WO2024057747A1 - Power transmission shaft and propeller shaft - Google Patents

Power transmission shaft and propeller shaft Download PDF

Info

Publication number
WO2024057747A1
WO2024057747A1 PCT/JP2023/028042 JP2023028042W WO2024057747A1 WO 2024057747 A1 WO2024057747 A1 WO 2024057747A1 JP 2023028042 W JP2023028042 W JP 2023028042W WO 2024057747 A1 WO2024057747 A1 WO 2024057747A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
tube
transmission shaft
joint
joint member
Prior art date
Application number
PCT/JP2023/028042
Other languages
French (fr)
Japanese (ja)
Inventor
康史 穐田
莎 李
賢人 春名
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2024057747A1 publication Critical patent/WO2024057747A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/22Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or type of main drive shafting, e.g. cardan shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/50Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members

Definitions

  • the present invention relates to a power transmission shaft and a propeller shaft.
  • this propeller shaft as a power transmission shaft, a first shaft portion connected to a constant velocity joint that is relatively easy to bend is press-fitted into a first end of a tube, and a relatively easy-to-flex first shaft portion is press-fitted into a second end of a tube.
  • the second shaft part which connects to a rubber coupling that is difficult to bend, was press-fitted.
  • the first shaft part connected to the constant velocity joint which is easy to bend has a length (first collapse length) that goes into the tube, and the second shaft part connected to the rubber coupling which is difficult to bend. No consideration was given at all to the length of the collapse into the tube (second collapse length). For this reason, there remains room for improvement in that the collision performance of the propeller shaft becomes unstable.
  • the present invention was devised in view of the technical problems of the conventional propeller shaft, and an object of the present invention is to provide a power transmission shaft and a propeller shaft that can improve the stability of collision performance. It is said that
  • a first collapse length in which the first shaft portion of the first joint member that can be bent by the first bending load enters the inner peripheral portion of the tube is greater than the first bending load.
  • the second shaft portion of the second joint member having a bending load is set to be longer than the second collapse length into the inner peripheral portion of the tube.
  • the stability of collision performance can be improved.
  • FIG. 2 is a layout diagram showing the arrangement of a power transmission shaft (propeller shaft) in a vehicle according to the present invention.
  • 1 is a half-longitudinal cross-sectional view showing the entire power transmission shaft (propeller shaft) according to the first embodiment of the present invention.
  • 3 is a half-longitudinal cross-sectional view showing a state in which a collision load is input from the front to the power transmission shaft (propeller shaft) shown in FIG. 2, in which (a) is a state where no collapse has occurred, and (b) is a first
  • FIG. 6(c) is a diagram showing a state where a collapse has occurred on the end side, and (c) shows a state where a collapse has occurred on the second end side of the tube.
  • FIG. 3 is a half-longitudinal cross-sectional view showing a state where a collision load is input from the rear to the power transmission shaft (propeller shaft) shown in FIG. 2, in which (a) is a state where no collapse has occurred, and (b) is a second FIG. 6(c) is a diagram showing a state in which a collapse has occurred on the end side, and (c) a state in which a collapse has occurred on the first end side of the tube.
  • 3 is a half-longitudinal cross-sectional view showing a state in which a collision load is input from the front and back directions to the power transmission shaft (propeller shaft) shown in FIG.
  • FIG. 3 is a diagram showing a state where collapse has occurred on the first end side and the second end side.
  • FIG. 2 is a schematic diagram illustrating the effect of the present invention when a collapse occurs from the first end side, and (a) is a diagram showing a collapsed state of the power transmission shaft (propeller shaft) according to the present invention; , (b) are diagrams showing a collapsed state of a conventional power transmission shaft (propeller shaft).
  • FIG. 3 is a schematic diagram illustrating the effect of the present invention when a collapse occurs from the second end side, and (a) is a diagram showing a collapsed state of the power transmission shaft (propeller shaft) according to the present invention; , (b) are diagrams showing a collapsed state of a conventional power transmission shaft (propeller shaft).
  • FIG. 3 is a schematic diagram illustrating the effect of the present invention when a collapse occurs from the second end side, and (a) is a diagram showing a collapsed state of the power transmission shaft (propeller shaft) according to the present invention; , (b) are diagrams showing a collapsed state of a conventional power transmission shaft (propeller shaft).
  • FIG. 2 is a schematic diagram illustrating the effects of the present invention when collapse occurs from both sides of the first end and the second end
  • (a) is a diagram illustrating the collapse of the power transmission shaft (propeller shaft) according to the present invention. It is a figure which shows a state
  • (b) is a figure which shows the state of collapse of the conventional power transmission shaft (propeller shaft).
  • FIG. 2 is a half-longitudinal cross-sectional view showing the entire power transmission shaft (propeller shaft) according to a second embodiment of the present invention. It is a half-longitudinal sectional view showing the whole power transmission shaft (propeller shaft) concerning a 3rd embodiment of the present invention.
  • FIG. 3 is a layout diagram showing another example of the arrangement of a power transmission shaft (propeller shaft) in a vehicle according to the present invention.
  • the power transmission shaft (propeller shaft) according to the present invention will be described in detail based on the drawings.
  • the power transmission shaft (propeller shaft) will be described by exemplifying and applying it to a propeller shaft for an automobile, as in the conventional case.
  • FIG. 1 shows a layout diagram showing the arrangement of a power transmission shaft (propeller shaft) in a vehicle according to the present invention.
  • the vehicle V is a so-called FR (front engine rear drive) vehicle, and has an engine EG and an engine EG on the front axle FD that connects the front wheels FT.
  • a transmission TM as a power transmission device (transmission device) is arranged.
  • a differential DF serving as a second power transmission device (differential device) that transmits power to the rear wheel axle RD is arranged at the center of the rear wheel axle RD that connects the rear wheels RT.
  • the transmission TM and the differential DF are connected to enable power transmission via a propeller shaft PS serving as a power transmission shaft.
  • FIG. 2 shows a first embodiment of a power transmission shaft according to the present invention.
  • the left side of FIG. 2 will be referred to as the "front” and the right side will be referred to as the "rear”.
  • the direction along the rotation axis Z in FIG. 2 will be referred to as an "axial direction,” the direction perpendicular to the rotation axis Z as a “radial direction,” and the direction around the rotation axis Z as a "circumferential direction.”
  • FIG. 2 shows the overall form of the propeller shaft PS1 according to the first embodiment of the present invention, and shows a half-sectional view of the propeller shaft PS1 taken along the direction of the rotation axis Z.
  • the propeller shaft PS1 is arranged between a first power transmission device P1 arranged at the front of the vehicle and a second power transmission device P2 arranged at the rear of the vehicle.
  • the first power transmission device P1 corresponds to a transmission TM that is a speed change device
  • the second power transmission device P2 corresponds to a differential DF that is a differential device.
  • the propeller shaft PS1 is a so-called one-piece propeller shaft, and the front end side is connected to the first power transmission device P1 via the first joint member J1, and the rear end side is connected to the first power transmission device P1 via the first joint member J1. It is connected to the second power transmission device P2 via the joint member J2.
  • the propeller shaft PS1 includes a tube 1 formed in a generally cylindrical shape and a first joint member J1 that is inserted into the first end 11 that is the front end of the tube 1 and is connected to the first power transmission device P1. and a second joint member J2 that is inserted into the second end 12 that is the rear end of the tube 1 and is used for connection to the second power transmission device P2.
  • the tube 1 is formed into a cylindrical shape having a constant inner diameter R1 in the axial direction using a carbon fiber reinforced resin material (so-called CFRP) made of carbon fibers hardened with resin. Further, the tube 1 is formed so that the respective wall thicknesses T1 and T2 of the first end portion 11 and the second end portion 12 are thicker than the wall thickness T3 of the general portion (axially intermediate portion). Specifically, the tube 1 is integrally formed by laminating the carbon fiber reinforced resin material (CFRP) in the radial direction, and has at least two inner and outer layers including an inner circumferential layer 13 and an outer circumferential layer 14. is formed.
  • CFRP carbon fiber reinforced resin material
  • the tube 1 is made of carbon fiber reinforced resin (CFRP), but the tube 1 can be made of a metal material, for example, in addition to fiber reinforced resin formed by hardening fibers with resin. It may be formed by Further, when the tube 1 is formed of fiber-reinforced resin, in addition to the carbon fiber-reinforced resin (CFRP) according to this embodiment, it may be formed of, for example, glass fiber-reinforced resin (FRP) in which glass fibers are hardened with resin. .
  • CFRP carbon fiber reinforced resin
  • FRP glass fiber-reinforced resin
  • the first joint member J1 includes a first shaft portion 2 inserted into the inner peripheral portion 111 of the first end portion 11 of the tube 1, and a first joint portion 4 that connects the first shaft portion 2 and the first power transmission device P1. and has.
  • the first shaft portion 2 and the first joint portion 4 are fixed so as to be able to rotate together, and are integrally configured as a first joint member J1.
  • the second joint member J2 includes a second shaft portion 3 inserted into the inner peripheral portion 121 of the second end portion 12 of the tube 1, and a second joint portion 5 that connects the second shaft portion 3 and the second power transmission device P2. and has.
  • the second shaft portion 3 and the second joint portion 5 are fixed so as to be able to rotate together, and are integrally configured as a second joint member J2.
  • the first shaft portion 2 has a first connection base portion 21 that is exposed from the first end portion 11 of the tube 1 and is connected to the first joint portion 4, and a first insertion portion 22 that extends axially from the rear end portion of the first connection base portion 21 and is inserted into the inner peripheral portion 111 of the first end portion 11 of the tube 1.
  • the first connection base portion 21 and the first insertion portion 22 are integrally formed from a metal material.
  • the first connection base 21 includes a first base 23, a first insertion side connection part 24 whose diameter is expanded in a stepped shape from the rear end of the first base 23, and which is connected to the first insertion part 22, and a first base 23.
  • the first joint side connecting portion 25 is tapered in diameter from the front end of the first joint portion 23 in a step-like manner and is connected to the first joint portion 4 .
  • the first connection base 21 and the first joint portion 4 constitute a first main body portion according to the present invention.
  • the first insertion portion 22 is inserted into the inner peripheral portion 111 of the first end portion 11 of the tube 1 via a predetermined engagement means (serrations in this embodiment), and is fixed to be rotatable integrally with the tube 1.
  • the first insertion portion 22 has a first serration portion 26 formed on the outer circumferential side thereof over almost the entire axial direction, which can be connected to the tube 1 through serrations.
  • the first serration portion 26 is formed such that a groove 261 recessed inward in the radial direction extends in a direction parallel to the rotation axis Z, and the outer diameter D1 of the tooth tip 262 is set slightly larger than the inner diameter R1 of the tube 1. has been done. That is, the first serration portion 26 is formed by press-fitting the first insertion portion 22 into the first end portion 11 of the tube 1 and by biting the tooth tips 262 into the inner circumferential surface of the tube 1. It is rotatably engaged with the tube 1. Thereby, the first insertion portion 22 is supported in a fixed state at the inner peripheral portion 111 of the first end portion 11 of the tube 1 via the first serration portion 26 .
  • first serration part 26 is disposed between the first serration part 26 and the tube 1 so that the first insertion part 22 can move the inner peripheral part of the tube 1 from the first end 11 to the second end 12 by releasing the fixed state with the tube 1.
  • a first collision load F1 is set as a holding load that starts moving toward the side. Note that the first collision load F1 is based on arbitrary meshing elements such as the biting length L1 of the first serration part 26 that meshes with the inner peripheral part 111 of the first end 11 of the tube 1, and the biting allowance X1. Can be set.
  • the first joint part 4 is constituted by a universal joint (for example, a constant velocity joint in this embodiment), and is provided on the opposite side of the tube 1 in the axial direction with respect to the first shaft part 2. That is, the first joint part 4 is arranged to face the generally cylindrical inner ring member 41 fixed to the outer peripheral surface of the first joint side connecting part 25 of the first shaft part 2 and the outer peripheral side of the inner ring member 41. It has a generally cylindrical outer ring member 42 and a plurality of balls 43 that are rolling elements arranged between the outer ring member 42 and the inner ring member 41 so as to be rotatable.
  • a universal joint for example, a constant velocity joint in this embodiment
  • the outer diameter D3 of the outer ring member 42 is set larger than the outer diameter D1 of the first insertion portion 22.
  • the head 60 of the bolt 6 to be fastened is configured to come into contact with the end surface (first end surface 112) of the tube 1 on the first end 11 side.
  • a first collapse length S1 is set.
  • the first collapse length L1 is set longer than the second collapse length S2, which will be described later.
  • the first collapse length S1 is set to approximately twice the second collapse length S2, which will be described later. Note that the first collapse length S1 may be adjusted by the axial dimension of the first connection base 21 or by the axial dimension of the head 60 of the bolt 6.
  • a generally circular shaft through hole 411 through which the first joint side connecting portion 25 passes is axially penetrated on the inner peripheral side of the inner ring member 41. That is, the first joint side connecting portion 25 is press-fitted over almost the entire axial direction of the shaft through hole 411, and the first joint side connecting portion 25 and the inner ring member 41 can rotate together. Fixed.
  • an inner ring side axial groove 412 in which the balls 43 can roll is formed along the axial direction. That is, the ball 43 rolls between the inner ring side axial groove 412 and the outer ring side axial groove 421 (described later), allowing relative movement in the axial direction between the inner ring member 41 and the outer ring member 42, while also allowing the inner ring side axial direction
  • By engaging the balls 43 with the grooves 412 and the outer ring side axial grooves 421 By engaging the balls 43 with the grooves 412 and the outer ring side axial grooves 421, relative movement of the inner ring member 41 and the outer ring member 42 in the circumferential direction is restricted.
  • the outer ring member 42 is rotatably fixed to the first power transmission device P1 via a plurality of bolts 6 that pass through the outer ring member 42 in the axial direction. Further, on the inner peripheral side of the outer ring member 42, an outer ring side axial groove 421 in which the ball 43 can roll is formed along the axial direction. That is, the balls 43 roll between the outer ring side axial groove 421 and the inner ring side axial groove 412, allowing relative movement in the axial direction between the outer ring member 42 and the inner ring member 41. 421 and the inner ring side axial groove 412, the balls 43 engage to restrict the relative movement of the outer ring member 42 and the inner ring member 41 in the circumferential direction.
  • the first power transmission device P1 and the outer ring member 42 rotate together, so that the rotational torque output from the first power transmission device P1 is transmitted from the outer ring member 42 to the inner ring member 41 via the balls 43. be done. Based on this transmitted rotational torque, the inner ring member 41 and the first shaft portion 2 (first connection base portion 21) rotate together.
  • the second shaft portion 3 includes a second connection base 31 exposed from the second end 12 of the tube 1 and connected to the second joint portion 5, and extends in the axial direction from the front end of the second connection base 31.
  • the second insertion portion 32 is inserted into the inner peripheral portion 121 of the second end portion 12 of the tube 1.
  • the second connection base 31 and the second insertion portion 32 are integrally formed of a metal material.
  • the second connection base 31 includes a second base 33 , a second insertion side connection part 34 that is expanded in diameter from the front end of the second base 33 in a stepped manner and is connected to the second insertion part 32 , and a second insertion side connection part 34 that is connected to the second insertion part 32 . It has a second joint-side connecting portion 35 that is expanded in diameter in a stepped manner from the rear end portion and is connected to the second joint portion 5 . Note that the second connection base 31 and the second joint portion 5 constitute a second main body portion according to the present invention.
  • the second insertion portion 32 is inserted into the inner peripheral portion 121 of the second end portion 12 of the tube 1 via a predetermined engagement means (serrations in this embodiment), and is fixed to be rotatable integrally with the tube 1.
  • the second insertion portion 32 has a second serration portion 36 formed on the outer circumferential side thereof over almost the entire area in the axial direction, which can be connected to the tube 1 through serrations.
  • the axial dimension of the second serration portion 36 is set to be approximately the same as the axial dimension of the first serration portion 26.
  • the second biting length L2 set by the axial dimension of the second serration part 36 is approximately the same as the first biting length L1 set by the axial dimension of the first serration part 26. It is set.
  • the second serration portion 36 is formed such that a groove 361 recessed radially inward extends in a direction parallel to the rotation axis Z, and the outer diameter D2 of the tooth tip 362 is set slightly larger than the inner diameter R1 of the tube 1. has been done. That is, the second serration portion 36 is formed by press-fitting the second insertion portion 32 into the second end portion 12 of the tube 1 and by biting the tooth tip 362 into the inner circumferential surface of the tube 1. It is rotatably engaged with the tube 1. Thereby, the second insertion portion 32 is supported in a fixed state at the inner peripheral portion 121 of the second end portion 12 of the tube 1 via the second serration portion 36 .
  • the outer diameter D2 of the tooth tip 362 of the second serration portion 36 is set to be approximately the same outer diameter as the outer diameter D1 of the tooth tip 262 of the first serration portion 26.
  • the second biting allowance X2 of the second serration portion 36 is set to be approximately the same biting allowance as the first biting allowance X1 of the first serration portion 26.
  • the second serration part 36 is disposed between the second serration part 36 and the tube 1 so that the second insertion part 32 can move the inner peripheral part of the tube 1 from the second end part 12 to the first end part 11 by releasing the fixed state with the tube 1.
  • a second collision load F2 is set that starts moving toward the side.
  • the bite length L2 of the second serration portion 36 that meshes with the inner circumferential portion 121 of the second end portion 12 of the tube 1, and the bite length It can be set based on any meshing element such as the width X2.
  • the second biting length L2 and the second biting allowance X2 of the second serration part 36 are the same as the first biting length L1 and the first biting allowance X1 of the first serration part 26. Due to this setting, the second collision load F2 is set to be approximately the same as the first collision load F1.
  • the second joint part 5 is composed of a so-called rubber coupling, and is provided on the opposite side of the tube 1 in the axial direction with respect to the second shaft part 3. That is, the second joint part 5 has a substantially annular shape, is arranged at equal intervals in the circumferential direction, and has three first bolt through holes 51 for connecting with the second joint side connecting part 35 of the second shaft part 3. , three second bolt through holes 52 are arranged at equal intervals between the first bolt through holes 51 in the circumferential direction and are used for connection with the second power transmission device P2.
  • the second joint side connecting portion 35 formed in a three-pronged shape and the second joint portion 5 are fastened together through the first bolt 61 passing through the first bolt through hole 51, so that they can rotate together. Fixed.
  • the trifurcated second power transmission device P2 and the second joint portion 5 are fastened together via a second bolt (not shown) that passes through the second bolt through hole 52, and are fixed so as to be able to rotate together. be done.
  • the second joint portion 5 is constituted by a rubber coupling as described above.
  • the second joint part 5 is more difficult to bend than the first joint part 4 constituted by the constant velocity joint. That is, the second bending load B2, which is a load necessary when the second joint part 5 bends with respect to the rotation axis Z, is applied to the second joint part 5 when the first joint part 4 bends with respect to the rotation axis Z. This is larger than the first bending load B1, which is the load required when bending.
  • the first joint part 4 is bent with a relatively large first bending angle ⁇ 1 with respect to the rotation axis Z
  • the second joint part 5 is bent with a relatively small first bend angle ⁇ 1 with respect to the rotation axis Z. It is configured to bend at a second bending angle ⁇ 2 (see FIGS. 3(a), 4(a), and 5(a)).
  • the outer diameter D4 of the second joint portion 5 is set larger than the outer diameter D2 of the second insertion portion 32.
  • the inner end surface 351 of the second joint-side connecting portion 35 touches the second end portion 12 side of the tube 1. It is configured to be able to come into contact with the end surface (second end surface 122).
  • the inner peripheral portion 121 of the second end portion 12 of the tube 1 is A second collapse length S2 is set.
  • the collapse occurs on the first end 11 side or the second end 12 side of the tube 1, thereby buffering the axial load Fx and absorbing the vehicle collision energy.
  • the first connection base 21 to the second connection base 31 normally slipping into the inside of the tube 1, the axial load Fx is normally buffered, and the propeller shaft PS1 is bent toward the vehicle body. problems are suppressed.
  • FIG. 3 is a half-longitudinal cross-sectional view showing a state in which a collision load is input from the front to the power transmission shaft shown in FIG. (c) shows a state in which collapse has occurred on the end 11 side, and (c) shows a state in which collapse has occurred on the second end 12 side of the tube.
  • the first end of the tube 1 11 and the first insertion portion 22 are released (destroyed), and the first connection base 21 slips into the inner peripheral portion 111 of the first end portion 11 of the tube 1 .
  • the first insertion portion 22 is inserted into the inner peripheral portion 111 of the first end portion 11 of the tube 1 until the head 60 of the bolt 6 of the first joint portion 4 comes into contact with the first end surface 112 of the tube 1. moves from the first end 11 to the second end 12 side.
  • the axial load Fx is transmitted from the first shaft section 2 to the second shaft section 3 via the tube 1, so that the second shaft sandwiched between the tube 1 and the second power transmission device P2
  • the axial load Fx acts on the portion 3 from the second power transmission device P2 as a reaction.
  • a collapse occurs on the second end 12 side of the tube 1, delayed from the collapse on the first end 11 side described above.
  • FIG. 4 is a half-longitudinal cross-sectional view showing a state in which a collision load is input from the rear to the power transmission shaft shown in FIG. A state in which a collapse has occurred on the end 12 side, and (c) shows a state in which a collapse has occurred on the first end 11 side of the tube.
  • the second end of the tube 1 12 and the second insertion portion 32 are released (broken), and the second connection base 31 slips into the inner peripheral portion 121 of the second end portion 12 of the tube 1 .
  • the first insertion portion 22 is inserted into the inner peripheral portion 121 of the second end portion 12 of the tube 1 until the inner end surface 351 of the second joint-side connecting portion 35 comes into contact with the second end surface 122 of the tube 1. It moves from the first end 11 to the second end 12 side.
  • the axial load Fx is transmitted from the second shaft section 3 to the first shaft section 2 via the tube 1, and the first shaft section 2 is sandwiched between the tube 1 and the first power transmission device P1.
  • the axial load Fx acts from the first power transmission device P1 due to a reaction.
  • a collapse occurs on the first end 11 side of the tube 1, delayed from the collapse on the second end 12 side described above.
  • the first insertion portion 22 is inserted into the inner peripheral portion 111 of the first end portion 11 of the tube 1 until the head 60 of the bolt 6 of the first joint portion 4 comes into contact with the first end surface 112 of the tube 1. moves from the first end 11 to the second end 12 side.
  • FIG. 5 is a half-longitudinal cross-sectional view showing a state in which a collision load is input from the front and rear directions to the power transmission shaft shown in FIG. A state in which collapse has occurred on both the first end 11 side and the second end 12 side is shown.
  • an axial load Fx in the compression direction that is larger than the first collision load F1 and the second collision load F2 acts from the front and rear ends of the propeller shaft PS1.
