WO2024036902A1 - 一种碳质材料、其制备方法和钠离子电池 - Google Patents

一种碳质材料、其制备方法和钠离子电池 Download PDF

Info

Publication number
WO2024036902A1
WO2024036902A1 PCT/CN2023/077075 CN2023077075W WO2024036902A1 WO 2024036902 A1 WO2024036902 A1 WO 2024036902A1 CN 2023077075 W CN2023077075 W CN 2023077075W WO 2024036902 A1 WO2024036902 A1 WO 2024036902A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
optionally
sintering
carbonaceous material
carbon
Prior art date
Application number
PCT/CN2023/077075
Other languages
English (en)
French (fr)
Inventor
张苗
阮丁山
李长东
毛林林
郑爽
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024036902A1 publication Critical patent/WO2024036902A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of sodium-ion batteries, to a carbonaceous material, its preparation method and sodium-ion batteries.
  • the precursors for preparing hard carbon materials at this stage mainly include biomass materials, such as corn starch, coconut shell, wood, etc.; organic polymer materials, such as phenolic resin, polyethylene, polyaniline, etc.; mineral materials, such as humic acid, lignite , lignite, etc.
  • biomass materials such as corn starch, coconut shell, wood, etc.
  • organic polymer materials such as phenolic resin, polyethylene, polyaniline, etc.
  • mineral materials such as humic acid, lignite , lignite, etc.
  • Adding a thermal conductive medium with excellent thermal conductivity during the heat treatment of the hard carbon precursor can effectively improve the heating uniformity of the hard carbon precursor, but there is a risk of introducing impurity phases.
  • most hard carbon precursors are organic polymer powders. Due to the risk of dust explosion, the rotary kiln that improves heating uniformity is not suitable for preparing hard carbon materials.
  • the purpose of this application is to provide a carbonaceous material, its preparation method and a sodium-ion battery.
  • the method of the present application can improve the sintering uniformity of carbonaceous materials, has very wide applicability, and has practical significance for the improvement of carbonaceous material processes.
  • this application provides a method for preparing carbonaceous materials, which method includes the following steps:
  • This application utilizes the characteristic that the thermal conductivity of the carbonaceous material precursor is significantly improved after high-temperature carbonization treatment.
  • a part of the carbonaceous material precursor is pre-sintered to obtain the carbon material, and is evenly mixed with the carbonaceous material precursor, and sintering to prepare the final Finished carbon material.
  • the uniformity of performance of the carbonaceous material prepared by the above method is significantly improved, and the performance difference at different positions of the sagger is small.
  • the carbonaceous material may be a hard carbon material.
  • Using the hard carbon material prepared by this method as an anode material for a sodium ion battery can significantly improve the discharge specific capacity and first Coulombic efficiency.
  • the carbonaceous material precursor includes at least one of corn starch, coconut shell, phenolic resin, polyethylene, humic acid and lignite.
  • the mesh number of the carbonaceous material precursor is 300 to 500 mesh, such as 300 mesh, 325 mesh, 400 mesh or 500 mesh.
  • the carbonaceous material precursor is pre-treated before use, and the pre-treatment is: pickling with a mixed acid solution of hydrochloric acid and hydrofluoric acid.
  • the concentrations of the hydrochloric acid and hydrofluoric acid are independently 0.5-1 mol/L, and the concentrations are, for example, 0.5 mol/L, 0.6 mol/L, 0.8 mol/L, 0.9 mol/L or 1 mol/L, etc.
  • concentrations of hydrochloric acid and hydrofluoric acid can be the same or different.
  • the volume ratio of hydrochloric acid and hydrofluoric acid is (1-2):(1-2), such as 1:1, 1.5:1, 2:1, 1:1.5 or 1:2, etc.
  • the pretreatment is followed by steps of washing, separation and drying.
  • This application does not limit the specific operations of washing and separation.
  • it may be suction filtration and washing until the pH value of the filtered water becomes neutral.
  • the application does not limit the drying method.
  • it can be oven drying.
  • the drying temperature is preferably 60-80°C, such as 60°C, 65°C, 70°C, 72°C, 75°C, 78°C or 80°C.
  • the drying time is preferably 12 to 24h, such as 12h, 14h, 15h, 18h, 20h, 21h, 23h or 24h, etc.
  • Impurities in the carbonaceous material precursor containing impurities can be removed through pretreatment, and those skilled in the art can choose whether to pretreat the carbonaceous material precursor as needed.
  • the carbonization treatment in step (1) is performed under the protection of a protective gas, and the protective gas is selected from at least one of nitrogen, argon or helium.
  • the carbonization treatment includes low-temperature sintering and high-temperature carbonization.
  • Low-temperature sintering before high-temperature carbonization is mainly to allow some volatile components to fully react and form micropores inside for sodium ion storage. If high-temperature carbonization is carried out directly, the number of micropores obtained will be relatively small, which will lead to The capacity is relatively low.
  • the insulation temperature for low-temperature sintering is 200-600°C, such as 200°C, 240°C, 280°C, 300°C, 325°C, 350°C, 400°C, 450°C, 500°C, 550°C °C or 600 °C, etc.; the holding time is 3 to 6h, such as 3h, 3.5h, 4h, 4.5h, 5h, 5.5h or 6h, etc.
  • the heating rate to the holding temperature for low-temperature sintering is 3 to 5°C/min, such as 3°C/min, 4°C/min, or 5°C/min.
  • the insulation temperature for high-temperature carbonization is 1200-1600°C, such as 1200°C, 1250°C, 1300°C, 1350°C, 1400°C, 1450°C, 1500°C, 1550°C or 1600°C, etc.;
  • the holding time is 1 to 3h, such as 1h, 1.5h, 2h, 2.5h or 3h, etc.
  • the heating rate is 5 to 10°C/min, such as 5°C/min, 6°C/min. min, 7°C/min, 8°C/min, 9°C/min or 10°C/min, etc.
  • the oxygen concentration is lower than 200 ppm, such as 180 ppm, 160 ppm, 150 ppm, 120 ppm, 100 ppm, 80 ppm or 50 ppm, etc.
  • step (1) also includes the step of cooling after heat preservation, generally cooling to room temperature.
  • step (1) when the carbon material obtained by the carbonization treatment in step (1) is agglomerated, a crushing step is performed before the refinement in step (1').
  • step (1′) the particle size of the powder is refined to meet: Dv50 is 3 to 6 ⁇ m, such as 3 ⁇ m, 3.5 ⁇ m, 3.8 ⁇ m, 4 ⁇ m, 4.5 ⁇ m, 5 ⁇ m, 5.5 ⁇ m or 6 ⁇ m, etc.; Dv10 is 1 ⁇ 4 ⁇ m, such as 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, 3.5 ⁇ m, 3.8 ⁇ m or 4 ⁇ m, etc.; Dv99 is 10 ⁇ 15 ⁇ m, For example, 10 ⁇ m, 11 ⁇ m, 11.5 ⁇ m, 12 ⁇ m, 13 ⁇ m, 13.5 ⁇ m, 14 ⁇ m or 15 ⁇ m, etc. Refining the powder is beneficial to the subsequent preparation of battery pole pieces, so that the battery slurry has appropriate viscosity and fineness.
  • step (1') crush the powder until the particle size is less than 2mm, such as 1.8mm, 1.7mm, 1.5mm, 1.4mm, 1.3mm, 1.2mm, 1.1mm, 1mm, 0.9mm, 0.8mm, 0.5mm, 0.4mm, 0.3mm or 0.2mm, etc.
  • the equipment used for crushing and refining is not limited.
  • the equipment used for crushing can be, for example, one or both of a jaw crusher and a roller machine used in combination.
  • the equipment used for refinement may be, for example, a jet mill.
  • the crushing step in step (1') is performed in two steps.
  • a jaw crusher is used to crush the particles to a size less than 10mm (for example, 9.5mm, 9mm, 8.5mm, 8mm, 7mm, 6.5mm, 6mm). , 5.5mm, 5mm, 4mm, 3.5mm, 3mm or 2.5mm, etc.), and then use a pair of rollers to continue crushing until the particle size is less than 2mm.
  • the mass ratio of the carbon material to the remaining carbonaceous material precursor is 1:1 to 1:3.5, such as 1:1, 1 :1.5, 1:2, 1:2.5 or 1:3, etc., preferably 1:2.5 to 1:3.5. If the amount of carbon material added is too small, the temperature uniformity will be poor and the effect of improving sintering uniformity will be reduced; if there is too much carbon material, the processing cost will increase.
  • step (2) a gravity-free mixer is used for mixing, and the mixing time is 1 to 5 minutes, such as 1 minute, 2 minutes, 3 minutes, 4 minutes or 5 minutes, etc.
  • the sintering in step (2) is performed under the protection of a protective gas, and the protective gas is selected from at least one of nitrogen, argon or helium.
  • the sintering includes low-temperature sintering and high-temperature sintering.
  • Low-temperature sintering before high-temperature sintering is mainly to allow some volatile components to fully react and form micropores inside for sodium ion storage. Direct high-temperature sintering will result in a relatively small number of micropores, which will lead to The quantity is relatively low.
  • the insulation temperature for low-temperature sintering is 200-600°C, such as 200°C, 240°C, 280°C, 300°C, 325°C, 350°C, 400°C, 450°C, 500°C, 550°C °C or 600 °C, etc.; the holding time is 3 to 6h, such as 3h, 3.5h, 4h, 4.5h, 5h, 5.5h or 6h, etc.
  • the heating rate to the holding temperature for low-temperature sintering is 3 to 5°C/min, such as 3°C/min, 4°C/min, or 5°C/min.
  • the heat preservation temperature for high-temperature sintering is 1200-1600°C, such as 1200°C, 1250°C, 1300°C, 1350°C, 1400°C, 1450°C, 1500°C, 1550°C or 1600°C, etc.;
  • the holding time is 1 to 3h, such as 1h, 1.5h, 2h, 2.5h or 3h, etc.
  • the heating rate is 5 to 10°C/min, such as 5°C/min, 6°C/min. min, 7°C/min, 8°C/min, 9°C/min or 10°C/min, etc.
  • the oxygen concentration is lower than 200 ppm, such as 180 ppm, 160 ppm, 150 ppm, 120 ppm, 100 ppm, 80 ppm or 50 ppm, etc.
  • the sintering system of step (2) is the same as the sintering system of carbonization treatment of step (1).
  • the sintering system includes the temperature of heat preservation in each stage, the heating rate, the time of heat preservation, etc.
  • step (2) also includes the step of cooling after heat preservation, generally cooling to room temperature.
  • step (2) when the carbonaceous material obtained by sintering in step (2) agglomerates, a crushing step is performed before the refining in step (2').
  • step (2') refine the powder until the particle size satisfies:
  • Dv50 is 3-6 ⁇ m, for example, 3 ⁇ m, 3.5 ⁇ m, 3.8 ⁇ m, 4 ⁇ m, 4.5 ⁇ m, 5 ⁇ m, 5.5 ⁇ m or 6 ⁇ m, etc.
  • Dv10 is 1 ⁇ 4 ⁇ m, such as 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, 3.5 ⁇ m, 3.8 ⁇ m or 4 ⁇ m, etc.
  • Dv99 is 10 ⁇ 15 ⁇ m, such as 10 ⁇ m, 11 ⁇ m, 11.5 ⁇ m, 12 ⁇ m, 13 ⁇ m, 13.5 ⁇ m, 14 ⁇ m or 15 ⁇ m, etc.
  • step (2') crush the powder until the particle size is less than 2mm, such as 1.8mm, 1.7mm, 1.5mm, 1.4mm, 1.3mm, 1.2mm, 1.1mm, 1mm, 0.9mm, 0.8mm, 0.5mm, 0.4mm, 0.3mm or 0.2mm, etc.
  • the equipment used for crushing and refining is not limited.
  • the equipment used for crushing can be, for example, one or both of a jaw crusher and a roller machine used in combination.
  • the equipment used for refinement may be, for example, a jet mill.
  • the crushing step in step (2') is performed in two steps.
  • a jaw crusher is used to crush the particles to a size less than 10mm (for example, 9.5mm, 9mm, 8.5mm, 8mm, 7mm, 6.5mm, 6mm). , 5.5mm, 5mm, 4mm, 3.5mm, 3mm or 2.5mm, etc.), and then use a pair of rollers to continue crushing until the particle size is less than 2mm.
