WO2024040668A1 - 一种哌柏西利糖精盐晶型及其制备方法 - Google Patents

一种哌柏西利糖精盐晶型及其制备方法 Download PDF

Info

Publication number
WO2024040668A1
WO2024040668A1 PCT/CN2022/120451 CN2022120451W WO2024040668A1 WO 2024040668 A1 WO2024040668 A1 WO 2024040668A1 CN 2022120451 W CN2022120451 W CN 2022120451W WO 2024040668 A1 WO2024040668 A1 WO 2024040668A1
Authority
WO
WIPO (PCT)
Prior art keywords
palbociclib
crystal form
saccharin
saccharin salt
salt crystal
Prior art date
Application number
PCT/CN2022/120451
Other languages
English (en)
French (fr)
Inventor
黄翠
谷慧科
杨海龙
陈洪
王颖
Original Assignee
成都苑东生物制药股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都苑东生物制药股份有限公司 filed Critical 成都苑东生物制药股份有限公司
Priority to CN202280004141.3A priority Critical patent/CN115667260B/zh
Publication of WO2024040668A1 publication Critical patent/WO2024040668A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Definitions

  • the present application belongs to the field of pharmaceutical crystal forms, and specifically relates to a palbociclib saccharin salt crystal form and a preparation method thereof.
  • Palbociclib is the first selective cyclin-dependent kinase inhibitor (CDK) 4/6 inhibitor in China developed by Pfizer. It was approved by the US FDA on February 3, 2015 and launched in July 2018. On the 31st, it was approved by China’s National Medical Products Administration (NMPA) and became the first CDK4/6 inhibitor marketed in China for the treatment of hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative localized tumors. For advanced or metastatic breast cancer, it can be used in combination with aromatase inhibitors as initial endocrine therapy in postmenopausal women.
  • the chemical structural formula of palbociclib is shown below:
  • Palbociclib free base has poor water solubility (9 ⁇ g/mL) and low bioavailability, so its salt form needs to be studied.
  • Chinese patent CN200480023494.X reports various salt forms of palbociclib, including isethionate, monohydrochloride, dihydrochloride and monomethanesulfonate.
  • palbociclib monohydrochloride has poor crystallinity and may pose potential risks in industrial production; palbociclib dihydrochloride and monomethanesulfonate are highly hygroscopic and are not suitable for For solid drug development; isethionate has lower hygroscopicity and greater water solubility, making it the most suitable solid form for development.
  • Pfizer used isethionate in clinical phase I/II trials for development isethionate in clinical phase II/II trials for development.
  • isethionate API is sticky and has poor powder flowability, making it difficult to prepare capsules with uniform content.
  • Pfizer gave up the commercial development of isethionate and used the free base crystal form A in late-stage clinical trials. Since the extremely poor water solubility of the free base limits its bioavailability, there is a need to develop a salt form that is highly bioavailable and suitable for commercial production.
  • the present application aims to provide a palbociclib saccharin salt crystal form ⁇ and a preparation method thereof.
  • the palbociclib saccharin salt crystal form ⁇ has good crystal form stability and chemical stability.
  • the saccharin salt It also has lower hygroscopicity, higher fluidity and bioavailability, overcomes the shortcomings of palbociclib free base and existing salt forms, and can be better used in preparation production.
  • the present application provides a palbociclib saccharin salt crystal form ⁇ , in which the molar ratio of palbociclib and saccharin is 1:1, and the structure is shown in formula (I).
  • the palbociclib saccharin salt crystal form ⁇ described in this application has an X-ray powder diffraction pattern at 2 ⁇ angle of 8.55 ⁇ 0.2°, 10.63 ⁇ 0.2°, 11.59 ⁇ 0.2°, 14.63 ⁇ 0.2°, and 16.02 ⁇ There are characteristic peaks at 0.2°, 21.10 ⁇ 0.2°, 22.97 ⁇ 0.2° and 24.45 ⁇ 0.2°.
  • the X-ray powder diffraction pattern of the palbociclib saccharin salt crystal form ⁇ at the 2 ⁇ angle is 5.24 ⁇ 0.2°, 8.55 ⁇ 0.2°, 10.63 ⁇ 0.2°, 11.59 ⁇ 0.2°, 13.44 ⁇ 0.2°, 14.63 ⁇ 0.2°, 16.02 ⁇ 0.2°, 16.72 ⁇ 0.2°, 19.48 ⁇ 0.2°, 19.89 ⁇ 0.2°, 21.10 ⁇ 0.2°, 22.21 ⁇ 0.2°, 22.97 ⁇ 0.2°, 24.45 ⁇ 0.2° and 26.40 ⁇ 0.2°. Characteristic peaks.
  • the X-ray powder diffraction pattern of the palbociclib saccharin salt crystal form ⁇ at the 2 ⁇ angle is 5.24 ⁇ 0.2°, 8.55 ⁇ 0.2°, 10.63 ⁇ 0.2°, 11.59 ⁇ 0.2°, 13.44 ⁇ 0.2°, 14.63 ⁇ 0.2°, 16.02 ⁇ 0.2°, 16.72 ⁇ 0.2°, 19.48 ⁇ 0.2°, 19.89 ⁇ 0.2°, 21.10 ⁇ 0.2°, 22.21 ⁇ 0.2°, 22.97 ⁇ 0.2°, 24.45 ⁇ 0.2° and 26.40 ⁇ 0.2°
  • the X-ray powder diffraction pattern of the palbociclib saccharin salt crystal form ⁇ is basically as shown in Figure 1.
  • thermogravimetric analysis chart of palbociclib saccharin salt crystal form ⁇ is basically as shown in Figure 2, and its weight loss in the range of 30°C-105°C is 0.87%.
  • This application also relates to a method for preparing palbociclib saccharin salt crystal form ⁇ , specifically: dissolving saccharin in an alcohol solvent, adding palbociclib, stirring, filtering, and drying to obtain palbociclib saccharin salt crystal form ⁇ .
  • the alcohol solvent is selected from methanol, ethanol or isopropanol, preferably ethanol; the molar ratio of palbociclib and saccharin is 1: (0.9-1.1), preferably 1:1.
  • the preparation method specifically includes: dissolving saccharin in ethanol, adding palbociclib, fully stirring at 40° C. for 3-24 hours, filtering, and drying to obtain palbociclib saccharin salt crystal form ⁇ .
  • the palbociclib added is palbociclib free base crystal form A.
