JPH04160059A - Production of carbon fiber reinforcing carbon composite material - Google Patents

Production of carbon fiber reinforcing carbon composite material

Info

Publication number
JPH04160059A
JPH04160059A JP2286890A JP28689090A JPH04160059A JP H04160059 A JPH04160059 A JP H04160059A JP 2286890 A JP2286890 A JP 2286890A JP 28689090 A JP28689090 A JP 28689090A JP H04160059 A JPH04160059 A JP H04160059A
Authority
JP
Japan
Prior art keywords
binder
composite material
impregnation
burning
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2286890A
Other languages
Japanese (ja)
Inventor
Takayuki Suzuki
孝幸 鈴木
Yasuhiro Aiba
康博 愛場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2286890A priority Critical patent/JPH04160059A/en
Publication of JPH04160059A publication Critical patent/JPH04160059A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain carbon fiber reinforcing carbon composite material excellent in mechanical characteristics by molding carbon fiber together with a binder which becomes a carbon matrix after burning, and burning the molded body and thereafter performing graphitizing treatment at the specified temp., and performing impregnation and burning of the binder at a plurality of times. CONSTITUTION:Carbon fiber is molded together with a binder which becomes a carbon matrix after burning. After this molded body is burned, impregnation and burning of the binder are performed at a plurality of times and the carbon fiber reinforcing carbon composite material is produced. In this method, the molded body is graphitized at 2500-3000 deg.C in the meantime of impregnation and burning stages of the binder in a plurality of times. Furthermore, this molded body is graphitized at <=2300 deg.C in the final stage. Thereby, the aimed composite material is obtained. A matrix is filled and made dense by repeating impregnation, carbonization and burning of the binder for C/C composite material as described below. Shrinkage of the matrix is made large and the opened pore is increased as the temp. of graphitization is made higher. The temp. of graphitization is regulated to 2500-3000 deg.C. In the case lower than 2500 deg.C, the increase of the opened pore is made insufficient. In the case exceeding 3000 deg.C, sublimation of graphite is caused. The graphitization temp. in the final stage is regulated to <=2300 deg.C and shrinkage of the matrix is inhibited as small as possible.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、炭素繊維強化炭素複合材料の製造法に関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing carbon fiber reinforced carbon composite materials.

(従来の技術) 炭素繊維強化炭素複合材料(以下C/C複合材と呼称す
る)は、軽量であシ、優れた機械的特性。
(Prior Art) Carbon fiber-reinforced carbon composite materials (hereinafter referred to as C/C composite materials) are lightweight and have excellent mechanical properties.

耐熱性を有する。このため、ディスクブレーキ。Has heat resistance. For this reason, disc brakes.

ロケットノズル等の宇宙航空材料をはじめ、高温下で使
用される各種の部材として極めて有用でろ脂やタール、
ピンチ等の結合材を含浸又は塗布し。
It is extremely useful as aerospace materials such as rocket nozzles, as well as various parts used under high temperatures.
Impregnate or apply a binder such as pinch.

これを積層して成形し、焼成を行う方法がある。There is a method in which these are laminated, molded, and fired.

このC/C複合材に結合材を含浸し、焼成を行うプロセ
スを繰夛返し、C/C複合材内部の気孔に結合材の炭化
物(以下マトリックスと呼称する)を充填してち密化す
る必要がおる。しかし、結合材の含浸・焼成を繰り返し
てゆくと気孔が孤立して、含浸によシ結合材の充填がで
きない閉気孔が増加してくる。このため、含浸・焼成に
よるち密化の効果は回数が増すに従い減少する。そこで
−般には、含浸−焼成を繰夛返すプロセスの途中で黒鉛
化を行i、マトリックスを収縮させて閉気孔を開気孔と
して結合材の充填を可能にしている。
It is necessary to repeat the process of impregnating this C/C composite with a binder and firing it, filling the pores inside the C/C composite with carbide of the binder (hereinafter referred to as matrix) and densifying it. There is. However, as the impregnation and firing of the binder is repeated, the pores become isolated and the number of closed pores that cannot be filled with the binder by impregnation increases. Therefore, the effect of densification by impregnation and firing decreases as the number of times increases. Therefore, in general, graphitization is performed during the process of repeating impregnation and firing to shrink the matrix and open the closed pores to enable filling with the binder.