  • the method includes the following steps:
  • step (3) Mix the calcined carbon powder obtained in step (2) and the hard carbon precursor of 300 to 500 mesh in a gravity-free mixer for 3 minutes at a mass ratio of 1:1 to 1:3.5;
  • step (3) Put the homogeneous mixture obtained in step (3) into a sagger and place it in a nitrogen-protected sintering furnace. Raise the temperature to 200-600°C at 3-5°C/min and keep it for 3-6 hours, then raise the temperature to 1200-1600°C at 5-10°C/min and keep it for 1-3 hours, then cool to room temperature to obtain the finished hard carbon product;
  • the present application provides a carbonaceous material prepared by the method described in the first aspect.
  • the present application provides a sodium-ion battery, in which the negative electrode of the sodium-ion battery includes the carbonaceous material described in the second aspect.
  • This application utilizes the characteristic that the thermal conductivity of the carbonaceous material precursor is significantly improved after high-temperature carbonization treatment.
  • a part of the carbonaceous material precursor is pre-sintered to obtain the carbon material, and is evenly mixed with the carbonaceous material precursor, and sintering to prepare the final Finished carbon material.
  • the uniformity of performance of the carbonaceous material prepared by the above method is significantly improved, and the performance difference at different positions of the sagger is small.
  • Figure 1 is a schematic diagram of step (4) sintering in Example 1.
  • Figure 2 is a schematic diagram of the internal position of the sagger in one embodiment of the present application, where H represents the height, W represents the width, and L represents the length.
  • This embodiment provides a method for preparing a hard carbon negative electrode material for a sodium ion battery, including the following specific steps:
  • step (3) Mix the calcined carbon powder obtained in step (2) and the 300-mesh hard carbon precursor corn starch in a gravity-free mixer at a mass ratio of 1:1 for 3 minutes;
  • step (3) Put the homogeneous mixture obtained in step (3) into a sagger, raise the temperature to 230°C at 3°C/min in a nitrogen-protected sintering furnace and keep it warm for 4 hours, then raise the temperature to 1500°C at 5°C/min and keep it warm. 2h, cool to room temperature to obtain the finished hard carbon product;
  • This embodiment provides a method for preparing a hard carbon negative electrode material for a sodium ion battery, including the following specific steps:
  • step (3) Mix the calcined carbon powder obtained in step (2) and 300 mesh corn starch in a gravity-free mixer for 3 minutes at a mass ratio of 1:2;
  • step (3) Put the homogeneous mixture obtained in step (3) into a sagger, raise the temperature to 230°C at 3°C/min in a nitrogen-protected sintering furnace and keep it warm for 4 hours, then raise the temperature to 1500°C at 5°C/min and keep it warm. 2h, cool to room temperature to obtain the finished hard carbon product;
  • This embodiment provides a method for preparing a hard carbon negative electrode material for a sodium ion battery, including the following specific steps:
  • step (3) Mix the calcined carbon powder obtained in step (2) and 300 mesh corn starch at a mass ratio of 1:3. Mix in a gravity-free mixer for 3 minutes;
  • step (3) Put the homogeneous mixture obtained in step (3) into a sagger, raise the temperature to 230°C at 3°C/min in a nitrogen-protected sintering furnace and keep it warm for 4 hours, then raise the temperature to 1500°C at 5°C/min and keep it warm. 2h, cool to room temperature to obtain the finished hard carbon product;
  • This embodiment provides a method for preparing a hard carbon negative electrode material for a sodium ion battery, including the following specific steps:
  • step (2) Place the coconut shell powder obtained in step (1) into a graphite sagger, raise the temperature to 300°C at 3°C/min in a nitrogen-protected sintering furnace and keep it warm for 4 hours, and then raise the temperature to 1500°C at 5°C/min. And keep it warm for 2 hours, then cool to room temperature to obtain monoburned carbon;
  • step (3) Put the homogeneous mixture obtained in step (3) into a sagger, raise the temperature to 300°C at 3°C/min in a nitrogen-protected sintering furnace and keep it warm for 4 hours, then raise the temperature to 1500°C at 5°C/min and keep it warm. 2h, Cool to room temperature to obtain the finished hard carbon product;
  • This embodiment provides a method for preparing a hard carbon negative electrode material for a sodium ion battery, including the following specific steps:
  • step (3) Mix the calcined carbon powder obtained in step (2) and the 300-mesh phenolic resin powder in a gravity-free mixer at a mass ratio of 1:3 for 3 minutes;
  • step (3) Put the homogeneous mixture obtained in step (3) into a sagger, raise the temperature to 400°C at 3°C/min in a nitrogen-protected sintering furnace and keep it warm for 4 hours, then raise the temperature to 1500°C at 5°C/min and keep it warm. 2h, cool to room temperature to obtain the finished hard carbon product;
  • This embodiment provides a method for preparing a hard carbon negative electrode material for a sodium ion battery, including the following specific steps: Steps:
  • step (3) Mix the calcined carbon powder obtained in step (2) and the 300-mesh polyethylene powder in a gravity-free mixer at a mass ratio of 1:3 for 3 minutes;
  • step (3) Put the homogeneous mixture obtained in step (3) into a sagger, raise the temperature to 400°C at 3°C/min in a nitrogen-protected sintering furnace and keep it warm for 4 hours, then raise the temperature to 1500°C at 5°C/min and keep it warm. 2h, cool to room temperature to obtain the finished hard carbon product;
  • This embodiment provides a method for preparing a hard carbon negative electrode material for a sodium ion battery, including the following specific steps:
  • step (2) Place the humic acid powder obtained in step (1) into a graphite sagger, heat it to 300°C at 3°C/min in a nitrogen-protected sintering furnace and keep it for 4 hours, and then heat it up to 1500°C at 5°C/min. and keep warm 2h, cool to room temperature to obtain monoburned carbon;
  • step (3) Put the homogeneous mixture obtained in step (3) into a sagger, raise the temperature to 300°C at 3°C/min in a nitrogen-protected sintering furnace and keep it warm for 4 hours, then raise the temperature to 1500°C at 5°C/min and keep it warm. 2h, cool to room temperature to obtain the finished hard carbon product;
  • This embodiment provides a method for preparing a hard carbon negative electrode material for a sodium ion battery, including the following specific steps:
  • step (2) Place the lignite powder obtained in step (1) into a graphite sagger, raise the temperature to 300°C at 3°C/min in a nitrogen-protected sintering furnace and keep it for 4 hours, then raise the temperature to 1500°C at 5°C/min and Keep it warm for 2 hours, then cool to room temperature to obtain monoburned carbon;
  • step (3) Put the homogeneous mixture obtained in step (3) into a sagger, raise the temperature to 300°C at 3°C/min in a nitrogen-protected sintering furnace and keep it warm for 4 hours, then raise the temperature to 1500°C at 5°C/min and keep it warm. 2h, cool to room temperature to obtain the finished hard carbon product;
  • This embodiment provides a method for preparing a hard carbon negative electrode material for a sodium ion battery, including the following specific steps:
  • step (3) Put the homogeneous mixture obtained in step (3) into a sagger, raise the temperature to 350°C at 3°C/min in a nitrogen-protected sintering furnace and keep it warm for 5 hours, then raise the temperature to 1450°C at 10°C/min and keep it warm. 2.5h, cool to room temperature to obtain the finished hard carbon product;
  • This comparative example provides a method for preparing hard carbon negative electrode materials for sodium ion batteries, including the following specific steps:
  • step (3) Mix the calcined carbon powder obtained in step (2) and 300 mesh corn starch in a gravity-free mixer at a mass ratio of 1:4 for 3 minutes;
  • step (3) Put the homogeneous mixture obtained in step (3) into a sagger, raise the temperature to 230°C at 3°C/min and keep it for 4 hours in a nitrogen-protected sintering furnace, then raise the temperature to 1500°C at 5°C/min and keep it for 2 hours. , cool to room temperature to obtain the finished hard carbon product;
  • step (3) Mix the calcined carbon powder obtained in step (2) and 300 mesh corn starch in a gravity-free mixer at a mass ratio of 1:5 for 3 minutes;
  • step (3) The homogeneous mixture obtained in step (3) is heated to 230°C at 3°C/min in a nitrogen-protected sintering furnace and kept for 4 hours, then heated to 1500°C at 5°C/min and kept for 2 hours, and then cooled to room temperature to obtain Hard carbon finished product;
  • step (3) the monocarbonate powder and 300 mesh corn starch are mixed in a mass ratio of 1:10.
  • This comparative example provides a method for preparing hard carbon negative electrode materials for sodium ion batteries, including the following specific steps:
  • Example 1 The difference between this comparative example and Example 1 is that the steps (1) and (2) are not performed, and graphite with the same particle size distribution as in Example 1 is directly used.
  • Table 1 shows the specific surface area of the finished hard carbon products prepared in Examples 1 to 11 and Comparative Examples 1 to 2.
  • the specific data were obtained by testing with a specific surface area meter, where the comprehensive specific surface area is the sagger (referring to the steps of Examples 1 to 11 ( The sagger in 4), the specific surface area measured after the materials in each area of the sagger in step (1) of Comparative Examples 1 and 2 are evenly mixed (the position in the sagger in Table 1 is shown in Figure 2).
  • Electrochemical performance testing uses button cells.
  • the working electrode is to mix the active material (specifically, the carbon materials prepared in Examples 1 to 12 and Comparative Examples 1 to 2), conductive carbon, and sodium carboxymethyl cellulose in deionized water in a mass ratio of 95:2:3. It is then coated on copper foil, and sodium foil is used as the counter electrode.
  • the electrolyte is 1 mol/L NaClO 4 dissolved in an EC/PC (volume ratio of 1:1) mixed solvent and 5wt% FEC is added, and the separator is made of glass fiber. Assembling the button cells takes place in a glove box with oxygen and water levels below 1 ppm. Battery The electrochemical performance test was performed on an electrochemical workstation.
  • Table 2 shows the electrochemical properties of the hard carbon products prepared in Examples 1 to 11 and Comparative Examples 1 to 2.
  • the comprehensive first charge specific capacity is the charge specific capacity measured after the materials in each zone in the sagger are evenly mixed.
  • Examples 1, 2, 3, 4, 5, and 6 show that the two-step sintering process has a positive effect in improving the uniformity of electrochemical properties of biomass-based hard carbon, organic polymer-based hard carbon, and mineral-based hard carbon. .