  • the axial load Fx is transmitted from the first power transmission device P1 and the second power transmission device P2 to the first shaft portion 2 and the second shaft portion 3 via the first joint portion 4 and the second joint portion 5. .
  • collapse occurs simultaneously on the first end 11 side and the second end 12 side of the tube 1 from the normal state shown in FIG. 5(a).
  • the first insertion portion 22 is inserted into the inner peripheral portion 111 of the first end portion 11 of the tube 1 until the head 60 of the bolt 6 of the first joint portion 4 comes into contact with the first end surface 112 of the tube 1. It moves from the first end 11 to the second end 12 side.
  • the second insertion portion 32 is inserted into the second end at the inner peripheral portion 121 of the second end 12 of the tube 1 until the inner end surface 351 of the second joint-side connecting portion 35 comes into contact with the second end surface 122 of the tube 1. 12 to the first end 11 side.
  • FIG. 6 is a schematic diagram illustrating the effect of the present invention when a collapse occurs from the first end side, and (a) is a diagram showing a collapsed state of the power transmission shaft according to the present invention. , (b) shows the collapsed state of the conventional power transmission shaft.
  • FIG. 7 is a schematic diagram illustrating the effect of the present invention when a collapse occurs from the second end side, and (a) is a diagram showing a collapsed state of the power transmission shaft according to the present invention. , (b) shows the collapsed state of the conventional power transmission shaft.
  • FIG. 6 is a schematic diagram illustrating the effect of the present invention when a collapse occurs from the first end side
  • (a) is a diagram showing a collapsed state of the power transmission shaft according to the present invention.
  • FIG. 7 is a schematic diagram illustrating the effect of the present invention when a collapse occurs from the second end side
  • (a) is a diagram showing a collapsed state of the power transmission shaft according to the present invention.
  • (b) shows
  • FIG. 8 is a schematic diagram illustrating the effect of the present invention when collapse occurs from both sides of the first end and the second end, and (a) shows the collapse of the power transmission shaft according to the present invention. It is a figure which shows a state, (b) shows the state of collapse of the conventional power transmission shaft.
  • the conventional propeller shaft PS0 has a first collapse length S1, which is the length at which the first shaft part 2 connected to the first joint part 4, which is formed by a constant velocity joint that is relatively easy to bend, slips into the inside of the tube 1.
  • a first collapse length S1 which is the length at which the first shaft part 2 connected to the first joint part 4, which is formed by a constant velocity joint that is relatively easy to bend, slips into the inside of the tube 1.
  • the second collapse length S2 which is the length of the second shaft portion 3 connected to the second joint portion 5 made of a rubber coupling that is relatively hard to bend, diving into the inside of the tube 1. It wasn't. Therefore, in the propeller shaft PS0 in which the second collapse length S2 is longer than the first collapse length S1, there remains room for improvement in that the collision performance of the propeller shaft PS0 becomes unstable.
  • the first joint part 4 and the tube 1 come into contact with each other at an angle ⁇
  • the first joint part 4 has a One moment M1 is generated, and a second moment M2 is generated in the tube 1, which acts to lift the second end 12 side of the tube 1.
  • an angle ⁇ is formed between the second shaft portion 3 and the tube 1.
  • the second shaft portion 3 is caught on the inner peripheral portion 121 of the second end portion 12 of the tube 1, making it difficult for the second shaft portion 3 to enter the inside of the tube 1.
  • the collision performance of the propeller shaft PS0 may deteriorate.
  • the first joint part 4 is connected to the first joint part 4 before the second joint part 5 comes into contact with the second end surface 122. It comes into contact with the end surface 112. Then, since the first joint part 4 having a relatively small first bending load B1 and the tube 1 abut at a relatively large angle ⁇ , the first joint part 4 and the first end surface 112 of the tube 1 To match, a first moment M1 is generated in the first joint portion 4, and a second moment M2 is generated in the tube 1, acting to lift the second end portion 12 side of the tube 1.
  • the angle ⁇ is formed between the second shaft portion 3 and the tube 1, so that the second shaft portion 3 is caught on the inner peripheral portion 121 of the second end portion 12 of the tube 1, and the second shaft portion 3 becomes difficult to enter inside the tube 1.
  • the collision performance of the propeller shaft PS0 may deteriorate.
  • the propeller shaft PS1 according to the present embodiment can solve the problems of the conventional propeller shaft by providing the following effects.
  • the propeller shaft PS1 is a power transmission shaft (propeller shaft) that transmits power between the first power transmission device P1 and the second power transmission device P2 of the vehicle, and includes a tube 1 formed in a cylindrical shape,
  • the first joint member includes a first body part (first connection base 21 and first joint part 4) and a first insertion part 22, and the first insertion part 22 is connected to the rotation axis of the tube 1.
  • the outer peripheral part of the first insertion part 22 is fixedly supported by the inner peripheral part 111 of the first end 11.
  • the first main body portion (the first connection base portion 21 and the first joint portion 4) is provided on the opposite side of the first insertion portion 22 from the first end portion 11 in the direction of the rotation axis Z.
  • a first joint member J1 and a second joint connected to the first power transmission device P1 via a first joint portion 4 that can be bent in the direction of the rotational axis Z when a first bending load B1 is applied thereto.
  • the member includes a second main body portion (second connection base 31 and second joint portion 5) and a second insertion portion 32, and the second insertion portion 32 has an outer peripheral portion of the second insertion portion 32.
  • the tube 1 is provided so as to be movable from the second end 12 toward the first end 11, and the second main body (second connection base 31 and second joint 5) is movable in the direction of the rotation axis Z.
  • the second bending load B2 which is provided on the opposite side of the second insertion part 32 from the second end part 12 and is required when bending in the direction of the rotational axis Z, is set larger than the first bending load B1.
  • a second joint member J2 connected to the second power transmission device P2 via the second joint part 5 which is The first collapse length S1 at which the joint member J1 enters into the inner peripheral portion 111 of the tube 1 is longer than the second collapse length S2 at which the second joint member J2 enters into the inner peripheral portion 121 of the tube 1. There is.
  • the propeller shaft PS1 has a second bending load in which the first collapse length S1 of the first joint member J1 that bends based on the first bending load B1 is larger than the first bending load B1. It is set longer than the second collapse length S2 of the second joint member J2 that bends based on B2.
  • the first joint member is relatively easy to bend and has a relatively small first bending load B1.
  • first shaft part 2 of J1 enters the inside of the tube 1
  • first joint part 4 and the first end part 11 of the tube 1 come into contact with each other at an angle ⁇
  • first joint part 4 and A first moment M1 is generated in the first joint portion 4 so that the first end surface 112 of the tube 1 is aligned with the first end surface 112 of the tube 1
  • a second moment M2 is generated in the tube 1, causing the second end portion 12 side of the tube 1 to align with the first end surface 112 of the tube 1. It acts to lift.
  • the second shaft portion 3 forms an angle ⁇ with respect to the tube 1, but since the second collapse length S2 is relatively shorter than the first collapse length S1, the second shaft portion 3 can easily enter the inside of the tube 1. Thereby, the stability of the collision performance of the propeller shaft PS1 can be improved.
  • the second bending load B2 is larger than the first bending load B1, and the second joint 5 is relatively difficult to bend, so when the second shaft part 3 enters the inside of the tube 1, it is difficult for the second shaft part 3 and the tube 1 to form an angle, and the second joint part 5 and the second part of the tube 1 Even if the tube 1 contacts the end surface 122 so as to match, a large moment (first and second moments M1 and M2) does not act on the tube 1. This makes it difficult for an angle to form between the first shaft part 2 of the first joint member J1 and the tube 1, making it easier for the first shaft part 2 to enter the inside of the tube 1, thereby stabilizing the collision performance of the propeller shaft PS1. can improve sex.
  • the second collapse length S2 is relative to the first collapse length S1.
  • the second joint part 5 comes into contact with the second end surface 122 of the tube 1 before the first joint part 4 comes into contact with the first end surface 112 of the tube 1 .
  • the second bending load B2 is larger than the first bending load B1
  • the second joint part 5 is configured to be relatively difficult to bend, so that the second joint part 5 and the second end surface 122 of the tube 1 are Even if they abut in unison, no large moments (first and second moments M1, M2) act on the tube 1.
  • the first time during which the first joint part 4 contacts the first end 11 of the tube 1 is the first time. This is longer than the second time during which the second joint portion 5 abuts the second end portion 12 of the tube 1.
  • the first time when the first joint part 4 abuts the first end 11 of the tube 1 is different from the second time when the second joint part 5 abuts against the second end 12 of the tube 1. longer than time. Therefore, if the second end 12 side collapses first, or if the first end 11 side and the second end 12 side collapse at the same time, the first joint part 4 is connected to the first end 11 of the tube 1.
  • the second joint portion 5 abuts the second end portion 12 of the tube 1 before the abutment.
  • no large moments first and second moments M1, M2
  • the first joint member J1 is connected to the first power transmission device P1 via a constant velocity joint.
  • the first joint member J1 is connected to the first power transmission device P1 via the first joint portion 4 formed of a constant velocity joint.
  • This has the advantage of making it easier to stabilize the collision performance of the propeller shaft PS1, since the variation in bending load is smaller than in the case where the first joint portion 4 is constituted by a cardan joint.
  • the constant velocity joint (joint portion 4) is fastened to the first power transmission device P1 via a bolt 6 screwed from the tube 1 side toward the first power transmission device P1 side.
  • One collapse length S1 is the distance from the first end 11 of the tube 1 to the head 60 of the bolt 6.
  • the first joint portion 4 composed of a constant velocity joint is fastened to the first power transmission device P1 via the bolt 6.
  • Such bolt fastening is a general-purpose coupling means, and can reduce the manufacturing cost of the propeller shaft PS1 and improve the workability of attaching the propeller shaft PS1 to the vehicle V.
  • first collapse length S1 is set by the distance from the first end 11 of the tube 1 to the head 60 of the bolt 6. Therefore, by adjusting the height of the head 60 of the bolt 6, there is an advantage that the first collapse length S1 can be easily adjusted.
  • the second joint member J2 is fastened to the second power transmission device P2 via a rubber coupling, and the second collapse length S2 is from the second end 12 of the tube 1 to the rubber cup. This is the distance to the yoke (second joint side connecting portion 35) connected to the ring.
  • the second joint member J2 is connected to the second power transmission device P2 via the second joint portion 5 made of a rubber coupling. Therefore, the vibration of the vehicle V can be absorbed by the rubber coupling, and the sound vibration performance of the vehicle V can be improved.
  • the second collapse length S2 is set by the distance from the second end 12 of the tube 1 to the second joint-side connecting portion 35, which is a yoke connected to the rubber coupling. Since the rubber coupling (second joint part 5) constitutes a plane extending in a direction perpendicular to the direction of the rotation axis Z, the plane of the rubber coupling (second joint part 5) is aligned with the second end surface 122 of the tube 1. By bringing them into contact with each other, the stability of the collision performance of the propeller shaft PS1 is improved.
  • the rotational axis of the first main body (the first connection base 21 and the first joint 4) is at a first bending angle with respect to the rotational axis Z of the tube 1 at the first power transmission device P1.
  • the rotational axis of the second main body portion (the second connection base 31 and the second joint portion 5) is connected to the second power transmission device P2 at a second bending angle ⁇ 2 with respect to the rotational axis Z of the tube 1.
  • the first bending angle ⁇ 1 is smaller than the second bending angle ⁇ 2.
  • the first bending angle ⁇ 1 of the first joint member J1 is set smaller than the second bending angle ⁇ 2 of the second joint member J2. Normally, if a large bending angle is applied to an object with a large bending load, there is a risk that sound vibrations will occur. Therefore, by increasing the first bending angle ⁇ 1 of the first joint member J1 having a relatively large bending load and decreasing the second bending angle ⁇ 2 of the second joint member J2 having a relatively small bending load, The occurrence of noise is suppressed, and the sound and vibration performance of the propeller shaft PS1 can be improved.
  • At least one of the first insertion portion 22 and the second insertion portion 32 is coupled to the inner peripheral portion of the tube 1 via the serrations.
  • the first insertion section 22 is coupled to the inner circumference 111 of the first end 11 of the tube 1 via the first serration section 26, and the second insertion section 32 is connected to the inner circumference 111 of the first end 11 of the tube 1. It is coupled to the inner circumferential portion 121 of the second end portion 12 of , via the second serration portion 36 .
  • the first insertion part 22 and the second insertion part 32 whose outer peripheral surfaces are formed in a generally flat shape are connected to the inner peripheral part of the tube 1 by simple press-fitting or adhesive, the first insertion part 22 And it becomes possible to fix the second insertion portion 32 more firmly. Thereby, it is possible to ensure a large torque resistance in the rotational direction of the propeller shaft PS1, and to obtain a large holding load in the axial direction of the propeller shaft PS1.
  • the first power transmission device P1 is a transmission of the vehicle V and is a TM
  • the second power transmission device P2 is a differential DF of the vehicle V
  • the second joint member J2 is a rubber coupling. It is configured.
  • the second joint member J2 that connects the propeller shaft PS1 and the differential DF of the vehicle V is configured by a rubber coupling. Therefore, the vibration of the differential DF can be absorbed and blocked by the rubber coupling, and the sound vibration performance of the propeller shaft PS1 can be improved.
  • the tube 1 is made of a material made by hardening fibers with resin.
  • the tube 1 is formed of a fiber-reinforced resin material formed by hardening fibers with resin. Therefore, compared to the case where the tube 1 is formed of a metal material, it is possible to make the tube 1 lighter in weight, which contributes to improving the fuel efficiency of the automobile.
  • the tube 1 is made of the fiber-reinforced resin material described above, it is possible to reduce the reverberation of sound in the tube 1 compared to the case where the tube 1 is made of a metal material, and the sound of the propeller shaft PS1 can be reduced. It can also contribute to improving vibration performance.
  • the tube 1 is formed of carbon fiber reinforced resin (CFRP).
  • CFRP carbon fiber reinforced resin
  • the tube 1 is made of carbon fiber reinforced resin (CFRP)
  • the tube 1 is made of carbon fiber reinforced resin (CFRP). It has high strength and can further reduce the weight of the tube 1.
  • the tube 1 can be formed of glass fiber reinforced resin (FRP) as described above.
  • FRP glass fiber reinforced resin
  • the tube 1 can be formed at a lower cost than when the tube 1 is formed from other fiber-reinforced resins, such as carbon fiber-reinforced resin (CFRP).
  • CFRP carbon fiber-reinforced resin
  • FIG. 9 shows a second embodiment of the power transmission shaft (propeller shaft) according to the present invention, in which the configuration of the first joint member J1 of the propeller shaft PS1 according to the first embodiment is changed.
  • the basic configuration other than the changes is the same as that of the first embodiment, so the same reference numerals are given to the same configurations as in the first embodiment, and the explanation thereof will be omitted.
  • the left side of FIG. 9 will be referred to as "front” and the right side will be referred to as "rear”, and the direction along rotation axis Z in FIG.
  • the orthogonal direction will be referred to as a "radial direction” and the direction around the rotational axis Z will be referred to as a "circumferential direction”.
  • FIG. 9 shows the overall form of the propeller shaft PS2 according to the second embodiment of the present invention, and shows a half-sectional view of the propeller shaft PS2 taken along the direction of the rotation axis Z.
  • the first joint portion 4 of the first joint member J1 is not the constant velocity joint according to the first embodiment, but is constructed from a well-known Cardan joint. ing. That is, the first joint member J1 includes a first yoke 71 connected to the transmission TM (see FIG. 1) corresponding to the first power transmission device P1, a second yoke 72 connected to the tube 1, and a first yoke 72 connected to the tube 1. 71 and a cross shaft 73 disposed between the second yoke 72 and the second yoke 72 .
  • the first yoke 71 has a bifurcated shape that faces each other in the radial direction, and a first shaft insertion hole 710 into which a pair of first shaft portions 731 of the cross shaft 73 is inserted is formed in a penetrating state along the radial direction. Ru. Further, the first yoke 71 is formed integrally with a connecting shaft portion 74 that extends in the axial direction toward the transmission TM (see FIG. 1), and is connected to the output shaft (not shown) of the transmission TM via the connecting shaft portion 74. ).
  • the connecting shaft portion 74 includes a vehicle-side connecting portion 741 that is connected to an output shaft (not shown) of the transmission TM via a spline, and a stepped enlarged diameter shape on the rear end side of this vehicle-side connecting portion 741. 1, and the vehicle side connection part 741 and the yoke side connection part 742 are integrally formed.
  • the vehicle side connecting portion 741 is formed in a generally cylindrical shape and is inserted into the transmission case (not shown) of the transmission TM, and the female spline portion 741a formed on the inner circumferential side is connected to the output shaft (not shown) of the transmission TM.
  • the connector is connected so as to be relatively movable in the axial direction.
  • the second yoke 72 has a bifurcated shape that faces each other in the radial direction, and has a second shaft insertion hole 720 into which the other pair of second shaft portions 732 of the cross shaft 73 are inserted. and are arranged alternately with respect to the first yoke 71 in the circumferential direction. Further, the second yoke 72 is formed integrally with the first connection base 21 of the first shaft portion 2, constitutes the first joint side connection portion 25, and is connected to the tube 1 via the first insertion portion 22. be done.
  • the first joint member J1 is connected to the first power transmission device P1 (see FIG. 1) via the Cardan joint.
  • the first joint member J1 is connected to the first power transmission device P1 via the Cardan joint. This has the advantage that the manufacturing cost of the propeller shaft PS2 can be reduced compared to the case where the first joint member J1 is configured by a constant velocity joint.
  • FIG. 10 shows a third embodiment of the power transmission shaft (propeller shaft) according to the present invention, in which the configuration of the first insertion part 22 and the second insertion part 32 in the propeller shaft PS1 according to the first embodiment has been changed. It is something. Note that the basic configuration other than the changes is the same as that of the first embodiment, so the same reference numerals are given to the same configurations as in the first embodiment, and the explanation thereof will be omitted.
  • the left side of FIG. 10 will be referred to as "front” and the right side will be referred to as "rear”, and the direction along rotation axis Z in FIG.
  • the orthogonal direction will be referred to as a "radial direction” and the direction around the rotational axis Z will be referred to as a "circumferential direction”.
  • FIG. 10 shows the overall form of the propeller shaft PS3 according to the third embodiment of the present invention, and shows a half-sectional view of the propeller shaft PS3 taken along the direction of the rotation axis Z.
  • the tube 1 is formed of a metal material.
  • the first insertion section 22 is spline-coupled to the first end 11 of the tube 1
  • the second insertion section 32 is spline-coupled to the second end 12 of the tube 1.
  • a first female spline portion 15 having a well-known spline extending along the axial direction is formed on the inner peripheral portion 111 of the first end portion 11 of the tube 1.
  • a first male spline has a well-known spline on the outer circumference of the first insertion portion 22 that engages with the first female spline portion 15 of the tube 1 and is movable in the axial direction along the first female spline portion 15.
  • a spline portion 27 is formed. The first insertion portion 22 is press-fitted into the first female spline portion 15 of the tube 1 via the first male spline portion 27 .
  • a second female spline portion 16 having a well-known spline extending along the axial direction is formed on the inner peripheral portion 121 of the second end 12 of the tube 1.
  • the outer periphery of the second insertion portion 32 of the tube 1 has a well-known spline that engages with the second female spline portion 16 of the tube 1 and is movable in the axial direction along the second female spline portion 16.
  • a second male spline portion 37 is formed. The second insertion portion 32 is press-fitted into the second female spline portion 16 of the tube 1 via the second male spline portion 37 .
  • At least one of the first insertion portion 22 and the second insertion portion 32 is spline-coupled to the inner peripheral portion of the tube 1.
  • both the first insertion section 22 and the second insertion section 32 are spline-coupled to the inner circumference of the tube 1. Therefore, it is possible to cause collapse with a smaller collision load than when the first insertion section 22 and the second insertion section 32 are connected through serrations. This makes it possible to control the occurrence of collapse and contribute to stabilizing the collision performance of propeller shaft PS3.
  • the tube 1 is formed of a metal material.
  • the tube 1 is formed of a metal material. Therefore, the tube 1 can be formed at low cost, which can contribute to reducing the manufacturing cost of the propeller shaft PS3.
  • the first insertion portion 22 has a first male spline portion 27 that engages with the first female spline portion 15 formed on the inner peripheral portion of the tube 1.
  • the first insertion portion 22 is spline-coupled to the tube 1 via the first male spline portion 27 that engages with the first female spline portion 15 of the tube 1. Therefore, compared to the case where the tube 1 is formed of fiber reinforced resin, the propeller shaft PS3 can be manufactured at a relatively low cost. This has the advantage that the play between the first insertion section 22 and the tube 1 can be reduced, and torque transmission from the first insertion section 22 to the tube 1 can be improved.
  • the second insertion portion 32 has a second male spline portion 37 that engages with the second female spline portion 16 formed on the inner peripheral portion of the tube 1.
  • the second insertion portion 32 is spline-coupled to the tube 1 via the second male spline portion 37 that engages with the second female spline portion 16 of the tube 1. Therefore, compared to the case where the tube 1 is made of fiber-reinforced resin, the propeller shaft PS3 can be manufactured at a relatively low cost. This has the advantage that play between the tubes 1 and 1 can be reduced, and torque transmission from the tube 1 to the second insertion section 32 can be improved.
  • the present invention is not limited to the configurations and aspects exemplified in the above-described embodiments, etc., and can be freely modified according to the specifications, costs, etc. to which it is applied, as long as it can achieve the effects of the present invention described above. It can be changed to
  • the first power transmission device P1 is a transmission TM mounted on a vehicle
  • the second power transmission device P2 is a differential DF mounted on a vehicle
  • the configuration may be the opposite.
  • the engine EG and transmission TM are mounted at the rear of the vehicle, and the driving force of the engine EG output from the transmission TM is transmitted to the front of the vehicle by a propeller shaft PS.
  • the first power transmission device P1 may be the differential DF of the vehicle V
  • the second power transmission device P2 may be the transmission TM of the vehicle V.
  • the first joint member J1 which is relatively easy to bend, is connected to the differential DF, which has a relatively large movement. Therefore, the movement of the differential DF can be absorbed by the first joint member J1, which is easy to bend, and the sound and vibration performance of the propeller shaft PS can be improved.
  • the first power transmission device P1 may be used as a drive source such as an engine, and the second power transmission device P2 may be used as the transmission TM, Moreover, the reverse may be sufficient.
  • the present invention can also be applied to a vehicle that uses an electric motor as a stepless reduction gear instead of the transmission TM as the first power transmission device P1.
  • the first collision load F1 is obtained by setting the first biting length L1 and the second biting length L2, and the first biting allowance X1 and the second biting allowance X2 to be approximately the same.
  • the first collapse length L1 and the second collision load F2 are set to be the same.
  • the first collision load F1 and the second collision load F2 are adjusted by providing a difference between the length L2 or the first bite allowance X1 and the second bite allowance X2, and the first joint member J1 and the second joint member J2 are adjusted.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Motor Power Transmission Devices (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

