WO2024053490A1 - ダイシングフィルム基材用樹脂組成物、ダイシングフィルム基材、およびダイシングフィルム - Google Patents

ダイシングフィルム基材用樹脂組成物、ダイシングフィルム基材、およびダイシングフィルム Download PDF

Info

Publication number
WO2024053490A1
WO2024053490A1 PCT/JP2023/031241 JP2023031241W WO2024053490A1 WO 2024053490 A1 WO2024053490 A1 WO 2024053490A1 JP 2023031241 W JP2023031241 W JP 2023031241W WO 2024053490 A1 WO2024053490 A1 WO 2024053490A1
Authority
WO
WIPO (PCT)
Prior art keywords
unsaturated carboxylic
carboxylic acid
dicing film
ethylene
ionomer
Prior art date
Application number
PCT/JP2023/031241
Other languages
English (en)
French (fr)
Inventor
重則 中野
孝一 西嶋
雅巳 佐久間
博樹 ▲高▼岡
Original Assignee
三井・ダウポリケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井・ダウポリケミカル株式会社 filed Critical 三井・ダウポリケミカル株式会社
Priority to JP2024501597A priority Critical patent/JP7437574B1/ja
Publication of WO2024053490A1 publication Critical patent/WO2024053490A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Definitions

  • the present invention relates to a resin composition for a dicing film base material, a dicing film base material, and a dicing film.
  • a stretchable wafer processing film (herein also referred to as "dicing film”) is attached to the back side of the semiconductor wafer, and the semiconductor wafer is divided into chips using a dicing blade, laser light, etc. .
  • the expansion step the dicing film is expanded to widen the distance between the chips and break the chips into small pieces.
  • an expansion table placed under the dicing film is pushed up, the dicing film is expanded, and the chips are divided.
  • Patent Document 1 describes a radiation-curable adhesive tape for wafer processing that includes an antistatic resin containing a polyether component and the above-mentioned ionomer.
  • Patent Document 2 describes a resin composition for a dicing film base material containing the above-mentioned ionomer, ethylene, (meth)acrylic acid, and a copolymer of (meth)acrylic acid alkyl ester.
  • Patent Document 3 describes an ionomer/polyamide blend containing a polyamide and an ionomer of a copolymer of ethylene and ⁇ , ⁇ -ethylenically unsaturated carboxylic acid as a resin composition used for molded parts. ing.
  • the dicing film around the chips is sufficiently stretchable (hereinafter also referred to as "room-temperature stretchability"). If the dicing film is not sufficiently stretched and a plurality of chips are pushed up by the fine pins, a phenomenon may occur in which chips that are not to be picked up peel off from the dicing film. Furthermore, if the room temperature elongation of the dicing film is low, stress is applied to the chip during the pick-up process, which may cause damage within the chip. When these problems occur, the yield of products decreases and the number of product defects increases.
  • Patent Document 1 does not include any description that focuses on the extensibility itself of the adhesive tape for wafer processing. Furthermore, although Patent Document 2 evaluates the heat resistance (e.g., elongation at 120° C.) of the dicing film, it does not focus on elongation at room temperature. Furthermore, since the ionomer/polyamide blend of Patent Document 3 contains a large amount of polyamide, it is difficult to form it into a film.
  • the resin composition for dicing film base material is required to have modulus strength of the dicing film at room temperature and low temperature, and may also be required to have elongation at low temperature.
  • the modulus strength required for division and the elongation of the film required for expansion are required.
  • the film requires a modulus strength to maintain a constant chip gap after separation and a film extensibility necessary during the pick-up process as described above.
  • the present invention has been made in view of the above problems.
  • the purpose of the present invention is to provide a resin composition for a dicing film base material, a dicing film base material, and a dicing film that can realize a dicing film base material that has excellent elongation properties at room temperature and low temperature, and also has excellent modulus strength at room temperature and low temperature. shall be.
  • the present invention provides the following resin composition for a dicing film base material.
  • a resin composition for a dicing film base material comprising: [2] The amount of structural units derived from unsaturated carboxylic acid in the ionomer (A) of the ethylene/unsaturated carboxylic acid copolymer is determined by the total composition of the ionomer (A) of the ethylene/unsaturated carboxylic acid copolymer.
  • [3] The amount of structural units derived from unsaturated carboxylic acid in the ionomer (B) of the ethylene/unsaturated carboxylic acid/unsaturated carboxylic acid ester copolymer
  • [4] The dicing film base according to any one of [1] to [3], wherein the degree of neutralization of the ionomer (A) of the ethylene/unsaturated carboxylic acid copolymer is 10% or more and 90% or less.
  • Resin composition for use Any one of [1] to [4], wherein the degree of neutralization of the ionomer (B) of the ethylene/unsaturated carboxylic acid/unsaturated carboxylic acid ester copolymer is 10% or more and 90% or less.
  • the resin composition for a dicing film base material as described above.
  • the total mass of the ionomer (A) of the ethylene/unsaturated carboxylic acid copolymer and the ionomer (B) of the ethylene/unsaturated carboxylic acid/unsaturated carboxylic acid ester copolymer is , 0.60 or more and less than 1.00, the resin composition for a dicing film base material according to any one of [1] to [6].
  • the total content of the ionomer (B) of the acid/unsaturated carboxylic acid ester copolymer and the styrene elastomer (C) is more than 90% by mass and 100% by mass or less, [1] to [8]
  • the resin composition for a dicing film base material according to any one of the above.
  • melt flow rate measured at 190°C and a load of 2160 g is 0.1 g/10 minutes or more and 30 g/10 minutes or less, [1] to [9]
  • the resin composition for a dicing film base material according to any one of the above.
  • the present invention provides the following dicing film base material and dicing film.
  • a dicing film base material comprising at least one layer containing the resin composition for a dicing film base material according to any one of [1] to [10] above.
  • the average value of the 30% modulus in the MD direction and the 30% modulus in the TD direction measured at 23°C in accordance with JIS K 7127:1999 of the layer containing the resin composition for dicing film base material is 8 MPa.
  • the dicing film base material according to [11] which has a pressure of 17 MPa or less.
  • the average value of the 10% modulus in the MD direction and the 10% modulus in the TD direction measured at -15°C in accordance with JIS K 7127:1999 of the layer containing the resin composition for dicing film base material is:
  • a dicing film comprising the dicing film base material according to [11] above, and an adhesive layer laminated on at least one surface of the dicing film base material.
  • a dicing film base material that has excellent elongation at room temperature and low temperature, and also excellent modulus strength at room temperature and low temperature is realized.
  • a numerical range expressed using “ ⁇ ” means a range that includes the numerical values written before and after " ⁇ ” as lower and upper limits.
  • (meth)acrylic acid is a notation used to include both “acrylic acid” and “methacrylic acid”
  • (meth)acrylate” includes both “acrylate” and “methacrylate.” This notation is used inclusively.
  • the resin composition for dicing film base materials of the present invention (hereinafter also simply referred to as "resin composition”) is mainly used for the base material of dicing films.
  • the use of the product is not limited to the base material of a dicing film.
  • base materials for dicing films are required to have not only modulus strength at room temperature and low temperature, but also elongation at room temperature and low temperature.
  • base materials for dicing films are required to have not only modulus strength at room temperature and low temperature, but also elongation at room temperature and low temperature.
  • an ionomer (A) of an ethylene/unsaturated carboxylic acid copolymer and an ionomer (B) of an ethylene/unsaturated carboxylic acid/unsaturated carboxylic acid ester copolymer It has been revealed that a dicing film base material having both modulus strength at room temperature and low temperature and extensibility at room temperature and low temperature can be obtained by using a resin composition containing the styrene elastomer (C) and styrenic elastomer (C). Although the reason is not clear, it is presumed as follows.
  • the resin composition contains an ionomer (A) of an ethylene/unsaturated carboxylic acid copolymer (hereinafter also simply referred to as "binary ionomer (A)")
  • the cohesive force (rigidity) of the resin composition increases.
  • the low-temperature modulus of the dicing film obtained from the resin composition is improved.
  • the resin composition contains an ionomer (B) of ethylene/unsaturated carboxylic acid/unsaturated carboxylic acid ester copolymer (hereinafter also simply referred to as "ternary ionomer (B)"), unsaturated carboxylic acid Since the acid ester is contained, the resin composition has good room temperature modulus and room temperature elongation. Furthermore, when the resin composition contains the styrene elastomer (C), the compatibility between the binary ionomer (A) and the ternary ionomer (B) improves, so that the room-temperature modulus and Good room temperature elongation.
  • ternary ionomer (B) ethylene/unsaturated carboxylic acid/unsaturated carboxylic acid ester copolymer
  • the binary ionomer (A), the ternary ionomer (B), and the styrene elastomer (C) are uniformly mixed, improving compatibility and improving low-temperature elongation.
  • a dicing film base material having both modulus strength at room temperature and low temperature and extensibility at room temperature and low temperature is obtained.
  • the binary ionomer (A) is a copolymer of ethylene and an unsaturated carboxylic acid, that is, a copolymer of ethylene and an unsaturated carboxylic acid in which part or all of the acid has been neutralized with metal ions. It has a structure in which multiple ethylene/unsaturated carboxylic acid copolymers are crosslinked.
  • the resin composition may contain only one type of the binary ionomer (A), or may contain two or more types.
  • the ethylene/unsaturated carboxylic acid copolymer that forms the main skeleton of the binary ionomer (A) mainly contains ethylene and unsaturated carboxylic acid.
  • structures derived from monomers other than ethylene and unsaturated carboxylic acids may be partially included, for example, all constituent units of the ethylene/unsaturated carboxylic acid copolymer. It may contain 20% by mass or less of structures derived from other monomers based on the amount of .
  • those that further include a structure derived from an unsaturated carboxylic acid ester are not included in the ethylene/unsaturated carboxylic acid polymer.
  • the amount of ethylene-derived structural units in the ethylene/unsaturated carboxylic acid copolymer is not limited, but if the amount of ethylene-derived structural units is relative to the amount of all structural units in the ethylene/unsaturated carboxylic acid copolymer,
  • the content is preferably 70% by mass or more and 99% by mass or less, more preferably 75% by mass or more and 95% by mass or less, and even more preferably 78% by mass or more and 90% by mass or less.
  • the amount of structural units derived from ethylene is 70% by mass or more, blocking etc. are less likely to occur in the resulting dicing film.
  • the amount of the structural unit derived from ethylene is 99% by mass or less, the amount of unsaturated carboxylic acid becomes relatively large enough, and the modulus strength and elongation tend to be good.
  • the amount of the structural unit derived from the unsaturated carboxylic acid in the ethylene/unsaturated carboxylic acid copolymer is not limited.
  • the amount of the structural unit derived from unsaturated carboxylic acid is preferably 1% by mass or more and 30% by mass or less, and 5% by mass or more and 25% by mass or less, based on the amount of all the structural units of the ethylene/unsaturated carboxylic acid copolymer. is more preferable, and even more preferably 10% by mass or more and 22% by mass or less.
  • the amount of structural units derived from unsaturated carboxylic acid is 1% by mass or more, the modulus strength and elongation rate tend to be good.
  • the amount of structural units derived from unsaturated carboxylic acid is 30% by mass or less, blocking etc. are less likely to occur in the resulting dicing film.
  • unsaturated carboxylic acids include unsaturated carboxylic acids having 4 to 8 carbon atoms such as acrylic acid, methacrylic acid, ethacrylic acid, itaconic acid, itaconic anhydride, fumaric acid, crotonic acid, maleic acid, and maleic anhydride.
  • acrylic acid or methacrylic acid is preferred from the viewpoint of reactivity and availability.
  • the ethylene/unsaturated carboxylic acid copolymer may contain only one type of structural unit derived from these, or may contain two or more types.
  • the ethylene/unsaturated carboxylic acid copolymer may have one or more constituent units derived from monomers other than ethylene and unsaturated carboxylic acid.
  • monomers other than ethylene and unsaturated carboxylic acids include unsaturated hydrocarbons such as propylene, butene, 1,3-butadiene, pentene, 1,3-pentadiene, and 1-hexene; vinyl acetate, vinyl propionate, etc. vinyl esters derived from etc.; oxides such as vinyl sulfuric acid and vinyl nitric acid; halogen compounds such as vinyl chloride and vinyl fluoride; primary amine compounds containing vinyl groups; secondary amine compounds containing vinyl groups; carbon monoxide; sulfur dioxide; etc. are included.
  • the above-mentioned ethylene/unsaturated carboxylic acid copolymer may be a block copolymer or a random copolymer.
  • the ethylene/unsaturated carboxylic acid copolymer may be a graft copolymer obtained by graft-polymerizing a random polymer or a block polymer with a known compound, as long as it does not impair the purpose and effects of the present invention. Good too.
  • the metal ion that neutralizes the acid of the ethylene/unsaturated carboxylic acid copolymer is not particularly limited, but examples include lithium ion, sodium ion, potassium ion, rubidium ion, etc. ion, cesium ion, zinc ion, magnesium ion, manganese ion, etc.
  • magnesium ion, sodium ion, or zinc ion is preferable from the viewpoint of availability, etc., sodium ion or zinc ion is more preferable, and zinc ion is even more preferable.
  • the degree of neutralization of the ethylene/unsaturated carboxylic acid copolymer in the binary ionomer (A) is preferably 10% or more and 90% or less, more preferably 10% or more and 85% or less, and further preferably 15% or more and 82% or less. preferable.
  • the degree of neutralization of the ethylene/unsaturated carboxylic acid copolymer is 10% or more, when the resin composition is used as a base material for a dicing film, the hardness of the surface of the base material becomes high.
  • the degree of neutralization is 90% or less, the processability and moldability of the resin composition will be good.
  • the degree of neutralization is the ratio of the metal ion compounding ratio to the number of moles of acid groups (for example, carboxy groups) in the binary ionomer (A) (ethylene/unsaturated carboxylic acid copolymer).
  • the unit is mol%.
  • the degree of neutralization can be measured by infrared absorption spectrum (IR).
  • the carboxy groups in the entire resin can be quantified using this method.
  • the degree of neutralization is determined by measuring both, and specifically, it can be calculated using the following formula.
  • melt flow rate (MFR) of the binary ionomer (A) measured at 190°C and a load of 2160g according to JIS K 7210:1999 (equivalent to ISO 1133:1997) is 0.2g/10min. It is preferably 20.0 g/10 minutes or more, more preferably 0.5 g/10 minutes or more and 20.0 g/10 minutes or less, and even more preferably 0.5 g/10 minutes or more and 18.0 g/10 minutes or less.
  • the melt flow rate of the binary ionomer (A) is within the above range, the resin composition can be easily molded.
  • the ternary ionomer (B) is a copolymer of ethylene, an unsaturated carboxylic acid, and an unsaturated carboxylic ester, that is, a part of the acid of the ethylene/unsaturated carboxylic acid/unsaturated carboxylic ester copolymer. , or all of them are neutralized with metal ions, and have a structure in which a plurality of ethylene/unsaturated carboxylic acid/unsaturated carboxylic acid ester copolymers are crosslinked.
  • the resin composition may contain only one type of the ternary ionomer (B), or may contain two or more types.
  • the ethylene/unsaturated carboxylic acid/unsaturated carboxylic ester copolymer which is the main skeleton of the ternary ionomer (B), mainly contains ethylene, an unsaturated carboxylic acid, and an unsaturated carboxylic ester.
  • structures derived from monomers other than these may be partially included, for example, the entire structure of the ethylene/unsaturated carboxylic acid/unsaturated carboxylic acid ester copolymer. It may contain 20% by mass or less of structures derived from other monomers based on the amount of units.
  • the amount of ethylene-derived structural units in the ethylene/unsaturated carboxylic acid/unsaturated carboxylic ester copolymer is not limited, but the amount of ethylene-derived structural units in the ethylene/unsaturated carboxylic acid/unsaturated carboxylic ester copolymer is It is preferably 60% by mass or more and 94% by mass or less, more preferably 75% by mass or more and 90% by mass or less, based on the amount of all structural units of the polymer. When the amount of structural units derived from ethylene is 60% by mass or more, blocking etc. are less likely to occur in the resulting dicing film.
  • the amount of the structural unit derived from the unsaturated carboxylic acid in the ethylene/unsaturated carboxylic acid/unsaturated carboxylic acid ester copolymer is not limited.
