WO2024031377A1 - 通信方法以及终端设备 - Google Patents

通信方法以及终端设备 Download PDF

Info

Publication number
WO2024031377A1
WO2024031377A1 PCT/CN2022/111266 CN2022111266W WO2024031377A1 WO 2024031377 A1 WO2024031377 A1 WO 2024031377A1 CN 2022111266 W CN2022111266 W CN 2022111266W WO 2024031377 A1 WO2024031377 A1 WO 2024031377A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
channel access
terminal device
prs
time
Prior art date
Application number
PCT/CN2022/111266
Other languages
English (en)
French (fr)
Inventor
马腾
张世昌
赵振山
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/111266 priority Critical patent/WO2024031377A1/zh
Publication of WO2024031377A1 publication Critical patent/WO2024031377A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the present application relates to the field of communication technology, and more specifically, to a communication method and terminal equipment.
  • positioning technology the location of communication equipment in the communication network can be determined. For example, in some communication systems (such as NR systems), positioning can be achieved through positioning reference signals (PRS).
  • PRS positioning reference signals
  • This application provides a communication method and terminal equipment. Each aspect involved in this application is introduced below.
  • a communication method includes: on an unlicensed spectrum, a first terminal device sends a first positioning reference signal PRS through a sidelink.
  • a communication method includes: on an unlicensed spectrum, a second terminal device receives a first positioning reference signal PRS through a sidelink.
  • a terminal device is provided.
  • the terminal device is a first terminal device.
  • the terminal device includes: a first sending unit configured to send a first positioning reference through a sidelink on an unlicensed spectrum. Signal PRS.
  • a terminal device is provided.
  • the terminal device is a second terminal device.
  • the terminal device includes: a first receiving unit configured to receive a first positioning reference through a sidelink on an unlicensed spectrum. Signal PRS.
  • a terminal including a processor, a memory, and a transceiver.
  • the memory is used to store one or more computer programs.
  • the processor is used to call the computer program in the memory to cause the terminal device to execute Some or all of the steps in the method of the first aspect and/or the second aspect.
  • embodiments of the present application provide a communication system, which includes the above terminal device.
  • the system may also include other devices that interact with the terminal device in the solution provided by the embodiments of this application.
  • embodiments of the present application provide a computer-readable storage medium that stores a computer program, and the computer program causes a terminal to perform some or all of the steps in the methods of the above aspects.
  • embodiments of the present application provide a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause the terminal to execute each of the above. Some or all of the steps in a method.
  • the computer program product can be a software installation package.
  • embodiments of the present application provide a chip, which includes a memory and a processor.
  • the processor can call and run a computer program from the memory to implement some or all of the steps described in the methods of the above aspects.
  • the positioning technology of sidelink communication on the unlicensed spectrum can be implemented. That is to say, through the first PRS, the positioning of the first terminal device and/or the second terminal device performing side-link communication on the unlicensed spectrum can be achieved.
  • FIG. 1 is an example system architecture diagram of a wireless communication system to which embodiments of the present application can be applied.
  • Figure 2 is an example diagram of a side communication scenario within network coverage.
  • Figure 3 is an example diagram of a sidelink communication scenario with partial network coverage.
  • Figure 4 is an example diagram of a sidelink communication scenario outside network coverage.
  • Figure 5 is an example diagram of a side communication scenario with a central control node.
  • Figure 6 is an example diagram of a broadcast-based sidelink communication method.
  • Figure 7 is an example diagram of a unicast-based sidelink communication method.
  • Figure 8 is an example diagram of a multicast-based sidelink communication method.
  • Figure 9 is an example of the time slot structure of some side-link communication systems (such as NR-V2X systems).
  • Figure 10 is an example diagram showing changes in OFDM symbols available for PSSCH in different time slots.
  • Figure 11 is an example diagram of the time-frequency resources occupied by the second-order SCI in a time slot.
  • Figure 12 is a schematic diagram of a DMRS pattern of PSCCH.
  • Figure 13 is a schematic diagram of the time domain positions of 4 DMRS symbols when the number of PSSCH symbols is 14.
  • Figure 14 is an example diagram of single symbol DMRS frequency domain type 1.
  • Figure 15 is an example diagram of SL CSI-RS time-frequency position.
  • Figure 16 is an example diagram of a channel occupancy time obtained by a communication device after successful LBT on a channel in an unlicensed spectrum and the use of resources within the channel occupancy time for signal transmission.
  • Figure 17 is an example diagram of a scenario where a terminal device performs channel access.
  • Figure 18 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 19 is an example diagram of a communication method provided by an embodiment of the present application.
  • Figure 20 is an example diagram of a communication method provided by an embodiment of the present application.
  • Figure 21 is an example diagram of a communication method provided by an embodiment of the present application.
  • Figure 22 is an example diagram of a communication method provided by an embodiment of the present application.
  • Figure 23 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Figure 24 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Figure 25 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • FIG. 1 is an example system architecture diagram of a wireless communication system 100 applied in an embodiment of the present application.
  • the wireless communication system 100 may include a network device 110 and a terminal device 120.
  • the network device 110 may be a device that communicates with the terminal device 120 .
  • the network device 110 may provide communication coverage for a specific geographical area and may communicate with terminal devices 120 located within the coverage area.
  • the wireless communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices, which is not limited in this embodiment of the present application.
  • the wireless communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • the terminal equipment in the embodiment of this application may also be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station (MS), mobile terminal (MT) ), remote station, remote terminal, mobile device, user terminal, terminal, wireless communications equipment, user agent or user device.
  • the terminal device in the embodiment of the present application may be a device that provides voice and/or data connectivity to users, and may be used to connect people, things, and machines, such as handheld devices and vehicle-mounted devices with wireless connection functions.
  • the terminal device in the embodiment of the present application can be a mobile phone (mobile phone), a tablet computer (Pad), a notebook computer, a handheld computer, a mobile internet device (mobile internet device, MID), a wearable device, a virtual reality (virtual reality, VR) equipment, augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart Wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, etc.
  • the terminal device can be used to act as a base station.
  • the terminal device may act as a scheduling entity that provides sidelink signals between terminal devices in vehicle-to-everything (V2X) or device-to-device communication (D2D), etc. .
  • V2X vehicle-to-everything
  • D2D device-to-device communication
  • cell phones and cars use sidelink signals to communicate with each other.
  • Cell phones and smart home devices communicate between each other without having to relay communication signals through base stations.
  • the terminal device can be used to act as a base station.
  • the network device in the embodiment of the present application may be a device used to communicate with a terminal device.
  • the network device may also be called an access network device or a wireless access network device.
  • the network device may be a base station.
  • the network device in the embodiment of this application may refer to a radio access network (radio access network, RAN) node (or device) that connects the terminal device to the wireless network.
  • radio access network radio access network, RAN node (or device) that connects the terminal device to the wireless network.
  • the base station can broadly cover various names as follows, or be replaced with the following names, such as: Node B (NodeB), evolved base station (evolved NodeB, eNB), next generation base station (next generation NodeB, gNB), relay station, Access point, transmission point (transmitting and receiving point, TRP), transmitting point (TP), main station MeNB, secondary station SeNB, multi-standard wireless (MSR) node, home base station, network controller, access node , wireless node, access point (AP), transmission node, transceiver node, base band unit (BBU), radio remote unit (Remote Radio Unit, RRU), active antenna unit (active antenna unit) , AAU), radio head (remote radio head, RRH), central unit (central unit, CU), distributed unit (distributed unit, DU), positioning node, etc.
  • NodeB Node B
  • eNB evolved base station
  • next generation NodeB next generation NodeB, gNB
  • relay station Access point
  • the base station may be a macro base station, a micro base station, a relay node, a donor node or the like, or a combination thereof.
  • a base station may also refer to a communication module, modem or chip used in the aforementioned equipment or devices.
  • the base station can also be a mobile switching center and device to device (D2D), vehicle to vehicle (V2V), vehicle outreach (vehicle-to-everything, V2X), machine-to -Machine, M2M) communication equipment that performs base station functions, network side equipment in 6G networks, equipment that performs base station functions in future communication systems, etc.
  • Base stations can support networks with the same or different access technologies. The embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • Base stations can be fixed or mobile.
  • a helicopter or drone may be configured to act as a mobile base station, and one or more cells may move based on the mobile base station's location.
  • a helicopter or drone may be configured to serve as a device that communicates with another base station.
  • the network device in the embodiment of this application may refer to a CU or a DU, or the network device includes a CU and a DU.
  • gNB can also include AAU.
  • Network equipment and terminal equipment can be deployed on land, indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the sky. In the embodiments of this application, the scenarios in which network devices and terminal devices are located are not limited.
  • Sidelink communication refers to the communication technology based on sidelink (SL).
  • Sideline communication may be D2D or V2X, for example.
  • Sideline communication supports direct transmission of communication data between terminal devices.
  • the direct transmission of communication data between terminal equipment can have higher spectrum efficiency and lower transmission delay.
  • the Internet of Vehicles system uses side-travel communication technology.
  • side communication according to the network coverage of the terminal device, side communication can be divided into side communication within network coverage, side communication with partial network coverage, side communication outside network coverage, and side communication controlled by the central Control side communication of nodes.
  • FIG 2 is an example diagram of a side communication scenario within network coverage.
  • both terminal devices 120a are within the coverage of the network device 110. Therefore, both terminal devices 120a can receive the configuration signaling of the network device 110 (the configuration signaling in this application can also be replaced with configuration information), and determine the side row configuration according to the configuration signaling of the network device 110. After both terminal devices 120a are configured for sidelink, sidelink communication can be performed on the sidelink link.
  • FIG 3 is an example diagram of a sidelink communication scenario with partial network coverage.
  • the terminal device 120a and the terminal device 120b perform side-line communication.
  • the terminal device 120a is located within the coverage of the network device 110, so the terminal device 120a can receive the configuration signaling of the network device 110 and determine the sidelink configuration according to the configuration signaling of the network device 110.
  • the terminal device 120b is located outside the network coverage and cannot receive the configuration signaling of the network device 110.
  • the terminal device 120b may be configured according to the pre-configuration information and/or the information carried in the physical sidelink broadcast channel (PSBCH) sent by the terminal device 120a located within the network coverage. Determine side row configuration. After both the terminal device 120a and the terminal device 120b perform side-link configuration, side-link communication can be performed on the side-link.
  • PSBCH physical sidelink broadcast channel
  • FIG 4 is an example diagram of a sidelink communication scenario outside network coverage.
  • both terminal devices 120b are located outside the network coverage.
  • both terminal devices 120b can determine the side row configuration according to the preconfiguration information.
  • sidelink communication can be performed on the sidelink link.
  • FIG. 5 is an example diagram of a side communication scenario with a central control node.
  • multiple terminal devices 120b may form a communication group.
  • the central control node can become a cluster header (CH) terminal device.
  • the central control node can have one or more of the following functions: responsible for the establishment of communication groups, the joining and leaving of group members, resource coordination, allocating side transmission resources to other terminal devices, and receiving side transmission feedback from other terminal devices. Information, resource coordination and other functions with other communication groups.
  • Some standards or protocols (such as the 3rd generation partnership project (3GPP)) define two modes (or transmission modes) of sideline communication: the first mode and the second mode.
  • 3GPP 3rd generation partnership project
  • the resources of the terminal device are allocated by the network device.
  • the terminal device can send data on the sidelink according to the resources allocated by the network device.
  • the network device can allocate single-transmission resources to the terminal device or allocate semi-static transmission resources to the terminal device.
  • This first mode can be applied to scenarios covered by network devices, such as the scenario shown in Figure 2 above.
  • the terminal device 120a is located within the network coverage of the network device 110, so the network device 110 can allocate resources used in the sidelink transmission process to the terminal device 120a.
  • the terminal device can autonomously select one or more resources from the resource pool (RP). Then, the terminal device can perform sidelink transmission according to the selected resources.
  • the terminal device 120b is located outside the cell coverage. Therefore, the terminal device 120b can autonomously select resources from the preconfigured resource pool for sidelink transmission.
  • the terminal device 120a can also independently select one or more resources from the resource pool configured by the network device 110 for side transmission.
  • Some sideline communication systems support broadcast-based data transmission (hereinafter referred to as broadcast transmission).
  • the receiving terminal device can be any terminal device surrounding the sending terminal device.
  • terminal device 1 is a sending terminal device
  • the receiving terminal device corresponding to the sending terminal device is any terminal device around terminal device 1, for example, it can be terminal device 2-terminal device in Figure 6 6.
  • some communication systems also support unicast-based data transmission (hereinafter referred to as unicast transmission) and/or multicast-based data transmission (hereinafter referred to as multicast transmission).
  • unicast transmission hereinafter referred to as unicast transmission
  • multicast transmission hereinafter referred to as multicast transmission.
  • NR-V2X hopes to support autonomous driving. Autonomous driving places higher requirements on data interaction between vehicles. For example, data interaction between vehicles requires higher throughput, lower latency, higher reliability, larger coverage, more flexible resource allocation, etc. Therefore, in order to improve the data interaction performance between vehicles, NR-V2X introduces unicast transmission and multicast transmission.
  • terminal device 1 For unicast transmission, there is generally only one terminal device at the receiving end. Taking Figure 7 as an example, unicast transmission is performed between terminal device 1 and terminal device 2.
  • Terminal device 1 may be a sending terminal device
  • terminal device 2 may be a receiving terminal device
  • terminal device 1 may be a receiving terminal device
  • terminal device 2 may be a sending terminal device.
  • the receiving terminal device may be a terminal device within a communication group (group), or the receiving terminal device may be a terminal device within a certain transmission distance.
  • group a communication group
  • terminal device 1 terminal device 2, terminal device 3 and terminal device 4 form a communication group. If terminal device 1 sends data, other terminal devices (terminal device 2 to terminal device 4) in the group can all be receiving terminal devices.
  • a time slot can include physical sidelink control channel (PSCCH), physical sidelink shared channel (PSSCH), physical sidelink feedback channel (PSFCH) and other channels.
  • PSCCH physical sidelink control channel
  • PSSCH physical sidelink shared channel
  • PSFCH physical sidelink feedback channel
  • Figure 9 is an example of the time slot structure of some side-link communication systems (such as NR-V2X systems).
  • Figure 9(a) is an example of the time slot structure that does not include the physical sidelink feedback channel (PSFCH) in the time slot.
  • Figure 9(b) is an example of a time slot structure including a PSFCH channel in the time slot.
  • PSFCH physical sidelink feedback channel
  • the PSCCH can start from the second sidelink symbol of the time slot and occupy 2 or 3 orthogonal frequency division multiplexing (OFDM) symbols. In the frequency domain It can occupy ⁇ 10,12 15,20,25 ⁇ physical resource blocks (PRB).
  • PRB physical resource blocks
  • sub-channel is the minimum granularity of PSSCH resource allocation in some side-link communication systems (such as NR-V2X system). Therefore, the number of PRBs occupied by PSCCH must be less than or equal to the number of PRBs contained in a sub-channel in the resource pool. So as not to cause additional restrictions on PSSCH resource selection or allocation.
  • the PSSCH can start from the second sidelink symbol of the slot.
  • the last time domain symbol in the time slot is a guard period (GP) symbol (also called a gap (GAP) symbol), and the remaining symbols can be mapped to PSSCH.
  • the first siderow symbol in a slot may be a repetition of the second siderow symbol.
  • the receiving terminal equipment can use the first side row symbol as an automatic gain control (AGC) symbol, and the data on this symbol is usually not used for data demodulation.
  • AGC automatic gain control
  • PSSCH can occupy K sub-channels in the frequency domain, and each sub-channel can include N consecutive PRBs. Among them, K can be an integer greater than 0, and N can be an integer greater than 0.
  • the second to last and third to last symbols in the time slot can be used as PSFCH channel transmission, and a time domain symbol before the PSFCH channel can be used as GP symbol.
  • PSSCH can be used to carry second-level sidelink control information (SCI).
  • SCI second-level sidelink control information
  • the second level of SCI can include SCI 2-A or SCI 2-B.
  • the second-level SCI can use Polar encoding.
  • the second-order SCI can fixedly adopt QPSK modulation.
  • the data part of PSSCH can use low density parity check (LDPC).
  • LDPC low density parity check
  • the highest modulation order that the data part of PSSCH can support is 256QAM.
  • PSSCH supports up to two stream transmissions, and a unit precoding matrix is used to map data on two layers to two antenna ports.
  • a unit precoding matrix is used to map data on two layers to two antenna ports.
  • at most Can send a terabyte.
  • the modulation symbols sent by the second-order SCI on the two streams are exactly the same. This design can ensure the performance of the second-order SCI under high correlation channels. reception performance.
  • the maximum number of retransmissions of a PSSCH is 32 times. If there are PSFCH resources in the resource pool, and the configuration period of the PSFCH resources is 2 or 4, the OFDM symbols available in the time slots where different transmissions of a PSSCH occur may change.
  • Figure 10 is an example diagram showing changes in OFDM symbols available for PSSCH in different time slots. As shown in Figure 10, due to the existence of PSFCH resources, the number of OFDM symbols available for the nth transmission and the n+1th transmission of PSSCH is different.
  • Q′ SCI2 may be different due to the different number of symbols available for PSSCH transmission in a time slot, and changes in Q′ SCI2 will cause changes in the size of the TB carried by PSSCH, as described below.
  • TBS transmission block size
  • the actual number of PSFCH symbols is not used when calculating When, the number of resource elements (resource elements, RE) occupied by the PSSCH demodulation reference signal (DMRS) that may change during the retransmission process and the tracking reference signal (phase-tracking reference signals, PT-RS) The number of occupied REs is also not taken into account.
  • RE resource elements
  • DMRS PSSCH demodulation reference signal
  • PT-RS phase-tracking reference signals
  • FIG 11 is an example diagram of the time-frequency resources occupied by the second-order SCI in a time slot. As shown in Figure 11, the modulation symbols of the second-order SCI can be mapped from the symbol where the first PSSCH DMRS is located in the frequency domain first and then the time domain. The second-order SCI can be mapped to the OFDM symbol where the DMRS is located. On the RE occupied by DMRS.
  • the data part of PSSCH can use multiple different modulation and coding scheme (MCS) tables.
  • MCS modulation and coding scheme
  • the MCS table specifically used for the data part of the PSSCH can be indicated by the "MCS table indication" field in the first-level SCI.
  • PSSCH In order to control PAPR, PSSCH must use continuous PRB transmission. Since the subchannel is the minimum frequency domain resource granularity of PSSCH, PSSCH must occupy continuous subchannels.
  • PSSCH follows the TBS determination mechanism of PDSCH and PUSCH, that is, the TBS can be determined based on the reference value of the number of REs used for PSSCH in the time slot where PSSCH is located, so that the actual code rate is as close as possible to the target code rate.
  • the purpose of using the reference value of the number of REs instead of the actual number of REs is to ensure that the number of REs used to determine the TBS remains unchanged during PSSCH retransmission, so that the size of the determined TBSs is the same.
  • the reference value N RE for the number of REs occupied by PSSCH during the TBS determination process can be determined according to the following formula:
  • n PRB is the number of PRBs occupied by PSSCH
  • n RE is the number of REs occupied by the first-order SCI (including REs occupied by DMRS of PSCCH)
  • N′ RE represents the number of reference REs that can be used for PSSCH in a PRB.
  • N′ RE can be determined by the following formula:
  • It can represent the number of subcarriers in a PRB, for example, Indicates the number of symbols that can be used for side rows in a time slot, which may not include the last GP symbol and the first symbol used for AGC.
