WO2024060505A1 - Procédé de récupération de matériau d'électrode positive de prusse et matériau d'électrode positive blanche de prusse à base de manganèse ainsi préparé - Google Patents

Procédé de récupération de matériau d'électrode positive de prusse et matériau d'électrode positive blanche de prusse à base de manganèse ainsi préparé Download PDF

Info

Publication number
WO2024060505A1
WO2024060505A1 PCT/CN2023/077145 CN2023077145W WO2024060505A1 WO 2024060505 A1 WO2024060505 A1 WO 2024060505A1 CN 2023077145 W CN2023077145 W CN 2023077145W WO 2024060505 A1 WO2024060505 A1 WO 2024060505A1
Authority
WO
WIPO (PCT)
Prior art keywords
prussian
recycling
manganese
solution
positive electrode
Prior art date
Application number
PCT/CN2023/077145
Other languages
English (en)
Chinese (zh)
Inventor
李爱霞
余海军
谢英豪
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024060505A1 publication Critical patent/WO2024060505A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/08Simple or complex cyanides of metals
    • C01C3/12Simple or complex iron cyanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the embodiments of the present application relate to the technical field of battery recycling, such as a recycling method of Prussian-type cathode materials and the prepared manganese-based Prussian white cathode materials.
  • the Prussian cathode material is a type of sodium-ion battery cathode material with an open frame structure. It is specifically a metal-organic frame structure material.
  • the metal and ferricyanide in the crystal lattice are arranged in a three-dimensional arrangement of Fe—C ⁇ N—M.
  • iron ions and metal M ions are arranged in a cube shape, and C ⁇ N roots are located on the edges of the cube.
  • This type of material belongs to the cubic crystal system, with a particle size of about 20 to 50nm, and has three-dimensional sodium ion intercalation and extraction channels.
  • This type of material has three main advantages as a cathode material for sodium-ion batteries: (1) The rigid framework structure and open large pores and sites ensure that sodium ions with larger ionic radius can be reversibly intercalated and detached without disturbing the material structure. Change; (2) Because of the two-electron redox reaction, the theoretical capacity of Prussian-based sodium cathode materials is as high as 170mAh/g; (3) The synthesis process of Prussian-based cathode materials is generally simple, low-toxic, and has low preparation and raw material costs. Suitable for mass production.
  • the embodiments of this application provide a method for recycling Prussian cathode materials.
  • This method mainly separates iron ions from the system through azeotropic treatment, and then re-complexes the separated cyanide with The metal ions in the separation system are complexed and finally converted into Prussian-like materials, achieving safe and effective recovery of each ion in the waste material.
  • a method for recycling Prussian cathode materials including the following steps:
  • the Prussian-type cathode material is first soaked in a strong acidic solution, and the reaction is carried out under boiling conditions to cause the metal ions such as manganese ions and sodium ions in the material to precipitate, and at the same time, the Prussian-type cathode material is [Fe(CN) 6 ] 4-
  • the stable structure is also destroyed and ferrous ions and cyanide are precipitated.
  • oxygen and a specific weakly acidic environment cause the ferrous ions precipitated in the solution to be oxidized and hydrolyzed and form hydroxide in one step.
  • Iron is separated from the solution system; further, when the pH of the solution after separation and precipitation is adjusted to 6 to 10, the metal ions and cyanide in the solution complex to form metal cyanate, and finally a complexing agent and a soluble metal salt are introduced. After co-precipitation, high-purity Prussian-type materials can be regenerated.
  • the recovery method has simple operation steps, high yield and high purity of the final product, which is safe and non-toxic. Depending on the actual situation, the recycled product can be further used to prepare high-performance Prussian-type cathodes. Material.
  • the Prussian cathode material is Na 2 Mn [Fe(CN) 6 ] cathode material.
  • the soluble metal salt in step (3) is a soluble manganese salt.
  • the complexing agent and the soluble manganese salt are mixed before being added to the treatment solution B.
  • Premixing the complexing agent and the soluble manganese salt can effectively reduce the reaction rate during the coprecipitation reaction, reduce the content of coordinated water and interstitial water, thereby improving the dispersibility and quality of the resulting material, and ultimately improving the gram capacity and electrochemical cycle stability of the product.
  • the treatment solution B after the pH of the treatment solution B is adjusted, before adding the complexing agent and the soluble metal salt, the treatment solution B also undergoes the following treatment: detecting the concentration of metal cyanate in the treatment solution B and adjusting it to 0.3 to 1 mol. /L.
