WO2024043101A1 - Carbonaceous fibrous structure and production method therefor - Google Patents

Carbonaceous fibrous structure and production method therefor Download PDF

Info

Publication number
WO2024043101A1
WO2024043101A1 PCT/JP2023/029113 JP2023029113W WO2024043101A1 WO 2024043101 A1 WO2024043101 A1 WO 2024043101A1 JP 2023029113 W JP2023029113 W JP 2023029113W WO 2024043101 A1 WO2024043101 A1 WO 2024043101A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibrous
carbon skeleton
less
liquid resin
fibrous carbon
Prior art date
Application number
PCT/JP2023/029113
Other languages
French (fr)
Japanese (ja)
Inventor
厚則 佐竹
Original Assignee
三菱鉛筆株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱鉛筆株式会社 filed Critical 三菱鉛筆株式会社
Publication of WO2024043101A1 publication Critical patent/WO2024043101A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/39Aldehyde resins; Ketone resins; Polyacetals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a carbonaceous fibrous structure and a method for manufacturing the same.
  • Carbon fiber reinforced carbon composite materials are widely used in the field of electronic components and the like. C/C composites are evaluated for their physical properties such as lightness, strength, and elastic modulus.
  • Patent Document 1 discloses a unidirectionally reinforced C/C composite material in which the volume fraction of carbon fibers is 60% or less.
  • Patent Document 2 discloses a C/C composite in which the open porosity of pores with a radius of 0.4 ⁇ m or more and less than 10 ⁇ m is 2.0% or less in open pore measurement using mercury porosimetry.
  • an object of the present invention is to provide a novel carbonaceous fiber structure having high porosity.
  • the present invention is as follows: ⁇ Aspect 1> It has a fibrous carbon skeleton and a carbonaceous binding part coating the fibrous carbon bone, and has continuous pores, and has a porosity of 50 to 85 as measured by mercury intrusion method. %, Carbon fiber structure.
  • ⁇ Aspect 7> Impregnating a fibrous carbon skeleton precursor with a liquid resin, removing a portion of the liquid resin from the resin-impregnated fibrous carbon skeleton precursor; and heat-treating the fibrous carbon skeleton precursor and the resin in a non-oxidizing atmosphere to form the fibrous carbon skeleton.
  • a method for producing a fibrous structure comprising carbonizing a carbon skeleton precursor and the liquid resin.
  • FIGS. 1A and 1B are images of the carbon fiber structure of Comparative Example 1 magnified 300 times and 50 times, respectively, using a scanning electron microscope (SEM).
  • FIGS. 2A and 2B are images of the carbon fiber structure of Example 1 magnified 300 times and 50 times, respectively, using a scanning electron microscope (SEM).
  • Figures 3 (a) and (b) are images of the carbon fiber structure of Example 2 magnified 300 times and 50 times, respectively, using a scanning electron microscope (SEM).
  • FIGS. 4A and 4B are images of the carbon fiber structure of Comparative Example 2 magnified 300 times and 50 times, respectively, using a scanning electron microscope (SEM).
  • the carbonaceous fiber structure of the present invention is It has a fibrous carbon skeleton and a carbonaceous binding part coating the fibrous carbon skeleton, has continuous pores, and has a porosity of 50 to 85% as measured by mercury intrusion method.
  • the porosity of the carbonaceous fibrous structure of the present invention measured by mercury intrusion method can be 50% or more, or 55% or more, and can be 85% or less, 80% or less, or 75% or less. be able to.
  • the density of the carbon nonwoven fabric of the present invention can be 0.9 g/cm 3 or less, 0.8 g/cm 3 or less, 0.7 g/cm 3 or less, and 0.2 g/cm 3 or more, 0.3 g /cm 3 or more, and 0.4 g/cm 3 or more.
  • the fibrous carbon skeleton is a carbonaceous skeleton that has a fibrous outer shape.
  • This fibrous carbon skeleton may be a carbon skeleton derived from a woven fabric or a carbon skeleton derived from a nonwoven fabric, that is, a carbonized product of a nonwoven fabric.
  • the fibrous carbon skeleton is a carbon skeleton derived from a nonwoven fabric, that is, the carbon fiber structure of the present invention is a carbon nonwoven fabric.
  • the fibrous carbon skeleton is preferably composed of long fibers from the viewpoint of forming the skeleton.
  • long fiber means a fiber having a length sufficient to extend to both ends in the surface direction of one carbon nonwoven fabric, for example, 5 cm or more, 10 cm or more, 15 cm or more. 20 cm or more, or 20 cm or more.
  • the method for producing a fibrous carbon skeleton will be explained with respect to the method for producing a carbon nonwoven fabric.
  • the carbonaceous binding portion is a binding portion that coats fibrous carbon bone.
  • the carbonaceous binding portion may be made of amorphous carbon.
  • the carbonaceous binding portion may be present substantially uniformly on the surface of the fibrous carbon skeleton in the center of the carbon nonwoven fabric.
  • the "center” refers to a portion of the carbon nonwoven fabric excluding the outer surface, for example, a portion excluding 5%, 10%, or 15% of the thickness of the carbon nonwoven fabric from both outer surfaces. It means.
  • the expression that the carbonaceous binding portions are “almost uniformly present on the surface of the fibrous carbon skeleton” refers to areas where the carbonaceous binding portions are unevenly distributed, such as areas where resin pools have become carbonized, For example, this means that the unevenly distributed portion A shown in FIG. 3(a) is almost absent.
  • the content of the carbonaceous binding portion is preferably 85% by mass or less from the viewpoint of obtaining high porosity. This content may be 83% by weight or less, 80% by weight or less, 75% by weight or less, or 73% by weight or less, and also 30% by weight or more, 35% by weight or more, 40% by weight or more, 45% by weight or more. , 50% by mass or more, 55% by mass or more, 60% by mass or more, or 65% by mass or more.