Abstract

本申请公开了一种碳质材料、其制备方法和钠离子电池。所述方法包括以下步骤:(1)将一部分碳质材料前驱体进行碳化处理,得到碳材料;(2)将所述的碳材料与剩余的碳质材料前驱体混合,烧结,得到所述的碳质材料。本申请利用碳质材料前驱体经高温碳化处理后其导热性能有显著提升的特性,预先烧结一部分碳质材料前驱体得到碳材料并将其与碳质材料前驱体混合均匀,烧结制备最终的碳质材料成品。通过上述方法制备的碳质材料性能的均一性显著提升,在匣钵不同位置处性能差异性较小。

Description

一种碳质材料、其制备方法和钠离子电池 技术领域
本申请涉及钠离子电池技术领域,涉及一种碳质材料、其制备方法和钠离子电池。
背景技术
钠离子电池与锂离子电池的概念均在1970年至1980年之间提出,然而随着锂离子电池在1990年商业化,钠离子电池的相关研究几乎处于停滞状态,这种情况一直持续到20世纪末。阻碍钠离子电池发展的原因之一是缺乏合适的负极材料。近期由于锂价格的持续攀升,钠离子电池的研究重新引起了人们的关注,多种负极材料被认为在钠离子电池中具有应用潜力,包括合金、有机材料、碳质材料等。其中硬碳材料因具有高的储钠容量、合适的工作电位、优异的循环稳定性以及储量丰富等优势,被认为是最具应用前景的钠离子电池负极材料。
现阶段制备硬碳材料的前驱体主要包括生物质材料,如玉米淀粉、椰壳、木材等;有机高分子材料,如酚醛树脂、聚乙烯、聚苯胺等;矿物质材料,如腐植酸、褐煤、褐煤等。为得到储钠性能优异的硬碳材料,需根据不同硬碳前驱体的分子结构采用不同的烧结工艺对其进行烧结处理。然而,绝大多数硬碳前驱体的导热能力较差,导致同一匣钵中不同位置烧结出样品性能差异性较大。在硬碳前驱体热处理过程中加入导热性能优异的导热介质可有效提升硬碳前驱体的受热均匀性,但存在引入杂质相的风险。同时,硬碳前驱体多数为有机高分子粉料,因其具有扬尘***的风险导致提升加热均匀性的回转窑并不适用于制备硬碳材料。
因此,有必要一种提升烧结均匀性的烧结方法,以提升碳质材料的质量。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
针对现有技术中存在的上述问题,本申请的目的在于提供一种碳质材料、其制备方法和钠离子电池。本申请的方法能够提升碳质材料的烧结均匀性,适用性十分广泛,对碳质材料工艺的改进具有现实意义。
为达上述目的,本申请采用以下技术方案:
第一方面,本申请提供一种碳质材料的制备方法,所述方法包括以下步骤:
(1)将一部分碳质材料前驱体进行碳化处理,得到碳材料;
(2)将所述的碳材料与剩余的碳质材料前驱体混合,烧结,得到所述的碳质材料。
本申请中,步骤(2)所述碳化处理和步骤(4)烧结过程中,需要将物料放入匣钵中,本申请对匣钵的具体种类不作限定,包括但不限于石墨匣钵或刚玉匣钵。
本申请利用碳质材料前驱体经高温碳化处理后其导热性能有显著地提升的特性,预先烧结一部分碳质材料前驱体得到碳材料并将其与碳质材料前驱体混合均匀,烧结制备最终的碳质材料成品。通过上述方法制备的碳质材料性能的均一性显著提升,在匣钵不同位置处性能差异性较小。
本申请中,碳质材料可以是硬碳材料,将该方法制备得到的硬碳材料作为钠离子电池负极材料,可以显著提升放电比容量和首次库伦效率。
以下作为本申请优选的技术方案,但不作为对本申请提供的技术方案的限制,通过以下优选的技术方案,可以更好的达到和实现本申请的技术目的和有益效果。
可选地,所述碳质材料前驱体包括玉米淀粉、椰壳、酚醛树脂、聚乙烯、腐植酸和褐煤中的至少一种。
可选地,所述碳质材料前驱体的目数为300~500目,例如300目、325目、400目或500目等。
可选地,所述碳质材料前驱体在使用前经预处理,所述预处理为:采用盐酸和氢氟酸的混合酸液进行酸洗。
可选地,所述盐酸和氢氟酸的浓度独立地为0.5~1mol/L,浓度例如0.5mol/L、0.6mol/L、0.8mol/L、0.9mol/L或1mol/L等。其中,“独立地”指盐酸和氢氟酸的浓度可以相同也可以不同。
可选地,所述盐酸和氢氟酸的体积比为(1~2):(1~2),例如1:1、1.5:1、2:1、1:1.5或1:2等。
可选地,所述预处理后进行洗涤、分离和干燥的步骤。本申请对洗涤和分离的具体操作不作限定,例如可以是抽滤并洗涤至滤水的pH值呈中性。
本申请对干燥的方式不作限定,例如可以是烘干,烘干的温度优选为60~80℃,例如60℃、65℃、70℃、72℃、75℃、78℃或80℃等,烘干的时间优选为12~24h,例如12h、14h、15h、18h、20h、21h、23h或24h等。
通过预处理可以去除含有杂质的碳质材料前驱体中的杂质,本领域技术人员可根据需要选择是否对碳质材料前驱体进行预处理。
作为本申请所述方法的一个优选技术方案,步骤(1)所述碳化处理在保护气体的保护下进行,所述保护气体选自氮气、氩气或氦气中的至少一种。
可选地,步骤(1)中,所述碳化处理包括低温烧结和高温碳化。在高温碳化之前进行低温烧结主要是为了让一些挥发性成分充分反应,在内部形成微孔供钠离子存储。若直接进行高温碳化会导致得到的微孔数量相对较少,进而导 致容量相对偏低。
可选地,步骤(1)中,低温烧结的保温温度为200~600℃,例如200℃、240℃、280℃、300℃、325℃、350℃、400℃、450℃、500℃、550℃或600℃等;保温时间为3~6h,例如3h、3.5h、4h、4.5h、5h、5.5h或6h等。
可选地,步骤(1)中,升温至低温烧结的保温温度的升温速率为3~5℃/min,例如3℃/min、4℃/min或5℃/min等。
可选地,步骤(1)中,高温碳化的保温温度为1200~1600℃,例如1200℃、1250℃、1300℃、1350℃、1400℃、1450℃、1500℃、1550℃或1600℃等;保温时间为1~3h,例如1h、1.5h、2h、2.5h或3h等。
可选地,步骤(1)中,从所述低温烧结的保温温度升温至所述高温碳化的保温温度的过程中,升温速率为5~10℃/min,例如5℃/min、6℃/min、7℃/min、8℃/min、9℃/min或10℃/min等。
可选地,步骤(1)所述碳化处理的保温过程中,氧浓度低于200ppm,例如180ppm、160ppm、150ppm、120ppm、100ppm、80ppm或50ppm等。
本领域技术人员应该理解,步骤(1)所述碳化处理还包括在保温后进行冷却的步骤,一般冷却至室温。
作为本申请所述方法的又一优选技术方案,步骤(1)所述碳化处理后进行步骤(1'):细化。
可选地,当步骤(1)所述碳化处理得到的碳材料结块时,步骤(1')所述细化前还进行破碎的步骤。
可选地,步骤(1')中,细化至粉末的粒径满足:Dv50为3~6μm,例如3μm、3.5μm、3.8μm、4μm、4.5μm、5μm、5.5μm或6μm等;Dv10为1~4μm,例如1μm、1.5μm、2μm、2.5μm、3μm、3.5μm、3.8μm或4μm等;Dv99为10~15μm, 例如10μm、11μm、11.5μm、12μm、13μm、13.5μm、14μm或15μm等。将粉体细化有利于后续电池极片的制备,使电池浆料具有合适的粘度和细度。
可选地,步骤(1')中,破碎至粉末的粒径小于2mm,例如1.8mm、1.7mm、1.5mm、1.4mm、1.3mm、1.2mm、1.1mm、1mm、0.9mm、0.8mm、0.5mm、0.4mm、0.3mm或0.2mm等。
本申请步骤(1')中,对破碎和细化采用的设备不作限定,破碎采用的设备例如可以是鄂破机和对辊机中的一种或两种配合使用。细化采用的设备例如可以是气流磨。
在一个实施例中,步骤(1')中破碎的步骤分两步进行,先使用鄂破机破碎至颗粒尺寸为小于10mm(例如9.5mm、9mm、8.5mm、8mm、7mm、6.5mm、6mm、5.5mm、5mm、4mm、3.5mm、3mm或2.5mm等),再使用对辊机继续破碎至颗粒尺寸为粒径小于2mm。
作为本申请所述方法的再一优选技术方案,步骤(2)中,所述的碳材料与剩余的碳质材料前驱体的质量比为1:1~1:3.5,例如1:1、1:1.5、1:2、1:2.5或1:3等,优选为1:2.5~1:3.5。若碳材料加入量过少,温度均匀性较差,改善烧结均匀性的效果下降;若碳材料过多,则加工成本上升。
可选地,步骤(2)中,采用无重力混合机进行混合,混合的时间为1~5min,例如1min、2min、3min、4min或5min等。
可选地,步骤(2)所述烧结在保护气体的保护下进行,所述保护气体选自氮气、氩气或氦气中的至少一种。
可选地,步骤(2)中,所述烧结包括低温烧结和高温烧结。在高温烧结之前进行低温烧结主要是为了让一些挥发性成分充分反应,在内部形成微孔供钠离子存储。若直接进行高温烧结会导致得到的微孔数量相对较少,进而导致容 量相对偏低。
可选地,步骤(2)中,低温烧结的保温温度为200~600℃,例如200℃、240℃、280℃、300℃、325℃、350℃、400℃、450℃、500℃、550℃或600℃等;保温时间为3~6h,例如3h、3.5h、4h、4.5h、5h、5.5h或6h等。