The present invention is related to a propeller shaft (PS1) that is a power transmission shaft, in which a first collapse length (S1) of a first joint member (J1) that bends on the basis of a first bending load is set to be longer than a second collapse length (S2) of a second joint member (J2) that bends on the basis of a second bending load that is greater than the first bending load. As a result, even when an axial load is applied from the first end portion (11) side, the second end portion (12) side, or both of the first end portion (11) side and the second end portion (12) side, the second joint member (J2) can be smoothly inserted into a tube (1), and the collision performance of the propeller shaft (PS1) can be stabilized.

Description

動力伝達軸及びプロペラシャフトPower transmission shaft and propeller shaft
 本発明は、動力伝達軸及びプロペラシャフトに関する。 The present invention relates to a power transmission shaft and a propeller shaft.
 従来の動力伝達軸であるプロペラシャフトとしては、例えば以下の特許文献1に記載されたものが知られている。 As a conventional propeller shaft that is a power transmission shaft, for example, the one described in Patent Document 1 below is known.
 概略を説明すれば、この動力伝達軸としてのプロペラシャフトは、チューブの第1端部に比較的屈曲しやすい等速ジョイントと繋がる第1シャフト部が圧入され、チューブの第2端部に比較的屈曲し難いラバーカップリングと繋がる第2シャフト部が圧入されていた。 Briefly, in this propeller shaft as a power transmission shaft, a first shaft portion connected to a constant velocity joint that is relatively easy to bend is press-fitted into a first end of a tube, and a relatively easy-to-flex first shaft portion is press-fitted into a second end of a tube. The second shaft part, which connects to a rubber coupling that is difficult to bend, was press-fitted.
特開2021-138203号公報JP 2021-138203 Publication
 しかしながら、前記従来のプロペラシャフトでは、屈曲しやすい等速ジョイントと繋がる第1シャフト部がチューブの内部に潜り込む長さ(第1コラプス長さ)と、屈曲し難いラバーカップリングと繋がる第2シャフト部がチューブの内部に潜り込む長さ(第2コラプス長さ)との長短について、全く考慮されていなかった。このため、プロペラシャフトの衝突性能が不安定なものとなってしまう点で改善の余地が残されていた。 However, in the conventional propeller shaft, the first shaft part connected to the constant velocity joint which is easy to bend has a length (first collapse length) that goes into the tube, and the second shaft part connected to the rubber coupling which is difficult to bend. No consideration was given at all to the length of the collapse into the tube (second collapse length). For this reason, there remains room for improvement in that the collision performance of the propeller shaft becomes unstable.
 そこで、本発明は、前記従来のプロペラシャフトの技術的課題に鑑みて案出されたものであって、衝突性能の安定性を向上させることができる動力伝達軸及びプロペラシャフトを提供することを目的としている。 Therefore, the present invention was devised in view of the technical problems of the conventional propeller shaft, and an object of the present invention is to provide a power transmission shaft and a propeller shaft that can improve the stability of collision performance. It is said that
 本発明は、その一態様として、第1屈曲荷重により屈曲可能な第1継手部材の第1シャフト部がチューブの内周部へと入り込む第1コラプス長さが、前記第1屈曲荷重よりも大きい屈曲荷重を有する第2継手部材の第2シャフト部がチューブの内周部へと入り込む第2コラプス長さよりも長く設定されている。 In one aspect of the present invention, a first collapse length in which the first shaft portion of the first joint member that can be bent by the first bending load enters the inner peripheral portion of the tube is greater than the first bending load. The second shaft portion of the second joint member having a bending load is set to be longer than the second collapse length into the inner peripheral portion of the tube.
 本発明によれば、衝突性能の安定性を向上させることができる。 According to the present invention, the stability of collision performance can be improved.
本発明に係る動力伝達軸(プロペラシャフト)の車両における配置を示すレイアウト図である。FIG. 2 is a layout diagram showing the arrangement of a power transmission shaft (propeller shaft) in a vehicle according to the present invention. 本発明の第1実施形態に係る動力伝達軸(プロペラシャフト)の全体を表した半縦断面図である。1 is a half-longitudinal cross-sectional view showing the entire power transmission shaft (propeller shaft) according to the first embodiment of the present invention. 図2に示す動力伝達軸(プロペラシャフト)に前方から衝突荷重が入力された状態を示す半縦断面図であって、(a)はコラプスが生じていない状態、(b)はチューブの第1端部側にコラプスが生じた状態、(c)はチューブの第2端部側にコラプスが生じた状態、を示す図である。3 is a half-longitudinal cross-sectional view showing a state in which a collision load is input from the front to the power transmission shaft (propeller shaft) shown in FIG. 2, in which (a) is a state where no collapse has occurred, and (b) is a first FIG. 6(c) is a diagram showing a state where a collapse has occurred on the end side, and (c) shows a state where a collapse has occurred on the second end side of the tube. 図2に示す動力伝達軸(プロペラシャフト)に後方から衝突荷重が入力された状態を示す半縦断面図であって、(a)はコラプスが生じていない状態、(b)はチューブの第2端部側にコラプスが生じた状態、(c)はチューブの第1端部側にコラプスが生じた状態、を示す図である。3 is a half-longitudinal cross-sectional view showing a state where a collision load is input from the rear to the power transmission shaft (propeller shaft) shown in FIG. 2, in which (a) is a state where no collapse has occurred, and (b) is a second FIG. 6(c) is a diagram showing a state in which a collapse has occurred on the end side, and (c) a state in which a collapse has occurred on the first end side of the tube. 図2に示す動力伝達軸(プロペラシャフト)に前後方向から衝突荷重が入力された状態を示す半縦断面図であって、(a)はコラプスが生じていない状態、(b)はチューブの第1端部側に及び第2端部側にコラプスが生じた状態、を示す図である。3 is a half-longitudinal cross-sectional view showing a state in which a collision load is input from the front and back directions to the power transmission shaft (propeller shaft) shown in FIG. FIG. 3 is a diagram showing a state where collapse has occurred on the first end side and the second end side. 第1端部側からコラプスが発生したときの本発明の作用効果を説明する模式図であって、(a)は本発明に係る動力伝達軸(プロペラシャフト)のコラプスの状態を示す図であり、(b)は従来の動力伝達軸(プロペラシャフト)のコラプスの状態を示す図である。FIG. 2 is a schematic diagram illustrating the effect of the present invention when a collapse occurs from the first end side, and (a) is a diagram showing a collapsed state of the power transmission shaft (propeller shaft) according to the present invention; , (b) are diagrams showing a collapsed state of a conventional power transmission shaft (propeller shaft). 第2端部側からコラプスが発生したときの本発明の作用効果を説明する模式図であって、(a)は本発明に係る動力伝達軸(プロペラシャフト)のコラプスの状態を示す図であり、(b)は従来の動力伝達軸(プロペラシャフト)のコラプスの状態を示す図である。FIG. 3 is a schematic diagram illustrating the effect of the present invention when a collapse occurs from the second end side, and (a) is a diagram showing a collapsed state of the power transmission shaft (propeller shaft) according to the present invention; , (b) are diagrams showing a collapsed state of a conventional power transmission shaft (propeller shaft). 第1端部及び第2端部の両側からコラプスが発生したときの本発明の作用効果を説明する模式図であって、(a)は本発明に係る動力伝達軸(プロペラシャフト)のコラプスの状態を示す図であり、(b)は従来の動力伝達軸(プロペラシャフト)のコラプスの状態を示す図である。FIG. 2 is a schematic diagram illustrating the effects of the present invention when collapse occurs from both sides of the first end and the second end, and (a) is a diagram illustrating the collapse of the power transmission shaft (propeller shaft) according to the present invention. It is a figure which shows a state, (b) is a figure which shows the state of collapse of the conventional power transmission shaft (propeller shaft). 本発明の第2実施形態に係る動力伝達軸(プロペラシャフト)の全体を表した半縦断面図である。FIG. 2 is a half-longitudinal cross-sectional view showing the entire power transmission shaft (propeller shaft) according to a second embodiment of the present invention. 本発明の第3実施形態に係る動力伝達軸(プロペラシャフト)の全体を表した半縦断面図である。It is a half-longitudinal sectional view showing the whole power transmission shaft (propeller shaft) concerning a 3rd embodiment of the present invention. 本発明に係る動力伝達軸(プロペラシャフト)の車両における配置の他例を示すレイアウト図である。FIG. 3 is a layout diagram showing another example of the arrangement of a power transmission shaft (propeller shaft) in a vehicle according to the present invention.
 以下に、本発明に係る動力伝達軸(プロペラシャフト)の実施形態について、図面に基づいて詳述する。なお、下記の実施形態では、当該動力伝達軸(プロペラシャフト)を、従来と同様に、自動車用のプロペラシャフトについて適用したものを例示して説明する。 Below, embodiments of the power transmission shaft (propeller shaft) according to the present invention will be described in detail based on the drawings. In the following embodiments, the power transmission shaft (propeller shaft) will be described by exemplifying and applying it to a propeller shaft for an automobile, as in the conventional case.
 図1は、本発明に係る動力伝達軸(プロペラシャフト)の車両における配置を表したレイアウト図を示している。 FIG. 1 shows a layout diagram showing the arrangement of a power transmission shaft (propeller shaft) in a vehicle according to the present invention.
 図1に示すように、車両Vは、いわゆるFR(フロントエンジン・リヤドライブ)車両であって、前輪FT同士を繋ぐ前輪車軸FDの上に、エンジンEGと、エンジンEGの駆動力を伝達する第1動力伝達装置(変速装置)としてのトランスミッションTMとが配置される。一方、後輪RT同士を繋ぐ後輪車軸RDの中央部に、後輪車軸RDに動力を伝達する第2動力伝達装置(差動装置)としてのディファレンシャルDFが配置される。そして、トランスミッションTMとディファレンシャルDFとが、動力伝達軸としてのプロペラシャフトPSを介して、動力伝達可能に接続されている。 As shown in FIG. 1, the vehicle V is a so-called FR (front engine rear drive) vehicle, and has an engine EG and an engine EG on the front axle FD that connects the front wheels FT. A transmission TM as a power transmission device (transmission device) is arranged. On the other hand, a differential DF serving as a second power transmission device (differential device) that transmits power to the rear wheel axle RD is arranged at the center of the rear wheel axle RD that connects the rear wheels RT. The transmission TM and the differential DF are connected to enable power transmission via a propeller shaft PS serving as a power transmission shaft.
 〔第1実施形態〕
 図2~図8は、本発明に係る動力伝達軸の第1実施形態を示す。なお、当該実施形態の説明においては、便宜上、図2の左側を「前」、右側を「後」として説明する。また、図2の回転軸線Zに沿う方向を「軸方向」、回転軸線Zに直交する方向を「径方向」、回転軸線Z周りの方向を「周方向」として説明する。
[First embodiment]
2 to 8 show a first embodiment of a power transmission shaft according to the present invention. In the description of this embodiment, for convenience, the left side of FIG. 2 will be referred to as the "front" and the right side will be referred to as the "rear". Further, the direction along the rotation axis Z in FIG. 2 will be referred to as an "axial direction," the direction perpendicular to the rotation axis Z as a "radial direction," and the direction around the rotation axis Z as a "circumferential direction."
 (プロペラシャフトの構成)
 図2は、本発明の第1実施形態に係るプロペラシャフトPS1の全体の形態を示し、当該プロペラシャフトPS1を回転軸線Zの方向に沿って切断した半断面図を示している。
(Propeller shaft configuration)
FIG. 2 shows the overall form of the propeller shaft PS1 according to the first embodiment of the present invention, and shows a half-sectional view of the propeller shaft PS1 taken along the direction of the rotation axis Z.
 図2に示すように、プロペラシャフトPS1は、車両前方に配置される第1動力伝達装置P1と、車両後方に配置される第2動力伝達装置P2と、の間に配置される。なお、本実施形態において、第1動力伝達装置P1は、変速装置であるトランスミッションTMに相当し、第2動力伝達装置P2は、差動装置であるディファレンシャルDFに相当する。 As shown in FIG. 2, the propeller shaft PS1 is arranged between a first power transmission device P1 arranged at the front of the vehicle and a second power transmission device P2 arranged at the rear of the vehicle. In this embodiment, the first power transmission device P1 corresponds to a transmission TM that is a speed change device, and the second power transmission device P2 corresponds to a differential DF that is a differential device.
 すなわち、本実施形態に係るプロペラシャフトPS1は、いわゆる1ピース構造のプロペラシャフトであって、前端側が、第1継手部材J1を介して第1動力伝達装置P1に接続され、後端側が、第2継手部材J2を介して第2動力伝達装置P2に接続される。すなわち、プロペラシャフトPS1は、概ね円筒状に形成されたチューブ1と、チューブ1の前端部である第1端部11に挿入され、第1動力伝達装置P1との接続に供する第1継手部材J1と、チューブ1の後端部である第2端部12に挿入され、第2動力伝達装置P2との接続に供する第2継手部材J2と、を有する。 That is, the propeller shaft PS1 according to the present embodiment is a so-called one-piece propeller shaft, and the front end side is connected to the first power transmission device P1 via the first joint member J1, and the rear end side is connected to the first power transmission device P1 via the first joint member J1. It is connected to the second power transmission device P2 via the joint member J2. That is, the propeller shaft PS1 includes a tube 1 formed in a generally cylindrical shape and a first joint member J1 that is inserted into the first end 11 that is the front end of the tube 1 and is connected to the first power transmission device P1. and a second joint member J2 that is inserted into the second end 12 that is the rear end of the tube 1 and is used for connection to the second power transmission device P2.
 チューブ1は、炭素繊維を樹脂によって固めた炭素繊維強化樹脂材料(いわゆるCFRP)により、軸方向において一定の内径R1を有する円筒状に形成されている。また、チューブ1は、第1端部11及び第2端部12のそれぞれの肉厚T1、T2が、一般部(軸方向中間部)の肉厚T3よりも厚く形成されている。具体的には、チューブ1は、前記炭素繊維強化樹脂材料(CFRP)を径方向において積層することによって一体に形成されたものであり、内周層13と外周層14とを有する少なくとも内外2層に形成されている。 The tube 1 is formed into a cylindrical shape having a constant inner diameter R1 in the axial direction using a carbon fiber reinforced resin material (so-called CFRP) made of carbon fibers hardened with resin. Further, the tube 1 is formed so that the respective wall thicknesses T1 and T2 of the first end portion 11 and the second end portion 12 are thicker than the wall thickness T3 of the general portion (axially intermediate portion). Specifically, the tube 1 is integrally formed by laminating the carbon fiber reinforced resin material (CFRP) in the radial direction, and has at least two inner and outer layers including an inner circumferential layer 13 and an outer circumferential layer 14. is formed.
 なお、本実施形態では、チューブ1が炭素繊維強化樹脂(CFRP)で形成されたものを例示するが、当該チューブ1は、繊維を樹脂で固めて形成される繊維強化樹脂のほか、例えば金属材料によって形成されていてもよい。また、チューブ1を繊維強化樹脂によって形成する場合、本実施形態に係る炭素繊維強化樹脂(CFRP)のほか、例えばガラス繊維を樹脂によって固めたガラス繊維強化樹脂(FRP)で形成されていてもよい。 In this embodiment, the tube 1 is made of carbon fiber reinforced resin (CFRP), but the tube 1 can be made of a metal material, for example, in addition to fiber reinforced resin formed by hardening fibers with resin. It may be formed by Further, when the tube 1 is formed of fiber-reinforced resin, in addition to the carbon fiber-reinforced resin (CFRP) according to this embodiment, it may be formed of, for example, glass fiber-reinforced resin (FRP) in which glass fibers are hardened with resin. .
 第1継手部材J1は、チューブ1の第1端部11の内周部111に挿入される第1シャフト部2と、第1シャフト部2と第1動力伝達装置P1を繋ぐ第1継手部4と、を有する。第1シャフト部2と第1継手部4とは、一体回転可能に固定されていて、第1継手部材J1として一体的に構成される。 The first joint member J1 includes a first shaft portion 2 inserted into the inner peripheral portion 111 of the first end portion 11 of the tube 1, and a first joint portion 4 that connects the first shaft portion 2 and the first power transmission device P1. and has. The first shaft portion 2 and the first joint portion 4 are fixed so as to be able to rotate together, and are integrally configured as a first joint member J1.
 第2継手部材J2は、チューブ1の第2端部12の内周部121に挿入される第2シャフト部3と、第2シャフト部3と第2動力伝達装置P2を繋ぐ第2継手部5と、を有する。第2シャフト部3と第2継手部5とは、一体回転可能に固定されていて、第2継手部材J2として一体的に構成される。 The second joint member J2 includes a second shaft portion 3 inserted into the inner peripheral portion 121 of the second end portion 12 of the tube 1, and a second joint portion 5 that connects the second shaft portion 3 and the second power transmission device P2. and has. The second shaft portion 3 and the second joint portion 5 are fixed so as to be able to rotate together, and are integrally configured as a second joint member J2.
 第1シャフト部2は、チューブ1の第1端部11から露出し、第1継手部4に接続される第1接続基部21と、第1接続基部21の後端部から軸方向に延出し、チューブ1の第1端部11の内周部111に挿入される第1挿入部22と、を有する。第1接続基部21と第1挿入部22とは、金属材料により一体に形成される。 The first shaft portion 2 has a first connection base portion 21 that is exposed from the first end portion 11 of the tube 1 and is connected to the first joint portion 4, and a first insertion portion 22 that extends axially from the rear end portion of the first connection base portion 21 and is inserted into the inner peripheral portion 111 of the first end portion 11 of the tube 1. The first connection base portion 21 and the first insertion portion 22 are integrally formed from a metal material.
 第1接続基部21は、第1基部23と、第1基部23の後端部から段差状に拡径され、第1挿入部22に接続される第1挿入側接続部24と、第1基部23の前端部から段差状に縮径され、第1継手部4に接続される第1継手側接続部25と、を有する。なお、この第1接続基部21と第1継手部4とにより、本発明に係る第1本体部が構成される。 The first connection base 21 includes a first base 23, a first insertion side connection part 24 whose diameter is expanded in a stepped shape from the rear end of the first base 23, and which is connected to the first insertion part 22, and a first base 23. The first joint side connecting portion 25 is tapered in diameter from the front end of the first joint portion 23 in a step-like manner and is connected to the first joint portion 4 . Note that the first connection base 21 and the first joint portion 4 constitute a first main body portion according to the present invention.
 第1挿入部22は、所定の噛み合い手段(本実施形態ではセレーション)を介してチューブ1の第1端部11の内周部111に挿入されて、チューブ1と一体回転可能に固定される。具体的には、第1挿入部22は、外周側に、チューブ1とセレーション結合可能な第1セレーション部26が、軸方向のほぼ全域にわたって形成されている。 The first insertion portion 22 is inserted into the inner peripheral portion 111 of the first end portion 11 of the tube 1 via a predetermined engagement means (serrations in this embodiment), and is fixed to be rotatable integrally with the tube 1. Specifically, the first insertion portion 22 has a first serration portion 26 formed on the outer circumferential side thereof over almost the entire axial direction, which can be connected to the tube 1 through serrations.
 第1セレーション部26は、径方向内側へ凹む溝261が回転軸線Zと平行な方向に延びるように形成されていて、歯先262の外径D1が、チューブ1の内径R1よりも若干大きく設定されている。すなわち、第1セレーション部26は、第1挿入部22がチューブ1の第1端部11の内部に圧入され、歯先262がチューブ1の内周面に食い込むことによって、第1挿入部22とチューブ1とを一体に回転可能に係合する。これにより、第1挿入部22は、チューブ1の第1端部11の内周部111において、第1セレーション部26を介して固定状態に支持される。 The first serration portion 26 is formed such that a groove 261 recessed inward in the radial direction extends in a direction parallel to the rotation axis Z, and the outer diameter D1 of the tooth tip 262 is set slightly larger than the inner diameter R1 of the tube 1. has been done. That is, the first serration portion 26 is formed by press-fitting the first insertion portion 22 into the first end portion 11 of the tube 1 and by biting the tooth tips 262 into the inner circumferential surface of the tube 1. It is rotatably engaged with the tube 1. Thereby, the first insertion portion 22 is supported in a fixed state at the inner peripheral portion 111 of the first end portion 11 of the tube 1 via the first serration portion 26 .
 また、第1セレーション部26は、チューブ1との間において、チューブ1との固定状態を解除して第1挿入部22がチューブ1の内周部を第1端部11から第2端部12側に向かって移動し始める、保持荷重としての第1衝突荷重F1が設定されている。なお、第1衝突荷重F1は、チューブ1の第1端部11の内周部111と噛み合う第1セレーション部26の噛み込み長さL1や、噛み込み代X1など、任意の噛み合い要素に基づいて設定することができる。 Further, the first serration part 26 is disposed between the first serration part 26 and the tube 1 so that the first insertion part 22 can move the inner peripheral part of the tube 1 from the first end 11 to the second end 12 by releasing the fixed state with the tube 1. A first collision load F1 is set as a holding load that starts moving toward the side. Note that the first collision load F1 is based on arbitrary meshing elements such as the biting length L1 of the first serration part 26 that meshes with the inner peripheral part 111 of the first end 11 of the tube 1, and the biting allowance X1. Can be set.
 第1継手部4は、自在継手(例えば本実施形態では等速ジョイント)により構成され、第1シャフト部2に対してチューブ1の軸方向の反対側に設けられている。すなわち、第1継手部4は、第1シャフト部2の第1継手側接続部25の外周面に固定された概ね円筒状の内輪部材41と、内輪部材41の外周側に対向して配置された概ね円筒状の外輪部材42と、外輪部材42と内輪部材41の間に転動可能に配置された転動体である複数のボール43と、を有する。 The first joint part 4 is constituted by a universal joint (for example, a constant velocity joint in this embodiment), and is provided on the opposite side of the tube 1 in the axial direction with respect to the first shaft part 2. That is, the first joint part 4 is arranged to face the generally cylindrical inner ring member 41 fixed to the outer peripheral surface of the first joint side connecting part 25 of the first shaft part 2 and the outer peripheral side of the inner ring member 41. It has a generally cylindrical outer ring member 42 and a plurality of balls 43 that are rolling elements arranged between the outer ring member 42 and the inner ring member 41 so as to be rotatable.
 また、第1継手部4は、外輪部材42の外径D3が第1挿入部22の外径D1よりも大きく設定される。具体的には、車両の前方側の衝突時において第1シャフト部2がチューブ1の内部へ潜り込んだ際、第1継手部4に対してチューブ1側からねじ込まれて第1動力伝達装置P1に締結されるボルト6の頭部60がチューブ1の第1端部11側の端面(第1端面112)と当接するように構成されている。 Furthermore, in the first joint portion 4, the outer diameter D3 of the outer ring member 42 is set larger than the outer diameter D1 of the first insertion portion 22. Specifically, when the first shaft portion 2 slips into the tube 1 during a collision on the front side of the vehicle, it is screwed into the first joint portion 4 from the tube 1 side and connected to the first power transmission device P1. The head 60 of the bolt 6 to be fastened is configured to come into contact with the end surface (first end surface 112) of the tube 1 on the first end 11 side.
 ここで、本実施形態では、チューブ1の第1端面112とボルト6の頭部60との間隔によって、後述するコラプス発生時おいてにチューブ1の第1端部11の内周部111に潜り込む第1コラプス長さS1が設定されている。第1コラプス長さL1は、後述する第2コラプス長さS2よりも長く設定される。具体的には、第1コラプス長さS1は、後述する第2コラプス長さS2の概ね2倍程度に設定されている。なお、第1コラプス長さS1は、第1接続基部21の軸方向寸法によって調整してもよく、また、ボルト6の頭部60の軸方向寸法によって調整してもよい。 Here, in this embodiment, due to the distance between the first end surface 112 of the tube 1 and the head 60 of the bolt 6, when a collapse occurs, which will be described later, the bolt slips into the inner circumference 111 of the first end 11 of the tube 1. A first collapse length S1 is set. The first collapse length L1 is set longer than the second collapse length S2, which will be described later. Specifically, the first collapse length S1 is set to approximately twice the second collapse length S2, which will be described later. Note that the first collapse length S1 may be adjusted by the axial dimension of the first connection base 21 or by the axial dimension of the head 60 of the bolt 6.
 内輪部材41の内周側には、第1継手側接続部25が貫通する概ね円形の軸貫通孔411が、軸方向に沿って貫通されている。すなわち、第1継手側接続部25が軸貫通孔411の軸方向のほぼ全域にわたって第1継手側接続部25が圧入されていて、第1継手側接続部25と内輪部材41が一体回転可能に固定されている。 A generally circular shaft through hole 411 through which the first joint side connecting portion 25 passes is axially penetrated on the inner peripheral side of the inner ring member 41. That is, the first joint side connecting portion 25 is press-fitted over almost the entire axial direction of the shaft through hole 411, and the first joint side connecting portion 25 and the inner ring member 41 can rotate together. Fixed.
 また、内輪部材41の外周側には、ボール43が転動可能な内輪側軸方向溝412が、軸方向に沿って形成されている。すなわち、内輪側軸方向溝412と後述する外輪側軸方向溝421の間をボール43が転動することで内輪部材41と外輪部材42の軸方向の相対移動を許容しつつ、内輪側軸方向溝412と外輪側軸方向溝421とにボール43が係合することで内輪部材41と外輪部材42の周方向の相対移動が規制されるようになっている。 Further, on the outer peripheral side of the inner ring member 41, an inner ring side axial groove 412 in which the balls 43 can roll is formed along the axial direction. That is, the ball 43 rolls between the inner ring side axial groove 412 and the outer ring side axial groove 421 (described later), allowing relative movement in the axial direction between the inner ring member 41 and the outer ring member 42, while also allowing the inner ring side axial direction By engaging the balls 43 with the grooves 412 and the outer ring side axial grooves 421, relative movement of the inner ring member 41 and the outer ring member 42 in the circumferential direction is restricted.