  • the present application also relates to the use of the palbociclib saccharin salt in the preparation of CDK4/6 inhibitors for the treatment of hormone receptor-positive, human epidermal growth factor receptor 2-negative locally advanced or metastatic breast cancer.
  • the palbociclib saccharin salt crystal form ⁇ prepared by this application has excellent physical stability and chemical stability.
  • the saccharin salt crystal form ⁇ prepared in this application has higher solubility, and pharmaceutical preparations prepared with saccharin salt crystal form ⁇ have better dissolution and bioavailability.
  • the saccharin salt crystal form ⁇ of the present application has better dispersion and fluidity, and is less prone to adhesion and agglomeration during automatic filling of capsules.
  • the capsules have better content uniformity and are more conducive to large-scale commercial production.
  • the saccharin salt crystal form ⁇ of the present application has lower hygroscopicity and is more conducive to the production and storage of raw materials and preparations.
  • the preparation conditions of palbociclib saccharin salt crystal form ⁇ of the present application are mild, simple to operate, good process reproducibility, and high purity, making industrial production conditions controllable and conducive to large-scale industrialization.
  • Figure 1 is the XRD pattern of palbociclib saccharin salt crystal form ⁇ obtained in Example 1.
  • Figure 2 is a TGA spectrum of palbociclib saccharin salt crystal form ⁇ obtained in Example 1.
  • Figure 3 is a single crystal structure diagram of palbociclib saccharin salt crystal form ⁇ obtained in Example 1.
  • Figure 4 shows the XRD comparison patterns of palbociclib saccharin salt crystal form ⁇ before and after accelerated stability.
  • Figure 5 is the XRD pattern of palbociclib monoisethionate.
  • Figure 6 is the XRD pattern of palbociclib monohydrochloride.
  • Figure 7 is the XRD pattern of palbociclib dihydrochloride.
  • Figure 8 is the XRD pattern of palbociclib monomethanesulfonate.
  • Figure 9 is the XRD pattern of palbociclib monobenzenesulfonate.
  • Figure 10 is the XRD pattern of palbociclib diphenylsulfonate.
  • Figure 11 is the XRD pattern of palbociclib mono-p-toluenesulfonate.
  • Figure 12 is the DVS curve of palbociclib free base crystal form A.
  • Figure 13 is the DVS curve of palbociclib saccharin salt crystal form ⁇ .
  • Figure 14 is the DVS curve of palbociclib monoisethionate.
  • Figure 15 is the DVS curve of palbociclib monohydrochloride.
  • Figure 16 is the DVS curve of palbociclib dihydrochloride.
  • Figure 17 is the DVS curve of palbociclib monomethanesulfonate.
  • Figure 18 is the DVS curve of palbociclib monobenzene sulfonate.
  • Figure 19 is the DVS curve of palbociclib diphenylsulfonate.
  • Figure 20 is the DVS curve of palbociclib mono-p-toluenesulfonate.
  • XRD X-ray powder diffraction
  • thermogravimetric analysis TGA
  • the measurement of thermogravimetric analysis (TGA) described in this application was collected using METTLER TOLEDO model TGA-2.
  • the heating rate was 10°C/min
  • the temperature range was 30-300°C
  • the nitrogen purge rate during the test was 20mL. /min.
  • This crystal form was named Form ⁇ .
  • the obtained sample was subjected to X-ray powder measurement using Cu-ka rays, and its pattern has the diffraction angle, interplanar spacing and relative intensity shown in Table 1:
  • the error of 2 ⁇ diffraction angle is ⁇ 0.20°.
  • the palbociclib saccharin salt crystal form ⁇ prepared in Example 1 has an X-ray powder diffraction pattern basically as shown in Figure 1 .
  • thermogravimetric analysis (TGA) of the palbociclib saccharin salt crystal form ⁇ is shown in Figure 2, and its weight loss in the range of 30°C-105°C is 0.87%.
  • Example 2 At 40°C, 30 mg of the saccharin salt crystal form ⁇ obtained in Example 1 was dissolved in a mixed solvent of 8 mL of isopropyl alcohol and 2 mL of methanol, and left to evaporate at 40°C to obtain a rhombus-shaped large particle single crystal sample. Its thermogravimetric analysis pattern and powder diffraction data are basically consistent with Example 1. Single crystal analysis was performed on this sample. Its unit cell parameters are shown in Table 2, and its single crystal structure is shown in Figure 3.
  • saccharin salt crystal form ⁇ isethionate, hydrochloride, methanesulfonate, benzenesulfonate and p-toluenesulfonate
  • the purchased free base was separately Alkali crystal form A, saccharin salt crystal form ⁇ prepared in Example 1, monoisethionate prepared in Comparative Example 1, monohydrochloride prepared in Comparative Example 2, dihydrochloride prepared in Comparative Example 3, The monomethanesulfonate prepared in Example 4, the monobenzenesulfonate prepared in Comparative Example 5, the diphenylsulfonate prepared in Comparative Example 6 and the mono-p-toluenesulfonate prepared in Comparative Example 7 were placed in a dynamic moisture adsorption instrument.
  • palbociclib saccharin salt crystal form ⁇ and free base crystal form A have extremely low hygroscopicity, while hydrochloride, methanesulfonate, benzenesulfonate, etc. Different degrees of hygroscopicity.
  • the saccharin salt crystal form ⁇ has a smaller angle of repose, indicating that it has better fluidity and will avoid adhesion and agglomeration during automatic filling of capsules.
  • the possibility is lower, and the content uniformity of capsules is high, which is more conducive to large-scale commercial production.
  • n.d represents main peak overload.
  • n.d represents main peak overload.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