可选地,步骤(2)中,升温至低温烧结的保温温度的升温速率为3~5℃/min,例如3℃/min、4℃/min或5℃/min等。
可选地,步骤(2)中,高温烧结的保温温度为1200~1600℃,例如1200℃、1250℃、1300℃、1350℃、1400℃、1450℃、1500℃、1550℃或1600℃等;保温时间为1~3h,例如1h、1.5h、2h、2.5h或3h等。
可选地,步骤(2)中,从所述低温烧结的保温温度升温至所述高温烧结的保温温度的过程中,升温速率为5~10℃/min,例如5℃/min、6℃/min、7℃/min、8℃/min、9℃/min或10℃/min等。
可选地,步骤(2)所述烧结的保温过程中,氧浓度低于200ppm,例如180ppm、160ppm、150ppm、120ppm、100ppm、80ppm或50ppm等。
可选地,步骤(2)烧结的制度和步骤(1)碳化处理的烧结制度相同,烧结制度包括各阶段保温的温度、升温速率和保温的时间等。
本领域技术人员应该理解,步骤(2)所述烧结还包括在保温后进行冷却的步骤,一般冷却至室温。
作为本申请所述方法的再一优选技术方案,步骤(2)所述烧结后进行步骤(2'):细化。
可选地,当步骤(2)所述烧结得到的碳质材料结块时,步骤(2')所述细化前还进行破碎的步骤。
可选地,步骤(2')中,细化至粉末的粒径满足:Dv50为3~6μm,例如3μm、 3.5μm、3.8μm、4μm、4.5μm、5μm、5.5μm或6μm等;Dv10为1~4μm,例如1μm、1.5μm、2μm、2.5μm、3μm、3.5μm、3.8μm或4μm等;Dv99为10~15μm,例如10μm、11μm、11.5μm、12μm、13μm、13.5μm、14μm或15μm等。
可选地,步骤(2')中,破碎至粉末的粒径小于2mm,例如1.8mm、1.7mm、1.5mm、1.4mm、1.3mm、1.2mm、1.1mm、1mm、0.9mm、0.8mm、0.5mm、0.4mm、0.3mm或0.2mm等。
本申请步骤(2')中,对破碎和细化采用的设备不作限定,破碎采用的设备例如可以是鄂破机和对辊机中的一种或两种配合使用。细化采用的设备例如可以是气流磨。
在一个实施例中,步骤(2')中破碎的步骤分两步进行,先使用鄂破机破碎至颗粒尺寸为小于10mm(例如9.5mm、9mm、8.5mm、8mm、7mm、6.5mm、6mm、5.5mm、5mm、4mm、3.5mm、3mm或2.5mm等),再使用对辊机继续破碎至颗粒尺寸为粒径小于2mm。
作为本申请所述方法的进一步优选技术方案,所述方法包括以下步骤:
(1)将300~500目的硬碳前驱体置于石墨匣钵中,在氮气保护的烧结炉中以3~5℃/min升温至200~600℃并保温3~6h,随后以5~10℃/min升温至1200~1600℃并保温1~3h,冷却至室温得到一烧碳;
(2)将结块的一烧碳使用鄂破机破碎至颗粒尺寸小于10mm,随后使用对辊机将颗粒尺寸破碎至小于2mm,最后使用气流磨将一烧碳处理至Dv50为3~6μm,Dv10为1~4μm,Dv99为10~15μm;
(3)将步骤(2)得到的一烧碳粉末与300~500目的硬碳前驱体按质量比为1:1~1:3.5在无重力混合机中混合3min;
(4)将步骤(3)得到的均匀混合物放入匣钵中,在氮气保护的烧结炉中 以3~5℃/min升温至200~600℃并保温3~6h,随后以5~10℃/min升温至1200~1600℃并保温1~3h,冷却至室温得到硬碳成品;
(5)将结块的硬碳成品使用鄂破机破碎至颗粒尺寸小于10mm,随后使用对辊机将颗粒尺寸破碎至小于2mm,最后使用气流磨将硬碳成品处理至Dv50为3~6μm,Dv10为1~4μm,Dv99为10~15μm。
第二方面,本申请提供一种如第一方面所述的方法制备得到的碳质材料。
第三方面,本申请提供一种钠离子电池,所述钠离子电池的负极中包括第二方面所述的碳质材料。
与已有技术相比,本申请具有如下有益效果:
本申请利用碳质材料前驱体经高温碳化处理后其导热性能有显著地提升的特性,预先烧结一部分碳质材料前驱体得到碳材料并将其与碳质材料前驱体混合均匀,烧结制备最终的碳质材料成品。通过上述方法制备的碳质材料性能的均一性显著提升,在匣钵不同位置处性能差异性较小。
采用本申请的方法制备硬碳材料并将其作为钠离子电池负极材料,可以显著提升放电比容量和首次库伦效率。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1实施例1步骤(4)烧结的示意图。
图2本申请一个实施例中匣钵内位置示意图,其中,H表示高度,W表示宽度,L表示长度。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本申请的技术方案。
实施例1
本实施例提供一种钠离子电池硬碳负极材料的制备方法,包括以下具体步骤:
(1)将300目硬碳前驱体玉米淀粉置于石墨匣钵中,在氮气保护的烧结炉中以3℃/min升温至230℃并保温4h,随后以5℃/min升温至1500℃并保温2h,冷却至室温得到一烧碳;
(2)将结块的一烧碳使用鄂破机破碎至颗粒尺寸小于5mm,随后使用对辊机将颗粒尺寸破碎至小于1mm,最后使用气流磨将一烧碳处理至Dv50为5μm,Dv10为2μm,Dv99为12μm;
(3)将步骤(2)得到的一烧碳粉末与300目硬碳前驱体玉米淀粉按质量比为1:1在无重力混合机中混合3min;
(4)将步骤(3)得到的均匀混合物放入匣钵中,在氮气保护的烧结炉中以3℃/min升温至230℃并保温4h,随后以5℃/min升温至1500℃并保温2h,冷却至室温得到硬碳成品;
(5)将结块的硬碳成品使用鄂破机破碎至颗粒尺寸小于5mm,随后使用对辊机将颗粒尺寸破碎至小于1mm,最后使用气流磨将硬碳成品处理至Dv50为5μm,Dv10为2μm,Dv99为12μm。
实施例2
本实施例提供一种钠离子电池硬碳负极材料的制备方法,包括以下具体步骤:
(1)将300目玉米淀粉置于石墨匣钵中,在氮气保护的烧结炉中以3℃/min 升温至230℃并保温4h,随后以5℃/min升温至1500℃并保温2h,冷却至室温得到一烧碳;
(2)将结块的一烧碳使用鄂破机破碎至颗粒尺寸小于5mm,随后使用对辊机将颗粒尺寸破碎至小于1mm,最后使用气流磨将一烧碳处理至Dv50为5μm,Dv10为2μm,Dv99为12μm;
(3)将步骤(2)得到的一烧碳粉末与300目玉米淀粉按质量比为1:2在无重力混合机中混合3min;
(4)将步骤(3)得到的均匀混合物放入匣钵中,在氮气保护的烧结炉中以3℃/min升温至230℃并保温4h,随后以5℃/min升温至1500℃并保温2h,冷却至室温得到硬碳成品;
(5)将结块的硬碳成品使用鄂破机破碎至颗粒尺寸小于5mm,随后使用对辊机将颗粒尺寸破碎至小于1mm,最后使用气流磨将硬碳成品处理至Dv50为5μm,Dv10为2μm,Dv99为12μm。
实施例3
本实施例提供一种钠离子电池硬碳负极材料的制备方法,包括以下具体步骤:
(1)将300目玉米淀粉置于石墨匣钵中,在氮气保护的烧结炉中以3℃/min升温至230℃并保温4h,随后以5℃/min升温至1500℃并保温2h,冷却至室温得到一烧碳;
(2)将结块的一烧碳使用鄂破机破碎至颗粒尺寸小于5mm,随后使用对辊机将颗粒尺寸破碎至小于1mm,最后使用气流磨将一烧碳处理至Dv50为5μm,Dv10为2μm,Dv99为12μm;
(3)将步骤(2)得到的一烧碳粉末与300目玉米淀粉按质量比为1:3在 无重力混合机中混合3min;
(4)将步骤(3)得到的均匀混合物放入匣钵中,在氮气保护的烧结炉中以3℃/min升温至230℃并保温4h,随后以5℃/min升温至1500℃并保温2h,冷却至室温得到硬碳成品;
(5)将结块的硬碳成品使用鄂破机破碎至颗粒尺寸小于5mm,随后使用对辊机将颗粒尺寸破碎至小于1mm,最后使用气流磨将硬碳成品处理至Dv50为5μm,Dv10为2μm,Dv99为12μm。
实施例4
本实施例提供一种钠离子电池硬碳负极材料的制备方法,包括以下具体步骤:
(1)将300目椰壳粉置于盐酸和氢氟酸混合液中进行酸洗,盐酸和氢氟酸的浓度均为1mol/L,盐酸和氢氟酸的体积比为1:1,酸洗后产物通过抽滤洗涤至滤水pH值呈中性,随后在80℃烘箱中干燥12h;
(2)将步骤(1)得到的椰壳粉置于石墨匣钵中,在氮气保护的烧结炉中以3℃/min升温至300℃并保温4h,随后以5℃/min升温至1500℃并保温2h,冷却至室温得到一烧碳;
(3)将结块的一烧碳使用鄂破机破碎至颗粒尺寸小于5mm,随后使用对辊机将颗粒尺寸破碎至小于1mm,最后使用气流磨将一烧碳处理至Dv50为5μm,Dv10为2μm,Dv99为12μm;
(4)将步骤(2)得到的一烧碳粉末与步骤(1)得到的椰壳粉按质量比为1:3在无重力混合机中混合3min;
(5)将步骤(3)得到的均匀混合物放入匣钵中,在氮气保护的烧结炉中以3℃/min升温至300℃并保温4h,随后以5℃/min升温至1500℃并保温2h, 冷却至室温得到硬碳成品;