 外輪部材42は、当該外輪部材42を軸方向に貫通する複数のボルト6を介して、第1動力伝達装置P1に一体回転可能に固定される。また、外輪部材42の内周側には、ボール43が転動可能な外輪側軸方向溝421が、軸方向に沿って形成されている。すなわち、外輪側軸方向溝421と内輪側軸方向溝412との間をボール43が転動することで外輪部材42と内輪部材41の軸方向の相対移動を許容しつつ、外輪側軸方向溝421と内輪側軸方向溝412とにボール43が係合することで外輪部材42と内輪部材41の周方向の相対移動が規制されるようになっている。 The outer ring member 42 is rotatably fixed to the first power transmission device P1 via a plurality of bolts 6 that pass through the outer ring member 42 in the axial direction. Further, on the inner peripheral side of the outer ring member 42, an outer ring side axial groove 421 in which the ball 43 can roll is formed along the axial direction. That is, the balls 43 roll between the outer ring side axial groove 421 and the inner ring side axial groove 412, allowing relative movement in the axial direction between the outer ring member 42 and the inner ring member 41. 421 and the inner ring side axial groove 412, the balls 43 engage to restrict the relative movement of the outer ring member 42 and the inner ring member 41 in the circumferential direction.
 かかる構成から、第1動力伝達装置P1と外輪部材42とが一体に回転することにより、第1動力伝達装置P1から出力された回転トルクが外輪部材42からボール43を介して内輪部材41に伝達される。そして、この伝達された回転トルクに基づいて、内輪部材41と第1シャフト部2(第1接続基部21)とが一体に回転する。 With this configuration, the first power transmission device P1 and the outer ring member 42 rotate together, so that the rotational torque output from the first power transmission device P1 is transmitted from the outer ring member 42 to the inner ring member 41 via the balls 43. be done. Based on this transmitted rotational torque, the inner ring member 41 and the first shaft portion 2 (first connection base portion 21) rotate together.
 第2シャフト部3は、チューブ1の第2端部12から露出し、第2継手部5に接続される第2接続基部31と、第2接続基部31の前端部から軸方向に延出し、チューブ1の第2端部12の内周部121に挿入される第2挿入部32と、を有する。第2接続基部31と第2挿入部32とは、金属材料により一体に形成される。 The second shaft portion 3 includes a second connection base 31 exposed from the second end 12 of the tube 1 and connected to the second joint portion 5, and extends in the axial direction from the front end of the second connection base 31. The second insertion portion 32 is inserted into the inner peripheral portion 121 of the second end portion 12 of the tube 1. The second connection base 31 and the second insertion portion 32 are integrally formed of a metal material.
 第2接続基部31は、第2基部33と、第2基部33の前端部から段差状に拡径され、第2挿入部32に接続される第2挿入側接続部34と、第2基部33の後端部から段差状に拡径され、第2継手部5に接続される第2継手側接続部35と、を有する。なお、この第2接続基部31と第2継手部5とにより、本発明に係る第2本体部が構成される。 The second connection base 31 includes a second base 33 , a second insertion side connection part 34 that is expanded in diameter from the front end of the second base 33 in a stepped manner and is connected to the second insertion part 32 , and a second insertion side connection part 34 that is connected to the second insertion part 32 . It has a second joint-side connecting portion 35 that is expanded in diameter in a stepped manner from the rear end portion and is connected to the second joint portion 5 . Note that the second connection base 31 and the second joint portion 5 constitute a second main body portion according to the present invention.
 第2挿入部32は、所定の噛み合い手段(本実施形態ではセレーション)を介してチューブ1の第2端部12の内周部121に挿入されて、チューブ1と一体回転可能に固定される。具体的には、第2挿入部32は、外周側に、チューブ1とセレーション結合可能な第2セレーション部36が、軸方向のほぼ全域にわたって形成されている。 The second insertion portion 32 is inserted into the inner peripheral portion 121 of the second end portion 12 of the tube 1 via a predetermined engagement means (serrations in this embodiment), and is fixed to be rotatable integrally with the tube 1. Specifically, the second insertion portion 32 has a second serration portion 36 formed on the outer circumferential side thereof over almost the entire area in the axial direction, which can be connected to the tube 1 through serrations.
 なお、本実施形態では、第2セレーション部36の軸方向寸法が、第1セレーション部26の軸方向寸法と概ね同じに設定されている。換言すれば、第2セレーション部36の軸方向寸法によって設定される第2噛み込み長さL2が、第1セレーション部26の軸方向寸法によって設定される第1噛み込み長さL1と概ね同じに設定されている。 Note that in this embodiment, the axial dimension of the second serration portion 36 is set to be approximately the same as the axial dimension of the first serration portion 26. In other words, the second biting length L2 set by the axial dimension of the second serration part 36 is approximately the same as the first biting length L1 set by the axial dimension of the first serration part 26. It is set.
 第2セレーション部36は、径方向内側へ凹む溝361が回転軸線Zと平行な方向に延びるように形成されていて、歯先362の外径D2が、チューブ1の内径R1よりも若干大きく設定されている。すなわち、第2セレーション部36は、第2挿入部32がチューブ1の第2端部12の内部に圧入され、歯先362がチューブ1の内周面に食い込むことによって、第2挿入部32とチューブ1とを一体に回転可能に係合する。これにより、第2挿入部32は、チューブ1の第2端部12の内周部121において、第2セレーション部36を介して固定状態に支持される。 The second serration portion 36 is formed such that a groove 361 recessed radially inward extends in a direction parallel to the rotation axis Z, and the outer diameter D2 of the tooth tip 362 is set slightly larger than the inner diameter R1 of the tube 1. has been done. That is, the second serration portion 36 is formed by press-fitting the second insertion portion 32 into the second end portion 12 of the tube 1 and by biting the tooth tip 362 into the inner circumferential surface of the tube 1. It is rotatably engaged with the tube 1. Thereby, the second insertion portion 32 is supported in a fixed state at the inner peripheral portion 121 of the second end portion 12 of the tube 1 via the second serration portion 36 .
 なお、本実施形態では、第2セレーション部36の歯先362の外径D2は、第1セレーション部26の歯先262の外径D1と概ね同じ外径に設定されている。換言すれば、本実施形態では、第2セレーション部36の第2噛み込み代X2が、第1セレーション部26の第1噛み込み代X1と概ね同じ噛み込み代に設定されている。 Note that in this embodiment, the outer diameter D2 of the tooth tip 362 of the second serration portion 36 is set to be approximately the same outer diameter as the outer diameter D1 of the tooth tip 262 of the first serration portion 26. In other words, in this embodiment, the second biting allowance X2 of the second serration portion 36 is set to be approximately the same biting allowance as the first biting allowance X1 of the first serration portion 26.
 また、第2セレーション部36は、チューブ1との間において、チューブ1との固定状態を解除して第2挿入部32がチューブ1の内周部を第2端部12から第1端部11側に向かって移動し始める、第2衝突荷重F2が設定されている。なお、この第2衝突荷重F2についても、第1衝突荷重F1と同様に、チューブ1の第2端部12の内周部121と噛み合う第2セレーション部36の噛み込み長さL2や、噛み込み代X2など、任意の噛み合い要素に基づいて設定することができる。 Further, the second serration part 36 is disposed between the second serration part 36 and the tube 1 so that the second insertion part 32 can move the inner peripheral part of the tube 1 from the second end part 12 to the first end part 11 by releasing the fixed state with the tube 1. A second collision load F2 is set that starts moving toward the side. In addition, regarding this second collision load F2, similarly to the first collision load F1, the bite length L2 of the second serration portion 36 that meshes with the inner circumferential portion 121 of the second end portion 12 of the tube 1, and the bite length It can be set based on any meshing element such as the width X2.
 本実施形態では、第2セレーション部36の第2噛み込み長さL2及び第2噛み込み代X2が、第1セレーション部26の第1噛み込み長さL1及び第1噛み込み代X1と同じに設定されていることによって、第2衝突荷重F2は、第1衝突荷重F1と概ね同じに設定されている。 In this embodiment, the second biting length L2 and the second biting allowance X2 of the second serration part 36 are the same as the first biting length L1 and the first biting allowance X1 of the first serration part 26. Due to this setting, the second collision load F2 is set to be approximately the same as the first collision load F1.
 第2継手部5は、いわゆるラバーカップリングで構成されていて、第2シャフト部3に対してチューブ1の軸方向の反対側に設けられている。すなわち、第2継手部5は、ほぼ環状を呈し、周方向に等間隔に配置され、第2シャフト部3の第2継手側接続部35との接続に供する3つの第1ボルト貫通孔51と、第1ボルト貫通孔51の周方向間に等間隔に配置され、第2動力伝達装置P2との接続に供する3つの第2ボルト貫通孔52と、を有する。 The second joint part 5 is composed of a so-called rubber coupling, and is provided on the opposite side of the tube 1 in the axial direction with respect to the second shaft part 3. That is, the second joint part 5 has a substantially annular shape, is arranged at equal intervals in the circumferential direction, and has three first bolt through holes 51 for connecting with the second joint side connecting part 35 of the second shaft part 3. , three second bolt through holes 52 are arranged at equal intervals between the first bolt through holes 51 in the circumferential direction and are used for connection with the second power transmission device P2.
 すなわち、第1ボルト貫通孔51を貫通する第1ボルト61を介して、三つ叉状に形成された第2継手側接続部35と第2継手部5とが締結されて、一体回転可能に固定されている。他方、第2ボルト貫通孔52を貫通する図示外の第2ボルトを介して、三つ叉状に形成された第2動力伝達装置P2と第2継手部5が締結され、一体回転可能に固定される。 That is, the second joint side connecting portion 35 formed in a three-pronged shape and the second joint portion 5 are fastened together through the first bolt 61 passing through the first bolt through hole 51, so that they can rotate together. Fixed. On the other hand, the trifurcated second power transmission device P2 and the second joint portion 5 are fastened together via a second bolt (not shown) that passes through the second bolt through hole 52, and are fixed so as to be able to rotate together. be done.
 なお、本実施形態では、第2継手部5は、上述のようにラバーカップリングによって構成されている。このため、第2継手部5は、前記等速ジョイントによって構成される第1継手部4よりも屈曲し難いものとなっている。すなわち、第2継手部5は、第2継手部5が回転軸線Zに対して屈曲する際に必要な荷重である第2屈曲荷重B2が、第1継手部4が回転軸線Zに対して屈曲する際に必要な荷重である第1屈曲荷重B1よりも大きいものとなっている。換言すれば、プロペラシャフトPS1は、第1継手部4は、回転軸線Zに対して比較的大きい第1屈曲角θ1をもって屈曲し、第2継手部5は、回転軸線Zに対して比較的小さい第2屈曲角θ2をもって屈曲する構成となっている(図3(a)、図4(a)、図5(a)参照)。 Note that in this embodiment, the second joint portion 5 is constituted by a rubber coupling as described above. For this reason, the second joint part 5 is more difficult to bend than the first joint part 4 constituted by the constant velocity joint. That is, the second bending load B2, which is a load necessary when the second joint part 5 bends with respect to the rotation axis Z, is applied to the second joint part 5 when the first joint part 4 bends with respect to the rotation axis Z. This is larger than the first bending load B1, which is the load required when bending. In other words, in the propeller shaft PS1, the first joint part 4 is bent with a relatively large first bending angle θ1 with respect to the rotation axis Z, and the second joint part 5 is bent with a relatively small first bend angle θ1 with respect to the rotation axis Z. It is configured to bend at a second bending angle θ2 (see FIGS. 3(a), 4(a), and 5(a)).
 また、第2継手部5は、第2継手部5の外径D4が第2挿入部32の外径D2よりも大きく設定される。具体的には、車両の後方側の衝突時において第2シャフト部3がチューブ1の内部へ潜り込んだ際、第2継手側接続部35の内側端面351がチューブ1の第2端部12側の端面(第2端面122)と当接可能に構成されている。なお、本実施形態では、チューブ1の第2端面122と第2継手側接続部35の内側端面351との間隔により、後述するコラプス発生時においてチューブ1の第2端部12の内周部121に潜り込む第2コラプス長さS2が設定されている。 Further, the outer diameter D4 of the second joint portion 5 is set larger than the outer diameter D2 of the second insertion portion 32. Specifically, when the second shaft portion 3 sneaks into the tube 1 during a collision on the rear side of the vehicle, the inner end surface 351 of the second joint-side connecting portion 35 touches the second end portion 12 side of the tube 1. It is configured to be able to come into contact with the end surface (second end surface 122). Note that in this embodiment, due to the distance between the second end surface 122 of the tube 1 and the inner end surface 351 of the second joint side connecting portion 35, the inner peripheral portion 121 of the second end portion 12 of the tube 1 is A second collapse length S2 is set.
 (プロペラシャフトのコラプス構造)
 以下に、本実施形態に係るプロペラシャフトPS1のコラプス構造について、図3~図5に基づいて説明する。なお、以下において、「コラプス」とは、プロペラシャフトPS1に対して軸方向荷重Fxが入力されることで、チューブ1に対する第1挿入部22及び第2挿入部32の固定状態が解除(破壊)され、第1シャフト部2(第1接続基部21)及び第2シャフト部3(第2接続基部31)がチューブ1の内部に潜り込むことをいう。
(Collapse structure of propeller shaft)
The collapse structure of the propeller shaft PS1 according to the present embodiment will be explained below based on FIGS. 3 to 5. In addition, in the following, "collapse" means that the fixed state of the first insertion part 22 and the second insertion part 32 with respect to the tube 1 is released (destruction) by inputting an axial load Fx to the propeller shaft PS1. This means that the first shaft portion 2 (first connection base 21) and the second shaft portion 3 (second connection base 31) slip into the inside of the tube 1.
 そして、このように、チューブ1の第1端部11側ないし第2端部12側においてコラプスが発生することにより、前記軸方向荷重Fxが緩衝され、車両の衝突エネルギが吸収される。換言すれば、第1接続基部21ないし第2接続基部31がチューブ1の内部へと正常に潜り込むことにより、前記軸方向荷重Fxが正常に緩衝されて、プロペラシャフトPS1が車体側へ屈曲するなどの不具合が抑制される。 As described above, the collapse occurs on the first end 11 side or the second end 12 side of the tube 1, thereby buffering the axial load Fx and absorbing the vehicle collision energy. In other words, by the first connection base 21 to the second connection base 31 normally slipping into the inside of the tube 1, the axial load Fx is normally buffered, and the propeller shaft PS1 is bent toward the vehicle body. problems are suppressed.
 図3は、図2に示す動力伝達軸に前方から衝突荷重が入力された状態を示す半縦断面図であって、(a)はコラプスが生じていない状態、(b)はチューブの第1端部11側にコラプスが生じた状態、(c)はチューブの第2端部12側にコラプスが生じた状態を示している。 FIG. 3 is a half-longitudinal cross-sectional view showing a state in which a collision load is input from the front to the power transmission shaft shown in FIG. (c) shows a state in which collapse has occurred on the end 11 side, and (c) shows a state in which collapse has occurred on the second end 12 side of the tube.
 図3に示すように、車両が前方から衝突することにより、プロペラシャフトPS1の前端側から第1衝突荷重F1よりも大きい圧縮方向の軸方向荷重Fxが作用すると、軸方向荷重Fxは、第1動力伝達装置P1から第1継手部4を介して第1シャフト部2へ伝達される。すると、まず、図3(a)に示す通常の状態から、チューブ1の第1端部11側に、先行してコラプスが発生する。 As shown in FIG. 3, when a vehicle collides from the front and an axial load Fx in the compression direction that is larger than the first collision load F1 acts from the front end side of the propeller shaft PS1, the axial load Fx becomes the first collision load Fx. The power is transmitted from the power transmission device P1 to the first shaft portion 2 via the first joint portion 4. Then, collapse first occurs on the first end 11 side of the tube 1 from the normal state shown in FIG. 3(a).
 具体的には、第1衝突荷重F1よりも大きい軸方向荷重Fxが入力された第1シャフト部2とチューブ1の間において、図3(b)に示すように、チューブ1の第1端部11と第1挿入部22との固定状態が解除(破壊)されて、第1接続基部21がチューブ1の第1端部11の内周部111へと潜り込む。具体的には、第1継手部4のボルト6の頭部60がチューブ1の第1端面112と当接するまで、チューブ1の第1端部11の内周部111において、第1挿入部22が第1端部11から第2端部12側へ移動する。 Specifically, between the first shaft portion 2 and the tube 1 to which an axial load Fx larger than the first collision load F1 is input, as shown in FIG. 3(b), the first end of the tube 1 11 and the first insertion portion 22 are released (destroyed), and the first connection base 21 slips into the inner peripheral portion 111 of the first end portion 11 of the tube 1 . Specifically, the first insertion portion 22 is inserted into the inner peripheral portion 111 of the first end portion 11 of the tube 1 until the head 60 of the bolt 6 of the first joint portion 4 comes into contact with the first end surface 112 of the tube 1. moves from the first end 11 to the second end 12 side.
 続いて、第1シャフト部2からチューブ1を介して第2シャフト部3へと軸方向荷重Fxが伝達されることによって、チューブ1と第2動力伝達装置P2との間に挟まれる第2シャフト部3が、反作用によって第2動力伝達装置P2から前記軸方向荷重Fxが作用する。すると、上述した第1端部11側のコラプスに遅れて、チューブ1の第2端部12側において、コラプスが発生する。 Subsequently, the axial load Fx is transmitted from the first shaft section 2 to the second shaft section 3 via the tube 1, so that the second shaft sandwiched between the tube 1 and the second power transmission device P2 The axial load Fx acts on the portion 3 from the second power transmission device P2 as a reaction. Then, a collapse occurs on the second end 12 side of the tube 1, delayed from the collapse on the first end 11 side described above.
 すなわち、第2衝突荷重F2よりも大きい軸方向荷重Fxの入力を受けた第2シャフト部3とチューブ1の間において、図3(c)に示すように、チューブ1の第2端部12と第2挿入部32との固定状態が解除(破壊)されて、第2接続基部31がチューブ1の第2端部12の内部へと潜り込む。具体的には、第2継手側接続部35の内側端面351がチューブ1の第2端面122と当接するまで、チューブ1の第2端部12において、第2挿入部32が第2端部12から第1端部11側へ移動する。 That is, as shown in FIG. 3(c), between the second shaft portion 3 and the tube 1 which received an input of an axial load Fx larger than the second collision load F2, the second end portion 12 of the tube 1 and The fixed state with the second insertion portion 32 is released (destroyed), and the second connection base 31 slips into the second end portion 12 of the tube 1 . Specifically, the second insertion portion 32 is inserted into the second end portion 12 of the tube 1 until the inner end surface 351 of the second joint-side connecting portion 35 comes into contact with the second end surface 122 of the tube 1. It moves from there to the first end portion 11 side.
 図4は、図2に示す動力伝達軸に後方から衝突荷重が入力された状態を示す半縦断面図であって、(a)はコラプスが生じていない状態、(b)はチューブの第2端部12側にコラプスが生じた状態、(c)はチューブの第1端部11側にコラプスが生じた状態を示している。 FIG. 4 is a half-longitudinal cross-sectional view showing a state in which a collision load is input from the rear to the power transmission shaft shown in FIG. A state in which a collapse has occurred on the end 12 side, and (c) shows a state in which a collapse has occurred on the first end 11 side of the tube.
 図4に示すように、車両が後方から衝突することにより、プロペラシャフトPS1の後端側から第2衝突荷重F2よりも大きい圧縮方向の軸方向荷重Fxが作用すると、軸方向荷重Fxは、第2動力伝達装置P2から第2継手部5を介して第2シャフト部3へ伝達される。すると、まず、図4(a)に示す通常の状態から、チューブ1の第2端部12側に、先行してコラプスが発生する。 As shown in FIG. 4, when a vehicle collides from behind and an axial load Fx in the compression direction that is larger than the second collision load F2 acts from the rear end side of the propeller shaft PS1, the axial load Fx is The power is transmitted from the second power transmission device P2 to the second shaft portion 3 via the second joint portion 5. Then, collapse first occurs on the second end 12 side of the tube 1 from the normal state shown in FIG. 4(a).
 具体的には、第2衝突荷重F2よりも大きい軸方向荷重Fxが入力された第2シャフト部3とチューブ1の間において、図4(b)に示すように、チューブ1の第2端部12と第2挿入部32との固定状態が解除(破壊)されて、第2接続基部31がチューブ1の第2端部12の内周部121へと潜り込む。具体的には、第2継手側接続部35の内側端面351がチューブ1の第2端面122と当接するまで、チューブ1の第2端部12の内周部121において、第1挿入部22が第1端部11から第2端部12側へ移動する。 Specifically, between the second shaft portion 3 and the tube 1 to which an axial load Fx larger than the second collision load F2 is input, as shown in FIG. 4(b), the second end of the tube 1 12 and the second insertion portion 32 are released (broken), and the second connection base 31 slips into the inner peripheral portion 121 of the second end portion 12 of the tube 1 . Specifically, the first insertion portion 22 is inserted into the inner peripheral portion 121 of the second end portion 12 of the tube 1 until the inner end surface 351 of the second joint-side connecting portion 35 comes into contact with the second end surface 122 of the tube 1. It moves from the first end 11 to the second end 12 side.
 続いて、第2シャフト部3からチューブ1を介して第1シャフト部2へと軸方向荷重Fxが伝達されて、チューブ1と第1動力伝達装置P1との間に挟まれる第1シャフト部2が、反作用によって第1動力伝達装置P1から前記軸方向荷重Fxが作用する。すると、上述した第2端部12側のコラプスに遅れて、チューブ1の第1端部11側において、コラプスが発生する。 Subsequently, the axial load Fx is transmitted from the second shaft section 3 to the first shaft section 2 via the tube 1, and the first shaft section 2 is sandwiched between the tube 1 and the first power transmission device P1. However, the axial load Fx acts from the first power transmission device P1 due to a reaction. Then, a collapse occurs on the first end 11 side of the tube 1, delayed from the collapse on the second end 12 side described above.
 すなわち、第1衝突荷重F1よりも大きい軸方向荷重Fxの入力を受けた第1シャフト部2とチューブ1の間において、図4(c)に示すように、チューブ1の第1端部11と第1挿入部22との固定状態が解除(破壊)されて、第1接続基部21がチューブ1の第1端部11の内部へと潜り込む。具体的には、第1継手部4のボルト6の頭部60がチューブ1の第1端面112と当接するまで、チューブ1の第1端部11の内周部111において、第1挿入部22が第1端部11から第2端部12側へ移動する。 That is, as shown in FIG. 4(c), between the first shaft portion 2 and the tube 1 which received an input of an axial load Fx larger than the first collision load F1, the first end portion 11 of the tube 1 and The fixed state with the first insertion section 22 is released (destroyed), and the first connection base 21 slips into the inside of the first end 11 of the tube 1 . Specifically, the first insertion portion 22 is inserted into the inner peripheral portion 111 of the first end portion 11 of the tube 1 until the head 60 of the bolt 6 of the first joint portion 4 comes into contact with the first end surface 112 of the tube 1. moves from the first end 11 to the second end 12 side.
 図5は、図2に示す動力伝達軸に前後方向から衝突荷重が入力された状態を示す半縦断面図であって、(a)はコラプスが生じていない状態、(b)はチューブの第1端部11側及び第2端部12側の両方にコラプスが生じた状態を示している。 FIG. 5 is a half-longitudinal cross-sectional view showing a state in which a collision load is input from the front and rear directions to the power transmission shaft shown in FIG. A state in which collapse has occurred on both the first end 11 side and the second end 12 side is shown.
 図5に示すように、車両が前後方向において衝突することにより、プロペラシャフトPS1の前後端側から第1衝突荷重F1及び第2衝突荷重F2よりも大きい圧縮方向の軸方向荷重Fxが作用すると、軸方向荷重Fxは、第1動力伝達装置P1及び第2動力伝達装置P2から第1継手部4及び第2継手部5を介して第1シャフト部2及び第2シャフト部3へと伝達される。すると、図5(a)に示す通常の状態から、チューブ1の第1端部11側及び第2端部12側において、同時にコラプスが発生する。 As shown in FIG. 5, when a vehicle collides in the longitudinal direction, an axial load Fx in the compression direction that is larger than the first collision load F1 and the second collision load F2 acts from the front and rear ends of the propeller shaft PS1. The axial load Fx is transmitted from the first power transmission device P1 and the second power transmission device P2 to the first shaft portion 2 and the second shaft portion 3 via the first joint portion 4 and the second joint portion 5. . Then, collapse occurs simultaneously on the first end 11 side and the second end 12 side of the tube 1 from the normal state shown in FIG. 5(a).
 具体的には、第1衝突荷重F1よりも大きい軸方向荷重Fxの入力を受けた第1シャフト部2とチューブ1の間において、図4(b)に示すように、チューブ1の第1端部11と第1挿入部22との固定状態が解除(破壊)されて、第1接続基部21がチューブ1の第1端部11の内周部111へと潜り込む。また、同時に、第2衝突荷重F2よりも大きい軸方向荷重Fxの入力を受けた第2シャフト部3とチューブ1の間において、図4(b)に示すように、チューブ1の第2端部12と第2挿入部32との固定状態が解除(破壊)されて、第2接続基部31がチューブ1の第2端部12の内周部121へと潜り込む。 Specifically, as shown in FIG. 4(b), between the first shaft portion 2 and the tube 1 which received an input of an axial load Fx larger than the first collision load F1, the first end of the tube 1 The fixed state between the portion 11 and the first insertion portion 22 is released (destroyed), and the first connection base 21 slips into the inner peripheral portion 111 of the first end portion 11 of the tube 1 . At the same time, as shown in FIG. 4(b), between the second shaft portion 3 and the tube 1 which received an input of an axial load Fx larger than the second collision load F2, the second end of the tube 1 12 and the second insertion portion 32 are released (broken), and the second connection base 31 slips into the inner peripheral portion 121 of the second end portion 12 of the tube 1 .
 具体的には、第1継手部4のボルト6の頭部60がチューブ1の第1端面112と当接するまで、チューブ1の第1端部11の内周部111において第1挿入部22が第1端部11から第2端部12側へ移動する。同時に、第2継手側接続部35の内側端面351がチューブ1の第2端面122と当接するまで、チューブ1の第2端部12の内周部121において第2挿入部32が第2端部12から第1端部11側へ移動する。 Specifically, the first insertion portion 22 is inserted into the inner peripheral portion 111 of the first end portion 11 of the tube 1 until the head 60 of the bolt 6 of the first joint portion 4 comes into contact with the first end surface 112 of the tube 1. It moves from the first end 11 to the second end 12 side. At the same time, the second insertion portion 32 is inserted into the second end at the inner peripheral portion 121 of the second end 12 of the tube 1 until the inner end surface 351 of the second joint-side connecting portion 35 comes into contact with the second end surface 122 of the tube 1. 12 to the first end 11 side.
 (本実施形態の作用効果)