  • the reference value can represent the number of REs occupied by PT-RS and channel state information-reference signal (channel state information-reference signal, CSI-RS), and can be configured by radio resource control (radio resource control, RRC) layer parameters. It can represent the average number of DMRS REs in a time slot, which is related to the DMRS pattern allowed in the resource pool. Table 1 shows the DMRS patterns allowed within the resource pool and corresponding relationship.
  • the DMRS pattern of PSCCH can be the same as the downlink control channel (physical downlink control channel, PDCCH). That is to say, DMRS can exist on each OFDM symbol of PSCCH, and can be located in ⁇ #1, #5, #9 ⁇ REs of a PRB in the frequency domain.
  • Figure 12 is a schematic diagram of a DMRS pattern of PSCCH.
  • the DMRS sequence of PSCCH is generated by the following formula:
  • the pseudo-random sequence c(m) can be given by Perform initialization.
  • l can represent the index of the OFDM symbol in the slot where the DMRS is located, It can represent the index of the DMRS time slot within the system frame. It can represent the number of OFDM symbols in a time slot, N ID ⁇ ⁇ 0,1,...,65535 ⁇ .
  • the specific value of N ID in a resource pool is configured or pre-configured by the network.
  • Some side-link communication systems use multiple time-domain PSSCH DMRS patterns, which are designed from the Uu interface of the NR system.
  • the number of DMRS patterns that can be used may be related to the number of PSSCH symbols in the resource pool.
  • the available DMRS patterns and the position of each DMRS symbol within the pattern are shown in Table 2.
  • Figure 13 is a schematic diagram of the time domain positions of 4 DMRS symbols when the number of PSSCH symbols is 14.
  • the specific time-domain DMRS pattern used is selected by the sending terminal device and indicated in the first-level SCI.
  • Such a design allows high-speed moving terminal equipment to select a high-density DMRS pattern to ensure the accuracy of channel estimation, while for low-speed moving terminal equipment, a low-density DMRS pattern can be used to improve spectral efficiency.
  • PSSCH DMRS sequence is almost the same as that of PSCCH DMRS sequence.
  • the only difference lies in the initialization formula c init of pseudo-random sequence c(m),
  • p i is the i-th CRC of the PSCCH that schedules the PSSCH.
  • PDSCH and PUSCH support two frequency domain DMRS patterns, namely DMRS frequency domain type 1 and DMRS frequency domain type 2.
  • DMRS frequency domain type 1 supports 4 DMRS ports
  • single-symbol DMRS frequency domain type 2 can support 6 DMRS ports.
  • dual DMRS symbols the number of supported ports is doubled.
  • PSSCH may only need to support up to two DMRS ports, it may only support single-symbol DMRS frequency domain type 1.
  • Figure 14 is an example diagram of single symbol DMRS frequency domain type 1.
  • the sidelink communication system can support sidelink CSI-RS (SL CSI-RS) to better support unicast communication.
  • SL CSI-RS can be sent when the following three conditions are met: the terminal device sends the corresponding PSSCH, that is, the terminal device cannot only send SL CSI-RS; high-level signaling activates SL CSI-RS reporting; in high-level signaling When SL CSI-RS reporting is activated, the corresponding bit in the second-order SCI sent by the terminal device triggers SL CSI-RS reporting.
  • the maximum number of ports supported by SL CSI-RS is 2.
  • the SL CSI-RS of two ports that are different ports are multiplexed on two adjacent REs of the same OFDM symbol through code division.
  • the number of SL CSI-RS for each port in a PRB is 1, that is, the density is 1. Therefore, SL CSI-RS will only appear on at most one OFDM symbol in a PRB.
  • the specific position of this OFDM symbol can be determined by the sending terminal equipment.
  • SL CSI-RS cannot be located in the same OFDM symbol as PSCCH and second-order SCI.
  • the SL-CSI-RS cannot be sent in the same channel as the DMRS of the PSSCH. on OFDM symbols.
  • the position of the OFDM symbol where the SL CSI-RS is located is indicated by the sl-CSI-RS-FirstSymbol parameter in PC5RRC.
  • the position of the first RE occupied by SL CSI-RS within a PRB can be indicated by the sl-CSI-RS-FreqAllocation parameter in PC5RRC.
  • this parameter can be a 12-bit bitmap, corresponding to 12 REs in a PRB.
  • this parameter is a bitmap with a length of 6.
  • the SL CSI-RS can occupy two REs of 2f(1) and 2f(1)+1.
  • f(1) can represent the index of the bit with a value of 1 in the above-mentioned bitmap.
  • the frequency domain position of the SL CSI-RS can also be determined by the sending terminal equipment.
  • Figure 15 is an example diagram of SL CSI-RS time-frequency location.
  • the number of SL CSI-RS ports is 2
  • sl-CSI-RS-FirstSymbol is 8
  • Unlicensed spectrum is a spectrum allocated by countries and regions that can be used for radio equipment communication. This spectrum is usually considered a shared spectrum, that is, communication equipment can use this spectrum as long as it meets the regulatory requirements set by the country or region on this spectrum. There is no need to apply for exclusive spectrum authorization from the exclusive spectrum management agency of the country or region. Unlicensed spectrum can also be called shared spectrum, unlicensed spectrum, unlicensed frequency band or unlicensed frequency band, etc.
  • NR-U NR-unlicensed
  • the NR-U system supports two networking methods: assisted access to licensed spectrum and independent access to unlicensed spectrum.
  • Assisted access to licensed spectrum requires the use of licensed spectrum to access the network, while unlicensed spectrum is used as a secondary carrier.
  • Independent access to unlicensed spectrum can be independently networked through unlicensed spectrum, and terminal devices can directly access the network through unlicensed spectrum.
  • the range of unlicensed spectrum used by the NR-U system introduced in 3GPP R16 is concentrated in the 5GHz and 6GHz frequency bands. For example, in the United States, the unlicensed spectrum ranges from 5925–7125MHz; in Europe, the unlicensed spectrum ranges from 5925–6425MHz. In the R16 standard, band 46 (5150MHz-5925MHz) is newly defined as unlicensed spectrum.
  • NR-U NR technology needs to be enhanced accordingly to adapt to the regulatory requirements of unlicensed frequency bands, while efficiently utilizing unlicensed spectrum to provide services.
  • 3GPP R16 the standardization of NR-U technology in the following aspects has been mainly completed: channel monitoring process; initial access process; control channel design; HARQ and scheduling; scheduling-free authorized transmission, etc.
  • LBT principles may include: communication equipment needs to perform LBT before using channels on unlicensed spectrum to transmit signals.
  • LBT is successful, the result of channel monitoring is that the channel is idle.
  • the communication device can send signals through the channel only when the channel is idle. If the channel monitoring result of the communication device on the channel is that the channel is busy or the LBT fails, the communication device cannot send signals through the channel.
  • the communication device in order to ensure fairness in the use of spectrum resources in the shared spectrum, if a communication device succeeds in LBT on an unlicensed spectrum channel, the communication device can use the channel for communication transmission for a period of time not exceeding a certain period. This mechanism allows different communication devices to have the opportunity to access the shared channel by limiting the maximum duration of communication after a successful LBT, thereby allowing different communication systems to coexist friendly on the shared spectrum.
  • COT channel occupancy time
  • MCOT maximum channel occupancy time
  • COT of network equipment such as base stations
  • COT of terminal equipment such as base stations
  • MCOT can refer to the maximum length of time that communication devices are allowed to use channels in unlicensed spectrum for signal transmission if LBT is successful. It should be understood that MCOT refers to the time occupied by signal transmission. If the channel access priority of the communication device is different, the MCOT corresponding to the communication device may be different. The maximum value of MCOT can be set to 10ms, for example.
  • Figure 16 is an example diagram of a channel occupancy time obtained by a communication device after successful LBT on a channel in an unlicensed spectrum and the use of resources within the channel occupancy time for signal transmission.
  • channel monitoring is not a global regulatory requirement, channel monitoring can bring the benefits of interference avoidance and friendly coexistence to communication transmissions between communication systems on shared spectrum. Therefore, in the design process of NR systems on unlicensed spectrum, channel monitoring is a feature that communication equipment in the system needs to support.
  • Some communication systems introduce channel access methods through LBT. Some communication systems may also support channel access through short control signaling transmission (SCSt). The above two channel access methods are introduced below respectively.
  • the channel access method for channel access through LBT can include two mechanisms.
  • One is LBT based on load based equipment (LBE), also known as dynamic channel monitoring or dynamic channel. Occupation; the other is the LBT of frame based equipment (FBE), also known as semi-static channel monitoring or semi-static channel occupancy.
  • LBE load based equipment
  • FBE frame based equipment
  • the LBT principle of dynamic channel monitoring is: the communication device performs LBT on the carrier of the unlicensed spectrum after the service arrives, and starts transmitting signals on the carrier after the LBT is successful.
  • the LBT method of dynamic channel monitoring may include a Type 1 channel access method and a Type 2 channel access method.
  • the following uses network equipment as an example to introduce the Type 1 channel access method and Type 2 channel access method in detail. It can be understood that the process of channel monitoring by other communication devices such as terminal devices through the Type 1 channel access method or the Type 2 channel access method is similar.
  • Type 1 channel access method can also be called multi-slot channel detection based on random backoff with contention window size adjustment.
  • the communication device can initiate channel occupation with a length of Tmcot according to the channel access priority p. If the network device uses the type 1 channel access method, the network device can not only send its own data during the channel occupation period, but also share the COT with the terminal device. Sharing the COT with the terminal device refers to allowing the terminal device to send data within the time period corresponding to the COT (that is, the COT obtained by the network device through channel access). Correspondingly, if the terminal device uses the type 1 channel access method, the terminal device can not only send its own data during the channel occupation period, but also share the COT with the network device.
  • Table 3 shows the channel access priority and its corresponding parameters when the terminal device performs type 1 channel access mode.
  • the default channel access mode on the network device side is type 1 channel access mode.
  • the channel access parameters corresponding to the channel access priority p are shown in Table 3.
  • m p can refer to the number of backoff slots corresponding to the channel access priority p
  • CW p can refer to the contention window (CW) size corresponding to the channel access priority p
  • CW min,p It can refer to the minimum value of CW p corresponding to the channel access priority p.
  • CW max,p can refer to the maximum value of CW p corresponding to the channel access priority p.
  • T mcot,p refers to the channel access priority. The maximum occupied time length of the channel corresponding to level p.
  • Type 2 channel access method can also be called a channel access method based on a fixed-length channel monitoring time slot.
  • Type 2 channel access methods include Type 2A channel access methods (Type2A channel access methods), Type 2B channel access methods (Type2B channel access methods), and Type 2C channel access methods (Type2C channel access method).
  • Type2A channel access methods Type 2A channel access methods
  • Type2B channel access methods Type 2B channel access methods
  • Type 2C channel access methods Type2C channel access methods
  • the communication device can use a single time slot detection of the 25us channel.
  • the communication device can start channel detection 25us before data starts to be sent.
  • the 25us channel detection can include a 16us channel detection and a 9us channel detection. If both detection results indicate that the channel is idle, the channel can be considered to be idle and channel access can be performed.
  • the communication device can use a single time slot of 16us for channel detection. During the channel detection process, if the communication device detects that the channel is idle for more than 4us in the last 9us, it can be considered that the channel is idle.
  • the communication device may directly transmit data through the channel without performing channel detection.
  • the time difference between this transmission and the previous transmission is less than or equal to 16us. That is to say, if the time difference between two transmissions is less than or equal to 16us, it can be considered as the same transmission and no channel detection is required. It should be noted that in the type 2C channel access method, the transmission time of the communication device is limited and usually cannot exceed 584us.
  • SCSt is a transmission in which the communication device does not sense the presence of other signals on the channel.
  • SCSt is a transmission used by communication devices to send management and control frames without sensing the presence of other signals on the channel.
  • SCSt is a transmission used by communication devices to send management and control frames without sensing the presence of other signals on the channel.
  • the communication device does not need to listen to the channel to access the channel for transmission.
  • certain conditions need to be met to adopt SCSt.
  • the communication device needs to meet one or more of the following conditions: within the 50ms observation period, the number of times SCSt is used is less than or equal to 50; and within the 50ms observation period During this period, SCSt occupies no more than 2.5ms.
  • the type 1 channel access mechanism requires a relatively long channel monitoring process.
  • another short LBT that is, an LBT with a shorter duration
  • the transmission resources after successful access through Type 1 can be shared with other communication devices.
  • the terminal device can share the transmission resources after successful Type 1 access to other terminal devices for use, while other terminal devices are sharing Before sending resources (such as COT resources), Type-2A/B/C LBT must be performed according to specific conditions to ensure that the resources are still valid and have not been taken away before sending.
  • Figure 17 is an example diagram of a terminal device performing channel access on a license-free spectrum.
  • Terminal equipment 1 (represented by UE1 in Figure 17) performs type 1 channel access at slot n. In time slot n+1, terminal device 1 transmits data. Before time slot n+1, terminal device 1 performs a short LBT, and then transmits data after the short LBT is successful. Terminal device 1 shares time slot n+2 in the resource within the COT with other communication devices.
  • the terminal device 2 (represented by UE2 in Figure 17) performs type 2A channel access before time slot n+2. After the channel access is successful, the terminal device 2 transmits data in time slot n+2.
  • positioning technology can be a technology that determines the geographical location of a communication device located in a communication network through a certain method.
  • positioning can be achieved through positioning reference signals (PRS).
  • PRS positioning reference signals
  • OTDOA observed time difference of arrival
  • Positioning based on side lines is one of the enhanced solutions for R18 positioning technology.
  • scenarios and requirements for supporting NR positioning use cases within cellular network coverage, partial coverage and outside coverage will be considered.
  • V2X use cases, public safety use cases, Positioning requirements for commercial use cases and industrial Internet of things (IIOT) use cases and consider supporting the following functions: absolute positioning, ranging/direction finding, and relative positioning; study positioning that combines lateral measurements and Uu interface measurements Methods: Study sidelink positioning reference signals, including signal design, physical layer control signaling, resource allocation, physical layer measurements, and related physical layer processes, etc.; Study positioning system architecture and signaling processes, such as configuration, measurement reporting wait.
  • Figure 18 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • the method shown in Figure 18 may be executed by the first terminal device and/or the second terminal device.
  • the method shown in Figure 18 may include step S1810.
  • Step S1810 On the unlicensed spectrum, the first terminal device sends the first PRS through the side link. Correspondingly, the second terminal device receives the first PRS through the sidelink.
  • the first PRS may be a PRS used for sidelink positioning, that is, the first PRS may be a sidelink PRS (sidelink PRS, SL-PRS).
  • sidelink PRS sidelink PRS
  • SL-PRS sidelink PRS
  • the positioning technology of sidelink communication on the unlicensed spectrum can be implemented. That is to say, through the first PRS, the positioning of the first terminal device and/or the second terminal device performing side-link communication on the unlicensed spectrum can be achieved.
  • the positioning may include one or more of absolute positioning, ranging/direction finding, and relative positioning.
  • the first PRS does not need to be sent periodically. Alternatively, the first PRS may also be sent periodically.
  • the sending of the first PRS may be implemented based on first channel access. That is to say, the first terminal device may perform first channel access to transmit the first PRS in the unlicensed spectrum.
  • the first channel access may be a channel access method that performs channel monitoring, that is, the first channel access may include a channel monitoring process.
  • the channel monitoring process may be, for example, the LBT process described above. It can be understood that when the channel monitoring process is successful, the first channel access process may also be successful. In the event that the channel monitoring process fails, the first channel access process may fail.
  • the result of the first channel access can be successful or failed. That is to say, if the first channel access is successful, the first terminal device can send the first PRS. In the case where access to the first channel fails, the first terminal device may also send the first PRS. In some implementations, in the event that the first channel access fails, the first terminal device may repeatedly send the first PRS. Repeatedly transmitted PRSs can be combined to achieve positioning.
  • the first channel access and the transmission of the first PRS may be performed in the same time slot.
  • the first terminal device may perform first channel access on the first time slot, and the first terminal device may send the first PRS on the first time slot. It can be understood that in the first time slot, the first PRS can be sent quickly, thereby achieving more efficient transmission of SL-PRS.
  • the first time slot may include one or more symbols (eg, OFDM symbols) for sideline communications.
  • One or more symbols for sidelink communications may include resources for SL-U communications.
  • the first time slot may include SL-U communication resources or non-SL-U communication resources.
  • all symbols in the first slot may be used for sidelink communications.
  • part of the symbols in the first slot may be used for sideline communications.
  • the symbols used for sidelink communication can be used to transmit sidelink signals or sidelink channels.
  • symbols used for sidelink communication may be used to transmit one or more of PSCCH, PSSCH, and sidelink synchronization signal block (S-SSB).
  • S-SSB sidelink synchronization signal block
  • the symbols used for sideline communication in one time slot may be continuous.
  • the first channel access may start with a third symbol, which may be, for example, one of one or more symbols used for sidelink communication in the first time slot. It can be understood that the third symbol may be any one of one or more symbols used for sideline communication in the first time slot.
  • the third symbol may be a preset value, predefined by the protocol, configured by high-level signaling, or determined by the terminal device itself.
  • n consecutive OFDM symbols can be used for sideline communication.
  • first channel access can be started.
  • k can be an integer greater than or equal to
  • n can be an integer greater than
  • m can be an integer greater than or equal to k.
  • the third symbol may be the first symbol of one or more symbols used for sideline communications in the first time slot. That is, in the case where the symbols in the first time slot can be used for side-link communication, the first channel access can be performed immediately. It can be understood that in this case, the first channel access can be performed as early as possible, thereby transmitting the first PRS as early as possible.
  • Figure 19 is an example diagram of a communication method provided by an embodiment of the present application.
  • the first time slot may be time slot t.
  • Symbol 2 is the first of 12 symbols used for sideline communications.
  • the first channel access may start with symbol 2. That is, the third symbol may be symbol 2.
  • Figure 20 is an example diagram of another communication method provided by an embodiment of the present application.
  • the first time slot may be time slot t.
  • the time slot t includes 12 symbols used for sideline communication, namely symbols 3 to 13.
  • Symbol 4 is one of 12 symbols used for sideline communications.
  • the first channel access may start with symbol 4. That is, the third symbol may be symbol 4.
  • the first PRS can occupy one or more symbols.
  • the number of symbols occupied by the first PRS may be less than or equal to the total number of symbols in the first time slot.
  • the resources occupied by SL-PRS transmission may be less than or equal to one time slot.
  • the number of symbols occupied by the first PRS may be less than or equal to the number of symbols available for sidelink communication in the first time slot.
  • the first symbol occupied by the first PRS may be the first symbol, the symbol preceding the first symbol may be the second symbol, and the first channel access may end with the second symbol.
  • Both the first symbol and the second symbol may be symbols used for side-line communication.
  • the first symbol may be the second symbol in the first time slot (ie, symbol 1)
  • the second symbol may be the first symbol in the first time slot (ie, symbol 0). That is to say, the first PRS can be transmitted in the symbol next to the symbol where the first channel access ends.
  • the first channel access ends at symbol 2. That is, symbol 2 is the second symbol.
  • the next symbol of symbol 2, symbol 3, may be the first symbol.
  • the first PRS may start transmission at symbol 3.
  • the first channel access process may end at the end time of the second symbol. That is to say, at the end time of the second symbol, the first channel access process ends. In other words, at the start time of the first channel, the first channel access process ends.
  • the first channel access procedure may end in the last microsecond of the second symbol.
  • the first PRS may start transmission immediately following the first symbol (the symbol next to the second symbol).
  • the start time of the first channel access may be determined based on the end time of the first channel access, so that when the first channel access is completed, the first PRS can be immediately started to be sent on the first symbol.
  • the start time of the first channel access may be determined based on the end time of the first channel access and the duration of the first channel access.
  • the start time of the first channel access may be the first time before the end time of the second symbol, and the first time is the same as the end time of the second symbol.
  • the time length between the end moments of the second symbol may be the duration of the first channel access.
  • the time C when the first channel access ends may be the end time of symbol 2 or the start time of symbol 3, and the first PRS may start transmitting immediately after symbol 3.