(6)将结块的硬碳成品使用鄂破机破碎至颗粒尺寸小于5mm,随后使用对辊机将颗粒尺寸破碎至小于1mm,最后使用气流磨将硬碳成品处理至Dv50为5μm,Dv10为2μm,Dv99为12μm。
实施例5
本实施例提供一种钠离子电池硬碳负极材料的制备方法,包括以下具体步骤:
(1)将300目酚醛树脂粉置于石墨匣钵中,在氮气保护的烧结炉中以3℃/min升温至400℃并保温4h,随后以5℃/min升温至1500℃并保温2h,冷却至室温得到一烧碳;
(2)将结块的一烧碳使用鄂破机破碎至颗粒尺寸小于5mm,随后使用对辊机将颗粒尺寸破碎至小于1mm,最后使用气流磨将一烧碳处理至Dv50为5μm,Dv10为2μm,Dv99为12μm;
(3)将步骤(2)得到的一烧碳粉末与300目酚醛树脂粉按质量比为1:3在无重力混合机中混合3min;
(4)将步骤(3)得到的均匀混合物放入匣钵中,在氮气保护的烧结炉中以3℃/min升温至400℃并保温4h,随后以5℃/min升温至1500℃并保温2h,冷却至室温得到硬碳成品;
(5)将结块的硬碳成品使用鄂破机破碎至颗粒尺寸小于5mm,随后使用对辊机将颗粒尺寸破碎至小于1mm,最后使用气流磨将硬碳成品处理至Dv50为5μm,Dv10为2μm,Dv99为12μm。
实施例6
本实施例提供一种钠离子电池硬碳负极材料的制备方法,包括以下具体步 骤:
(1)将300目聚乙烯粉末置于石墨匣钵中,在氮气保护的烧结炉中以3℃/min升温至400℃并保温4h,随后以5℃/min升温至1500℃并保温2h,冷却至室温得到一烧碳;
(2)将结块的一烧碳使用鄂破机破碎至颗粒尺寸小于5mm,随后使用对辊机将颗粒尺寸破碎至小于1mm,最后使用气流磨将一烧碳处理至Dv50为5μm,Dv10为2μm,Dv99为12μm;
(3)将步骤(2)得到的一烧碳粉末与300目聚乙烯粉末按质量比为1:3在无重力混合机中混合3min;
(4)将步骤(3)得到的均匀混合物放入匣钵中,在氮气保护的烧结炉中以3℃/min升温至400℃并保温4h,随后以5℃/min升温至1500℃并保温2h,冷却至室温得到硬碳成品;
(5)将结块的硬碳成品使用鄂破机破碎至颗粒尺寸小于5mm,随后使用对辊机将颗粒尺寸破碎至小于1mm,最后使用气流磨将硬碳成品处理至Dv50为5μm,Dv10为2μm,Dv99为12μm。
实施例7
本实施例提供一种钠离子电池硬碳负极材料的制备方法,包括以下具体步骤:
(1)将300目腐植酸粉置于盐酸和氢氟酸混合液中进行酸洗,盐酸和氢氟酸的浓度均为1mol/L,盐酸和氢氟酸的体积比为1:1,酸洗后产物通过抽滤洗涤至滤水pH值呈中性,随后在80℃烘箱中干燥12h;
(2)将步骤(1)得到的腐植酸粉置于石墨匣钵中,在氮气保护的烧结炉中以3℃/min升温至300℃并保温4h,随后以5℃/min升温至1500℃并保温 2h,冷却至室温得到一烧碳;
(2)将结块的一烧碳使用鄂破机破碎至颗粒尺寸小于5mm,随后使用对辊机将颗粒尺寸破碎至小于1mm,最后使用气流磨将一烧碳处理至Dv50为5μm,Dv10为2μm,Dv99为12μm;
(3)将步骤(2)得到的一烧碳粉末与步骤(1)得到的腐植酸粉按质量比为1:3在无重力混合机中混合3min;
(4)将步骤(3)得到的均匀混合物放入匣钵中,在氮气保护的烧结炉中以3℃/min升温至300℃并保温4h,随后以5℃/min升温至1500℃并保温2h,冷却至室温得到硬碳成品;
(5)将结块的硬碳成品使用鄂破机破碎至颗粒尺寸小于5mm,随后使用对辊机将颗粒尺寸破碎至小于1mm,最后使用气流磨将硬碳成品处理至Dv50为5μm,Dv10为2μm,Dv99为12μm。
实施例8
本实施例提供一种钠离子电池硬碳负极材料的制备方法,包括以下具体步骤:
(1)将300目褐煤粉置于盐酸和氢氟酸混合液中进行酸洗,盐酸和氢氟酸的浓度均为1mol/L,酸洗后产物通过抽滤洗涤至滤水pH值呈中性,随后在80℃烘箱中干燥12h;
(2)将步骤(1)得到的褐煤粉置于石墨匣钵中,在氮气保护的烧结炉中以3℃/min升温至300℃并保温4h,随后以5℃/min升温至1500℃并保温2h,冷却至室温得到一烧碳;
(2)将结块的一烧碳使用鄂破机破碎至颗粒尺寸小于5mm,随后使用对辊机将颗粒尺寸破碎至小于1mm,最后使用气流磨将一烧碳处理至Dv50为5μm, Dv10为2μm,Dv99为12μm;
(3)将步骤(2)得到的一烧碳粉末与步骤(1)得到的褐煤粉按质量比为1:3在无重力混合机中混合3min;
(4)将步骤(3)得到的均匀混合物放入匣钵中,在氮气保护的烧结炉中以3℃/min升温至300℃并保温4h,随后以5℃/min升温至1500℃并保温2h,冷却至室温得到硬碳成品;
(5)将结块的硬碳成品使用鄂破机破碎至颗粒尺寸小于5mm,随后使用对辊机将颗粒尺寸破碎至小于1mm,最后使用气流磨将硬碳成品处理至Dv50为5μm,Dv10为2μm,Dv99为12μm。
实施例9
本实施例提供一种钠离子电池硬碳负极材料的制备方法,包括以下具体步骤:
(1)将400目玉米淀粉置于石墨匣钵中,在氮气保护的烧结炉中以4℃/min升温至260℃并保温6h,随后以8℃/min升温至1400℃并保温3h,冷却至室温得到一烧碳;
(2)将结块的一烧碳使用鄂破机破碎至颗粒尺寸小于5mm,随后使用对辊机将颗粒尺寸破碎至小于2mm,最后使用气流磨将一烧碳处理至Dv50为6μm,Dv10为3μm,Dv99为12.5μm;
(3)将步骤(2)得到的一烧碳粉末与步骤(1)得到的褐煤粉按质量比为1:3在无重力混合机中混合5min;
(4)将步骤(3)得到的均匀混合物放入匣钵中,在氮气保护的烧结炉中以3℃/min升温至350℃并保温5h,随后以10℃/min升温至1450℃并保温2.5h,冷却至室温得到硬碳成品;
(5)将结块的硬碳成品使用鄂破机破碎至颗粒尺寸小于5mm,随后使用对辊机将颗粒尺寸破碎至小于2mm,最后使用气流磨将硬碳成品处理至Dv50为6μm,Dv10为3μm,Dv99为12.5μm。
实施例10
本对比例提供一种钠离子电池硬碳负极材料的制备方法,包括以下具体步骤:
(1)将300目玉米淀粉置于石墨匣钵中,在氮气保护的烧结炉中以3℃/min升温至230℃并保温4h,随后以5℃/min升温至1500℃并保温2h,冷却至室温得到一烧碳;
(2)将结块的一烧碳使用鄂破机破碎至颗粒尺寸小于5mm,随后使用对辊机将颗粒尺寸破碎至小于1mm,最后使用气流磨将一烧碳处理至Dv50为5μm,Dv10为2μm,Dv99为12μm;
(3)将步骤(2)得到的一烧碳粉末与300目玉米淀粉按质量比为1:4在无重力混合机中混合3min;
(4)将步骤(3)得到的均匀混合物放入匣钵,在氮气保护的烧结炉中以3℃/min升温至230℃并保温4h,随后以5℃/min升温至1500℃并保温2h,冷却至室温得到硬碳成品;
(5)将结块的硬碳成品使用鄂破机破碎至颗粒尺寸小于5mm,随后使用对辊机将颗粒尺寸破碎至小于1mm,最后使用气流磨将硬碳成品处理至Dv50为5μm,Dv10为2μm,Dv99为12μm。
实施例11
(1)将300目玉米淀粉置于石墨匣钵中,在氮气保护的烧结炉中以3℃/min升温至230℃并保温4h,随后以5℃/min升温至1500℃并保温2h,冷却至室 温得到一烧碳;
(2)将结块的一烧碳使用鄂破机破碎至颗粒尺寸小于5mm,随后使用对辊机将颗粒尺寸破碎至小于1mm,最后使用气流磨将一烧碳处理至Dv50为5μm,Dv10为2μm,Dv99为12μm;
(3)将步骤(2)得到的一烧碳粉末与300目玉米淀粉按质量比为1:5在无重力混合机中混合3min;
(4)将步骤(3)得到的均匀混合物在氮气保护的烧结炉中以3℃/min升温至230℃并保温4h,随后以5℃/min升温至1500℃并保温2h,冷却至室温得到硬碳成品;
(5)将结块的硬碳成品使用鄂破机破碎至颗粒尺寸小于5mm,随后使用对辊机将颗粒尺寸破碎至小于1mm,最后使用气流磨将硬碳成品处理至Dv50为5μm,Dv10为2μm,Dv99为12μm。
实施例12
与实施例1的区别在于,步骤(3)中,一烧碳粉末与300目玉米淀粉按质量比为1:10混合。
对比例1
本对比例提供一种钠离子电池硬碳负极材料的制备方法,包括以下具体步骤:
(1)将300目玉米淀粉置于石墨匣钵中,在氮气保护的烧结炉中以3℃/min升温至230℃并保温4h,随后以5℃/min升温至1500℃并保温2h,冷却至室温得到硬碳成品;
(2)将结块的硬碳成品使用鄂破机破碎至颗粒尺寸小于5mm,随后使用对辊机将颗粒尺寸破碎至小于1mm,最后使用气流磨将一烧碳处理至Dv50为 5μm,Dv10为2μm,Dv99为12μm。
对比例2
本对比例与实施例1的区别在于,不进行步骤(1)和步骤(2),而直接采用与实施例1具有相同粒径分布的石墨。
成品质量:
表1为实施例1~11与对比例1~2制备的硬碳成品的比表面积,具体数据由比表面积测定仪测试得到,其中综合比表面积为匣钵(指的是实施例1~11步骤(4)中的匣钵,对比例1和2步骤(1)的匣钵)中各区材料混合均匀后测得的比表面积(表1中匣钵内位置如图2所示)。
表1 硬碳产品的比表面积