 図6は、第1端部側からコラプスが発生したときの本発明の作用効果を説明する模式図であって、(a)は本発明に係る動力伝達軸のコラプスの状態を示す図であり、(b)は従来の動力伝達軸のコラプスの状態を示している。図7は、第2端部側からコラプスが発生したときの本発明の作用効果を説明する模式図であって、(a)は本発明に係る動力伝達軸のコラプスの状態を示す図であり、(b)は従来の動力伝達軸のコラプスの状態を示している。図8は、第1端部及び第2端部の両側からコラプスが発生したときの本発明の作用効果を説明する模式図であって、(a)は本発明に係る動力伝達軸のコラプスの状態を示す図であり、(b)は従来の動力伝達軸のコラプスの状態を示している。
(Operations and effects of this embodiment)
FIG. 6 is a schematic diagram illustrating the effect of the present invention when a collapse occurs from the first end side, and (a) is a diagram showing a collapsed state of the power transmission shaft according to the present invention. , (b) shows the collapsed state of the conventional power transmission shaft. FIG. 7 is a schematic diagram illustrating the effect of the present invention when a collapse occurs from the second end side, and (a) is a diagram showing a collapsed state of the power transmission shaft according to the present invention. , (b) shows the collapsed state of the conventional power transmission shaft. FIG. 8 is a schematic diagram illustrating the effect of the present invention when collapse occurs from both sides of the first end and the second end, and (a) shows the collapse of the power transmission shaft according to the present invention. It is a figure which shows a state, (b) shows the state of collapse of the conventional power transmission shaft.
 前記従来のプロペラシャフトPS0は、比較的屈曲しやすい等速ジョイントにより構成される第1継手部4と繋がる第1シャフト部2がチューブ1の内部へ潜り込む長さである第1コラプス長さS1と、比較的屈曲し難いラバーカップリングにより構成される第2継手部5と繋がる第2シャフト部3がチューブ1の内部へ潜り込む長さである第2コラプス長さS2との長短について、全く考慮されていなかった。このため、第2コラプス長さS2が第1コラプス長さS1よりも長いプロペラシャフトPS0では、プロペラシャフトPS0の衝突性能が不安定なものとなってしまう点で改善の余地が残されていた。 The conventional propeller shaft PS0 has a first collapse length S1, which is the length at which the first shaft part 2 connected to the first joint part 4, which is formed by a constant velocity joint that is relatively easy to bend, slips into the inside of the tube 1. , no consideration is given to the length of the second collapse length S2, which is the length of the second shaft portion 3 connected to the second joint portion 5 made of a rubber coupling that is relatively hard to bend, diving into the inside of the tube 1. It wasn't. Therefore, in the propeller shaft PS0 in which the second collapse length S2 is longer than the first collapse length S1, there remains room for improvement in that the collision performance of the propeller shaft PS0 becomes unstable.
 具体的には、図6(b)に示すように、前方(第1端部11側)から軸方向荷重Fxが入力された場合は、第1端部11側において、先行してコラプスが発生する。これにより、相対的に小さい第1屈曲荷重B1を有して比較的屈曲しやすい第1継手部材J1の第1挿入部22が、第1端部11側から第2端部12側へ移動して第1接続基部21がチューブ1の内部へ入り込み、第1継手部4がチューブ1の第1端面112に当接することとなる。ここで、第1継手部4とチューブ1とが角度θを有して当接した場合、第1継手部4とチューブ1の第1端面112が一致するように、第1継手部4に第1モーメントM1が発生すると共に、チューブ1に第2モーメントM2が発生して、チューブ1の第2端部12側を持ち上げるように作用する。すると、第2コラプス長さS2が第1コラプス長さS1よりも長いプロペラシャフトPS0は、第2シャフト部3とチューブ1の間に角度θがつくことになる。これにより、第2シャフト部3がチューブ1の第2端部12の内周部121に引っかかってしまい、第2シャフト部3がチューブ1の内部へと入り込み難くなる。その結果、プロペラシャフトPS0の衝突性能が悪化してしまうおそれがある。 Specifically, as shown in FIG. 6(b), when the axial load Fx is input from the front (first end 11 side), collapse occurs in advance on the first end 11 side. do. As a result, the first insertion portion 22 of the first joint member J1, which has a relatively small first bending load B1 and is relatively easy to bend, moves from the first end 11 side to the second end 12 side. Then, the first connection base 21 enters the inside of the tube 1, and the first joint portion 4 comes into contact with the first end surface 112 of the tube 1. Here, when the first joint part 4 and the tube 1 come into contact with each other at an angle θ, the first joint part 4 has a One moment M1 is generated, and a second moment M2 is generated in the tube 1, which acts to lift the second end 12 side of the tube 1. Then, in the propeller shaft PS0 in which the second collapse length S2 is longer than the first collapse length S1, an angle θ is formed between the second shaft portion 3 and the tube 1. As a result, the second shaft portion 3 is caught on the inner peripheral portion 121 of the second end portion 12 of the tube 1, making it difficult for the second shaft portion 3 to enter the inside of the tube 1. As a result, the collision performance of the propeller shaft PS0 may deteriorate.
 一方、図7(b)に示すように、後方(第2端部12側)から軸方向荷重Fxが入力された場合、第2端部12側において、先行してコラプスが発生する。この場合、第2コラプス長さS2が第1コラプス長さS1よりも長いプロペラシャフトPS0では、相対的に長い第2シャフト部3が先行してチューブ1の内部へ入り込むことになる。このため、相対的に第1シャフト部2をチューブ1の内部へ円滑に入り込ませることが可能となり、プロペラシャフトPS0の衝突性能を悪化させることはない。 On the other hand, as shown in FIG. 7(b), when the axial load Fx is input from the rear (second end 12 side), collapse occurs first on the second end 12 side. In this case, in the propeller shaft PS0 where the second collapse length S2 is longer than the first collapse length S1, the relatively long second shaft portion 3 enters into the tube 1 first. Therefore, it becomes possible to relatively smoothly insert the first shaft portion 2 into the tube 1, and the collision performance of the propeller shaft PS0 is not deteriorated.
 他方、図8(b)に示すように、前後方向(第1端部11側及び第2端部12側)から軸方向荷重Fxが入力された場合は、第1端部11側及び第2端部12側において、同時にコラプスが発生する。これにより、第1挿入部22が第1端部11側から第2端部12側へ移動して、第1接続基部21がチューブ1の内部へ入り込むと同時に、第2挿入部32が第2端部12側から第1端部11側へ移動して、第2接続基部31がチューブ1の内部へ入り込む。ここで、第2コラプス長さS2が第1コラプス長さS1よりも長いプロペラシャフトPS0では、第2継手部5が第2端面122に当接するよりも先に、第1継手部4が第1端面112に当接することになる。すると、相対的に小さい第1屈曲荷重B1を有する第1継手部4とチューブ1とは比較的大きな角度θを有して当接するため、第1継手部4とチューブ1の第1端面112が一致するように、第1継手部4に第1モーメントM1が発生すると共に、チューブ1に第2モーメントM2が発生して、チューブ1の第2端部12側を持ち上げるように作用する。これにより、第2シャフト部3とチューブ1の間に角度θがつくことで、第2シャフト部3がチューブ1の第2端部12の内周部121に引っかかってしまい、第2シャフト部3がチューブ1の内部へ入り込み難くなる。その結果、プロペラシャフトPS0の衝突性能が悪化してしまうおそれがある。 On the other hand, as shown in FIG. 8(b), when the axial load Fx is input from the front-rear direction (the first end 11 side and the second end 12 side), the first end 11 side and the second end 12 side Collapse occurs at the end 12 side at the same time. As a result, the first insertion part 22 moves from the first end 11 side to the second end 12 side, and at the same time the first connection base 21 enters the inside of the tube 1, the second insertion part 32 moves to the second end part 12. Moving from the end 12 side to the first end 11 side, the second connection base 31 enters the inside of the tube 1 . Here, in the propeller shaft PS0 in which the second collapse length S2 is longer than the first collapse length S1, the first joint part 4 is connected to the first joint part 4 before the second joint part 5 comes into contact with the second end surface 122. It comes into contact with the end surface 112. Then, since the first joint part 4 having a relatively small first bending load B1 and the tube 1 abut at a relatively large angle θ, the first joint part 4 and the first end surface 112 of the tube 1 To match, a first moment M1 is generated in the first joint portion 4, and a second moment M2 is generated in the tube 1, acting to lift the second end portion 12 side of the tube 1. As a result, the angle θ is formed between the second shaft portion 3 and the tube 1, so that the second shaft portion 3 is caught on the inner peripheral portion 121 of the second end portion 12 of the tube 1, and the second shaft portion 3 becomes difficult to enter inside the tube 1. As a result, the collision performance of the propeller shaft PS0 may deteriorate.
 これに対して、本実施形態に係るプロペラシャフトPS1では、以下の作用効果が奏せられることにより、前記従来のプロペラシャフトの課題を解決することができる。 In contrast, the propeller shaft PS1 according to the present embodiment can solve the problems of the conventional propeller shaft by providing the following effects.
 前記プロペラシャフトPS1は、車両の第1動力伝達装置P1と第2動力伝達装置P2との間において動力を伝達する動力伝達軸(プロペラシャフト)であって、筒状に形成されたチューブ1と、第1継手部材であって、第1本体部(第1接続基部21及び第1継手部4)と、第1挿入部22と、を有し、第1挿入部22は、チューブ1の回転軸線Zの方向における一対の端部である第1端部11と第2端部12のうち、第1挿入部22の外周部が第1端部11の内周部111に固定状態に支持されていて、第1衝突荷重F1以上の入力荷重が作用すると、チューブ1との固定状態が解除されて第1挿入部22がチューブ1の第1端部11から第2端部12に向かって移動可能に設けられ、第1本体部(第1接続基部21及び第1継手部4)は、前記回転軸線Zの方向において第1端部11よりも第1挿入部22の反対側に設けられていて、第1屈曲荷重B1が作用することにより前記回転軸線Zの方向に対して屈曲可能な第1継手部4を介して第1動力伝達装置P1と繋がる、第1継手部材J1と、第2継手部材であって、第2本体部(第2接続基部31及び第2継手部5)と、第2挿入部32と、を有し、第2挿入部32は、第2挿入部32の外周部がチューブ1の第2端部12の内周部121に固定状態に支持され、第2衝突荷重F2以上の入力荷重が作用すると、チューブ1との固定状態が解除されて第2挿入部32がチューブ1の第2端部12から第1端部11に向かって移動可能に設けられ、第2本体部(第2接続基部31及び第2継手部5)は、前記回転軸線Zの方向において第2端部12よりも第2挿入部32の反対側に設けられていて、前記回転軸線Zの方向に対して屈曲する際に必要な第2屈曲荷重B2が第1屈曲荷重B1よりも大きく設定された第2継手部5を介して第2動力伝達装置P2と繋がる、第2継手部材J2と、を備え、第1継手部材J1及び第2継手部材J2に入力荷重が作用した際に第1継手部材J1がチューブ1の内周部111へと入り込む第1コラプス長S1さは、第2継手部材J2がチューブ1の内周部121へと入り込む第2コラプス長さS2よりも長く形成されている。 The propeller shaft PS1 is a power transmission shaft (propeller shaft) that transmits power between the first power transmission device P1 and the second power transmission device P2 of the vehicle, and includes a tube 1 formed in a cylindrical shape, The first joint member includes a first body part (first connection base 21 and first joint part 4) and a first insertion part 22, and the first insertion part 22 is connected to the rotation axis of the tube 1. Of the first end 11 and second end 12 that are a pair of ends in the Z direction, the outer peripheral part of the first insertion part 22 is fixedly supported by the inner peripheral part 111 of the first end 11. When an input load equal to or greater than the first collision load F1 is applied, the fixed state with the tube 1 is released and the first insertion portion 22 can move from the first end 11 of the tube 1 toward the second end 12. The first main body portion (the first connection base portion 21 and the first joint portion 4) is provided on the opposite side of the first insertion portion 22 from the first end portion 11 in the direction of the rotation axis Z. , a first joint member J1 and a second joint connected to the first power transmission device P1 via a first joint portion 4 that can be bent in the direction of the rotational axis Z when a first bending load B1 is applied thereto. The member includes a second main body portion (second connection base 31 and second joint portion 5) and a second insertion portion 32, and the second insertion portion 32 has an outer peripheral portion of the second insertion portion 32. is supported in a fixed state by the inner peripheral part 121 of the second end 12 of the tube 1, and when an input load equal to or greater than the second collision load F2 is applied, the fixed state with the tube 1 is released and the second insertion part 32 is The tube 1 is provided so as to be movable from the second end 12 toward the first end 11, and the second main body (second connection base 31 and second joint 5) is movable in the direction of the rotation axis Z. The second bending load B2, which is provided on the opposite side of the second insertion part 32 from the second end part 12 and is required when bending in the direction of the rotational axis Z, is set larger than the first bending load B1. a second joint member J2 connected to the second power transmission device P2 via the second joint part 5 which is The first collapse length S1 at which the joint member J1 enters into the inner peripheral portion 111 of the tube 1 is longer than the second collapse length S2 at which the second joint member J2 enters into the inner peripheral portion 121 of the tube 1. There is.
 このように、本実施形態に係るプロペラシャフトPS1は、第1屈曲荷重B1に基づいて屈曲する第1継手部材J1の第1コラプス長さS1が、第1屈曲荷重B1よりも大きい第2屈曲荷重B2に基づいて屈曲する第2継手部材J2の第2コラプス長さS2よりも長く設定されている。 In this way, the propeller shaft PS1 according to the present embodiment has a second bending load in which the first collapse length S1 of the first joint member J1 that bends based on the first bending load B1 is larger than the first bending load B1. It is set longer than the second collapse length S2 of the second joint member J2 that bends based on B2.
 このため、前方(第1端部11)側が先にコラプスする場合には、図6(a)に示すように、相対的に小さい第1屈曲荷重B1を有する比較的屈曲しやすい第1継手部材J1の第1シャフト部2がチューブ1の内部に入り込むと、第1継手部4とチューブ1の第1端部11とが角度θを有して当接した際に、第1継手部4とチューブ1の第1端面112とが一致するように、第1継手部4に第1モーメントM1が発生すると共に、チューブ1に第2モーメントM2が発生し、チューブ1の第2端部12側を持ち上げるように作用する。これにより、第2シャフト部3はチューブ1に対して角度θがつくことになるが、第2コラプス長さS2が第1コラプス長さS1よりも相対的に短いことによって、第2シャフト部3がチューブ1の内部へと入り込みやすくなる。これにより、プロペラシャフトPS1の衝突性能の安定性を向上させることができる。 Therefore, when the front (first end 11) side collapses first, as shown in FIG. 6(a), the first joint member is relatively easy to bend and has a relatively small first bending load B1. When the first shaft part 2 of J1 enters the inside of the tube 1, when the first joint part 4 and the first end part 11 of the tube 1 come into contact with each other at an angle θ, the first joint part 4 and A first moment M1 is generated in the first joint portion 4 so that the first end surface 112 of the tube 1 is aligned with the first end surface 112 of the tube 1, and a second moment M2 is generated in the tube 1, causing the second end portion 12 side of the tube 1 to align with the first end surface 112 of the tube 1. It acts to lift. As a result, the second shaft portion 3 forms an angle θ with respect to the tube 1, but since the second collapse length S2 is relatively shorter than the first collapse length S1, the second shaft portion 3 can easily enter the inside of the tube 1. Thereby, the stability of the collision performance of the propeller shaft PS1 can be improved.
 一方、後方(第2端部12側)が先にコラプスする場合には、図7(a)に示すように、第2屈曲荷重B2が第1屈曲荷重B1よりも大きく、第2継手部5は比較的屈曲し難いことから、第2シャフト部3がチューブ1の内部に入り込んだ際、第2シャフト部3とチューブ1とは角度がつきにくく、第2継手部5とチューブ1の第2端面122とが一致するように当接しても、チューブ1に対して大きなモーメント(第1、第2モーメントM1,M2)は作用しない。これにより、第1継手部材J1の第1シャフト部2とチューブ1との間には角度がつきにくく、第1シャフト部2がチューブ1の内部に入り込みやすくなり、プロペラシャフトPS1の衝突性能の安定性を向上させることができる。 On the other hand, when the rear (second end 12 side) collapses first, the second bending load B2 is larger than the first bending load B1, and the second joint 5 is relatively difficult to bend, so when the second shaft part 3 enters the inside of the tube 1, it is difficult for the second shaft part 3 and the tube 1 to form an angle, and the second joint part 5 and the second part of the tube 1 Even if the tube 1 contacts the end surface 122 so as to match, a large moment (first and second moments M1 and M2) does not act on the tube 1. This makes it difficult for an angle to form between the first shaft part 2 of the first joint member J1 and the tube 1, making it easier for the first shaft part 2 to enter the inside of the tube 1, thereby stabilizing the collision performance of the propeller shaft PS1. can improve sex.
 他方、第1端部11側と第2端部12側が概ね同時にコラプスする場合には、図8(a)に示すように、第1コラプス長さS1に対し第2コラプス長さS2が相対的に短く設定されていることにより、第1継手部4がチューブ1の第1端面112に当接するよりも先に第2継手部5がチューブ1の第2端面122と当接することとなる。また、この際、第2屈曲荷重B2が第1屈曲荷重B1よりも大きく、第2継手部5は比較的屈曲し難い構成であるため、第2継手部5とチューブ1の第2端面122が一致するように当接しても、チューブ1に対して大きなモーメント(第1、第2モーメントM1,M2)は作用しない。その結果、第1継手部材J1の第1シャフト部2とチューブ1との間には角度がつきにくく、第1シャフト部2がチューブ1の内部に入り込みやすくなり、プロペラシャフトPS1の衝突性能の安定性を向上させることができる。 On the other hand, when the first end 11 side and the second end 12 side collapse at approximately the same time, as shown in FIG. 8(a), the second collapse length S2 is relative to the first collapse length S1. By setting this short, the second joint part 5 comes into contact with the second end surface 122 of the tube 1 before the first joint part 4 comes into contact with the first end surface 112 of the tube 1 . In addition, at this time, the second bending load B2 is larger than the first bending load B1, and the second joint part 5 is configured to be relatively difficult to bend, so that the second joint part 5 and the second end surface 122 of the tube 1 are Even if they abut in unison, no large moments (first and second moments M1, M2) act on the tube 1. As a result, it is difficult to form an angle between the first shaft part 2 of the first joint member J1 and the tube 1, and the first shaft part 2 easily enters the inside of the tube 1, thereby stabilizing the collision performance of the propeller shaft PS1. can improve sex.
 また、本実施形態では、第1継手部材J1及び第2継手部材J2に入力荷重が作用するときに、第1継手部4がチューブ1の第1端部11に当接する第1時間は、第2継手部5がチューブ1の第2端部12に当接する第2時間よりも長い。 Furthermore, in the present embodiment, when an input load acts on the first joint member J1 and the second joint member J2, the first time during which the first joint part 4 contacts the first end 11 of the tube 1 is the first time. This is longer than the second time during which the second joint portion 5 abuts the second end portion 12 of the tube 1.
 このように、本実施形態では、第1継手部4がチューブ1の第1端部11に当接する第1時間が、第2継手部5がチューブ1の第2端部12に当接する第2時間よりも長い。このため、第2端部12側が先にコラプスする場合、又は第1端部11側と第2端部12側が同時にコラプスする場合に、第1継手部4がチューブ1の第1端部11に当接するよりも先に、第2継手部5がチューブ1の第2端部12と当接する。この場合は、第2継手部5とチューブ1の第2端面122とが一致するように当接しても、チューブ1に対して大きなモーメント(第1、第2モーメントM1,M2)は作用しない。その結果、第1継手部材J1の第1シャフト部2とチューブ1との間には角度がつきにくく、第1シャフト部2がチューブ1の内部へと入り込みやすくなり、プロペラシャフトPS1の衝突性能の安定性を向上させることができる。 Thus, in this embodiment, the first time when the first joint part 4 abuts the first end 11 of the tube 1 is different from the second time when the second joint part 5 abuts against the second end 12 of the tube 1. longer than time. Therefore, if the second end 12 side collapses first, or if the first end 11 side and the second end 12 side collapse at the same time, the first joint part 4 is connected to the first end 11 of the tube 1. The second joint portion 5 abuts the second end portion 12 of the tube 1 before the abutment. In this case, even if the second joint portion 5 and the second end surface 122 of the tube 1 contact each other so as to coincide with each other, no large moments (first and second moments M1, M2) act on the tube 1. As a result, it is difficult to form an angle between the first shaft part 2 of the first joint member J1 and the tube 1, and the first shaft part 2 easily enters the inside of the tube 1, which improves the collision performance of the propeller shaft PS1. Stability can be improved.
 また、本実施形態では、第1継手部材J1は、等速ジョイントを介して第1動力伝達装置P1に接続されている。 Furthermore, in this embodiment, the first joint member J1 is connected to the first power transmission device P1 via a constant velocity joint.
 このように、本実施形態では、第1継手部材J1が、等速ジョイントで構成される第1継手部4を介して第1動力伝達装置P1に接続されている。これにより、第1継手部4がカルダンジョイントにより構成されている場合と比べて、屈曲荷重のばらつきが小さいため、プロペラシャフトPS1の衝突性能の安定化を図りやすいメリットがある。 As described above, in the present embodiment, the first joint member J1 is connected to the first power transmission device P1 via the first joint portion 4 formed of a constant velocity joint. This has the advantage of making it easier to stabilize the collision performance of the propeller shaft PS1, since the variation in bending load is smaller than in the case where the first joint portion 4 is constituted by a cardan joint.
 また、本実施形態では、前記等速ジョイント(継手部4)は、チューブ1側から第1動力伝達装置P1側に向かってねじ込まれるボルト6を介して第1動力伝達装置P1に締結され、第1コラプス長さS1は、チューブ1の第1端部11からボルト6の頭部60までの距離である。 Further, in this embodiment, the constant velocity joint (joint portion 4) is fastened to the first power transmission device P1 via a bolt 6 screwed from the tube 1 side toward the first power transmission device P1 side. One collapse length S1 is the distance from the first end 11 of the tube 1 to the head 60 of the bolt 6.
 このように、本実施形態では、等速ジョイントで構成される第1継手部4が、ボルト6を介して第1動力伝達装置P1に締結されている。かかるボルト締結は、汎用的な結合手段であり、プロペラシャフトPS1の製造コストの低廉化や、車両Vに対するプロペラシャフトPS1の取付作業性の向上を図ることができる。 As described above, in the present embodiment, the first joint portion 4 composed of a constant velocity joint is fastened to the first power transmission device P1 via the bolt 6. Such bolt fastening is a general-purpose coupling means, and can reduce the manufacturing cost of the propeller shaft PS1 and improve the workability of attaching the propeller shaft PS1 to the vehicle V.
 また、第1コラプス長さS1は、チューブ1の第1端部11からボルト6の頭部60までの距離により設定される。このため、ボルト6の頭部60の高さを調整することにより、第1コラプス長さS1を容易に調整できるメリットがある。 Further, the first collapse length S1 is set by the distance from the first end 11 of the tube 1 to the head 60 of the bolt 6. Therefore, by adjusting the height of the head 60 of the bolt 6, there is an advantage that the first collapse length S1 can be easily adjusted.
 また、本実施形態では、第2継手部材J2は、ラバーカップリングを介して第2動力伝達装置P2に締結され、第2コラプス長さS2は、チューブ1の第2端部12から前記ラバーカップリングと繋がるヨーク(第2継手側接続部35)までの距離である。 Further, in this embodiment, the second joint member J2 is fastened to the second power transmission device P2 via a rubber coupling, and the second collapse length S2 is from the second end 12 of the tube 1 to the rubber cup. This is the distance to the yoke (second joint side connecting portion 35) connected to the ring.
 このように、本実施形態では、第2継手部材J2がラバーカップリングで構成される第2継手部5を介して第2動力伝達装置P2に接続されている。このため、ラバーカップリングによって車両Vの振動を吸収することが可能となり、車両Vの音振性能の向上を図ることができる。 As described above, in this embodiment, the second joint member J2 is connected to the second power transmission device P2 via the second joint portion 5 made of a rubber coupling. Therefore, the vibration of the vehicle V can be absorbed by the rubber coupling, and the sound vibration performance of the vehicle V can be improved.
 また、第2コラプス長さS2は、チューブ1の第2端部12からラバーカップリングと繋がるヨークである第2継手側接続部35までの距離によって設定される。ラバーカップリング(第2継手部5)は回転軸線Zの方向に直交する方向へ延びる平面を構成するため、当該ラバーカップリング(第2継手部5)の平面をチューブ1の第2端面122と当接させることで、プロペラシャフトPS1の衝突性能の安定性の向上に供する。 Further, the second collapse length S2 is set by the distance from the second end 12 of the tube 1 to the second joint-side connecting portion 35, which is a yoke connected to the rubber coupling. Since the rubber coupling (second joint part 5) constitutes a plane extending in a direction perpendicular to the direction of the rotation axis Z, the plane of the rubber coupling (second joint part 5) is aligned with the second end surface 122 of the tube 1. By bringing them into contact with each other, the stability of the collision performance of the propeller shaft PS1 is improved.
 また、本実施形態では、第1本体部(第1接続基部21及び第1継手部4)の回転軸線は、チューブ1の回転軸線Zに対して、第1動力伝達装置P1に第1屈曲角θ1をもって繋がり、第2本体部(第2接続基部31及び第2継手部5)の回転軸線は、チューブ1の回転軸線Zに対して、第2動力伝達装置P2に第2屈曲角θ2をもって繋がり、第1屈曲角θ1は、第2屈曲角θ2よりも小さい。 Further, in the present embodiment, the rotational axis of the first main body (the first connection base 21 and the first joint 4) is at a first bending angle with respect to the rotational axis Z of the tube 1 at the first power transmission device P1. The rotational axis of the second main body portion (the second connection base 31 and the second joint portion 5) is connected to the second power transmission device P2 at a second bending angle θ2 with respect to the rotational axis Z of the tube 1. , the first bending angle θ1 is smaller than the second bending angle θ2.
 このように、本実施形態では、第1継手部材J1の第1屈曲角θ1が、第2継手部材J2の第2屈曲角θ2よりも小さく設定されている。通常、屈曲荷重が大きいものに対して大きな屈曲角をつけると、音振の発生を招来してしまうおそれがある。そこで、比較的屈曲荷重の大きい第1継手部材J1の第1屈曲角θ1を大きくして、比較的屈曲荷重の小さい第2継手部材J2の第2屈曲角θ2を小さくすることにより、前記音振の発生が抑制され、プロペラシャフトPS1の音振性能の向上を図ることができる。 As described above, in this embodiment, the first bending angle θ1 of the first joint member J1 is set smaller than the second bending angle θ2 of the second joint member J2. Normally, if a large bending angle is applied to an object with a large bending load, there is a risk that sound vibrations will occur. Therefore, by increasing the first bending angle θ1 of the first joint member J1 having a relatively large bending load and decreasing the second bending angle θ2 of the second joint member J2 having a relatively small bending load, The occurrence of noise is suppressed, and the sound and vibration performance of the propeller shaft PS1 can be improved.