  • the method of the present invention for producing a carbon nonwoven fabric includes: impregnating a fibrous carbon skeleton precursor with a liquid resin; removing a portion of the liquid resin from the resin-impregnated fibrous carbon skeleton precursor; and heat-treating the fibrous carbon skeleton precursor and the resin in a non-oxidizing atmosphere to form the fibrous carbon skeleton.
  • the method includes carbonizing a carbon skeleton precursor and the liquid resin.
  • the method of the present invention may further include curing the liquid resin after removing a portion of the liquid resin.
  • the cured liquid resin is carbonized by heat treatment.
  • Impregnation with liquid resin is a process of impregnating the fibrous carbon skeleton precursor with liquid resin.
  • a nonwoven fabric made of long fibers can be used as the fibrous carbon skeleton precursor.
  • This nonwoven fabric may be obtained, for example, by a spunbond method.
  • This nonwoven fabric may be composed of carbonizable fibers, such as cellulose-derived synthetic fibers such as rayon, acrylic-based or pitch-based synthetic fibers, and natural fibers such as cotton, hemp, and cotton. It is preferable from the viewpoint of maintaining the shape after carbonization.
  • the residual carbon percentage of the carbonizable fiber is preferably 15% or more, 17% or more, or 20% or more from the viewpoint of maintaining the shape after carbonization.
  • This residual coal percentage may be 40% or less, 35% or less, 30% or less, or 25% or less.
  • the "residual coal percentage" is a value measured as follows.
  • thermobalance raise the temperature from room temperature to 900°C at a heating rate of 20°C/min in a nitrogen atmosphere, and calculate the residual carbon percentage (mass%) using the following formula, using the temperature at 850°C as the mass after firing. calculate.
  • Remaining coal rate (%) (mass after firing (850°C) / mass before firing) x 100
  • thermosetting resins such as furan resins, phenol resins, epoxy resins, furan-phenolic resins, phenol-modified furan cocondensates, melamine resins, urea resins, and furan-urea resins can be used. .
  • the residual carbon percentage of the liquid resin should be 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, or 45% or more to sufficiently maintain the fibrous carbon skeleton obtained after carbonization. Preferable from the viewpoint of coating.
  • This residual coal percentage may be 70% or less, 65% or less, 69% or less, or 55% or less.
  • Removal of the liquid resin is a step of removing a portion of the liquid resin from the resin-impregnated fibrous carbon skeleton precursor.
  • the amount of liquid resin to be removed can be adjusted depending on the density of the carbon nonwoven fabric to be obtained. This step may be carried out by squeezing or by suction.
  • the removal of the liquid resin is performed when the amount of the liquid resin is 70% by mass or less, 68% by mass or less, or 60% by mass or less with respect to the total mass of the fibrous carbon skeleton precursor, the carbon skeleton precursor, and the liquid resin. , and 10% by mass or more, 15% by mass or more, 20% by mass or more, 25% by mass or more, 30% by mass or more, 35% by mass or more, 40% by mass or more, 45% by mass or more, 50% by mass or more, or 55% by mass % or more is preferable from the viewpoint of setting the content of the carbonaceous binding portion to the value mentioned above regarding the carbonaceous binding portion after carbonization.
  • Carbonization is a step of heat-treating the fibrous carbon skeleton precursor and the cured liquid resin in a non-oxidizing atmosphere to carbonize the fibrous carbon skeleton precursor and the cured liquid resin. .
  • the non-oxidizing atmosphere may be an atmosphere of an inert gas stream such as nitrogen or argon, or 0.1 Pa or less, 10 ⁇ 2 Pa or less, 10 ⁇ 3 Pa or less, 10 ⁇ 4 Pa or less, 10 ⁇ 5
  • the vacuum may be less than Pa, less than 10 ⁇ 6 Pa, or less than 10 ⁇ 7 Pa, and more than 10 ⁇ 8 Pa.
  • the heat treatment can be performed by raising the temperature to a predetermined maximum temperature.
  • the maximum temperature reached may be 500°C or higher, 600°C or higher, 700°C or higher, 800°C or higher, 900°C or higher, or 950°C or higher, and especially in applications where electrical conductivity is important, it is 800°C or higher. It is preferable.
  • This maximum temperature is 2500°C or less, 2400°C or less, 2300°C or less, 2200°C or less, 2100°C or less, 2000°C or less, 1900°C or less, 1800°C or less, 1700°C or less, 1600°C or less, 1500°C or less, The temperature may be 1400°C or lower, 1300°C or lower, 1200°C or lower, or 1100°C or lower.
  • the time to maintain the maximum temperature may be 30 minutes or more, 1 hour or more, 2 hours or more, or 3 hours or more, and 72 hours or less, 70 hours or less, 60 hours or less, 50 hours or less, or 40 hours or less. , 30 hours or less, 20 hours or less, 10 hours or less, 8 hours or less, 5 hours or less, or 4 hours or less.
  • Curing the liquid resin is an optional step of curing the liquid resin. This step can be selected depending on the type of liquid resin. For example, when the liquid resin is a thermosetting resin, the curing of the liquid resin may be heat treatment.
  • Comparative example 2 A carbon nonwoven fabric of Comparative Example 2 was produced in the same manner as Example 1 except that the furan resin was not discharged.
  • the porosity of the obtained carbon nonwoven fabric was measured by mercury intrusion method.
  • enlarged images of the appearance of the carbon nonwoven fabrics of Comparative Example 1, Example 1, Example 2, and Comparative Example 2 taken using a scanning electron microscope (SEM) are shown in FIGS. 1 to 4, respectively.
  • Table 1 shows the structures and physical properties of Examples and Comparative Examples.