  • the amount of the structural unit derived from unsaturated carboxylic acid is preferably 1% by mass or more and 30% by mass or less, and 5% by mass or less, based on the amount of all the structural units of the ethylene/unsaturated carboxylic acid/unsaturated carboxylic acid ester copolymer. % or more and 20% by mass or less is more preferable.
  • the amount of structural units derived from unsaturated carboxylic acid is 1% by mass or more, the modulus strength and elongation rate tend to be good.
  • the type of unsaturated carboxylic acid in the ethylene/unsaturated carboxylic acid/unsaturated carboxylic acid ester copolymer is not particularly limited; Same as carboxylic acid.
  • the ethylene/unsaturated carboxylic acid/unsaturated carboxylic acid ester copolymer may contain only one type of structural unit derived from unsaturated carboxylic acid, or may contain two or more types.
  • the amount of the structural unit derived from the unsaturated carboxylic ester in the ethylene/unsaturated carboxylic acid/unsaturated carboxylic ester copolymer is not limited.
  • the amount of the structural unit derived from the unsaturated carboxylic acid ester is preferably 1% by mass or more and 20% by mass or less, based on the amount of all the structural units of the ethylene/unsaturated carboxylic acid/unsaturated carboxylic acid ester copolymer, and 1% by mass or more and 20% by mass or less. It is more preferably 15% by mass or more.
  • the amount of structural units derived from unsaturated carboxylic ester acid is 1% by mass or more, the low-temperature elongation properties and room-temperature elongation properties of the base material for the dicing film tend to be good.
  • the amount of structural units derived from unsaturated carboxylic acid esters is 20% by mass or less, it is relatively easy for the constituents derived from ethylene and unsaturated carboxylic acids to be sufficiently included, making it difficult for blocking etc. to occur in the dicing film. do.
  • the unsaturated carboxylic ester includes a compound in which the carboxylic acid of the above-mentioned unsaturated carboxylic acid becomes a carboxylic ester.
  • unsaturated carboxylic acid esters include unsaturated carboxylic acid alkyl esters having an alkyl group having 1 to 12 carbon atoms. The number of carbon atoms in the alkyl group is more preferably 1 to 8, and even more preferably 1 to 4.
  • alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, secondary butyl, 2-ethylhexyl, isooctyl, and the like.
  • the unsaturated carboxylic acid alkyl esters include (meth)acrylic acid methyl ester, (meth)acrylic acid ethyl ester, (meth)acrylic acid isobutyl ester, acrylic acid n-butyl ester, acrylic acid isooctyl ester, Includes maleic acid dimethyl ester, maleic acid diethyl ester, etc.
  • the ethylene/unsaturated carboxylic acid/unsaturated carboxylic ester copolymer may contain only one type of structural unit derived from an unsaturated carboxylic ester, or may contain two or more types.
  • the ethylene/unsaturated carboxylic acid/unsaturated carboxylic ester copolymer has one or more constituent units derived from monomers other than ethylene, unsaturated carboxylic acid, and unsaturated carboxylic ester. It's okay. These are the same as structural units derived from other monomers that may be included in the ethylene/unsaturated carboxylic acid copolymer.
  • the above-mentioned ethylene/unsaturated carboxylic acid/unsaturated carboxylic acid ester copolymer may be a block copolymer or a random copolymer.
  • the ethylene/unsaturated carboxylic acid/unsaturated carboxylic acid ester copolymer may be a graft copolymer obtained by further grafting a known compound to a random polymer or block polymer, within a range that does not impair the purpose and effects of the present invention. It may also be a polymer or the like.
  • the metal ion that neutralizes the acid of the ethylene/unsaturated carboxylic acid copolymer is not particularly limited, but examples thereof include lithium ion, sodium ion, potassium ion, rubidium ion, etc. ion, cesium ion, zinc ion, magnesium ion, manganese ion, etc.
  • magnesium ion, sodium ion, or zinc ion is preferable from the viewpoint of availability, etc., sodium ion or zinc ion is more preferable, and zinc ion is even more preferable.
  • the degree of neutralization of the ethylene/unsaturated carboxylic acid copolymer in the ternary ionomer (B) is preferably 10% or more and 90% or less, more preferably 10% or more and 85% or less, and further preferably 15% or more and 82% or less. preferable.
  • the degree of neutralization of the ethylene/unsaturated carboxylic acid/unsaturated carboxylic acid ester copolymer is 10% or more, when the resin composition is used as a base material for a dicing film, the hardness of the surface of the base material becomes high. On the other hand, when the degree of neutralization is 90% or less, the processability and moldability of the resin composition will be good.
  • the degree of neutralization is the ratio of the blending ratio of metal ions to the number of moles of acid groups (e.g. carboxy groups) in the ternary ionomer (B) (ethylene/unsaturated carboxylic acid/unsaturated carboxylic acid copolymer). It is. The unit is mol%.
  • the degree of neutralization is determined by measuring both, and specifically, it can be calculated using the following formula.
  • Neutralization degree (%) (1-P b1 /P b2 ) x 100
  • melt flow rate (MFR) of the ternary ionomer (B) measured at 190°C and a load of 2160g according to JIS K 7210:1999 (equivalent to ISO 1133:1997) is 0.2g/10min. It is preferably 20.0 g/10 minutes or more, more preferably 0.5 g/10 minutes or more and 20.0 g/10 minutes or less, and even more preferably 0.5 g/10 minutes or more and 18.0 g/10 minutes or less.
  • the melt flow rate of the ternary ionomer (B) is within the above range, the resin composition can be easily molded.
  • the styrenic elastomer refers to a styrene polymer that is a rubber elastic body at room temperature.
  • styrenic elastomers include block copolymers or hydrogenated products thereof, including hard segments consisting of styrene blocks (styrene polymers) and soft segments consisting of alkylene blocks; random copolymers of styrene and alkylene.
  • Acid-modified styrenic elastomer which is obtained by acid-modifying the styrene-based elastomer, and the like are included.
  • the styrene block in the block copolymer may be a site where two or more styrenes are polymerized, and the alkylene block may be a site where two or more alkenes are polymerized.
  • the alkylene block may be a homopolymer of one type of alkene or a copolymer of two or more types of alkenes.
  • block copolymers examples include styrene-butadiene block copolymer (SB), styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene block copolymer (SI), styrene-isoprene-styrene Block copolymers (SIS) are included.
  • SB styrene-butadiene block copolymer
  • SBS styrene-butadiene-styrene block copolymer
  • SI styrene-isoprene block copolymer
  • SIS styrene-isoprene-styrene Block copolymers
  • the styrenic elastomer may be a hydrogenated product of the above block copolymer.
  • both the styrene block and the alkylene block may be hydrogenated, or only either the styrene block or the alkylene block may be hydrogenated, and furthermore, one of the styrene block and the alkylene block may be hydrogenated. Only a portion may be hydrogenated.
  • hydrogenated block copolymer examples include styrene-ethylene/butylene block copolymer (SEB), which is a hydrogenated product of styrene-butadiene block copolymer (SB), and styrene-butadiene-styrene block.
  • SEB styrene-ethylene/butylene-styrene block copolymer
  • SEBS Styrene-ethylene/butylene-styrene block copolymer
  • SBS hydrogenated product of copolymer
  • SIS styrene-isoprene-styrene block copolymer
  • SEPS styrene block copolymer
  • examples of styrenic elastomers also include random copolymers of styrene and alkylene.
  • examples include styrene-butadiene random copolymers, styrene-isoprene random copolymers, styrene-ethylene-butylene random copolymers, styrene-ethylene-propylene random copolymers, styrene-isobutylene random copolymers, styrene -Includes ethylene-isoprene random copolymer, etc.
  • the styrenic elastomer may be a hydrogenated product of the random copolymer.
  • examples include hydrogenated styrene-butadiene random copolymers (HSBR) and the like.
  • styrene-based elastomer that has not been acid-modified as described below
  • hydrogenated substances are preferred among the above, and styrene-ethylene/butylene-styrene block copolymer (SEBS) and styrene-ethylene/propylene-styrene block copolymer ( SEPS) is more preferable, and styrene-ethylene/butylene-styrene block copolymer (SEBS) is more preferable, from the viewpoint that it can improve the low-temperature elongation properties and room-temperature elongation properties of the base material for the dicing film obtained from the resin composition. Particularly preferred.
  • styrenic elastomers are acid-modified styrene elastomers in which an elastomer made of the block copolymer or random polymer, or a hydrogenated product thereof, is graft-modified with an unsaturated carboxylic acid or a derivative thereof.
  • the acid-modified styrenic elastomer may be obtained by graft-modifying the block copolymer or random polymer, or a hydrogenated product thereof, with one type of unsaturated carboxylic acid or a derivative thereof, or two or more types. may be graft-modified with an unsaturated carboxylic acid or a derivative thereof.
  • Examples of unsaturated carboxylic acids graft-polymerized to the above block copolymers, random copolymers, etc. include (meth)acrylic acid, 2-ethyl acrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, etc. included.
  • examples of unsaturated carboxylic acid derivatives that can be graft-polymerized to styrenic elastomers include acid anhydrides such as maleic anhydride, phthalic anhydride, and itaconic anhydride; acid esters such as monomethyl maleate and monoethyl maleate; and acid amides. ; acid halides; etc. are included.
  • maleic acid or maleic anhydride is preferred from the viewpoint of reactivity with the styrene elastomer.
  • the acid-modified styrenic elastomer can be obtained by graft polymerizing the block copolymer, random copolymer, etc. with an unsaturated carboxylic acid or a derivative thereof in the presence of a radical initiator.
  • the radical initiator may be any one used in the graft reaction of polyolefins, and known compounds can be used.
  • the acid value of the acid-modified styrenic elastomer is preferably more than 0 mg CH 3 ONa/g and less than 20 mg CH 3 ONa/g, more preferably more than 0 mg CH 3 ONa/g and less than 11 mg CH 3 ONa/g, and more preferably 0.5 mg CH 3 ONa/g. More preferably, the amount is from 11 mg CH 3 ONa/g to 11 mg CH 3 ONa/g.
  • the acid value of the acid-modified styrene elastomer is within this range, it tends to have good elongation properties at low temperatures and room temperatures.
  • the melt plate of the styrene elastomer (C) is preferably 0.1 g/10 minutes to 100 g/10 minutes, more preferably 0.5 g/10 minutes to 90 g/10 minutes, and 1.0 g/10 minutes to 80 g/10 minutes. minutes, more preferably 2.0 g/10 minutes to 75 g/10 minutes.
  • the above melt flow rate is a value measured at 230° C. and a load of 2160 g in accordance with JIS K 7210:1999 (corresponding to ISO 1133:1997).
  • the Tan ⁇ peak temperature of the styrene elastomer (C) is preferably -60°C or higher, more preferably -55°C or higher, from the viewpoint of improving the low-temperature elongation properties and room-temperature elongation properties of the obtained base material for the dicing film. , -50°C or higher is more preferred.
  • the Tan ⁇ peak temperature is a temperature at which a peak value is obtained in a dynamic viscoelasticity test (temperature dependent measurement 10 Hz) in accordance with JIS K 6394 (corresponding to ISO 4664-1:2005).
  • the resin composition may contain various additives, antistatic agents, ultraviolet absorbers, fillers, other polymers, etc., as necessary, within a range that does not impair the effects of the present invention.
  • additives examples include antioxidants, heat stabilizers, light stabilizers, pigments, dyes, lubricants, antiblocking agents, fungicides, antibacterial agents, flame retardants, flame retardant aids, crosslinking agents, and crosslinking aids.
  • the content of the additive is preferably 20 parts by mass or less, more preferably 18 parts by mass or less, when the total mass of the resin components contained in the resin composition is 100 parts by mass.
  • examples of the antistatic agent include a low molecular weight antistatic agent and a polymer type antistatic agent, and a polymer type antistatic agent is preferable.
  • a polymer type antistatic agent refers to conductive sites (e.g., polyether-derived structural sites, quaternary ammonium base sites, etc.) and non-conductive sites (e.g., polyamide-derived structural sites, polyethylene, etc.). It is a copolymer having a molecular weight of 300 or more (preferably 1000 to 10000). The molecular weight is the weight average molecular weight in terms of polystyrene measured by GPC. Note that conductivity means that the surface resistivity measured based on ASTM D257 is 10 10 ⁇ / ⁇ or less.
  • polymer type antistatic agent examples include vinyl copolymers having sulfonate salts in the molecule, alkyl sulfonate salts, alkylbenzene sulfonate salts, betaine, and the like.
  • polymer type antistatic agent examples include polyether amide, polyether ester amide, an inorganic protonic acid salt of polyether amide, or an inorganic protonic acid salt of polyether ester amide.
  • Salts of inorganic protic acids include alkali metal salts, alkaline earth metal salts, zinc salts, or ammonium salts.
  • ultraviolet absorbers examples include benzophenone-based, benzoate-based, benzotriazole-based, cyanoacrylate-based, hindered amine-based, and the like.
  • fillers examples include silica, clay, calcium carbonate, barium sulfate, glass beads, talc, etc.
  • additives are appropriately selected depending on their types.
  • polystyrene resin examples include polyolefins such as polyethylene and polypropylene, and polyamides.
  • the amount of polyamide is preferably less than 5 parts by mass when the total mass of the resin components contained in the resin composition is 100 parts by mass. It is preferable that the resin composition does not contain polyamide as other polymers.
  • the amount of the binary ionomer (A) is preferably 10% by mass or more and 80% by mass or less, more preferably 15% by mass or more and 75% by mass or less, based on the total amount of the resin composition.
  • the amount of the ternary ionomer (B) is preferably 10% by mass or more and 80% by mass or less, more preferably 12% by mass or more and 75% by mass or less, based on the total amount of the resin composition.
  • the amount of the styrene elastomer (C) is preferably 5% by mass or more and 35% by mass or less, more preferably 7% by mass or more and 32% by mass or less, based on the total amount of the resin composition.
  • the mass of the binary ionomer (A) is 0.10 or more and 0.95
  • 0.15 or more and 0.90 or less are more preferable
  • 0.20 or more and 0.85 or less are still more preferable.
  • the binary ionomer (A), the ternary ionomer (B), and the styrene elastomer (C) is 1, the binary ionomer (A) and the ternary ionomer (B)
  • the total mass is preferably 0.60 or more and less than 1.00, more preferably 0.65 or more and 0.95 or less.
  • the total mass of the resin components contained in the resin composition is 100% by mass
  • the total content of the binary ionomer (A), the ternary ionomer (B), and the styrene elastomer (C) is , preferably 50% by mass or more and 100% by mass or less, more preferably 60% by mass or more and 100% by mass or less, even more preferably 70% by mass or more and 100% by mass or less, and 80% by mass or more and 100% by mass or less. It is more preferably not more than 90% by mass and not more than 100% by mass, even more preferably not less than 95% by mass and not more than 100% by mass, and more than 95% by mass and not more than 100% by mass. It is more preferably at least 98% by mass and at most 100% by mass, even more preferably at least 99% by mass and at most 100% by mass.
  • the "amount (mass) of the structural unit derived from the unsaturated carboxylic acid in the binary ionomer (A)" relative to the total mass of the resin components ) and the amount (mass) of the unsaturated carboxylic acid-derived structural units in the ternary ionomer (B)" adjust the amount of each component so that the ratio is 5% by mass or more and 20% by mass or less. It is preferable to adjust the amount of each component so that it is 7% by mass or more and 15% by mass or less, and it is more preferable to adjust the amount of each component so that it is 9% by mass or more and 13% by mass or less. preferable.
  • the amount of the structural unit derived from unsaturated carboxylic acid in the resin composition is within the above range, low-temperature modulus properties tend to be good.
  • the "amount of structural units derived from the unsaturated carboxylic acid ester in the ternary ionomer (B)" relative to the total mass of the resin components It is preferable to adjust the amount of each component so that the ratio of "mass)" is 0.5% by mass or more and 10% by mass or less, and the amount of each component is adjusted so that the ratio of "mass)” is 1% by mass or more and 8% by mass or less. It is more preferable.
  • the amount of the structural unit derived from the unsaturated carboxylic acid ester in the resin composition is within the above range, the elongation properties at room temperature and low temperature tend to be good.
  • the degree of neutralization of the carboxylic acid in the resin composition is preferably 40% or more and 90% or less, more preferably 45% or more and 85% or less, further preferably 50% or more and 80% or less, further preferably 55% or more and 75% or less, and even more preferably 60% or more and 70% or less.
  • the above degree of neutralization is, for example, when the degree of neutralization of the unsaturated carboxylic acid in the binary ionomer (A) and the degree of neutralization of the unsaturated carboxylic acid in the ternary ionomer (B) are known.
  • the degree of neutralization of the unsaturated carboxylic acid in the entire resin composition is 40% or more, when the resin composition is used as a base material for a dicing film, the modulus strength of the base film at room temperature and low temperature becomes high. On the other hand, when the degree of neutralization is 90% or less, the processability and moldability of the resin composition will be good.