  • the amount of soluble metal salt to be added can be effectively known to avoid adding too much or too little, resulting in waste of raw materials or the production of by-products.
  • the complexing agent in step (3) is at least one of maleic acid, lycic acid, citric acid, ethylenediaminetetraacetic acid (EDTA), sodium citrate, and ammonia.
  • the concentration of the complexing agent in step (3) is 0.4-15 mol/L.
  • the temperature during the co-precipitation reaction in step (3) is 30 to 90°C, and the time is 1 to 5 hours.
  • the Prussian material obtained in step (3) is also aged and dried.
  • the aging time is 3 to 48 hours; the temperature during drying is 60 to 100°C, and the aging time is 4 to 12 hours.
  • the embodiment of the present application provides a manganese-based Prussian white cathode material, which is recovered and prepared by the recovery method of the Prussian-type cathode material described in the present application.
  • waste manganese-based Prussian white cathode materials are recycled, it is only necessary to use soluble manganese salts and re-complexed manganese cyanate to carry out a co-precipitation reaction in the above-mentioned recycling method to directly obtain manganese-based Prussian white cathode materials with moderate particle size, good dispersibility and high electrochemical activity.
  • the material preparation operation steps are simple, the waste material recycling rate is high, the economic benefits are high, and the performance quality of the output material is comparable to the existing commercially available manganese-based Prussian white cathode materials.
  • the beneficial effect of the embodiments of the present application is that the embodiments of the present application provide a method for recycling Prussian-type cathode materials.
  • This method reacts the waste Prussian-type cathode materials under boiling conditions to precipitate ferrous ions and cyanide, and then oxidizes them.
  • the ferric hydroxide is separated and recovered by hydrolysis; further, by adjusting the recovery liquid, the metal ions and cyanide contained in the liquid are complexed to regenerate metal cyanate, and finally the complexing agent and soluble metal salt are introduced for co-precipitation, and then the metal hydroxide can be regenerated. High-purity Prussian-like materials are generated.
  • the recovery method has simple operation steps.
  • the final product has high yield and purity, is safe and non-toxic, and the obtained Prussian-like materials, especially the manganese-based Prussian white cathode material prepared by using soluble manganese salts, have moderate particles. It has high dispersion and electrochemical activity, which is comparable to existing commercial products.
  • Figure 1 is a scanning electron microscope image of the manganese-based Prussian white cathode material recovered and prepared by the Prussian-type cathode material recovery method described in Example 1 of the present application.
  • Figure 2 is an XRD pattern of the manganese-based Prussian white cathode material recovered and prepared by the Prussian-type cathode material recovery method described in Example 1 of the present application.
  • step (3) of the recycling method is: adjusting the pH of the treatment solution B to 8 and stabilizing it , use ICP to detect the concentration of manganese cyanate in the solution to be 0.312mol/L, transfer it to the reaction kettle, Add 200L precursor solution and mix, carry out co-precipitation reaction at 70°C for 1 to 5 hours until complete, age for 48 hours, filter, and dry at 100°C for 10 hours to obtain the manganese-based Prussian white cathode material; the precursor solution is lemon Aqueous solution of acid and manganese sulfate, the concentrations of citric acid and manganese sulfate are both 1mol/L.
  • step (3) of the recycling method is: (3) Adjust the pH of the treatment solution B to 10 and stabilize, use ICP to detect the concentration of manganese cyanate in the solution to be 0.305mol/L, transfer it to the reaction kettle, directly add 100L of 2mol/L complexing agent citric acid and 100L of 2mol/L manganese sulfate solution and mix, in The coprecipitation reaction is carried out at 70°C for 1 to 5 hours until complete, aged for 48 hours, filtered, and dried at 100°C for 10 hours to obtain the manganese-based Prussian white cathode material.
  • a method for recycling Prussian cathode materials including the following steps:
  • a method for recycling Prussian cathode materials including the following steps:
  • the discharge specific capacity of the product is also equivalent to commercial materials, indicating that the recycling method of Prussian-type cathode materials described in this application can not only effectively solve the recycling problem of existing discarded Prussian-type cathode materials, but also The performance of the products prepared by further processing of the recycled materials is equivalent to that of commercial products, and can completely replace the production and use of existing commercial manganese-rich manganese-based Prussian white cathode materials.