Abstract

A carbonaceous fibrous structure of the present invention comprises a fibrous carbon skeleton and a carbonaceous binding part with which the fibrous carbon skeleton is coated. The carbonaceous fibrous structure has interconnected voids and has a porosity, as determined by mercury intrusion porosimetry, of 50-85%.

Description

炭素質の繊維構造体及びその製造方法Carbonaceous fiber structure and its manufacturing method
 本発明は、炭素質の繊維構造体及びその製造方法に関する。 The present invention relates to a carbonaceous fibrous structure and a method for manufacturing the same.
 電子部品等の分野において、炭素繊維強化炭素複合材料(C/Cコンポジット)が広く用いられている。C/Cコンポジットは、その軽量さ、強度、弾性率等の物理的性質が評価されている。 Carbon fiber reinforced carbon composite materials (C/C composites) are widely used in the field of electronic components and the like. C/C composites are evaluated for their physical properties such as lightness, strength, and elastic modulus.
 特許文献1では、炭素繊維の体積率が60%以下である一方向強化C/C複合材が開示されている。 Patent Document 1 discloses a unidirectionally reinforced C/C composite material in which the volume fraction of carbon fibers is 60% or less.
 特許文献2では、水銀ポロシメトリーによる開気孔測定において、気孔半径0.4μm以上、10μm未満の開気孔率が、2.0%以下である、C/Cコンポジットが開示されている。 Patent Document 2 discloses a C/C composite in which the open porosity of pores with a radius of 0.4 μm or more and less than 10 μm is 2.0% or less in open pore measurement using mercury porosimetry.
特開平6-107463号公報Japanese Patent Application Publication No. 6-107463 特開2022-033276号公報JP2022-033276A
 電池等の分野において、気孔率の高い炭素材料に対するニーズが高まっている。そこで、本発明は、高い気孔率を有する新規な炭素質の繊維構造体を提供することを目的とする。 In fields such as batteries, there is a growing need for carbon materials with high porosity. Therefore, an object of the present invention is to provide a novel carbonaceous fiber structure having high porosity.
 本発明者らは、鋭意検討したところ、以下の手段により上記課題を解決できることを見出して、本発明を完成させた。すなわち、本発明は、下記のとおりである:
〈態様1〉繊維質炭素骨格、及び前記繊維質炭素骨をコーティングしている炭素質結着部を有し、かつ連通気孔を有し、かつ
 水銀圧入法により測定した気孔率が、50~85%である、
炭素質の繊維構造体。
〈態様2〉前記繊維質炭素骨格が、長繊維で構成されている、態様1に記載の繊維構造体。
〈態様3〉炭素不織布である、態様1又は2に記載の繊維構造体。
〈態様4〉中心部において、前記炭素質結着部が、前記繊維質炭素骨格の表面に略均一に存在している、態様1~3のいずれか一項に記載の繊維構造体。
〈態様5〉前記炭素質結着部の含有率が、前記繊維構造体の質量に対して、85質量%以下である、態様1~4のいずれか一項に記載の繊維構造体。
〈態様6〉前記繊維質炭素骨格が、不織布で構成されている、態様1~5のいずれか一項に記載の繊維構造体。
〈態様7〉繊維質炭素骨格前駆体に、液状樹脂を含浸させること、
 樹脂を含浸させた前記繊維質炭素骨格前駆体から、前記液状樹脂の一部を除去すること、及び
 前記繊維質炭素骨格前駆体及び前記樹脂を非酸化性雰囲気下で熱処理して、前記繊維質炭素骨格前駆体及び前記液状樹脂を炭素化させること
を含む、繊維構造体の製造方法。
〈態様8〉前記液状樹脂の一部を除去した後に、前記液状樹脂を硬化させることを更に含み、かつ前記熱処理により、硬化させた前記液状樹脂を炭素化させる、態様7に記載の方法。
After intensive study, the present inventors found that the above-mentioned problem could be solved by the following means, and completed the present invention. That is, the present invention is as follows:
<Aspect 1> It has a fibrous carbon skeleton and a carbonaceous binding part coating the fibrous carbon bone, and has continuous pores, and has a porosity of 50 to 85 as measured by mercury intrusion method. %,
Carbon fiber structure.
<Aspect 2> The fibrous structure according to aspect 1, wherein the fibrous carbon skeleton is composed of long fibers.
<Aspect 3> The fiber structure according to aspect 1 or 2, which is a carbon nonwoven fabric.
<Aspect 4> The fibrous structure according to any one of aspects 1 to 3, wherein the carbonaceous binding portion is present substantially uniformly on the surface of the fibrous carbon skeleton in the center portion.
<Aspect 5> The fibrous structure according to any one of aspects 1 to 4, wherein the content of the carbonaceous binding portion is 85% by mass or less based on the mass of the fibrous structure.
<Aspect 6> The fibrous structure according to any one of aspects 1 to 5, wherein the fibrous carbon skeleton is composed of a nonwoven fabric.
<Aspect 7> Impregnating a fibrous carbon skeleton precursor with a liquid resin,
removing a portion of the liquid resin from the resin-impregnated fibrous carbon skeleton precursor; and heat-treating the fibrous carbon skeleton precursor and the resin in a non-oxidizing atmosphere to form the fibrous carbon skeleton. A method for producing a fibrous structure, the method comprising carbonizing a carbon skeleton precursor and the liquid resin.
<Aspect 8> The method according to aspect 7, further comprising curing the liquid resin after removing a portion of the liquid resin, and carbonizing the cured liquid resin by the heat treatment.
 本発明によれば、高い気孔率を有する新規な炭素質の繊維構造体を得ることができる。 According to the present invention, a novel carbonaceous fiber structure having high porosity can be obtained.
図1(a)及び(b)は、走査型電子顕微鏡(SEM)、により、比較例1の炭素質の繊維構造体を、それぞれ300倍及び50倍に拡大した画像である。FIGS. 1A and 1B are images of the carbon fiber structure of Comparative Example 1 magnified 300 times and 50 times, respectively, using a scanning electron microscope (SEM). 図2(a)及び(b)は、走査型電子顕微鏡(SEM)、により、実施例1の炭素質の繊維構造体を、それぞれ300倍及び50倍に拡大した画像である。FIGS. 2A and 2B are images of the carbon fiber structure of Example 1 magnified 300 times and 50 times, respectively, using a scanning electron microscope (SEM). 図3(a)及び(b)は、走査型電子顕微鏡(SEM)により、実施例2の炭素質の繊維構造体炭素質の繊維構造体を、それぞれ300倍及び50倍に拡大した画像である。Figures 3 (a) and (b) are images of the carbon fiber structure of Example 2 magnified 300 times and 50 times, respectively, using a scanning electron microscope (SEM). . 図4(a)及び(b)は、走査型電子顕微鏡(SEM)により、比較例2の炭素質の繊維構造体を、それぞれ300倍及び50倍に拡大した画像である。FIGS. 4A and 4B are images of the carbon fiber structure of Comparative Example 2 magnified 300 times and 50 times, respectively, using a scanning electron microscope (SEM).