  • a first time gap may be included between the end time of the first channel access and the start time of the first PRS transmission. That is to say, after the first channel access is completed, the first PRS may not be sent immediately.
  • the first channel access may start at the starting time (or starting position, starting point) of the second symbol in the first time slot.
  • the end time of the first channel access may be earlier than the end time of the second symbol.
  • the first time slot can make the start or end of the first channel access more flexible, that is, the start time or end time of the first channel access does not need to be determined based on the first PRS transmission start time. .
  • the first time slot can make the transmission start time of the first PRS more flexible, that is, the transmission start time of the first PRS does not need to be determined based on the end time of the first channel access.
  • the first channel access may end in the middle of the second symbol (any time between the start time and the end time of the second symbol).
  • the first terminal device may send the placeholder, and the second terminal device may receive the placeholder.
  • the placeholder may be used for the first terminal device to occupy the channel accessed in the first channel access process, thereby preventing other communication devices from occupying the channel.
  • the placeholder can be a cyclic prefix extension (CPE).
  • CPE cyclic prefix extension
  • Figure 21 is an example diagram of a communication method provided by an embodiment of the present application.
  • the first channel access process ends in the middle of symbol 4, that is, the time C when the first channel access ends is not the end time of symbol 4.
  • the transmission of the first PRS starts with symbol 5.
  • the first terminal device may send the CPE.
  • the first channel access may not occur on GAP symbols.
  • the time slot preceding the first time slot is the second time slot.
  • the last one or more symbols may be GAP symbols, that is, the GAP symbols are connected to the first time slot.
  • the first channel access may not occur on the GAP symbols in the second slot.
  • the first time slot may include GAP symbols, and the first channel access does not occur in the GAP symbols in the first time slot.
  • the previous time slot of the first time slot may be the second time slot.
  • the second time slot can be used for side-link communication
  • the first terminal device or another terminal device performs side-link communication in the second time slot
  • the first channel Access may not occur on the GAP symbols of the second slot.
  • the duration of the first channel access may be shorter.
  • the duration of the first channel access may be less than or equal to the length of one symbol.
  • the type of the first channel access may be Type 2A or Type 2B. It can be understood that compared with most cases of Type 1, the channel access duration of Type 2A or Type 2B (in the case of Type 2A or Type 2B, the channel access duration may be the channel monitoring duration) is shorter. In some cases, the channel access duration of Type 2A and Type 2B may be less than the length of one symbol. As mentioned above, the channel access duration of type 2A is 25 microseconds, and the channel access duration of type 2B is 16 microseconds. Taking the sub-carrier spacing (SCS) as 15KHz as an example, the length of a symbol is approximately 71.4 microseconds. The channel access time of type 2A or type 2B is much less than the length of one symbol, that is, the first channel access process can be completed within one symbol.
  • SCS sub-carrier spacing
  • the channel access duration of Type 2A or Type 2B may also be longer than the length of one symbol. It can be understood that even in this case, Type 2A or Type 2B is shorter than most Type 1 channel access durations.
  • the first channel access may not be implemented based on the COT sharing scenario. That is to say, the default channel access type used by the first terminal device to send the first PRS may not be type 1 (for example, type 2).
  • the type of first channel access may also be type 1.
  • Type 1 CW sizes can be larger or smaller. When the CW is larger (for example, greater than or equal to the first CW threshold), the duration of the first channel access is longer; when the CW is smaller (for example, less than or equal to the second CW threshold), the first channel access is lasts longer.
  • the type of the first channel access is Type 1, a shorter duration method in Type 1 can be selected to perform the first channel access.
  • the shorter channel access time can save channel access time and resources, and the first PRS can also be sent as early as possible to improve positioning efficiency.
  • the first channel access method may be a channel access method that does not require channel monitoring. That is to say, the first terminal device may directly send the first PRS without performing the LBT process. It can be understood that this can greatly simplify the process of first channel access.
  • the first channel access may be performed based on the first condition.
  • the first condition may relate to the second time interval, for example.
  • the second time interval may be, for example, the interval between the start time of sending the first PRS and the end time of the last sidelink communication.
  • the last end time of side-link communication may be the end time of transmission of side-link communication by the first terminal device or other terminal equipment (not the first terminal device).
  • the first condition may include: when the second time interval is less than the first threshold, the first channel access method may be an access method that does not require channel monitoring.
  • the first threshold may be, for example, X microseconds. Among them, X can be an integer greater than 0. X can be preset, protocol-specified, or configured through high-level signaling.
  • the first channel access method may be Type 2C.
  • the first condition is consistent with the channel access condition of type 2C, the first channel access mode can be considered to be type 2C.
  • the first PRS may be sent in a short control signaling transmission (SCSt) mode.
  • SCSt short control signaling transmission
  • the channel monitoring process may not be performed, that is, the sending process of the first PRS may be simplified.
  • the channel monitoring process may also be performed.
  • the first channel access mode may be Type 2A or Type 2B and the first PRS may be sent in SCSt mode.
  • the first PRS may be carried on the first sidelink resource, and the first sidelink resource is configured in the resource pool through preconfiguration or through high-layer signaling.
  • the first sidelink resources may include time domain resources.
  • the time slot for transmitting the first PRS may be configured in the resource pool through preconfiguration or higher layer signaling.
  • the first terminal device can obtain the first sidelink resource and transmit the first PRS through sidelink sensing and resource selection mechanisms. Alternatively, the first terminal device may directly select the first sidelink resource to transmit the first PRS without using the sidelink sensing or resource selection mechanism.
  • possible combinations of implementations of the method provided by this application may include but are not limited to: 1) The first terminal device does not obtain the sidelink transmission resource for transmitting the first PRS through sidelink sensing, and the first channel access The mode is Type 2A or Type 2B, and the first PRS is sent in the SCSt mode; 2) The first terminal device obtains sidelink transmission resources for transmitting the first PRS through sidelink sensing, and the first channel access mode is Type 2A or Type 2B. 2B, and sends the first PRS through SCSt; 3) The first terminal device does not obtain the sidelink transmission resources for transmitting the first PRS through sidelink sensing, and the first channel access method is channel access that does not require channel monitoring. mode, and send the first PRS via SCSt mode.
  • the method disclosed in Embodiment 1 may include steps S1910 to S1920.
  • the method provided in Embodiment 1 can be implemented by the first terminal device and/or the second terminal device.
  • Step S1910 The first terminal device performs first channel access at symbol k.
  • Symbol k is the symbol in the first time slot.
  • n consecutive OFDM symbols starting from the k-th symbol can be used for sidelink communication. That is, symbol k may serve as the first symbol among multiple symbols used for sideline communication in the first time slot.
  • k can be an integer greater than or equal to 0, and n can be an integer greater than 0.
  • the first channel access method is Type 2A or Type 2B.
  • time slot t may be the first time slot.
  • Symbol 0 and symbol 1 in time slot t are not used for sideline communications.
  • the length of symbol k can satisfy the second condition.
  • the second condition may include that the length of the symbol k is greater than or equal to the channel monitoring (eg, LBT process) duration L of the channel access process.
  • the channel monitoring time L may be 25 ⁇ s.
  • the channel monitoring duration L may be 16 ⁇ s. It can be understood that the first channel access mode is type 2A or type 2B, both of which can satisfy the second condition.
  • Step S1920 If the first channel access is successful, the first terminal device may send the first PRS starting from symbol k+1. The second terminal device may receive the first PRS starting from symbol k+1.
  • the first terminal device needs to complete the first channel access process (including the channel monitoring process).
  • the channel listening process is completed in the last microsecond of symbol 2, and the first channel access process is completed successfully.
  • the first terminal device then starts sending the first PRS (ie SL-PRS) at symbol 3.
  • the transmission of the first PRS occupies 7 symbols from symbol 3 to symbol 9.
  • resources for sideline communication can be obtained through sideline sensing.
  • the first terminal device performs side-link sensing, it can obtain resources for side-link communication through the side-link sensing and resource selection process.
  • resources for sideline communication can be obtained from a resource pool.
  • the first terminal device may not perform side-link sensing, and the first terminal device may obtain resources for side-link communication through high-level signaling configuration or pre-configuration.
  • the method disclosed in Embodiment 2 may include steps S2010 to S2020.
  • the method provided in Embodiment 3 can be implemented by the first terminal device and/or the second terminal device.
  • Step S2010 The first terminal device performs first channel access in symbol m of the first time slot.
  • Symbol k is the symbol in the first time slot.
  • n consecutive OFDM symbols starting from the k-th symbol can be used for sidelink communication. That is, symbol k may serve as the first symbol among multiple symbols used for sideline communication in the first time slot.
  • k can be an integer greater than or equal to 0, and n can be an integer greater than 0.
  • the symbol m can be an integer greater than or equal to k. That is, symbol m is any one of n OFDM symbols.
  • the first channel access method is Type 2A or Type 2B.
  • time slot t may be the first time slot.
  • Symbol 0 and symbol 1 in time slot t are not used for sideline communications.
  • the resources used for sidelink communication are n symbols starting from symbol 2 of time slot t (ie, the resources in the dotted rectangular box).
  • Step S2020 If the first channel access is successful, the first terminal device may send the first PRS starting from symbol m+1. The second terminal device may receive the first PRS starting from symbol m+1.
  • the method disclosed in Embodiment 3 may include steps S2110 to S2130.
  • the method provided in Embodiment 3 can be implemented by the first terminal device and/or the second terminal device.
  • Step S2110 The first terminal device performs first channel access in symbol m of the first time slot.
  • Step S2120 The first terminal device sends a placeholder after the first channel access process is completed.
  • the second terminal device receives the placeholder after the first channel access process ends.
  • the first terminal device can access the first channel on the first channel.
  • the placeholder starts to be sent when the entry is successful, and the sending of the placeholder ends at the start of symbol 5.
  • the placeholder can be CPE.
  • the first terminal device may not be required to start accessing the first channel at the position of symbol 4. That is to say, the start time of the first channel access can be determined flexibly.
  • Step S2130 The first terminal device starts sending the first PRS at symbol m+1.
  • the second terminal device starts receiving the first PRS at symbol m+1.
  • Figure 22 is an example diagram of a communication method provided in Embodiment 4.
  • the method shown in Figure 22 may include steps S2210 to S2220.
  • the method provided in Embodiment 4 can be executed by the first terminal device and/or the second terminal device.
  • Step S2210 The first terminal device performs first channel access in symbol m of the first time slot.
  • time slot t may be the first time slot, and symbols 0 to 13 in the first time slot may be used for sideline communication. All symbols in time slot t-1 can also be used for side-link communication (the resources available for side-link communication in time slot t and time slot t-1 are outlined by a rectangular dashed box).
  • Symbol m can be any symbol in the first time slot. In Figure 22, symbol m may be symbol 0, which is the first symbol of the first slot. That is to say, the first terminal device can perform first channel access in the first symbol of the first time slot.
  • the access mode of the first channel access is type 2A or type 2B.
  • the length of the symbol m can satisfy the second condition.
  • the second condition includes that the length of the symbol m is greater than or equal to the channel monitoring (eg, LBT process) duration L of the channel access process.
  • the channel monitoring duration L may be 25 ⁇ s
  • the second condition includes that the length of the symbol m is greater than or equal to 25 ⁇ s.
  • the channel monitoring duration L may be 16 ⁇ s
  • the second condition may include that the length of the symbol m is greater than or equal to 16 ⁇ s.
  • Embodiment 4 does not limit the start time and end time of the first channel access process.
  • the start time of the first channel access process can ensure that the first PRS can be sent on symbol m+1 immediately (similar to Embodiment 1 or Embodiment 2) when the first channel access process ends.
  • the end time of the first channel access process can be a period of time away from symbol m+1 (i.e., the first time interval). During this period, the placeholder CPE can be sent to ensure that the resource is not preempted by other devices. (Similar to Example 3).
  • Step S2220 The first terminal device sends the first PRS in symbol m+1 of the first time slot.
  • the second terminal device receives the first PRS on the second symbol of the first time slot.
  • the previous time slot of time slot t may also be a time slot for sideline communication.
  • time slot t-1 there is a first terminal device or a terminal device different from the first terminal device performing sidelink transmission.
  • the first terminal device does not perform the channel monitoring process of the first channel access in the GAP symbol of time slot t-1.
  • the first channel access may be a channel access method that does not require channel monitoring. That is to say, the first terminal device may directly transmit the first PRS without performing LBT.
  • the first terminal device when the interval between the start time of sending the first PRS and the end time of the last sidelink communication is a second time interval, if the second time interval is less than or equal to X ⁇ s, the first terminal device The first PRS may be sent directly without performing channel monitoring. Among them, X is greater than or equal to 0. It can be understood that, in this implementation manner, the type of first channel access may be type 2C.
  • the first terminal device can directly send the first PRS on any symbol on the resource used for sideline communication without performing LBT.
  • the method of sending the first PRS may be the sending method of SCSt.
  • Figure 23 is a schematic structural diagram of a terminal device 2300 provided by an embodiment of the present application.
  • the terminal device 2300 is a first terminal device, and the terminal device 2300 includes a first sending unit 2310.
  • the first sending unit 2310 may be configured to send the first positioning reference signal PRS through the sidelink on the unlicensed spectrum.
  • the terminal device 2300 may also include an access unit 2320.
  • the access unit 2320 is configured to perform first channel access on the first time slot; wherein the first channel access is used to send the first PRS in the first time slot.
  • the first symbol occupied by the first PRS is a first symbol
  • the symbol preceding the first symbol is a second symbol
  • the first channel access ends at the end time of the second symbol.
  • a first time gap is included between the end time of the first channel access and the first PRS transmission start time, and the terminal device 2300 further includes: a second sending unit, configured to In the first time slot, a placeholder is sent.
  • the first channel access starts with a third symbol
  • the third symbol is one of one or more symbols available for sideline communication in the first time slot.
  • the third symbol is the first symbol among one or more symbols available for sideline communication in the first time slot.
  • the first channel access does not occur on gap GAP symbols.
  • the first channel access type is type 2A or type 2B.
  • the first channel access method is a channel access method that does not require channel monitoring.
  • the first channel access is performed based on the first condition.
  • the interval between the start time of sending the first PRS and the end time of the last sidelink communication is a second time interval, and the first condition is related to the second time interval.
  • the first channel access type is type 2C.
  • the first PRS is sent in a short control signaling SCSt mode.
  • the first PRS is carried on a first sidelink resource, and the first sidelink resource is configured in a resource pool through preconfiguration or through high-layer signaling.
  • Figure 24 is a schematic structural diagram of a terminal device 2400 provided by an embodiment of the present application.
  • the terminal device 2400 may be a second terminal device.
  • the terminal device 2400 may include a first receiving unit 2410.
  • the first receiving unit 2410 is configured to receive the first positioning reference signal PRS through the sidelink on the unlicensed spectrum.
  • the transmission of the first PRS is based on the first channel access on the first time slot, and the first channel access is used to send the first PRS in the first time slot.
  • the first symbol occupied by the first PRS is a first symbol
  • the symbol preceding the first symbol is a second symbol
  • the first channel access ends at the end time of the second symbol.
  • a first time gap is included between the end time of the first channel access and the first PRS transmission start time, and the terminal device 2400 may further include a second receiving unit 2420.
  • the second receiving unit 2420 may be configured to receive placeholders in the first time slot.
  • the first channel access starts with a third symbol
  • the third symbol is one of one or more symbols available for sideline communication in the first time slot.
  • the third symbol is the first symbol among one or more symbols available for sideline communication in the first time slot.
  • the first channel access does not occur on gap GAP symbols.
  • the first channel access type is type 2A or type 2B.
  • the first channel access method is a channel access method that does not require channel monitoring.
  • the first channel access is performed based on the first condition.
  • the interval between the start time of sending the first PRS and the end time of the last sidelink communication is a second time interval, and the first condition is related to the second time interval.
  • the first channel access type is type 2C.
  • the first PRS is sent in a short control signaling SCSt mode.
  • the first PRS is carried on a first sidelink resource, and the first sidelink resource is configured in a resource pool through preconfiguration or through high-layer signaling.
  • the first sending unit 2310, the first receiving unit 2410 or the second receiving unit may be a transceiver 2540, and the access unit 2320 may be a processor 2510.
  • the terminal device 2300 or the terminal device 2400 may also include a memory 2520, as specifically shown in Figure 25.
  • Figure 25 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the dashed line in Figure 25 indicates that the unit or module is optional.
  • the device 2500 can be used to implement the method described in the above method embodiment.
  • Device 2500 may be a chip, terminal device or network device.
  • Apparatus 2500 may include one or more processors 2510.
  • the processor 2510 can support the device 2500 to implement the method described in the foregoing method embodiments.
  • the processor 2510 may be a general-purpose processor or a special-purpose processor.
  • the processor may be a central processing unit (CPU).
  • the processor can also be another general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or an off-the-shelf programmable gate array (FPGA) Or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • Apparatus 2500 may also include one or more memories 2520.
  • the memory 2520 stores a program, which can be executed by the processor 2510, so that the processor 2510 executes the method described in the foregoing method embodiment.
  • the memory 2520 may be independent of the processor 2510 or integrated in the processor 2510.
  • Apparatus 2500 may also include a transceiver 2530.
  • Processor 2510 may communicate with other devices or chips through transceiver 2530.
  • the processor 2510 can send and receive data with other devices or chips through the transceiver 2530.
  • An embodiment of the present application also provides a computer-readable storage medium for storing a program.
  • the computer-readable storage medium can be applied in the terminal or network device provided by the embodiments of the present application, and the program causes the computer to execute the methods performed by the terminal or network device in various embodiments of the present application.
  • An embodiment of the present application also provides a computer program product.
  • the computer program product includes a program.
  • the computer program product can be applied in the terminal or network device provided by the embodiments of the present application, and the program causes the computer to execute the methods performed by the terminal or network device in various embodiments of the present application.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal or network device provided by the embodiments of the present application, and the computer program causes the computer to execute the methods performed by the terminal or network device in various embodiments of the present application.
  • the "instruction" mentioned may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • B corresponding to A means that B is associated with A, and B can be determined based on A.
  • determining B based on A does not mean determining B only based on A.
  • B can also be determined based on A and/or other information.
  • the term "correspondence” can mean that there is a direct correspondence or indirect correspondence between the two, or it can also mean that there is an association between the two, or it can also mean indicating and being instructed, configuring and being configured, etc. relation.
  • predefinition or “preconfiguration” can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • devices for example, including terminal devices and network devices.
  • predefined can refer to what is defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this.
  • the size of the above-mentioned serial numbers does not mean the order of execution.
  • the execution order of each should be determined by its functions and internal logic, and should not constitute any limitation on the implementation of the embodiments of the present application. .
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be read by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., digital video discs (DVD)) or semiconductor media (e.g., solid state disks (SSD) )wait.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., digital video discs (DVD)
  • semiconductor media e.g., solid state disks (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种通信方法以及终端设备。所述通信方法包括:在非授权频谱上,第一终端设备通过侧行链路发送第一定位参考信号PRS。通过第一PRS,可以实现在非授权频谱上侧行通信的定位技术。也就是说,通过第一PRS,可以实现在非授权频谱上进行侧行通信的第一终端设备和/或第二终端设备的定位。