さらに、一般KC/C複合材は、製造の最終段階で黒鉛
化を行い、製品となっている。特開昭62−21226
2号公報では、この黒鉛化の時期を成形品の焼成炭化後
の第1回の含浸炭化後とすることを提案している。
Furthermore, the general KC/C composite material is graphitized at the final stage of manufacturing to become a product. Japanese Patent Publication No. 62-21226
Publication No. 2 proposes that the timing of graphitization be after the first impregnation carbonization after the firing carbonization of the molded product.

(発明が解決しようとする課題) 黒鉛化によるマトリックスの収縮は、その温度により相
違する。収縮が大きいほどC/C複合材の開気孔は増大
する。含浸の際には開気孔が多いほど結合材がより充填
され、ち密化の効果が向上する。これに対して最終製品
の気孔は欠陥となるため、開気孔の増加は機械的強度の
低下をもたらす。前記特開昭62−212262号は、
少ない含浸・炭化回数で所望の!f及び強度を達成して
製造工程を短縮することを目的とするものである。
(Problems to be Solved by the Invention) The shrinkage of the matrix due to graphitization differs depending on the temperature. The greater the shrinkage, the greater the open pores of the C/C composite. During impregnation, the more open pores there are, the more binder is filled, and the densification effect is improved. On the other hand, since pores in the final product become defects, an increase in the number of open pores results in a decrease in mechanical strength. The said Japanese Patent Application Publication No. 62-212262 is
Get the desired results with fewer impregnation and carbonization times! The purpose is to shorten the manufacturing process by achieving high f and strength.

即ち初回の含浸O炭化処理後に黒鉛化処理をすることに
よシ、#公報には記l/itはないが開気孔が多くなり
、従って結合材の含浸量が多くなるものと思われる。し
かしながら特開昭62−212262号公報に示される
ような方法によっても、ち密化や機械的強度の向上はな
お不充分でるる。
That is, by performing the graphitization treatment after the initial impregnation O carbonization treatment, the number of open pores increases, although the l/it is not mentioned in the # publication, and therefore, it is thought that the amount of binder impregnated increases. However, even with the method shown in JP-A-62-212262, improvements in densification and mechanical strength are still insufficient.

本発明は上記した問題を解消するC/C複合材の製造法
を提供することを目的とする。
An object of the present invention is to provide a method for manufacturing a C/C composite material that solves the above-mentioned problems.

(課題を解決する次めの手段) 本発明者らはC/C複合材の製造において、比較的初期
の含浸炭化処理の後に2500℃以上の高い温度で黒鉛
化処理を行うことにより開気孔が増大し、結合材がより
多く充填されること、及び最終工程で2300℃以下で
黒鉛化処理を行うことで開気孔の増加を抑えて0機械的
強度の低下を小さくできることを見い出し1本発明に到
達した。
(Next Means to Solve the Problem) In the production of C/C composite materials, the present inventors have developed an approach to create open pores by performing a graphitization treatment at a high temperature of 2500°C or higher after a relatively initial impregnation carbonization treatment. The present invention has been based on the discovery that the increase in open pores can be suppressed and the decrease in mechanical strength can be minimized by filling a larger amount of binder and by performing graphitization treatment at a temperature of 2300°C or less in the final process. Reached.

本発明は、炭素繊維を焼成後に炭素マトリックスとなる
結合材と共に成形し、焼成した後、結合材の含浸・焼成
を複数回行うC/C複合材の製造法において、結合材の
前記複数回の含浸・焼成工程の途中で2500〜300
0℃で黒鉛化し、更に最終工程で2300℃以下で黒鉛
化するC/C複合材の製造法に関する。
The present invention provides a method for producing a C/C composite material in which carbon fibers are formed together with a binder that becomes a carbon matrix after firing, and after firing, the binder is impregnated and fired multiple times. 2500 to 300 during the impregnation and firing process
The present invention relates to a method for producing a C/C composite material, which is graphitized at 0°C and further graphitized at 2300°C or lower in the final step.