 《炭素質の繊維構造体》
 本発明の炭素質の繊維構造体は、
 繊維質炭素骨格、及び前記繊維質炭素骨格をコーティングしている炭素質結着部を有し、かつ連通気孔を有し、かつ
 水銀圧入法により測定した気孔率が、50~85%である。
《Carbon fiber structure》
The carbonaceous fiber structure of the present invention is
It has a fibrous carbon skeleton and a carbonaceous binding part coating the fibrous carbon skeleton, has continuous pores, and has a porosity of 50 to 85% as measured by mercury intrusion method.
 上記の構成によれば、高い気孔率を有する新規な炭素質の繊維構造体を得ることができることを見出した。このような繊維構造体は、高い気孔率を有する一方で、繊維質炭素骨格と炭素質結着部との組合せによってもたらさせる粗密のパターンにより、ハンドリングに問題ない強度を得ることができる。 It has been found that according to the above configuration, a novel carbonaceous fiber structure having high porosity can be obtained. While such a fibrous structure has a high porosity, it can obtain strength that does not pose a problem in handling due to the dense pattern created by the combination of the fibrous carbon skeleton and the carbonaceous binding portion.
 本発明の炭素質の繊維構造体の、水銀圧入法により測定した気孔率は、50%以上、又は55%以上であることができ、また85%以下、80%以下、又は75%以下であることができる。 The porosity of the carbonaceous fibrous structure of the present invention measured by mercury intrusion method can be 50% or more, or 55% or more, and can be 85% or less, 80% or less, or 75% or less. be able to.
 本発明の炭素不織布の密度は、0.9g/cm以下、0.8g/cm以下、0.7g/cm以下であることができ、また0.2g/cm以上、0.3g/cm以上、0.4g/cm以上であることができる。 The density of the carbon nonwoven fabric of the present invention can be 0.9 g/cm 3 or less, 0.8 g/cm 3 or less, 0.7 g/cm 3 or less, and 0.2 g/cm 3 or more, 0.3 g /cm 3 or more, and 0.4 g/cm 3 or more.
 以下では、本発明の各構成要素について説明する。 Below, each component of the present invention will be explained.
 〈繊維質炭素骨格〉
 繊維質炭素骨格は、繊維状の外形を有する炭素質の骨格である。この繊維質炭素骨格は、織布由来の炭素骨格であってもよく、又は不織布由来の炭素骨格、すなわち不織布の炭化物であってもよい。特に、繊維質炭素骨格が不織布由来の炭素骨格であること、即ち本発明の炭素質の繊維構造体が、炭素不織布であることが、ガス透過性の観点から好ましい。
<Fibrous carbon skeleton>
The fibrous carbon skeleton is a carbonaceous skeleton that has a fibrous outer shape. This fibrous carbon skeleton may be a carbon skeleton derived from a woven fabric or a carbon skeleton derived from a nonwoven fabric, that is, a carbonized product of a nonwoven fabric. In particular, it is preferable from the viewpoint of gas permeability that the fibrous carbon skeleton is a carbon skeleton derived from a nonwoven fabric, that is, the carbon fiber structure of the present invention is a carbon nonwoven fabric.
 繊維質炭素骨格は、長繊維で構成されていることが、骨格を形成する観点から好ましい。ここで、本発明において、「長繊維」とは、1つの炭素不織布の面方向における両端に延在するのに十分な長さを有する繊維を意味しており、例えば5cm以上、10cm以上、15cm以上、又は20cm以上の繊維を意味している。 The fibrous carbon skeleton is preferably composed of long fibers from the viewpoint of forming the skeleton. Here, in the present invention, "long fiber" means a fiber having a length sufficient to extend to both ends in the surface direction of one carbon nonwoven fabric, for example, 5 cm or more, 10 cm or more, 15 cm or more. 20 cm or more, or 20 cm or more.
 繊維質炭素骨格の製造方法については、炭素不織布の製造方法に関して説明する。 The method for producing a fibrous carbon skeleton will be explained with respect to the method for producing a carbon nonwoven fabric.
 〈炭素質結着部〉
 炭素質結着部は、繊維質炭素骨をコーティングしている結着部である。炭素質結着部は、アモルファス炭素で構成されていてよい。
<Carbonaceous binding part>
The carbonaceous binding portion is a binding portion that coats fibrous carbon bone. The carbonaceous binding portion may be made of amorphous carbon.
 炭素質結着部は、炭素不織布の中心部において、繊維質炭素骨格の表面に略均一に存在していてよい。ここで、本発明において、「中心部」とは、炭素不織布の外表面を除いた部分、例えば炭素不織布の厚さの5%、10%、又は15%を両方の外表面側から除いた部分を意味している。また、炭素質結着部が「繊維質炭素骨格の表面に略均一に存在」しているとは、炭素質結着部が偏在している部分、例えば樹脂溜まりが炭素化したような部分、例えば図3(a)に示す偏在部Aが殆ど存在しないことを意味している。 The carbonaceous binding portion may be present substantially uniformly on the surface of the fibrous carbon skeleton in the center of the carbon nonwoven fabric. Here, in the present invention, the "center" refers to a portion of the carbon nonwoven fabric excluding the outer surface, for example, a portion excluding 5%, 10%, or 15% of the thickness of the carbon nonwoven fabric from both outer surfaces. It means. Furthermore, the expression that the carbonaceous binding portions are “almost uniformly present on the surface of the fibrous carbon skeleton” refers to areas where the carbonaceous binding portions are unevenly distributed, such as areas where resin pools have become carbonized, For example, this means that the unevenly distributed portion A shown in FIG. 3(a) is almost absent.
 炭素質結着部の含有率は、85質量%以下であることが高い気孔率を得る観点から好ましい。この含有率は、83質量%以下、80質量%以下、75質量%以下、又は73質量%以下であってよく、また30質量%以上、35質量%以上、40質量%以上、45質量%以上、50質量%以上、55質量%以上、60質量%以上、又は65質量%以上であってよい。 The content of the carbonaceous binding portion is preferably 85% by mass or less from the viewpoint of obtaining high porosity. This content may be 83% by weight or less, 80% by weight or less, 75% by weight or less, or 73% by weight or less, and also 30% by weight or more, 35% by weight or more, 40% by weight or more, 45% by weight or more. , 50% by mass or more, 55% by mass or more, 60% by mass or more, or 65% by mass or more.