一种哌柏西利糖精盐的晶型及其制备方法。制备的哌柏西利糖精盐晶型α,具有优良的物理稳定性和化学稳定性、较高的溶解度、较好溶出度、流动性和生物利用度。哌柏西利糖精盐晶型α制备条件温和、操作简单,工艺重现性好,纯度高,使得实现工业化生产条件可控,有利于大规模产业化。

Description

一种哌柏西利糖精盐晶型及其制备方法 技术领域
本申请属于药物晶型领域,具体涉及一种哌柏西利糖精盐晶型及其制备方法。
背景技术
哌柏西利(Palbociclib)是由辉瑞公司研发的国内第一款选择性细胞周期蛋白依赖激酶抑制剂(CDK)4/6抑制剂,2015年2月3日经美国FDA批准上市,2018年7月31日获得中国国家药品监督管理局(NMPA)批准,成为中国上市的首款CDK4/6抑制剂,用于治疗激素受体(HR)阳性、人表皮生长因子受体2(HER2)阴性的局部晚期或转移性乳腺癌,可与芳香化酶抑制剂联合使用作为绝经后女性患者的初始内分泌治疗。哌柏西利的化学结构式如下图所示:
Figure PCTCN2022120451-appb-000001
哌柏西利游离碱具有较差的水溶性(9μg/mL)和较低的生物利用度,因此需要对其盐型进行研究。中国专利CN200480023494.X报道了哌柏西利的羟乙基磺酸盐、单盐酸盐、二盐酸盐和单甲磺酸盐等多种盐型。据该专利报道,哌柏西利单盐酸盐具有较差的结晶度,在工业化生产中可能存在潜在的风险;哌柏西利二盐酸盐和单甲磺酸盐引湿性较大,也不适合用于固体药物开发;而羟乙基磺酸盐具有较低的引湿性和较大的水溶性,因此是最适宜开发的固态形式。辉瑞公司在临床Ⅰ/Ⅱ期试验中采用羟乙基磺酸盐进行开发,但是在临床Ⅱ期发现羟乙基磺酸盐原料药具有黏性且粉末流动性差,制备出的胶囊含量均匀度难以符合标准,在大规模商业化批次的胶囊填充时,会出现流动性差而难以自动填充胶囊的问题。因此辉瑞公司放弃对羟乙基磺酸盐的商业化开发,在后期临床实验中采用游离碱晶型A进行开发。由于游离碱极差的水溶性限制了其生物利用度,因此需要开发一种生物利用度高且适合于商业化生产的盐型。
发明内容
本申请旨在提供一种哌柏西利糖精盐晶型α及其制备方法,所述哌柏西利糖精盐晶型α具备良好的晶型稳定性和化学稳定性,出乎意料的是该糖精盐还具有较低的引湿性、较高的流动性和生物利用度,克服了哌柏西利游离碱和现有盐型的缺陷,能更好的用于制剂生产。
本申请提供了一种哌柏西利糖精盐晶型α,该晶型中哌柏西利与糖精的摩尔比为1:1,结构如式(I)所示。
Figure PCTCN2022120451-appb-000002
进一步地,本申请所述的哌柏西利糖精盐晶型α,其X-射线粉末衍射图谱在2θ角为8.55±0.2°、10.63±0.2°、11.59±0.2°、14.63±0.2°、16.02±0.2°、21.10±0.2°、22.97±0.2°和24.45±0.2°处有特征峰。
进一步地,所述哌柏西利糖精盐晶型α的X-射线粉末衍射图谱在2θ角为5.24±0.2°、8.55±0.2°、10.63±0.2°、11.59±0.2°、13.44±0.2°、14.63±0.2°、16.02±0.2°、16.72±0.2°、19.48±0.2°、19.89±0.2°、21.10±0.2°、22.21±0.2°、22.97±0.2°、24.45±0.2°和26.40±0.2°处有特征峰。
更进一步地,所述哌柏西利糖精盐晶型α的X-射线粉末衍射图谱在2θ角为5.24±0.2°、8.55±0.2°、10.63±0.2°、11.59±0.2°、13.44±0.2°、14.63±0.2°、16.02±0.2°、16.72±0.2°、19.48±0.2°、19.89±0.2°、21.10±0.2°、22.21±0.2°、22.97±0.2°、24.45±0.2°和26.40±0.2°处有特征衍射峰。
更进一步地,所述哌柏西利糖精盐晶型α的X-射线粉末衍射图谱基本如图1所示。
更进一步地,所述哌柏西利糖精盐晶型α的热重分析图谱基本如图2所示,其在30℃-105℃范围内的失重量为0.87%。
更进一步地,所述哌柏西利糖精盐晶型α的单晶结构如图3所示。
本申请还涉及一种制备哌柏西利糖精盐晶型α的方法,具体为:将糖精溶解在醇类溶剂中,加入哌柏西利,搅拌、过滤、干燥,得到哌柏西利糖精盐晶型α。
进一步地,所述醇类溶剂选自甲醇、乙醇或异丙醇,优选乙醇;所述哌柏西利和糖精的投料摩尔比为1:(0.9-1.1),优选为1:1。
更进一步地,所述制备方法具体为:将糖精溶解在乙醇中,加入哌柏西利,在40℃下充分搅拌3-24小时,过滤,干燥,得到哌柏西利糖精盐晶型α。
