WO2021040501A1 - 무선통신시스템에서 사용자기기의 측위 방법 - Google Patents

무선통신시스템에서 사용자기기의 측위 방법 Download PDF

Info

Publication number
WO2021040501A1
WO2021040501A1 PCT/KR2020/011659 KR2020011659W WO2021040501A1 WO 2021040501 A1 WO2021040501 A1 WO 2021040501A1 KR 2020011659 W KR2020011659 W KR 2020011659W WO 2021040501 A1 WO2021040501 A1 WO 2021040501A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
information
trtd
channel
receiving
Prior art date
Application number
PCT/KR2020/011659
Other languages
English (en)
French (fr)
Inventor
백종섭
서한별
고우석
이승민
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US17/634,800 priority Critical patent/US11903026B2/en
Publication of WO2021040501A1 publication Critical patent/WO2021040501A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/765Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted with exchange of information between interrogator and responder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • G01S7/006Transmission of data between radar, sonar or lidar systems and remote stations using shared front-end circuitry, e.g. antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • the present disclosure relates to a wireless communication system.
  • Wireless communication systems are widely deployed to provide various types of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, and a single carrier frequency (SC-FDMA) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • division multiple access division multiple access
  • MC-FDMA multi carrier frequency division multiple access
  • RATs radio access technologies
  • 5G is also included therein.
  • the three main requirements areas of 5G are (1) Enhanced Mobile Broadband (eMBB) area, (2) Massive Machine Type Communication (mMTC) area, and (3) Ultra-reliability and It includes a low-latency communication (Ultra-reliable and Low Latency Communications, URLLC) area.
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • URLLC Ultra-reliability and It includes a low-latency communication
  • KPI key performance indicator
  • 5G supports these various use cases in a flexible and reliable way.
  • eMBB goes far beyond basic mobile Internet access and covers rich interactive work, media and entertainment applications in the cloud or augmented reality.
  • Data is one of the key drivers of 5G, and it may not be possible to see dedicated voice services for the first time in the 5G era.
  • voice is expected to be processed as an application program simply using the data connection provided by the communication system.
  • the main reasons for the increased traffic volume are an increase in content size and an increase in the number of applications requiring high data rates.
  • Streaming services (audio and video), interactive video and mobile Internet connections will become more widely used as more devices connect to the Internet. Many of these applications require always-on connectivity to push real-time information and notifications to the user.
  • Cloud storage and applications are increasing rapidly on mobile communication platforms, which can be applied to both work and entertainment.
  • cloud storage is a special use case that drives the growth of the uplink data rate.
  • 5G is also used for remote work in the cloud and requires much lower end-to-end latency to maintain a good user experience when tactile interfaces are used.
  • Entertainment For example, cloud gaming and video streaming is another key factor that is increasing the demand for mobile broadband capabilities. Entertainment is essential on smartphones and tablets anywhere, including high mobility environments such as trains, cars and airplanes.
  • Another use case is augmented reality and information retrieval for entertainment.
  • augmented reality requires very low latency and an instantaneous amount of data.
  • one of the most anticipated 5G use cases relates to the ability to seamlessly connect embedded sensors in all fields, i.e. mMTC.
  • mMTC massive machine type computer
  • Industrial IoT is one of the areas where 5G plays a major role in enabling smart cities, asset tracking, smart utilities, agriculture and security infrastructure.
  • URLLC includes new services that will transform the industry with ultra-reliable/low-latency links such as self-driving vehicles and remote control of critical infrastructure.
  • the level of reliability and delay is essential for smart grid control, industrial automation, robotics, and drone control and coordination.
  • 5G can complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means of providing streams rated at hundreds of megabits per second to gigabits per second. This high speed is required to deliver TVs in 4K or higher (6K, 8K and higher) resolutions, as well as virtual and augmented reality.
  • Virtual Reality (VR) and Augmented Reality (AR) applications involve almost immersive sports events.
  • Certain application programs may require special network settings. For example, for VR games, game companies may need to integrate core servers with network operators' edge network servers to minimize latency.
  • Automotive is expected to be an important new driving force in 5G, with many use cases for mobile communication to vehicles. For example, entertainment for passengers demands simultaneous high capacity and high mobility mobile broadband. The reason is that future users will continue to expect high-quality connections, regardless of their location and speed.
  • Another use case in the automotive field is an augmented reality dashboard. It identifies an object in the dark on top of what the driver sees through the front window, and displays information that tells the driver about the distance and movement of the object overlaid.
  • wireless modules enable communication between vehicles, exchange of information between the vehicle and the supporting infrastructure, and exchange of information between the vehicle and other connected devices (eg, devices carried by pedestrians).
  • the safety system can lower the risk of an accident by guiding the driver through alternative courses of action to make driving safer.
  • the next step will be a remote controlled or self-driven vehicle.
  • This requires very reliable and very fast communication between different self-driving vehicles and between the vehicle and the infrastructure.
  • self-driving vehicles will perform all driving activities, and drivers will be forced to focus only on traffic anomalies that the vehicle itself cannot identify.
  • the technical requirements of self-driving vehicles require ultra-low latency and ultra-fast reliability to increase traffic safety to levels unachievable by humans.
  • Smart cities and smart homes referred to as smart society, will be embedded with high-density wireless sensor networks.
  • a distributed network of intelligent sensors will identify the conditions for cost and energy-efficient maintenance of a city or home.
  • a similar setup can be done for each household.
  • Temperature sensors, window and heating controllers, burglar alarms and appliances are all wirelessly connected. Many of these sensors are typically low data rate, low power and low cost. However, for example, real-time HD video may be required in certain types of devices for surveillance.
  • the consumption and distribution of energy including heat or gas is highly decentralized, requiring automated control of distributed sensor networks.
  • the smart grid interconnects these sensors using digital information and communication technologies to gather information and act accordingly. This information can include the behavior of suppliers and consumers, enabling smart grids to improve efficiency, reliability, economics, sustainability of production and the distribution of fuels such as electricity in an automated way.
  • the smart grid can also be viewed as another low-latency sensor network.
  • the health sector has many applications that can benefit from mobile communications.
  • the communication system can support telemedicine providing clinical care from remote locations. This can help reduce barriers to distance and improve access to medical services that are not consistently available in remote rural areas. It is also used to save lives in critical care and emergencies.
  • a wireless sensor network based on mobile communication can provide sensors and remote monitoring of parameters such as heart rate and blood pressure.
  • Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the possibility of replacing cables with reconfigurable wireless links is an attractive opportunity for many industries. However, achieving this requires that the wireless connection operates with a delay, reliability and capacity similar to that of the cable, and its management is simplified. Low latency and very low error probability are new requirements that need to be connected to 5G.
  • Logistics and freight tracking are important use cases for mobile communications that enable tracking of inventory and packages anywhere using location-based information systems. Logistics and freight tracking use cases typically require low data rates, but require a wide range and reliable location information.
  • a wireless communication system is a multiple access system that supports communication with multiple users by sharing available system resources (eg, bandwidth, transmission power, etc.).
  • multiple access systems include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, and a single carrier frequency (SC-FDMA) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • division multiple access division multiple access
  • MC-FDMA multi carrier frequency division multiple access
  • a sidelink refers to a communication method in which a direct link is established between UEs (User Equipment, UEs) and directly exchanges voice or data between UEs without going through a base station (BS).
  • SL is considered as one of the ways to solve the burden of the base station due to rapidly increasing data traffic.
  • V2X vehicle-to-everything refers to a communication technology that exchanges information with other vehicles, pedestrians, and infrastructure-built objects through wired/wireless communication.
  • V2X can be classified into four types: vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-network (V2N), and vehicle-to-pedestrian (V2P).
  • V2X communication may be provided through a PC5 interface and/or a Uu interface.
  • next-generation radio access technology in consideration of the like may be referred to as a new radio access technology (RAT) or a new radio (NR).
  • RAT new radio access technology
  • NR new radio
  • V2X vehicle-to-everything
  • FIG. 1 is a diagram for explaining by comparing V2X communication based on RAT before NR and V2X communication based on NR.
  • V2X communication in RAT before NR, a method of providing safety service based on V2X messages such as BSM (Basic Safety Message), CAM (Cooperative Awareness Message), and DENM (Decentralized Environmental Notification Message). This was mainly discussed.
  • the V2X message may include location information, dynamic information, attribute information, and the like.
  • the UE may transmit a periodic message type CAM and/or an event triggered message type DENM to another UE.
  • the CAM may include basic vehicle information such as dynamic state information of the vehicle such as direction and speed, vehicle static data such as dimensions, external lighting conditions, and route history.
  • the UE may broadcast the CAM, and the latency of the CAM may be less than 100 ms.
  • the UE may generate a DENM and transmit it to another UE.
  • all vehicles within the transmission range of the UE may receive CAM and/or DENM.
  • DENM may have a higher priority than CAM.
  • V2X scenarios may include vehicle platooning, advanced driving, extended sensors, remote driving, and the like.
  • vehicles can dynamically form groups and move together. For example, in order to perform platoon operations based on vehicle platooning, vehicles belonging to the group may receive periodic data from the leading vehicle. For example, vehicles belonging to the group may use periodic data to reduce or widen the distance between vehicles.
  • the vehicle can be semi-automated or fully automated.
  • each vehicle may adjust trajectories or maneuvers based on data acquired from a local sensor of a proximity vehicle and/or a proximity logical entity.
  • each vehicle may share a driving intention with nearby vehicles.
  • raw data or processed data, or live video data obtained through local sensors may be used for UEs of vehicles, logical entities, and pedestrians. / Or can be exchanged between V2X application servers.
  • the vehicle can recognize an improved environment than the environment that can be detected using its own sensor.
  • a remote driver or a V2X application may operate or control the remote vehicle.
  • a route can be predicted such as in public transportation
  • cloud computing-based driving may be used for operation or control of the remote vehicle.
  • access to a cloud-based back-end service platform may be considered for remote driving.
  • V2X communication based on NR a method of specifying service requirements for various V2X scenarios such as vehicle platooning, improved driving, extended sensors, and remote driving is being discussed in V2X communication based on NR.
  • Various examples of the present disclosure may provide a method of transmitting and receiving a signal in a wireless communication system and an apparatus supporting the same.
  • various examples of the present disclosure may provide a reporting method for minimizing the amount of TRTD information in a wireless communication system and an apparatus supporting the same.
  • various examples of the present disclosure may provide an RTT positioning method in an unlicensed band and an apparatus supporting the same in a wireless communication system.
  • Various examples of the present disclosure may provide a method of transmitting and receiving a signal in a wireless communication system and an apparatus supporting the same.
  • a method of a user equipment in a wireless communication system comprising: receiving positioning reference signal (PRS) setting information; Perform a listen before talk (LBT) on an unlicensed band; Transmitting a first PRS (positioning reference signal) to an anchor node (AN) based on the PRS configuration information on a channel in an IDLE state according to the LBT among a plurality of channels included in the unlicensed band; And receiving a second PRS from the AN based on the PRS configuration information on the channel, and the first PRS is transmitted immediately after the LBT is performed.
  • PRS positioning reference signal
  • LBT listen before talk
  • AN anchor node
  • the PRS configuration information may include a resource pattern of the first PRS and the second PRS, and the number of symbols of the first PRS and the second PRS.
  • the first PRS and the second PRS are used to obtain Tx-Rx time difference (TRTD), and the TRTD is between a time point when the AN receives the first PRS and a time point when the AN transmits the second PRS. It may be a time difference value.
  • the TRTD is indicated by first TRTD information and second TRTD information, and the first TRTD information is Where t CB is the TRTD, T u is the length of an orthogonal frequency division multiple (OFDM) symbol, and the second TRTD information is
  • cTRTD_integer is the first TRTD information, and T x may be the length of a sample of the OFDM symbol.
  • the second TRTD information is indicated based on pattern information of the sequence of the second PRS, wherein the pattern information includes a comb type and a cyclic shift value of the sequence of the second PRS. I can.
  • an apparatus for a user equipment in a wireless communication system comprising: at least one processor; And at least one memory (memory) operably connected to the at least one processor to store at least one instruction for causing the at least one processor to perform operations, and the operations include: PRS( positioning reference signal) setting information; Perform a listen before talk (LBT) on an unlicensed band; Transmitting a first PRS (positioning reference signal) to an anchor node (AN) based on the PRS configuration information on a channel in an IDLE state according to the LBT among a plurality of channels included in the unlicensed band; And a second PRS is received from the AN based on the PRS configuration information on the channel, and the first PRS is transmitted immediately after the LBT is performed.
  • PRS( positioning reference signal) setting information
  • LBT listen before talk
  • AN anchor node
  • AN anchor node
  • the PRS configuration information may include a resource pattern of the first PRS and the second PRS, and the number of symbols of the first PRS and the second PRS.