本発明において、炭素繊維の形態は、糸、トウ。In the present invention, the carbon fiber is in the form of thread or tow.

織物、不織布等のいずれでも良い。また、炭素繊維の来
歴も、PAN系、ピッチ系、レーヨン、11のいずれで
も良い。この炭素繊維を成形する際の結合材は、熱硬化
性樹脂、熱可塑性樹脂、タール。
Either woven fabric, non-woven fabric, etc. may be used. Further, the origin of the carbon fiber may be any of PAN type, pitch type, rayon, and 11. The binding materials used to mold this carbon fiber are thermosetting resin, thermoplastic resin, and tar.

ピッチ等一般に炭素材料の原料として用いられるいずれ
でも良い。これらの結合材を炭素繊維の形態に応じて含
浸ろるいは塗布し、形態に応じて熱圧成形、フィラメン
トワインディング又は繊維を治具で固定し友ものに結合
材を含浸する等の公知の方法で成形する。この成形体を
非駿化性雰囲気中600℃以上、好ましくは900℃以
上の温度で炭化焼成し、C/C複合材を得る。得られた
C/C複合材に結合材の含浸、炭化焼成の繰り返しによ
りマトリックスを充填し、ち密化する。含浸に用いる結
合材は、前記した炭素材料の原料として用いられるいず
れでも良く、また成形に用いた結合材と同一のものでも
異なるものでも良い。これを前記した温度、雰囲気と同
様の条件で焼成し。
Any material commonly used as a raw material for carbon materials such as pitch may be used. These binding materials are impregnated or coated depending on the form of the carbon fibers, and depending on the form, the carbon fibers are formed using known methods such as thermoforming, filament winding, or fixing the fibers with a jig and impregnating the material with the binding material. Shape with. This molded body is carbonized and fired at a temperature of 600° C. or higher, preferably 900° C. or higher in a non-carbonizing atmosphere to obtain a C/C composite material. The obtained C/C composite material is filled with a matrix and densified by repeating impregnation with a binder and carbonization firing. The binder used for impregnation may be any one used as a raw material for the carbon material described above, and may be the same or different from the binder used for molding. This was fired at the same temperature and atmosphere as described above.

含浸した結合材を炭化する。この結合材含浸・焼成の工
程の途中で、黒鉛化を行い、マトリックスを収縮させ、
開気孔を増大させて、含浸による結合材の充填の効果を
高める。このときの黒鉛化の温度は高い方がマトリック
スの収縮が大きくな)。
Carbonize the impregnated binder. During the binder impregnation and firing process, graphitization is performed to shrink the matrix.
The open pores are increased to increase the effectiveness of binder filling by impregnation. The higher the graphitization temperature at this time, the greater the shrinkage of the matrix.)

開気孔が多くなる。この黒鉛化の温度は2500〜30
00℃とされ、2500℃未満では開気孔の増大が不充
分であシ、3000℃を越えると黒鉛の昇華が起る。
There are more open pores. The temperature of this graphitization is 2500~30
If the temperature is less than 2,500°C, the number of open pores will not increase sufficiently, and if it exceeds 3,000°C, sublimation of graphite will occur.

また、含浸・焼成を繰夛返していくとマトリックス充填
の効果は低下する九め、含浸・焼成の回数がめまシ増加
しないうちに黒鉛化を行うことが好ましく、含浸−焼成
が3回以内に黒鉛化を行うのが良い。さらに黒鉛化を行
り九後の含浸・焼成においても、同様にマ) IJクク
ス充填の効果は次第に低下するため、含浸・焼成の回数
に応じて更に同様の黒鉛化を行うのが良い。望ましくは
、含浸・焼成の回数が3回以内に黒鉛化を行うのが良い
Furthermore, if the impregnation and firing process is repeated, the effect of matrix filling will decrease. Therefore, it is preferable to perform graphitization before the number of impregnation and firing processes increases, and it is preferable to carry out the graphitization process within 3 times. It is better to perform graphitization. Even after further graphitization and subsequent impregnation and firing, the effect of IJ cooking gradually decreases, so it is better to carry out similar graphitization further depending on the number of times of impregnation and firing. Preferably, graphitization is performed within three times of impregnation and firing.