  • the method for producing the resin composition of the present invention is not particularly limited, and includes a binary ionomer (A), a ternary ionomer (B), and a styrene elastomer (C), and if necessary, other polymers and additives.
  • A binary ionomer
  • B ternary ionomer
  • C styrene elastomer
  • the shape of the resin composition after the kneading is not particularly limited, and may be, for example, in the form of pellets, or may be processed into a long or single sheet.
  • the melt flow rate of the resin composition measured at 190°C and a load of 2160 g is 0.1 g/10 minutes or more and 30 g/10 minutes or less. is preferable, 0.2 g/10 minutes or more and 20 g/10 minutes or less, more preferably 0.3 g/10 minutes or more and 10 g/10 minutes or less, even more preferably 0.4 g/10 minutes or more and 5 g/10 minutes or less. , more preferably 0.5 g/10 minutes or more and 3 g/10 minutes or less.
  • the melt flow rate of the resin composition is within this range, the modulus strength at room temperature and low temperature and the elongation property at room temperature and low temperature of the base material obtained from the resin composition tend to be good.
  • the dicing base material may be any base material as long as it has at least one layer containing the above-mentioned resin composition. Since the dicing film base material has a layer containing the above-mentioned resin composition, it exhibits excellent modulus strength and elongation at room temperature and low temperature.
  • the dicing film base material is suitably used as a base material for a dicing film, but is not limited to this use.
  • the structure of the dicing film base material is not particularly limited, and may have only one layer containing the above-mentioned resin composition, or may have two or more layers containing the above-mentioned resin composition. Furthermore, other resin layers may be laminated as necessary.
  • the dicing film base material examples include a laminate with a one-layer structure consisting only of a layer containing the above-mentioned resin composition; a laminate with a two-layer structure consisting of a layer containing the above-mentioned resin composition and another resin layer. body; a laminate having a three-layer structure consisting of three layers: a layer containing the above-mentioned resin composition/another resin layer/a layer containing the above-mentioned resin composition; and the like.
  • the dicing film base material may further contain a layer containing an adhesive, an adhesive sheet, etc. in addition to the above.
  • the layer containing the above-mentioned resin composition may be a layer consisting only of the above-mentioned resin composition, or may include the above-mentioned resin composition and other components within the range that does not impair the purpose and effects of the present invention.
  • a layer consisting essentially of the above-mentioned resin composition is preferable from the viewpoint of the extensibility and modulus strength of the dicing film base material.
  • the thickness of the layer containing the above resin composition is not particularly limited, but from the viewpoint of improving the strength, modulus strength, elongation, etc. of the dicing film base material, it is preferably 50 ⁇ m or more and 200 ⁇ m or less, and 60 ⁇ m or more and 180 ⁇ m or less. More preferred.
  • the average value of the 30% modulus in the MD direction (Machine Direction) and the 30% modulus in the TD direction (Transverse Direction) measured at 23° C. of the layer containing the resin composition is preferably 8 MPa or more and 17 MPa or less, and 10 MPa or more and 15 MPa or less. The following are more preferred.
  • the average value of the 30% modulus at 23° C. is within this range, the extensibility of the dicing film base material at room temperature tends to be good.
  • the above 30% modulus was determined by preparing a film having the same composition as the layer containing the resin composition, having a thickness of 100 ⁇ m, a length in the TD direction of 10 mm, and a length in the MD direction of 180 mm. -3:1995), and is a value measured by a Shimadzu desktop precision universal testing machine AG-X. The distance between chucks is 100 mm, and the test speed is 300 mm/min.
  • the average value of the 10% modulus in the MD direction and the 10% modulus in the TD direction measured at -15° C. of the layer containing the resin composition is preferably 20 MPa or more, more preferably 24 MPa or more.
  • the dicing film base material tends to have good separability and elongation at low temperatures.
  • the above 10% modulus is determined by preparing a film having the same composition as the layer containing the resin composition, having a thickness of 100 ⁇ m, a length in the TD direction of 10 mm, and a length in the MD direction of 180 mm. -3:1995), and is a value measured by a Shimadzu desktop precision universal testing machine AG-X. The distance between the chucks is 100 mm, and the test speed is 1000 mm/min.
  • the layer containing the resin composition can measure both the 200% modulus in the MD direction and the 200% modulus in the TD direction at 23°C. If both the 200% modulus in the MD direction at 23° C. and the 200% modulus in the TD direction at 23° C. can be measured, stress is less likely to be applied to the chip in the pick-up process, and damage within the chip is less likely to occur.
  • the above 200% modulus was determined by preparing a film having the same composition as the layer containing the resin composition, having a thickness of 100 ⁇ m, a length in the TD direction of 10 mm, and a length in the MD direction of 180 mm, and the film was determined according to JIS K 7127:1999 (ISO 527). -3:1995), and is a value measured by a Shimadzu desktop precision universal testing machine AG-X. The test speed is 300 mm/min.
  • the layer containing the resin composition can measure both the 200% modulus in the MD direction and the 200% modulus in the TD direction at -15°C. If both the 200% modulus in the MD direction at -15°C and the 200% modulus in the TD direction at -15°C can be measured, it is possible to measure both the 200% modulus in the MD direction at -15°C and the 200% modulus in the TD direction at -15°C. Easy to perform expansion.
  • the above 200% modulus was determined by preparing a film having the same composition as the layer containing the resin composition, having a thickness of 100 ⁇ m, a length in the TD direction of 10 mm, and a length in the MD direction of 180 mm. -3:1995), and is a value measured by a Shimadzu desktop precision universal testing machine AG-X. The test speed is 1000 mm/min.
  • examples of other resin layers include linear low density polyethylene (LLDPE), low density polyethylene (LDPE), ethylene/ ⁇ -olefin copolymer, polypropylene, ethylene/unsaturated carboxylic acid copolymer or its ionomer.
  • LLDPE linear low density polyethylene
  • LDPE low density polyethylene
  • ethylene/ ⁇ -olefin copolymer polypropylene
  • ethylene/unsaturated carboxylic acid copolymer or its ionomer ethylene/unsaturated carboxylic acid copolymer or its ionomer.
  • ethylene/unsaturated carboxylic acid/unsaturated carboxylic acid alkyl ester terpolymer or its ionomer ethylene/unsaturated carboxylic acid alkyl ester copolymer, ethylene/vinyl ester copolymer, ethylene/unsaturated alkyl carboxylate
  • a layer containing an ester/carbon monoxide copolymer, an unsaturated carboxylic acid graft product thereof, polyvinyl chloride, etc. is included.
  • the other resin layer may contain only one type of the above resin, or may contain two or more types of the above resin.
  • the thickness of the other resin layer is not particularly limited, but from the viewpoint of not impairing the modulus strength and elongation of the layer containing the resin composition, it is preferably 10 ⁇ m or more and 100 ⁇ m or less, and more preferably 15 ⁇ m or more and 80 ⁇ m or less.
  • the thickness of the entire dicing film base material is preferably 50 ⁇ m or more from the viewpoint of frame retention during dicing and 200 ⁇ m or less from the viewpoint of expandability, considering that it is used as a component of the dicing film.
  • the surface of the dicing film base material may be subjected to various treatments, such as corona treatment. Furthermore, electron beam irradiation may be performed.
  • the manufacturing method of the above-mentioned dicing film base material is not particularly limited, and it can be manufactured by a known molding method.
  • a dicing film base material consisting only of a layer containing the above-mentioned resin composition
  • the above resin composition etc. may be molded.
  • the dicing film base material is a laminate of a layer containing the above-mentioned resin composition and another resin layer
  • the above-mentioned resin composition and other resin are combined by a coextrusion lamination method, etc. It can be formed by Alternatively, a layer containing the above-mentioned resin composition and another resin layer may be produced separately, and then bonded together using an adhesive, an adhesive sheet, or the like.
  • materials for adhesives and adhesive sheets include various ethylene copolymers and unsaturated carboxylic acid grafts thereof.
  • the dicing film base material is a laminate of a layer containing the above-mentioned resin composition and another resin layer
  • one of the layer containing the above-mentioned resin composition and the other resin layer is The first layer may be formed first, and then the other layer may be formed on the one layer using a T-die film molding machine, an extrusion coating molding machine, etc., and then laminated.
  • the dicing film of the present invention only needs to include the above-described dicing film base material and an adhesive layer laminated on at least one surface thereof, and may include other configurations as necessary. .
  • the above-mentioned dicing film base material consists of multiple layers, it is preferable that the layer containing the resin composition in the dicing film base material and the adhesive layer are laminated.
  • the adhesive constituting the adhesive layer can be an adhesive for the adhesive layer of a general dicing film.
  • the adhesive include rubber-based, acrylic-based, silicone-based, and polyvinyl ether-based adhesives; radiation-curable adhesives; heat-foaming adhesives, and the like.
  • the adhesive layer preferably contains a radiation-curable adhesive, and more preferably contains an ultraviolet-curable adhesive.
  • UV-curable adhesives usually contain a radically polymerizable compound (which can be a monomer, oligomer, or polymer) and a photopolymerization initiator, and optionally a crosslinker, tackifier, and filler. Contains additives such as anti-aging agents, anti-aging agents, and coloring agents.
  • radically polymerizable compounds examples include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, octyl (meth)acrylate, and (meth)acrylate.
  • Monomers or oligomers of alkyl (meth)acrylates such as isononyl acid; hydroxyalkyl (meth)acrylates such as hydroxyethyl (meth)acrylate, hydroxybutyl (meth)acrylate, hydroxyhexyl (meth)acrylate, etc.
  • photopolymerization initiators include benzoin alkyl ethers such as benzoin methyl ether, benzoin isopropyl ether, and benzoin isobutyl ether; aromatic ketones such as ⁇ -hydroxycyclohexylphenyl ketone; aromatic ketals such as benzyl dimethyl ketal. ; Includes thioxanthone such as polyvinylbenzophenone, chlorothioxanthone, dodecylthioxanthone, dimethylthioxanthone, diethylthioxanthone.
  • crosslinking agents examples include polyisocyanate compounds, melamine resins, urea resins, polyamines, carboxyl group-containing polymers, and the like.
  • the thickness of the adhesive layer is appropriately selected depending on the type of adhesive, and is preferably 3 to 100 ⁇ m, more preferably 3 to 50 ⁇ m.
  • the adhesive layer of the dicing film may be protected by a separator.
  • the surface of the adhesive layer can be kept smooth.
  • the dicing film can be easily handled and transported, and it is also possible to process a label on the separator.
  • the separator is peeled off when using the dicing film.
  • the separator may be paper or a synthetic resin film such as polyethylene, polypropylene, polyethylene terephthalate, etc. Furthermore, the surface of the separator that comes into contact with the adhesive layer may be subjected to a release treatment such as silicone treatment or fluorine treatment, as necessary, in order to improve the releasability from the adhesive layer.
  • the thickness of the separator is usually about 10 to 200 ⁇ m, preferably about 25 to 100 ⁇ m.
  • the method for producing the dicing film is not particularly limited, and for example, the dicing film may be produced by applying an adhesive onto the dicing base material using a known method.
  • the adhesive can be applied using a gravure roll coater, a reverse roll coater, a kiss roll coater, a dip roll coater, a bar coater, a knife coater, a spray coater, or the like.
  • an adhesive layer may be formed by applying an adhesive on a release sheet, and the adhesive layer may be transferred to a dicing film base material to laminate the dicing film base material and the adhesive layer.
  • the dicing film base material and the adhesive layer may be formed simultaneously by coextrusion or the like.
  • IO1 Ionomer of ethylene/methacrylic acid copolymer (content of structural units derived from ethylene: 85% by mass, content of structural units derived from methacrylic acid: 15% by mass, degree of neutralization: 59% zinc, JIS MFR: 8.9 g/10 min, measured at 190°C and 2160 g load according to K 7210:1999 (equivalent to ISO 1133:1997)
  • IO2 Ionomer of ethylene/methacrylic acid copolymer (content of structural units derived from ethylene: 80% by mass, content of structural units derived from methacrylic acid: 20% by mass, degree of neutralization: 40% zinc, JIS MFR: 8.0 g/10 min, measured at 190°C and 2160 g load according to K 7210:1999 (equivalent to ISO 1133:1997)
  • IO3 Ionomer of ethylene/methacrylic acid/butyl acrylate copolymer (content of structural units derived from ethylene: 80% by mass, content of structural units derived from methacrylic acid: 10% by mass, butyl acrylate) Content of structural units derived from: 10% by mass, degree of neutralization: 70% zinc, MFR measured at 190°C and 2160g load according to JIS K 7210:1999 (equivalent to ISO 1133:1997): 1g /10 minutes)
  • Examples 1 to 11 and Comparative Examples 1 to 5 In the proportions (mass ratio) shown in Table 1, the ionomer (A) of ethylene/unsaturated carboxylic acid copolymer, the ionomer (B) of ethylene/unsaturated carboxylic acid/unsaturated carboxylic acid ester copolymer, and the styrene-based The elastomer (C) was dry blended. Next, the dry blended mixture was charged into a resin inlet of a 30 mm ⁇ twin screw extruder and melt-kneaded at a die temperature of 230° C. to obtain a resin composition for a dicing film base material. Regarding the obtained resin composition for a dicing film base material, MFR was measured at 190° C. and a load of 2160 g in accordance with JIS K 7210:1999 (corresponding to ISO 1133:1997). The results are shown in Table 1.
  • the obtained resin composition for a dicing film base material was molded using a 40 mm ⁇ T-die film molding machine at a processing temperature of 230° C. to produce a 100 ⁇ m thick T-die film.
  • the obtained T-die film was used as a dicing film base material and evaluated by the following method.
  • the total amount of structural units derived from unsaturated carboxylic acids is determined by "content ratio of binary ionomer (A) x amount of structural units derived from carboxylic acid in binary ionomer (A)” and “amount of structural units derived from carboxylic acid in ternary ionomer (A)” It was calculated from the sum of the content ratio of (B) x the amount of structural units derived from carboxylic acid in the ternary ionomer (B).
  • the total amount of structural units derived from unsaturated carboxylic acid esters was calculated from "content ratio of ternary ionomer (B) x amount of structural units derived from carboxylic acid esters in ternary ionomer (B)".
  • the degree of neutralization (mol%) is calculated as follows: "Degree of neutralization of the binary ionomer (A) x (of the binary ionomer (A) relative to the total amount of the binary ionomer (A) and the ternary ionomer (B)”) "Amount ratio)" + "Neutralization degree of ternary ionomer (B) x (Ratio of amount of ternary ionomer (B) to the total amount of binary ionomer (A) and ternary ionomer (B) )”. Furthermore, “total amount of structural units derived from unsaturated carboxylic acid x degree of neutralization/100” was also calculated. The results are shown in Table 1.
  • the 30% modulus in the MD direction and the 30% modulus in the TD direction obtained in the above test were averaged, and the room temperature modulus strength of the dicing film base material was evaluated according to the following criteria.
  • the 10% modulus in the MD direction and the 10% modulus in the TD direction obtained in the above test were averaged, and the low-temperature modulus strength of the dicing film base material was evaluated based on the following criteria.
  • the room temperature elongation of the dicing film base material was evaluated based on the following criteria.
  • the low temperature elongation of the dicing film base material was evaluated based on the following criteria.
  • Comparative Example 1 which does not contain the ternary ionomer (B) and the styrene elastomer (C), has low room temperature modulus strength, room temperature elongation, and low temperature elongation, and Modulus strength and room temperature elongation were low.
  • Comparative Example 3 which did not contain the binary ionomer (A) and the styrene elastomer (C), the low-temperature elongation properties were low. Furthermore, in Comparative Example 4, which did not contain the styrene elastomer (C), low-temperature elongation was low. Furthermore, in Comparative Example 5, which did not contain the ternary ionomer (B), low-temperature elongation was low.
  • a dicing film base material that has excellent elongation at room temperature and low temperature, and also excellent modulus strength at room temperature and low temperature is realized. Therefore, it is very useful in the field of manufacturing semiconductor devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Dicing (AREA)