 また、比較的屈曲荷重が大きいものに対して大きな屈曲角をつけると、この大きな屈曲によって大きな熱が発生し、この熱の発生によって動力エネルギの一部が失われてしまい、動力伝達効率が低下してしまうおそれがある。そこで、比較的屈曲荷重の大きい第1継手部材J1の第1屈曲角θ1を大きく、比較的屈曲荷重の小さい第2継手部材J2の第2屈曲角θ2を小さくすることにより、第2継手部材J2の屈曲によって失われる動力エネルギを低減することが可能となり、プロペラシャフトPS1の動力伝達効率の向上を図ることができる。 In addition, if a large bending angle is applied to an object with a relatively large bending load, a large amount of heat is generated due to this large bending, and a part of the power energy is lost due to this heat generation, reducing the power transmission efficiency. There is a risk that it will happen. Therefore, by increasing the first bending angle θ1 of the first joint member J1, which has a relatively large bending load, and by decreasing the second bending angle θ2 of the second joint member J2, which has a relatively small bending load, the second joint member J2 It becomes possible to reduce the power energy lost due to the bending of the propeller shaft PS1, and it is possible to improve the power transmission efficiency of the propeller shaft PS1.
 また、本実施形態では、第1挿入部22と第2挿入部32の少なくとも一方は、チューブ1の内周部にセレーションを介して結合される。 Furthermore, in the present embodiment, at least one of the first insertion portion 22 and the second insertion portion 32 is coupled to the inner peripheral portion of the tube 1 via the serrations.
 このように、本実施形態では、第1挿入部22がチューブ1の第1端部11の内周部111に第1セレーション部26を介して結合されていて、第2挿入部32がチューブ1の第2端部12の内周部121に第2セレーション部36を介して結合されている。このため、例えば外周面が概ね平坦状に形成された第1挿入部22及び第2挿入部32をチューブ1の内周部に単なる圧入や接着によって結合する場合と比べて、第1挿入部22及び第2挿入部32をより強固に固定することが可能となる。これにより、プロペラシャフトPS1の回転方向においては大きな耐トルク性能を確保し、また、プロペラシャフトPS1の軸方向においては大きな保持荷重を得ることができる。 As described above, in the present embodiment, the first insertion section 22 is coupled to the inner circumference 111 of the first end 11 of the tube 1 via the first serration section 26, and the second insertion section 32 is connected to the inner circumference 111 of the first end 11 of the tube 1. It is coupled to the inner circumferential portion 121 of the second end portion 12 of , via the second serration portion 36 . For this reason, for example, compared to the case where the first insertion part 22 and the second insertion part 32 whose outer peripheral surfaces are formed in a generally flat shape are connected to the inner peripheral part of the tube 1 by simple press-fitting or adhesive, the first insertion part 22 And it becomes possible to fix the second insertion portion 32 more firmly. Thereby, it is possible to ensure a large torque resistance in the rotational direction of the propeller shaft PS1, and to obtain a large holding load in the axial direction of the propeller shaft PS1.
 また、本実施形態では、第1動力伝達装置P1は、車両VのトランスミッションでTMあり、第2動力伝達装置P2は、車両VのディファレンシャルDFであり、第2継手部材J2は、ラバーカップリングによって構成されている。 Further, in the present embodiment, the first power transmission device P1 is a transmission of the vehicle V and is a TM, the second power transmission device P2 is a differential DF of the vehicle V, and the second joint member J2 is a rubber coupling. It is configured.
 このように、本実施形態では、プロペラシャフトPS1と車両VのディファレンシャルDFを繋ぐ第2継手部材J2が、ラバーカップリングによって構成されている。このため、ディファレンシャルDFの振動をラバーカップリングによって吸収し、遮断することが可能となり、プロペラシャフトPS1の音振性能を向上させることができる。 As described above, in this embodiment, the second joint member J2 that connects the propeller shaft PS1 and the differential DF of the vehicle V is configured by a rubber coupling. Therefore, the vibration of the differential DF can be absorbed and blocked by the rubber coupling, and the sound vibration performance of the propeller shaft PS1 can be improved.
 また、本実施形態では、チューブ1は、繊維を樹脂で固めて形成した材料によって形成されている。 Furthermore, in the present embodiment, the tube 1 is made of a material made by hardening fibers with resin.
 このように、本実施形態では、チューブ1が繊維を樹脂で固めて形成した、繊維強化樹脂材料によって形成されている。このため、チューブ1を金属材料によって形成する場合に比べて、チューブ1を軽量化することが可能となり、自動車の燃費の向上に供する。 As described above, in this embodiment, the tube 1 is formed of a fiber-reinforced resin material formed by hardening fibers with resin. Therefore, compared to the case where the tube 1 is formed of a metal material, it is possible to make the tube 1 lighter in weight, which contributes to improving the fuel efficiency of the automobile.
 また、チューブ1が上記繊維強化樹脂材料で形成されていることによって、チューブ1を金属材料で形成した場合と比べて、チューブ1における音の反響を低減することが可能となり、プロペラシャフトPS1の音振性能の向上にも寄与することができる。 Furthermore, since the tube 1 is made of the fiber-reinforced resin material described above, it is possible to reduce the reverberation of sound in the tube 1 compared to the case where the tube 1 is made of a metal material, and the sound of the propeller shaft PS1 can be reduced. It can also contribute to improving vibration performance.
 とりわけ、本実施形態では、チューブ1は、炭素繊維強化樹脂(CFRP)によって形成されている。 In particular, in this embodiment, the tube 1 is formed of carbon fiber reinforced resin (CFRP).
 このように、本実施形態では、チューブ1が炭素繊維強化樹脂(CFRP)によって形成されているため、チューブ1が他の繊維強化樹脂、例えばガラス繊維強化樹脂(FRP)と比べて、チューブ1の強度が高く、また、チューブ1をより軽量化することができる。 As described above, in this embodiment, since the tube 1 is made of carbon fiber reinforced resin (CFRP), the tube 1 is made of carbon fiber reinforced resin (CFRP). It has high strength and can further reduce the weight of the tube 1.
 また、本実施形態の他例として、前述のように、チューブ1は、ガラス繊維強化樹脂(FRP)によって形成することも可能である。この場合、チューブ1を他の繊維強化樹脂、例えば炭素繊維強化樹脂(CFRP)で形成する場合と比べて、チューブ1をより安価に形成することができる。 Furthermore, as another example of this embodiment, the tube 1 can be formed of glass fiber reinforced resin (FRP) as described above. In this case, the tube 1 can be formed at a lower cost than when the tube 1 is formed from other fiber-reinforced resins, such as carbon fiber-reinforced resin (CFRP).
 〔第2実施形態〕
 図9は本発明に係る動力伝達軸(プロペラシャフト)の第2実施形態を示し、前記第1実施形態に係るプロペラシャフトPS1の第1継手部材J1の構成を変更したものである。なお、当該変更点以外の基本的な構成は、前記第1実施形態と同様であるため、当該第1実施形態と同一の構成については、同一の符号を付すことにより、その説明を省略する。また、当該実施形態の説明においては、便宜上、図9の左側を「前」、右側を「後」として説明すると共に、図9の回転軸線Zに沿う方向を「軸方向」、回転軸線Zに直交する方向を「径方向」、回転軸線Z周りの方向を「周方向」、として説明する。
[Second embodiment]
FIG. 9 shows a second embodiment of the power transmission shaft (propeller shaft) according to the present invention, in which the configuration of the first joint member J1 of the propeller shaft PS1 according to the first embodiment is changed. Note that the basic configuration other than the changes is the same as that of the first embodiment, so the same reference numerals are given to the same configurations as in the first embodiment, and the explanation thereof will be omitted. In addition, in the description of this embodiment, for convenience, the left side of FIG. 9 will be referred to as "front" and the right side will be referred to as "rear", and the direction along rotation axis Z in FIG. The orthogonal direction will be referred to as a "radial direction" and the direction around the rotational axis Z will be referred to as a "circumferential direction".
 (プロペラシャフトの構成)
 図9は、本発明の第2実施形態に係るプロペラシャフトPS2の全体の形態を示し、当該プロペラシャフトPS2を回転軸線Zの方向に沿って切断した半断面図を示している。
(Propeller shaft configuration)
FIG. 9 shows the overall form of the propeller shaft PS2 according to the second embodiment of the present invention, and shows a half-sectional view of the propeller shaft PS2 taken along the direction of the rotation axis Z.
 図9に示すように、本実施形態に係るプロペラシャフトPS2は、第1継手部材J1の第1継手部4が、前記第1実施形態に係る等速ジョイントではなく、周知のカルダンジョイントによって構成されている。すなわち、第1継手部材J1は、第1動力伝達装置P1に相当するトランスミッションTM(図1参照)に接続される第1ヨーク71と、チューブ1に接続される第2ヨーク72と、第1ヨーク71と第2ヨーク72との間に配置される十字軸73と、を有する。 As shown in FIG. 9, in the propeller shaft PS2 according to the present embodiment, the first joint portion 4 of the first joint member J1 is not the constant velocity joint according to the first embodiment, but is constructed from a well-known Cardan joint. ing. That is, the first joint member J1 includes a first yoke 71 connected to the transmission TM (see FIG. 1) corresponding to the first power transmission device P1, a second yoke 72 connected to the tube 1, and a first yoke 72 connected to the tube 1. 71 and a cross shaft 73 disposed between the second yoke 72 and the second yoke 72 .
 第1ヨーク71は、径方向に対向する二又状を呈し、十字軸73のうち一対の第1軸部731が挿入される第1軸挿入孔710が径方向に沿って貫通状態に形成される。また、第1ヨーク71は、トランスミッションTM(図1参照)側へ向かって軸方向に延びる接続軸部74と一体に形成されていて、接続軸部74を介してトランスミッションTMの出力軸(図示外)に接続される。 The first yoke 71 has a bifurcated shape that faces each other in the radial direction, and a first shaft insertion hole 710 into which a pair of first shaft portions 731 of the cross shaft 73 is inserted is formed in a penetrating state along the radial direction. Ru. Further, the first yoke 71 is formed integrally with a connecting shaft portion 74 that extends in the axial direction toward the transmission TM (see FIG. 1), and is connected to the output shaft (not shown) of the transmission TM via the connecting shaft portion 74. ).
 接続軸部74は、トランスミッションTMの出力軸(図示外)にスプラインを介して接続される車両側接続部741と、この車両側接続部741の後端側に段差拡径状に設けられ、第1ヨーク71に接続されるヨーク側接続部742と、を有し、車両側接続部741とヨーク側接続部742とが一体に形成されている。車両側接続部741は、概ね円筒状に形成されていて、トランスミッションTMのミッションケース(図示外)に挿入され、内周側に形成された雌スプライン部741aがトランスミッションTMの出力軸(図示外)の外周側に設けられた雄スプライン部とスプライン結合することにより、軸方向に相対移動可能に接続される。 The connecting shaft portion 74 includes a vehicle-side connecting portion 741 that is connected to an output shaft (not shown) of the transmission TM via a spline, and a stepped enlarged diameter shape on the rear end side of this vehicle-side connecting portion 741. 1, and the vehicle side connection part 741 and the yoke side connection part 742 are integrally formed. The vehicle side connecting portion 741 is formed in a generally cylindrical shape and is inserted into the transmission case (not shown) of the transmission TM, and the female spline portion 741a formed on the inner circumferential side is connected to the output shaft (not shown) of the transmission TM. By spline-coupling with a male spline portion provided on the outer circumferential side of the connector, the connector is connected so as to be relatively movable in the axial direction.
 第2ヨーク72は、径方向に対向する二又状を呈し、十字軸73のうち他の一対の第2軸部732が挿入される第2軸挿入孔720が径方向に沿って貫通状態に形成されていて、周方向において第1ヨーク71に対して互い違いに配置される。また、第2ヨーク72は、第1シャフト部2の第1接続基部21と一体に形成されていて、第1継手側接続部25を構成し、第1挿入部22を介してチューブ1に接続される。 The second yoke 72 has a bifurcated shape that faces each other in the radial direction, and has a second shaft insertion hole 720 into which the other pair of second shaft portions 732 of the cross shaft 73 are inserted. and are arranged alternately with respect to the first yoke 71 in the circumferential direction. Further, the second yoke 72 is formed integrally with the first connection base 21 of the first shaft portion 2, constitutes the first joint side connection portion 25, and is connected to the tube 1 via the first insertion portion 22. be done.
 (本実施形態の作用効果)
 以上のように、本実施形態に係るプロペラシャフトPS2において、第1継手部材J1は、カルダンジョイントを介して第1動力伝達装置P1(図1参照)に接続されている。
(Operations and effects of this embodiment)
As described above, in the propeller shaft PS2 according to the present embodiment, the first joint member J1 is connected to the first power transmission device P1 (see FIG. 1) via the Cardan joint.
 このように、本実施形態では、第1継手部材J1がカルダンジョイントを介して第1動力伝達装置P1に接続されている。これにより、第1継手部材J1を等速ジョイントによって構成する場合と比べて、プロペラシャフトPS2の製造コストを低減できるメリットがある。 As described above, in this embodiment, the first joint member J1 is connected to the first power transmission device P1 via the Cardan joint. This has the advantage that the manufacturing cost of the propeller shaft PS2 can be reduced compared to the case where the first joint member J1 is configured by a constant velocity joint.
 〔第3実施形態〕
 図10は本発明に係る動力伝達軸(プロペラシャフト)の第3実施形態を示し、前記第1実施形態に係るプロペラシャフトPS1における第1挿入部22及び第2挿入部32に係る構成を変更したものである。なお、当該変更点以外の基本的な構成は、前記第1実施形態と同様であるため、当該第1実施形態と同一の構成については、同一の符号を付すことにより、その説明を省略する。また、当該実施形態の説明においては、便宜上、図10の左側を「前」、右側を「後」として説明すると共に、図10の回転軸線Zに沿う方向を「軸方向」、回転軸線Zに直交する方向を「径方向」、回転軸線Z周りの方向を「周方向」、として説明する。
[Third embodiment]
FIG. 10 shows a third embodiment of the power transmission shaft (propeller shaft) according to the present invention, in which the configuration of the first insertion part 22 and the second insertion part 32 in the propeller shaft PS1 according to the first embodiment has been changed. It is something. Note that the basic configuration other than the changes is the same as that of the first embodiment, so the same reference numerals are given to the same configurations as in the first embodiment, and the explanation thereof will be omitted. In addition, in the description of this embodiment, for convenience, the left side of FIG. 10 will be referred to as "front" and the right side will be referred to as "rear", and the direction along rotation axis Z in FIG. The orthogonal direction will be referred to as a "radial direction" and the direction around the rotational axis Z will be referred to as a "circumferential direction".
 (プロペラシャフトの構成)
 図10は、本発明の第3実施形態に係るプロペラシャフトPS3の全体の形態を示し、当該プロペラシャフトPS3を回転軸線Zの方向に沿って切断した半断面図を示している。
(Propeller shaft configuration)
FIG. 10 shows the overall form of the propeller shaft PS3 according to the third embodiment of the present invention, and shows a half-sectional view of the propeller shaft PS3 taken along the direction of the rotation axis Z.
 図10に示すように、本実施形態に係るプロペラシャフトPS3は、チューブ1が金属材料によって形成されている。そして、プロペラシャフトPS3では、チューブ1の第1端部11に第1挿入部22がスプライン結合され、チューブ1の第2端部12に第2挿入部32がスプライン結合されている。 As shown in FIG. 10, in the propeller shaft PS3 according to this embodiment, the tube 1 is formed of a metal material. In the propeller shaft PS3, the first insertion section 22 is spline-coupled to the first end 11 of the tube 1, and the second insertion section 32 is spline-coupled to the second end 12 of the tube 1.
 すなわち、チューブ1の第1端部11の内周部111には、軸方向に沿って延びる周知のスプラインを有する第1雌スプライン部15が形成されている。一方、第1挿入部22の外周部には、チューブ1の第1雌スプライン部15と噛み合い、かつ第1雌スプライン部15に沿って軸方向に移動可能となる周知のスプラインを有する第1雄スプライン部27が形成されている。そして、第1挿入部22は、第1雄スプライン部27を介してチューブ1の第1雌スプライン部15に圧入されている。 That is, a first female spline portion 15 having a well-known spline extending along the axial direction is formed on the inner peripheral portion 111 of the first end portion 11 of the tube 1. On the other hand, a first male spline has a well-known spline on the outer circumference of the first insertion portion 22 that engages with the first female spline portion 15 of the tube 1 and is movable in the axial direction along the first female spline portion 15. A spline portion 27 is formed. The first insertion portion 22 is press-fitted into the first female spline portion 15 of the tube 1 via the first male spline portion 27 .
 また、チューブ1の第2端部12の内周部121には、第1端部11と同様、軸方向に沿って延びる周知のスプラインを有する第2雌スプライン部16が形成されている。一方、チューブ1の第2挿入部32の外周部には、チューブ1の第2雌スプライン部16と噛み合い、かつ第2雌スプライン部16に沿って軸方向に移動可能となる周知のスプラインを有する第2雄スプライン部37が形成されている。そして、第2挿入部32は、第2雄スプライン部37を介してチューブ1の第2雌スプライン部16に圧入されている。 Furthermore, like the first end 11, a second female spline portion 16 having a well-known spline extending along the axial direction is formed on the inner peripheral portion 121 of the second end 12 of the tube 1. On the other hand, the outer periphery of the second insertion portion 32 of the tube 1 has a well-known spline that engages with the second female spline portion 16 of the tube 1 and is movable in the axial direction along the second female spline portion 16. A second male spline portion 37 is formed. The second insertion portion 32 is press-fitted into the second female spline portion 16 of the tube 1 via the second male spline portion 37 .
 (本実施形態の作用効果)
 以上のように、本実施形態に係るプロペラシャフトPS3では、第1挿入部22と第2挿入部32の少なくとも一方は、チューブ1の内周部にスプライン結合されている。
(Operations and effects of this embodiment)
As described above, in the propeller shaft PS3 according to the present embodiment, at least one of the first insertion portion 22 and the second insertion portion 32 is spline-coupled to the inner peripheral portion of the tube 1.
 このように、本実施形態では、第1挿入部22及び第2挿入部32が、共にチューブ1の内周部にスプライン結合されている。このため、第1挿入部22ないし第2挿入部32をセレーション結合する場合と比べて、より小さい衝突荷重でもってコラプスを発生させることが可能となる。これにより、コラプスの発生を制御(コントロール)し、プロペラシャフトPS3の衝突性能の安定化に寄与することができる。 As described above, in this embodiment, both the first insertion section 22 and the second insertion section 32 are spline-coupled to the inner circumference of the tube 1. Therefore, it is possible to cause collapse with a smaller collision load than when the first insertion section 22 and the second insertion section 32 are connected through serrations. This makes it possible to control the occurrence of collapse and contribute to stabilizing the collision performance of propeller shaft PS3.
 また、本実施形態では、チューブ1は、金属材料によって形成されている。 Furthermore, in this embodiment, the tube 1 is formed of a metal material.
 このように、本実施形態では、チューブ1が金属材料により形成されている。このため、チューブ1を安価に形成することが可能となり、プロペラシャフトPS3の製造コストの低廉化に寄与することができる。 In this way, in this embodiment, the tube 1 is formed of a metal material. Therefore, the tube 1 can be formed at low cost, which can contribute to reducing the manufacturing cost of the propeller shaft PS3.
 また、本実施形態では、第1挿入部22は、チューブ1の内周部に形成された第1雌スプライン部15と噛み合う第1雄スプライン部27を有する。 Furthermore, in this embodiment, the first insertion portion 22 has a first male spline portion 27 that engages with the first female spline portion 15 formed on the inner peripheral portion of the tube 1.
 このように、本実施形態では、第1挿入部22が、チューブ1の第1雌スプライン部15と噛み合う第1雄スプライン部27を介してチューブ1にスプライン結合されている。このため、チューブ1が繊維強化樹脂により形成された場合と比べて、プロペラシャフトPS3を比較的安価に製造することができるうえ、チューブ1の第1端部11において、第1挿入部22とチューブ1の間のガタを低減することができ、第1挿入部22からチューブ1へのトルク伝達が良好なものとなるメリットがある。 As described above, in this embodiment, the first insertion portion 22 is spline-coupled to the tube 1 via the first male spline portion 27 that engages with the first female spline portion 15 of the tube 1. Therefore, compared to the case where the tube 1 is formed of fiber reinforced resin, the propeller shaft PS3 can be manufactured at a relatively low cost. This has the advantage that the play between the first insertion section 22 and the tube 1 can be reduced, and torque transmission from the first insertion section 22 to the tube 1 can be improved.
 また、本実施形態では、第2挿入部32は、チューブ1の内周部に形成された第2雌スプライン部16と噛み合う第2雄スプライン部37を有する。 Furthermore, in this embodiment, the second insertion portion 32 has a second male spline portion 37 that engages with the second female spline portion 16 formed on the inner peripheral portion of the tube 1.
 このように、本実施形態では、第2挿入部32が、チューブ1の第2雌スプライン部16と噛み合う第2雄スプライン部37を介してチューブ1にスプライン結合されている。このため、チューブ1が繊維強化樹脂により形成された場合と比べて、プロペラシャフトPS3を比較的安価に製造することができるうえ、チューブ1の第2端部12において、第2挿入部32とチューブ1の間のガタを低減することができ、チューブ1から第2挿入部32へのトルク伝達が良好なものとなるメリットがある。 As described above, in this embodiment, the second insertion portion 32 is spline-coupled to the tube 1 via the second male spline portion 37 that engages with the second female spline portion 16 of the tube 1. Therefore, compared to the case where the tube 1 is made of fiber-reinforced resin, the propeller shaft PS3 can be manufactured at a relatively low cost. This has the advantage that play between the tubes 1 and 1 can be reduced, and torque transmission from the tube 1 to the second insertion section 32 can be improved.
 本発明は、前記実施形態等で例示した構成や態様に限定されるものではなく、前述した本発明の作用効果を奏し得るような形態であれば、適用対象の仕様やコスト等に応じて自由に変更可能である。 The present invention is not limited to the configurations and aspects exemplified in the above-described embodiments, etc., and can be freely modified according to the specifications, costs, etc. to which it is applied, as long as it can achieve the effects of the present invention described above. It can be changed to
 例えば、前記各実施形態では、第1動力伝達装置P1を車両に搭載されたトランスミッションTM、第2動力伝達装置P2を車両に搭載されたディファレンシャルDFとしたものを例示したが、図11に示すように、その逆の構成であってもよい。具体的には、例えばリヤエンジン・オールホイールドライブの駆動方式を有する車両、エンジンEG及びトランスミッションTMが車両後方に搭載され、トランスミッションTMから出力されるエンジンEGの駆動力をプロペラシャフトPSによって車両前方に搭載されるディファレンシャルDFに伝達するような駆動方式を有する車両にも適用可能である。すなわち、第1動力伝達装置P1は、車両VのディファレンシャルDFであり、第2動力伝達装置P2は、車両VのトランスミッションTMであってもよい。 For example, in each of the above embodiments, the first power transmission device P1 is a transmission TM mounted on a vehicle, and the second power transmission device P2 is a differential DF mounted on a vehicle, but as shown in FIG. Alternatively, the configuration may be the opposite. Specifically, for example, in a vehicle having a rear engine/all-wheel drive drive system, the engine EG and transmission TM are mounted at the rear of the vehicle, and the driving force of the engine EG output from the transmission TM is transmitted to the front of the vehicle by a propeller shaft PS. It is also applicable to vehicles having a drive system that transmits information to a mounted differential DF. That is, the first power transmission device P1 may be the differential DF of the vehicle V, and the second power transmission device P2 may be the transmission TM of the vehicle V.
 かかる変形例によれば、比較的屈曲しやすい第1継手部材J1が、比較的動きが大きいディファレンシャルDFに接続されている。このため、ディファレンシャルDFの動きを屈曲しやすい第1継手部材J1によって吸収させ、プロペラシャフトPSの音振性能を向上させることができる。 According to this modification, the first joint member J1, which is relatively easy to bend, is connected to the differential DF, which has a relatively large movement. Therefore, the movement of the differential DF can be absorbed by the first joint member J1, which is easy to bend, and the sound and vibration performance of the propeller shaft PS can be improved.
 また、前記トランスミッションTMが駆動輪(後輪)側に設けられた車両の場合は、第1動力伝達装置P1を例えばエンジン等の駆動源として、第2動力伝達装置P2をトランスミッションTMとしてもよく、また、その逆であってもよい。 Further, in the case of a vehicle in which the transmission TM is provided on the driving wheel (rear wheel) side, the first power transmission device P1 may be used as a drive source such as an engine, and the second power transmission device P2 may be used as the transmission TM, Moreover, the reverse may be sufficient.
 また、の第1動力伝達装置P1として、前記トランスミッションTMの代わりに電動モータを無段減速機として使用する車両に対しても適用することができる。 Furthermore, the present invention can also be applied to a vehicle that uses an electric motor as a stepless reduction gear instead of the transmission TM as the first power transmission device P1.
 また、前記各実施形態では、第1噛み込み長さL1と第2噛み込み長さL2、第1噛み込み代X1と第2噛み込み代X2を概ね同じに設定してなる第1衝突荷重F1及び第2衝突荷重F2を同一に設定したものを例示したが、前記第1コラプス長さS1と第2コラプス長さS2の相対関係に加えて、第1噛み込み長さL1と第2噛み込み長さL2、又は第1噛み込み代X1と第2噛み込み代X2に差を設けることによって第1衝突荷重F1及び第2衝突荷重F2を調整し、第1継手部材J1と第2継手部材J2のコラプスの先後を制御することによって、各プロペラシャフトPS1,PS2PS3の衝突性能の安定化を向上させることも可能である。 Further, in each of the embodiments described above, the first collision load F1 is obtained by setting the first biting length L1 and the second biting length L2, and the first biting allowance X1 and the second biting allowance X2 to be approximately the same. In addition to the relative relationship between the first collapse length S1 and the second collapse length S2, the first collapse length L1 and the second collision load F2 are set to be the same. The first collision load F1 and the second collision load F2 are adjusted by providing a difference between the length L2 or the first bite allowance X1 and the second bite allowance X2, and the first joint member J1 and the second joint member J2 are adjusted. By controlling the front and back of the collapse, it is also possible to improve the stabilization of the collision performance of each propeller shaft PS1, PS2PS3.