以上の様に、途中で適宜黒鉛化を行いながら。As mentioned above, while graphitizing as appropriate during the process.

結合材の含浸・焼成を行い、ち密化したC/C複合材は
9部分的に焼成までの熱処理しかされていないマトリッ
クスが存在するため、焼成温度(1000″Cまで)以
上の耐熱性を有しない。そのため最終工程でもう一度黒
鉛化行い耐熱性を向ハ 上させる必要がある。この場合の黒鉛は、温度が△ 高いとマトリックスの収縮で増加する開気孔が欠陥とな
り1機械的強度を低下させるから、最終工程の黒鉛化部
tは2300℃以下として、マlツクスの収縮をできる
だけ小さくおさえる。
The C/C composite material, which is densified by impregnation with a binder and fired, has heat resistance exceeding the firing temperature (up to 1000"C) because there is a matrix that has only been partially heat-treated up to firing. Therefore, it is necessary to graphitize it again in the final process to improve its heat resistance.In this case, graphite becomes defective when the temperature is high, and the open pores that increase due to shrinkage of the matrix become defects and reduce mechanical strength. Therefore, the temperature of the graphitized portion t in the final step is set to 2300° C. or lower to suppress the shrinkage of the matrix as much as possible.

(作用) 含浸・焼成工程途中での黒鉛化を2500〜3000℃
で行い、開気孔を増加させて結合材の充填を充分KL、
更に最終工程で2300℃で黒鉛化を行って耐熱性を向
上させると共に、R気孔の発生を抑制し欠陥を少なくし
て機械的特性の低下を防ぐ。
(Function) Graphitization during impregnation and firing process at 2500-3000℃
to increase the open pores and fill the binder with sufficient KL,
Further, in the final step, graphitization is performed at 2300° C. to improve heat resistance, suppress the generation of R pores, reduce defects, and prevent deterioration of mechanical properties.

(実施例) 次に本発明の詳細な説明する。(Example) Next, the present invention will be explained in detail.

実施例I PAN系高強度炭素繊維クロス(東し製、トレカC06
343)にレゾール型フェノール樹脂(日立化成工業製
、VPIIN)を塗工し、これを30枚積層して熱圧成
形し成形体を得た。これを窒素ガス雰囲気下で毎時lO
℃の昇温速度で1000材を得た。得られたC/C複合
材に、軟化点90℃、固定炭素分55重量−の石炭系ピ
ンチを含浸し、前記成形体の焼成と同様の条件で焼成し
友。
Example I PAN-based high-strength carbon fiber cloth (manufactured by Toshi, trading card C06
343) was coated with a resol type phenolic resin (VPIIN, manufactured by Hitachi Chemical Co., Ltd.), and 30 sheets of this were laminated and hot-press molded to obtain a molded body. This is 10 liters per hour under a nitrogen gas atmosphere.
1000 pieces were obtained at a heating rate of ℃. The obtained C/C composite material was impregnated with a coal-based pinch having a softening point of 90° C. and a fixed carbon content of 55% by weight, and was fired under the same conditions as the firing of the molded body.

さらKもう一度この含浸・焼成を行い、かさ密度1、5
4 g/rx? 、開気孔!E12体積チのC/C複合
材を得た。これを2800℃で黒鉛化し、開気孔率を1
8体積−に向上させ、さらに3回含浸・焼成を行い、か
さ密度L 85 g/d−開気孔率5体積−〇C/C複
合材が得られた。これを2200℃で黒鉛化し、最終的
に、かさ密IF 1.83 s/an”。
This impregnation and firing process was carried out once again, and the bulk density was 1.5.
4g/rx? , open pores! A C/C composite material of E12 volume was obtained. This was graphitized at 2800℃ and the open porosity was reduced to 1.
By increasing the volume to 8.0 vol. and impregnating and firing three times, a C/C composite material having a bulk density L of 85 g/d and an open porosity of 5 vol. was obtained. This was graphitized at 2200°C and finally had a bulk density IF of 1.83 s/an.