  • the first PRS and the second PRS are used to obtain Tx-Rx time difference (TRTD), and the TRTD is between a time point when the AN receives the first PRS and a time point when the AN transmits the second PRS. It may be a time difference value.
  • the TRTD is indicated by first TRTD information and second TRTD information, and the first TRTD information is Where t CB is the TRTD, T u is the length of an orthogonal frequency division multiple (OFDM) symbol, and the second TRTD information is
  • cTRTD_integer is the first TRTD information, and T x may be the length of a sample of the OFDM symbol.
  • the second TRTD information is indicated based on pattern information of the sequence of the second PRS, wherein the pattern information includes a comb type and a cyclic shift value of the sequence of the second PRS. I can.
  • the user device may be an autonomous vehicle or included in an autonomous vehicle.
  • a processor for performing operations for a user equipment in a wireless communication system comprising: receiving positioning reference signal (PRS) configuration information; Perform a listen before talk (LBT) on an unlicensed band; Transmitting a first PRS (positioning reference signal) to an anchor node (AN) based on the PRS configuration information on a channel in an IDLE state according to the LBT among a plurality of channels included in the unlicensed band; And a second PRS is received from the AN based on the PRS configuration information on the channel, and the first PRS is transmitted immediately after the LBT is performed.
  • PRS positioning reference signal
  • LBT listen before talk
  • AN anchor node
  • a computer-readable storage medium wherein the computer-readable storage medium, when executed by at least one or more processors, causes the at least one or more processors to perform operations for a user device Storing at least one computer program including the above instructions, the operations comprising: receiving positioning reference signal (PRS) setting information; Perform a listen before talk (LBT) on an unlicensed band; Transmitting a first PRS (positioning reference signal) to an anchor node (AN) based on the PRS configuration information on a channel in an IDLE state according to the LBT among a plurality of channels included in the unlicensed band; And receiving a second PRS from the AN based on the PRS configuration information on the channel, and the first PRS is a computer-readable storage medium that is transmitted immediately after the LBT is performed.
  • PRS positioning reference signal
  • LBT listen before talk
  • AN anchor node
  • a reporting method for minimizing the amount of TRTD information in a wireless communication system and an apparatus supporting the same may be provided.
  • various examples of the present disclosure may provide an RTT positioning method in an unlicensed band and an apparatus supporting the same in a wireless communication system.
  • FIG. 1 is a diagram for explaining by comparing V2X communication based on RAT before NR and V2X communication based on NR.
  • FIG. 2 shows a structure of an LTE system according to an example of the present disclosure.
  • FIG 3 illustrates a radio protocol architecture for a user plane and a control plane according to an example of the present disclosure.
  • FIG. 4 shows a structure of an NR system according to an example of the present disclosure.
  • 5 illustrates functional partitioning between NG-RAN and 5GC according to an example of the present disclosure.
  • FIG. 6 shows a structure of an NR radio frame to which the embodiment(s) can be applied.
  • FIG. 7 illustrates a slot structure of an NR frame according to an example of the present disclosure.
  • FIG. 8 illustrates a radio protocol architecture for SL communication according to an example of the present disclosure.
  • FIG 9 illustrates a radio protocol architecture for SL communication according to an example of the present disclosure.
  • FIG. 10 shows a structure of an S-SSB when a CP type is NCP according to an example of the present disclosure.
  • FIG. 11 shows a structure of an S-SSB when a CP type is ECP according to an example of the present disclosure.
  • FIG. 12 shows a UE performing V2X or SL communication according to an example of the present disclosure.
  • FIG. 13 shows a resource unit for V2X or SL communication according to an example of the present disclosure.
  • FIG. 14 shows a procedure for a UE to perform V2X or SL communication according to a transmission mode according to an example of the present disclosure.
  • FIG. 15 shows an example of an architecture in a 5G system in which positioning is possible for a UE connected to a Next Generation-Radio Access Network (NG-RAN) or E-UTRAN according to an example of the present disclosure.
  • NG-RAN Next Generation-Radio Access Network
  • E-UTRAN E-UTRAN
  • 16 shows an example implementation of a network for measuring a location of a UE according to an example of the present disclosure.
  • FIG. 17 shows an example of a protocol layer used to support transmission of an LTE Positioning Protocol (LPP) message between an LMF and a UE according to an example of the present disclosure.
  • LTP LTE Positioning Protocol
  • NRPPa NR Positioning Protocol A
  • FIG. 19 is a diagram for describing an Observed Time Difference Of Arrival (OTDOA) positioning method according to an example of the present disclosure.
  • OTDOA Observed Time Difference Of Arrival
  • FIG. 20 is a diagram illustrating an example of a multi-RTT (round trip time) positioning method to which various embodiments of the present disclosure are applicable.
  • 21 shows an example of a wireless communication system supporting an unlicensed band applicable to the present invention.
  • 22 illustrates a method of occupying a resource in an unlicensed band.
  • 24 is a flowchart of a method for measuring and reporting TRTD according to an example of the present disclosure.
  • 25 shows a network for UE-based RTT positioning.
  • 26 is a flowchart of a RTT positioning method between a location server/LMF, a UE, and an AN according to an example of the present disclosure.
  • 28 is a signal transmission method of a user device according to an example of the present disclosure.
  • 29 to 35 are diagrams illustrating various devices to which the embodiment(s) may be applied.
  • “/” and “,” should be interpreted as representing “and/or”.
  • “A/B” may mean “A and/or B”.
  • “A, B” may mean “A and/or B”.
  • “A/B/C” may mean “at least one of A, B and/or C”.
  • “A, B, C” may mean “at least one of A, B and/or C”.
  • “or” should be interpreted as representing “and/or”.
  • “A or B” may include “only A”, “only B”, and/or “both A and B”.
  • “or” should be interpreted as indicating “additionally or alternatively”.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as universal terrestrial radio access (UTRA) or CDMA2000.
  • TDMA may be implemented with a radio technology such as global system for mobile communications (GSM)/general packet radio service (GPRS)/enhanced data rates for GSM evolution (EDGE).
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented with wireless technologies such as IEEE (institute of electrical and electronics engineers) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and E-UTRA (evolved UTRA).
  • IEEE 802.16m is an evolution of IEEE 802.16e and provides backward compatibility with a system based on IEEE 802.16e.
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) that uses evolved-UMTS terrestrial radio access (E-UTRA), and employs OFDMA in downlink and SC in uplink.
  • -Adopt FDMA is an evolution of 3GPP LTE.
  • 5G NR is the successor technology of LTE-A, and is a new clean-slate type mobile communication system with features such as high performance, low latency, and high availability.
  • 5G NR can utilize all available spectrum resources, from low frequency bands of less than 1 GHz to intermediate frequency bands of 1 GHz to 10 GHz and high frequency (millimeter wave) bands of 24 GHz or higher.
  • LTE-A or 5G NR is mainly described, but the technical idea according to an example of the present disclosure is not limited thereto.
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • the E-UTRAN includes a base station 20 that provides a control plane and a user plane to the UE 10.
  • the UE 10 may be fixed or mobile, and may be referred to as other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), and a wireless device.
  • the base station 20 refers to a fixed station that communicates with the UE 10, and may be referred to as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like.
  • the base stations 20 may be connected to each other through an X2 interface.
  • the base station 20 is connected to an Evolved Packet Core (EPC) 30 through an S1 interface, more specifically, a Mobility Management Entity (MME) through an S1-MME and a Serving Gateway (S-GW) through an S1-U.
  • EPC Evolved Packet Core
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • the EPC 30 is composed of MME, S-GW and P-GW (Packet Data Network-Gateway).
  • the MME has access information of the UE or information about the capabilities of the UE, and this information is mainly used for mobility management of the UE.
  • S-GW is a gateway with E-UTRAN as an endpoint
  • P-GW is a gateway with PDN (Packet Date Network) as an endpoint.
  • the layers of the Radio Interface Protocol between the UE and the network are L1 (Layer 1) based on the lower three layers of the Open System Interconnection (OSI) standard model, which is widely known in communication systems. It can be divided into L2 (second layer) and L3 (third layer).
  • L2 second layer
  • L3 third layer
  • the physical layer belonging to the first layer provides an information transfer service using a physical channel
  • the radio resource control (RRC) layer located in the third layer is a radio resource between the UE and the network. It plays the role of controlling.
  • the RRC layer exchanges RRC messages between the UE and the base station.
  • 3(a) shows a radio protocol architecture for a user plane according to an example of the present disclosure.
  • the user plane is a protocol stack for transmitting user data
  • the control plane is a protocol stack for transmitting control signals.
  • a physical layer provides an information transmission service to an upper layer using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer, which is an upper layer, through a transport channel.
  • MAC medium access control
  • Data moves between the MAC layer and the physical layer through the transport channel. Transmission channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • the physical channel may be modulated in an Orthogonal Frequency Division Multiplexing (OFDM) scheme, and time and frequency are used as radio resources.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the MAC layer provides a service to an upper layer, a radio link control (RLC) layer, through a logical channel.
  • the MAC layer provides a mapping function from a plurality of logical channels to a plurality of transport channels.
  • the MAC layer provides a logical channel multiplexing function by mapping a plurality of logical channels to a single transport channel.
  • the MAC sublayer provides a data transmission service on a logical channel.
  • the RLC layer performs concatenation, segmentation, and reassembly of RLC Serving Data Units (SDUs).
  • SDUs RLC Serving Data Units
  • TM Transparent Mode
  • UM Unacknowledged Mode
  • AM Acknowledged Mode.
  • AM RLC provides error correction through automatic repeat request (ARQ).
  • the Radio Resource Control (RRC) layer is defined only in the control plane.
  • the RRC layer is in charge of controlling logical channels, transport channels, and physical channels in relation to configuration, re-configuration, and release of radio bearers.
  • RB refers to a logical path provided by the first layer (physical layer or PHY layer) and the second layer (MAC layer, RLC layer, PDCP (Packet Data Convergence Protocol) layer) for data transfer between the UE and the network.
  • MAC layer physical layer or PHY layer
  • RLC layer Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • the functions of the PDCP layer in the user plane include transmission of user data, header compression, and ciphering.
  • Functions of the PDCP layer in the control plane include transmission of control plane data and encryption/integrity protection.
  • Establishing the RB means a process of defining characteristics of a radio protocol layer and channel to provide a specific service, and setting specific parameters and operation methods for each.
  • the RB can be further divided into two types: Signaling Radio Bearer (SRB) and Data Radio Bearer (DRB).
  • SRB is used as a path for transmitting RRC messages in the control plane
  • DRB is used as a path for transmitting user data in the user plane.
  • the UE When an RRC connection is established between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in the RRC_CONNECTED state, otherwise it is in the RRC_IDLE state.
  • the RRC_INACTIVE state is additionally defined, and the UE in the RRC_INACTIVE state can release the connection with the base station while maintaining the connection with the core network.
  • a downlink transmission channel for transmitting data from a network to a UE there are a broadcast channel (BCH) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages.
  • BCH broadcast channel
  • SCH downlink shared channel
  • downlink multicast or broadcast service traffic or control messages they may be transmitted through a downlink SCH, or may be transmitted through a separate downlink multicast channel (MCH).
  • RACH random access channel
  • SCH uplink shared channel
  • BCCH Broadcast Control Channel
  • PCCH Paging Control Channel
  • CCCH Common Control Channel
  • MCCH Multicast Control Channel
  • MTCH Multicast Traffic. Channel
  • the physical channel is composed of several OFDM symbols in the time domain and several sub-carriers in the frequency domain.
  • One sub-frame is composed of a plurality of OFDM symbols in the time domain.
  • a resource block is a resource allocation unit and is composed of a plurality of OFDM symbols and a plurality of sub-carriers.
  • each subframe may use specific subcarriers of specific OFDM symbols (eg, the first OFDM symbol) of the corresponding subframe for the PDCCH (Physical Downlink Control Channel), that is, the L1/L2 control channel.
  • TTI Transmission Time Interval
  • FIG. 4 shows a structure of an NR system according to an example of the present disclosure.
  • a Next Generation-Radio Access Network may include a next generation-Node B (gNB) and/or an eNB that provides a user plane and a control plane protocol termination to a UE.
  • gNB next generation-Node B
  • eNB that provides a user plane and a control plane protocol termination to a UE.
  • . 4 illustrates a case where only gNB is included.
  • the gNB and the eNB are connected to each other through an Xn interface.
  • the gNB and eNB are connected to the 5th generation core network (5G Core Network: 5GC) through the NG interface.
  • 5G Core Network 5GC
  • the access and mobility management function AMF
  • UPF user plane function
  • 5 illustrates functional partitioning between NG-RAN and 5GC according to an example of the present disclosure.
  • the gNB is inter-cell radio resource management (Inter Cell RRM), radio bearer management (RB control), connection mobility control (Connection Mobility Control), radio admission control (Radio Admission Control), measurement setting and provision Functions such as (Measurement configuration & Provision) and dynamic resource allocation may be provided.