本申请所述哌柏西利糖精盐的制备方法,其中加入的哌柏西利为哌柏西利游离碱晶型A。
本申请还涉及所述哌柏西利糖精盐在用于制备CDK4/6抑制剂中的用途,所述CDK4/6抑制剂用于治疗激素受体阳性、人表皮生长因子受体2阴性的局部晚期或转移性乳腺癌。
本申请带来的有益效果有:
1、本申请制备的哌柏西利糖精盐晶型α,具有优良的物理稳定性和化学稳定性。
2、与哌柏西利游离碱相比,本申请制备的糖精盐晶型α具有较高的溶解度,用糖精盐晶型α制备的药物制剂具有较好的溶出度和生物利用度。
3、与哌柏西利游离碱和羟乙基磺酸盐相比,本申请的糖精盐晶型α具有较好的分散性和流动性,在自动填充胶囊时不易发生粘附和团聚现象,填充的胶囊具有较好的含量均匀度,更有利于大规模商业化生产。
4、与哌柏西利盐酸盐和甲磺酸盐相比,本申请的糖精盐晶型α具有较低的引湿性,更有利于原料药和制剂的生产储存。
5、本申请的哌柏西利糖精盐晶型α制备条件温和、操作简单,工艺重现性好,纯度高,使得实现工业化生产条件可控,有利于大规模产业化。
附图说明
图1为实施例1所得哌柏西利糖精盐晶型α的XRD图谱。
图2为实施例1所得哌柏西利糖精盐晶型α的TGA图谱。
图3为实施例1所得哌柏西利糖精盐晶型α的单晶结构图。
图4为哌柏西利糖精盐晶型α放置加速稳定性前后的XRD对比图谱。
图5为哌柏西利单羟乙基磺酸盐的XRD图谱。
图6为哌柏西利单盐酸盐的XRD图谱。
图7为哌柏西利二盐酸盐的XRD图谱。
图8为哌柏西利单甲磺酸盐的XRD图谱。
图9为哌柏西利单苯磺酸盐的XRD图谱。
图10为哌柏西利二苯磺酸盐的XRD图谱。
图11为哌柏西利单对甲苯磺酸盐的XRD图谱。
图12为哌柏西利游离碱晶型A的DVS曲线。
图13为哌柏西利糖精盐晶型α的DVS曲线。
图14为哌柏西利单羟乙基磺酸盐的DVS曲线。
图15为哌柏西利单盐酸盐的DVS曲线。
图16为哌柏西利二盐酸盐的DVS曲线。
图17为哌柏西利单甲磺酸盐的DVS曲线。
图18为哌柏西利单苯磺酸盐的DVS曲线。
图19为哌柏西利二苯磺酸盐的DVS曲线。
图20为哌柏西利单对甲苯磺酸盐的DVS曲线。
具体实施方式
以下结合实施例对本申请作进一步的详细描述,但并非对本申请的限制,凡依照本申请公开内容所作的任何本领域的等同替换,均属于本申请的保护范围。
本申请中所用到的缩写的解释如下:
XRD:X射线粉末衍射
本申请所述X射线粉末衍射(XRD)的测试是采用马尔文-帕纳科Empyrea粉末衍射仪进行采集,具体参数如下表:
Figure PCTCN2022120451-appb-000003
TGA:热重分析仪
本申请所述热重分析(TGA)的测定是采用METTLER TOLEDO型号TGA-2进行采集的,升温速率为10℃/min,温度范围为30-300℃,测试过程中的氮气吹扫速率是20mL/min。
X射线单晶衍射仪
本申请所述的单晶衍射数据是采用理学XtaL AB-PRO型单晶X射线衍射仪采集得到的,具体参数如下表:
Figure PCTCN2022120451-appb-000004
Figure PCTCN2022120451-appb-000005
室温:15~30℃。
实施例1:哌柏西利糖精盐晶型α的制备
在40℃下,将4.0g糖精溶解在500mL乙醇中,加入10.0g哌柏西利晶型A(外购于山东轩鸿生物医药),随后在40℃下继续搅拌3h,过滤,干燥,得到14.1g黄色粉末状固体。
将该晶型命名为晶型α。
对所得样品使用Cu-ka射线进行X射线粉末测定,其图谱具有如表1所示的衍射角、晶面间距和相对强度:
表1 哌柏西利糖精盐晶型α的衍射角、晶面间距和相对强度
Figure PCTCN2022120451-appb-000006
Figure PCTCN2022120451-appb-000007
2θ衍射角的误差为±0.20°。
更进一步地,实施例1制备的哌柏西利糖精盐晶型α具有基本如图1所示的X射线粉末衍射图谱。
所述哌柏西利糖精盐晶型α的热重分析图谱(TGA)如图2所示,其在30℃-105℃范围内的失重量为0.87%。
所述哌柏西利糖精盐晶型α的单晶结构如图3所示。
实施例2:哌柏西利糖精盐晶型α的制备
在40℃下,将16.3g糖精溶解在2L乙醇中,加入40.0g哌柏西利晶型A(外购于山东轩鸿生物医药),随后在40℃下继续搅拌12h,过滤,干燥,得到55.4g黄色粉末状固体。其粉末衍射图谱和热重分析图谱与实施例1基本保持一致。
实施例3:哌柏西利糖精盐晶型α的制备