開気孔率7体積−〇C/C複合材を得友。得られたC/
C複合材の平均曲げ強度F1220 MPmでろり友。
Open porosity 7 volume - 〇 C/C composite material available. Obtained C/
The average bending strength of C composite material is F1220 MPm.

比較例1 実施例1と同様にして2回目の含浸Φ焼成まで行り几C
/C複合材を2200℃で黒鉛化し、開気孔率14体積
−〇C/C複合材を得友。さらに3回含浸・焼成を行い
、かさ密g L 78 g/am3゜開気孔率5体積−
〇C/C複合材を得几。これを2200℃で黒鉛化し、
最終的にかさ密度L76Iへ一1開気孔率6体積−〇C
/C複合材が得られ、その平均曲げ強tは170MPa
でめった。
Comparative Example 1 The same procedure as in Example 1 was carried out up to the second impregnation Φ firing.
/C composite material was graphitized at 2200℃ to obtain open porosity 14 volume-〇C/C composite material. Impregnation and firing were performed three more times to obtain a bulk density of 78 g/am3° and an open porosity of 5 volume.
〇C/C composite material is obtained. This was graphitized at 2200℃,
Finally the bulk density is L76I - 1 open porosity 6 volume -〇C
/C composite material was obtained, and its average bending strength t was 170 MPa.
I failed.

比較的2 実施例1と同様にして、成形焼成品に2回の含浸・焼成
、黒鉛化、続いて3回の含浸・焼成を行ってC/C複合
材を得危。このC/C複合材をさらに2800℃で黒鉛
化し、最終的にかさ密度L 81 g/a? 、開気孔
率9体積−〇〇/C複合材が得られ、その平均曲げ強度
u 185 MPaであった。
Comparative 2 In the same manner as in Example 1, the shaped and fired product was impregnated and fired twice, graphitized, and then impregnated and fired three times to obtain a C/C composite material. This C/C composite material is further graphitized at 2800°C and finally has a bulk density of L 81 g/a? , a composite material with an open porosity of 9 volume -〇〇/C was obtained, and its average bending strength was u 185 MPa.

以上の結果をまとめると表1のようKなシ、実施例1の
C/C複合材がかさ密度及び曲げ強度共に大きいことが
明瞭である。
To summarize the above results, as shown in Table 1, it is clear that the C/C composite material of Example 1 has a high bulk density and a high bending strength.

(発明の効果) 本発明によれば、黒鉛化温度を最適化し九ので含浸・焼
成工程での結合材の効果的な充填を可能KL、ま次最終
工程での欠陥の発生を抑えることができるので1機械的
特性の優れたC/C複合材が得られる。
(Effects of the Invention) According to the present invention, by optimizing the graphitization temperature, it is possible to effectively fill the binder in the impregnation and firing process, and to suppress the occurrence of defects in the final process. Therefore, a C/C composite material with excellent mechanical properties can be obtained.

代理人 弁理士 若 林 邦′彦 、Agent: Patent attorney Kunihiko Wakabayashi,

Claims (1)

【特許請求の範囲】[Claims] 1.炭素繊維を焼成後に炭素マトリツクスとなる結合材
と共に成形し,焼成した後,結合材の含浸・焼成を複数
回行う炭素繊維強化炭素複合材料の製造法において,結
合材の前記複数回の含浸・焼成工程の途中で2500〜
3000℃で黒鉛化し,更に最終工程において2300
℃以下で黒鉛化することを特徴とする炭素繊維強化炭素
複合材料の製造法。
1. In a method for manufacturing a carbon fiber reinforced carbon composite material, in which carbon fibers are formed together with a binder that becomes a carbon matrix after firing, and after firing, the binder is impregnated and fired multiple times. 2500 ~ during the process
Graphitized at 3000℃ and further heated at 2300℃ in the final process.
A method for producing a carbon fiber-reinforced carbon composite material, which is characterized by graphitizing at temperatures below ℃.
JP2286890A 1990-10-24 1990-10-24 Production of carbon fiber reinforcing carbon composite material Pending JPH04160059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2286890A JPH04160059A (en) 1990-10-24 1990-10-24 Production of carbon fiber reinforcing carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2286890A JPH04160059A (en) 1990-10-24 1990-10-24 Production of carbon fiber reinforcing carbon composite material