Description

通信方法以及终端设备 技术领域
本申请涉及通信技术领域,并且更为具体地,涉及一种通信方法以及终端设备。
背景技术
通过定位技术,可以确定位于通信网络中通信设备所处的位置。例如,在一些通信***(例如NR***)中,可以通过定位参考信号(positioning reference signal,PRS)实现定位。
在侧行通信技术中,如何实现在非授权频谱上的定位技术是亟待解决的问题。
发明内容
本申请提供一种通信方法以及终端设备。下面对本申请涉及的各个方面进行介绍。
第一方面,提供了一种通信方法,所述方法包括:在非授权频谱上,第一终端设备通过侧行链路发送第一定位参考信号PRS。
第二方面,提供了一种通信方法,所述方法包括:在非授权频谱上,第二终端设备通过侧行链路接收第一定位参考信号PRS。
第三方面,提供了一种终端设备,所述终端设备为第一终端设备,所述终端设备包括:第一发送单元,用于在非授权频谱上,通过侧行链路发送第一定位参考信号PRS。
第四方面,提供了一种终端设备,所述终端设备为第二终端设备,所述终端设备包括:第一接收单元,用于在非授权频谱上,通过侧行链路接收第一定位参考信号PRS。
第五方面,提供一种终端,包括处理器、存储器以及收发器,所述存储器用于存储一个或多个计算机程序,所述处理器用于调用所述存储器中的计算机程序使得所述终端设备执行第一方面和/或第二方面的方法中的部分或全部步骤。
第六方面,本申请实施例提供了一种通信***,该***包括上述的终端设备。在另一种可能的设计中,该***还可以包括本申请实施例提供的方案中与该终端设备进行交互的其他设备。
第七方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序使得终端执行上述各个方面的方法中的部分或全部步骤。
第八方面,本申请实施例提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使终端执行上述各个方面的方法中的部分或全部步骤。在一些实现方式中,该计算机程序产品可以为一个软件安装包。
第九方面,本申请实施例提供了一种芯片,该芯片包括存储器和处理器,处理器可以从存储器中调用并运行计算机程序,以实现上述各个方面的方法中所描述的部分或全部步骤。
可以理解的是,通过第一PRS,可以实现在非授权频谱上侧行通信的定位技术。也就是说,通过第一PRS,可以实现在非授权频谱上进行侧行通信的第一终端设备和/或第二终端设备的定位。
附图说明
图1为可应用本申请实施例的无线通信***的***架构示例图。
图2为网络覆盖内的侧行通信的场景示例图。
图3为部分网络覆盖的侧行通信的场景示例图。
图4为网络覆盖外的侧行通信的场景示例图。
图5为有中央控制节点的侧行通信的场景示例图。
图6为基于广播的侧行通信方式的示例图。
图7为基于单播的侧行通信方式的示例图。
图8为基于组播的侧行通信方式的示例图。
图9为某些侧行通信***(例如NR-V2X***)的时隙结构示例图。
图10为不同时隙内PSSCH可用OFDM符号发生变化的示例图。
图11为第二阶SCI在一个时隙中占用的时频资源的示例图。
图12为一种PSCCH的DMRS图案的示意图。
图13为PSSCH为14个符号数时4个DMRS符号的时域位置示意图。
图14为一种单符号DMRS频域类型1示例图。
图15为一种SL CSI-RS时频位置示例图。
图16中为通信设备在非授权频谱的信道上LBT成功后获得的一次信道占用时间以及使用该信道占用时间内的资源进行信号传输的示例图。
图17为一种终端设备进行信道接入的场景示例图。
图18为本申请实施例提供的一种通信方法的示意性流程图。
图19为本申请实施例提供的一种通信方法的示例图。
图20为本申请实施例提供的一种通信方法的示例图。
图21为本申请实施例提供的一种通信方法的示例图。
图22为本申请实施例提供的一种通信方法的示例图。
图23为本申请实施例提供的一种终端设备的示意性结构图。
图24为本申请实施例提供的一种终端设备的示意性结构图。
图25为本申请实施例提供的一种装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
通信***
图1是本申请实施例应用的无线通信***100的***架构示例图。该无线通信***100可以包括网络设备110和终端设备120。网络设备110可以是与终端设备120通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备120进行通信。
可选地,无线通信***100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,无线通信***100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例的技术方案可以应用于各种通信***,例如:第五代(5th generation,5G)***或新无线(new radio,NR)、长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)等。本申请提供的技术方案还可以应用于未来的通信***,如第六代移动通信***,又如卫星通信***,等等。
本申请实施例中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请实施例中的终端设备可以是指向用户提供语音和/或数据连通性的设备,可以用于连接人、物和机,例如具有无线连接功能的手持式设备、车载设备等。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。可选地,终端设备可以用于充当基站。例如,终端设备可以充当调度实体,其在车辆外联(vehicle-to-everything,V2X)或设备到设备通信(device-to-device,D2D)等中的终端设备之间提供侧行链路信号。比如,蜂窝电话和汽车利用侧行链路信号彼此通信。蜂窝电话和智能家居设备之间通信,而无需通过基站中继通信信号。可选地,终端设备可以用于充当基站。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,如网络设备可以是基站。本申请实施例中的网络设备可以是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站MeNB、辅站SeNB、多制式无线(MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access point,AP)、传输节点、收发节点、基带单元(base band unit,BBU)、射频拉远单元(Remote Radio Unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。 基站还可以是移动交换中心以及设备到设备(device to device,D2D)、车辆到车辆(vehicle to vehicle,V2V)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信***中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例中的网络设备可以是指CU或者DU,或者,网络设备包括CU和DU。gNB还可以包括AAU。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。
应理解,本申请中的通信设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。
不同网络覆盖情况下的侧行通信
侧行通信(或侧行传输)指的是基于侧行链路(sidelink,SL)的通信技术。侧行通信例如可以是D2D或V2X。侧行通信支持在终端设备与终端设备之间直接进行通信数据传输。终端设备与终端设备直接进行通信数据的传输可以具有更高的频谱效率以及更低的传输时延。例如,车联网***采用侧行通信技术。
在侧行通信中,根据终端设备所处的网络覆盖的情况,可以将侧行通信分为网络覆盖内的侧行通信、部分网络覆盖的侧行通信、网络覆盖外的侧行通信以及由中央控制节点的侧行通信。
图2为网络覆盖内的侧行通信的场景示例图。在图2所示的场景中,两个终端设备120a均处于网络设备110的覆盖范围内。因此,两个终端设备120a均可以接收网络设备110的配置信令(本申请中的配置信令也可替换为配置信息),并根据网络设备110的配置信令确定侧行配置。在两个终端设备120a均进行侧行配置之后,即可在侧行链路上进行侧行通信。
图3为部分网络覆盖的侧行通信的场景示例图。在图3所示的场景中,终端设备120a与终端设备120b进行侧行通信。终端设备120a位于网络设备110的覆盖范围内,因此终端设备120a能够接收到网络设备110的配置信令,并根据网络设备110的配置信令确定侧行配置。终端设备120b位于网络覆盖范围外,无法接收网络设备110的配置信令。在这种情况下,终端设备120b可以根据预配置(pre-configuration)信息和/或位于网络覆盖范围内的终端设备120a发送的物理侧行广播信道(physical sidelink broadcast channel,PSBCH)中携带的信息确定侧行配置。在终端设备120a和终端设备120b均进行侧行配置之后,即可在侧行链路上进行侧行通信。
图4为网络覆盖外的侧行通信的场景示例图。在图4所示的场景中,两个终端设备120b均位于网络覆盖范围外。在这种情况下,两个终端设备120b均可以根据预配置信息确定侧行配置。在两个终端设备120b均进行侧行配置之后,即可在侧行链路上进行侧行通信。
图5为有中央控制节点的侧行通信的场景示例图。在图5所示的场景中,多个终端设备120b可以构成一个通信组。该通信组内可以具有中央控制节点。在一些情况下,中央控制节点可以成为组头(cluster header,CH)终端设备。中央控制节点可以具有以下功能中的一项或多项:负责通信组的建立,组成员的加入、离开,进行资源协调,为其他终端设备分配侧行传输资源,接收其他终端设备的侧行反馈信息,与其他通信组进行资源协调等功能。
侧行通信的模式
某些标准或协议(如第三代合作伙伴计划(3rd generation partnership project,3GPP))定义了两种侧行通信的模式(或称传输模式):第一模式和第二模式。
在第一模式下,终端设备的资源(本申请提及的资源也可称为传输资源,如时频资源)是由网络设备分配的。终端设备可以根据网络设备分配的资源在侧行链路上进行数据的发送。网络设备可以为终端设备分配单次传输的资源,也可以为终端设备分配半静态传输的资源。该第一模式可以应用于有网络设备覆盖的场景,如前文图2所示的场景。在图2所示的场景中,终端设备120a位于网络设备110的网络覆盖范围内,因此网络设备110可以为终端设备120a分配侧行传输过程中使用的资源。
在第二模式下,终端设备可以自主在资源池(resource pool,RP)中选取一个或多个资源。然后,终端设备可以根据选择出的资源进行侧行传输。例如,在图4所示的场景中,终端设备120b位于小区覆盖范围外。因此,终端设备120b可以在预配置的资源池中自主选取资源进行侧行传输。或者,在图 2所示的场景中,终端设备120a也可以在网络设备110配置的资源池中自主选取一个或多个资源进行侧行传输。
侧行通信的数据传输方式
某些侧行通信***(如LTE-V2X)支持基于广播的数据传输方式(下文简称广播传输)。对于广播传输,接收端终端设备可以为发送端终端设备周围的任意一个终端设备。以图6为例,终端设备1是发送端终端设备,该发送端终端设备对应的接收端终端设备是终端设备1周围的任意一个终端设备,例如可以是图6中的终端设备2-终端设备6。
除了广播传输之外,某些通信***还支持基于单播的数据传输方式(下文简称单播传输)和/或基于组播的数据传输方式(下文简称组播传输)。例如,NR-V2X希望支持自动驾驶。自动驾驶对车辆之间的数据交互提出了更高的要求。例如,车辆之间的数据交互需要更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配方式等。因此,为了提升车辆之间的数据交互性能,NR-V2X引入了单播传输和组播传输。
对于单播传输,接收端终端设备一般只有一个终端设备。以图7为例,终端设备1和终端设备2之间进行的是单播传输。终端设备1可以为发送端终端设备,终端设备2可以为接收端终端设备,或者终端设备1可以为接收端终端设备,终端设备2可以为发送端终端设备。
对于组播传输,接收端终端设备可以是一个通信组(group)内的终端设备,或者,接收端终端设备可以是在一定传输距离内的终端设备。以图7为例,终端设备1、终端设备2、终端设备3和终端设备4构成一个通信组。如果终端设备1发送数据,则该组内的其他终端设备(终端设备2至终端设备4)均可以是接收端终端设备。
侧行通信***帧结构
一个时隙中可以包括物理侧行控制信道(physical sidelink control channel,PSCCH)、物理侧行共享信道(physical sidelink shared channel,PSSCH)、物理侧行反馈信道(physical sidelink feedback channel,PSFCH)等信道。下文将详细介绍上述信道,此处不再赘述。
图9为某些侧行通信***(例如NR-V2X***)的时隙结构示例图。其中,图9(a)为时隙中不包括物理侧行反馈信道(physical sidelink feedback channel,PSFCH)的时隙结构示例图。图9(b)为时隙中包括PSFCH信道的时隙结构示例图。
如图9所示,在时域上,PSCCH可以从时隙的第二个侧行符号开始,占用2个或3个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,在频域上可以占用{10,12 15,20,25}个物理资源块(physical resource block,PRB)。为了降低终端设备对PSCCH的盲检测的复杂度,在一个资源池内可以只允许配置一个PSCCH符号个数和PRB个数。另外,子信道为某些侧行通信***(例如NR-V2X***)中PSSCH资源分配的最小粒度,因此,PSCCH占用的PRB个数必须小于或等于资源池内一个子信道中包含的PRB个数,以免对PSSCH资源选择或分配造成额外的限制。
在时域上,PSSCH可以从时隙的第二个侧行符号开始。时隙中的最后一个时域符号为保护间隔(guard period,GP)符号(也可以称为间隔(GAP)符号),其余符号可以映射PSSCH。时隙中的第一个侧行符号可以是第二个侧行符号的重复。接收端终端设备可以将第一个侧行符号用作自动增益控制(automatic gain control,AGC)符号,该符号上的数据通常不用于数据解调。如图9(a)所示,PSSCH在频域上可以占据K个子信道,每个子信道可以包括N个连续的PRB。其中,K可以为大于0的整数,N可以为大于0的整数。
如图9(b)所示,当时隙中包含PSFCH信道时,时隙中倒数第二个和倒数第三个符号可以用作PSFCH信道传输,在PSFCH信道之前的一个时域符号可以用作GP符号。
PSSCH
在某些侧行通信***(例如NR-V2X***)中,PSSCH可以用于承载第二阶侧行控制信息(sidelink control information,SCI)。第二阶SCI可以包括SCI 2-A或SCI 2-B。第二阶SCI可以采用Polar编码方式。第二阶SCI可以固定采用QPSK调制。PSSCH的数据部分可以采用低密度奇偶校验码(low density parity check,LDPC)。PSSCH的数据部分可以支持的最高调制阶数为256QAM。
在某些侧行通信***(例如NR-V2X***)中,PSSCH最多支持两个流传输,并且采用单位预编码矩阵将两个层上的数据映射到两个天线端口,在一个PSSCH中最多只能发送一个TB。然而,和PSSCH数据部分的发送方式不同,当PSSCH采用双流发送方式时,第二阶SCI在两个流上发送的调制符号完全相同,这样的设计可以保证第二阶SCI在高相关信道下的接收性能。
在某些侧行通信***(例如NR-V2X***)中一个PSSCH的最大重传次数为32次。如果资源池内存在PSFCH资源,而且PSFCH资源的配置周期为2或4,则一个PSSCH的不同传输所在的时隙内可用的OFDM符号可能会发生变化。图10为不同时隙内PSSCH可用OFDM符号发生变化的示例图。 如图10所示,由于PSFCH资源的存在,PSSCH的第n次传输和第n+1传输可用的OFDM符号数不同。如果按照一个时隙内真实的OFDM符号数计算PSSCH传输的符号个数
Figure PCTCN2022111266-appb-000001
可能会由于一个时隙内可用于PSSCH传输的符号个数不同导致Q′ SCI2不同,而Q′ SCI2的改变会导致PSSCH承载的TB的大小的变化,如下文所述。为了保证PSSCH多次传输中传输块大小(transmission block size,TBS)保持不变,在计算
Figure PCTCN2022111266-appb-000002
时并没有采用真实的PSFCH符号数,另外在计算
Figure PCTCN2022111266-appb-000003
时,可能在重传过程中发生变化的PSSCH解调参考信号(demodulation reference symbol,DMRS)占用的资源元素(resource element,RE)个数和追踪参考信号(phase-tracking reference signals,PT-RS)占用的RE个数也没有考虑在内。
第二阶SCI的码率可以在一定范围内动态调整,具体采用的码率可以由第一阶SCI指示。因此,即使在码率改变后接收端也无需对第二阶SCI进行盲检测。图11为第二阶SCI在一个时隙中占用的时频资源的示例图。如图11所示,第二阶SCI的调制符号可以从第一个PSSCH DMRS所在的符号采用先频域后时域的方式开始映射,在DMRS所在的OFDM符号上第二阶SCI可以映射到未被DMRS占用的RE上。
在一个资源池内,PSSCH的数据部分可以采用多个不同的调制编码方式(modulation and coding scheme,MCS)表格。例如,可以采用以下表格中的一个或多个:常规64QAM MCS表格,256QAM MCS表格,和低频谱效率64QAM MCS表格。在一次传输中,PSSCH的数据部分具体采用的MCS表格可以由第一阶SCI中的“MCS表格指示”域指示。为了控制PAPR,PSSCH必须采用连续的PRB发送。由于子信道为PSSCH的最小频域资源粒度,因此,PSSCH必须占用连续的子信道。
侧行链路TBS
PSSCH沿用了PDSCH和PUSCH的TBS确定机制,即可以根据PSSCH所在时隙内用于PSSCH的RE个数的参考值确定TBS,从而使得实际码率尽可能的接近目标码率。需要说明的是,采用RE数的参考值而不是实际RE数的目的是为了保证PSSCH重传过程中用于确定TBS的RE数保持不变,从而使得确定的TBS大小相同。为了达到这一目的,在TBS确定过程中PSSCH占用RE数的参考值N RE可以按照下面的公式确定:
Figure PCTCN2022111266-appb-000004
其中,n PRB为PSSCH占用的PRB的个数,
Figure PCTCN2022111266-appb-000005
为第一阶SCI占用的RE个数(包括PSCCH的DMRS占用的RE),
Figure PCTCN2022111266-appb-000006
为第二阶SCI占用的RE个数(如上文所述),N′ RE表示一个PRB内可用于PSSCH的参考RE数。N′ RE可以由下面的公式确定:
Figure PCTCN2022111266-appb-000007
其中,
Figure PCTCN2022111266-appb-000008
可以表示表示一个PRB内的子载波个数,例如,
Figure PCTCN2022111266-appb-000009
表示一个时隙内可用于侧行的符号数,可以不包括最后一个GP符号和第一个用于AGC的符号。
Figure PCTCN2022111266-appb-000010
表示PSFCH占用的符号数的参考值,例如,
Figure PCTCN2022111266-appb-000011
或3,具体值可以由第一阶SCI中的“PSFCH符号数”域指示。
Figure PCTCN2022111266-appb-000012
可以表示PT-RS和信道状态信息参考信号(channel state information-reference signal,CSI-RS)占用RE数的参考值,可以由无线资源控制(radio resource control,RRC)层参数配置。
Figure PCTCN2022111266-appb-000013
可以表示一个时隙中的平均DMRS RE个数,和资源池内允许的DMRS图案有关。表1示出了资源池内允许的DMRS图案和
Figure PCTCN2022111266-appb-000014
的对应关系。
表1
Figure PCTCN2022111266-appb-000015
Figure PCTCN2022111266-appb-000016
侧行链路DMRS