Claims (16)

  1.  車両の第1動力伝達装置と第2動力伝達装置との間において動力を伝達する動力伝達軸であって、
     筒状に形成されたチューブと、
     第1継手部材であって、第1本体部と、第1挿入部と、を有し、
     前記第1挿入部は、前記チューブの回転軸線の方向における一対の端部である第1端部と第2端部のうち、前記第1挿入部の外周部が前記第1端部の内周部に固定状態に支持されていて、第1衝突荷重以上の入力荷重が作用すると、前記チューブとの固定状態が解除されて前記第1挿入部が前記チューブの前記第1端部から前記第2端部に向かって移動可能に設けられ、
     前記第1本体部は、前記回転軸線の方向において前記第1端部よりも前記第1挿入部の反対側に設けられていて、第1屈曲荷重が作用することにより前記回転軸線の方向に対して屈曲可能な第1継手部を介して前記第1動力伝達装置と繋がる、
     前記第1継手部材と、
     第2継手部材であって、第2本体部と、第2挿入部と、を有し、
     前記第2挿入部は、前記第2挿入部の外周部が前記チューブの前記第2端部の内周部に固定状態に支持され、第2衝突荷重以上の入力荷重が作用すると、前記チューブとの固定状態が解除されて前記第2挿入部が前記チューブの前記第2端部から前記第1端部に向かって移動可能に設けられ、
     前記第2本体部は、前記回転軸線の方向において前記第2端部よりも前記第2挿入部の反対側に設けられていて、前記回転軸線の方向に対して屈曲する際に必要な第2屈曲荷重が前記第1屈曲荷重よりも大きく設定された第2継手部を介して前記第2動力伝達装置と繋がる、
     前記第2継手部材と、
     を備え、
     前記第1継手部材及び前記第2継手部材に入力荷重が作用した際に前記第1継手部材が前記チューブの内周部へと入り込む第1コラプス長さは、前記第2継手部材が前記チューブの内周部へと入り込む第2コラプス長さよりも長く形成されている、
     ことを特徴とする動力伝達軸。
    A power transmission shaft that transmits power between a first power transmission device and a second power transmission device of a vehicle,
    A tube formed into a cylindrical shape,
    A first joint member, comprising a first main body portion and a first insertion portion,
    The first insertion section has a first end and a second end that are a pair of ends in the direction of the rotational axis of the tube, and the outer circumference of the first insertion section is equal to the inner circumference of the first end. When an input load equal to or greater than a first collision load is applied to the tube, the first insertion portion is supported in a fixed state by the first end of the tube and the second insertion portion provided so as to be movable toward the end;
    The first main body portion is provided on the opposite side of the first insertion portion from the first end portion in the direction of the rotation axis, and is configured to bend in the direction of the rotation axis when a first bending load is applied thereto. connected to the first power transmission device via a first joint part that can be bent by
    the first joint member;
    A second joint member, comprising a second main body portion and a second insertion portion,
    The second insertion portion is configured such that an outer peripheral portion of the second insertion portion is supported in a fixed state on an inner peripheral portion of the second end portion of the tube, and when an input load equal to or higher than a second collision load is applied, the outer peripheral portion of the second insertion portion is fixed to the inner peripheral portion of the second end portion of the tube. is released from the fixed state, and the second insertion portion is provided movably from the second end of the tube toward the first end;
    The second main body portion is provided on the opposite side of the second insertion portion from the second end portion in the direction of the rotation axis, and has a second connected to the second power transmission device via a second joint portion whose bending load is set larger than the first bending load;
    the second joint member;
    Equipped with
    A first collapse length in which the first joint member enters the inner circumference of the tube when an input load is applied to the first joint member and the second joint member is a first collapse length in which the first joint member enters the inner circumference of the tube. It is formed longer than the second collapse length that goes into the inner circumference,
    A power transmission shaft characterized by:
  2.  請求項1に記載の動力伝達軸であって、
     前記第1継手部材及び前記第2継手部材に入力荷重が作用するときに、前記第1継手部が前記チューブの前記第1端部に当接する第1時間は、第2継手部が前記チューブの前記第2端部に当接する第2時間よりも長い、
     ことを特徴とする動力伝達軸。
    The power transmission shaft according to claim 1,
    When an input load acts on the first joint member and the second joint member, the second joint part is in contact with the first end of the tube for a first time when the first joint part is in contact with the first end of the tube. longer than the second time period during which it abuts the second end;
    A power transmission shaft characterized by:
  3.  請求項1に記載の動力伝達軸であって、
     前記第1継手部材は、等速ジョイントを介して前記第1動力伝達装置に接続された、
     ことを特徴とする動力伝達軸。
    The power transmission shaft according to claim 1,
    The first joint member is connected to the first power transmission device via a constant velocity joint.
    A power transmission shaft characterized by:
  4.  請求項3に記載の動力伝達軸であって、
     前記等速ジョイントは、前記チューブ側から前記第1動力伝達装置側に向かってねじ込まれるボルトを介して前記第1動力伝達装置に締結され、
     前記第1コラプス長さは、前記チューブの前記第1端部から前記ボルトの頭部までの距離である、
     ことを特徴とする動力伝達軸。
    The power transmission shaft according to claim 3,
    The constant velocity joint is fastened to the first power transmission device via a bolt that is screwed from the tube side toward the first power transmission device side,
    the first collapse length is the distance from the first end of the tube to the head of the bolt;
    A power transmission shaft characterized by:
  5.  請求項3に記載の動力伝達軸であって、
     前記第2継手部材は、ラバーカップリングを介して前記第2動力伝達装置に締結され、
     前記第2コラプス長さは、前記チューブの前記第2端部から前記ラバーカップリングと繋がるヨークまでの距離である、
     ことを特徴とする動力伝達軸。
    The power transmission shaft according to claim 3,
    The second joint member is fastened to the second power transmission device via a rubber coupling,
    The second collapse length is a distance from the second end of the tube to a yoke that connects to the rubber coupling.
    A power transmission shaft characterized by:
  6.  請求項1に記載の動力伝達軸であって、
     前記第1本体部の回転軸線は、前記チューブの回転軸線に対して、前記第1動力伝達装置に第1屈曲角をもって繋がり、
     前記第2本体部の回転軸線は、前記チューブの回転軸線に対して、前記第2動力伝達装置に第2屈曲角をもって繋がり、
     前記第1屈曲角は、前記第2屈曲角よりも小さい、
     ことを特徴とする動力伝達軸。
    The power transmission shaft according to claim 1,
    The rotational axis of the first main body portion is connected to the first power transmission device at a first bending angle with respect to the rotational axis of the tube,
    The rotational axis of the second main body portion is connected to the second power transmission device at a second bending angle with respect to the rotational axis of the tube,
    the first bending angle is smaller than the second bending angle,
    A power transmission shaft characterized by:
  7.  請求項1に記載の動力伝達軸であって、
     前記第1継手部材は、カルダンジョイントを介して前記第1動力伝達装置に接続されている、
     ことを特徴とする動力伝達軸。
    The power transmission shaft according to claim 1,
    The first joint member is connected to the first power transmission device via a Cardan joint.
    A power transmission shaft characterized by:
  8.  請求項1に記載の動力伝達軸であって、
     前記第1挿入部と前記第2挿入部の少なくとも一方は、前記チューブの内周部にセレーションを介して結合される、
     ことを特徴とする動力伝達軸。
    The power transmission shaft according to claim 1,
    At least one of the first insertion section and the second insertion section is coupled to an inner circumference of the tube via serrations.
    A power transmission shaft characterized by:
  9.  請求項1に記載の動力伝達軸であって、
     前記第1挿入部と前記第2挿入部の少なくとも一方は、前記チューブの内周部にスプライン結合される、
     ことを特徴とする動力伝達軸。
    2. The power transmission shaft according to claim 1,
    At least one of the first insertion portion and the second insertion portion is splined to an inner periphery of the tube.
    A power transmission shaft characterized by:
  10.  請求項1に記載の動力伝達軸であって、
     前記第1動力伝達装置は、車両のトランスミッションであり、
     前記第2動力伝達装置は、車両のディファレンシャルであり、
     前記第2継手部材は、ラバーカップリングによって構成されている、
     ことを特徴とする動力伝達軸。
    The power transmission shaft according to claim 1,
    The first power transmission device is a vehicle transmission,
    The second power transmission device is a differential of a vehicle,
    The second joint member is constituted by a rubber coupling.
    A power transmission shaft characterized by:
  11.  請求項1に記載の動力伝達軸であって、
     前記第1動力伝達装置は、車両のディファレンシャルであり、
     前記第2動力伝達装置は、車両のトランスミッションである、
     ことを特徴とする動力伝達軸。
    The power transmission shaft according to claim 1,
    The first power transmission device is a differential of a vehicle,
    the second power transmission device is a vehicle transmission;
    A power transmission shaft characterized by:
  12.  請求項1に記載の動力伝達軸であって、
     前記チューブは、繊維を樹脂で固めて形成した材料によって形成されている、
     ことを特徴とする動力伝達軸。
    The power transmission shaft according to claim 1,
    The tube is made of a material made by hardening fibers with resin.
    A power transmission shaft characterized by:
  13.  請求項1に記載の動力伝達軸であって、
     前記チューブは、金属材料によって形成されている、
     ことを特徴とする動力伝達軸。
    The power transmission shaft according to claim 1,
    The tube is formed of a metal material.
    A power transmission shaft characterized by:
  14.  請求項13に記載の動力伝達軸であって、
     前記第1挿入部は、前記チューブの内周部に形成された第1雌スプライン部と噛み合う第1雄スプライン部を有する、
     ことを特徴とする動力伝達軸。
    The power transmission shaft according to claim 13,
    The first insertion part has a first male spline part that engages with a first female spline part formed on the inner peripheral part of the tube.
    A power transmission shaft characterized by:
  15.  請求項13に記載の動力伝達軸であって、
     前記第2挿入部は、前記チューブの内周部に形成された第2雌スプライン部と噛み合う第2雄スプライン部を有する、
     ことを特徴とする動力伝達軸。
    The power transmission shaft according to claim 13,
    The second insertion portion has a second male spline portion that engages with a second female spline portion formed on the inner peripheral portion of the tube.
    A power transmission shaft characterized by:
  16.  車両の第1動力伝達装置と第2動力伝達装置との間において動力を伝達するプロペラシャフトであって、
     筒状に形成されたチューブと、
     第1継手部材であって、第1本体部と、第1挿入部と、を有し、
     前記第1挿入部は、前記チューブの回転軸線の方向における一対の端部である第1端部と第2端部のうち、前記第1挿入部の外周部が前記第1端部の内周部に固定状態に支持されていて、第1衝突荷重以上の入力荷重が作用すると、前記チューブとの固定状態が解除されて前記第1挿入部が前記チューブの前記第1端部から前記第2端部に向かって移動可能に設けられ、
     前記第1本体部は、前記回転軸線の方向において前記第1端部よりも前記第1挿入部の反対側に設けられていて、第1屈曲荷重が作用することにより前記回転軸線の方向に対して屈曲可能な第1継手部を介して前記第1動力伝達装置と繋がる、
     前記第1継手部材と、
     第2継手部材であって、第2本体部と、第2挿入部と、を有し、
     前記第2挿入部は、前記第2挿入部の外周部が前記チューブの前記第2端部の内周部に固定状態に支持され、第2衝突荷重以上の入力荷重が作用すると、前記チューブとの固定状態が解除されて前記第2挿入部が前記チューブの前記第2端部から前記第1端部に向かって移動可能に設けられ、
     前記第2本体部は、前記回転軸線の方向において前記第2端部よりも前記第2挿入部の反対側に設けられていて、前記回転軸線の方向に対して屈曲する際に必要な第2屈曲荷重が前記第1屈曲荷重よりも大きく設定された第2継手部を介して前記第2動力伝達装置と繋がる、
     前記第2継手部材と、
     を備え、
     前記第1継手部材及び前記第2継手部材に入力荷重が作用した際に前記第1継手部材が前記チューブの内周部へと入り込む第1コラプス長さは、前記第2継手部材が前記チューブの内周部へと入り込む第2コラプス長さよりも長く形成されている、
     ことを特徴とするプロペラシャフト。
    A propeller shaft that transmits power between a first power transmission device and a second power transmission device of a vehicle,
    A tube formed into a cylindrical shape,
    A first joint member, comprising a first main body portion and a first insertion portion,
    The first insertion section has a first end and a second end that are a pair of ends in the direction of the rotational axis of the tube, and the outer circumference of the first insertion section is equal to the inner circumference of the first end. When an input load equal to or greater than a first collision load is applied to the tube in a fixed state, the first insertion portion is released from the fixed state to the tube and the first insertion portion is moved from the first end of the tube to the second insertion portion. provided so as to be movable toward the end;
    The first main body portion is provided on the opposite side of the first insertion portion from the first end portion in the direction of the rotation axis, and is configured to bend in the direction of the rotation axis when a first bending load is applied thereto. connected to the first power transmission device via a first joint part that can be bent by
    the first joint member;
    A second joint member, comprising a second main body portion and a second insertion portion,
    The second insertion portion is configured such that an outer peripheral portion of the second insertion portion is supported in a fixed state on an inner peripheral portion of the second end of the tube, and when an input load equal to or higher than a second collision load acts, the second insertion portion is configured to engage with the tube. The fixed state of is released and the second insertion part is provided movably from the second end of the tube toward the first end,
    The second main body portion is provided on the opposite side of the second insertion portion from the second end portion in the direction of the rotation axis, and has a second connected to the second power transmission device via a second joint portion whose bending load is set larger than the first bending load;
    the second joint member;
    Equipped with
    A first collapse length in which the first joint member enters the inner circumference of the tube when an input load is applied to the first joint member and the second joint member is a first collapse length in which the first joint member enters the inner circumference of the tube. It is formed longer than the second collapse length that goes into the inner circumference,
    A propeller shaft characterized by:
PCT/JP2023/028042 2022-09-14 2023-08-01 Power transmission shaft and propeller shaft WO2024057747A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-146313 2022-09-14
JP2022146313 2022-09-14