Publications (1)

Publication Number Publication Date
JPH04160059A true JPH04160059A (en) 1992-06-03

Family

ID=17710329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2286890A Pending JPH04160059A (en) 1990-10-24 1990-10-24 Production of carbon fiber reinforcing carbon composite material

Country Status (1)

Country Link
JP (1) JPH04160059A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008540857A (en) * 2005-05-03 2008-11-20 ナノコンプ テクノロジーズ インコーポレイテッド Carbon composite material and method for producing the same
US7549840B2 (en) 2005-06-17 2009-06-23 General Electric Company Through thickness reinforcement of SiC/SiC CMC's through in-situ matrix plugs manufactured using fugitive fibers
US7754126B2 (en) 2005-06-17 2010-07-13 General Electric Company Interlaminar tensile reinforcement of SiC/SiC CMC's using fugitive fibers
CN103738034A (en) * 2013-07-23 2014-04-23 太仓派欧技术咨询服务有限公司 C/C doped wave-absorption composite material and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008540857A (en) * 2005-05-03 2008-11-20 ナノコンプ テクノロジーズ インコーポレイテッド Carbon composite material and method for producing the same
US7549840B2 (en) 2005-06-17 2009-06-23 General Electric Company Through thickness reinforcement of SiC/SiC CMC's through in-situ matrix plugs manufactured using fugitive fibers
US7754126B2 (en) 2005-06-17 2010-07-13 General Electric Company Interlaminar tensile reinforcement of SiC/SiC CMC's using fugitive fibers
CN103738034A (en) * 2013-07-23 2014-04-23 太仓派欧技术咨询服务有限公司 C/C doped wave-absorption composite material and preparation method thereof
CN103738034B (en) * 2013-07-23 2016-02-24 太仓派欧技术咨询服务有限公司 Wave suction composite material of a kind of C/C doping and preparation method thereof

Similar Documents

Publication Publication Date Title
US3462289A (en) Process for producing reinforced carbon and graphite bodies
US4178413A (en) Fiber reinforced carbon and graphite articles and a method of producing said articles
US5597611A (en) Reinforced carbon composites
US5061414A (en) Method of making carbon-carbon composites
US4101354A (en) Coating for fibrous carbon material in boron containing composites
JPH04160059A (en) Production of carbon fiber reinforcing carbon composite material
JPS6054270B2 (en) Carbon fiber reinforced carbon friction material
USH420H (en) Co-pyrolysis process for forming carbonized composite bodies
JP3288433B2 (en) Carbon fiber reinforced carbon composite precursor
JPH0255393B2 (en)
JP2001181062A (en) Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same
JP2004323273A (en) C/c composite and method of manufacturing the same
JP2864304B2 (en) Brake sliding part
JPH08245273A (en) Production of carbon fiber reinforced carbon composite material
JP2566555B2 (en) Method for producing carbon fiber reinforced carbon composite material
JP4420371B2 (en) Manufacturing method of screw member made of C / C material
JP2762461B2 (en) Method for producing carbon fiber reinforced carbon composite
JP2001048664A (en) Production of carbon fiber-reinforced carbon material
JP3345437B2 (en) Method for producing carbon fiber reinforced carbon composite
JPS62212262A (en) Manufacture of carbon fiber reinforced carbon material
JP2805263B2 (en) Brake sliding part
JPH03271163A (en) Carbon fiber/carbon composite material and production thereof
JP2003012374A (en) Method of manufacturing carbon fiber reinforcing carbon material
KR970007019B1 (en) Process for the preparation of carbon fiber reinforced carbon composite using pitch
JP2000169250A (en) Production of carbon fiber reinforced carbon composite material