,该第一预设条件可以是允许测量带宽大于一个预设阈值,或者该第一预设条件可以是第一目标频率的个数为X,且该第一目标频率的允许测量带宽大于其他需要进行周期性测量的目标频率。X可以是预定义的或者终端设备上报的能力。
一种示例,终端设备可以根据第一信息和第三信息确定上述第一目标频率。其具体实施方式可以为,终端设备根据服务频率和第一信息所指示的各个目标频率的CA/DC组合情况,确定需要进行周期性测量的目标频率,终端设备判断该需要进行周期性测量的目标频率的个数是否大于X。当需要进行周期性测量的目标频率的个数大于X,终端设备在需要进行周期性测量的目标频率中选取X个目标频率作为第一目标频率,该X个目标频率为需要进行周期性测量的目标频率中允许测量带宽较大的X个频率。当需要进行周期性测量的目标频率的个数小于或等于X时,将需要进行周期性测量的目标频率作为第一目标频率。
另一种示例,终端设备可以根据第一信息、第二信息和第三信息确定上述第一目标频率。终端设备根据服务频率和第一信息所指示的各个目标频率的CA/DC组合情况、以及第二信息所指示的CA/DC组合,确定需要进行周期性测量的目标频率,终端设备判断该需要进行周期性测量的目标频率的个数是否大于X。当需要进行周期性测量的目标频率的个数大于X,终端设备在需要进行周期性测量的目标频率中选取X个目标频率作为第一目标频率,该X个目标频率为需要进行周期性测量的目标频率中允许测量带宽较大的X个频率。当需要进行周期性测量的目标频率的个数小于或等于X时,将需要进行周期性测量的目标频率作为第一目标频率。
本实施例,通过在需要进行周期性测量的目标频率中以第一预设条件为筛选条件,筛选出满足第一预设条件的第一目标频率,对第一目标频率进行周期性测量,从而可以控制终端设备在提前测量过程中进行周期性测量的目标频点个数,进而降低提前测量的复杂度和功耗。
在一些实施例中,上述步骤102或上述步骤203的一种可实现方式可以为:终端设备以第一预设间隔在第一目标频率进行周期性测量,其中,该第一预设间隔为根据重选测量的测量间隔、重选测量和周期性测量的频率个数、以及缩放因子确定的。该缩放因子也可以称之为提前测量的缩放因子,该缩放因子可以是预定义或网络设备通过第五信息指示的,该第五信息可以携带在上述第一消息中。
示例性的,该第一预设间隔可以为Nfreq*N*Tmeasure,其中Tmeasure是重选测量的测量间隔,Nfreq是重选测量和周期性测量的频率个数之和,N是缩放因子。
本实施例,终端设备以第一预设间隔在第一目标频率进行周期性测量,从而可以通过第一预设间隔控制终端设备在提前测量过程中的功耗。
在一些实施例中,上述第一消息还可以包括第四信息,该第四信息用于指示终端设备进行同步信号块(Synchronization signal block,SSB)识别,上述步骤102或上述步骤203的一种可实现方式为:终端设备根据该第四信息在第一目标频率识别SSB,并对识别到的SSB和已知的SSB进行周期性测量。相应的,上述步骤103或上述步骤205的第一目标频率的测量结果可以包括满足测量上报条件的SSB的测量结果。
示例性的,该第四信息可以是一个比特位,例如,1指示终端设备进行SSB识别,0指示终端设备不进行SSB识别。当网络设备指示终端设备不进行SSB识别时,终端设备可以对已知的SSB进行周期性测量。
在一些实施例中,终端设备在第一目标频率识别SSB的一种可实现方式为:终端设备可以以第二预设间隔在该第一目标频率识别SSB,其中,该第二预设间隔为根据重选测量的测量间隔、重选测量和周期性测量的频率个数、以及缩放因子确定的。
本实施例,通过网络设备指示终端设备进行SSB识别,终端设备识别新的SSB,从而发现新的波束(beam),并对其进行测量,以保证终端设备上报的测量结果的有效性和准确性。
在NR中,为了增强覆盖,一个小区会使用多个波束。由于终端设备的移动或者旋转,会出现已知波束不可见的情况,同时会有新的发波束变得可见,因此识别新的SSB是有意义的。本申请的网络设备可以指示终端设备在提前测量过程中是否进行SSB识别,其具体解释说明可以参见下述实施例。
图4为本申请实施例的另一种载波测量方法的示意性流程图,如图4所示,本实施例的方法涉及网络设备和终端设备,该方法可以包括:
步骤301、网络设备向终端设备发送第一消息。
终端设备接收网络设备发送的第一消息。该第一消息包括第四信息,该第四信息用于指示终端设备进行SSB识别。该第一消息还可以包括第一信息和/或第三信息。其 中,第一信息和第三信息的具体解释说明可以参见上述实施例,此处不再赘述。
示例性的,该第四信息可以是独立的信元,例如,一个比特位;或者,该第四信息可以是隐式指示,即终端设备可以根据其他指示信息确定该第四信息,例如,通过指示终端设备为提前测量进行波束级别的上报隐式指示。
步骤302、终端设备在目标频率识别SSB,并对识别到的SSB和已知的SSB进行测量。
该目标频率可以是上述第一信息所指示的至少一个目标频率。
举例而言,该第四信息为一个比特位,0指示终端设备不进行SSB识别,1指示终端设备进行SSB识别。当第四信息为1时,终端设备在目标频率识别SSB,即发现新的波束,并对识别到的新的SSB和已知的SSB进行测量。该测量可以是周期性测量,也可以是一次性测量。当第四信息为0时,终端设备对已知的SSB进行测量。