  • AMF can provide functions such as non-access stratum (NAS) security and idle state mobility processing.
  • the UPF may provide functions such as mobility anchoring and protocol data unit (PDU) processing.
  • the Session Management Function (SMF) may provide functions such as UE IP (Internet Protocol) address allocation and PDU session control.
  • FIG. 6 shows a structure of an NR radio frame to which the embodiment(s) can be applied.
  • radio frames can be used in uplink and downlink transmission in NR.
  • the radio frame has a length of 10 ms and may be defined as two 5 ms half-frames (HF).
  • the half-frame may include five 1ms subframes (Subframe, SF).
  • a subframe may be divided into one or more slots, and the number of slots within a subframe may be determined according to a subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • Each slot may include 12 or 14 OFDM(A) symbols according to a cyclic prefix (CP).
  • CP cyclic prefix
  • each slot may include 14 symbols.
  • each slot may include 12 symbols.
  • the symbol may include an OFDM symbol (or a CP-OFDM symbol), an SC-FDMA symbol (or a DFT-s-OFDM symbol).
  • Table 1 below shows the number of symbols per slot (N slot symb ), the number of slots per frame (N frame, u slot ) and the number of slots per subframe (N subframe,u slot ) is illustrated.
  • Table 2 exemplifies the number of symbols per slot, the number of slots per frame, and the number of slots per subframe according to the SCS when the extended CP is used.
  • OFDM(A) numerology eg, SCS, CP length, etc.
  • OFDM(A) numerology eg, SCS, CP length, etc.
  • the (absolute time) section of the time resource e.g., subframe, slot or TTI
  • TU Time Unit
  • multiple numerology or SCS to support various 5G services may be supported.
  • SCS when the SCS is 15 kHz, a wide area in traditional cellular bands can be supported, and when the SCS is 30 kHz/60 kHz, a dense-urban, lower delay latency) and a wider carrier bandwidth may be supported.
  • SCS when the SCS is 60 kHz or higher, a bandwidth greater than 24.25 GHz may be supported to overcome phase noise.
  • the NR frequency band can be defined as two types of frequency ranges.
  • the two types of frequency ranges may be FR1 and FR2.
  • the numerical value of the frequency range may be changed, for example, the frequency ranges of the two types may be as shown in Table 3 below.
  • FR1 can mean “sub 6GHz range”
  • FR2 can mean “above 6GHz range” and can be called millimeter wave (mmW).
  • mmW millimeter wave
  • FR1 may include a band of 410MHz to 7125MHz as shown in Table 4 below. That is, FR1 may include a frequency band of 6 GHz (or 5850, 5900, 5925 MHz, etc.) or higher. For example, a frequency band of 6 GHz (or 5850, 5900, 5925 MHz, etc.) or higher included in FR1 may include an unlicensed band.
  • the unlicensed band can be used for a variety of purposes, and can be used, for example, for communication for vehicles (eg, autonomous driving).
  • a slot includes a plurality of symbols in a time domain.
  • one slot includes 14 symbols, but in the case of an extended CP, one slot may include 12 symbols.
  • one slot includes 7 symbols, but in the case of an extended CP, one slot may include 6 symbols.
  • the carrier includes a plurality of subcarriers in the frequency domain.
  • a resource block (RB) may be defined as a plurality of (eg, 12) consecutive subcarriers in the frequency domain.
  • BWP Bandwidth Part
  • P Physical Resource Blocks
  • the carrier may include up to N (eg, 5) BWPs. Data communication can be performed through an activated BWP.
  • Each element may be referred to as a resource element (RE) in the resource grid, and one complex symbol may be mapped.
  • the radio interface between the UE and the UE or the radio interface between the UE and the network may be composed of an L1 layer, an L2 layer, and an L3 layer.
  • the L1 layer may mean a physical layer.
  • the L2 layer may mean at least one of a MAC layer, an RLC layer, a PDCP layer, and an SDAP layer.
  • the L3 layer may mean an RRC layer.
  • V2X or SL (sidelink) communication will be described.
  • FIG. 8 illustrates a radio protocol architecture for SL communication according to an example of the present disclosure. Specifically, FIG. 8A shows a user plane protocol stack of LTE, and FIG. 8B shows a control plane protocol stack of LTE.
  • FIG. 9 illustrates a radio protocol architecture for SL communication according to an example of the present disclosure. Specifically, FIG. 9A shows a user plane protocol stack of NR, and FIG. 9B shows a control plane protocol stack of NR.
  • SLSS sidelink synchronization signal
  • SLSS is an SL-specific sequence and may include a Primary Sidelink Synchronization Signal (PSSS) and a Secondary Sidelink Synchronization Signal (SSSS).
  • PSSS Primary Sidelink Synchronization Signal
  • SSSS Secondary Sidelink Synchronization Signal
  • S-PSS Secondary Sidelink Primary Synchronization Signal
  • S-SSS Secondary Sidelink Synchronization Signal
  • length-127 M-sequences may be used for S-PSS
  • length-127 Gold sequences may be used for S-SSS.
  • the UE may detect an initial signal using S-PSS and may acquire synchronization.
  • the UE may acquire detailed synchronization using S-PSS and S-SSS, and may detect a synchronization signal ID.
  • the PSBCH Physical Sidelink Broadcast Channel
  • the PSBCH may be a (broadcast) channel through which basic (system) information that the UE needs to know first before transmitting and receiving SL signals is transmitted.
  • the basic information may include information related to SLSS, duplex mode (DM), TDD UL/DL (Time Division Duplex Uplink/Downlink) configuration, resource pool related information, type of application related to SLSS, It may be a subframe offset, broadcast information, and the like.
  • the payload size of the PSBCH may be 56 bits including a 24-bit CRC.
  • S-PSS, S-SSS, and PSBCH may be included in a block format supporting periodic transmission (e.g., SL SS (Synchronization Signal) / PSBCH block, hereinafter S-SSB (Sidelink-Synchronization Signal Block)).
  • the S-SSB may have the same numerology (i.e., SCS and CP length) as the PSCCH (Physical Sidelink Control Channel) / PSSCH (Physical Sidelink Shared Channel) in the carrier, and the transmission bandwidth is (pre-) BWP).
  • the bandwidth of the S-SSB may be 11 Resource Blocks (RBs).
  • PSBCH may span 11 RBs.
  • the frequency position of the S-SSB may be set (in advance). Therefore, the UE does not need to perform hypothesis detection in frequency to discover the S-SSB in the carrier.
  • the transmitting UE may transmit one or more S-SSBs to the receiving UE within one S-SSB transmission period according to the SCS.
  • the number of S-SSBs that the transmitting UE transmits to the receiving UE within one S-SSB transmission period may be pre-configured or configured to the transmitting UE.
  • the S-SSB transmission period may be 160 ms.
  • an S-SSB transmission period of 160 ms may be supported.
  • the transmitting UE may transmit one or two S-SSBs to the receiving UE within one S-SSB transmission period. For example, when the SCS is 30 kHz in FR1, the transmitting UE may transmit one or two S-SSBs to the receiving UE within one S-SSB transmission period. For example, when the SCS is 60 kHz in FR1, the transmitting UE may transmit 1, 2 or 4 S-SSBs to the receiving UE within one S-SSB transmission period.
  • the transmitting UE can transmit 1, 2, 4, 8, 16 or 32 S-SSBs to the receiving UE within one S-SSB transmission period. have.
  • the transmitting UE sends 1, 2, 4, 8, 16, 32 or 64 S-SSBs to the receiving UE within one S-SSB transmission period. Can be transmitted.
  • the structure of the S-SSB transmitted from the transmitting UE to the receiving UE may be different according to the CP type.
  • the CP type may be a normal CP (NCP) or an extended CP (ECP).
  • NCP normal CP
  • ECP extended CP
  • the number of symbols for mapping the PSBCH in the S-SSB transmitted by the transmitting UE may be 9 or 8.
  • the CP type is ECP
  • the number of symbols for mapping the PSBCH in the S-SSB transmitted by the transmitting UE may be 7 or 6.
  • PSBCH may be mapped to the first symbol in the S-SSB transmitted by the transmitting UE.
  • a receiving UE receiving the S-SSB may perform an automatic gain control (AGC) operation in the first symbol period of the S-SSB.
  • AGC automatic gain control
  • FIG. 10 shows a structure of an S-SSB when a CP type is NCP according to an example of the present disclosure.
  • the structure of the S-SSB that is, the order of symbols to which S-PSS, S-SSS, and PSBCH are mapped in the S-SSB transmitted by the transmitting UE may be referred to FIG. 10. have.
  • FIG. 11 shows a structure of an S-SSB when a CP type is ECP according to an example of the present disclosure.
  • the number of symbols for which the transmitting UE maps the PSBCH after the S-SSS in the S-SSB may be six. Accordingly, the coverage of the S-SSB may be different depending on whether the CP type is NCP or ECP.
  • each SLSS may have a Sidelink Synchronization Identifier (SLSS ID).
  • SLSS ID Sidelink Synchronization Identifier
  • a value of the SLSS ID may be defined based on a combination of two different S-PSS sequences and 168 different S-SSS sequences.
  • the number of SLSS IDs may be 336.
  • the value of the SLSS ID may be any one of 0 to 335.
  • a value of the SLSS ID may be defined based on a combination of two different S-PSS sequences and 336 different S-SSS sequences.
  • the number of SLSS IDs may be 672.
  • the value of SLSS ID may be any one of 0 to 671.
  • one S-PSS may be associated with in-coverage, and the other S-PSS is out-of-coverage.
  • Can be associated with SLSS IDs of 0 to 335 may be used in in-coverage, and SLSS IDs of 336 to 671 may be used in out-coverage.
  • the transmitting UE needs to optimize the transmission power according to the characteristics of each signal constituting the S-SSB. For example, according to the peak to average power ratio (PAPR) of each signal constituting the S-SSB, the transmitting UE may determine a maximum power reduction (MPR) value for each signal. For example, if the PAPR value is different between the S-PSS and S-SSS constituting the S-SSB, in order to improve the S-SSB reception performance of the receiving UE, the transmitting UE transmits the S-PSS and S-SSS. Each of the optimum MPR values can be applied.
  • PAPR peak to average power ratio
  • MPR maximum power reduction
  • a transition period may be applied.
  • the transition period may protect a time required for the transmitting terminal amplifier of the transmitting UE to perform a normal operation at the boundary where the transmitting power of the transmitting UE is changed.
  • the transition period may be 10us.
  • the transition period may be 5us.
  • a search window for the receiving UE to detect S-PSS may be 80 ms and/or 160 ms.
  • FIG. 12 shows a UE performing V2X or SL communication according to an example of the present disclosure.
  • the term UE in V2X or SL communication may mainly mean a user's UE.
  • the base station may also be regarded as a kind of UE.
  • UE 1 may be a first device 100 and UE 2 may be a second device 200.
  • UE 1 may select a resource unit corresponding to a specific resource within a resource pool, which means a set of resources.
  • UE 1 may transmit an SL signal using the resource unit.
  • UE 2 which is a receiving UE, may be configured with a resource pool through which UE 1 can transmit a signal, and may detect a signal of UE 1 in the resource pool.
  • the base station may inform UE 1 of the resource pool.
  • another UE may inform UE 1 of the resource pool, or UE 1 may use a preset resource pool.
  • the resource pool may be composed of a plurality of resource units, and each UE may select one or a plurality of resource units and use it for transmitting its own SL signal.
  • FIG. 13 shows a resource unit for V2X or SL communication according to an example of the present disclosure.
  • the total frequency resources of the resource pool may be divided into NF, and the total time resources of the resource pool may be divided into NT. Therefore, a total of NF * NT resource units can be defined in the resource pool. 13 shows an example in which a corresponding resource pool is repeated with a period of NT subframes.
  • one resource unit (eg, Unit #0) may be periodically repeated.
  • an index of a physical resource unit to which one logical resource unit is mapped may change in a predetermined pattern over time.
  • the resource pool may mean a set of resource units that can be used for transmission by a UE that intends to transmit an SL signal.
  • Resource pools can be subdivided into several types. For example, according to the content of the SL signal transmitted from each resource pool, the resource pool may be classified as follows.
  • SA Scheduling Assignment
  • MCS modulation and coding scheme
  • MIMO Multiple Input Multiple Output
  • TA Timing Advance
  • the SA may be multiplexed with SL data on the same resource unit and transmitted.
  • the SA resource pool may mean a resource pool in which the SA is multiplexed with SL data and transmitted.
  • SA may also be referred to as an SL control channel.
  • the SL data channel may be a resource pool used by the transmitting UE to transmit user data. If SA is multiplexed and transmitted along with SL data on the same resource unit, only SL data channels excluding SA information may be transmitted from the resource pool for the SL data channel. In other words, REs (Resource Elements) used to transmit SA information on individual resource units in the SA resource pool may still be used to transmit SL data in the resource pool of the SL data channel. For example, the transmitting UE may transmit the PSSCH by mapping the PSSCH to consecutive PRBs.