Abstract

常温および低温における伸び性に優れ、さらには常温および低温におけるモジュラス強度にも優れたダイシングフィルム基材を実現可能なダイシングフィルム基材用樹脂組成物の提供を課題とする。上記課題を解決するダイシングフィルム基材用樹脂組成物は、エチレン・不飽和カルボン酸共重合体のアイオノマー(A)と、エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体のアイオノマー(B)と、スチレン系エラストマー(C)と、を含む。

Description

ダイシングフィルム基材用樹脂組成物、ダイシングフィルム基材、およびダイシングフィルム
 本発明は、ダイシングフィルム基材用樹脂組成物、ダイシングフィルム基材、およびダイシングフィルムに関する。
 IC(集積回路)等の半導体装置の製造過程では、回路パターンを形成した半導体ウエハを薄膜化した後、半導体ウエハをチップ単位に分断するダイシング工程を行うことが一般的である。ダイシング工程では、半導体ウエハの裏面に伸縮性を有するウエハ加工用フィルム(本明細書では、「ダイシングフィルム」とも称する)を貼着し、ダイシングブレードやレーザー光等によって半導体ウエハをチップ単位に分断する。そして拡張工程によって、ダイシングフィルムを拡張することにより、チップどうしの間隔を広げ、チップを小片化する。当該拡張工程では、例えばダイシングフィルムの下に配置した拡張テーブルを押し上げ、ダイシングフィルムを拡張し、チップを分割する。
 その後、ピックアップ工程において、所望のチップのみをダイシングフィルムからピックアップして所望の用途に使用する。当該ピックアップ工程では、ダイシングフィルム側から、所望のチップのみを微細ピンで突き上げて、ピックアップすることが一般的である。
 ここで、ダイシングフィルムを構成する材料として、エチレン・(メタ)アクリル酸共重合体を金属イオンで架橋したアイオノマーが知られている。例えば特許文献1には、ポリエーテル成分を含む帯電防止樹脂と、上記アイオノマーと、を含む放射線硬化型ウエハ加工用粘着テープが記載されている。特許文献2には、上記アイオノマーと、エチレンと、(メタ)アクリル酸と、(メタ)アクリル酸アルキルエステルの共重合体と、を含むダイシングフィルム基材用樹脂組成物が記載されている。
 また、成型部品等に使用する樹脂組成物として、エチレンおよびα,β-エチレン性不飽和カルボン酸の共重合体のアイオノマーと、ポリアミドと、を含むアイオノマー/ポリアミド配合物が特許文献3に記載されている。
特開2011-210887号公報 特開2012-89732号公報 特表2000-516984号公報
 ここで、上述のピックアップ工程で、所望のチップのみを適切にピックアップするためには、チップの周囲のダイシングフィルムが十分に伸びること(以下、「常温伸び性」とも称する)が重要である。ダイシングフィルムが十分に伸びずに、微細ピンによって複数のチップが突き上げられてしまうと、ピックアップ対象ではないチップがダイシングフィルムから剥離する現象が生じることがある。また、ダイシングフィルムの常温伸び性が低いと、ピックアップ工程において、チップに応力が掛かり、チップ内の破損が起こることもある。これらの問題が生じると、製品の歩留まりが低下したり、製品不良が増加したりする。
 しかしながら、特許文献1には、ウエハ加工用粘着テープの伸び性自体に着目した記載がない。さらに、特許文献2では、ダイシングフィルムの耐熱性(例えば、120℃における伸び性)を評価しているものの、常温での伸び性には着目していない。さらに、特許文献3のアイオノマー/ポリアミド配合物は、ポリアミドを多量に含むことから、これをフィルム状に成形することが困難である。
 また、ダイシングフィルム基材用樹脂組成物には、前記の常温伸び性に加えて、常温や低温におけるダイシングフィルムのモジュラス強度が求められ、さらに低温における伸び性も求められることもある。具体的には、ダイシング・ダイボンド一体型フィルムの場合、低温でチップとダイボンドフィルムの分断と拡張(エキスパンド)を行う工程があり、分断に必要なモジュラス強度とエキスパンドに必要なフィルムの伸び性とが要求される。また、常温時には、分断後のチップ間隙を一定に維持するためのモジュラス強度と前記のとおりピックアップ工程時に必要なフィルム伸び性が求められる。しかしながら、従来、常温や低温でのモジュラス強度および常温および低温での伸び性を両立させることは試みられていなかった。
 本発明は上記課題を鑑みてなされたものである。常温および低温における伸び性に優れ、さらには常温および低温におけるモジュラス強度にも優れたダイシングフィルム基材を実現可能なダイシングフィルム基材用樹脂組成物、ダイシングフィルム基材、およびダイシングフィルムの提供を目的とする。
 すなわち、本発明は、以下のダイシングフィルム基材用樹脂組成物を提供する。
 [1]エチレン・不飽和カルボン酸共重合体のアイオノマー(A)と、エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体のアイオノマー(B)と、スチレン系エラストマー(C)と、を含むダイシングフィルム基材用樹脂組成物。
 [2]前記エチレン・不飽和カルボン酸共重合体のアイオノマー(A)中の不飽和カルボン酸由来の構成単位の量が、前記エチレン・不飽和カルボン酸共重合体のアイオノマー(A)の全構成単位の量に対して、1質量%以上30質量%以下である、[1]に記載のダイシングフィルム基材用樹脂組成物。
 [3]前記エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体のアイオノマー(B)中の、不飽和カルボン酸由来の構成単位の量が、前記エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体のアイオノマー(B)の全構成単位の量に対して、1質量%以上30質量%以下である、[1]または[2]に記載のダイシングフィルム基材用樹脂組成物。
 [4]前記エチレン・不飽和カルボン酸共重合体のアイオノマー(A)の中和度が、10%以上90%以下である、[1]~[3]のいずれかに記載のダイシングフィルム基材用樹脂組成物。
 [5]前記エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体のアイオノマー(B)の中和度が、10%以上90%以下である、[1]~[4]のいずれかに記載のダイシングフィルム基材用樹脂組成物。
 [6]前記エチレン・不飽和カルボン酸共重合体のアイオノマー(A)および前記エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体のアイオノマー(B)の合計質量を1とした場合に、前記エチレン・不飽和カルボン酸共重合体のアイオノマー(A)の質量が、0.10以上0.95以下である、[1]~[5]のいずれかに記載のダイシングフィルム基材用樹脂組成物。
 [7]前記エチレン・不飽和カルボン酸共重合体のアイオノマー(A)、前記エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体のアイオノマー(B)、および前記スチレン系エラストマー(C)の合計質量を1とした場合に、前記エチレン・不飽和カルボン酸共重合体のアイオノマー(A)および前記エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体のアイオノマー(B)の合計質量が、0.60以上1.00未満である、[1]~[6]のいずれかに記載のダイシングフィルム基材用樹脂組成物。
 [8]ダイシングフィルム基材用樹脂組成物に含まれる樹脂成分の全質量を100質量%とした場合に、前記エチレン・不飽和カルボン酸共重合体のアイオノマー(A)、前記エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体のアイオノマー(B)、および前記スチレン系エラストマー(C)の合計質量の割合が、50質量%以上100質量%以下である、[1]~[7]のいずれかに記載のダイシングフィルム基材用樹脂組成物。
 [9]ダイシングフィルム基材用樹脂組成物に含まれる樹脂成分の全質量を100質量%とした場合に、前記エチレン・不飽和カルボン酸共重合体のアイオノマー(A)、前記エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体のアイオノマー(B)、および前記スチレン系エラストマー(C)の合計含有率が、90質量%を超えて100質量%以下である、[1]~[8]のいずれかに記載のダイシングフィルム基材用樹脂組成物。
 [10]JIS K 7210:1999に準拠して、190℃、荷重2160gにて測定されるメルトフローレートが、0.1g/10分以上30g/10分以下である、[1]~[9]のいずれかに記載のダイシングフィルム基材用樹脂組成物。
 本発明は、以下のダイシングフィルム基材およびダイシングフィルムを提供する。
 [11]上記[1]~[10]のいずれかに記載のダイシングフィルム基材用樹脂組成物を含む層を、少なくとも一層有する、ダイシングフィルム基材。
 [12]前記ダイシングフィルム基材用樹脂組成物を含む層の、JIS K 7127:1999に準拠して23℃で測定したMD方向の30%モジュラスおよびTD方向の30%モジュラスの平均値が、8MPa以上17MPa以下である、[11]に記載のダイシングフィルム基材。
 [13]前記ダイシングフィルム基材用樹脂組成物を含む層の、JIS K 7127:1999に準拠して-15℃で測定したMD方向の10%モジュラスおよびTD方向の10%モジュラスの平均値が、20MPa以上である、[11]または[12]に記載のダイシングフィルム基材。
 [14]上記[11]に記載のダイシングフィルム基材と、前記ダイシングフィルム基材の少なくとも一方の面に積層された粘着層と、を有する、ダイシングフィルム。
 本発明のダイシングフィルム基材用樹脂組成物によれば、常温および低温での伸び性に優れ、さらには常温および低温でのモジュラス強度にも優れるダイシングフィルム基材が実現される。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。また、「(メタ)アクリル酸」は、「アクリル酸」および「メタクリル酸」の双方を包含して用いられる表記であり、「(メタ)アクリレート」は、「アクリレート」および「メタクリレート」の双方を包含して用いられる表記である。
 1.ダイシングフィルム基材用樹脂組成物について
 本発明のダイシングフィルム基材用樹脂組成物(以下、単に「樹脂組成物」とも称する)は、主にダイシングフィルムの基材に使用されるが、当該樹脂組成物の用途は、ダイシングフィルムの基材に限定されない。
 前述のように、ダイシングフィルム用の基材には、常温および低温におけるモジュラス強度だけでなく、常温および低温における伸び性も求められている。しかしながら、従来、これらを両立させることは試みられていなかった。
 これに対し、本発明者らが鋭意検討したところ、エチレン・不飽和カルボン酸共重合体のアイオノマー(A)と、エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体のアイオノマー(B)と、スチレン系エラストマー(C)と、を含む樹脂組成物によれば、常温および低温におけるモジュラス強度と、常温および低温における伸び性とを兼ね備えるダイシングフィルム基材が得られることが明らかとなった。その理由は明確ではないが、以下のように推定される。例えば、樹脂組成物が、エチレン・不飽和カルボン酸共重合体のアイオノマー(A)(以下、単に「2元系アイオノマー(A)」とも称する)を含むと、樹脂組成物の凝集力(剛性)が向上するため、樹脂組成物から得られるダイシングフィルムの低温モジュラス性が良好になる。また、樹脂組成物が、エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体のアイオノマー(B)(以下、単に「3元系アイオノマー(B)」とも称する)を含むと、不飽和カルボン酸エステルが含有されるため、樹脂組成物から得られる常温モジュラス性および常温伸び性が良好になる。さらに、樹脂組成物がスチレン系エラストマー(C)を含むと、2元系アイオノマー(A)と3元系アイオノマー(B)との相溶性が向上するため、樹脂組成物から得られる常温モジュラス性および常温伸び性が良好になる。一方で、これらを単独で含む場合には、ダイシングフィルムの低温伸び性が良好になり難い。しかしながら、これらを組み合わせると、2元系アイオノマー(A)と3元系アイオノマー(B)とスチレン系エラストマー(C)とが均一に混合され、相溶性が向上することで、低温伸び性も良好になり、常温および低温におけるモジュラス強度と、常温および低温における伸び性とを兼ね備えるダイシングフィルム基材が得られる。
 以下、樹脂組成物が含む各成分について説明し、その後、樹脂組成物の物性について説明する。
 <エチレン・不飽和カルボン酸共重合体のアイオノマー(A)>
 2元系アイオノマー(A)は、エチレンと、不飽和カルボン酸との共重合体、すなわちエチレン・不飽和カルボン酸共重合体の酸の一部、または全てが金属イオンで中和されたものであり、複数のエチレン・不飽和カルボン酸共重合体が架橋した構造を有する。樹脂組成物は、当該2元系アイオノマー(A)を一種のみ含んでいてもよく、二種以上含んでいてもよい。
 2元系アイオノマー(A)の主骨格となるエチレン・不飽和カルボン酸共重合体は、エチレンと、不飽和カルボン酸とを主に含む。本発明の目的および効果を損なわない範囲で、エチレンおよび不飽和カルボン酸以外の単量体由来の構造を一部に含んでいてもよく、例えばエチレン・不飽和カルボン酸共重合体の全構成単位の量に対して、他の単量体由来の構造を20質量%以下含んでいてもよい。ただし、本明細書において、不飽和カルボン酸エステル由来の構造をさらに含むものは、エチレン・不飽和カルボン酸重合体に含まない。
 エチレン・不飽和カルボン酸共重合体におけるエチレン由来の構成単位の量は制限されないが、エチレン由来の構成単位の量が、エチレン・不飽和カルボン酸共重合体の全構成単位の量に対して、70質量%以上99質量%以下が好ましく、75質量%以上95質量%以下がより好ましく、78質量%以上90質量%以下がさらに好ましい。エチレン由来の構成単位量が70質量%以上であると、得られるダイシングフィルムにブロッキング等が生じ難くなる。一方、エチレン由来の構成単位の量が99質量%以下であると、相対的に不飽和カルボン酸の量が十分に多くなり、モジュラス強度や伸びが良好になりやすい。
 一方、エチレン・不飽和カルボン酸共重合体における不飽和カルボン酸由来の構成単位の量は制限されない。不飽和カルボン酸由来の構成単位の量は、エチレン・不飽和カルボン酸共重合体の全構成単位の量に対して、1質量%以上30質量%以下が好ましく、5質量%以上25質量%以下がより好ましく、10質量%以上22質量%以下がさらに好ましい。不飽和カルボン酸由来の構成単位量が1質量%以上であると、モジュラス強度や伸び率が良好になりやすい。一方、不飽和カルボン酸由来の構成単位量が30質量%以下であると、得られるダイシングフィルムにブロッキング等が生じ難くなる。
 不飽和カルボン酸の例には、アクリル酸、メタクリル酸、エタクリル酸、イタコン酸、無水イタコン酸、フマル酸、クロトン酸、マレイン酸、無水マレイン酸等の炭素数4~8の不飽和カルボン酸が含まれ、これらの中でも反応性や入手容易性等の観点で、アクリル酸またはメタクリル酸が好ましい。エチレン・不飽和カルボン酸共重合体は、これら由来の構成単位を一種のみ含んでいてもよく、二種以上含んでいてもよい。
 上述のように、エチレン・不飽和カルボン酸共重合体は、エチレンおよび不飽和カルボン酸以外の単量体由来の構成単位一種、または二種以上有していてもよい。エチレンおよび不飽和カルボン酸以外の単量体の例には、プロピレン、ブテン、1,3-ブタジエン、ペンテン、1,3-ペンタジエン、1-ヘキセン等の不飽和炭化水素;酢酸ビニル、プロピオン酸ビニル等由来のビニルエステル;ビニル硫酸やビニル硝酸等の酸化物;塩化ビニル、フッ化ビニル等のハロゲン化合物;ビニル基含有1級アミン化合物;ビニル基含有2級アミン化合物;一酸化炭素;二酸化硫黄;等が含まれる。