在40℃下,将32.7g糖精溶解在4L乙醇中,加入80.0g哌柏西利晶型A(外购于山东轩鸿生物医药),随后在40℃下继续搅拌24h,过滤,干燥,得到110.9g黄色粉末状固体。其粉末衍射图谱和热重分析图谱与实施例1基本保持一致。
实施例4:哌柏西利糖精盐晶型α单晶的制备
在40℃下,将实施例1所得的30mg糖精盐晶型α溶解在8mL异丙醇和2mL甲醇的混合溶剂中,在40℃下静置挥发,得到菱形的大颗粒单晶样品。其热重分析图谱、粉末衍射数据与实施例1基本保持一致。对该样品进行单晶解析,其晶胞参数如表2所示,单晶结构如图3所示。
表2 哌柏西利糖精盐晶型α的晶胞参数
Figure PCTCN2022120451-appb-000008
Figure PCTCN2022120451-appb-000009
对比例1:哌柏西利单羟乙基磺酸盐的制备
在室温下,将1.0g哌柏西利(外购于山东轩鸿生物医药)和0.28g羟乙基磺酸(1eq)加入到20mL甲醇中,在室温下搅拌7h,过滤,干燥,得到哌柏西利单羟乙基磺酸盐,其粉末衍射图谱如图5所示。
对比例2:哌柏西利单盐酸盐的制备
在室温下,将1.0g哌柏西利(外购于山东轩鸿生物医药)加入到15mL丙酮中,缓慢滴加1.12mL的HCL/EA溶液(2mol/L),在室温下搅拌6h,过滤,干燥,得到哌柏西利单盐酸盐,其粉末衍射图谱如图6所示。
对比例3:哌柏西利二盐酸盐的制备
在室温下,将1.0g哌柏西利(外购于山东轩鸿生物医药)加入到35mL丙酮中,缓慢滴加2.24mL的HCL/EA溶液(2mol/L),在室温下搅拌6h,过滤,干燥,得到哌柏西利二盐酸盐,其粉末衍射图谱如图7所示。
对比例4:哌柏西利单甲磺酸盐的制备
在室温下,将1.0g哌柏西利(外购于山东轩鸿生物医药)加入到20mL丙酮中,缓慢滴加0.21g甲磺酸(1eq),在室温下搅拌6h,过滤,干燥,得到哌柏西利单甲磺酸盐,其粉末衍射图谱如图8所示。
对比例5:哌柏西利单苯磺酸盐的制备
在室温下,将1.0g哌柏西利(外购于山东轩鸿生物医药)加入到15mL甲醇中,将0.35g苯磺酸(1eq)溶解在2mL甲醇中,缓慢滴加到哌柏西利的甲醇溶液中,随后在室温下搅拌6h,过滤,干燥,得到哌柏西利单苯磺酸盐,其粉末衍射图谱如图9所示。
对比例6:哌柏西利二苯磺酸盐的制备
在室温下,将1.0g哌柏西利(外购于山东轩鸿生物医药)加入到45mL甲醇中,将0.70g苯磺酸(2eq)溶解在2mL甲醇中,缓慢滴加到哌柏西利的甲醇溶液中,随后在室温下搅拌 6h,过滤,干燥,得到哌柏西利二苯磺酸盐,其粉末衍射图谱如图10所示。
对比例7:哌柏西利单对甲苯磺酸盐的制备
在室温下,将1.0g哌柏西利(外购于山东轩鸿生物医药)加入到20mL乙腈中,将0.43g对甲苯磺酸(1eq)溶解在2mL乙腈中,缓慢滴加到哌柏西利的乙腈溶液中,随后在室温下搅拌6h,过滤,干燥,得到哌柏西利单对甲苯磺酸盐,其粉末衍射图谱如图11所示。
试验例1:加速稳定性考察
为了考察本申请制备的哌柏西利糖精盐晶型α的稳定性,将实施例1制备的晶型α样品分别在25℃、60%RH和40℃、75%RH两种加速试验条件下放置3个月,分别于1月、2月、3月取样,测试XRD和HPLC,并与0天的结果进行对比,结果如表3和图4所示:
表3 糖精盐晶型α的加速稳定性试验数据
Figure PCTCN2022120451-appb-000010
从表3和图4可以看出,哌柏西利糖精盐晶型α在加速试验条件下具有良好的物理稳定性和化学稳定性。
试验例2:引湿性考察
为了考察哌柏西利游离碱、糖精盐晶型α、羟乙基磺酸盐、盐酸盐、甲磺酸盐、苯磺酸盐和对甲苯磺酸盐的引湿性,分别将外购的游离碱晶型A、实施例1制备的糖精盐晶型α、对比例1制备的单羟乙基磺酸盐、对比例2制备的单盐酸酸盐、对比例3制备的二盐酸盐、对比例4制备的单甲磺酸盐、对比例5制备的单苯磺酸盐、对比例6制备的二苯磺酸盐和对比例7制备的单对甲苯磺酸盐置于动态水分吸附仪中,考察样品在0-98%-0湿度变化范围内的重量变化。哌柏西利游离碱及不同盐型在80%~98%湿度下的引湿性结果如表4所示,对应的DVS曲线如图12-21所示:
表4 哌柏西利游离碱及不同盐型在80%RH~98%RH下的引湿性
Figure PCTCN2022120451-appb-000011
Figure PCTCN2022120451-appb-000012
从表4和图12-21可以看出,哌柏西利糖精盐晶型α和游离碱晶型A具有极低的引湿性,而盐酸盐、甲磺酸盐、苯磺酸盐等均表现出不同程度的引湿性。
试验例3:粉体流动性考察