由表1可知,实施例1各区比表面积值相接近,而对比例1各区比表面积值相差较大,且实施例1的综合比表面积值低于对比例1,表明相较于一步烧结,本申请通过两步烧结工艺可以保证样品的烧结质量,有效提升硬碳成品的均一性。同时,实施例1~12的结果表明两步烧结工艺在提升生物质类硬碳、有机高分子类硬碳、矿物质类硬碳的均一性方面均有积极的效果。
实施例1、2、3各区比表面积值差异性明显小于实施例12,表明一烧碳的质量占比相对较小时不能保证样品的受热均匀性。
电化学性能:
电化学性能测试使用纽扣电池。工作电极是将活性物质(具体为实施例1~12和对比例1~2制备的碳材料)、导电碳、羧甲基纤维素钠按质量比为95:2:3在去离子水中混合均匀后涂覆于铜箔上制得,对电极使用钠箔。电解液为1mol/L的NaClO4溶于EC/PC(体积比为1:1)混合溶剂中并添加5wt%FEC,隔膜采用玻璃纤维。扣式电池的组装在氧气和水含量均低于1ppm的手套箱中进行。电池 的电化学性能测试在电化学工作站上进行。
表2为实施例1~11与对比例1~2制得的硬碳成品的电化学性能,其中综合首次充电比容量为匣钵中各区材料混合均匀后测得的充电比容量。
表2 硬碳产品的首次充电比容量对比