 上記エチレン・不飽和カルボン酸共重合体は、ブロック共重合体であってもよく、ランダム共重合体であってもよい。また、エチレン・不飽和カルボン酸共重合体は、本発明の目的および効果を損なわない範囲で、ランダム重合体やブロック重合体に、さらに公知の化合物がグラフト重合したグラフト共重合体等であってもよい。
 また、2元系アイオノマー(A)において、上記エチレン・不飽和カルボン酸共重合体の酸を中和する金属イオンは特に制限されないが、その例には、リチウムイオン、ナトリウムイオン、カリウムイオン、ルビジウムイオン、セシウムイオン、亜鉛イオン、マグネシウムイオン、マンガンイオン等が含まれる。これらの中でも、入手容易性等の観点でマグネシウムイオン、ナトリウムイオン、または亜鉛イオンが好ましく、ナトリウムイオンまたは亜鉛イオンがより好ましく、亜鉛イオンがさらに好ましい。
 2元系アイオノマー(A)におけるエチレン・不飽和カルボン酸共重合体の中和度は、10%以上90%以下が好ましく、10%以上85%以下がより好ましく、15%以上82%以下がさらに好ましい。エチレン・不飽和カルボン酸共重合体の中和度が10%以上であると、樹脂組成物をダイシングフィルムの基材としたとき、基材表面の硬度が高くなる。一方、中和度が90%以下であると、樹脂組成物の加工性や成形性が良好になる。中和度とは、2元系アイオノマー(A)(エチレン・不飽和カルボン酸共重合体)中の酸基(例えばカルボキシ基)のモル数に対する、金属イオンの配合比率の割合である。単位はモル%である。当該中和度は、赤外吸収スペクトル(IR)によって測定可能である。赤外吸収スペクトルによって、樹脂のC=O伸縮吸収ピークを測定することでイオン化していないカルボキシ基を定量でき、塩酸処理した2元系アイオノマー(A)のC=O伸縮吸収ピークを測定することで、樹脂全体のカルボキシ基を定量できる。両者を測定することで中和度が求められ、具体的には、以下の式で算出できる。
 中和度(%)=(1-Pa1/Pa2)×100
 Pa1:2元系アイオノマー(A)のC=O伸縮吸収ピーク高さ
 Pa2:塩酸処理したエチレン・不飽和カルボン酸共重合体のC=O伸縮吸収ピーク高さ
 また、2元系アイオノマー(A)のJIS K 7210:1999(ISO 1133:1997に相当)に準拠し、190℃、2160g荷重で測定されるメルトフローレート(MFR)は、0.2g/10分以上20.0g/10分以下が好ましく、0.5g/10分以上20.0g/10分以下がより好ましく、0.5g/10分以上18.0g/10分以下がさらに好ましい。2元系アイオノマー(A)のメルトフローレートが前記範囲内であると、樹脂組成物を成形しやすくなる。
 <エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体のアイオノマー(B)>
 3元系アイオノマー(B)は、エチレンと、不飽和カルボン酸と、不飽和カルボン酸エステルとの共重合体、すなわちエチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体の酸の一部、または全てが金属イオンで中和されたものであり、複数のエチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体が架橋した構造を有する。樹脂組成物は、当該3元系アイオノマー(B)を一種のみ含んでいてもよく、二種以上含んでいてもよい。
 3元系アイオノマー(B)の主骨格となるエチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体は、エチレンと、不飽和カルボン酸、不飽和カルボン酸エステルとを主に含む。本発明の目的および効果を損なわない範囲で、これら以外の単量体由来の構造を一部に含んでいてもよく、例えばエチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体の全構成単位の量に対して、他の単量体由来の構造を20質量%以下含んでいてもよい。
 エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体におけるエチレン由来の構成単位の量は制限されないが、エチレン由来の構成単位の量が、エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体の全構成単位の量に対して、60質量%以上94質量%以下が好ましく、75質量%以上90質量%以下がより好ましい。エチレン由来の構成単位量が60質量%以上であると、得られるダイシングフィルムにブロッキング等が生じ難くなる。一方、エチレン由来の構成単位の量が94質量%以下であると、相対的に不飽和カルボン酸や不飽和カルボン酸エステルの量が十分に多くなり、モジュラス強度や伸びが良好になりやすい。
 一方、エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体における不飽和カルボン酸由来の構成単位の量は制限されない。不飽和カルボン酸由来の構成単位の量は、エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体の全構成単位の量に対して、1質量%以上30質量%以下が好ましく、5質量%以上20質量%以下がより好ましい。不飽和カルボン酸由来の構成単位量が1質量%以上であると、モジュラス強度や伸び率が良好になりやすい。一方、不飽和カルボン酸由来の構成単位量が30質量%以下であると、相対的にエチレンや不飽和カルボン酸エステル由来の構成単位が十分に含まれやすく、ダイシングフィルムにブロッキング等が生じ難くなったりする。
 ここで、エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体における不飽和カルボン酸の種類は特に制限されず、上述の2元系モノマーのエチレン・不飽和カルボン酸共重合体の不飽和カルボン酸と同様である。エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体は、不飽和カルボン酸由来の構成単位を一種のみ含んでいてもよく、二種以上含んでいてもよい。
 エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体における不飽和カルボン酸エステル由来の構成単位の量は制限されない。不飽和カルボン酸エステル由来の構成単位の量は、エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体の全構成単位の量に対して、1質量%以上20質量%以下が好ましく、1質量%以上15質量%以下がより好ましい。不飽和カルボンエステル酸由来の構成単位量が1質量%以上であると、ダイシングフィルム用の基材の低温伸び性や常温伸び性が良好になりやすい。一方、不飽和カルボン酸エステル由来の構成単位量が20質量%以下であると、相対的にエチレンや不飽和カルボン酸由来の構成が十分に含まれやすく、ダイシングフィルムにブロッキング等が生じ難くなったりする。
 上記エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体における、不飽和カルボン酸エステルは、上述の不飽和カルボン酸のカルボン酸が、カルボンエステルになった化合物が含まれる。不飽和カルボン酸エステルの例には、炭素数が1~12のアルキル基不飽和カルボン酸アルキルエステルが含まれる。アルキル基の炭素数は、1~8がより好ましく、1~4がさらに好ましい。アルキル基の例には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、セカンダリーブチル基、2-エチルヘキシル基、イソオクチル基等が含まれる。
 上記不飽和カルボン酸アルキルエステルの具体例には、(メタ)アクリル酸メチルエステル、(メタ)アクリル酸エチルエステル、(メタ)アクリル酸イソブチルエステル、アクリル酸n-ブチルエステル、アクリル酸イソオクチルエステル、マレイン酸ジメチルエステル、マレイン酸ジエチルエステル等が含まれる。エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体は、不飽和カルボン酸エステル由来の構成単位を一種のみ含んでいてもよく、二種以上含んでいてもよい。
 また、エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体は、エチレン、不飽和カルボン酸、および不飽和カルボン酸エステル以外の単量体由来の構成単位を一種または二種以上有していてもよい。これらは、エチレン・不飽和カルボン酸共重合体が含んでもよい他の単量体由来の構成単位と同様である。
 上記エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体は、ブロック共重合体であってもよく、ランダム共重合体であってもよい。また、エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体は、本発明の目的および効果を損なわない範囲で、ランダム重合体やブロック重合体に、さらに公知の化合物がグラフト重合したグラフト共重合体等であってもよい。
 さらに、3元系アイオノマー(B)において、上記エチレン・不飽和カルボン酸共重合体の酸を中和する金属イオンは特に制限されないが、その例には、リチウムイオン、ナトリウムイオン、カリウムイオン、ルビジウムイオン、セシウムイオン、亜鉛イオン、マグネシウムイオン、マンガンイオン等が含まれる。これらの中でも、入手容易性等の観点でマグネシウムイオン、ナトリウムイオン、または亜鉛イオンが好ましく、ナトリウムイオンまたは亜鉛イオンがより好ましく、亜鉛イオンがさらに好ましい。
 3元系アイオノマー(B)におけるエチレン・不飽和カルボン酸共重合体の中和度は、10%以上90%以下が好ましく、10%以上85%以下がより好ましく、15%以上82%以下がさらに好ましい。エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体の中和度が10%以上であると、樹脂組成物をダイシングフィルムの基材としたとき、基材表面の硬度が高くなる。一方、中和度が90%以下であると、樹脂組成物の加工性や成形性が良好になる。中和度とは、3元系アイオノマー(B)(エチレン・不飽和カルボン酸・不飽和カルボン酸共重合体)中の酸基(例えばカルボキシ基)のモル数に対する、金属イオンの配合比率の割合である。単位はモル%である。当該中和度は、赤外吸収スペクトル(IR)によって測定可能である。赤外吸収スペクトルによって、樹脂のC=O伸縮吸収ピークを測定することでイオン化していないカルボキシ基を定量でき、塩酸処理した3元系アイオノマー(B)のC=O伸縮吸収ピークを測定することで、樹脂全体のカルボキシ基を定量できる。両者を測定することで中和度が求められ、具体的には、以下の式で算出できる。
 中和度(%)=(1-Pb1/Pb2)×100
 Pb1:3元系アイオノマー(B)のC=O伸縮吸収ピーク高さ
 Pb2:塩酸処理したエチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体のC=O伸縮吸収ピーク高さ
 また、3元系アイオノマー(B)のJIS K 7210:1999(ISO 1133:1997に相当)に準拠し、190℃、2160g荷重で測定されるメルトフローレート(MFR)は、0.2g/10分以上20.0g/10分以下が好ましく、0.5g/10分以上20.0g/10分以下がより好ましく、0.5g/10分以上18.0g/10分以下がさらに好ましい。3元系アイオノマー(B)のメルトフローレートが前記範囲内であると、樹脂組成物を成形しやすくなる。
 <スチレン系エラストマー(C)>
 スチレン系エラストマーとは、室温でゴム弾性体であるスチレン系重合体をいう。スチレン系エラストマーの例には、スチレンブロック(スチレン重合体)からなるハードセグメントと、アルキレンブロックからなるソフトセグメントとを含む、ブロック共重合体、またはその水素添加物;スチレンとアルキレンとのランダム共重合体、またはその水素添加物;あるいは当該スチレン系エラストマーを酸変性した酸変性スチレン系エラストマー等が含まれる。
 上記ブロック共重合体におけるスチレンブロックとは、2つ以上のスチレン重合した部位であればよく、アルキレンブロックとは、2つ以上のアルケンが重合した部位であればよい。アルキレンブロックは、一種のアルケンの単独重合体であってもよく、二種以上のアルケンの共重合体であってもよい。
 上記ブロック共重合体の例には、スチレン-ブタジエンブロック共重合体(SB)、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-イソプレンブロック共重合体(SI)、スチレン-イソプレン-スチレンブロック共重合体(SIS)が含まれる。
 上述のように、スチレン系エラストマーは、上記ブロック共重合体の水素添加物であってもよい。当該水素添加物では、スチレンブロックおよびアルキレンブロックの両方が水素添加されていてもよく、スチレンブロックまたはアルキレンブロックのいずれか一方のみが水素添加されていてもよく、さらに、スチレンブロックおよびアルキレンブロックの一部のみが水素添加されていてもよい。
 上記ブロック共重合体の水素添加物の具体例には、スチレン-ブタジエンブロック共重合体(SB)の水素添加物であるスチレン-エチレン・ブチレンブロック共重合体(SEB)、スチレン-ブタジエン-スチレンブロック共重合体(SBS)の水素添加物であるスチレン-エチレン・ブチレン-スチレンブロック共重合体(SEBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)の水素添加物であるスチレン-エチレン・プロピレン-スチレンブロック共重合体(SEPS)等が含まれる。
 上述のように、スチレン系エラストマーの例には、スチレンとアルキレンとのランダム共重合体も含まれる。その例には、スチレン-ブタジエンランダム共重合体、スチレン-イソプレンランダム共重合体、スチレン-エチレン-ブチレンランダム共重合体、スチレン-エチレン-プロピレンランダム共重合体、スチレン-イソブチレンランダム共重合体、スチレン-エチレン-イソプレンランダム共重合体等が含まれる。
 上述のように、スチレン系エラストマーは、上記ランダム共重合体の水素添加物であってもよい。その例には、スチレン-ブタジエンランダム共重合体の水素添加物(HSBR)等が含まれる。
 後述の酸変性がなされていないスチレン系エラストマーにおいては、上記の中でも水素添加物が好ましく、スチレン-エチレン・ブチレン-スチレンブロック共重合体(SEBS)およびスチレン-エチレン・プロピレン-スチレンブロック共重合体(SEPS)がより好ましく、スチレン-エチレン・ブチレン-スチレンブロック共重合体(SEBS)が、樹脂組成物から得られるダイシングフィルム用の基材の低温伸び性や常温伸び性を良好にできるとの観点で特に好ましい。
 一方、スチレン系エラストマーは、上述のように、上記ブロック共重合体またはランダム重合体、もしくはこれらの水素添化物からなるエラストマーが不飽和カルボン酸やその誘導体によってグラフト変性された酸変性スチレン系エラストマーであってもよい。当該酸変性スチレン系エラストマーは、上記ブロック共重合体またはランダム重合体、もしくはこれらの水素添化物が、一種の不飽和カルボン酸またはその誘導体によってグラフト変性されたものであってもよく、二種以上の不飽和カルボン酸またはその誘導体によってグラフト変性されたものであってもよい。
 上記ブロック共重合体やランダム共重合体等にグラフト重合する不飽和カルボン酸の例には、(メタ)アクリル酸や、2-エチルアクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸等が含まれる。一方、スチレン系エラストマーにグラフト重合する不飽和カルボン酸誘導体の例には、無水マレイン酸、無水フタル酸、無水イタコン酸等の酸無水物;マレイン酸モノメチル、マレイン酸モノエチル等の酸エステル;酸アミド;酸ハロゲン化物;等が含まれる。これらの中でも、マレイン酸または無水マレイン酸がスチレン系エラストマーとの反応性の観点等で好ましい。
 上記酸変性スチレン系エラストマーは、上記ブロック共重合体やランダム共重合体等をラジカル開始剤の存在下で、不飽和カルボン酸またはその誘導体をグラフト重合させることで得られる。ラジカル開始剤は、ポリオレフィンのグラフト反応に用いられるものであればよく、公知の化合物を使用できる。