为了考察哌柏西利游离碱、糖精盐晶型α和羟乙基磺酸盐的粉体学性质,分别将外购的游离碱晶型A、实施例3制备的糖精盐晶型α和对比例1制备的单羟乙基磺酸盐置于粉体综合测试仪中,测试其休止角和堆密度,结果如表5所示:
表5 哌柏西利游离碱晶型A、单羟乙基磺酸盐和糖精盐晶型α的粉体学性质对比
样品种类 休止角/° 崩溃角/° 松装密度/g·cm -3 振实密度/g·cm -3 压缩度
游离碱晶型A 44.26 39.77 0.32 0.60 47.00%
羟乙基磺酸盐 66.52 63.35 0.26 0.67 61.00%
糖精盐晶型α 34.55 26.81 0.28 0.47 40.00%
从表5可以看出,与游离碱和羟乙基磺酸盐相比,糖精盐晶型α具有更小的休止角,说明其流动性更好,自动填充胶囊时发生粘附和团聚现象的可能性更低,胶囊的含量均匀度高,更有利于大规模商业化生产。
试验例4:平衡溶解度考察
为了考察本申请制备的哌柏西利糖精盐晶型α和游离碱晶型A在不同介质中的溶解度,在37℃下将过量的糖精盐晶型α和游离碱晶型A溶解在不同pH的水溶液中,分别于0.5h、2h、4h、6h、18h和24h取上清液测试其浓度,结果如表6和表7所示:
表6 糖精盐晶型α在不同介质中的平衡溶解度
Figure PCTCN2022120451-appb-000013
Figure PCTCN2022120451-appb-000014
备注:n.d代表主峰过载。
表7 游离碱晶型A在不同介质中的平衡溶解度
Figure PCTCN2022120451-appb-000015
备注:n.d代表主峰过载。
从表6和表7可以看出,在纯水和pH6.8的介质中,哌柏西利糖精盐晶型α的溶解度远高于游离碱晶型A;在pH1.0的介质中,哌柏西利糖精盐晶型α的溶解度与游离碱晶型A的溶解度相当。
试验例5:溶出度考察
为了考察本申请制备的哌柏西利糖精盐晶型α和游离碱晶型A在不同介质中的溶出度,分别将实施例2制备的糖精盐晶型α和外购游离碱晶型A制备成75mg、100mg和125mg三种规格的胶囊,考察其在pH1.0和pH6.8两种介质中的溶出度,结果如表8和表9所示:
表8 pH1.0介质中的溶出结果
Figure PCTCN2022120451-appb-000016
Figure PCTCN2022120451-appb-000017
表9 pH6.8介质中的溶出结果
Figure PCTCN2022120451-appb-000018
从表8和表9可以看出,在pH1.0的介质中,哌柏西利糖精盐晶型α制备的不同规格胶囊的溶出度与游离碱晶型A相似;在pH6.8的介质中,哌柏西利糖精盐晶型α制备的不同规格胶囊的溶出度显著高于游离碱晶型A。
试验例6:比格犬体内生物利用度考察
(1)试验目的
考察相同给药剂量下,比格犬单次口服给予糖精盐晶型α和游离碱晶型A制备的不同规格胶囊后,血浆中原料药浓度水平及其药代动力学特征。
(2)材料和方法
①受试药物
哌柏西利糖精盐晶型α制备的75mg胶囊;
哌柏西利糖精盐晶型α制备的125mg胶囊;
哌柏西利游离碱晶型A制备的75mg胶囊;
哌柏西利游离碱晶型A制备的125mg胶囊;
②试验动物
比格犬4只。
③试验方法
取哌柏西利胶囊口服给予比格犬,并在给药前及给药后15min、30min、1h、2h、-4h、6h、8h、12h、24h、30h、48h颈静脉取血0.1mL,置于EDTA-K2管中,3000r/min,离心10min,分离血浆,-80℃冰箱冷冻保存。
④LC/MS/MS生物样品分析:
取50μL血浆与5mL工作液或空白稀释液混匀,加入150μL含内标乙腈沉淀剂,旋涡震荡2min,12000r/min离心10min,取上清液20μL与200μL乙腈水溶液(乙腈:水=1:1)混匀后,以5μL体积进样分析。
⑤试验结果:
比格犬单次口服不同规格哌柏西利胶囊后血浆中的主要药物动力学参数如表10所示:
表10 比格犬单次口服不同胶囊后血浆中的主要药代动力学参数
Figure PCTCN2022120451-appb-000019
从表10可以看出,在75mg和125mg的胶囊中,口服糖精盐胶囊的比格犬体内的最大血药浓度明显高于游离碱胶囊;上述实验结果表明,糖精盐具有较好的生物利用度。
对于本领域的普通技术人员而言明显的是,在不偏离本申请精神或者范围的情况下,可对本申请化合物及其制备方法进行的多种修饰和变化,因此,本申请的保护范围涵盖了对本申请进行的各种修饰和变化,只要所述修饰或变化处于权利要求和其等同实施方式所涵盖的范围内。