Publications (1)

Publication Number Publication Date
WO2024057747A1 true WO2024057747A1 (en) 2024-03-21

Family

ID=90274705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028042 WO2024057747A1 (en) 2022-09-14 2023-08-01 Power transmission shaft and propeller shaft

Country Status (1)

Country Link
WO (1) WO2024057747A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612853U (en) * 1992-07-20 1994-02-18 株式会社ユニシアジェックス Propeller shaft balance adjustment structure
JP2003184854A (en) * 2001-12-19 2003-07-03 Toyota Industries Corp Propeller shaft and method of manufacturing the same and shaft made of frp
WO2019054167A1 (en) * 2017-09-15 2019-03-21 日立オートモティブシステムズ株式会社 Power transmission shaft
JP2021138203A (en) * 2020-03-03 2021-09-16 日立Astemo株式会社 Connection structure for propeller shaft, and propeller shaft having the connection structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612853U (en) * 1992-07-20 1994-02-18 株式会社ユニシアジェックス Propeller shaft balance adjustment structure
JP2003184854A (en) * 2001-12-19 2003-07-03 Toyota Industries Corp Propeller shaft and method of manufacturing the same and shaft made of frp
WO2019054167A1 (en) * 2017-09-15 2019-03-21 日立オートモティブシステムズ株式会社 Power transmission shaft
JP2021138203A (en) * 2020-03-03 2021-09-16 日立Astemo株式会社 Connection structure for propeller shaft, and propeller shaft having the connection structure

Similar Documents

Publication Publication Date Title
US7442127B2 (en) Propeller shaft and rotational power transmission mechanism equipped with this
JP7001696B2 (en) Power transmission shaft
CN111853074A (en) Power transmission device
JP2013047056A (en) Wheel supporting device
WO2024057747A1 (en) Power transmission shaft and propeller shaft
KR101664682B1 (en) Hollow drive shaft for vehicle and manufacturing meathod of the same
JP3063583B2 (en) Propeller shaft
WO2019027004A1 (en) Shaft coupling structure and telescopic shaft
KR101428316B1 (en) Propeller shaft for vehicle
JP2011017413A (en) Shaft for power transmission shaft
JP6900876B2 (en) Bonding structure and bonding method between shafts
WO2024057748A1 (en) Power transmission shaft and propeller shaft
JP5321655B2 (en) Torque transmission device for steering device
WO2010116883A1 (en) Intermediate shaft for drive shaft
JP2022085813A (en) Intermediate shaft
JPH11287237A (en) Propeller shaft structure
JP6673309B2 (en) Torque transmission shaft
WO2023218714A1 (en) Power transmission shaft, and vehicle equipped with same
JP2019031992A (en) Coupling structure of shafts
JP2009090699A (en) Split type shaft device for steering equipment
JP2011105069A (en) Propeller shaft
JP2009281454A (en) Power transmission shaft and propeller shaft for vehicle
JP4846216B2 (en) Power transmission structure
JPH1178563A (en) Shock absorbing structure for propeller shaft
JP4501384B2 (en) Drive pinion support structure of final reduction gear

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865107

Country of ref document: EP

Kind code of ref document: A1