 上記酸変性スチレン系エラストマーの酸価は、0mgCHONa/g超、20mgCHONa/g未満が好ましく、0mgCHONa/g超、11mgCHONa/g未満がより好ましく、0.5mgCHONa/g以上11mgCHONa/g以下がさらに好ましい。酸変性スチレン系エラストマーの酸価が当該範囲であると、低温、常温時の伸び性が良好になりやすい。
 スチレン系エラストマー(C)のメルトフレートは、0.1g/10分~100g/10分が好ましく、0.5g/10分~90g/10分がより好ましく、1.0g/10分~80g/10分がさらに好ましく、2.0g/10分~75g/10分がさらに好ましい。上記メルトフローレートは、JIS K 7210:1999(ISO 1133:1997に相当)に準拠し、230℃、2160g荷重で測定される値である。
 スチレン系エラストマー(C)のTanδピーク温度は、得られるダイシングフィルム用の基材の低温伸び性や常温伸び性を良好にできるとの観点から-60℃以上が好ましく、-55℃以上がより好ましく、-50℃以上がさらに好ましい。上記Tanδピーク温度は、JIS K 6394(ISO 4664-1:2005に相当)に準拠した動的粘弾性試験(温度依存測定10Hz)において、ピーク値を示す温度である。
 <他の重合体および添加剤>
 樹脂組成物は、本発明の効果を損なわない範囲で、必要に応じて各種添加剤、帯電防止剤、紫外線吸収剤、充填材、その他の重合体等を含んでいてもよい。
 各種添加剤の例には、酸化防止剤、熱安定剤、光安定剤、顔料、染料、滑剤、ブロッキング防止剤、防黴剤、抗菌剤、難燃剤、難燃助剤、架橋剤、架橋助剤、発泡剤、発泡助剤、繊維強化材等が含まれる。添加剤の含有量は、樹脂組成物に含まれる樹脂成分の全質量を100質量部とした場合に、20質量部以下が好ましく、18質量部以下がより好ましい。
 また、帯電防止剤の例には、低分子型帯電防止剤や高分子型帯電防止剤が含まれるが、高分子型帯電防止剤が好ましい。本明細書において、高分子型帯電防止剤とは、導電性部位(例えば、ポリエーテル由来の構造部位、四級アンモニウム塩基部位など)と非導電性部位(例えば、ポリアミド由来の構造部位、ポリエチレンなどのポリオレフィン由来の構造部位、アクリレート由来の構造部位、メタクリレート由来の構造部位、スチレン由来の構造部位など)とを含み、分子量が300以上(好ましくは1000~10000)の共重合体である。分子量はGPCで測定したポリスチレン換算の重量平均分子量である。尚、導電性とは、ASTM D257に基づき測定される表面抵抗率が1010Ω/□以下であることを言う。当該高分子型帯電防止剤の例には、分子内にスルホン酸塩を有するビニル共重合体、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、ベタイン等が含まれる。また、高分子型帯電防止剤の他の例には、ポリエーテルアミド、ポリエーテルエステルアミド、ポリエーテルアミドの無機プロトン酸の塩、またはポリエーテルエステルアミドの無機プロトン酸の塩等も含まれる。無機プロトン酸の塩としては、アルカリ金属塩、アルカリ土類金属塩、亜鉛塩、またはアンモニウム塩が挙げられる。
 紫外線吸収剤の例には、ベンゾフェノン系、ベンゾエート系、ベンゾトリアゾール系、シアノアクリレート系、ヒンダードアミン系等が含まれる。
 充填材の例には、シリカ、クレー、炭酸カルシウム、硫酸バリウム、ガラスビーズ、タルク等が含まれる。
 添加剤や帯電防止剤、紫外線吸収剤、充填材の量は、その種類に応じて適宜選択される。
 その他の重合体の例には、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリアミドが含まれる。ただし、ポリアミドの量は、樹脂組成物に含まれる樹脂成分の全質量を100質量部とした場合に、5質量部未満が好ましい。樹脂組成物は、その他の重合体として、ポリアミドを含まないことが好ましい。
 <好ましい組成>
 本発明の樹脂組成物において、上記2元系アイオノマー(A)の量は、樹脂組成物全量に対して、10質量%以上80質量%以下が好ましく、15質量%以上75質量%以下がより好ましい。さらに、上記3元系アイオノマー(B)の量は、樹脂組成物全量に対して、10質量%以上80質量%以下が好ましく、12質量%以上75質量%以下がより好ましい。また、スチレン系エラストマー(C)の量は、樹脂組成物全量に対して、5質量%以上35質量%以下が好ましく、7質量%以上32質量%以下がより好ましい。
 また当該樹脂組成物において、2元系アイオノマー(A)および3元系アイオノマー(B)の合計量を1とした場合の、2元系アイオノマー(A)の質量は、0.10以上0.95以下が好ましく、0.15以上0.90以下がより好ましく、0.20以上0.85以下がさらに好ましい。さらに、2元系アイオノマー(A)、3元系アイオノマー(B)、およびスチレン系エラストマー(C)の合計質量を1とした場合の、2元系アイオノマー(A)および3元系アイオノマー(B)の合計質量は、0.60以上1.00未満が好ましく、0.65以上0.95以下がより好ましい。また、樹脂組成物に含まれる樹脂成分の全質量を100質量%とした場合に、2元系アイオノマー(A)、3元系アイオノマー(B)、およびスチレン系エラストマー(C)の合計含有率が、50質量%以上100質量%以下であることが好ましく、60質量%以上100質量%以下であることがより好ましく、70質量%以上100質量%以下であることがさらに好ましく、80質量%以上100質量%以下であることがさらに好ましく、90質量%を超えて100質量%以下がさらに好ましく、95質量%以上100質量%以下であることがさらに好ましく、95質量%を超えて100質量%以下であることがより好ましく、98質量%以上100質量%以下であることがさらに好ましく、99質量%以上100質量%以下であることがさらに好ましい。
 これらを満たすと、上述のように、フィルム成形性、常温および低温におけるモジュラス強度と、常温および低温における伸び性がいずれも良好になる。
 また、樹脂組成物に含まれる樹脂成分の全質量を100質量%とした場合に樹脂成分の全質量に対する、「2元系アイオノマー(A)中の不飽和カルボン酸由来の構成単位の量(質量)および3元系アイオノマー(B)中の不飽和カルボン酸由来の構成単位の量(質量)の合計」の割合が、5質量%以上20質量%以下となるように、各成分量を調整することが好ましく、7質量%以上15質量%以下となるように各成分量を調整することが、より好ましく、9質量%以上13質量%以下となるように各成分量を調整することが、さらに好ましい。樹脂組成物中の不飽和カルボン酸由来の構成単位の量が上記範囲であると、低温モジュラス性が良好になりやすい。
 さらに、樹脂組成物に含まれる樹脂成分の全質量を100質量%とした場合に樹脂成分の全質量に対する、「3元系アイオノマー(B)中の不飽和カルボン酸エステル由来の構成単位の量(質量)」の割合が、0.5質量%以上10質量%以下となるように、各成分量を調整することが好ましく、1質量%以上8質量%以下となるように各成分量を調整することがより好ましい。樹脂組成物中の不飽和カルボン酸エステル由来の構成単位の量が上記範囲であると、常温および低温における伸び性が良好になりやすい。
 また、当該樹脂組成物中のカルボン酸の中和度、すなわち「2元系アイオノマー(A)中の不飽和カルボン酸および3元系アイオノマー(B)中の不飽和カルボン酸」の中和度は、40%以上90%以下が好ましく、45%以上85%以下がより好ましく、50%以上80%以下がさらに好ましく、55%以上75%以下がさらに好ましく、60%以上70%以下がさらに好ましい。上記中和度は、例えば2元系アイオノマー(A)中の不飽和カルボン酸の中和度、および3元系アイオノマー(B)中の不飽和カルボン酸の中和度がそれぞれ判明している場合には、「2元系アイオノマー(A)および3元系アイオノマー(B)の総質量に対する、2元系アイオノマー(A)の質量の割合a」、および「2元系アイオノマー(A)および3元系アイオノマー(B)の総質量に対する、3元系アイオノマー(B)の質量の割合b」をそれぞれ算出し、「2元系アイオノマー(A)の中和度×a+3元系アイオノマー(B)の中和度×b」によって、特定できる。樹脂組成物全体における、不飽和カルボン酸の中和度が40%以上であると、樹脂組成物をダイシングフィルムの基材としたとき、基材フィルムの常温および低温におけるモジュラス強度が高くなる。一方、中和度が90%以下であると、樹脂組成物の加工性や成形性が良好になる。
 <樹脂組成物の製造法方法および樹脂組成物の物性>
 本発明の樹脂組成物の製造方法は特に制限されず、2元系アイオノマー(A)、3元系アイオノマー(B)、およびスチレン系エラストマー(C)、さらに必要に応じてその他の重合体や添加剤等を混合可能な方法であれば特に制限されない。例えば、全ての成分をドライブレンドした後に溶融混練してもよく、一部の成分を先に混練してから、後の成分を加えてもよい。
 上記混練後の樹脂組成物の形状は特に制限されず、例えばペレット状等であってもよく、長尺状または枚葉状のシート状に加工してもよい。
 上記樹脂組成物のJIS K 7210:1999(ISO 1133:1997に相当)に準拠して、190℃、荷重2160gにて測定されるメルトフローレートは、0.1g/10分以上30g/10分以下が好ましく、0.2g/10分以上20g/10分以下がより好ましく、0.3g/10分以上10g/10分以下がさらに好ましく、0.4g/10分以上5g/10分以下がさらに好ましく、0.5g/10分以上3g/10分以下がさらに好ましい。樹脂組成物のメルトフローレートが当該範囲であると、当該樹脂組成物から得られる基材の常温および低温におけるモジュラス強度、ならびに常温および低温における伸び性が良好になりやすい。
 2.ダイシングフィルム基材
 ダイシング基材は、上述の樹脂組成物を含む層を少なくとも一層有する基材であればよい。当該ダイシングフィルム基材は、上述の樹脂組成物を含む層を有するため、常温および低温において、優れたモジュラス強度や伸び性を発揮する。当該ダイシングフィルム基材は、ダイシングフィルムの基材として好適に用いられるが、当該用途に限定されない。
 当該ダイシングフィルム基材の構成は特に限定されず、上述の樹脂組成物を含む層を一層のみ有していてもよく、上述の樹脂組成物を含む層を2層以上有していてもよい。さらに、必要に応じて他の樹脂層が積層されていてもよい。
 ダイシングフィルム基材の例には、上述の樹脂組成物を含む層のみからなる1層構造の積層体;上述の樹脂組成物を含む層および他の樹脂層の2層からなる2層構造の積層体;上述の樹脂組成物を含む層/他の樹脂層/上述の樹脂組成物を含む層の3層からなる3層構造の積層体;等が含まれる。また、ダイシングフィルム基材は、上記以外にも、粘着剤を含む層や、粘着シート等をさらに含んでいてもよい。
 ここで、上述の樹脂組成物を含む層は、上述の樹脂組成物のみからなる層であってもよく、上述の樹脂組成物と、本発明の目的および効果を損なわない範囲で、他の成分とを含む層であってもよいが、実質的に上述の樹脂組成物からなる層であることが、ダイシングフィルム基材の伸び性やモジュラス強度の観点で好ましい。
 上述の樹脂組成物を含む層の厚みは特に制限されないが、ダイシングフィルム基材の強度や、モジュラス強度、伸び性等を良好にするとの観点で、50μm以上200μm以下が好ましく、60μm以上180μm以下がより好ましい。
 また、樹脂組成物を含む層の23℃で測定したMD方向(Machine Direction)の30%モジュラスおよびTD方向(Transverse Direction)の30%モジュラスの平均値は、8MPa以上17MPa以下が好ましく、10MPa以上15MPa以下がより好ましい。23℃における30%モジュラスの平均値が当該範囲であると、常温でのダイシングフィルム基材の伸び性が良好になりやすい。上記30%モジュラスは、上記樹脂組成物を含む層と同様の組成の、厚み100μm、TD方向長さ10mm、MD方向長さ180mmのフィルムを準備し、当該フィルムについてJIS K 7127:1999(ISO 527-3:1995に相当)に準拠し、測定装置である島津卓上型精密万能試験機AG-Xによって測定される値である。チャック間距離は100mm、試験速度は300mm/分とする。
 一方、樹脂組成物を含む層の-15℃で測定したMD方向の10%モジュラスおよびTD方向の10%モジュラスの平均値は、20MPa以上が好ましく、24MPa以上がより好ましい。-15℃における10%モジュラスの平均値が20MPa以上であると、低温でのダイシングフィルム基材の分断性と伸び性が良好になりやすい。上記10%モジュラスは、上記樹脂組成物を含む層と同様の組成の、厚み100μm、TD方向長さ10mm、MD方向長さ180mmのフィルムを準備し、当該フィルムについてJIS K 7127:1999(ISO 527-3:1995に相当)に準拠し、測定装置である島津卓上型精密万能試験機AG-Xによって測定される値である。チャック間距離は100mm、試験速度は1000mm/分とする。
 樹脂組成物を含む層は、23℃においてMD方向の200%モジュラスおよびTD方向の200%モジュラスを、いずれも測定可能であることが好ましい。23℃におけるMD方向の200%モジュラスと23℃におけるTD方向の200%モジュラスとがいずれも測定可能であると、ピックアップ工程において、チップに応力が掛かりにくく、チップ内の破損が起こりにくい。上記200%モジュラスは、上記樹脂組成物を含む層と同様の組成の、厚み100μm、TD方向長さ10mm、MD方向長さ180mmのフィルムを準備し、当該フィルムについてJIS K 7127:1999(ISO 527-3:1995に相当)に準拠し、測定装置である島津卓上型精密万能試験機AG-Xによって測定される値である。試験速度は300mm/分とする。
 樹脂組成物を含む層は、-15℃においてMD方向の200%モジュラスおよびTD方向の200%モジュラスを、いずれも測定可能であることが好ましい。-15℃におけるMD方向の200%モジュラスと-15℃におけるTD方向の200%モジュラスとがいずれも測定可能であると、低温でチップとダイボンドフィルムの分断と拡張(エキスパンド)を行う工程において分断と拡張(エキスパンド)を良好に実施しやすい。上記200%モジュラスは、上記樹脂組成物を含む層と同様の組成の、厚み100μm、TD方向長さ10mm、MD方向長さ180mmのフィルムを準備し、当該フィルムについてJIS K 7127:1999(ISO 527-3:1995に相当)に準拠し、測定装置である島津卓上型精密万能試験機AG-Xによって測定される値である。試験速度は1000mm/分とする。
 一方、他の樹脂層の例には、直鎖状低密度ポリエチレン(LLDPE)、低密度ポリエチレン(LDPE)、エチレン・αオレフィン共重合体、ポリプロピレン、エチレン・不飽和カルボン酸共重合体またはそのアイオノマー、エチレン・不飽和カルボン酸・不飽和カルボン酸アルキルエステル三元共重合体またはそのアイオノマー、エチレン・不飽和カルボン酸アルキルエステル共重合体、エチレン・ビニルエステル共重合体、エチレン・不飽和カルボン酸アルキルエステル・一酸化炭素共重合体、これらの不飽和カルボン酸グラフト物、ポリ塩化ビニル等を含む層が含まれる。他の樹脂層は、上記樹脂を一種のみ含んでいてもよく、二種以上含んでいてもよい。
 他の樹脂層の厚みは特に制限されないが、上記樹脂組成物を含む層のモジュラス強度や伸び性を損なわないとの観点で、10μm以上100μm以下が好ましく、15μm以上80μm以下がより好ましい。
 ここで、ダイシングフィルム基材全体の厚みは、ダイシングフィルムの構成部材として用いることを考慮すると、ダイシング時のフレーム保持の観点から50μm以上、拡張性(エキスパンド性)の観点から200μm以下が好ましい。
 上記ダイシングフィルム基材表面は、各種処理がされていてもよく、例えばコロナ処理等が施されていてもよい。さらに、電子線照射当が行われていてもよい。
 上記ダイシングフィルム基材の製造方法は特に制限されず、公知の成形法によって製造できる。例えば、上述の樹脂組成物を含む層のみからなるダイシングフィルム基材を製造する場合、従来公知のTダイキャスト成形法、Tダイニップ成形法、インフレーション成形法、押出ラミネート法、カレンダー成形法等によって、上記樹脂組成物等を成形すればよい。