另一种举例,该第四信息为隐式指示,通过指示终端设备为提前测量进行波束级别的上报,隐式指示终端设备进行SSB识别,通过指示终端设备不为提前测量进行波束级别的上报,隐式指示终端设备不进行SSB识别。当隐式指示终端设备进行SSB识别时,终端设备在目标频率识别SSB,即发现新的波束,并对识别到的新的SSB和已知的SSB进行测量。当隐式指示终端设备不进行SSB识别时,终端设备对已知的SSB进行测量。
步骤303、在终端设备进入连接态时,终端设备向网络设备发送SSB的测量结果。
网络设备接收进入连接态的终端设备发送的SSB的测量结果。该SSB的测量结果可以包括目标频率的识别到的新的SSB的测量结果和已知的SSB的测量结果。该测量结果可以包括RSRP或RSRQ中一项或多项。
在一些实施例中,该第一消息还可以包括第三信息,该第三信息用于指示目标频率的允许测量带宽,本实施例的目标频率的允许测量带宽满足第二预设条件。例如,该第二预设条件可以是允许测量带宽大于一个预设阈值,或者该第二预设条件可以是目标频率的个数为Y,且该目标频率的允许测量带宽大于其他进行SSB识别的目标频率。Y可以是预定义的或者终端设备上报的能力。
示例性的,终端设备可以根据第四信息确定在目标频率进行SSB识别。其具体实施方式可以为,终端设备根据第四信息,确定进行SSB识别的目标频率,终端设备判断该进行SSB识别的目标频率的个数是否大于Y。当该进行SSB识别的目标频率的个数大于Y,终端设备在该进行SSB识别的目标频率中选取Y个频率作为目标频率,该Y个目标频率为该进行SSB识别的目标频率中允许测量带宽较大的Y个频率。当该进行SSB识别的目标频率的个数小于或等于Y时,将该进行SSB识别的目标频率作为步骤302中的目标频率。
在一些实施例中,终端设备在目标频率识别SSB的一种可实现方式可以为:终端设备以第二预设间隔在目标频率识别SSB,其中,该第二预设间隔为根据重选测量的测量间隔、重选测量和周期性测量的频率个数、以及缩放因子确定的。示例性的,该第二预设间隔可以为Nfreq*N*Tmeasure,其中Tmeasure是重选测量的测量间隔,Nfreq是重选测量和周期性测量的频率个数之和,N是缩放因子。该缩放因子可以是网络设备指示的。
本实施例,通过网络设备向终端设备发送第一消息,该第一消息包括第四信息,该第四信息用于指示终端设备进行SSB识别,终端设备在目标频率识别SSB,并对识别到的SSB和已知的SSB进行测量,在终端设备进入连接态时,终端设备向网络设备发送SSB的测量结果,从而实现SSB级别的测量上报,网络设备基于测量结果实现CA或DC的快速建立,以满足NR对高数据传输速率、低延迟等性能的需求。
通过在需要进行目标频率中以第二预设条件为筛选条件,筛选出满足第二预设条件的目标频率,对目标频率进行SSB识别,从而可以控制终端设备在提前测量过程中的功耗。
通过以第二预设间隔在目标频率进行SSB识别,从而可以通过第二预设间隔控制终端设备在提前测量过程中的功耗。
上文描述了本申请实施例提供的载波测量方法,下文将描述本申请实施例提供的通信装置。
图5为本申请实施例提供的通信装置500的示意性框图,通信装置500可以包括:
收发模块510,用于接收网络设备发送的第一消息,该第一消息包括第一信息,该第一信息用于指示至少一个目标频率,该至少一个目标频率包括第一目标频率和第二目标频率。
处理模块520,用于通过该收发模块510在该第一目标频率进行周期性测量。
该处理模块520,还用于在该通信装置500进入连接态时,通过该收发模块510向该网络设备发送该第一目标频率的测量结果。
其中,第一频段组合的网络评价指标高于第二频段组合的网络评价指标,该第一频段组合为该第一目标频率与服务频率组成通信装置500支持的载波聚合CA或双连接DC频段组合,该第二频段组合为该第二目标频率与服务频率组成的CA或DC频段组合。
在一些实施例中,当该服务频率为演进通用陆地无线电接入E-UTRA的频率时,该第一目标频率为新无线NR的频率,该第一目标频率与该服务频率组成该通信装置500支持的EN-DC频段组合;或者,当该服务频率为NR的频率时,该第一目标频率为E-UTRA的频率,该第一目标频率与该服务频率组成该通信装置500支持的NE-DC频段组合;或者,当该服务频率为NR的频率时,该第一目标频率为NR的频率,该第一目标频率与该服务频率组成该通信装置500支持的NR-DC频段组合。
在一些实施例中,该第一消息还包括第二信息,该第二信息用于指示至少一个CA或DC频段组合,该第一目标频率与服务频率组成该通信装置500支持的CA或DC频段组合为该至少一个CA或DC频段组合中的一项或多项。
在一些实施例中,该处理模块520还用于:通过该收发模块510在该第二目标频率进行一次性测量。
在一些实施例中,该第一消息还包括第三信息,该第三信息用于指示该至少一个目标频率的允许测量带宽,该第一目标频率的允许测量带宽满足第一预设条件。
在一些实施例中,该处理模块520用于通过该收发模块510以第一预设间隔在该第一目标频率进行周期性测量;其中,所述第一预设间隔为根据重选测量的测量间隔、 重选测量和周期性测量的频率个数、以及缩放因子确定的。