由表2可知,实施例1各区首次充电比容量相接近,而对比例1各区首次充电比容量相差较大,且实施例1的综合首次充电比容量高于对比例1,表明相较于一步烧结,两步烧结工艺既可以提升硬碳成品的均一性,也可以提升所制备硬碳成品的电化学性能。
实施例1、2、3各区首次充电比容量差异性明显小于实施例12,表明一烧碳的质量占比相对较小时不能保证样品电化学性能的均一性。
实施例1、2、3、4、5、6表明两步烧结工艺在提升生物质类硬碳、有机高分子类硬碳、矿物质类硬碳电化学性能的均一性方面均有积极的效果。
申请人声明,本申请通过上述实施例来说明本申请的详细方法,但本申请并不局限于上述详细方法,即不意味着本申请必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本申请的任何改进,对本申请产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本申请的保护范围和公开范围之内。

Claims (14)

  1. 一种碳质材料的制备方法,其中,所述方法包括以下步骤:
    (1)将一部分碳质材料前驱体进行碳化处理,得到碳材料;
    (2)将所述的碳材料与剩余的碳质材料前驱体混合,烧结,得到所述的碳质材料。
  2. 根据权利要求1所述的方法,其中,所述碳质材料前驱体包括玉米淀粉、椰壳、酚醛树脂、聚乙烯、腐植酸和褐煤中的至少一种。
  3. 根据权利要求2所述的方法,其中,所述碳质材料前驱体的目数为300~500目。
  4. 根据权利要求2所述的方法,其特征在于其中,所述碳质材料前驱体在使用前经预处理,所述预处理为:采用盐酸和氢氟酸的混合酸液进行酸洗;
    可选地,所述盐酸和氢氟酸的浓度独立地为0.5~1mol/L;
    可选地,所述盐酸和氢氟酸的体积比为(1~2):(1~2);
    可选地,所述预处理后进行洗涤、分离和干燥的步骤。
  5. 根据权利要求1或2或3或4所述的方法,其中,步骤(1)所述碳化处理在保护气体的保护下进行,所述保护气体选自氮气、氩气或氦气中的至少一种。
  6. 根据权利要求5所述的方法,其中,步骤(1)中,所述碳化处理包括低温烧结和高温碳化;
    可选地,步骤(1)中,低温烧结的保温温度为200~600℃,保温时间为3~6h;
    可选地,步骤(1)中,升温至低温烧结的保温温度的升温速率为3~5℃/min;
    可选地,步骤(1)中,高温碳化的保温温度为1200~1600℃,保温时间为1~3h;
    可选地,步骤(1)中,从所述低温烧结的保温温度升温至所述高温碳化的 保温温度的过程中,升温速率为5~10℃/min;
    可选地,步骤(1)所述碳化处理的保温过程中,氧浓度低于200ppm。
  7. 根据权利要求1-6任一项所述的方法,其中,步骤(1)所述碳化处理后进行步骤(1'):细化;
    可选地,当步骤(1)所述碳化处理得到的碳材料结块时,步骤(1')所述细化前还进行破碎的步骤;
    可选地,步骤(1')中,细化至粉末的粒径满足:Dv50为3~6μm,Dv10为1~4μm,Dv99为10~15μm;
    可选地,步骤(1')中,破碎至粉末的粒径小于2mm。
  8. 根据权利要求1-7任一项所述的方法,其中,步骤(2)中,所述的碳材料与剩余的碳质材料前驱体的质量比为1:1~1:3.5,优选为1:2.5~1:3.5;
  9. 根据权利要求8任一项所述的方法,其中,步骤(2)中,采用无重力混合机进行混合,混合的时间为1~5min。
  10. 根据权利要求1-9任一项所述的方法,其中,步骤(2)所述烧结在保护气体的保护下进行,所述保护气体选自氮气、氩气或氦气中的至少一种;
    可选地,步骤(2)中,所述烧结包括低温烧结和高温烧结;
    可选地,步骤(2)中,低温烧结的保温温度为200~600℃,保温时间为3~6h;
    可选地,步骤(2)中,升温至低温烧结的保温温度的升温速率为3~5℃/min;
    可选地,步骤(2)中,高温烧结的保温温度为1200~1600℃,保温时间为1~3h;
    可选地,步骤(2)中,从所述低温烧结的保温温度升温至所述高温烧结的保温温度的过程中,升温速率为5~10℃/min;
    可选地,步骤(2)所述烧结的保温过程中,氧浓度低于200ppm。
  11. 根据权利要求1-10任一项所述的方法,其中,步骤(2)所述烧结后进行步骤(2'):细化;
    可选地,当步骤(2)所述烧结得到的碳质材料结块时,步骤(2')所述细化前还进行破碎的步骤;
    可选地,步骤(2')中,细化至粉末的粒径满足:Dv50为3~6μm,Dv10为1~4μm,Dv99为10~15μm;
    可选地,步骤(2')中,破碎至粉末的粒径小于2mm。
  12. 根据权利要求1-11任一项所述的方法,其中,所述方法包括以下步骤:
    (1)将300~500目的硬碳前驱体置于石墨匣钵中,在氮气保护的烧结炉中以3~5℃/min升温至200~600℃并保温3~6h,随后以5~10℃/min升温至1200~1600℃并保温1~3h,冷却至室温得到一烧碳;
    (2)将结块的一烧碳使用鄂破机破碎至颗粒尺寸小于10mm,随后使用对辊机将颗粒尺寸破碎至小于2mm,最后使用气流磨将一烧碳处理至Dv50为3~6μm,Dv10为1~4μm,Dv99为10~15μm;
    (3)将步骤(2)得到的一烧碳粉末与300~500目的硬碳前驱体按质量比为1:1~1:3.5在无重力混合机中混合3min;
    (4)将步骤(3)得到的均匀混合物放入匣钵中,在氮气保护的烧结炉中以3~5℃/min升温至200~600℃并保温3~6h,随后以5~10℃/min升温至1200~1600℃并保温1~3h,冷却至室温得到硬碳成品;
    (5)将结块的硬碳成品使用鄂破机破碎至颗粒尺寸小于10mm,随后使用对辊机将颗粒尺寸破碎至小于2mm,最后使用气流磨将硬碳成品处理至Dv50为3~6μm,Dv10为1~4μm,Dv99为10~15μm。
  13. 一种如权利要求1-12任一项所述的方法制备得到的碳质材料。
  14. 一种钠离子电池,其中,所述钠离子电池的负极中包括权利要求13所述的碳质材料。
PCT/CN2023/077075 2022-08-18 2023-02-20 一种碳质材料、其制备方法和钠离子电池 WO2024036902A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210993705.2A CN115159502A (zh) 2022-08-18 2022-08-18 一种碳质材料、其制备方法和钠离子电池
CN202210993705.2 2022-08-18