  • the discovery channel may be a resource pool for the transmitting UE to transmit information such as its ID. Through this, the transmitting UE can allow the neighboring UE to discover itself.
  • the transmission timing determination method of the SL signal e.g., whether it is transmitted at the time of reception of the synchronization reference signal or is transmitted by applying a certain timing advance at the time of reception
  • resources Allocation method e.g., whether the base station assigns transmission resources of individual signals to individual transmitting UEs or whether individual transmitting UEs select individual signal transmission resources by themselves within the resource pool
  • signal format e.g., each SL The number of symbols occupied by a signal in one subframe, or the number of subframes used for transmission of one SL signal
  • signal strength from the base station may be divided into different resource pools.
  • the transmission mode may be referred to as a mode or a resource allocation mode.
  • a transmission mode may be referred to as an LTE transmission mode
  • NR a transmission mode may be referred to as an NR resource allocation mode.
  • (a) of FIG. 14 shows a UE operation related to LTE transmission mode 1 or LTE transmission mode 3.
  • (a) of FIG. 14 shows UE operation related to NR resource allocation mode 1.
  • LTE transmission mode 1 may be applied to general SL communication
  • LTE transmission mode 3 may be applied to V2X communication.
  • (b) of FIG. 14 shows a UE operation related to LTE transmission mode 2 or LTE transmission mode 4.
  • (b) of FIG. 14 shows UE operation related to NR resource allocation mode 2.
  • the base station may schedule SL resources to be used by the UE for SL transmission.
  • the base station may perform resource scheduling to UE 1 through PDCCH (more specifically DCI (Downlink Control Information)), and UE 1 may perform V2X or SL communication with UE 2 according to the resource scheduling.
  • PDCCH more specifically DCI (Downlink Control Information)
  • UE 1 may perform V2X or SL communication with UE 2 according to the resource scheduling.
  • UE 1 may transmit Sidelink Control Information (SCI) to UE 2 through a Physical Sidelink Control Channel (PSCCH), and then transmit the SCI-based data to UE 2 through a Physical Sidelink Shared Channel (PSSCH).
  • SCI Sidelink Control Information
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • the UE may be provided or allocated resources for transmission of one or more SLs of one transport block (TB) from the base station through a dynamic grant.
  • the base station may provide resources for transmission of PSCCH and/or PSSCH to the UE by using the dynamic grant.
  • the transmitting UE may report the SL Hybrid Automatic Repeat Request (HARQ) feedback received from the receiving UE to the base station.
  • HARQ SL Hybrid Automatic Repeat Request
  • PUCCH resources and timing for reporting SL HARQ feedback to the base station may be determined based on an indication in the PDCCH for the base station to allocate resources for SL transmission.
  • DCI may indicate a slot offset between DCI reception and a first SL transmission scheduled by DCI.
  • the minimum gap between the DCI scheduling SL transmission resource and the first scheduled SL transmission resource may not be smaller than the processing time of the corresponding UE.
  • the UE may periodically provide or receive a resource set from the base station for transmission of a plurality of SLs through a configured grant.
  • the to-be-set grant may include a set grant type 1 or a set grant type 2.
  • the UE may determine the TB to be transmitted in each case (occasions) indicated by a given configured grant (given configured grant).
  • the base station may allocate SL resources to the UE on the same carrier, and allocate SL resources to the UE on different carriers.
  • the NR base station may control LTE-based SL communication.
  • the NR base station can transmit the NR DCI to the UE to schedule LTE SL resources.
  • a new RNTI for scrambling the NR DCI may be defined.
  • the UE may include an NR SL module and an LTE SL module.
  • the NR SL module can convert the NR SL DCI to LTE DCI type 5A, and the NR SL module is X ms LTE DCI type 5A can be delivered to the LTE SL module as a unit.
  • the LTE SL module may apply activation and/or release to the first LTE subframe Z ms later.
  • the X can be dynamically displayed using a field of DCI.
  • the minimum value of X may be different according to UE capability.
  • the UE may report a single value according to the UE capability.
  • X may be a positive number.
  • the UE may determine the SL transmission resource within the SL resource set by the base station/network or the SL resource set in advance.
  • the set SL resource or the preset SL resource may be a resource pool.
  • the UE may autonomously select or schedule a resource for SL transmission.
  • the UE may perform SL communication by selecting a resource from the set resource pool by itself.
  • the UE may perform a sensing and resource (re) selection procedure to select a resource by itself within the selection window.
  • the sensing may be performed on a sub-channel basis.
  • UE 1 which selects a resource in the resource pool by itself, may transmit SCI to UE 2 through PSCCH, and then transmit the SCI-based data to UE 2 through PSSCH.
  • the UE can help select SL resources for other UEs.
  • the UE may be configured with a configured grant for SL transmission.
  • the UE can schedule SL transmission of another UE.
  • the UE may reserve SL resources for blind retransmission.
  • the first UE may indicate the priority of SL transmission to the second UE using SCI.
  • the second UE may decode the SCI, and the second UE may perform sensing and/or resource (re)selection based on the priority.
  • the resource (re) selection procedure includes the step of the second UE identifying a candidate resource in the resource selection window, and the second UE selecting a resource for (re)transmission from the identified candidate resources can do.
  • the resource selection window may be a time interval during which the UE selects a resource for SL transmission.
  • the resource selection window may start at T1 ⁇ 0, and the resource selection window is based on the remaining packet delay budget of the second UE. May be limited.
  • a specific resource is indicated by the SCI received from the first UE by the second UE, and the L1 SL RSRP measurement value for the specific resource is
  • the second UE may not determine the specific resource as a candidate resource.
  • the SL RSRP threshold may be determined based on the priority of the SL transmission indicated by the SCI received from the first UE by the second UE and the priority of the SL transmission on the resource selected by the second UE.
  • the L1 SL RSRP may be measured based on the SL Demodulation Reference Signal (DMRS).
  • DMRS SL Demodulation Reference Signal
  • one or more PSSCH DMRS patterns may be set or preset in the time domain for each resource pool.
  • the PDSCH DMRS configuration type 1 and/or type 2 may be the same as or similar to the frequency domain pattern of the PSSCH DMRS.
  • the correct DMRS pattern can be indicated by SCI.
  • the transmitting UE may select a specific DMRS pattern from among DMRS patterns set for a resource pool or preset in advance.
  • the transmitting UE may perform initial transmission of a transport block (TB) without reservation. For example, based on the sensing and resource (re) selection procedure, the transmitting UE may reserve SL resources for initial transmission of the second TB by using the SCI associated with the first TB.
  • TB transport block
  • the UE may reserve resources for feedback-based PSSCH retransmission through signaling related to previous transmission of the same TB (Transport Block).
  • the maximum number of SL resources reserved by one transmission including the current transmission may be 2, 3, or 4.
  • the maximum number of SL resources may be the same regardless of whether HARQ feedback is enabled.
  • the maximum number of HARQ (re) transmissions for one TB may be limited by setting or preset.
  • the maximum number of HARQ (re) transmissions may be up to 32.
  • the maximum number of HARQ (re)transmissions may be unspecified.
  • the setting or preset may be for a transmitting UE.
  • HARQ feedback for releasing resources not used by the UE may be supported.
  • the UE may indicate to another UE one or more subchannels and/or slots used by the UE using SCI.
  • the UE may indicate to another UE one or more subchannels and/or slots reserved by the UE for PSSCH (re)transmission using SCI.
  • the minimum allocation unit of SL resources may be a slot.
  • the size of the subchannel may be set or preset for the UE.
  • SCI sidelink control information
  • DCI Downlink Control Information
  • SCI Control information transmitted from the base station to the UE through the PDCCH
  • DCI Downlink Control Information
  • SCI Control information transmitted by the UE to another UE through the PSCCH
  • the UE may know the start symbol of the PSCCH and/or the number of symbols of the PSCCH.
  • SCI may include SL scheduling information.
  • the UE may transmit at least one SCI to another UE to schedule the PSSCH.
  • one or more SCI formats may be defined.
  • the transmitting UE may transmit SCI to the receiving UE on the PSCCH.
  • the receiving UE may decode one SCI to receive the PSSCH from the transmitting UE.
  • the transmitting UE may transmit two consecutive SCIs (eg, 2-stage SCI) on the PSCCH and/or PSSCH to the receiving UE.
  • the receiving UE may decode two consecutive SCIs (eg, 2-stage SCI) to receive the PSSCH from the transmitting UE.
  • the SCI including the first SCI configuration field group is referred to as the first SCI or the 1st SCI.
  • the SCI including the second SCI configuration field group may be referred to as a second SCI or a 2nd SCI.
  • the transmitting UE may transmit the first SCI to the receiving UE through the PSCCH.
  • the transmitting UE may transmit the second SCI to the receiving UE on the PSCCH and/or PSSCH.
  • the second SCI may be transmitted to a receiving UE through a (independent) PSCCH, or may be piggybacked and transmitted with data through a PSSCH.
  • two consecutive SCIs may be applied for different transmissions (eg, unicast, broadcast, or groupcast).
  • the transmitting UE may transmit some or all of the following information to the receiving UE through SCI.
  • the transmitting UE may transmit some or all of the following information to the receiving UE through the first SCI and/or the second SCI.
  • PSCCH-related resource allocation information for example, time/frequency resource location/number, resource reservation information (eg, period), and/or
  • SL CSI transmission indicator (or SL (L1) RSRP (and/or SL (L1) RSRQ and/or SL (L1) RSSI) information transmission indicator), and/or
  • -Reference signal eg, DMRS, etc.
  • information related to decoding and/or channel estimation of data transmitted through the PSSCH for example, information related to the pattern of (time-frequency) mapping resources of the DMRS, rank ) Information, antenna port index information;
  • the first SCI may include information related to channel sensing.
  • the receiving UE may decode the second SCI using PSSCH DMRS.
  • a polar code used for the PDCCH may be applied to the second SCI.
  • the payload size of the first SCI may be the same for unicast, groupcast and broadcast.
  • the receiving UE does not need to perform blind decoding of the second SCI.
  • the first SCI may include scheduling information of the second SCI.
  • the transmitting UE can transmit at least one of SCI, the first SCI and/or the second SCI to the receiving UE through the PSCCH
  • the PSCCH is SCI
  • the first SCI and/or the second It may be replaced/substituted with at least one of SCI.
  • SCI may be replaced/substituted with at least one of PSCCH, first SCI and/or second SCI.
  • the PSSCH may be replaced/replaced with the second SCI.
  • CAM Cooperative Awareness Message
  • DENM Decentralized Environmental Notification Message
  • a periodic message type CAM In vehicle-to-vehicle communication, a periodic message type CAM, an event triggered message type DENM, and the like may be transmitted.
  • the CAM may include basic vehicle information such as dynamic state information of the vehicle such as direction and speed, vehicle static data such as dimensions, external lighting conditions, and route history.
  • the size of the CAM can be 50-300 bytes.
  • CAM is broadcast, and the latency should be less than 100ms.
  • DENM may be a message generated in case of an unexpected situation such as a vehicle breakdown or an accident.
  • the size of the DENM can be less than 3000 bytes, and any vehicle within the transmission range can receive the message. In this case, DENM may have a higher priority than CAM.
  • the UE may perform carrier reselection based on a Channel Busy Ratio (CBR) of configured carriers and/or a Prose Per-Packet Priority (PPPP) of a V2X message to be transmitted.
  • CBR Channel Busy Ratio
  • PPPP Prose Per-Packet Priority
  • carrier reselection may be performed by the MAC layer of the UE.
  • ProSe Per Packet Priority (PPPP) may be replaced by ProSe Per Packet Reliability (PPPR), and PPPR may be replaced by PPPP.
  • PPPP ProSe Per Packet Priority
  • PPPR ProSe Per Packet Reliability
  • PPPR may be replaced by PPPP.
  • a smaller PPPP value may mean a higher priority
  • a larger PPPP value may mean a lower priority.
  • a smaller PPPR value may mean higher reliability, and a larger PPPR value may mean lower reliability.
  • a PPPP value associated with a service, packet, or message associated with a high priority may be smaller than a PPPP value associated with a service, packet or message associated with a lower priority.
  • a PPPR value related to a service, packet, or message related to high reliability may be smaller than a PPPR value related to a service, packet, or message related to low reliability.
  • CBR may mean the portion of sub-channels in the resource pool detected that the Sidelink-Received Signal Strength Indicator (S-RSSI) measured by the UE exceeds a preset threshold.
  • S-RSSI Sidelink-Received Signal Strength Indicator
  • PPPP related to each logical channel may exist, and the setting of the PPPP value should reflect the latency required for both the UE and the base station.
  • the UE may select one or more carriers among candidate carriers in an increasing order from the lowest CBR.
  • SL measurement and reporting between UEs may be considered in the SL.