在一些实施例中,该第一消息还包括第四信息,该第四信息用于指示通信装置500进行同步信号块SSB识别,该处理模块520用于根据该第四信息在该第一目标频率通过该收发模块510识别SSB,并对识别到的SSB和已知的SSB进行周期性测量;该第一目标频率的测量结果包括满足测量上报条件的SSB的测量结果。
在一些实施例中,该处理模块520用于以第二预设间隔在所述第一目标频率通过该收发模块510识别SSB;其中,该第二预设间隔为根据重选测量的测量间隔、重选测量和周期性测量的频率个数、以及缩放因子确定的。
在一些实施例中,该第一消息还包括第五信息,该第五信息用于指示该缩放因子。
应理解,本申请实施例中的处理模块520可以由处理器或处理器相关电路组件实现,收发模块510可以由收发器或收发器相关电路组件实现。
如图6所示,本申请实施例还提供一种通信装置600,该通信装置600包括处理器610,存储器620与收发器630,其中,存储器620中存储指令或程序,处理器610用于执行存储器620中存储的指令或程序。存储器620中存储的指令或程序被执行时,该处理器610用于执行上述实施例中处理模块520执行的操作,收发器630用于执行上述实施例中收发模块510执行的操作。
应理解,根据本申请实施例的通信装置500或通信装置600可对应于本申请实施例的图2或图3所述的载波测量方法中的终端设备,并且通信装置500或通信装置600中的各个模块的操作和/或功能分别为了实现图2或图3中的各个方法的相应流程,为了简洁,在此不再赘述。
图7为本申请实施例提供的通信装置700的示意性流程图,该通信装置700包括:
处理模块710,用于通过收发模块720向终端设备发送第一消息,该第一消息包括第一信息,该第一信息用于指示至少一个目标频率,该至少一个目标频率包括第一目标频率和第二目标频率。
该收发模块720,还用于接收进入连接态的该终端设备发送的所述第一目标频率的测量结果,该测量结果为该终端设备在该第一目标频率进行周期性测量的结果。
其中,第一频段组合的网络评价指标高于第二频段组合的网络评价指标,该第一频段组合为该第一目标频率与该终端设备的服务频率组成该终端设备支持的载波聚合CA或双连接DC频段组合,该第二频段组合为该第二目标频率与该服务频率组成的CA或DC频段组合。
在一些实施例中,该第一消息还包括第二信息,该第二信息用于指示至少一个CA或DC频段组合,该至少一个第一目标频率与服务频率组成该终端设备支持的CA或DC频段组合为该至少一个CA或DC频段组合中的一项或多项。
在一些实施例中,该第一消息还包括第三信息,该第三信息用于指示该至少一个目标频率的允许测量带宽,该第一目标频率的允许测量带宽满足第一预设条件。
在一些实施例中,该第一消息还包括第四信息,该第四信息用于指示终端设备进行同步信号块SSB识别。
在一些实施例中,该第一消息还包括第五信息,该第五信息用于指示缩放因子,该缩放因子用于配置第一预设间隔或第二预设间隔。
应理解,本申请实施例中的处理模块710可以由处理器或处理器相关电路组件实现,收发模块720可以由收发器或收发器相关电路组件实现。
如图8所示,本申请实施例还提供一种通信装置800,该通信装置800包括处理器810,存储器820与收发器830,其中,存储器820中存储指令或程序,处理器810用于执行存储器820中存储的指令或程序。存储器820中存储的指令或程序被执行时,该处理器810用于执行上述实施例中处理模块710执行的操作,收发器830用于执行上述实施例中收发模块720执行的操作。
应理解,根据本申请实施例的通信装置700或通信装置800可对应于本申请实施例的图2或图3中的网络设备,并且通信装置700或通信装置800中的各个模块的操作和/或功能分别为了实现图2或图3中的各个方法的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供一种通信装置,该装置可以包括:收发模块,用于接收网络设备发送的第一消息,该第一消息包括第一信息,该第一信息用于指示该通信装置进行同步信号块SSB识别;处理模块,用于在目标频率通过收发模块识别SSB,并对识别到的SSB和已知的SSB进行测量,在该通信装置进入连接态时,通过收发模块向网络设备发送SSB的测量结果。
在一些实施例中,该第一消息还包括第二信息,该第二信息用于指示所述目标频率的允许测量带宽,该目标频率的允许测量带宽满足第一预设条件。
在一些实施例中,该处理模块用于以第一预设间隔在目标频率通过收发模块识别SSB;其中,该第一预设间隔为根据重选测量的测量间隔、重选测量和周期性测量的频率个数、以及缩放因子确定的。
在一些实施例中,该第一消息还包括第三信息,该第三信息用于指示该缩放因子。
应理解,上述实施例中的处理模块可以由处理器或处理器相关电路组件实现,收发模块可以由收发器或收发器相关电路组件实现。
还应理解,根据本申请实施例的通信装置可对应于本申请实施例的图4所示实施例中的终端设备,并且该终端设备中的各个模块的操作和/或功能分别为了实现图4中的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供一种通信装置,该通信装置包括:处理模块,用于通过收发模块向终端设备发送第一消息,该第一消息包括第一信息,该第一信息用于指示终端设备进行同步信号块SSB识别;该收发模块,还用于接收进入连接态的终端设备发送的SSB的测量结果;该SSB的测量结果为终端设备在目标频率识别SSB,并对识别到的SSB和已知的SSB进行测量的结果。