 《炭素不織布の製造方法》
 炭素不織布を製造する本発明の方法は、
 繊維質炭素骨格前駆体に、液状樹脂を含浸させること、
 樹脂を含浸させた前記繊維質炭素骨格前駆体から、前記液状樹脂の一部を除去すること、及び
 前記繊維質炭素骨格前駆体及び前記樹脂を非酸化性雰囲気下で熱処理して、前記繊維質炭素骨格前駆体及び前記液状樹脂を炭素化させること
を含む。
《Method for manufacturing carbon nonwoven fabric》
The method of the present invention for producing a carbon nonwoven fabric includes:
impregnating a fibrous carbon skeleton precursor with a liquid resin;
removing a portion of the liquid resin from the resin-impregnated fibrous carbon skeleton precursor; and heat-treating the fibrous carbon skeleton precursor and the resin in a non-oxidizing atmosphere to form the fibrous carbon skeleton. The method includes carbonizing a carbon skeleton precursor and the liquid resin.
 本発明の方法は、液状樹脂の一部を除去した後に、液状樹脂を硬化させることを更に含んでもよい。この場合、熱処理により、硬化させた液状樹脂を炭素化させる。 The method of the present invention may further include curing the liquid resin after removing a portion of the liquid resin. In this case, the cured liquid resin is carbonized by heat treatment.
 〈液状樹脂の含浸〉
 液状樹脂の含浸は、繊維質炭素骨格前駆体に液状樹脂を含浸させる工程である。
<Liquid resin impregnation>
Impregnation with liquid resin is a process of impregnating the fibrous carbon skeleton precursor with liquid resin.
 繊維質炭素骨格前駆体としては、例えば長繊維で形成された不織布を用いることができる。この不織布は、例えばスパンボンド法により得たものであってよい。 As the fibrous carbon skeleton precursor, for example, a nonwoven fabric made of long fibers can be used. This nonwoven fabric may be obtained, for example, by a spunbond method.
 この不織布は、炭素化可能な繊維、例えばレーヨン等のセルロース由来の合成繊維やアクリル系、ピッチ系の合成繊維、コットン、麻、綿等の天然繊維で構成されていてよく、合成繊維で構成されていることが、炭素化後において形状を維持する観点から好ましい。 This nonwoven fabric may be composed of carbonizable fibers, such as cellulose-derived synthetic fibers such as rayon, acrylic-based or pitch-based synthetic fibers, and natural fibers such as cotton, hemp, and cotton. It is preferable from the viewpoint of maintaining the shape after carbonization.
 炭素化可能な繊維の残炭率は、15%以上、17%以上、又は20%以上であることが、炭素化後において形状を維持する観点から好ましい。この残炭率は、40%以下、35%以下、30%以下、又は25%以下であってよい。ここで、本発明に関して、「残炭率」は、下記のようにして測定される値である。 The residual carbon percentage of the carbonizable fiber is preferably 15% or more, 17% or more, or 20% or more from the viewpoint of maintaining the shape after carbonization. This residual coal percentage may be 40% or less, 35% or less, 30% or less, or 25% or less. Here, in the present invention, the "residual coal percentage" is a value measured as follows.
 熱天秤を用いて、窒素雰囲気において昇温速度20℃/分で室温から900℃まで昇温し、850℃での温度を焼成後質量として、以下の式により、残炭率(質量%)を算出する。
 残炭率(%)=(焼成後(850℃)質量/焼成前質量)×100
Using a thermobalance, raise the temperature from room temperature to 900°C at a heating rate of 20°C/min in a nitrogen atmosphere, and calculate the residual carbon percentage (mass%) using the following formula, using the temperature at 850°C as the mass after firing. calculate.
Remaining coal rate (%) = (mass after firing (850°C) / mass before firing) x 100
 液状樹脂としては、例えばフラン樹脂、フェノール樹脂、エポキシ樹脂、フラン-フェノール系樹脂、フェノール変性フラン共縮合物、メラミン樹脂、尿素樹脂、フラン-尿素系樹脂等の熱硬化性樹脂を用いることができる。 As the liquid resin, thermosetting resins such as furan resins, phenol resins, epoxy resins, furan-phenolic resins, phenol-modified furan cocondensates, melamine resins, urea resins, and furan-urea resins can be used. .
 液状樹脂の残炭率は、20%以上、25%以上、30%以上、35%以上、40%以上、又は45%以上であることが、炭素化後において得られる繊維質炭素骨格を十分にコーティングする観点から好ましい。この残炭率は、70%以下、65%以下、69%以下、又は55%以下であってよい。 The residual carbon percentage of the liquid resin should be 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, or 45% or more to sufficiently maintain the fibrous carbon skeleton obtained after carbonization. Preferable from the viewpoint of coating. This residual coal percentage may be 70% or less, 65% or less, 69% or less, or 55% or less.
 〈液状樹脂の除去〉
 液状樹脂の除去は、樹脂を含浸させた繊維質炭素骨格前駆体から、液状樹脂の一部を除去する工程である。除去する液状樹脂の量は、得るべき炭素不織布の密度に応じて調節することができる。この工程は、圧搾により行ってもよく、又は吸引により行ってもよい。
<Removal of liquid resin>
Removal of the liquid resin is a step of removing a portion of the liquid resin from the resin-impregnated fibrous carbon skeleton precursor. The amount of liquid resin to be removed can be adjusted depending on the density of the carbon nonwoven fabric to be obtained. This step may be carried out by squeezing or by suction.
 液状樹脂の除去は、液状樹脂の量が、繊維質炭素骨格前駆体炭素骨格前駆体及び液状樹脂の質量の合計に対して、70質量%以下、68質量%以下、又は60質量%以下であり、かつ10質量%以上、15質量%以上、20質量%以上、25質量%以上、30質量%以上、35質量%以上、40質量%以上、45質量%以上、50質量%以上、又は55質量%以上となるようにすることが、炭素化後において、上記の炭素質結着部の含有率を、炭素質結着部に関して言及した値とする観点から好ましい。 The removal of the liquid resin is performed when the amount of the liquid resin is 70% by mass or less, 68% by mass or less, or 60% by mass or less with respect to the total mass of the fibrous carbon skeleton precursor, the carbon skeleton precursor, and the liquid resin. , and 10% by mass or more, 15% by mass or more, 20% by mass or more, 25% by mass or more, 30% by mass or more, 35% by mass or more, 40% by mass or more, 45% by mass or more, 50% by mass or more, or 55% by mass % or more is preferable from the viewpoint of setting the content of the carbonaceous binding portion to the value mentioned above regarding the carbonaceous binding portion after carbonization.