Claims (10)

  1. 一种具有式(I)结构的哌柏西利糖精盐晶型α,其特征在于,所述晶型α中哌柏西利与糖精的摩尔比为1:1。
    Figure PCTCN2022120451-appb-100001
  2. 如权利要求1所述的哌柏西利糖精盐晶型α,其特征在于,所述晶型α的X-射线粉末衍射图谱在2θ角为8.55±0.2°、10.63±0.2°、11.59±0.2°、14.63±0.2°、16.02±0.2°、21.10±0.2°、22.97±0.2°和24.45±0.2°处有特征峰。
  3. 如权利要求2所述的哌柏西利糖精盐晶型α,其特征在于,所述晶型α的X-射线粉末衍射图谱在2θ角为5.24±0.2°、8.55±0.2°、10.63±0.2°、11.59±0.2°、13.44±0.2°、14.63±0.2°、16.02±0.2°、16.72±0.2°、19.48±0.2°、19.89±0.2°、21.10±0.2°、22.21±0.2°、22.97±0.2°、24.45±0.2°和26.40±0.2°处有特征峰。
  4. 如权利要求2所述的哌柏西利糖精盐晶型α,其特征在于,所述晶型α的X射线粉末衍射图谱基本如图1所示。
  5. 如权利要求1所述的哌柏西利糖精盐晶型α,其特征在于,所述晶型α的热重分析图谱基本如图2所示。
  6. 如权利要求1所述的哌柏西利糖精盐晶型α,其特征在于,所述晶型α的单晶结构如图3所示。
  7. 一种制备如权利要求1-6任一项所述哌柏西利糖精盐晶型α的方法,其特征在于,将糖精溶解在醇类溶剂中,加入哌柏西利,搅拌、过滤、干燥,得到哌柏西利糖精盐晶型α。
  8. 如权利要求7所述的方法,其特征在于,所述醇类溶剂选自甲醇、乙醇或异丙醇;所述哌柏西利和糖精的投料摩尔比为1:(0.9-1.1)。
  9. 如权利要求7所述的方法,其特征在于,将糖精溶解在乙醇中,加入哌柏西利,在40℃下充分搅拌3-24小时,过滤,干燥,得到哌柏西利糖精盐晶型α。
  10. 如权利要求1-6任一项权利要求所述的哌柏西利糖精盐晶型α在用于制备CDK4/6抑制剂中的用途;所述CDK4/6抑制剂用于治疗激素受体阳性、人表皮生长因子受体2阴性的局部晚期或转移性乳腺癌。
PCT/CN2022/120451 2022-08-26 2022-09-22 一种哌柏西利糖精盐晶型及其制备方法 WO2024040668A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280004141.3A CN115667260B (zh) 2022-08-26 2022-09-22 一种哌柏西利糖精盐晶型及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211031645 2022-08-26
CN202211031645.2 2022-08-26