Abstract

L'invention concerne un procédé de récupération pour un matériau d'électrode positive de prusse et un matériau d'électrode positive blanche de prusse à base de manganèse préparé à l'aide du procédé, qui appartiennent au domaine technique de la récupération de batterie. Le procédé de récupération pour un matériau d'électrode positive de prusse comprend : le trempage d'un matériau d'électrode positive de prusse de déchets dans une solution acide, la réaction de celui-ci dans des conditions d'ébullition pour précipiter des ions ferreux et du cyanogène, puis l'obtention d'hydroxyde ferrique et d'une solution de récupération au moyen d'un effet d'hydrolyse oxydative ; et en outre, ajuster la valeur de pH de la solution de récupération, de telle sorte que les ions métalliques et le cyanogène dans la solution de récupération sont soumis à une réaction de complexation pour régénérer un cyanate métallique, ajouter un agent complexant et un sel métallique soluble pour la co-précipitation, et régénérer un matériau de prusse de haute pureté. Le procédé de récupération présente des étapes de fonctionnement simples ; et le produit final présente un rendement élevé et une pureté élevée, et est sûr et non toxique.
PCT/CN2023/077145 2022-09-22 2023-02-20 Procédé de récupération de matériau d'électrode positive de prusse et matériau d'électrode positive blanche de prusse à base de manganèse ainsi préparé WO2024060505A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211162575.4 2022-09-22
CN202211162575.4A CN115498299A (zh) 2022-09-22 2022-09-22 一种普鲁士类正极材料的回收方法及其制备的锰基普鲁士白正极材料

Publications (1)

Publication Number Publication Date
WO2024060505A1 true WO2024060505A1 (fr) 2024-03-28

Family

ID=84470164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077145 WO2024060505A1 (fr) 2022-09-22 2023-02-20 Procédé de récupération de matériau d'électrode positive de prusse et matériau d'électrode positive blanche de prusse à base de manganèse ainsi préparé

Country Status (2)

Country Link
CN (1) CN115498299A (fr)
WO (1) WO2024060505A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115498299A (zh) * 2022-09-22 2022-12-20 广东邦普循环科技有限公司 一种普鲁士类正极材料的回收方法及其制备的锰基普鲁士白正极材料