 一方、ダイシングフィルム基材が、上述の樹脂組成物を含む層と、他の樹脂層との積層体である場合には、上述の樹脂組成物と、他の樹脂とを、共押出ラミネート法等によって成形すればよい。また、上述の樹脂組成物を含む層と、他の樹脂層とをそれぞれ別に作製し、これらを接着剤や接着シート等によって貼り合わせてもよい。接着剤や接着シートの材料の例には、各種エチレン共重合体、あるいはこれらの不飽和カルボン酸グラフト物等が含まれる。また、ダイシングフィルム基材が、上述の樹脂組成物を含む層と、他の樹脂層との積層体である場合、上述の樹脂組成物を含む層および他の樹脂層のうち、いずれか一方を先に形成し、当該一方の層上に、Tダイフィルム成形機、押出コーティング成形機等によって他方の層を形成し、積層してもよい。
 3.ダイシングフィルム
 本発明のダイシングフィルムは、上述のダイシングフィルム基材と、その少なくとも一方の面に積層された粘着層と、を備えていればよく、必要に応じて他の構成を含んでいてもよい。なお、上述のダイシングフィルム基材が多層からなる場合、ダイシングフィルム基材中の樹脂組成物を含む層と、粘着層とが積層されていることが好ましい。
 粘着層を構成する粘着剤は一般的なダイシングフィルムの粘着層用の粘着剤とすることができる。粘着剤の例には、ゴム系、アクリル系、シリコーン系、ポリビニルエーテル系の粘着剤;放射線硬化型粘着剤;加熱発泡型粘着剤等が含まれる。なかでも、半導体ウエハからのダイシングフィルムの剥離性を考慮すると、粘着層は放射線硬化型粘着剤を含むことが好ましく、紫外線硬化型粘着剤を含むことがより好ましい。
 紫外線硬化型粘着剤は通常、ラジカル重合可能なラジカル重合性化合物(モノマー、オリゴマー、またはポリマーのいずれでもよい)と、光重合開始剤とを含み、必要に応じて架橋剤、粘着付与剤、充填剤、老化防止剤、着色剤等の添加剤等を含む。
 ラジカル重合性化合物の例には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸イソノニル等の(メタ)アクリル酸アルキルエステルのモノマーまたはオリゴマー;(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシブチル、(メタ)アクリル酸ヒドロキシヘキシル等の(メタ)アクリル酸ヒドロキシアルキルエステルのモノマーまたはオリゴマー;上記(メタ)アクリル酸アルキルエステルおよび/または(メタ)アクリル酸ヒドロキシアルキルエステルと、他の単量体(例えば(メタ)アクリル酸、イタコン酸、無水マレイン酸、(メタ)アクリル酸アミド、(メタ)アクリル酸N-ヒドロキシメチルアミド、(メタ)アクリル酸アルキルアミノアルキルエステル、酢酸ビニル、スチレン、アクリロニトリル等)との共重合モノマーまたはオリゴマー;(メタ)アクリル酸グリシジルエステトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、1,6-へキサンジオール(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の(メタ)アクリル酸と多価アルコールとのエステルモノマー、またそのオリゴマー;2-プロペニルジ-3-ブテニルシアヌレート、2-ヒドロキシエチルビス(2-アクリロキシエチル)イソシアヌレート、トリス(2-メクリロキシエチル)イソシアヌレート、トリス(2-メタクリロキシエチル)イソシアヌレート等のイソシアヌレート等が含まれる。
 光重合開始剤の具体例には、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾインアルキルエーテル類;α-ヒドロキシシクロヘキシルフェニルケトンなどの芳香族ケトン類;ベンジルジメチルケタール等の芳香族ケタール類;ポリビニルベンゾフェノン、クロロチオキサントン、ドデシルチオキサントン、ジメチルチオキサントン、ジエチルチオキサントン等のチオキサントン類が含まれる。
 架橋剤の例には、ポリイソシアネート化合物、メラミン樹脂、尿素樹脂、ポリアミン、カルボキシル基含有ポリマー等が含まれる。
 上記粘着層の厚さは、粘着剤の種類に応じて適宜選択され、3~100μmが好ましく、3~50μmがさらに好ましい。
 また、ダイシングフィルムの粘着層は、セパレータによって保護されていてもよい。粘着層がセパレータで保護されていると、粘着層の表面を平滑に保つことができる。また、ダイシングフィルムの取り扱いや運搬が容易になるとともに、セパレータ上にラベル加工することも可能となる。当該セパレータは、ダイシングフィルムを使用する際に剥離される。
 セパレータは、紙、またはポリエチレン、ポリプロピレン、ポリエチレンテレフタレート等の合成樹脂フィルム等であってもよい。また、セパレータの粘着層と接する面には、粘着層からの剥離性を高めるために、必要に応じてシリコーン処理やフッ素処理等の離型処理が施されていてもよい。セパレータの厚みは、通常10~200μm、好ましくは25~100μm程度が好ましい。
 上記ダイシングフィルムの製造方法は特に制限されず、例えば、上述のダイシング基材上に、粘着剤を公知の方法で塗布して製造してもよい。このとき粘着剤の塗布は、グラビアロールコーター、リバースロールコーター、キスロールコーター、ディップロールコーター、バーコーター、ナイフコーター、スプレーコーター等によって行うことができる。また、剥離シート上に粘着剤を塗布して粘着層を形成し、ダイシングフィルム基材に当該粘着層を転写して、ダイシングフィルム基材と粘着層とを積層してもよい。また、ダイシングフィルム基材と、粘着層とを共押し出し等によって、同時に形成してもよい。
 以下において、実施例を参照して本発明を説明する。実施例によって、本発明の範囲は限定して解釈されない。
 [材料の準備]
 各成分は、以下のものを用いた。
 <エチレン・不飽和カルボン酸系共重合体のアイオノマー(A)>
 IO1:エチレン・メタクリル酸共重合体のアイオノマー(エチレンに由来する構成単位の含有量:85質量%、メタクリル酸に由来する構成単位の含有量:15質量%、中和度:59%亜鉛、JIS K 7210:1999(ISO 1133:1997に相当)に準拠し、190℃、2160g荷重で測定されるMFR:8.9g/10分)
 IO2:エチレン・メタクリル酸共重合体のアイオノマー(エチレンに由来する構成単位の含有量:80質量%、メタクリル酸に由来する構成単位の含有量:20質量%、中和度:40%亜鉛、JIS K 7210:1999(ISO 1133:1997に相当)に準拠し、190℃、2160g荷重で測定されるMFR:8.0g/10分)
<エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体のアイオノマー(B)>
 IO3:エチレン・メタクリル酸・アクリル酸ブチルエステル共重合体のアイオノマー(エチレンに由来する構成単位の含有量:80質量%、メタクリル酸に由来する構成単位の含有量:10質量%、アクリル酸ブチルエステルに由来する構成単位の含有量:10質量%、中和度:70%亜鉛、JIS K 7210:1999(ISO 1133:1997に相当)に準拠し、190℃、2160g荷重で測定されるMFR:1g/10分)
 <スチレン系エラストマー(C)>
 ・スチレン系エラストマー1:SEBS(スチレン-エチレン・ブチレン-スチレンブロック共重合体(旭化成ケミカルズ社製、S.O.E.S1611(商品名)、JIS K 7210:1999(ISO 1133:1997に相当)に準拠し、230℃、2160g荷重で測定されるMFR:12.0g/10分、Tanδピーク温度:9℃)
 ・スチレン系エラストマー2:SEBS(スチレン-エチレン・ブチレン-スチレンブロック共重合体(旭化成ケミカルズ社製、タフテックH1221(商品名)、JIS K 7210:1999(ISO 1133:1997に相当)に準拠し、230℃、2160g荷重で測定されるMFR:4.5g/10分、Tanδピーク温度:-19℃)
 ・スチレン系エラストマー3:SEBS(スチレン-エチレン・ブチレン-スチレンブロック共重合体(旭化成ケミカルズ社製、タフテックH1062(商品名)、JIS K 7210:1999(ISO 1133:1997に相当)に準拠し、230℃、2160g荷重で測定されるMFR:4.5g/10分、Tanδピーク温度:-47℃)
 ・スチレン系エラストマー4:SEBS(スチレン-エチレン・ブチレン-スチレンブロック共重合体(旭化成ケミカルズ社製、タフテックH1041(商品名)、JIS K 7210:1999(ISO 1133:1997に相当)に準拠し、230℃、2160g荷重で測定されるMFR:5.0g/10分、Tanδピーク温度:-45℃)
 ・スチレン系エラストマー5:HSBR(スチレン・ブタジエンランダム共重合体の水素添加物(JSR社製、ダイナロン1320P(商品名)、JIS K 7210:1999(ISO 1133:1997に相当)に準拠し、230℃、2160g荷重で測定されるMFR:3.5g/10分、Tanδピーク温度:-15℃)
 ・スチレン系エラストマー6:SEPS(スチレン-エチレン・プロピレン-スチレンブロック共重合体(クラレ社製、セプトン2002、JIS K 7210:1999(ISO 1133:1997に相当)に準拠し、230℃、2160g荷重で測定されるMFR:70.0g/10分)
 [実施例1~11および比較例1~5]
 表1に示す割合(質量比)で、エチレン・不飽和カルボン酸共重合体のアイオノマー(A)、エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体のアイオノマー(B)、およびスチレン系エラストマー(C)をドライブレンドした。次に、30mmφ二軸押出機の樹脂投入口にドライブレンドした混合物を投入して、ダイス温度230℃で溶融混練し、ダイシングフィルム基材用樹脂組成物を得た。得られたダイシングフィルム基材用樹脂組成物について、JIS K 7210:1999(ISO 1133:1997に相当)に準拠して、190℃、2160g荷重でMFRを測定した。結果を表1に示す。
 [評価]
 得られたダイシングフィルム基材用樹脂組成物を、40mmφTダイフィルム成形機を用いて、加工温度230℃で成形し、100μm厚のTダイフィルムを作製した。得られたTダイフィルムをダイシングフィルム基材とし、下記の方法で評価した。
 さらに、不飽和カルボン酸由来の構成単位の総量は、「2元系アイオノマー(A)の含有割合×2元系アイオノマー(A)中のカルボン酸由来の構成単位の量」と「3元系アイオノマー(B)の含有割合×3元系アイオノマー(B)中のカルボン酸由来の構成単位の量」との和から算出した。
 不飽和カルボン酸エステル由来の構成単位の総量は、「3元系アイオノマー(B)の含有割合×3元系アイオノマー(B)中のカルボン酸エステル由来の構成単位の量」から算出した。
 中和度(モル%)は、「2元系アイオノマー(A)の中和度×(2元系アイオノマー(A)および3元系アイオノマー(B)の総量に対する、2元系アイオノマー(A)の量の割合)」+「3元系アイオノマー(B)の中和度×(2元系アイオノマー(A)および3元系アイオノマー(B)の総量に対する、3元系アイオノマー(B)の量の割合)」によって、特定した。さらに、「不飽和カルボン酸由来の構成単位の総量×中和度/100」も算出した。各結果を表1に示す。
(1)常温モジュラス強度
 上記ダイシングフィルム基材を10mm幅×180mm長の短冊状に裁断した。JIS K 7127:1999(ISO 527-3:1995に相当)に準拠し、測定装置として島津卓上型精密万能試験機AG-Xを使用して、試料(ダイシングフィルム基材)のMD方向(Machine Direction)およびTD方向(Transverse Direction)のそれぞれについて、23℃にて、30%モジュラスを測定した。チャック間距離は100mm、試験速度は300mm/分とした。
 上記試験により得られたMD方向の30%モジュラスおよびTD方向の30%モジュラスを平均し、以下の基準によりダイシングフィルム基材の常温モジュラス強度を評価した。
 A(良好)  :10MPa以上15MPa以下
 B(やや良好):8MPa以上10MPa未満、または、15MPa超17MPa以下
 C(不良)  :8MPa未満、または、17MPa超
(2)低温モジュラス強度
 上記ダイシングフィルム基材を10mm幅×180mm長の短冊状に裁断した。JIS K 7127:1999(ISO 527-3:1995に相当)に準拠し、測定装置として島津卓上型精密万能試験機AG-Xを使用して、試料(ダイシングフィルム基材)のMD方向およびTD方向のそれぞれについて、-15℃にて、10%モジュラスを測定した。チャック間距離は100mm、試験速度は1000mm/分とした。
 上記試験により得られたMD方向の10%モジュラスおよびTD方向の10%モジュラスを平均し、以下の基準によりダイシングフィルム基材の低温モジュラス強度を評価した。
 A(良好)  :24MPa以上
 B(やや良好):20MPa以上24MPa未満
 C(不良)  :20MPa未満
 (3)常温伸び性
 上記ダイシングフィルム基材を10mm幅×180mm長の短冊状に裁断した。JIS K 7127:1999(ISO 527-3:1995に相当)に準拠し、測定装置として島津卓上型精密万能試験機AG-Xを使用して、測定対象のMD方向およびTD方向のそれぞれについて、23℃で200%モジュラスを測定した。
 得られた測定結果について、以下の基準でダイシングフィルム基材の常温伸び性を評価した。
 A(良好):23℃で200%モジュラスを測定可能
 C(不良):測定中にダイシングフィルム基材が破断してしまい、23℃で200%モジュラスを測定不可
 (4)低温伸び性
 ダイシングフィルム基材を10mm幅×180mm長の短冊状に裁断した。JIS K 7127:1999(ISO 527-3:1995に相当)に準拠し、測定装置として島津卓上型精密万能試験機AG-Xを使用して、測定対象のMD方向、TD方向のそれぞれについて、-15℃で200%モジュラスを測定した。
 得られた測定結果について、以下の基準でダイシングフィルム基材の低温伸び性を評価した。
 A(良好):-15℃で200%モジュラスを測定可能
 C(不良):測定中にダイシングフィルム基材が破断してしまい、-15℃で200%モジュラスを測定不可
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、3元系アイオノマー(B)およびスチレン系エラストマー(C)を含まない比較例1では、常温モジュラス強度、常温伸び性および低温伸び性が低く、比較例2では、常温モジュラス強度および常温伸び性が低かった。
 一方、2元系アイオノマー(A)およびスチレン系エラストマー(C)を含まない比較例3では、低温伸び性が低かった。さらに、スチレン系エラストマー(C)を含まない比較例4では、低温伸び性が低かった。さらに、3元系のアイオノマー(B)を含まない比較例5では、低温伸び性が低かった。
 これに対し、2元系アイオノマー(A)と、3元系アイオノマー(B)と、スチレン系エラストマー(C)と、を含む実施例1~11の樹脂組成物を用いたダイシングフィルム基材では、常温モジュラス強度、低温モジュラス強度、常温伸び性、および低温伸び性に優れていた(実施例1~11)。2元系アイオノマー(A)と、3元系アイオノマー(B)と、スチレン系エラストマー(C)と、を組み合わせることで、2元系アイオノマー(A)と3元系アイオノマー(B)とスチレン系エラストマー(C)とが均一に混合され、常温または低温におけるモジュラス強度や常温伸び性を互いに補うだけではなく、低温伸び性が非常に良好になった。
 以上の結果から、本発明のダイシングフィルム基材用樹脂組成物によれば、常温モジュラス強度、低温モジュラス強度、常温伸び性、および低温伸び性に優れたダイシングフィルム基材を実現できることが確認できた。   
 本出願は、2022年9月9日出願の特願2022-144100号に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。
 本発明のダイシングフィルム基材用樹脂組成物によれば、常温および低温での伸び性に優れ、さらには常温および低温でのモジュラス強度にも優れるダイシングフィルム基材が実現される。したがって、半導体装置の製造分野で非常に有用である。