  • the receiving UE may receive a reference signal from the transmitting UE, and the receiving UE may measure a channel state for the transmitting UE based on the reference signal.
  • the receiving UE may report channel state information (CSI) to the transmitting UE.
  • CSI channel state information
  • SL-related measurement and reporting may include measurement and reporting of CBR, and reporting of location information.
  • Channel Status Information (CSI) for V2X examples include Channel Quality Indicator (CQI), Precoding Matrix Index (PMI), Rank Indicator (RI), Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and path gain. It may be (pathgain)/pathloss, SRS (Sounding Reference Symbols, Resource Indicator) (SRI), CSI-RS Resource Indicator (CRI), interference condition, vehicle motion, and the like.
  • CQI, RI, and PMI may be supported in a non-subband-based aperiodic CSI report assuming four or less antenna ports. have.
  • the CSI procedure may not depend on a standalone RS.
  • CSI reporting may be activated and deactivated according to settings.
  • the transmitting UE may transmit a CSI-RS to the receiving UE, and the receiving UE may measure CQI or RI using the CSI-RS.
  • the CSI-RS may be referred to as SL CSI-RS.
  • the CSI-RS may be confined in PSSCH transmission.
  • the transmitting UE may transmit to the receiving UE by including the CSI-RS on the PSSCH resource.
  • HARQ hybrid automatic repeat request
  • Error compensation techniques for securing the reliability of communication may include a Forward Error Correction (FEC) scheme and an Automatic Repeat Request (ARQ) scheme.
  • FEC Forward Error Correction
  • ARQ Automatic Repeat Request
  • an error at the receiving end can be corrected by adding an extra error correction code to the information bits.
  • the FEC method has the advantage of having a low time delay and no need for separate information exchanged between the transmitting and receiving ends, but has a disadvantage in that the system efficiency is deteriorated in a good channel environment.
  • the ARQ method can increase transmission reliability, there is a disadvantage in that a time delay occurs and system efficiency is deteriorated in a poor channel environment.
  • the HARQ (Hybrid Automatic Repeat Request) method is a combination of FEC and ARQ, and it is possible to increase performance by checking whether data received by the physical layer contains an undecodable error, and requesting retransmission when an error occurs.
  • HARQ feedback and HARQ combining in the physical layer may be supported.
  • the receiving UE when the receiving UE operates in the resource allocation mode 1 or 2, the receiving UE can receive the PSSCH from the transmitting UE, and the receiving UE is Sidelink Feedback Control Information (SFCI) through a Physical Sidelink Feedback Channel (PSFCH).
  • SFCI Sidelink Feedback Control Information
  • PSFCH Physical Sidelink Feedback Channel
  • HARQ feedback for PSSCH may be transmitted to the transmitting UE by using the format.
  • SL HARQ feedback can be enabled for unicast.
  • the receiving UE in a non-CBG (non-Code Block Group) operation, when the receiving UE decodes the PSCCH targeting the receiving UE, and the receiving UE successfully decodes the transport block related to the PSCCH, the receiving UE is HARQ-ACK can be generated. And, the receiving UE may transmit HARQ-ACK to the transmitting UE.
  • the receiving UE may generate HARQ-NACK. And, the receiving UE may transmit HARQ-NACK to the transmitting UE.
  • SL HARQ feedback may be enabled for groupcast.
  • two HARQ feedback options may be supported for groupcast.
  • Groupcast option 1 After the receiving UE decodes the PSCCH targeting the receiving UE, if the receiving UE fails to decode the transport block related to the PSCCH, the receiving UE transmits HARQ-NACK through PSFCH. It can transmit to the transmitting UE. On the other hand, if the receiving UE decodes the PSCCH targeting the receiving UE, and the receiving UE successfully decodes the transport block related to the PSCCH, the receiving UE may not transmit HARQ-ACK to the transmitting UE.
  • Groupcast option 2 After the receiving UE decodes the PSCCH targeting the receiving UE, if the receiving UE fails to decode the transport block related to the PSCCH, the receiving UE transmits HARQ-NACK through PSFCH. It can transmit to the transmitting UE. And, when the receiving UE decodes the PSCCH targeting the receiving UE, and the receiving UE successfully decodes the transport block related to the PSCCH, the receiving UE may transmit HARQ-ACK to the transmitting UE through the PSFCH.
  • all UEs performing groupcast communication may share PSFCH resources.
  • UEs belonging to the same group may transmit HARQ feedback using the same PSFCH resource.
  • each UE performing groupcast communication may use different PSFCH resources for HARQ feedback transmission.
  • UEs belonging to the same group may transmit HARQ feedback using different PSFCH resources.
  • the receiving UE may determine whether to transmit HARQ feedback to the transmitting UE based on a TX-RX (Transmission-Reception) distance and/or RSRP.
  • TX-RX Transmission-Reception
  • the receiving UE may transmit HARQ feedback for the PSSCH to the transmitting UE.
  • the receiving UE may not transmit HARQ feedback for the PSSCH to the transmitting UE.
  • the transmitting UE may inform the receiving UE of the location of the transmitting UE through SCI related to the PSSCH.
  • the SCI related to the PSSCH may be a second SCI.
  • the receiving UE may estimate or obtain the TX-RX distance based on the location of the receiving UE and the location of the transmitting UE. For example, the receiving UE decodes the SCI related to the PSSCH to know the communication range requirements used for the PSSCH.
  • the time between PSFCH and PSSCH may be set or may be preset.
  • this can be indicated to the base station by the UE in coverage using the PUCCH.
  • the transmitting UE may transmit an indication to the serving base station of the transmitting UE in a form such as SR (Scheduling Request) / BSR (Buffer Status Report), not in the form of HARQ ACK/NACK.
  • SR Service Request
  • BSR Buffer Status Report
  • the base station can schedule the SL retransmission resource to the UE.
  • the time between PSFCH and PSSCH may be set or may be preset.
  • TDM between PSCCH/PSSCH and PSFCH may be allowed for the PSFCH format for SL in the slot.
  • a sequence-based PSFCH format having one symbol may be supported.
  • the one symbol may not be an AGC interval.
  • the sequence-based PSFCH format can be applied to unicast and groupcast.
  • the PSFCH resource may be periodically set in an N slot period or may be set in advance.
  • N may be set to one or more values.
  • N can be 1, 2 or 4.
  • HARQ feedback for transmission in a specific resource pool may be transmitted only through the PSFCH on the specific resource pool.
  • slot # (N + A) may include a PSFCH resource.
  • A may be the smallest integer greater than or equal to K.
  • K may be the number of logical slots. In this case, K may be the number of slots in the resource pool. Or, for example, K may be the number of physical slots. In this case, K may be the number of slots inside and outside the resource pool.
  • the receiving UE in response to one PSSCH transmitted by the transmitting UE to the receiving UE, when the receiving UE transmits HARQ feedback on the PSFCH resource, the receiving UE is the PSFCH resource based on an implicit mechanism within the configured resource pool.
  • a frequency domain and/or a code domain of may be determined.
  • the receiving UE is among the identifiers for distinguishing each receiving UE from a group for HARQ feedback based on a slot index related to PSCCH/PSSCH/PSFCH, a subchannel related to PSCCH/PSSCH, and/or groupcast option 2 Based on at least any one, the frequency domain and/or the code domain of the PSFCH resource may be determined. And/or, for example, the receiving UE may determine the frequency domain and/or the code domain of the PSFCH resource based on at least one of SL RSRP, SINR, L1 source ID, and/or location information.
  • the UE may perform either HARQ feedback transmission through PSFCH or HARQ feedback reception through PSFCH based on a priority rule.
  • the priority rule may be based on a minimum priority indication of the related PSCCH/PSSCH.
  • the UE may select specific HARQ feedback transmission based on a priority rule.
  • the priority rule may be based on a minimum priority indication of the related PSCCH/PSSCH.
  • FIG. 15 shows an example of an architecture in a 5G system in which positioning is possible for a UE connected to a Next Generation-Radio Access Network (NG-RAN) or E-UTRAN according to an example of the present disclosure.
  • NG-RAN Next Generation-Radio Access Network
  • E-UTRAN E-UTRAN
  • the AMF receives a request for a location service related to a specific target UE from another entity such as a Gateway Mobile Location Center (GMLC), or starts a location service on behalf of a specific target UE in the AMF itself. You can decide to: Then, the AMF may transmit a location service request to the LMF (Location Management Function). Upon receiving the location service request, the LMF may process the location service request and return a processing result including the estimated location of the UE to the AMF. Meanwhile, when the location service request is received from another entity such as GMLC other than the AMF, the AMF may transmit the processing result received from the LMF to the other entity.
  • GMLC Gateway Mobile Location Center
  • ng-eNB new generation evolved-NB
  • gNB are network elements of NG-RAN that can provide measurement results for location estimation, and can measure radio signals for target UEs and deliver the results to LMF.
  • the ng-eNB may control several TPs (Transmission Points) such as remote radio heads or PRS-only TPs supporting a Positioning Reference Signal (PRS)-based beacon system for E-UTRA.
  • TPs Transmission Points
  • PRS Positioning Reference Signal
  • the LMF is connected to an E-SMLC (Enhanced Serving Mobile Location Center), and the E-SMLC may enable the LMF to access the E-UTRAN.
  • E-SMLC Enhanced Serving Mobile Location Center
  • E-SMLC is OTDOA, one of the E-UTRAN positioning methods using downlink measurement obtained by the target UE through signals transmitted from the eNB and/or PRS-only TPs in the E-UTRAN by the LMF. (Observed Time Difference Of Arrival) can be supported.
  • the LMF may be connected to a SUPL Location Platform (SLP).
  • SLP SUPL Location Platform
  • the LMF may support and manage different location services for target UEs.
  • the LMF may interact with a serving ng-eNB or a serving gNB for a target UE in order to obtain a location measurement of the UE.
  • the LMF uses a location service (LCS) client type, required QoS (Quality of Service), UE positioning capabilities, gNB positioning capability, and ng-eNB positioning capability based on a positioning method. It is determined, and this positioning method can be applied to the serving gNB and/or the serving ng-eNB.
  • the LMF may determine a location estimate for the target UE and additional information such as location estimation and speed accuracy.
  • SLP is a Secure User Plane Location (SUPL) entity that is responsible for positioning through a user plane.
  • SUPL Secure User Plane Location
  • the UE downlinks through sources such as NG-RAN and E-UTRAN, different Global Navigation Satellite System (GNSS), Terrestrial Beacon System (TBS), Wireless Local Access Network (WLAN) access point, Bluetooth beacon and UE barometric pressure sensor.
  • Link signal can be measured.
  • the UE may include an LCS application, and may access the LCS application through communication with a network to which the UE is connected or other applications included in the UE.
  • the LCS application may include the measurement and calculation functions required to determine the location of the UE.
  • the UE may include an independent positioning function such as GPS (Global Positioning System), and may report the location of the UE independently from NG-RAN transmission.
  • the independently obtained positioning information may be used as auxiliary information of the positioning information obtained from the network.
  • 16 shows an example implementation of a network for measuring a location of a UE according to an example of the present disclosure.
  • CM-IDLE Connection Management-IDLE
  • the AMF When the UE is in CM-IDLE (Connection Management-IDLE) state, when the AMF receives a location service request, the AMF establishes a signaling connection with the UE and provides a network trigger service to allocate a specific serving gNB or ng-eNB. Can be requested.
  • This operation process is omitted in FIG. 16. That is, in FIG. 16, it may be assumed that the UE is in a connected mode. However, for reasons such as signaling and data inactivity, the signaling connection may be released by the NG-RAN while the positioning process is in progress.
  • a 5GC entity such as GMLC may request a location service for measuring the location of the target UE with a serving AMF.
  • the serving AMF may determine that the location service for measuring the location of the target UE is required. For example, in order to measure the location of the UE for an emergency call, the serving AMF may directly determine to perform location service.
  • the AMF transmits a location service request to the LMF according to step 2, and according to step 3a, the LMF serves location procedures for obtaining location measurement data or location measurement assistance data ng-eNB, You can start with serving gNB. Additionally, according to step 3b, the LMF may initiate location procedures for downlink positioning together with the UE. For example, the LMF may transmit position assistance data (Assistance data defined in 3GPP TS 36.355) to the UE, or may obtain a position estimate or a position measurement value. Meanwhile, step 3b may be additionally performed after step 3a is performed, but may be performed in place of step 3a.
  • position assistance data Asssistance data defined in 3GPP TS 36.355
  • the LMF may provide a location service response to the AMF.
  • the location service response may include information on whether or not the UE's location estimation is successful and a location estimate of the UE.
  • the AMF may transmit a location service response to a 5GC entity such as GMLC, and if the procedure of FIG. 16 is initiated by step 1b, the AMF is In order to provide a service, a location service response may be used.
  • FIG. 17 shows an example of a protocol layer used to support transmission of an LTE Positioning Protocol (LPP) message between an LMF and a UE according to an example of the present disclosure.