在一些实施例中,该第一消息还包括第三信息,该第三信息用于指示缩放因子,该缩放因子用于配置第一预设间隔。
应理解,上述实施例中的处理模块可以由处理器或处理器相关电路组件实现,收发模块可以由收发器或收发器相关电路组件实现。
还应理解,根据本申请实施例的通信装置可对应于本申请实施例的图4所示实施例中的网络设备,并且该网络设备中的各个模块的操作和/或功能分别为了实现图4中的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供一种通信装置,该通信装置可以是终端设备也可以是电路。该通信装置可以用于执行上述方法实施例中由终端设备所执行的动作。
当该通信装置为终端设备时,图9示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图9中,终端设备以手机作为例子。如图9所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图9中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图9所示,终端设备包括收发单元910和处理单元920。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元910中用于实现接收功能的器件视为接收单元,将收发单元910中用于实现发送功能的器件视为发送单元,即收发单元910包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元910用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元920用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元910用于执行图2中的步骤101中终端设备侧的接收操作,和/或收发单元910还用于执行本申请实施例中终端设备侧的其他收发步骤。处理单元920,用于执行图2中的步骤102,和/或处理单元1120还用于执行本申请实施例中终端设备侧的其他处理步骤。
再例如,在另一种实现方式中,收发单元910用于执行图3中步骤201中终端设备侧的接收操作或步骤205中终端设备侧的发送操作,和/或收发单元920还用于执行本申请实施例中终端设备侧的其他收发步骤。处理单元920用于执行图3中的步骤202、步骤203、与步骤204,和/或处理单元920还用于执行本申请实施例中终端设备侧的其他处理步骤。
又例如,在再一种实现方式中,收发单元910用于执行图4中步骤301中终端设 备侧的接收操作或步骤303中终端设备侧的发送操作,和/或收发单元910还用于执行本申请实施例中终端设备侧的其他收发步骤。处理单元920,用于执行图4中的步骤302,和/或处理单元920还用于执行本申请实施例中终端设备侧的其他处理步骤。
当该通信装置为芯片类的装置或者电路时,该装置可以包括收发单元和处理单元。其中,所述收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。
本实施例中的通信装置为终端设备时,可以参照图10所示的设备。作为一个例子,该设备可以完成类似于图6中处理器610的功能。在图10中,该设备包括处理器1010,发送数据处理器1020,接收数据处理器1030。上述实施例中的处理模块520可以是图10中的该处理器1010,并完成相应的功能。上述实施例中的收发模块510可以是图10中的发送数据处理器1220,和/或接收数据处理器1230。虽然图10中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图11示出本实施例的另一种形式。处理装置1100中包括调制子***、中央处理子***、周边子***等模块。本实施例中的通信装置可以作为其中的调制子***。具体的,该调制子***可以包括处理器1103,接口1104。其中处理器1103完成上述处理模块520的功能,接口1104完成上述收发模块510的功能。作为另一种变形,该调制子***包括存储器1106、处理器1103及存储在存储器1106上并可在处理器上运行的程序,该处理器1103执行该程序时实现上述方法实施例中终端设备侧的方法。需要注意的是,所述存储器1106可以是非易失性的,也可以是易失性的,其位置可以位于调制子***内部,也可以位于处理装置1100中,只要该存储器1106可以连接到所述处理器1103即可。
作为本实施例的另一种形式,提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中终端设备侧的方法。
作为本实施例的另一种形式,提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中终端设备侧的方法。