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102285673A (zh) * 2011-06-03 2011-12-21 佛山市邦普循环科技有限公司 一种从电动汽车磷酸铁锂动力电池中回收锂和铁的方法
JP2013112767A (ja) * 2011-11-30 2013-06-10 Alps Electric Co Ltd プルシアンブルー型錯体を含むインクの製造方法及び前記インクを用いたエレクトロクロミック素子の製造方法
CN110697796A (zh) * 2019-10-09 2020-01-17 福建江夏学院 一种过渡金属羟基氧化物超薄纳米片的绿色高效合成方法
CN112209409A (zh) * 2020-09-28 2021-01-12 浙江凯恩电池有限公司 一种快速制备钠离子电池正极材料普鲁士白的方法
CN112645354A (zh) * 2020-12-21 2021-04-13 电子科技大学 表面改性钠锰铁基普鲁士蓝材料及其制备方法和应用
CN115000494A (zh) * 2022-06-16 2022-09-02 杨维年 一种用于钠离子电池的低耗能生产工艺
CN115498299A (zh) * 2022-09-22 2022-12-20 广东邦普循环科技有限公司 一种普鲁士类正极材料的回收方法及其制备的锰基普鲁士白正极材料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102285673A (zh) * 2011-06-03 2011-12-21 佛山市邦普循环科技有限公司 一种从电动汽车磷酸铁锂动力电池中回收锂和铁的方法
JP2013112767A (ja) * 2011-11-30 2013-06-10 Alps Electric Co Ltd プルシアンブルー型錯体を含むインクの製造方法及び前記インクを用いたエレクトロクロミック素子の製造方法
CN110697796A (zh) * 2019-10-09 2020-01-17 福建江夏学院 一种过渡金属羟基氧化物超薄纳米片的绿色高效合成方法
CN112209409A (zh) * 2020-09-28 2021-01-12 浙江凯恩电池有限公司 一种快速制备钠离子电池正极材料普鲁士白的方法
CN112645354A (zh) * 2020-12-21 2021-04-13 电子科技大学 表面改性钠锰铁基普鲁士蓝材料及其制备方法和应用
CN115000494A (zh) * 2022-06-16 2022-09-02 杨维年 一种用于钠离子电池的低耗能生产工艺
CN115498299A (zh) * 2022-09-22 2022-12-20 广东邦普循环科技有限公司 一种普鲁士类正极材料的回收方法及其制备的锰基普鲁士白正极材料

Also Published As

Publication number Publication date
CN115498299A (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
WO2022116702A1 (fr) Méthode de préparation de phosphate de fer et son utilisation
CN112624076B (zh) 一种磷酸铁的制备方法及其应用
WO2019037459A1 (fr) Précurseur d'oxyde de cobalt-manganèse-nickel-lithium à haute tension, son procédé de préparation et matériau d'électrode positive en oxyde de cobalt-manganèse-nickel-lithium à haute tension
CN101752564B (zh) 一维纳米结构的锂离子电池正极材料磷酸铁锂的水热合成法
WO2024060505A1 (fr) Procédé de récupération de matériau d'électrode positive de prusse et matériau d'électrode positive blanche de prusse à base de manganèse ainsi préparé
CN113072048B (zh) 一种钠法生产磷酸铁的污水处理及渣料回收利用工艺
WO2024066892A1 (fr) Précurseur d'oxyde riche en manganèse, son procédé de préparation et son utilisation
CN115676797B (zh) 一种磷酸锰铁锂材料、制备方法及其应用
WO2023197483A1 (fr) Procédé de synthèse hydrothermique de phosphate de lithium-manganèse-fer nanométrique
GB2620048A (en) Preparation method for sodium ferrovanadium phosphate material and application thereof
CN111048862B (zh) 一种高效回收锂离子电池正负极材料为超级电容器电极材料的方法
CN109950514A (zh) 一种铁酸锂包覆磷酸铁锂的制备方法
CN115477293A (zh) 一种低杂质高比表面积的无水磷酸铁的制备方法
CN108529666B (zh) 由无机钛源制备钛酸锂的方法、产品及应用
CN110282665A (zh) 一种具有介观结构的锂电池正极材料前驱体及其制备方法
WO2024022431A1 (fr) Matériau d'électrode positive de batterie sodium-ion, son procédé de préparation et son utilisation
WO2024051095A1 (fr) Procédé de recyclage pour matériau d'électrode positive de batterie au sodium de prusse usagée, et utilisation
CN111403842B (zh) 废旧锂电池正极材料的回收方法和球形氧化镍材料及应用
WO2024060510A1 (fr) Procédé de récupération et procédé de préparation de matériau d'électrode positive de prusse
WO2024066175A1 (fr) Procédé d'élimination de radicaux carbonate à partir d'une liqueur mère de précipitation de lithium
WO2024066182A1 (fr) Matériau d'électrode positive aux à ions sodium de type prusse et son procédé de recyclage
CN115784188A (zh) 回收制备电池级磷酸铁的方法
CN110422884A (zh) 一种掺杂型铁酸锂的制备方法
CN115863570A (zh) 硫酸铁钠正极材料的制备方法
CN114899392A (zh) 一种锂离子电池磷酸铁锂或锰铁锂正极材料的制备方法