Publications (1)

Publication Number Publication Date
WO2024036902A1 true WO2024036902A1 (zh) 2024-02-22

Family

ID=83480657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077075 WO2024036902A1 (zh) 2022-08-18 2023-02-20 一种碳质材料、其制备方法和钠离子电池

Country Status (3)

Country Link
CN (1) CN115159502A (zh)
FR (1) FR3138970A1 (zh)
WO (1) WO2024036902A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115159502A (zh) * 2022-08-18 2022-10-11 广东邦普循环科技有限公司 一种碳质材料、其制备方法和钠离子电池
CN115636405B (zh) * 2022-10-31 2023-07-04 湖州强大分子筛科技有限公司 一种高容量硬碳负极材料的制备方法
CN115650699B (zh) * 2022-12-08 2023-06-02 长沙中瓷新材料科技有限公司 一种模压石墨匣钵及其制备方法与应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106299275A (zh) * 2016-08-26 2017-01-04 东莞市迈科新能源有限公司 一种复合硬碳钠离子电池负极材料的制备方法
CN107431205A (zh) * 2015-03-05 2017-12-01 株式会社吴羽 非水电解质二次电池用混合负极材料的制造方法以及通过该制造方法得到的非水电解质二次电池用混合负极材料
CN112397715A (zh) * 2020-10-10 2021-02-23 北京化工大学 一种硬碳材料及其制备方法和钠离子电池
CN112661133A (zh) * 2020-12-23 2021-04-16 浙江阿佩克斯能源科技有限公司 一种硬碳材料制备方法
JP2021066629A (ja) * 2019-10-23 2021-04-30 時空化学株式会社 生物材料由来のハードカーボン、負極材料、負極、及びアルカリイオン電池
CN113206246A (zh) * 2021-04-27 2021-08-03 天津理工大学 钠离子电池生物质硬碳负极材料及其制备方法
US20210242462A1 (en) * 2020-02-04 2021-08-05 Cpc Corporation, Taiwan Method of Manufacturing Biomass Hard Carbon for Negative Electrode of Sodium-ion Batteries and Sodium-ion Batteries Containing Biomass Hard Carbon Thereof
CN113800496A (zh) * 2021-08-06 2021-12-17 深圳市德方纳米科技股份有限公司 一种硬碳材料及其制备方法和应用
CN115159502A (zh) * 2022-08-18 2022-10-11 广东邦普循环科技有限公司 一种碳质材料、其制备方法和钠离子电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105047891A (zh) * 2015-07-10 2015-11-11 田东 一种石墨锡基复合负极材料的制备方法
CN112968169A (zh) * 2021-02-02 2021-06-15 常德速碳新能源科技有限公司 一种锂离子电池用复合负极材料及其制备方法
CN114702022B (zh) * 2022-03-15 2023-09-12 广东邦普循环科技有限公司 硬碳负极材料的制备方法和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107431205A (zh) * 2015-03-05 2017-12-01 株式会社吴羽 非水电解质二次电池用混合负极材料的制造方法以及通过该制造方法得到的非水电解质二次电池用混合负极材料
CN106299275A (zh) * 2016-08-26 2017-01-04 东莞市迈科新能源有限公司 一种复合硬碳钠离子电池负极材料的制备方法
JP2021066629A (ja) * 2019-10-23 2021-04-30 時空化学株式会社 生物材料由来のハードカーボン、負極材料、負極、及びアルカリイオン電池
US20210242462A1 (en) * 2020-02-04 2021-08-05 Cpc Corporation, Taiwan Method of Manufacturing Biomass Hard Carbon for Negative Electrode of Sodium-ion Batteries and Sodium-ion Batteries Containing Biomass Hard Carbon Thereof
CN112397715A (zh) * 2020-10-10 2021-02-23 北京化工大学 一种硬碳材料及其制备方法和钠离子电池
CN112661133A (zh) * 2020-12-23 2021-04-16 浙江阿佩克斯能源科技有限公司 一种硬碳材料制备方法
CN113206246A (zh) * 2021-04-27 2021-08-03 天津理工大学 钠离子电池生物质硬碳负极材料及其制备方法
CN113800496A (zh) * 2021-08-06 2021-12-17 深圳市德方纳米科技股份有限公司 一种硬碳材料及其制备方法和应用
CN115159502A (zh) * 2022-08-18 2022-10-11 广东邦普循环科技有限公司 一种碳质材料、其制备方法和钠离子电池

Also Published As

Publication number Publication date
CN115159502A (zh) 2022-10-11
FR3138970A1 (fr) 2024-02-23

Similar Documents

Publication Publication Date Title
WO2024036902A1 (zh) 一种碳质材料、其制备方法和钠离子电池
WO2020238658A1 (zh) 一种硅氧化物/碳复合负极材料及其制备方法和锂离子电池
CN103165862B (zh) 一种高性能锂离子电池负极材料及其制备方法
CN103682332B (zh) 一种锂离子电池复合型负极材料及其制备方法和锂离子电池
CN109148883A (zh) 基于沥青的钠离子电池负极材料及其制备方法和应用
CN114447325B (zh) 多孔碳材料、其制备方法、负极和锂金属电池
CN110289180A (zh) 二维过度金属碳化物/二氧化钛/石墨烯复合材料、其制备及应用
KR20230036949A (ko) 리튬 함유 실리콘 산화물 복합 음극재 및 그 제조 방법과 리튬 이온 배터리
CN106299344B (zh) 一种钠离子电池钛酸镍负极材料及其制备方法
CN114335681B (zh) 无机卤化物固态电解质、其制备方法、锂离子电池及应用
CN115744872B (zh) 沥青基软碳复合纤维素硬碳的负极材料及其制备方法
CN113206249A (zh) 一种具有良好电化学性能的锂电池硅氧复合负极材料及其制备方法
CN113346076B (zh) 一种锂离子电池表面改性石墨负极材料及其制备方法
CN107119349B (zh) 一种碳包覆Na2Li2Ti6O14纳米纤维及其制备方法
CN113044840A (zh) 一种活性炭负载钼和氮双掺杂碳纳米片阵列复合材料及其制备方法和应用
CN112607725A (zh) 一种氮掺杂碳纳米管/稀土金属离子掺杂磷酸铁锂复合型正极材料及其制备方法
CN115000536B (zh) 正极补锂材料及其制备方法与应用
CN113981673B (zh) 一种碳纤维上生长1T相MoS2@rGO的复合材料的制备方法及其用途
CN109698380A (zh) 一种高容量锂离子动力电池及其材料制备工艺
CN110600738B (zh) 一种制备低温锂离子电池硬碳负极材料的方法
CN115036473A (zh) 一种基于硬碳前驱体和掺杂相的钠离子电池负极材料及制备方法
CN108615870A (zh) 低成本且能规模化生产的高比容量多孔硅材料的制备方法
CN113666357A (zh) 一种多步致密化制备钾离子电池炭负极的方法及应用
CN113113609A (zh) 一种钠离子电池三维复合负极材料及其制备方法和应用
CN113224291A (zh) 一种氮硫掺杂碳负载Fe7S8电池负极材料的制备方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23853819

Country of ref document: EP

Kind code of ref document: A1