在某些侧行通信***(例如NR-V2X***)中,PSCCH的DMRS图案可以和下行控制信道(physical downlink control channel,PDCCH)相同。也就是说,DMRS可以存在于每一个PSCCH的OFDM符号上,在频域上可以位于一个PRB的{#1,#5,#9}个RE。图12为一种PSCCH的DMRS图案的示意图。PSCCH的DMRS序列通过下面的公式生成:
Figure PCTCN2022111266-appb-000017
其中,伪随机序列c(m)可以由
Figure PCTCN2022111266-appb-000018
进行初始化。其中,l可以表示DMRS所在OFDM符号在时隙内的索引,
Figure PCTCN2022111266-appb-000019
可以表示DMRS所在时隙在***帧内的索引,
Figure PCTCN2022111266-appb-000020
可以表示一个时隙内OFDM符号的个数,N ID∈{0,1,…,65535},在一个资源池内N ID的具体值由网络配置或预配置。
某些侧行通信***(例如NR-V2X***)采用了多个时域PSSCH DMRS图案,即借鉴了NR***Uu接口中的设计。在一个资源池内,可采用的DMRS图案的个数可以和资源池内PSSCH的符号数有关。对于特定的PSSCH符号数(包括第一个AGC符号)和PSCCH符号数,可用的DMRS图案以及图案内每个DMRS符号的位置如表2所示。图13为PSSCH为14个符号数时4个DMRS符号的时域位置示意图。
表2
Figure PCTCN2022111266-appb-000021
如果资源池内配置了多个时域DMRS图案,则具体采用的时域DMRS图案由发送终端设备选择,并在第一阶SCI中予以指示。这样的设计允许高速运动的终端设备选择高密度的DMRS图案,从而保证信道估计的精度,而对于低速运动的终端设备,则可以采用低密度的DMRS图案,从而提高频谱效率。
PSSCH DMRS序列的生成方式和PSCCH DMRS序列的生成方式几乎完全相同,唯一的区别在于伪随机序列c(m)的初始化公式c init中,
Figure PCTCN2022111266-appb-000022
其中,p i为调度该PSSCH的PSCCH的第i位CRC。L可以为PSCCH CRC的比特位数,例如L=24。
NR通信***中,PDSCH和PUSCH中支持两种频域DMRS图案,即DMRS频域类型1和DMRS频域类型2。对于每一种频域类型,均存在单DMRS符号和双DMRS符号两种不同类型。单符号DMRS频域类型1支持4个DMRS端口,单符号DMRS频域类型2可以支持6个DMRS端口。双DMRS符号情况下,支持的端口数均翻倍。然而,在侧行通信***(例如NR-V2X)中,由于PSSCH可以最多只需要支持两个DMRS端口,因此,可以仅支持单符号的DMRS频域类型1。图14为一种单符号DMRS频域类型1示例图。
侧行链路CSI-RS
侧行通信***可以支持侧行链路CSI-RS(SL CSI-RS),以更好地支持单播通信。SL CSI-RS可以在满足以下3个条件时发送:终端设备发送对应的PSSCH,也就是说,终端设备不能只发送SL CSI-RS;高层信令激活了SL CSI-RS上报;在高层信令激活SL CSI-RS上报的情况下,终端设备发送的二阶SCI中的相应比特触发了SL CSI-RS上报。
SL CSI-RS支持的最大端口数为2。两个端口是不同端口的SL CSI-RS在同一个OFDM符号的相邻两个RE上通过码分的方式复用。在一个PRB内每个端口的SL CSI-RS的个数为1,即密度为1。因此,在一个PRB内SL CSI-RS最多只会出现在一个OFDM符号上。这个OFDM符号的具***置可以由发送终端设备确定。为了避免对PSCCH和第二阶SCI的资源映射造成影响,SL CSI-RS不能与PSCCH和第二阶SCI位于同一个OFDM符号。由于PSSCH DMRS所在OFDM符号的信道估计精度较高,而且两个端口的SL CSI-RS将在频域上占用两个连续的RE,所以SL-CSI-RS也不能和PSSCH的DMRS发送在同一个OFDM符号上。SL CSI-RS所在的OFDM符号的位置由PC5RRC中的sl-CSI-RS-FirstSymbol参数指示。
SL CSI-RS在一个PRB内占用的第一个RE的位置可以由PC5RRC中的sl-CSI-RS-FreqAllocation参数指示。如果SL CSI-RS为一个端口,该参数可以为长度为12的比特位图,对应一个PRB内的12个RE。如果SL CSI-RS为两个端口,该参数为长度可以为6的比特位图,在这种情况下SL CSI-RS可以占用2f(1)和2f(1)+1两个RE。其中,f(1)可以表示值为1的比特在上述比特位图中的索引。SL CSI-RS的频域位置也可以由发送终端设备确定。确定的SL CSI-RS的频域位置不能和PT-RS发生冲突。图15为一种SL CSI-RS时频位置示例图。在图15中,SL CSI-RS端口数为2,sl-CSI-RS-FirstSymbol为8,sl-CSI-RS-FreqAllocation为[b 5,b 4,b 3,b 2,b 1,b 0]=[0,0,0,1,0,0]。
非授权频谱通信
非授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱通常被认为是共享频谱,即通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,而不需要向国家或地区的专属频谱管理机构申请专有的频谱授权。非授权频谱也可以称为共享频谱、免授权频谱、非授权频段或免授权频段等。
在LTE***中,非授权频谱作为授权频谱的补充频段用于蜂窝网络已经实现。对于NR***,NR***可以实现蜂窝网络的无缝覆盖、高频谱效率、高峰值速率和高可靠性。NR***也可以使用非授权频谱,作为5G蜂窝网络技术的一部分,为用户提供服务。在3GPP R16标准中,讨论了用于非授权频谱上的NR***,称为NR非授权(NR-unlicensed,NR-U)***。
NR-U***支持可以两种组网方式:授权频谱辅助接入和非授权频谱独立接入。授权频谱辅助接入需要借助授权频谱接入网络,非授权频谱作为辅载波使用。非授权频谱独立接入可以通过非授权频谱独立组网,终端设备可以直接通过非授权频谱接入网络。在3GPP R16中引入的NR-U***使用的非授权频谱的范围集中与5GHz和6GHz频段。例如,在美国,非授权频谱的范围为5925–7125MHz;在欧洲,非授权频谱的范围为5925–6425MHz。在R16的标准中,新定义了band 46(5150MHz-5925MHz)作为非授权频谱使用。
非授权频谱的使用需要满足各个国家和地区特定的法规的要求,例如,通信设备可以通过信道监听实现在非授权频谱上信道接入从而使用非授权频谱,以避免与其他通信设备或其他通信***(例如WiFi***)产生冲突。作为一种实现方式,通信设备可以遵循“先听后说”(listen-before-talk,LBT)的原则使用非授权频谱。因此,对于NR-U而言,NR技术需要进行相应的增强以适应非授权频段的法规要求,同时高效利用非授权频谱提供服务。在3GPP R16标准中,主要完成了以下方面的NR-U技术的标准化:信道监听过程;初始接入过程;控制信道设计;HARQ与调度;免调度授权传输等。
LBT
LBT原则可以包括:通信设备在使用非授权频谱上的信道进行信号发送前,需要先进行LBT。在LBT成功的情况下,信道监听的结果为信道空闲。只有信道空闲时,该通信设备才能通过该信道进行信号发送。如果通信设备在该信道上的信道监听结果为信道忙或者说LBT失败,那么该通信设备不能通过该信道进行信号发送。另外,为了保证共享频谱的频谱资源使用的公平性,如果通信设备在非授权频谱的信道上LBT成功,该通信设备可以使用该信道进行通信传输的时长不能超过一定的时长。该机制通过限制一次LBT成功后可以进行通信的最大时长,可以使不同的通信设备都有机会接入该共享信道,从而使不同的通信***在该共享频谱上友好共存。
在非授权频谱上的信号传输涉及信道占用相关的概念。例如,信道占用时间(channel occupancy time,COT),最大信道占用时间(maximum channel occupancy time,MCOT),网络设备(如基站)的COT,以及终端设备的COT。
MCOT可以指在LBT成功的情况下,允许通信设备使用非授权频谱的信道进行信号传输的最大时间长度。应当理解的是,MCOT指的是信号传输占用的时间。通信设备的信道接入优先级不同,则通信设备对应的MCOT可能会不同。MCOT的最大取值例如可以设置为10ms。
图16中为通信设备在非授权频谱的信道上LBT成功后获得的一次信道占用时间以及使用该信道占用时间内的资源进行信号传输的示例图。
虽然信道监听并不是全球性的法规规定,然而由于信道监听能为共享频谱上的通信***之间的通信传输带来干扰避免以及友好共存的好处。因此,在非授权频谱上的NR***的设计过程中,信道监听是该***中的通信设备需要支持的特性。
非授权频谱或共享频谱的信道接入方式
一些通信***(如NR-U***)引入了通过LBT进行信道接入的信道接入方式。一些通信***还可能支持通过短控制信令传输(short control signaling transmission,SCSt)的方式进行信道接入。下面分别介绍上述两种信道接入方式。
从***的布网角度,通过LBT进行信道接入的信道接入方式可以包括两种机制,一种是基于负载的设备(load based equipment,LBE)的LBT,也称为动态信道监听或动态信道占用;另一种是基于帧结构的设备(frame based equipment,FBE)的LBT,也称为半静态信道监听或半静态信道占用。其中,动态信道监听的LBT原则是:通信设备在业务到达后进行非授权频谱的载波上的LBT,并在LBT成功后在该载波上开始信号的发送。
动态信道监听的LBT方式可以包括类型1(Type1)信道接入方式和类型2(Type2)信道接入方式。
下面以网络设备为例详细介绍类型1信道接入方式和类型2信道接入方式。可以理解的是,终端设备等其他通信设备通过类型1信道接入方式或类型2信道接入方式进行信道监听的过程是类似的。
类型1的信道接入方式也可称为基于竞争窗口大小调整的随机回退的多时隙的信道检测。在类型1的信道接入方式中,通信设备可以根据信道接入优先级p发起长度为Tmcot的信道占用。如果网络设备使用类型1的信道接入方式,则该网络设备除了可以在信道占用期间发送自己的数据,还可以将COT共享给终端设备。所谓将COT共享给终端设备指的是:允许终端设备在该COT(即网络设备通过信道接入得到的COT)对应的时长内发送数据。相应地,如果终端设备使用类型1的信道接入方式,则该终端设备除了可以在信道占用期间发送自己的数据,还可以将COT共享给网络设备。
表3给出了终端设备进行类型1的信道接入方式时的信道接入优先级及其对应的参数。
表3
Figure PCTCN2022111266-appb-000023
网络设备侧默认信道接入方式为类型1信道接入方式。信道接入优先级p对应的信道接入参数如表3所示。在表3中,m p可以指信道接入优先级p对应的回退时隙个数,CW p可以指信道接入优先级p对应的竞争窗口(contention window,CW)大小,CW min,p可以指信道接入优先级p对应的CW p取值的最小值,CW max,p可以指信道接入优先级p对应的CW p取值的最大值,T mcot,p是指信道接入优先级p对应的信道最大占用时间长度。
类型2的信道接入方式(Type2的信道接入方式)也可称为基于固定长度的信道监听时隙的信道接入方式。类型2的信道接入方式包括类型2A的信道接入方式(Type2A的信道接入方式),类型2B的信道接入方式(Type2B的信道接入方式),以及类型2C的信道接入方式(Type2C的信道接入方式)。将COT内的资源共享给其他通信设备的情况下,其他通信设备可以使用类型2的信道接入方式。
在类型2A的信道接入方式中,通信设备可以采用25us的信道的单时隙检测。也就是说,通信设备可以在数据开始发送前25us开始信道检测。25us的信道检测可以包括1个16us的信道检测和1个9us的信道检测。如果两次检测结果均指示信道空闲,则可以认为信道是空闲的,并可以进行信道接入。
在类型2B的信道接入方式中,通信设备可以采用16us的单时隙的信道检测。在信道检测过程中,如果通信设备检测到在最后的9us的时间内,信道在4us以上的时间是空闲,则可以认为信道是空闲的。
在类型2C的信道接入方式中,通信设备可以不进行信道检测,直接通过信道传输数据。在类型2C的信道接入方式中,本次传输距离上一次传输之间时间差小于或等于16us。也就是说,如果两次传输的时间差小于或等于16us,则可以认为是同一次的传输,不需要进行信道检测。需要说明的是,在类型2C的信道接入方式中,通信设备的传输时长是有限制的,通常不能超过584us。
上文介绍了基于LBT的信道接入方式,下面介绍SCSt。在非授权频谱上,为了提高通信设备在传输控制信令时接入信道的成功率,引入了SCSt。SCSt是通信设备不感测信道是否存在其他信号的传输。例如,SCSt是通信设备用于发送管理和控制帧而不感测信道是否存在其他信号的传输。换句话说,当通信设备采用SCSt时,该通信设备不需要对信道进行侦听即可接入信道进行传输。但是,采用SCSt需要满足一定的条件。例如,如果通信设备希望采用SCSt进行信道接入,则该通信设备需要满足如下条件中的一种或多种:在50ms的观察期间内,采用SCSt的次数小于或等于50;以及在50ms的观察期间内,SCSt占据的时长不超过2.5ms。
由上述内容可知,类型1的信道接入机制需要较长时间的信道监听过程。在信道接入成功的情况下,需要在即将发送前再进行一次短的LBT(即持续时长较短的LBT)来确保资源没有被异***用户(如WiFi用户)抢走。此外,通过类型1接入成功后的发送资源可以共享给其他通信设备使用。例如,在侧行链路免授权(sidelink unlicensed,SL-U)的可能的设计中,终端设备可以将类型1接入成功后的发送资源可以共享给其他终端设备使用,而其他终端设备在共享的资源(例如COT资源)中发送前需要根据具体条件,先进行Type-2A/B/C的LBT,以确保资源仍然有效、未被抢走,然后方可发送。
下面以图17为例,说明终端设备以类型1或类型2可以进行信道接入的过程。图17为一种终端设备在免授权频谱上进行信道接入的示例图。终端设备1(在图17中通过UE1表示)在时隙(slot)n进行类型1信道接入。在时隙n+1,终端设备1进行数据的发送。在时隙n+1之前,终端设备1进行短的LBT,短的LBT成功后再传输数据。终端设备1将COT内的资源中的时隙n+2共享给其他通信设备。终端设备2(在图17中通过UE2表示)在时隙n+2之前进行类型2A的信道接入,信道接入成功后,终端设备2在时隙n+2传输数据。
定位技术
在通信技术中,定位技术可以是通过某种方法确定位于通信网络中通信设备所处地理位置的技术。
在一些通信***(例如NR***)中,可以通过定位参考信号(positioning reference signal,PRS)实现定位。例如,观测时间差(observed time difference of arrival,OTDOA)定位方法是3GPP协议中定义的一种基于定位参考信号的定位方法。
基于侧行的定位为R18定位技术的增强方案之一,在这一课题中将考虑支持蜂窝网络覆盖内、部分覆盖和覆盖外NR定位用例的场景和要求,将考虑V2X用例,公共安全用例,商业用例和工业互联网(industrial internet of things,IIOT)用例的定位要求,并考虑支持以下功能:绝对定位、测距/测向及相对定位;研究侧行测量量和Uu接口测量量相结合的定位方法;研究侧行定位参考信号,包括信号设计,物理层控制信令,资源分配,物理层测量量,及相关的物理层过程,等;研究定位***架构及信令过程,例如配置,测量上报等。
在相关的侧行通信技术中,尚未实现在非授权频谱上的定位技术。
图18为本申请实施例提供的一种通信方法的示意性流程图。图18所示的方法可以由第一终端设备和/或第二终端设备执行。图18所示的方法可以包括步骤S1810。
步骤S1810,在非授权频谱上,第一终端设备通过侧行链路发送第一PRS。相应地,第二终端设备通过侧行链路接收第一PRS。
第一PRS可以是用于侧行定位的PRS,即第一PRS可以为侧行PRS(sidelink PRS,SL-PRS)。作为一种实现方式,基于第一PRS,可以实现网络覆盖内的侧行通信、部分网络覆盖的侧行通信、网络覆盖外的侧行通信、由中央控制节点的侧行通信中的一种或多种的定位技术。
可以理解的是,通过第一PRS,可以实现在非授权频谱上侧行通信的定位技术。也就是说,通过第一PRS,可以实现在非授权频谱上进行侧行通信的第一终端设备和/或第二终端设备的定位。其中,定位可以包括绝对定位、测距/测向、相对定位中的一项或多项。
需要说明的是,第一PRS可以不需要实现周期性的发送。或者,第一PRS也可以是周期性发送的。
第一PRS的发送可以是基于第一信道接入实现的。也就是说,第一终端设备可以进行第一信道接入以在非授权频谱传输第一PRS。
第一信道接入可以为进行信道监听的信道接入方式,即第一信道接入可以包括信道监听过程。信道监听过程例如可以为上文所述的LBT过程。可以理解的是,在信道监听过程成功的情况下,第一信道接入过程也可以成功。在信道监听过程失败的情况下,第一信道接入过程可以失败。
本申请不限制第一信道接入的结果,例如,第一信道接入的结果可以成功,也可以失败。也就是 说,在第一信道接入成功的情况下,第一终端设备可以发送第一PRS。在第一信道接入失败的情况下,第一终端设备也可以发送第一PRS。在一些实施方式下,在第一信道接入失败的情况下,第一终端数设备可以重复发送第一PRS。重复传输的PRS可以结合以实现定位。
第一信道接入和第一PRS的发送可以在同一个时隙中进行。例如,第一终端设备可以在第一时隙上进行第一信道接入,并且第一终端设备可以在第一时隙上发送第一PRS。可以理解的是,在第一时隙,可以快速发送第一PRS,从而实现了SL-PRS更加高效的传输。
第一时隙可以包括一个或多个用于侧行通信的符号(例如OFDM符号)。一个或多个用于侧行通信的符号可以包括SL-U通信的资源。换句话说,第一时隙中可以包括SL-U通信的资源,也可以包括非SL-U通信的资源。例如,第一时隙中的全部符号可以用于进行侧行通信。或者,第一时隙中的部分符号可以用于进行侧行通信。其中,用于侧行通信的符号可以用于传输侧行信号或侧行信道。例如,用于侧行通信的符号可以用于传输PSCCH、PSSCH、侧行链路同步信号块(sidelink synchronization signal block,S-SSB)中的一项或多项。其中,一个时隙中用于侧行通信的符号可以是连续的。
第一信道接入可以开始于第三符号,第三符号例如可以为第一时隙中一个或多个用于侧行通信的符号中的一个。可以理解的是,第三符号可以是第一时隙中一个或多个用于侧行通信的符号中的任意一个。第三符号可以是预设值、协议预定义、高层信令配置的或者终端设备自行确定的。
作为一种实现方式,在第一时隙中,从符号k开始,连续n个OFDM符号可以用于侧行通信。在符号m,可以开始第一信道接入。其中,k可以为大于或等于0的整数,n可以为大于0的整数,m可以为大于或等于k的整数。
第三符号可以为第一时隙中一个或多个用于侧行通信的符号中的第一个符号。也就是说,在第一时隙中的符号可以用于侧行通信的情况下,可以立即进行第一信道接入。可以理解的是,在这种情况下,可以尽早地进行第一信道接入,从而尽早传输第一PRS。
图19为本申请实施例提供的一种通信方法的示例图。在图19中,第一时隙可以为时隙t。时隙t中可用于侧行通信的符号数n=12(即符号3~符号13)。符号2为12个用于侧行通信的符号中的第一个。第一信道接入可以开始于符号2。也就是说,第三符号可以为符号2。
图20为本申请实施例提供的另一种通信方法的示例图。在图20中,第一时隙可以为时隙t。时隙t中可用于侧行通信的符号数n=12。时隙t中包括12个用于侧行通信的符号为符号3~符号13。符号4为12个用于侧行通信的符号中的一个。第一信道接入可以开始于符号4。也就是说,第三符号可以为符号4。
第一PRS可以占用一个或多个符号。在一些实施例中,第一PRS占用的符号数可以小于或等于第一时隙中的总的符号数。也就是说,SL-PRS发送所占用的资源可以少于或等于一个时隙。在一些实施例中,第一PRS占用的符号数可以小于或等于第一时隙中可用于侧行通信的符号数。
作为一种实现方式,第一PRS占用的第一个符号可以为第一符号,第一符号的前一个符号可以为第二符号,第一信道接入可以结束于第二符号。第一符号和第二符号均可以为用于侧行通信的符号。例如,第一符号可以为第一时隙中的第二个符号(即符号1),第二符号可以为第一时隙中的第一个符号(即符号0)。也就是说,在第一信道接入结束的符号的下一个符号,即可以传输第一PRS。
继续以图19为例进行说明。如图19所示,第一信道接入结束于符号2。即符号2为第二符号。符号2的下一个符号符号3可以为第一符号。第一PRS可以在符号3开始传输。
在一种实现方式下,第一信道接入过程可以结束于为第二符号的结束时刻。也就是说,在第二符号的结束时刻,第一信道接入过程结束。换句话说,在第一信道的开始时刻,第一信道接入过程结束。例如,第一信道接入过程可以在第二符号的最后一个微秒结束。第一PRS可以在紧接着第一符号(第二符号的下一个符号)开始传输。