本实施例中的装置为网络设备时,该网络设备可以如图12所示,装置1200包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1210和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1220。所述RRU 1210可以称为收发模块,与图7中的收发模块720对应,可选地,该收发模块还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1211和射频单元1212。所述RRU 1210部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送第一信息。所述BBU 1210部分主要用于进行基带处理,对基站进行控制等。所述RRU 1210与BBU 1220可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1220为基站的控制中心,也可以称为处理模块,可以与图7中的处理模块710对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理模块)可以用于控制基站执行上述方法实施例中关于网络设备 的操作流程,例如,生成上述第一信息等。
在一个示例中,所述BBU 1220可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1220还包括存储器1221和处理器1222。所述存储器1221用以存储必要的指令和数据。所述处理器1222用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器1221和处理器1222可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,本发明实施例中提及的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本发明实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实 现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (33)

  1. 一种载波测量方法,其特征在于,包括:
    接收网络设备发送的第一消息,所述第一消息包括第一信息,所述第一信息用于指示至少一个目标频率,所述至少一个目标频率包括第一目标频率和第二目标频率;
    在所述第一目标频率进行周期性测量;
    在进入连接态时,向所述网络设备发送所述第一目标频率的测量结果;
    其中,第一频段组合的网络评价指标高于第二频段组合的网络评价指标,所述第一频段组合为所述第一目标频率与服务频率组成的载波聚合CA或双连接DC频段组合,所述第二频段组合为所述第二目标频率与服务频率组成的CA或DC频段组合。
  2. 根据权利要求1所述的方法,其特征在于,当所述服务频率为演进通用陆地无线电接入E-UTRA的频率时,所述第一目标频率为新无线NR的频率,所述第一目标频率与所述服务频率组成EN-DC频段组合;或者,
    当所述服务频率为NR的频率时,所述第一目标频率为E-UTRA的频率,所述第一目标频率与所述服务频率组成NE-DC频段组合;或者,
    当所述服务频率为NR的频率时,所述第一目标频率为NR的频率,所述第一目标频率与所述服务频率组成NR-DC频段组合。
  3. 根据权利要求1所述的方法,其特征在于,所述第一消息还包括第二信息,所述第二信息用于指示至少一个CA或DC频段组合,所述第一目标频率与服务频率组成的CA或DC频段组合为所述至少一个CA或DC频段组合中的一项或多项。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述方法还包括:
    在所述第二目标频率进行一次性测量。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述第一消息还包括第三信息,所述第三信息用于指示所述至少一个目标频率的允许测量带宽,所述第一目标频率的允许测量带宽满足第一预设条件。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述在所述第一目标频率进行周期性测量,包括:
    以第一预设间隔在所述第一目标频率进行周期性测量;
    其中,所述第一预设间隔为根据重选测量的测量间隔、重选测量和周期性测量的频率个数、以及缩放因子确定的。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述第一消息还包括第四信息,所述第四信息用于指示进行同步信号块SSB识别,所述在所述第一目标频率进行周期性测量,包括:
    根据所述第四信息在所述第一目标频率识别SSB,并对识别到的SSB和已知的SSB进行周期性测量;
    所述第一目标频率的测量结果包括满足测量上报条件的SSB的测量结果。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述第四信息在所述第一目标频率识别SSB,包括:
    以第二预设间隔在所述第一目标频率识别SSB;
    其中,所述第二预设间隔为根据重选测量的测量间隔、重选测量和周期性测量的 频率个数、以及缩放因子确定的。