 〈炭素化〉
 炭素化は、繊維質炭素骨格前駆体及び前記硬化させた前記液状樹脂を非酸化性雰囲気下で熱処理して、前記繊維質炭素骨格前駆体及び硬化させた前記液状樹脂を炭素化させる工程である。
<Carbonization>
Carbonization is a step of heat-treating the fibrous carbon skeleton precursor and the cured liquid resin in a non-oxidizing atmosphere to carbonize the fibrous carbon skeleton precursor and the cured liquid resin. .
 非酸化性雰囲気は、窒素、アルゴン等の不活性ガス気流の雰囲気であってもよく、又は0.1Pa以下、10-2Pa以下、10-3Pa以下、10-4Pa以下、10-5Pa以下、10-6Pa以下、若しくは10-7Pa以下であり、かつ10-8Pa以上の真空であってもよい。 The non-oxidizing atmosphere may be an atmosphere of an inert gas stream such as nitrogen or argon, or 0.1 Pa or less, 10 −2 Pa or less, 10 −3 Pa or less, 10 −4 Pa or less, 10 −5 The vacuum may be less than Pa, less than 10 −6 Pa, or less than 10 −7 Pa, and more than 10 −8 Pa.
 熱処理は、所定の最高到達温度まで昇温させることにより行うことができる。最高到達温度は、500℃以上、600℃以上、700℃以上、800℃以上、900℃以上、又は950℃以上であってよく、特に、電気伝導性を重視する用途では、800℃以上であることが好ましい。この最高到達温度は、2500℃以下、2400℃以下、2300℃以下、2200℃以下、2100℃以下、2000℃以下、1900℃以下、1800℃以下、1700℃以下、1600℃以下、1500℃以下、1400℃以下、1300℃以下、1200℃以下、又は1100℃以下であってよい。 The heat treatment can be performed by raising the temperature to a predetermined maximum temperature. The maximum temperature reached may be 500°C or higher, 600°C or higher, 700°C or higher, 800°C or higher, 900°C or higher, or 950°C or higher, and especially in applications where electrical conductivity is important, it is 800°C or higher. It is preferable. This maximum temperature is 2500°C or less, 2400°C or less, 2300°C or less, 2200°C or less, 2100°C or less, 2000°C or less, 1900°C or less, 1800°C or less, 1700°C or less, 1600°C or less, 1500°C or less, The temperature may be 1400°C or lower, 1300°C or lower, 1200°C or lower, or 1100°C or lower.
 最高到達温度を維持する時間は、30分以上、1時間以上、2時間以上、又は3時間以上であってよく、また72時間以下、70時間以下、60時間以下、50時間以下、40時間以下、30時間以下、20時間以下、10時間以下、8時間以下、5時間以下、又は4時間以下であってよい。 The time to maintain the maximum temperature may be 30 minutes or more, 1 hour or more, 2 hours or more, or 3 hours or more, and 72 hours or less, 70 hours or less, 60 hours or less, 50 hours or less, or 40 hours or less. , 30 hours or less, 20 hours or less, 10 hours or less, 8 hours or less, 5 hours or less, or 4 hours or less.
 〈液状樹脂の硬化〉
 液状樹脂の硬化は、液状樹脂を硬化させる随意の工程である。この工程は、液状樹脂の種類に応じて選択することができる。例えば、液状樹脂が熱硬化性樹脂である場合には、液状樹脂の硬化は、熱処理であってよい。
<Curing of liquid resin>
Curing the liquid resin is an optional step of curing the liquid resin. This step can be selected depending on the type of liquid resin. For example, when the liquid resin is a thermosetting resin, the curing of the liquid resin may be heat treatment.
 実施例及び比較例により本発明を具体的に説明するが、本発明は、これらに限定されるものではない。 The present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
 《炭素不織布の作製》
 〈実施例1~4〉
 スパンボンド法で形成された残炭率22%の長繊維であるレーヨンで形成された不織布に、液状樹脂としての残炭率50%のフラン樹脂を十分に含侵させた。次いで、レーヨン及びフラン樹脂の質量比が、表1に示す比率となるようにして、吸液によりフラン樹脂を排出して、含浸樹脂量を調整した。次いで、不活性雰囲気下で、800℃の温度で熱処理することで、不織布及びフラン樹脂を炭素化させて、炭素不織布を作製した。
《Preparation of carbon nonwoven fabric》
<Examples 1 to 4>
A nonwoven fabric made of long fiber rayon with a residual carbon content of 22% and formed by a spunbond method was sufficiently impregnated with a furan resin having a residual carbon content of 50% as a liquid resin. Next, the mass ratio of rayon and furan resin was adjusted to the ratio shown in Table 1, and the amount of impregnated resin was adjusted by discharging the furan resin by liquid absorption. Next, the nonwoven fabric and the furan resin were carbonized by heat treatment at a temperature of 800° C. in an inert atmosphere to produce a carbon nonwoven fabric.
 〈比較例1〉
 スパンボンド法で形成された収炭率22%の長繊維であるレーヨンで形成された不織布を、樹脂に含浸させることなく、不活性雰囲気下で、800℃の温度で熱処理することで、不織布を炭素化させて、比較例1の炭素不織布を作製した。
<Comparative example 1>
A nonwoven fabric made of rayon, a long fiber with a coal yield of 22%, formed using the spunbond method, is heat-treated at a temperature of 800°C in an inert atmosphere without impregnating it with resin. Carbonization was performed to produce a carbon nonwoven fabric of Comparative Example 1.
 〈比較例2〉
 フラン樹脂の排出を行わなかったことを除き、実施例1と同様にして、比較例2の炭素不織布を作製した。
<Comparative example 2>
A carbon nonwoven fabric of Comparative Example 2 was produced in the same manner as Example 1 except that the furan resin was not discharged.
 得られた炭素不織布の気孔率を、水銀圧入法により測定した。また、走査型電子顕微鏡(SEM)により、比較例1、実施例1、実施例2、並びに比較例2の炭素不織布の外観を、拡大した画像を、それぞれ図1~4に示す。 The porosity of the obtained carbon nonwoven fabric was measured by mercury intrusion method. In addition, enlarged images of the appearance of the carbon nonwoven fabrics of Comparative Example 1, Example 1, Example 2, and Comparative Example 2 taken using a scanning electron microscope (SEM) are shown in FIGS. 1 to 4, respectively.
 実施例及び比較例の構成及び物性を表1に示す。 Table 1 shows the structures and physical properties of Examples and Comparative Examples.
 A  炭素質結着部の偏在部 A: Uneven distribution of carbonaceous binding parts