可以理解的是,在第一信道接入结束于第二符号的结束时刻的情况下,第一信道接入过程与第一PRS开始传输的时刻之间几乎没有间隙。也就是说,在第一信道接入过程结束后,通常不会有其他通信设备抢占该信道,从而实现第一PRS在免授权频谱中的传输资源不会与其他通信设备的传输资源冲突。
第一信道接入的开始时刻可以根据第一信道接入的结束时刻确定,以实现在第一信道接入完成时,能立刻在第一符号开始发送第一PRS。例如,第一信道接入的开始时刻可以根据第一信道接入的结束时刻以及第一信道接入的持续时长确定。作为一种实现方式,在第一信道接入结束于第二符号的结束时刻的情况下,第一信道接入的开始时刻可以是第二符号的结束时刻之前的第一时刻,第一时刻与第二符号的结束时刻之间的时间长度可以为第一信道接入的持续时长。
继续以图19为例进行说明,第一信道接入结束的时刻C可以为符号2的结束时刻或符号3的开始时刻,第一PRS可以紧接着在符号3开始传输。
在另一种实现方式下,第一信道接入的结束时刻与第一PRS传输起始时刻之间可以包括第一时间间隙。也就是说,在第一信道接入结束后,可以不立即发送第一PRS。例如,第一信道接入可以开始于第一时隙中第二符号的起始时刻(或起始位置、起始点)。在这种情况下,第一信道接入的结束时刻可能早于第二符号的结束时刻。
可以理解的是,一方面,第一时间间隙可以使得第一信道接入的开始或结束更加灵活,即第一信道接入的开始时刻或结束时刻可以不需要根据第一PRS传输起始时刻确定。一方面,第一时间间隙可以使得第一PRS的传输起始时刻更加灵活,即第一PRS的传输起始时刻可以不需要根据第一信道接入的结束时刻确定。作为一种实现方式,第一信道接入可以结束于第二符号的中间(第二符号的开始时刻和结束时刻之间的任意时刻)。
在第一时间间隙,第一终端设备可以发送占位符,第二终端设备可以接收占位符。占位符可以用于第一终端设备占用第一信道接入过程接入的信道,从而避免其他通信设备占用该信道。
作为一种实现方式,占位符可以为循环前缀扩展(cyclic prefix extension,CPE)。以第一PRS占用的第一个符号为第一符号为例,如果第一信道接入过程结束的时刻距离第一符号仍有一段时间,即第一时间间隔不为0,在第一时间间隔中,第一终端设备可以发送CPE。
图21为本申请实施例提供的一种通信方法的示例图。在图21中,第一信道接入过程结束于符号4的中间,即第一信道接入结束的时刻C不是符号4的结束时刻。第一PRS的传输开始于符号5。在第一信道接入结束时刻(符号4的中间)到第一PRS传输开始时刻(符号5的起始点)之间,第一终端设备可以发送CPE。
第一信道接入可以不发生在GAP符号上。例如,第一时隙的前一个时隙为第二时隙。第二时隙中,最后的一个或多个符号可以为GAP符号,也就是说,GAP符号与第一时隙连接。第一信道接入可以不发生在第二时隙中的GAP符号。或者,第一时隙可以包括GAP符号,第一信道接入不发生在第一时隙中的GAP符号。
可选地,第一时隙的上一个时隙可以为第二时隙。在第二时隙可以用于进行侧行通信的情况下,如果第一终端设备或其他终端设备(与第一终端设备不同的终端设备)在第二时隙进行侧行通信,则第一信道接入可以不发生在第二时隙的GAP符号上。
第一信道接入的持续时间可以较短。例如,第一信道接入的持续时间可以小于或等于一个符号的长度。
在一些实现方式中,第一信道接入的类型可以为类型2A或类型2B。可以理解的是,与类型1的多数情况相比,类型2A或类型2B的信道接入时长(在类型2A或类型2B情况下,信道接入时长可以为信道监听时长)较短。在一些情况下,类型2A和类型2B的信道接入时长可以小于一个符号的长度。如上文所述,类型2A的信道接入时长为25微秒,类型2B的信道接入时长为16微秒。以子载波间隔(sub-carrier spacing,SCS)为15KHz为例,一个符号的长度约为71.4微秒。类型2A或类型2B的信道接入时长远小于一个符号的长度,即第一信道接入过程可以在一个符号内完成。
需要说明的是,本申请不限制第一时隙中符号的长度。因此,在一些情况下,类型2A或类型2B的信道接入时长也可以大于一个符号的长度。可以理解的是,即使在这种情况下,类型2A或类型2B与大多数类型1的信道接入时长相比,还是较短的。
需要说明的是,在第一信道接入的类型为非类型1,例如类型2A或类型2B的情况下,第一信道接入可以不基于COT共享场景实现。也就是说,第一终端设备发送第一PRS的默认信道接入类型可以非类型1(例如类型2)。
在一些实现方式中,第一信道接入的类型也可以为类型1。如上文所述,类型1的CW大小可以较大,也可以较小。CW较大(例如大于或等于第一CW阈值)的情况下,第一信道接入的持续时长较长;CW较小(例如小于或等于第二CW阈值)的情况下,第一信道接入的持续时长较长。第一信道接入的类型为类型1的情况下,可以选择类型1中持续时长较短的方式进行第一信道接入。
可以理解的是,信道接入时长较短,可以节约信道接入时间和资源,也可以尽可能更早地发送第一PRS,提高定位效率。
在一些实现方式中,第一信道接入的方式可以为不需要进行信道监听的信道接入方式。也就是说,第一终端设备可以不进行LBT过程,直接发送第一PRS。可以理解的是,这可以大大简化第一信道接入的过程。
作为一种实现方式,第一信道接入可以是基于第一条件进行的。第一条件例如可以与第二时间间隔相关。其中,第二时间间隔例如可以为发送第一PRS的起始时刻与上一次侧行通信结束时刻之间的间隔。上一次侧行通信结束时刻可以为第一终端设备或其他终端设备(非第一终端设备)进行侧行通信的传输结束时刻。第一条件例如可以包括:在第二时间间隔小于第一阈值情况下,第一信道接入的 方式可以为不需要进行信道监听的接入方式。第一阈值例如可以为X微秒。其中,X可以为大于0的整数。X可以是预设的、协议规定的或通过高层信令配置的。
可以理解的是,第一信道接入的方式可以为类型2C。在第一条件与类型2C的信道接入条件一致的情况下,既可以认为第一信道接入的方式为类型2C。
在一些实施例中,第一PRS的发送方式可以为短控制信令发送(short control signaling transmission,SCSt)方式。可以理解的是,在第一PRS的发送方式为SCSt方式的情况下,可以不进行信道监听过程,即可以简化第一PRS的发送过程。需要说明的是,在第一PRS通过SCSt方式发送的情况下,也可以进行信道监听过程。例如,可以进行方式为类型2A或类型2B的第一信道接入并通过SCSt方式发送第一PRS。
第一PRS可以承载于第一侧行资源,第一侧行资源是通过预配置或通过高层信令配置在资源池中的。其中,第一侧行资源可以包括时域资源。例如,传输第一PRS的时隙可以是通过预配置或高层信令配置在资源池中的。
第一终端设备可以通过侧行感知(sidelink sensing)和资源选择机制获取第一侧行资源传输第一PRS。或者,第一终端设备可以不通过侧行感知或资源选择机制直接选择第一侧行资源传输第一PRS。
基于上述内容,本申请提供的方法的可能的实现方式的组合可以包括但不限于:1)第一终端设备未通过侧行感知获取传输第一PRS的侧行传输资源,第一信道接入的方式为类型2A或类型2B,并且通过SCSt方式发送第一PRS;2)第一终端设备过侧行感知获取传输第一PRS的侧行传输资源,第一信道接入的方式为类型2A或类型2B,并且通过SCSt方式发送第一PRS;3)第一终端设备未通过侧行感知获取传输第一PRS的侧行传输资源,第一信道接入的方式为不需要进行信道监听的信道接入方式,并且通过SCSt方式发送第一PRS。
下面通过实施例1-5详细介绍本申请提供的通信方法。可以理解的是,实施1-5可以单独实施,也可以结合实施。
实施例1
实施例1公开的方法可以包括步骤S1910~步骤S1920。实施例1提供的方法可以由第一终端设备和/或第二终端设备实施。
步骤S1910,第一终端设备在符号k进行第一信道接入。
符号k为第一时隙中的符号。在第一时隙中,第k个符号开始连续的n个OFDM符号可以用于侧行通信。也就是说,符号k可以作为第一时隙中用于侧行通信的多个符号中的第一个符号。其中,k可以为大于或等于0的整数,n可以为大于0的整数。
第一信道接入的方式为类型2A或类型2B。
下面结合图19详细说明。如图19所示,时隙t可以为第一时隙。时隙t中的符号0和符号1不用于侧行通信。用于侧行通信的资源是从时隙t的符号2开始往后的n个符号(即虚线矩形框中的资源)。可以理解的是,在图19中,n=12,k=2。
其中,符号k的长度可以满足第二条件。第二条件可以包括符号k的长度大于或等于信道接入过程的信道监听(例如LBT过程)时长L。
以图19为例,在子载波间隔为15KHz的情况下,一个符号的长度大约为71.4μs。以第一信道接入的方式为类型2A为例,信道监听时长L可以为25μs。以第一信道接入方式为类型2B为例,信道监听时长L可以为16μs。可以理解的是,第一信道接入方式为类型2A或类型2B,均可以满足第二条件。
步骤S1920,在第一信道接入成功的情况下,第一终端设备可以从符号k+1开始发送第一PRS。第二终端设备可以从符号k+1开始接收第一PRS。
需要说明的是,第一信道接入的信道监听过程开始时刻,需要保证在做完信道监听且信道接入成功时,能立刻在符号k+1进行第一PRS的发送。
继续以图19为例,在符号2内,且在符号3之前,第一终端设备要完成第一信道接入过程(包括信道监听过程)。在图19中,信道监听过程在符号2的最后一个微秒完成,并且第一信道接入过程成功完成。第一终端设备紧接着在符号3开始发送第一PRS(即SL-PRS)。
在图19中,第一PRS的发送占用了符号3~符号9这7个符号。
在一些实现方式中,用于侧行通信的资源可以通过侧行感知获取。例如,如果第一终端设备进行了侧行感知,则可以通过侧行感知和资源选择过程获取用于侧行通信的资源。
在一些实现方式中,用于侧行通信的资源可以从资源池中获取。例如,第一终端设备可以不进行侧行感知,第一终端设备可以通过高层信令配置或预配置获取用于侧行通信的资源。
实施例2
实施例2公开的方法可以包括步骤S2010~S2020。实施例3提供的方法可以由第一终端设备和/或第二终端设备实施。
步骤S2010,第一终端设备在第一时隙的符号m进行第一信道接入。
符号k为第一时隙中的符号。在第一时隙中,第k个符号开始连续的n个OFDM符号可以用于侧行通信。也就是说,符号k可以作为第一时隙中用于侧行通信的多个符号中的第一个符号。其中,k可以为大于或等于0的整数,n可以为大于0的整数。
符号m可以为大于或等于k的整数。也就是说,符号m为n个OFDM符号中的任一个。
第一信道接入的方式为类型2A或类型2B。
下面结合图20详细说明。如图20所示,时隙t可以为第一时隙。时隙t中的符号0和符号1不用于侧行通信。用于侧行通信的资源是从时隙t的符号2开始往后的n个符号(即虚线矩形框中的资源)。第一终端设备在符号4进行第一信道接入。可以理解的是,在图20中,n=12,k=2,m=4。
步骤S2020,在所述第一信道接入成功的情况下,第一终端设备可以从符号m+1开始发送第一PRS。第二终端设备可以从符号m+1开始接收第一PRS。
可以理解的是,实施例1可以是实施例2中m=k的特殊情况。
实施例3
实施例3公开的方法可以包括步骤S2110~步骤S2130。实施例3提供的方法可以由第一终端设备和/或第二终端设备实施。
步骤S2110,第一终端设备在第一时隙的符号m进行第一信道接入。
第一信道接入开始于符号m的起始点。如图21所示,m=4,第一信道接入过程从符号4的起始点开始进行。
步骤S2120,第一终端设备在第一信道接入过程结束后发送占位符。第二终端设备在第一信道接入过程结束后接收占位符。
如图21所示,第一信道接入成功的时刻(也是信道监听成功的时刻)尚未到达符号5的开始时刻(即起始点或起始边界),则第一终端设备可以在第一信道接入成功的时刻开始发送占位符,直到符号5的开始时刻结束占位符的发送。占位符可以为CPE。
可以理解的是,在实施例3中,可以不要求第一终端设备在符号4的位置开始进行第一信道接入。也就是说,第一信道接入的开始时间可以灵活确定。
步骤S2130,第一终端设备在符号m+1开始发送第一PRS。第二终端设备在符号m+1开始接收第一PRS。
实施例4
图22是实施例4提供的一种通信方法的示例图。图22所示的方法可以包括步骤S2210~步骤S2220。实施例4提供的方法可以由第一终端设备和/或第二终端设备执行。
步骤S2210,第一终端设备在第一时隙的符号m进行第一信道接入。
第一时隙中所有的符号都可以用于侧行通信。如图22所示,时隙t可以为第一时隙,第一时隙中的符号0~符号13均可以用于侧行通信。时隙t-1中的所有符号也可以用于侧行通信(时隙t和时隙t-1中可用于侧行通信的资源通过矩形虚线框框出)。符号m可以是第一时隙中的任意一个符号。在图22中,符号m可以为符号0,符号0是第一时隙的第一个符号。也就是说,第一终端设备可以在第一时隙的第一个符号进行第一信道接入。
第一信道接入的接入方式为类型2A或类型2B。符号m的长度可以满足第二条件。第二条件包括符号m的长度大于或等于信道接入过程的信道监听(例如LBT过程)时长L。以第一信道接入的方式为类型2A为例,信道监听时长L可以为25μs,则第二条件包括符号m的长度大于或等于25μs。以第一信道接入方式为类型2B为例,信道监听时长L可以为16μs,则第二条件可以包括符号m的长度大于或等于16μs。
实施例4不限制第一信道接入过程的开始时刻和结束时刻。例如,第一信道接入过程的开始时刻可以保证在第一信道接入过程结束时,可以立刻在符号m+1上发送第一PRS(与实施例1或实施例2类似)。或者,第一信道接入过程的结束时刻可以距离符号m+1有一段时间间隔(即第一时间间隔),在这段时间内,可以发送占位符CPE,以确保资源不被其他设备抢占(与实施例3类似)。
步骤S2220,第一终端设备在第一时隙的符号m+1发送第一PRS。第二终端设备在第一时隙的第二个符号接收第一PRS。
在图22中,在时隙t的第二个符号(符号1),发送或接收第一PRS。
可选地,在时隙t的上一个时隙,即时隙t-1,也可以是用于侧行通信时隙。并且在时隙t-1,存在第一终端设备或与第一终端设备不同的终端设备进行侧行传输。在这种情况下,第一终端设备不在时 隙t-1的GAP符号中进行第一信道接入的信道监听过程。
实施例5
在实施例5中,第一信道接入可以为不需要进行信道监听的信道接入方式。也就是说,第一终端设备可以不进行LBT直接传输第一PRS。
在一种实现方式下,在发送第一PRS的起始时刻与上一次侧行通信结束时刻的间隔为第二时间间隔的情况下,如果第二时间间隔小于或等于Xμs,则第一终端设备可以不进行信道监听直接发送第一PRS。其中,X大于或等于0。可以理解的是,在这种实现方式下,第一信道接入的类型可以为类型2C。
在一种实现方式下,第一终端设备可以在用于侧行通信的资源上的任意符号,直接发送第一PRS,无需进行LBT。发送第一PRS的方式可以为采用SCSt的发送方式。
上文结合图1至图22,详细描述了本申请的方法实施例,下面结合图23至图25,详细描述本申请的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图23为本申请实施例提供的一种终端设备2300的示意性结构图。所述终端设备2300为第一终端设备,所述终端设备2300包括第一发送单元2310。
第一发送单元2310可以用于在非授权频谱上,通过侧行链路发送第一定位参考信号PRS。
可选地,所述终端设备2300还可以包括接入单元2320。接入单元2320用于在第一时隙上进行第一信道接入;其中,所述第一信道接入用于在所述第一时隙内发送所述第一PRS。
可选地,所述第一PRS占用的第一个符号为第一符号,所述第一符号的前一个符号为第二符号,所述第一信道接入结束于所述第二符号。
可选地,所述第一信道接入结束于所述第二符号的结束时刻。
可选地,所述第一信道接入的结束时刻与所述第一PRS传输起始时刻之间包括第一时间间隙,所述终端设备2300还包括:第二发送单元,用于在所述第一时间间隙,发送占位符。
可选地,所述第一信道接入开始于第三符号,所述第三符号为所述第一时隙中可用于侧行通信的一个或多个符号中的一个。
可选地,所述第三符号为所述第一时隙中可用于侧行通信的一个或多个符号中的第一个符号。
可选地,所述第一信道接入不发生在间隔GAP符号上。
可选地,所述第一信道接入的类型为类型2A或类型2B。
可选地,所述第一信道接入的方式为不需要进行信道监听的信道接入方式。
可选地,所述第一信道接入是基于第一条件进行的。
可选地,发送所述第一PRS的起始时刻与上一次侧行通信结束时刻的间隔为第二时间间隔,所述第一条件与所述第二时间间隔相关。
可选地,所述第一信道接入的类型为类型2C。
可选地,所述第一PRS的发送方式为短控制信令发送SCSt方式。
可选地,所述第一PRS承载于第一侧行资源,所述第一侧行资源是通过预配置或通过高层信令配置在资源池中的。
图24为本申请实施例提供的一种终端设备2400的示意性结构图。终端设备2400可以为第二终端设备。终端设备2400可以包括第一接收单元2410。
第一接收单元2410,用于在非授权频谱上,通过侧行链路接收第一定位参考信号PRS。
可选地,所述第一PRS的传输是基于第一时隙上的第一信道接入进行的,所述第一信道接入用于在所述第一时隙内发送所述第一PRS。
可选地,所述第一PRS占用的第一个符号为第一符号,所述第一符号的前一个符号为第二符号,所述第一信道接入结束于所述第二符号。
可选地,所述第一信道接入结束于所述第二符号的结束时刻。
可选地,所述第一信道接入的结束时刻与所述第一PRS传输起始时刻之间包括第一时间间隙,所述终端设备2400还可以包括第二接收单元2420。第二接收单元2420可以用于在所述第一时间间隙,接收占位符。
可选地,所述第一信道接入开始于第三符号,所述第三符号为所述第一时隙中可用于侧行通信的一个或多个符号中的一个。
可选地,所述第三符号为所述第一时隙中可用于侧行通信的一个或多个符号中的第一个符号。
可选地,所述第一信道接入不发生在间隔GAP符号上。
可选地,所述第一信道接入的类型为类型2A或类型2B。
可选地,所述第一信道接入的方式为不需要进行信道监听的信道接入方式。
可选地,所述第一信道接入是基于第一条件进行的。
可选地,发送所述第一PRS的起始时刻与上一次侧行通信结束时刻的间隔为第二时间间隔,所述第一条件与所述第二时间间隔相关。
可选地,所述第一信道接入的类型为类型2C。
可选地,所述第一PRS的发送方式为短控制信令发送SCSt方式。
可选地,所述第一PRS承载于第一侧行资源,所述第一侧行资源是通过预配置或通过高层信令配置在资源池中的。
在可选的实施例中,所述第一发送单元2310、第一接收单元2410或第二接收单元可以为收发器2540,接入单元2320可以为处理器2510。终端设备2300或终端设备2400还可以包括存储器2520,具体如图25所示。
图25是本申请实施例的通信装置的示意性结构图。图25中的虚线表示该单元或模块为可选的。该装置2500可用于实现上述方法实施例中描述的方法。装置2500可以是芯片、终端设备或网络设备。
装置2500可以包括一个或多个处理器2510。该处理器2510可支持装置2500实现前文方法实施例所描述的方法。该处理器2510可以是通用处理器或者专用处理器。例如,该处理器可以为中央处理单元(central processing unit,CPU)。或者,该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
装置2500还可以包括一个或多个存储器2520。存储器2520上存储有程序,该程序可以被处理器2510执行,使得处理器2510执行前文方法实施例所描述的方法。存储器2520可以独立于处理器2510也可以集成在处理器2510中。
装置2500还可以包括收发器2530。处理器2510可以通过收发器2530与其他设备或芯片进行通信。例如,处理器2510可以通过收发器2530与其他设备或芯片进行数据收发。
本申请实施例还提供一种计算机可读存储介质,用于存储程序。该计算机可读存储介质可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序产品。该计算机程序产品包括程序。该计算机程序产品可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序。该计算机程序可应用于本申请实施例提供的终端或网络设备中,并且该计算机程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
应理解,本申请中术语“***”和“网络”可以被可互换使用。另外,本申请使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
在本申请的实施例中,提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
在本申请实施例中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信***中的相关协议,本申请对此不做限定。
本申请实施例中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的各种实施例中,上述各的序号的大小并不意味着执行顺序的先后,各的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够读取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (66)