  • LTP LTE Positioning Protocol
  • LPP may be transmitted through the NAS PDU between the AMF and the UE.
  • LPP includes a target device (eg, a UE in a control plane or a SET (SUPL Enabled Terminal) in a user plane) and a location server (eg, an LMF in the control plane or an SLP in the user plane). ) Can be terminated.
  • LPP messages are transparent through the intermediate network interface using appropriate protocols such as NGAP (NG Application Protocol) over the NG-Control Plane (NG-C) interface, and NAS/RRC over the LTE-Uu and NR-Uu interfaces. It can be delivered in the form of (Transparent) PDU.
  • NGAP NG Application Protocol
  • NAS/RRC over the LTE-Uu and NR-Uu interfaces. It can be delivered in the form of (Transparent) PDU.
  • the LPP protocol enables positioning for NR and LTE using a variety of positioning methods.
  • the target device and the location server may exchange capability information, auxiliary data for positioning, and/or location information.
  • error information exchange and/or an instruction to stop the LPP procedure may be performed through the LPP message.
  • NRPPa NR Positioning Protocol A
  • NRPPa can be used for information exchange between the NG-RAN node and the LMF.
  • NRPPa includes E-CID (Enhanced-Cell ID) for measurement transmitted from ng-eNB to LMF, data to support OTDOA positioning method, Cell-ID and Cell location ID for NR Cell ID positioning method, etc. Can be exchanged.
  • the AMF can route NRPPa PDUs based on the routing ID of the associated LMF through the NG-C interface, even if there is no information on the associated NRPPa transaction.
  • the procedures of the NRPPa protocol for location and data collection can be divided into two types.
  • the first type is a UE associated procedure for delivering information on a specific UE (eg, location measurement information, etc.), and the second type is applicable to an NG-RAN node and related TPs.
  • This is a non-UE associated procedure for delivering information (eg, gNB/ng-eNB/TP timing information, etc.).
  • the above two types of procedures may be supported independently or may be supported simultaneously.
  • positioning methods supported by NG-RAN include GNSS, OTDOA, E-CID (enhanced cell ID), barometric pressure sensor positioning, WLAN positioning, Bluetooth positioning, terrestrial beacon system (TBS), and Uplink Time Difference of Arrival (UTDOA).
  • GNSS Global System for Mobile Communications
  • OTDOA enhanced cell ID
  • E-CID enhanced cell ID
  • WLAN positioning Wireless Fidelity
  • Bluetooth positioning Wireless Fidelity
  • TBS terrestrial beacon system
  • UTDOA Uplink Time Difference of Arrival
  • UTDOA Uplink Time Difference of Arrival
  • FIG. 19 is a diagram for explaining an Observed Time Difference Of Arrival (OTDOA) positioning method according to an example of the present disclosure
  • the OTDOA positioning method uses the timing of measurement of downlink signals received from multiple TPs including an eNB, an ng-eNB and a PRS dedicated TP by the UE.
  • the UE measures the timing of the received downlink signals using the location assistance data received from the location server.
  • the location of the UE may be determined based on the measurement result and the geographic coordinates of neighboring TPs.
  • the UE connected to the gNB may request a measurement gap for OTDOA measurement from the TP. If the UE does not recognize a single frequency network (SFN) for at least one TP in the OTDOA assistance data, the UE refers to the OTDOA before requesting a measurement gap for performing Reference Signal Time Difference (RSTD) measurement.
  • SFN single frequency network
  • RSTD Reference Signal Time Difference
  • An autonomous gap can be used to obtain the SFN of a reference cell.
  • the RSTD may be defined based on the smallest relative time difference between the boundaries of the two subframes each received from the reference cell and the measurement cell. That is, RSTD is a relative between the start time of the subframe of the reference cell closest to the start time of the subframe received from the measurement cell and the start time of the subframe of the reference cell closest to the start time of the subframe received from the measurement cell. It can be calculated based on the time difference. Meanwhile, the reference cell may be selected by the UE.
  • TOA time of arrival
  • RSTD time of arrival
  • TP 1-TP 2 measure TOA for each of TP 1, TP 2 and TP 3
  • RSTD for TP 1-TP 2 measure TOA for each of TP 1, TP 2 and TP 3
  • TP 3-TP 1 RSTD for RSTD is calculated
  • a geometric hyperbola is determined based on this, and a point at which the hyperbola intersects may be estimated as the location of the UE.
  • the estimated UE location may be known as a specific range according to measurement uncertainty.
  • RSTD for two TPs may be calculated based on Equation 1.
  • c is the speed of light
  • ⁇ xt, yt ⁇ is the (unknown) coordinate of the target UE
  • ⁇ xi, yi ⁇ is the coordinate of the (known) TP
  • ⁇ x1, y1 ⁇ is the reference TP (or other TP).
  • (Ti-T1) is a transmission time offset between the two TPs, and may be referred to as “Real Time Differences” (RTDs)
  • ni and n1 may indicate a value related to a UE TOA measurement error.
  • the location of the UE may be measured through geographic information of the serving ng-eNB, serving gNB and/or serving cell of the UE.
  • geographic information of a serving ng-eNB, a serving gNB, and/or a serving cell may be obtained through paging, registration, or the like.
  • the E-CID positioning method may use additional UE measurement and/or NG-RAN radio resources to improve the UE location estimate in addition to the CID positioning method.
  • some of the same measurement methods as the measurement control system of the RRC protocol may be used, but in general, additional measurements are not performed only for the location measurement of the UE.
  • a separate measurement configuration or measurement control message may not be provided, and the UE also does not expect to request an additional measurement operation for location measurement only.
  • the UE may report a measurement value obtained through generally measurable measurement methods.
  • the serving gNB may implement the E-CID positioning method using E-UTRA measurements provided from the UE.
  • measurement elements that can be used for E-CID positioning may be as follows.
  • E-UTRA RSRP Reference Signal Received Power
  • E-UTRA RSRQ Reference Signal Received Quality
  • UE E-UTRA Rx-Tx Time difference GERAN (GSM EDGE Random Access Network) /WLAN RSSI (Reference Signal Strength Indication)
  • UTRAN CPICH Common Pilot Channel
  • RSCP Receiveived Signal Code Power
  • ng-eNB receive-transmit time difference (Rx-Tx Time difference), Timing Advance (TADV), Angle of Arrival (AoA)
  • TADV can be classified into Type 1 and Type 2 as follows.
  • TADV Type 1 (ng-eNB receive-transmit time difference) + (UE E-UTRA receive-transmit time difference)
  • TADV Type 2 ng-eNB receive-transmit time difference
  • AoA can be used to measure the direction of the UE.
  • AoA may be defined as an estimated angle for the location of the UE in a counterclockwise direction from the base station/TP. In this case, the geographical reference direction may be north.
  • the base station/TP may use an uplink signal such as a sounding reference signal (SRS) and/or a demodulation reference signal (DMRS) for AoA measurement.
  • SRS sounding reference signal
  • DMRS demodulation reference signal
  • the larger the array of antenna arrays the higher the measurement accuracy of AoA.
  • signals received from adjacent antenna elements may have a constant phase-rotate phase.
  • UTDOA is a method of determining the location of the UE by estimating the arrival time of the SRS.
  • the serving cell is used as a reference cell, and the location of the UE may be estimated through the difference in the arrival time from another cell (or base station/TP).
  • the E-SMLC may indicate a serving cell of the target UE in order to indicate SRS transmission to the target UE.
  • the E-SMLC may provide configurations such as periodic/aperiodic SRS, bandwidth and frequency/group/sequence hopping.
  • Multi-cell RTT Multi-cell RTT
  • RTT is based on TOA measurement like OTDOA, but coarse TRP (e.g. , Base station) only requires timing synchronization.
  • FIG. 20 is a diagram illustrating an example of a multi-RTT (round trip time) positioning method to which various embodiments of the present disclosure are applicable.
  • an RTT process is illustrated in which TOA measurement is performed in an initiating device and a responding device, and the responding device provides TOA measurement to an initiating device for RTT measurement (calculation).
  • the initiating device may be a TRP and/or a UE
  • the responding device may be a UE and/or a TRP.
  • the initiating device transmits an RTT measurement request, and the responding device may receive it.
  • the initiating device may transmit the RTT measurement signal at t0, and the responding device may acquire the TOA measurement t1.
  • the responding device may transmit the RTT measurement signal at t2, and the initiating device may acquire the TOA measurement t3.
  • the responding device may transmit information on [t2-t1], and the initiating device may receive the information and calculate the RTT based on Equation 2 below.
  • the information may be transmitted/received based on a separate signal, or included in the RTT measurement signal of 2505 and transmitted/received.
  • the RTT may correspond to a double-range measurement between two devices. Positioning estimation may be performed from the corresponding information, and a multilateration technique may be used. Based on the measured RTT, d1, d2, d3 can be determined, and the target device location can be determined as the intersection point of the circumference centered on each BS1, BS2, BS3 (or TRP) and each d1, d2, d3 as the radius. have.
  • FIG. 21 shows an example of a wireless communication system supporting an unlicensed band applicable to the present invention.
  • FIG. 21 may include an NR-U (Unlicensed Spectrum) wireless communication system.
  • NR-U Unlicensed Spectrum
  • a cell operating in a licensed band (hereinafter, L-band) is defined as an LCell, and a carrier of the LCell is defined as a (DL/UL) LCC.
  • a cell operating in an unlicensed band (hereinafter, U-band) is defined as a UCell, and a carrier of the UCell is defined as a (DL/UL) UCC.
  • the carrier/carrier-frequency of the cell may mean the operating frequency (eg, center frequency) of the cell.
  • Cell/carrier (eg, CC) is collectively referred to as a cell.
  • the LCC may be set to Primary CC (PCC) and the UCC may be set to Secondary CC (SCC).
  • PCC Primary CC
  • SCC Secondary CC
  • the terminal and the base station may transmit and receive signals through one UCC or a plurality of carrier-coupled UCCs. That is, the terminal and the base station can transmit and receive signals through only UCC(s) without an LCC.
  • PRACH, PUCCH, PUSCH, SRS transmission, etc. may be supported in the UCell.
  • the signal transmission/reception operation in the unlicensed band described in the present specification may be performed based on the above-described deployment scenario (unless otherwise noted).
  • -Channel consists of consecutive RBs on which a channel access process is performed in a shared spectrum, and may refer to a carrier or a part of a carrier.
  • CAP -Channel Access Procedure
  • CAP may be referred to as Listen-Before-Talk (LBT).
  • -Channel occupancy refers to the corresponding transmission(s) on the channel(s) by the base station/terminal after performing the channel access procedure.
  • COT Channel Occupancy Time: After the base station/terminal performs a channel access procedure, the base station/terminal and any base station/terminal(s) sharing channel occupancy transmit(s) on the channel. ) Refers to the total time that can be performed. When determining the COT, if the transmission gap is 25us or less, the gap interval is also counted in the COT. The COT may be shared for transmission between the base station and the corresponding terminal(s).
  • -DL transmission burst defined as a transmission set from a base station without a gap exceeding 16us. Transmissions from the base station, separated by a gap exceeding 16us, are considered as separate DL transmission bursts from each other.
  • the base station may perform transmission(s) after the gap without sensing channel availability within the DL transmission burst.
  • -UL transmission burst defined as a transmission set from the terminal without a gap exceeding 16us. Transmissions from the terminal, separated by a gap exceeding 16us, are regarded as separate UL transmission bursts. The terminal may perform transmission(s) after the gap without sensing channel availability within the UL transmission burst.
  • Discovery Burst Refers to a DL transmission burst containing a set of signal(s) and/or channel(s), confined within a (time) window and associated with a duty cycle.
  • the discovery burst is transmission(s) initiated by the base station, and includes PSS, SSS, and cell-specific RS (CRS), and may further include non-zero power CSI-RS.
  • a discovery burst is a transmission(s) initiated by the device station, including at least an SS/PBCH block, CORESET for a PDCCH scheduling a PDSCH with SIB1, a PDSCH carrying SIB1, and/or a non-zero It may further include a power CSI-RS.
  • 22 illustrates a method of occupying a resource in an unlicensed band.
  • a communication node eg, a base station, a terminal
  • the communication node in the unlicensed band may perform a channel access procedure (CAP) to access the channel(s) on which transmission(s) is performed.
  • CAP channel access procedure
  • the channel access process may be performed based on sensing.
  • the communication node may first perform CS (Carrier Sensing) before signal transmission to check whether other communication node(s) transmit signals.
  • CS Carrier Sensing
  • a case where it is determined that other communication node(s) does not transmit a signal is defined as having a clear channel assessment (CCA).
  • CCA clear channel assessment
  • the communication node determines the channel state as busy when energy higher than the CCA threshold is detected in the channel, Otherwise, the channel state can be determined as idle. When it is determined that the channel state is idle, the communication node can start signal transmission in the unlicensed band.