  9. 根据权利要求6或8所述的方法,其特征在于,所述第一消息还包括第五信息,所述第五信息用于指示所述缩放因子,所述缩放因子用于配置在所述第一目标频率进行周期性测量的第一预设间隔或在所述第一目标频率进行SSB识别的第二预设间隔。
  10. 一种载波测量方法,其特征在于,包括:
    网络设备向终端设备发送第一消息,所述第一消息包括第一信息,所述第一信息用于指示至少一个目标频率,所述至少一个目标频率包括第一目标频率和第二目标频率;
    所述网络设备接收进入连接态的所述终端设备发送的所述第一目标频率的测量结果,所述测量结果为所述终端设备在所述第一目标频率进行周期性测量的结果;
    其中,第一频段组合的网络评价指标高于第二频段组合的网络评价指标,所述第一频段组合为所述第一目标频率与所述终端设备的服务频率组成所述终端设备支持的载波聚合CA或双连接DC频段组合,所述第二频段组合为所述第二目标频率与所述服务频率组成的CA或DC频段组合。
  11. 根据权利要求10所述的方法,其特征在于,所述第一消息还包括第二信息,所述第二信息用于指示至少一个CA或DC频段组合,所述至少一个第一目标频率与服务频率组成所述终端设备支持的CA或DC频段组合为所述至少一个CA或DC频段组合中的一项或多项。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第一消息还包括第三信息,所述第三信息用于指示所述至少一个目标频率的允许测量带宽,所述第一目标频率的允许测量带宽满足第一预设条件。
  13. 根据权利要求10至12任一项所述的方法,其特征在于,所述第一消息还包括第四信息,所述第四信息用于指示终端设备进行同步信号块SSB识别。
  14. 根据权利要求10至13任一项所述的方法,其特征在于,所述第一消息还包括第五信息,所述第五信息用于指示缩放因子,所述缩放因子用于配置第一预设间隔或第二预设间隔。
  15. 一种通信装置,其特征在于,包括:
    收发模块,用于接收网络设备发送的第一消息,所述第一消息包括第一信息,所述第一信息用于指示至少一个目标频率,所述至少一个目标频率包括第一目标频率和第二目标频率;
    处理模块,用于通过所述收发模块在所述第一目标频率进行周期性测量;
    所述处理模块,还用于在所述通信装置进入连接态时,通过所述收发模块向所述网络设备发送所述第一目标频率的测量结果;
    其中,第一频段组合的网络评价指标高于第二频段组合的网络评价指标,所述第一频段组合为所述第一目标频率与服务频率组成所述通信装置支持的载波聚合CA或双连接DC频段组合,所述第二频段组合为所述第二目标频率与服务频率组成的CA或DC频段组合。
  16. 根据权利要求15所述的装置,其特征在于,当所述服务频率为演进通用陆地 无线电接入E-UTRA的频率时,所述第一目标频率为新无线NR的频率,所述第一目标频率与所述服务频率组成所述通信装置支持的EN-DC频段组合;或者,
    当所述服务频率为NR的频率时,所述第一目标频率为E-UTRA的频率,所述第一目标频率与所述服务频率组成所述通信装置支持的NE-DC频段组合;或者,
    当所述服务频率为NR的频率时,所述第一目标频率为NR的频率,所述第一目标频率与所述服务频率组成所述通信装置支持的NR-DC频段组合。
  17. 根据权利要求15所述的装置,其特征在于,所述第一消息还包括第二信息,所述第二信息用于指示至少一个CA或DC频段组合,所述第一目标频率与服务频率组成所述通信装置支持的CA或DC频段组合为所述至少一个CA或DC频段组合中的一项或多项。
  18. 根据权利要求15至17任一项所述的装置,其特征在于,所述处理模块还用于:通过所述收发模块在所述第二目标频率进行一次性测量。
  19. 根据权利要求15至18任一项所述的装置,其特征在于,所述第一消息还包括第三信息,所述第三信息用于指示所述至少一个目标频率的允许测量带宽,所述第一目标频率的允许测量带宽满足第一预设条件。
  20. 根据权利要求15至19任一项所述的装置,其特征在于,所述处理模块用于通过所述收发模块以第一预设间隔在所述第一目标频率进行周期性测量;
    其中,所述第一预设间隔为根据重选测量的测量间隔、重选测量和周期性测量的频率个数、以及缩放因子确定的。
  21. 根据权利要求15至20任一项所述的装置,其特征在于,所述第一消息还包括第四信息,所述第四信息用于指示所述通信装置进行同步信号块SSB识别,所述处理模块用于根据所述第四信息在所述第一目标频率通过所述收发模块识别SSB,并对识别到的SSB和已知的SSB进行周期性测量;
    所述第一目标频率的测量结果包括满足测量上报条件的SSB的测量结果。
  22. 根据权利要求21所述的装置,其特征在于,所述处理模块用于以第二预设间隔在所述第一目标频率通过所述收发模块识别SSB;
    其中,所述第二预设间隔为根据重选测量的测量间隔、重选测量和周期性测量的频率个数、以及缩放因子确定的。
  23. 根据权利要求20或22所述的装置,其特征在于,所述第一消息还包括第五信息,所述第五信息用于指示所述缩放因子。
  24. 一种网络设备,其特征在于,包括:
    处理模块,用于通过收发模块向通信装置发送第一消息,所述第一消息包括第一信息,所述第一信息用于指示至少一个目标频率,所述至少一个目标频率包括第一目标频率和第二目标频率;
    所述收发模块,还用于接收进入连接态的所述通信装置发送的所述第一目标频率的测量结果,所述测量结果为所述通信装置在所述第一目标频率进行周期性测量的结果;
    其中,第一频段组合的网络评价指标高于第二频段组合的网络评价指标,所述第一频段组合为所述第一目标频率与所述通信装置的服务频率组成所述通信装置支持的 载波聚合CA或双连接DC频段组合,所述第二频段组合为所述第二目标频率与所述服务频率组成的CA或DC频段组合。
  25. 根据权利要求24所述的网络设备,其特征在于,所述第一消息还包括第二信息,所述第二信息用于指示至少一个CA或DC频段组合,所述至少一个第一目标频率与服务频率组成所述通信装置支持的CA或DC频段组合为所述至少一个CA或DC频段组合中的一项或多项。
  26. 根据权利要求24或25所述的网络设备,其特征在于,所述第一消息还包括第三信息,所述第三信息用于指示所述至少一个目标频率的允许测量带宽,所述第一目标频率的允许测量带宽满足第一预设条件。
  27. 根据权利要求24至26任一项所述的网络设备,其特征在于,所述第一消息还包括第四信息,所述第四信息用于指示通信装置进行同步信号块SSB识别。
  28. 根据权利要求24至27任一项所述的网络设备,其特征在于,所述第一消息还包括第五信息,所述第五信息用于指示缩放因子,所述缩放因子用于配置第一预设间隔或第二预设间隔。
  29. 一种通信装置,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其特征在于,所述处理器执行所述程序时实现权利要求1至9中任一项所述的载波测量方法。
  30. 一种通信装置,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其特征在于,所述处理器执行所述程序时实现权利要求10至14中任一项所述的载波测量方法。
  31. 一种通信***,包括权利要求15-23之一的通信装置,和权利要求24-28之一的通信装置。
  32. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被运行时,实现如权利要求1至9中任一项所述的方法。
  33. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被运行时,实现如权利要求10至14中任一项所述的方法。
PCT/CN2019/101177 2019-08-16 2019-08-16 载波测量方法和装置 WO2021031004A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980099095.8A CN114208262B (zh) 2019-08-16 2019-08-16 载波测量方法和装置
PCT/CN2019/101177 WO2021031004A1 (zh) 2019-08-16 2019-08-16 载波测量方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/101177 WO2021031004A1 (zh) 2019-08-16 2019-08-16 载波测量方法和装置

Publications (1)

Publication Number Publication Date
WO2021031004A1 true WO2021031004A1 (zh) 2021-02-25

Family

ID=74660427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101177 WO2021031004A1 (zh) 2019-08-16 2019-08-16 载波测量方法和装置

Country Status (2)

Country Link
CN (1) CN114208262B (zh)
WO (1) WO2021031004A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024055171A1 (zh) * 2022-09-13 2024-03-21 北京小米移动软件有限公司 信息处理方法及装置、通信设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108377552A (zh) * 2016-11-04 2018-08-07 华为技术有限公司 一种功率控制方法和通信设备
US20180368018A1 (en) * 2017-06-16 2018-12-20 Samsung Electronics Co., Ltd. Method and apparatus for rapidly reporting frequency measurement results in next generation mobile communication system