  1. 一种通信方法,其特征在于,所述方法包括:
    在非授权频谱上,第一终端设备通过侧行链路发送第一定位参考信号PRS。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备在第一时隙上进行第一信道接入;
    其中,所述第一信道接入用于在所述第一时隙内发送所述第一PRS。
  3. 根据权利要求2所述的方法,其特征在于,所述第一PRS占用的第一个符号为第一符号,所述第一符号的前一个符号为第二符号,所述第一信道接入结束于所述第二符号。
  4. 根据权利要求3所述的方法,其特征在于,所述第一信道接入结束于所述第二符号的结束时刻。
  5. 根据权利要求2或3所述的方法,其特征在于,所述第一信道接入的结束时刻与所述第一PRS传输起始时刻之间包括第一时间间隙,所述方法还包括:
    在所述第一时间间隙,所述第一终端设备发送占位符。
  6. 根据权利要求2-5中任一项所述的方法,其特征在于,所述第一信道接入开始于第三符号,所述第三符号为所述第一时隙中可用于侧行通信的一个或多个符号中的一个。
  7. 根据权利要求6所述的方法,其特征在于,所述第三符号为所述第一时隙中可用于侧行通信的一个或多个符号中的第一个符号。
  8. 根据权利要求2-7中任一项所述的方法,其特征在于,所述第一信道接入不发生在间隔GAP符号上。
  9. 根据权利要求2-8中任一项所述的方法,其特征在于,所述第一信道接入的类型为类型2A或类型2B。
  10. 根据权利要求2-8中任一项所述的方法,其特征在于,所述第一信道接入的方式为不需要进行信道监听的信道接入方式。
  11. 根据权利要求10所述的方法,其特征在于,所述第一信道接入是基于第一条件进行的。
  12. 根据权利要求11所述的方法,其特征在于,发送所述第一PRS的起始时刻与上一次侧行通信结束时刻的间隔为第二时间间隔,所述第一条件与所述第二时间间隔相关。
  13. 根据权利要求10-12中任一项所述的方法,其特征在于,所述第一信道接入的类型为类型2C。
  14. 根据权利要求1-13中任一项所述的方法,其特征在于,所述第一PRS的发送方式为短控制信令发送SCSt方式。
  15. 根据权利要求1-14中任一项所述的方法,其特征在于,所述第一PRS承载于第一侧行资源,所述第一侧行资源是通过预配置或通过高层信令配置在资源池中的。
  16. 一种通信方法,其特征在于,所述方法包括:
    在非授权频谱上,第二终端设备通过侧行链路接收第一定位参考信号PRS。
  17. 根据权利要求16所述的方法,其特征在于,所述第一PRS的传输是基于第一时隙上的第一信道接入进行的,所述第一信道接入用于在所述第一时隙内发送所述第一PRS。
  18. 根据权利要求17所述的方法,其特征在于,所述第一PRS占用的第一个符号为第一符号,所述第一符号的前一个符号为第二符号,所述第一信道接入结束于所述第二符号。
  19. 根据权利要求18所述的方法,其特征在于,所述第一信道接入结束于所述第二符号的结束时刻。
  20. 根据权利要求17或18所述的方法,其特征在于,所述第一信道接入的结束时刻与所述第一PRS传输起始时刻之间包括第一时间间隙,所述方法还包括:
    在所述第一时间间隙,所述第二终端设备接收占位符。
  21. 根据权利要求17-20中任一项所述的方法,其特征在于,所述第一信道接入开始于第三符号,所述第三符号为所述第一时隙中可用于侧行通信的一个或多个符号中的一个。
  22. 根据权利要求21所述的方法,其特征在于,所述第三符号为所述第一时隙中可用于侧行通信的一个或多个符号中的第一个符号。
  23. 根据权利要求17-22中任一项所述的方法,其特征在于,所述第一信道接入不发生在间隔GAP符号上。
  24. 根据权利要求17-23中任一项所述的方法,其特征在于,所述第一信道接入的类型为类型2A或类型2B。
  25. 根据权利要求17-23中任一项所述的方法,其特征在于,所述第一信道接入的方式为不需要进行信道监听的信道接入方式。
  26. 根据权利要求25所述的方法,其特征在于,所述第一信道接入是基于第一条件进行的。
  27. 根据权利要求26所述的方法,其特征在于,发送所述第一PRS的起始时刻与上一次侧行通信结束时刻的间隔为第二时间间隔,所述第一条件与所述第二时间间隔相关。
  28. 根据权利要求25-27中任一项所述的方法,其特征在于,所述第一信道接入的类型为类型2C。
  29. 根据权利要求16-28中任一项所述的方法,其特征在于,所述第一PRS的发送方式为短控制信令发送SCSt方式。
  30. 根据权利要求16-29中任一项所述的方法,其特征在于,所述第一PRS承载于第一侧行资源,所述第一侧行资源是通过预配置或通过高层信令配置在资源池中的。
  31. 一种终端设备,其特征在于,所述终端设备为第一终端设备,所述终端设备包括:
    第一发送单元,用于在非授权频谱上,通过侧行链路发送第一定位参考信号PRS。
  32. 根据权利要求31所述的终端设备,其特征在于,所述终端设备还包括:
    接入单元,用于在第一时隙上进行第一信道接入;
    其中,所述第一信道接入用于在所述第一时隙内发送所述第一PRS。
  33. 根据权利要求32所述的终端设备,其特征在于,所述第一PRS占用的第一个符号为第一符号,所述第一符号的前一个符号为第二符号,所述第一信道接入结束于所述第二符号。
  34. 根据权利要求33所述的终端设备,其特征在于,所述第一信道接入结束于所述第二符号的结束时刻。
  35. 根据权利要求32或33所述的终端设备,其特征在于,所述第一信道接入的结束时刻与所述第一PRS传输起始时刻之间包括第一时间间隙,所述终端设备还包括:
    第二发送单元,用于在所述第一时间间隙,发送占位符。
  36. 根据权利要求32-35中任一项所述的终端设备,其特征在于,所述第一信道接入开始于第三符号,所述第三符号为所述第一时隙中可用于侧行通信的一个或多个符号中的一个。
  37. 根据权利要求36所述的终端设备,其特征在于,所述第三符号为所述第一时隙中可用于侧行通信的一个或多个符号中的第一个符号。
  38. 根据权利要求32-37中任一项所述的终端设备,其特征在于,所述第一信道接入不发生在间隔GAP符号上。
  39. 根据权利要求32-38中任一项所述的终端设备,其特征在于,所述第一信道接入的类型为类型2A或类型2B。
  40. 根据权利要求32-38中任一项所述的终端设备,其特征在于,所述第一信道接入的方式为不需要进行信道监听的信道接入方式。
  41. 根据权利要求40所述的终端设备,其特征在于,所述第一信道接入是基于第一条件进行的。
  42. 根据权利要求41所述的终端设备,其特征在于,发送所述第一PRS的起始时刻与上一次侧行通信结束时刻的间隔为第二时间间隔,所述第一条件与所述第二时间间隔相关。
  43. 根据权利要求40-42中任一项所述的终端设备,其特征在于,所述第一信道接入的类型为类型2C。
  44. 根据权利要求31-43中任一项所述的终端设备,其特征在于,所述第一PRS的发送方式为短控制信令发送SCSt方式。
  45. 根据权利要求31-44中任一项所述的终端设备,其特征在于,所述第一PRS承载于第一侧行资源,所述第一侧行资源是通过预配置或通过高层信令配置在资源池中的。
  46. 一种终端设备,其特征在于,所述终端设备为第二终端设备,所述终端设备包括:
    第一接收单元,用于在非授权频谱上,通过侧行链路接收第一定位参考信号PRS。
  47. 根据权利要求46所述的终端设备,其特征在于,所述第一PRS的传输是基于第一时隙上的第一信道接入进行的,所述第一信道接入用于在所述第一时隙内发送所述第一PRS。
  48. 根据权利要求47所述的终端设备,其特征在于,所述第一PRS占用的第一个符号为第一符号,所述第一符号的前一个符号为第二符号,所述第一信道接入结束于所述第二符号。
  49. 根据权利要求48所述的终端设备,其特征在于,所述第一信道接入结束于所述第二符号的结束时刻。
  50. 根据权利要求47或48所述的终端设备,其特征在于,所述第一信道接入的结束时刻与所述第一PRS传输起始时刻之间包括第一时间间隙,所述终端设备还包括:
    第二接收单元,用于在所述第一时间间隙,接收占位符。
  51. 根据权利要求47-50中任一项所述的终端设备,其特征在于,所述第一信道接入开始于第三符号,所述第三符号为所述第一时隙中可用于侧行通信的一个或多个符号中的一个。
  52. 根据权利要求51所述的终端设备,其特征在于,所述第三符号为所述第一时隙中可用于侧行通信的一个或多个符号中的第一个符号。
  53. 根据权利要求47-52中任一项所述的终端设备,其特征在于,所述第一信道接入不发生在间隔GAP符号上。
  54. 根据权利要求47-53中任一项所述的终端设备,其特征在于,所述第一信道接入的类型为类型2A或类型2B。
  55. 根据权利要求47-53中任一项所述的终端设备,其特征在于,所述第一信道接入的方式为不需要进行信道监听的信道接入方式。
  56. 根据权利要求55所述的终端设备,其特征在于,所述第一信道接入是基于第一条件进行的。
  57. 根据权利要求56所述的终端设备,其特征在于,发送所述第一PRS的起始时刻与上一次侧行通信结束时刻的间隔为第二时间间隔,所述第一条件与所述第二时间间隔相关。
  58. 根据权利要求55-57中任一项所述的终端设备,其特征在于,所述第一信道接入的类型为类型2C。
  59. 根据权利要求46-58中任一项所述的终端设备,其特征在于,所述第一PRS的发送方式为短控制信令发送SCSt方式。
  60. 根据权利要求46-59中任一项所述的终端设备,其特征在于,所述第一PRS承载于第一侧行资源,所述第一侧行资源是通过预配置或通过高层信令配置在资源池中的。
  61. 一种终端设备,其特征在于,包括收发器、存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以使所述终端执行如权利要求1-30中任一项所述的方法。
  62. 一种装置,其特征在于,包括处理器,用于从存储器中调用程序,以使所述装置执行如权利要求1-30中任一项所述的方法。
  63. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求1-30中任一项所述的方法。
  64. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求1-30中任一项所述的方法。
  65. 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求1-30中任一项所述的方法。
  66. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1-30中任一项所述的方法。
PCT/CN2022/111266 2022-08-09 2022-08-09 通信方法以及终端设备 WO2024031377A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111266 WO2024031377A1 (zh) 2022-08-09 2022-08-09 通信方法以及终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111266 WO2024031377A1 (zh) 2022-08-09 2022-08-09 通信方法以及终端设备