Claims (14)

  1.  エチレン・不飽和カルボン酸共重合体のアイオノマー(A)と、
     エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体のアイオノマー(B)と、
     スチレン系エラストマー(C)と、
     を含むダイシングフィルム基材用樹脂組成物。
  2.  前記エチレン・不飽和カルボン酸共重合体のアイオノマー(A)中の不飽和カルボン酸由来の構成単位の量が、前記エチレン・不飽和カルボン酸共重合体のアイオノマー(A)の全構成単位の量に対して、1質量%以上30質量%以下である、
     請求項1に記載のダイシングフィルム基材用樹脂組成物。
  3.  前記エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体のアイオノマー(B)中の、不飽和カルボン酸由来の構成単位の量が、前記エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体のアイオノマー(B)の全構成単位の量に対して、1質量%以上30質量%以下である、
     請求項1に記載のダイシングフィルム基材用樹脂組成物。
  4.  前記エチレン・不飽和カルボン酸共重合体のアイオノマー(A)の中和度が、10%以上90%以下である、
     請求項1に記載のダイシングフィルム基材用樹脂組成物。
  5.  前記エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体のアイオノマー(B)の中和度が、10%以上90%以下である、
     請求項1に記載のダイシングフィルム基材用樹脂組成物。
  6.  前記エチレン・不飽和カルボン酸共重合体のアイオノマー(A)および前記エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体のアイオノマー(B)の合計質量を1とした場合に、前記エチレン・不飽和カルボン酸共重合体のアイオノマー(A)の質量が、0.10以上0.95以下である、
     請求項1に記載のダイシングフィルム基材用樹脂組成物。
  7.  前記エチレン・不飽和カルボン酸共重合体のアイオノマー(A)、前記エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体のアイオノマー(B)、および前記スチレン系エラストマー(C)の合計質量を1とした場合に、前記エチレン・不飽和カルボン酸共重合体のアイオノマー(A)および前記エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体のアイオノマー(B)の合計質量が、0.60以上1.00未満である、
     請求項1に記載のダイシングフィルム基材用樹脂組成物。
  8.  ダイシングフィルム基材用樹脂組成物に含まれる樹脂成分の全質量を100質量%とした場合に、前記エチレン・不飽和カルボン酸共重合体のアイオノマー(A)、前記エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体のアイオノマー(B)、および前記スチレン系エラストマー(C)の合計質量の割合が、50質量%以上100質量%以下である、
     請求項1に記載のダイシングフィルム基材用樹脂組成物。
  9.  ダイシングフィルム基材用樹脂組成物に含まれる樹脂成分の全質量を100質量%とした場合に、前記エチレン・不飽和カルボン酸共重合体のアイオノマー(A)、前記エチレン・不飽和カルボン酸・不飽和カルボン酸エステル共重合体のアイオノマー(B)、および前記スチレン系エラストマー(C)の合計含有率が、90質量%を超えて100質量%以下である、
     請求項8に記載のダイシングフィルム基材用樹脂組成物。
  10.  JIS K 7210:1999に準拠して、190℃、荷重2160gにて測定されるメルトフローレートが、0.1g/10分以上30g/10分以下である、
     請求項1に記載のダイシングフィルム基材用樹脂組成物。
  11.  請求項1~10のいずれか一項に記載のダイシングフィルム基材用樹脂組成物を含む層を、少なくとも一層有する、
     ダイシングフィルム基材。
  12.  前記ダイシングフィルム基材用樹脂組成物を含む層の、JIS K 7127:1999に準拠して23℃で測定したMD方向の30%モジュラスおよびTD方向の30%モジュラスの平均値が、8MPa以上17MPa以下である、
     請求項11に記載のダイシングフィルム基材。
  13.  前記ダイシングフィルム基材用樹脂組成物を含む層の、JIS K 7127:1999に準拠して-15℃で測定したMD方向の10%モジュラスおよびTD方向の10%モジュラスの平均値が、20MPa以上である、
     請求項11に記載のダイシングフィルム基材。
  14.  請求項11に記載のダイシングフィルム基材と、
     前記ダイシングフィルム基材の少なくとも一方の面に積層された粘着層と、を有する、
     ダイシングフィルム。
PCT/JP2023/031241 2022-09-09 2023-08-29 ダイシングフィルム基材用樹脂組成物、ダイシングフィルム基材、およびダイシングフィルム WO2024053490A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024501597A JP7437574B1 (ja) 2022-09-09 2023-08-29 ダイシングフィルム基材用樹脂組成物、ダイシングフィルム基材、およびダイシングフィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022144100 2022-09-09
JP2022-144100 2022-09-09

Publications (1)

Publication Number Publication Date
WO2024053490A1 true WO2024053490A1 (ja) 2024-03-14

Family

ID=90190924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031241 WO2024053490A1 (ja) 2022-09-09 2023-08-29 ダイシングフィルム基材用樹脂組成物、ダイシングフィルム基材、およびダイシングフィルム

Country Status (1)

Country Link
WO (1) WO2024053490A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015109436A (ja) * 2013-10-23 2015-06-11 リンテック株式会社 ダイシングシート
JP2017098369A (ja) * 2015-11-20 2017-06-01 三井・デュポンポリケミカル株式会社 ダイシングフィルム基材用樹脂組成物、ダイシングフィルム基材およびダイシングフィルム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015109436A (ja) * 2013-10-23 2015-06-11 リンテック株式会社 ダイシングシート
JP2017098369A (ja) * 2015-11-20 2017-06-01 三井・デュポンポリケミカル株式会社 ダイシングフィルム基材用樹脂組成物、ダイシングフィルム基材およびダイシングフィルム

Similar Documents

Publication Publication Date Title
JP6247733B2 (ja) レーザーダイシング用フィルム基材、レーザーダイシング用フィルム、及び電子部品の製造方法
KR101614820B1 (ko) 점착성 수지 조성물 및 점착 필름 또는 시트
JP6554708B2 (ja) ダイシングフィルム基材用樹脂組成物、ダイシングフィルム基材およびダイシングフィルム
JP6617215B2 (ja) ダイシングシート
JP4943372B2 (ja) 表面保護フィルム
JP6928183B2 (ja) ダイシングフィルム基材用樹脂組成物、ダイシングフィルム基材およびダイシングフィルム
JPH11323273A (ja) 粘着シート
JP6472972B2 (ja) ダイシングテープ基材用樹脂組成物およびダイシングテープ基材
JP2020111745A (ja) 接着性樹脂組成物及び積層体
JP2007030313A (ja) 半導体製造テープ用基材フィルム
WO2018123804A1 (ja) ダイシングフィルム基材およびダイシングフィルム
JP2010275340A (ja) 表面保護フィルム
JP7437574B1 (ja) ダイシングフィルム基材用樹脂組成物、ダイシングフィルム基材、およびダイシングフィルム
WO2024053490A1 (ja) ダイシングフィルム基材用樹脂組成物、ダイシングフィルム基材、およびダイシングフィルム
EP3006532A1 (en) Pressure sensitive adhesive tape
WO2022196392A1 (ja) ダイシングフィルム基材用樹脂組成物、ダイシングフィルム基材、およびダイシングフィルム
WO2023176620A1 (ja) バックグラインドフィルム基材用樹脂組成物、バックグラインドフィルム基材およびバックグラインドフィルム
JP2006095875A (ja) ポリオレフィン系積層フィルム及び粘着フィルム
JP2023082949A (ja) 複層フィルム、粘着フィルム、および半導体製造工程用粘着フィルム
JP2022133959A (ja) 複層フィルム、粘着フィルム及び半導体製造工程用粘着フィルム
JP2022093019A (ja) 複層フィルム、粘着フィルム及び半導体製造工程用粘着フィルム
JP2024018386A (ja) 熱可塑性樹脂フィルム、粘着フィルム、および半導体製造工程用粘着フィルム
JP2023146177A (ja) 熱可塑性樹脂フィルム、粘着フィルム、および半導体製造工程用粘着フィルム
JP2023108930A (ja) 熱可塑性樹脂フィルム、粘着フィルム、および半導体製造工程用粘着フィルム
JP2022177504A (ja) 熱可塑性樹脂フィルム、粘着フィルム、化粧フィルム、および化粧用粘着フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863029

Country of ref document: EP

Kind code of ref document: A1