Claims (8)

  1.  繊維質炭素骨格、及び前記繊維質炭素骨格をコーティングしている炭素質結着部を有し、かつ連通気孔を有し、かつ
     水銀圧入法により測定した気孔率が、50~85%である、
    炭素質の繊維構造体。
    It has a fibrous carbon skeleton and a carbonaceous binding part coating the fibrous carbon skeleton, and has continuous pores, and has a porosity of 50 to 85% as measured by mercury intrusion method.
    Carbon fiber structure.
  2.  前記繊維質炭素骨格が、長繊維で構成されている、請求項1に記載の繊維構造体。 The fibrous structure according to claim 1, wherein the fibrous carbon skeleton is composed of long fibers.
  3.  炭素不織布である、請求項1又は2に記載の繊維構造体。 The fiber structure according to claim 1 or 2, which is a carbon nonwoven fabric.
  4.  中心部において、前記炭素質結着部が、前記繊維質炭素骨格の表面に略均一に存在している、請求項1又は2に記載の繊維構造体。 The fibrous structure according to claim 1 or 2, wherein the carbonaceous binding portion is present substantially uniformly on the surface of the fibrous carbon skeleton at the center.
  5.  前記炭素質結着部の含有率が、前記繊維構造体の質量に対して、85質量%以下である、請求項1又は2に記載の繊維構造体。 The fibrous structure according to claim 1 or 2, wherein the content of the carbonaceous binding portion is 85% by mass or less based on the mass of the fibrous structure.
  6.  前記繊維質炭素骨格が、不織布で構成されている、請求項1又は2に記載の繊維構造体。 The fibrous structure according to claim 1 or 2, wherein the fibrous carbon skeleton is made of a nonwoven fabric.
  7.  繊維質炭素骨格前駆体に、液状樹脂を含浸させること、
     樹脂を含浸させた前記繊維質炭素骨格前駆体から、前記液状樹脂の一部を除去すること、及び
     前記繊維質炭素骨格前駆体及び前記樹脂を非酸化性雰囲気下で熱処理して、前記繊維質炭素骨格前駆体及び前記液状樹脂を炭素化させること
    を含む、繊維構造体の製造方法。
    impregnating a fibrous carbon skeleton precursor with a liquid resin;
    removing a portion of the liquid resin from the resin-impregnated fibrous carbon skeleton precursor; and heat-treating the fibrous carbon skeleton precursor and the resin in a non-oxidizing atmosphere to form the fibrous carbon skeleton. A method for producing a fibrous structure, the method comprising carbonizing a carbon skeleton precursor and the liquid resin.
  8.  前記液状樹脂の一部を除去した後に、前記液状樹脂を硬化させることを更に含み、かつ前記熱処理により、硬化させた前記液状樹脂を炭素化させる、請求項7に記載の方法。 The method according to claim 7, further comprising curing the liquid resin after removing a portion of the liquid resin, and carbonizing the cured liquid resin by the heat treatment.
PCT/JP2023/029113 2022-08-26 2023-08-09 Carbonaceous fibrous structure and production method therefor WO2024043101A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022135187A JP2024031548A (en) 2022-08-26 2022-08-26 Carbonaceous fiber structure and its manufacturing method
JP2022-135187 2022-08-26