Publications (1)

Publication Number Publication Date
WO2024031377A1 true WO2024031377A1 (zh) 2024-02-15

Family

ID=89850113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111266 WO2024031377A1 (zh) 2022-08-09 2022-08-09 通信方法以及终端设备

Country Status (1)

Country Link
WO (1) WO2024031377A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021040501A1 (ko) * 2019-08-29 2021-03-04 엘지전자 주식회사 무선통신시스템에서 사용자기기의 측위 방법
CN112994858A (zh) * 2019-12-17 2021-06-18 大唐移动通信设备有限公司 一种直通链路定位参考信号的发送、接收方法及终端
WO2021188208A1 (en) * 2020-03-19 2021-09-23 Qualcomm Incorporated Determination of positioning reference signal resources in out-of-coverage sidelink-assisted cooperative positioning
WO2021221352A1 (ko) * 2020-04-27 2021-11-04 엘지전자 주식회사 무선 통신 시스템에서 빔포밍된 신호를 이용하여 측위를 수행하기 위한 방법 및 장치
CN114245457A (zh) * 2018-07-17 2022-03-25 华为技术有限公司 定位方法、装置及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114245457A (zh) * 2018-07-17 2022-03-25 华为技术有限公司 定位方法、装置及设备
WO2021040501A1 (ko) * 2019-08-29 2021-03-04 엘지전자 주식회사 무선통신시스템에서 사용자기기의 측위 방법
CN112994858A (zh) * 2019-12-17 2021-06-18 大唐移动通信设备有限公司 一种直通链路定位参考信号的发送、接收方法及终端
WO2021188208A1 (en) * 2020-03-19 2021-09-23 Qualcomm Incorporated Determination of positioning reference signal resources in out-of-coverage sidelink-assisted cooperative positioning
WO2021221352A1 (ko) * 2020-04-27 2021-11-04 엘지전자 주식회사 무선 통신 시스템에서 빔포밍된 신호를 이용하여 측위를 수행하기 위한 방법 및 장치

Similar Documents

Publication Publication Date Title
US11856614B2 (en) Method and apparatus for accessing a wireless network
US11343812B2 (en) Radio resource allocation for access link
US20180092067A1 (en) System and Method for D2D Communication
JP2021518060A (ja) 帯域幅部分に対するシグナリング技法
CN111656748A (zh) 用于管理新型无线电(nr)中车联网(v2x)能力汇聚协议的技术
JP2019535205A (ja) ワイヤレス通信における同期およびデータチャネルヌメロロジー
WO2015166801A1 (ja) 基地局装置、端末装置、および通信方法
CN115066031B (zh) 侧行通信的方法及装置
WO2015166792A1 (ja) 基地局装置、端末装置、および通信方法
WO2024045304A1 (zh) 用于侧行通信的方法及装置
CN114449675B (zh) 信息传输方法及相关产品
WO2022218063A1 (zh) 一种随机接入的方法、通信装置及通信***
WO2024031377A1 (zh) 通信方法以及终端设备
WO2024026739A1 (zh) 通信方法以及终端设备
WO2024138549A1 (zh) 侧行传输的方法和终端设备
WO2024138595A1 (zh) 用于侧行传输的方法和终端设备
WO2024055241A1 (zh) 通信方法、终端设备以及网络设备
WO2024065762A1 (zh) 无线通信的方法及终端设备
WO2024031540A1 (zh) 通信方法及通信装置
WO2024092670A1 (zh) 侧行传输方法及终端设备
WO2024060187A1 (zh) 用于侧行通信方法以及终端设备
WO2024138609A1 (zh) 通信方法及通信装置
WO2023206145A1 (zh) 无线通信的方法和通信设备
WO2024138728A1 (zh) 侧行资源映射方法、装置、设备及存储介质
WO2024031233A1 (zh) 通信方法及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954353

Country of ref document: EP

Kind code of ref document: A1