  • CAP can be replaced by LBT.
  • Table 5 illustrates a channel access procedure (CAP) supported by NR-U.
  • Type Explanation DL Type 1 CAP CAP with random back-off- time duration spanned by the sensing slots that are sensed to be idle before a downlink transmission(s) is random Type 2 CAP- Type 2A, 2B, 2C CAP without random back-off- time duration spanned by sensing slots that are sensed to be idle before a downlink transmission(s) is deterministic UL Type 1 CAP CAP with random back-off- time duration spanned by the sensing slots that are sensed to be idle before a downlink transmission(s) is random Type 2 CAP- Type 2A, 2B, 2C CAP without random back-off- time duration spanned by sensing slots that are sensed to be idle before a downlink transmission(s) is deterministic
  • the technology for the case where the UE performs RTT positioning is not defined, and in particular, in RTT positioning using the sidelink of NR-V2X, TRTD (Tx-Rx Time Difference) measurement in AN (Anchor Node) and How to report to the UE may have to be defined.
  • the UE in order for the UE to perform RTT positioning, 1) antenna location information of each AN in the network configured for positioning, 2) the time at which each AN receives the UL-PRS (UpLink-Positioning Reference Signal) transmitted from the UE, and In response, time information when the AN transmits DL-PRS (DownLink-PRS) to the UE, 3) UL-PRS transmission time transmitted from the UE to the AN and DL-PRS reception time information received by the UE from the AN are required.
  • UL-PRS UpLink-Positioning Reference Signal
  • Method 1 of the present disclosure various examples of a method of measuring a time difference, that is, a TRTD, and reporting to the UE after the AN receives the UL-PRS from the UE and transmits the DL-PRS to the UE in response. Are initiated.
  • Method 1 of the present disclosure discloses various examples of how the UE performs RTT positioning through an AN and Uu communication or sidelink communication in a licensed-band or an unlicensed-band.
  • the UE may be a mobile device, a V2X module, or an IoT device
  • the AN may be a base station and/or a UE.
  • the base station can provide fixed (or absolute) location information, eNB, gNB, LTE-LAA, NR-U, TP (Transmission point), RHC (Remote Head Control), gNB-type RSU (Road -Side Unit), etc.
  • the UE may include a UE capable of providing highly reliable location information, a UE-type RSU providing fixed location information, and the like.
  • a basic distance measurement method through RTT may be performed based on a UL-PRS signal transmitted from a UE and a DL-PRS signal transmitted from an AN.
  • the UL-PRS signal transmitted from the UE and the DL-PRS signal transmitted from the AN may be the same or different.
  • the UL-PRS/DL-PRS may be SRS or PRS described in the LTE/NR standard.
  • the distance between the UE and the AN may be measured by measuring the RTT until the DL-PRS transmitted from the AN returns to the UE in response to the UL-PRS.
  • t DA t, which is the relative time difference between the DL-PRS reception time (t D ) from the AN and the UL-PRS transmission time (t A) from the UE.
  • t CB t C -t B , which is the relative time difference between the DL-PRS transmission time (t C ) from the AN and the UL-PRS reception time (t B) from the UE.
  • the UE may measure the distance (D) based on the RTT time measured by the UE, that is, the above-described RTTD information and TRTD information.
  • the distance D between the UE and AN may be measured by Equation 3 below.
  • the TRTD information measured in the AN must be provided to the UE.
  • various examples of a method of efficiently measuring and reporting TRTD are disclosed.
  • the TRTD measurement method may be classified according to whether the UE and the AN are synchronized.
  • Method 1-1 TRTD measurement method independent of synchronization between UE and AN
  • TRTD (t CB ) can be decomposed into cTRTD (coarse TRTD, t TRTD,c ) and fTRTD (fine TRTD, t TRTD,f ).
  • TRTD may be defined by Equation 4 below.
  • cTRTD can be expressed as an integer multiple of the OFDM symbol length (cTRTD_integer).
  • the OFDM symbol length may or may not include CP (Cyclic-Prefix) according to the RTT measurement method.
  • cTRTD_integer may be defined by Equation 5 or 6 below.
  • T u is the length of the OFDM symbol not including the CP
  • T g is the length of the OFDM symbol including the CP
  • fTRTD_integer may be defined by Equation 7 or Equation 8 below.
  • T x is an arbitrary sample length for an OFDM symbol and may be determined according to a resolution of fTRTD.
  • an arbitrary sample is subdividing the length of one OFDM symbol, and may mean a length obtained by dividing the length of one OFDM symbol by a specific value.
  • the OFDM sample length T x may be as follows.
  • N u may be the length of a fast fourier transform (FFT).
  • T x T s / k.
  • a variable such as k that affects the determination of the fTRTD resolution may be defined in advance or may be transmitted to the AN through signaling.
  • a k value may be set from the base station through L1 signaling or higher layer signaling.
  • TRTD may be measured by assuming synchronization between the UE and the AN.
  • Method 1-2 detects and synchronizes the SSB transmitted by the base station before the UE transmits the UL-PRS to the base station, and may also be suitable for a scenario in which a timing error between the base station and the UE does not exceed the CP length. .
  • TRTD may be decomposed into cTRTD and fTRTD.
  • the UE may know the cTRTD using the UL/DL-PRS scheduling information.
  • the fTRTD of TRTD is defined as a time gap (TIME_GAP), which is the difference between the time at which the AN OFDM symbol boundary (i.e., the synchronization standard it assumes) and the time at which the AN receives the UL-PRS from the UE. That is, when the synchronization with the UE is maintained, the AN measures the time difference between the OFDM symbol boundary time point of the AN and the time point when the AN receives the UL-PRS from the UE as a time gap, and measures fTRTD based on the time gap. I can.
  • the fTRTD_integer for the measured time gap may be measured based on the above-described examples. Specifically, AN can obtain fTRTD_integer by taking a floor operator to a value obtained by dividing the measured time gap by T x. In this case, Tx may be the length of the OFDM symbol sample as described above.
  • the AN reports the integer cTRTD_integer information required for cTRTD calculation and the integer fTRTD_integer information required for fTRTD calculation to the UE, so that the UE provides system information (e.g., OFDM symbol length, OFDM sample length). Calculate the TRTD using.
  • system information e.g., OFDM symbol length, OFDM sample length
  • AN can report TRTD by selecting one of two options as follows.
  • AN can report the TRTD to the UE using a message. Specifically, the AN may provide the following information to the UE according to whether the UE and the AN are synchronized.
  • the AN may provide cTRTD _integer and fTRTD _integer to the UE.
  • the AN can provide only the fTRTD_integer to the UE.
  • the AN can reduce signaling overhead by providing only fTRTD_integer information.
  • AN can report the TRTD to the UE using various DL-PRS sequence pattern information. That is, the AN may provide cTRTD_integer information and fTRTD_integer information to the UE by using the DL-PRS sequence pattern information.
  • each sequence Patterns can be mapped to specific integers and used.
  • the SRS sequence generated by applying comb type-2 and cyclic movement-2 represents the integer 10. That is, 16 integers may be indicated based on the comb type and cyclic movement value of the SRS.
  • AN reports the measured cTRTD _integer (e.g., 7) and fTRTD _integer (e.g., 400) information to the UE
  • one OFDM symbol for indicating cTRTD _integer and three for indicating fTRTD _integer CTRTD _integer information and fTRTD _integer information may be reported based on a total of four OFDM symbols such as OFDM symbols.
  • 24 is a flowchart of a method for measuring and reporting TRTD according to an example of the present disclosure.
  • the AN may receive UL-PRS from the UE.
  • the AN may measure the TRTD based on the received UL-PRS. For example, TRTD may be measured for each of cTRTD and fTRTD as described above.
  • the AN may transmit the integer cTRTD_integer information required for cTRTD calculation and the integer fTRTD_integer information required for fTRTD calculation to the UE.
  • cTRTD_integer information and fTRTD_integer information may be obtained based on Equations 5 to 8.
  • the technology for a case in which the UE performs RTT positioning in NR is not defined, but according to Method 1 of the present disclosure, in RTT positioning using the sidelink of NR-V2X, a method of measuring TRTD in AN and reporting to the UE Can be defined.
  • the measured TRTD can be decomposed into a cTRTD_integer value and an fTRTD_integer value and provided to the UE, the amount of TRTD information can be minimized rather than providing the TRTD itself.
  • Method 1 of the present disclosure the method of measuring and reporting only fTRTD _integer proposed in a system in which synchronization between UE and AN is guaranteed within a CP length such as sidelink NR-V2X can minimize the amount of TRTD information.
  • the TRTD reporting method using DL-PRS sequence pattern information proposed in Method 1 of the present disclosure provides a fast RTT positioning operation because a message decoding process is not required when compared to the method using a message.
  • Method 2 of the present disclosure relates to a method and procedure for performing RTT positioning by a UE through an AN and Uu communication or sidelink communication in an unlicensed band.
  • the unlicensed band refers to a frequency band that can coexist and use with a WiFi UE or other UE, and in the case of NR, an operation can be performed in an unlicensed band through NR Unlicensed (NR-U).
  • NR-U NR Unlicensed
  • Method 2 of the present disclosure proposes an operation and method for allowing a UE to quickly measure a location using an unlicensed band.
  • the unlicensed band RTT positioning method of Method 2-1 of the present disclosure assumes an asynchronous network environment where synchronization between ANs is not matched, and the RTT positioning operation is performed by the UE through a UL Listen Before Talk (LBT) operation for the unlicensed band. Or use) can be performed on the assumption that the opportunity has been successfully acquired.
  • LBT Listen Before Talk
  • the UE performs LBT on the unlicensed band before UL-PRS transmission, and may transmit the UL-PRS on a channel in an IDLE state according to the LBT among a plurality of channels included in the unlicensed band.
  • 25 shows a network for UE-based RTT positioning.
  • the network is composed of at least three or more ANs, such as one serving AN and two neighboring ANs, for reliable estimation of 2D location information of the UE. It is assumed that at least four or more ANs are configured for reliable 3D location information estimation.
  • the serving AN means the AN to which the UE belongs. That is, the UE is included in the cell range of the serving AN, and may or may not be included in the cell range of the neighboring AN.
  • 26 is a flowchart of a RTT positioning method between a location server/LMF, a UE, and an AN according to an example of the present disclosure.
  • Step-0 is a preliminary preparation step between the AN and the UE for RTT positioning
  • steps-1 through 6 are the RTT distance measurement process performed between the UE and one AN, and are applied equally to all ANs constituting the network. I can.
  • the UE can receive a TA (Timing Advance) from the serving AN, it may or may not perform RTT distance measurement with the serving AN.
  • TA Timing Advance
  • the UE may request information necessary for performing RTT positioning to the location server/LMF and/or the serving AN through other bands, such as a licensed band, in advance, and store and use the information after receiving the information.
  • the following shows main information received from the location server/LMF and/or serving AN in advance for the UE to perform positioning.
  • the channel selection is performed by the UE sensing a valid unlicensed channel from the perspective of the UE and then transmitting the candidate channel to the location server/LMF and/or serving AN, and the location server/LMF and/or serving AN finally determines and informs the UE. It may be performed through an operation, or through an operation informing the UE of the finally selected channel after sensing a valid unlicensed channel in the location server/LMF and/or the serving AN.
  • the UE and each AN may perform an RTT distance measurement process using pre-defined UL-PRS/DL-PRS pattern information.
  • the UE may receive an ED threshold low enough to determine the IDLE/BUSY state of a channel in the network configured for positioning from the location server/LMF and/or the serving AN, or apply a predefined value. have.
  • the -MCOT can be determined by the channel access priority for RTT positioning.
  • the channel access priority may be adjusted and provided from the location server/LMF and/or the serving AN, or may be defined in advance.
  • the UE, the location server, the LMF and/or the serving AN may lower the priority for general positioning, while increasing the priority for positioning for coping with an emergency or urgent situation.
  • the MCOT may be set shorter as the channel access priority is higher, and may be set longer as the channel access priority is lower.
  • CCA Channel Clear Assessment
  • the UE may perform LBT again after performing any one AN and RTT positioning.
  • the UE may continuously transmit UL-PRS immediately after performing the LBT without the LBT backoff process. That is, if the corresponding channel is IDLE according to the result of the LBT performed by the UE for RTT positioning, the UE may transmit the UL-PRS immediately after performing the LBT without waiting for a backoff count value.
  • -TRTD represents the delay time required for the AN to transmit the DL-PRS to the UE in response after receiving the UL-PRS from the UE, as described above.
  • TRTD can be decomposed into cTRTD and fTRTD, and cTRTD is expressed as an integer multiple of the OFDM symbol length (cTRTD_integer), and the OFDM symbol length may or may not include CP according to the RTT measurement method.
  • fTRTD is expressed as an integer multiple of an OFDM sample (fTRTD_integer) or an integer multiple of an arbitrary value with respect to the residual time after subtracting cTRTD from TRTD.