Publications (1)

Publication Number Publication Date
WO2024043101A1 true WO2024043101A1 (en) 2024-02-29

Family

ID=90013169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029113 WO2024043101A1 (en) 2022-08-26 2023-08-09 Carbonaceous fibrous structure and production method therefor

Country Status (2)

Country Link
JP (1) JP2024031548A (en)
WO (1) WO2024043101A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251480A (en) * 1988-08-15 1990-02-21 Showa Denko Kk Production of porous carbon plate
JPH06321633A (en) * 1993-05-18 1994-11-22 Kobe Steel Ltd Shock-resistant carbon-carbon composite material and its production
JPH08173972A (en) * 1994-12-26 1996-07-09 Showa Denko Kk Porous carbon electrode for water treatment and manufacture of the same
JPH10259077A (en) * 1997-03-18 1998-09-29 Tokai Carbon Co Ltd Production of porous carbonaceous material
JPH10259076A (en) * 1997-03-18 1998-09-29 Tokai Carbon Co Ltd Production of porous carbonaceous material
JP2001240477A (en) * 2000-02-28 2001-09-04 Mitsubishi Rayon Co Ltd Carbonaceous porous body and its manufacturing method
WO2014087887A1 (en) * 2012-12-05 2014-06-12 東レ株式会社 Carbon-fiber nonwoven cloth and gas diffusion electrode for polymer electrolyte fuel cell using same, polymer electrolyte fuel cell, method for manufacturing carbon-fiber nonwoven cloth, and composite sheet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251480A (en) * 1988-08-15 1990-02-21 Showa Denko Kk Production of porous carbon plate
JPH06321633A (en) * 1993-05-18 1994-11-22 Kobe Steel Ltd Shock-resistant carbon-carbon composite material and its production
JPH08173972A (en) * 1994-12-26 1996-07-09 Showa Denko Kk Porous carbon electrode for water treatment and manufacture of the same
JPH10259077A (en) * 1997-03-18 1998-09-29 Tokai Carbon Co Ltd Production of porous carbonaceous material
JPH10259076A (en) * 1997-03-18 1998-09-29 Tokai Carbon Co Ltd Production of porous carbonaceous material
JP2001240477A (en) * 2000-02-28 2001-09-04 Mitsubishi Rayon Co Ltd Carbonaceous porous body and its manufacturing method
WO2014087887A1 (en) * 2012-12-05 2014-06-12 東レ株式会社 Carbon-fiber nonwoven cloth and gas diffusion electrode for polymer electrolyte fuel cell using same, polymer electrolyte fuel cell, method for manufacturing carbon-fiber nonwoven cloth, and composite sheet

Also Published As

Publication number Publication date
JP2024031548A (en) 2024-03-07

Similar Documents

Publication Publication Date Title
US5217657A (en) Method of making carbon-carbon composites
JP3943123B2 (en) Method for producing carbon fiber reinforced carbon composite material suitable for heat sink for semiconductor
JP5662078B2 (en) C / C composite material molded body and method for producing the same
JP2012036018A (en) Carbon fiber-reinforced carbon composite material and method for manufacturing the same
WO2024043101A1 (en) Carbonaceous fibrous structure and production method therefor
JPS5935841B2 (en) Tansozairiyounoseizohou
JP2019043099A (en) Carbon fiber sheet laminate and manufacturing method therefor
JP2023511515A (en) Insulation suitable for use at high temperatures and method of making said material
GB2119777A (en) Process for the preparation of sintered bodies
JPH01188468A (en) Carbon fiber-reinforced carbon composite material and its production
JP2594952B2 (en) Molded heat insulating material and its manufacturing method
JP4356870B2 (en) C / C composite manufacturing method, rocket nozzle and re-entry capsule
JPH01133914A (en) Carbon fiber reinforced carbon composite material and production thereof
JP5691409B2 (en) C / C composite material and method for producing C / C composite material
JPH08245273A (en) Production of carbon fiber reinforced carbon composite material
JP2632955B2 (en) Manufacturing method of porous carbon plate
JPH09118566A (en) Production of silicon carbide fiber structure
JPH04160059A (en) Production of carbon fiber reinforcing carbon composite material
JPH068215B2 (en) Manufacturing method of carbon fiber reinforced carbon material
JP3983401B2 (en) Method for producing molded body made of C / C material
JPH06321633A (en) Shock-resistant carbon-carbon composite material and its production
JP2762461B2 (en) Method for producing carbon fiber reinforced carbon composite
JPH0648829A (en) Precursor for carbon fiber-reinforced carbon composite material
JPH01264967A (en) Production of graphite molding
JP4185355B2 (en) Carbon sheet and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857214

Country of ref document: EP

Kind code of ref document: A1