CN109309969A (zh) * 2017-07-26 2019-02-05 株式会社Kt 在rrc空闲模式下控制测量处理的方法及其装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160108235A (ko) * 2015-03-06 2016-09-19 삼성전자주식회사 캐리어 집적을 지원하는 무선 통신 시스템에서 통신 방법 및 장치
US10433244B2 (en) * 2015-03-31 2019-10-01 Verizon Patent And Licensing Inc. Inter-frequency cell reselection
US9980169B2 (en) * 2015-05-15 2018-05-22 Qualcomm Incorporated Measurement gaps in carrier aggregation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108377552A (zh) * 2016-11-04 2018-08-07 华为技术有限公司 一种功率控制方法和通信设备
US20180368018A1 (en) * 2017-06-16 2018-12-20 Samsung Electronics Co., Ltd. Method and apparatus for rapidly reporting frequency measurement results in next generation mobile communication system
CN109309969A (zh) * 2017-07-26 2019-02-05 株式会社Kt 在rrc空闲模式下控制测量处理的方法及其装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024055171A1 (zh) * 2022-09-13 2024-03-21 北京小米移动软件有限公司 信息处理方法及装置、通信设备及存储介质

Also Published As

Publication number Publication date
CN114208262A (zh) 2022-03-18
CN114208262B (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
WO2020135400A1 (zh) 通信方法和通信装置
CN110999376B (zh) 一种通信方法和装置,测量方法和测量装置,存储介质
WO2020224575A1 (zh) 通信方法与装置
WO2021098568A1 (zh) 一种能力信息发送方法、接收方法及装置
CN109392135B (zh) 一种资源调度方法及装置
CN111565412B (zh) 一种测量方法、终端设备及网络设备
WO2020135383A1 (zh) 通信方法和通信装置
US11546044B2 (en) Wireless communication method, terminal device and network device
US11419111B2 (en) Data transmission method, terminal device, and network device
JP7319394B2 (ja) 測定制御方法および装置、端末、ネットワーク機器
WO2019242712A1 (zh) 一种能力交互方法及相关设备
WO2019047666A1 (zh) 一种移动性测量方法、装置及***
WO2019096232A1 (zh) 通信方法和通信装置
CN115176492A (zh) 通信方法、装置及设备
EP3668148B1 (en) Data transmission method and terminal device
WO2021031004A1 (zh) 载波测量方法和装置
WO2021026929A1 (zh) 一种通信方法及装置
WO2020029201A1 (zh) 信号上报的方法、终端设备和网络设备
WO2020164455A1 (zh) 一种测量信息上报方法以及相关装置
US11218936B2 (en) Method and device for handover
WO2022233191A1 (zh) 一种用于上报小区或载波信息的方法及装置
US20220337306A1 (en) Method for beam selection, terminal device, and network device
WO2020042976A1 (zh) 一种ui显示方法、装置、终端设备及存储介质
CN116669119A (zh) 用于小区切换的方法和装置
WO2015172544A1 (zh) 在异构网络中进行通信的方法和小基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942592

Country of ref document: EP

Kind code of ref document: A1