Publications (1)

Publication Number Publication Date
WO2024040668A1 true WO2024040668A1 (zh) 2024-02-29

Family

ID=90012219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120451 WO2024040668A1 (zh) 2022-08-26 2022-09-22 一种哌柏西利糖精盐晶型及其制备方法

Country Status (1)

Country Link
WO (1) WO2024040668A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016090257A1 (en) * 2014-12-05 2016-06-09 Crystal Pharmatech Inc. Salts and crystalline forms of 6-acetyl-8-cyclopentyl-5-methyl-2((5-(piperazin-1-yl)pyridin-2-yl)amino)pyrido[2,3-d] pyrimidin-7(8h)-one (palbociclib)
WO2016092442A1 (en) * 2014-12-08 2016-06-16 Sun Pharmaceutical Industries Limited Processes for the preparation of crystalline forms of palbociclib acetate
CN106317053A (zh) * 2015-06-29 2017-01-11 北大方正集团有限公司 一种帕博昔布晶型a的制备方法
WO2017021111A1 (en) * 2015-08-05 2017-02-09 Ratiopharm Gmbh New crystalline form and acetic acid adducts of palbociclib
CN106967061A (zh) * 2016-01-13 2017-07-21 常州方楠医药技术有限公司 帕博西林的盐、晶型及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016090257A1 (en) * 2014-12-05 2016-06-09 Crystal Pharmatech Inc. Salts and crystalline forms of 6-acetyl-8-cyclopentyl-5-methyl-2((5-(piperazin-1-yl)pyridin-2-yl)amino)pyrido[2,3-d] pyrimidin-7(8h)-one (palbociclib)
WO2016092442A1 (en) * 2014-12-08 2016-06-16 Sun Pharmaceutical Industries Limited Processes for the preparation of crystalline forms of palbociclib acetate
CN106317053A (zh) * 2015-06-29 2017-01-11 北大方正集团有限公司 一种帕博昔布晶型a的制备方法
WO2017021111A1 (en) * 2015-08-05 2017-02-09 Ratiopharm Gmbh New crystalline form and acetic acid adducts of palbociclib
CN106967061A (zh) * 2016-01-13 2017-07-21 常州方楠医药技术有限公司 帕博西林的盐、晶型及其制备方法

Similar Documents

Publication Publication Date Title
WO2018218963A1 (zh) 一种egfr抑制剂的药用盐及其晶型、制备方法和应用
CN111187253B (zh) 一种阿昔替尼新晶型
WO2018108101A1 (zh) {[5-(3-氯苯基)-3-羟基吡啶-2-羰基]氨基}乙酸的新晶型及其制备方法
CN107428727A (zh) 来那替尼马来酸盐的新晶型及其制备方法
CN106333952A (zh) 一种胸苷磷酸化酶抑制剂的结晶形式及其制备方法
EP3279201B1 (en) Cdk inhibitor, eutectic crystal of mek inhibitor, and preparation method therefor
WO2021227146A1 (zh) N-[8-(2-羟基苯甲酰基)氨基]辛酸一钾晶型化合物、制备方法及用途
CN113651770B (zh) 一种依帕司他晶型及其制备方法和应用
WO2024040668A1 (zh) 一种哌柏西利糖精盐晶型及其制备方法
CN110156793B (zh) 瑞博西尼单琥珀酸盐新晶型及制备方法
CN104326970A (zh) 左旋氨氯地平马来酸盐化合物及制备方法与含其药物制剂
TWI241289B (en) Suplatast tosilate crystals
WO2018214877A1 (zh) 一种地佐辛晶型及其制备方法
WO2022262244A1 (zh) 一种阿哌沙班的尿素共晶及其制备方法
WO2017028802A1 (zh) 5-[2, 6-二(4-吗啉基)-4-嘧啶基]-4-(三氟甲基)-2-吡啶胺二盐酸盐的晶型及其制备方法
CN115667260B (zh) 一种哌柏西利糖精盐晶型及其制备方法
CN106478598B (zh) 一种凡德他尼水合物晶体及其制备方法
CN102924449B (zh) 盐酸莫西沙星h晶型及其制备方法和药物组合物
CN108553649B (zh) 一种新颖的管道结构的索拉非尼-γ-环糊精包合物及制备方法及应用
WO2018157741A1 (zh) Sb-939的盐的晶型及其制备方法和用途
WO2023083293A1 (zh) 依利格鲁司他可药用盐及其晶型
WO2024032558A1 (zh) 一种5,6-二氢噻吩并[3,4-h]喹唑啉类化合物的盐型、晶型及其制备方法
WO2016155631A1 (zh) 托吡司他的新晶型及其制备方法
WO2023143350A1 (zh) 吩噻嗪类化合物的晶型、盐、制备方法及用途
CN109796400B (zh) 一种甲苯磺酸索拉菲尼晶型及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956212

Country of ref document: EP

Kind code of ref document: A1