  • the cTRTD information of the AN can be predicted or set according to the transmission timing scheduling method of UL-PRS and DL-PRS, whereas the fTRTD information is the error of TA and the propagation time variation between the UE and AN. It is difficult to predict or set due to variables such as.
  • the transmission timing of the UL-PRS and the DL-PRS can be dynamically scheduled because the synchronization between the UE and the AN is not correct. That is, the UE transmits the UL-PRS at a certain time, the AN receives the UL-PRS through a blind detection process, the AN transmits the DL-PRS after TRTD, and the UE transmits the DL-PRS. Blind detection.
  • the above-described UL-PRS and DL-PRS dynamic scheduling scheme provides fast RTT operation, but the UE must receive both cTRTD and fTRTD information from the AN.
  • the location server/LMF and/or AN may provide cTRTD information to the UE, and in this case, the cTRTD may be the same or different for each AN.
  • the OFDM symbol length is expressed as an integer multiple of the length including the CP.
  • the UE may transmit a plurality of UL-PRS to the AN. Specifically, after the AN receives the UL-PRS from the UE, if the channel is IDLE during the TRTD time, interference may be caused by other users. Accordingly, the purpose of transmitting a plurality of UL-PRSs in a UE may be to improve TRTD measurement accuracy in an AN by transmitting a plurality of UL-PRSs while simultaneously removing interference by other users described above. At this time, the number of UL-PRS symbols of the UE should be set smaller than cTRTD_integer.
  • the AN may transmit a plurality of DL-PRSs to the UE.
  • the purpose of transmitting a plurality of DL-PRSs of the AN may be to improve TOA measurement accuracy in the UE.
  • d) and g) for PRS transmission and reception may be PRS configuration information. That is, the UE and/or AN may perform PRS transmission/reception based on PRS configuration information.
  • the UE When performing AN and RTT distance measurement through TDD-UL (Time Duplex Division-UL) mode, the UE uses UL-PRS pattern information and symbol number information defined between the UE and AN in advance to transmit UL-PRS to the corresponding AN. Transmit and measure the transmission time.
  • TDD-UL Time Duplex Division-UL
  • the UL-PRS pattern information or symbol number information may be information set from the location server/LMF and/or the serving AN in step-0, or may be predefined.
  • the AN can receive UL-PRS from the UE. In addition, it is possible to measure the time when the UL-PRS is received from the UE. On the other hand, if the UE performs RTT with the neighboring AN, but the synchronization between the UE and the neighboring AN is not correct, the AN may measure the UL-PRS reception time through blind detection.
  • the AN transmits the fTRTD measurement and DL-PRS and the measured fTRTD information to the UE.
  • cTRTD_integer 3 as an example, but is not limited thereto.
  • cTRTD _integer may be defined by Equation 5 or Equation 6.
  • cTRTD_integer in FIG. 27 may indicate that the AN transmits the DL-PRS after 3 OFDM symbols after receiving the UL-PRS.
  • cTRTD_integer may be equal to the number of OFDM symbols of UL-PRS received in the TRTD.
  • cTRTD_integer may be measured including an OFDM symbol corresponding to a time point at which the UL-PRS is received.
  • GI Guard Interval
  • the GI period may be reserved through a reservation signal of an AN or UL-PRS transmission of a UE in order to remove interference that may be caused by other users.
  • fTRTD represents the remaining time obtained by subtracting the UL-PRS reception time from the OFDM symbol length including the CP based on the OFDM symbol corresponding to the time point at which the UL-PRS is received at the AN.
  • the time between the start time and the UL-PRS reception time in the time domain of the one OFDM symbol in the length of one OFDM symbol including the time when the UL-PRS is received The length of time remaining after subtracting the length may be fTRTD.
  • the fTRTD information measured according to the above-described examples of the present disclosure may be provided to the UE through integer multiple information (fTRTD_integer) for the above-described OFDM sample. That is, the AN may transmit fTRTD_integer information to the UE.
  • fTRTD_integer integer multiple information
  • the AN may first define a pseudo noise (PN) sequence of M length or a corresponding random sequence defined in advance or set between the AN and the UE.
  • PN pseudo noise
  • the AN may cut the length corresponding to fTRTD_integer from the M-length PN sequence, insert it before DL-PRS transmission as shown in FIG. 27, and transmit it to the UE.
  • the AN may provide fTRTD_integer information to the UE based on a sequence based on the fTRTD_integer length as shown in Options 1 to 2 below.
  • the AN can cut the length corresponding to fTRTD_integer from the M-length PN sequence regardless of the fTRTD_integer length, insert it before DL-PRS transmission, and transmit it to the UE.
  • the AN can cut the length corresponding to fTRTD_integer from the M-length PN sequence, insert it before DL-PRS transmission, and transmit it to the UE.
  • the AN transmits a PN sequence longer than the OFDM symbol length by adding the length of fTRTD_integer to the length of the OFDM symbol. According to option 2, the correlation performance of the PN sequence can be improved.
  • the UE receives the DL-PRS received from the AN through the TDD-DL mode.
  • the UE measures the time at which the DL-PRS is received, and may estimate fTRTD through signal processing such as a correlator for a PN sequence or a corresponding random sequence transmitted before the DL-PRS from the AN.
  • the UE when it first acquires OFDM symbol synchronization using DL-PRS, it stores a signal received prior to the DL-PRS in the synchronization acquisition process.
  • the UE extracts a signal corresponding to the PN sequence from the received signal using the synchronization obtained in the DL-PRS. At this time, while the UE cannot know the start of the PN sequence, it can know the end of the PN sequence.
  • the UE estimates the PN sequence length by performing a correlator operation between the extracted signal and the PN sequence stored in the receiver. Specifically, the UE passes the extracted signal through the correlator in reverse order to estimate the starting point of the PN sequence. When a peak is detected at the output of the correlator, the UE estimates the length by counting the number of samples of the extracted signal input to the correlator.
  • the UE finally calculates fTRTD by multiplying the estimated PN sequence length by the OFDM sample length.
  • the UE performs RTT distance measurement for the corresponding AN using the UL-PRS transmission time, the DL-PRS reception time, and the TRTD time information consumed by the AN. For example, the UE may perform RTT distance measurement for the AN based on Equation 2.
  • the UE When the channel is IDLE through the fast LBT process, the UE performs the RTT operation from steps-1 to 6 described above with another AN.
  • the UE performs RTT distance measurement by repeatedly performing steps 1 to 6 for all ANs, and after the RTT distance measurement is completed, the antenna location information of each AN and the distance measurement information measured at each AN are stored. To perform RTT positioning.
  • steps 1 to 6 of the method 2-1 described above steps-1,-2,-5 and 6 are performed in the same manner, but step-3 and Instead of step-4, step-3-1 and step-4-1 may be performed. Accordingly, the description of Step-1, Step-2, Step-5, and Step-6 in Step-1 to Step-6 is replaced by the description of Method 2-1, below, Step-3-1 and Only Step-4-1 will be described.
  • the AN After receiving the UL-PRS, the AN transmits the DL-PRS after a time corresponding to cTRTD. At this time, the DL-PRS may be transmitted at the symbol boundary of the AN or may be transmitted at an arbitrary location. According to step-3-1, the flexible reference time operation of the AN does not generate fTRTD, and fast RTT operation in the UE can be provided.
  • the UE receives the DL-PRS from the AN through the TDD-DL mode and measures the time when the DL-PRS is received. In this case, the UE may not perform a separate step of estimating fTRTD.
  • 28 is a signal transmission method of a user device according to an example of the present disclosure.
  • a user device may receive positioning reference signal (PRS) configuration information from a location server/LMF and/or a serving AN.
  • PRS configuration information may include a resource pattern of the first PRS and the second PRS, and the number of symbols of the first PRS and the second PRS.
  • the user device may perform a listen before talk (LBT) on an unlicensed band.
  • LBT listen before talk
  • the user equipment transmits a first PRS (anchor node) based on the PRS configuration information on a channel in an IDLE state according to the LBT among a plurality of channels included in the unlicensed band. Can be transferred to.
  • the first PRS may be UL-PRS.
  • the first PRS may be transmitted immediately after the LBT is performed. Specifically, the first PRS may be continuously transmitted immediately after performing LBT without an LBT backoff process.
  • the user device may receive a second PRS from the AN based on the PRS configuration information on the channel.
  • the first PRS and the second PRS described above may be used to obtain a Tx-Rx time difference (TRTD).
  • the TRTD may be a time difference value between a time point at which the AN receives the first PRS and a time point at which the AN transmits the second PRS.
  • the TRTD is indicated by first TRTD information and second TRTD information, and the first TRTD information is Where t CB is the TRTD, T u is the length of an orthogonal frequency division multiple (OFDM) symbol, and the second TRTD information is
  • cTRTD_integer is the first TRTD information, and T x may be the length of a sample of the OFDM symbol.
  • the first PRS and the second PRS described above may be used to obtain Rx-Tx time difference (RTTD).
  • the RTTD may be a time difference value between a time point when the user device transmits the first PRS and a time point when the user device receives the second PRS.
  • the method of transmitting a signal by the user device may further include receiving a signal associated with the second TRTD information after transmitting the first PRS.
  • the signal associated with the second TRTD information may be generated based on a sequence having the same length as the second TRTD.
  • the second TRTD information is indicated based on pattern information of the sequence of the second PRS, wherein the pattern information indicates a comb type and a cyclic shift value of the sequence of the second PRS.
  • the pattern information indicates a comb type and a cyclic shift value of the sequence of the second PRS.
  • Method 2 of the present disclosure faster UE positioning is possible when compared to a network-based RTT positioning method in a licensed band of NR, and accurate distance measurement may be possible by using an unlicensed band having a wide bandwidth.
  • a UE occupying a channel may perform a positioning operation with a plurality of ANs within a given MCOT.
  • cTRTD determination according to Method 2 of the present disclosure and dynamic scheduling of UL-PRS and DL-PRS based on the determined cTRTD may provide a fast RTT operation.
  • the method for providing fTRTD information using a sequence in the UE-based RTT operation according to Method 2 of the present disclosure does not require a message decoding process when compared to the method using a message, a fast RTT positioning operation of the UE can be provided. .
  • the flexible reference time operation of the AN does not generate fTRTD, and since the operation related to fTRTD estimation is not performed in the UE, the complexity of the UE is low and the RTT operation is fast. Can provide.
  • examples of the proposed method may also be included as one of the implementation methods of the present disclosure, it is obvious that they may be regarded as a kind of proposed method.
  • the above-described proposed schemes may be implemented independently, but may be implemented in the form of a combination (or merge) of some of the proposed schemes.
  • a proposed method has been described based on a 3GPP NR system for convenience of description, but the range of a system to which the proposed method is applied may be extended to other systems in addition to the 3GPP NR system.
  • the proposed schemes of the present disclosure can be extended and applied for D2D communication.
  • D2D communication means that the UE communicates with other UEs using a direct radio channel.
  • the UE refers to the user's UE, but network equipment such as a base station is in accordance with the communication method between the UEs. Therefore, in the case of transmitting/receiving signals, it may also be regarded as a kind of UE.
  • the proposed schemes of the present disclosure may be limitedly applied only to the MODE 3 V2X operation (and/or the MODE 4 V2X operation).
  • the proposed schemes of the present disclosure are previously set (/ signaling) (specific) V2X channel (/ signal) transmission (e.g., PSSCH (and/or (linked) PSCCH and/or PSBCH)) It may be applied only limitedly.
  • the proposed schemes of the present disclosure are (and/or set in advance) when the PSSCH and the (linked) PSCCH are (on the frequency domain) adjacent (ADJACENT) (and/or spaced apart (NON-ADJACENT)) and transmitted It may be limitedly applied only to (/signaled) MCS (and/or coding rate and/or RB) (when transmission based on value (/range)) is performed).
  • the proposed schemes of the present disclosure are MODE#3 (and/or MODE#4) V2X CARRIER (and/or (MODE#4(/3)) SL(/UL) SPS (and/or SL(/ UL) DYNAMIC SCHEDULING) CARRIER) may be limitedly applied.
  • the proposed schemes of the present disclosure are synchronization signal (transmission (and/or reception)) resource location and/or number between CARRIERs (and/or V2X resource pool-related subframe location and/or number (and/or sub It may be applied (limitedly) only if the channel size and/or number)) are the same (and/or (some) different).
  • the proposed schemes of the present disclosure may be extended and applied in (V2X) communication between a base station and a UE.
  • the proposed schemes of the present disclosure may be limitedly applied only to UNICAST (sidelink) communication (and/or MULTICAST (or GROUPCAST) (sidelink) communication and/or BROADCAST (sidelink) communication).
  • 29 illustrates a communication system 1 applied to the present disclosure.
  • a communication system 1 applied to the present disclosure includes a wireless device, a base station, and a network.
  • the wireless device refers to a device that performs communication using a wireless access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)), and may be referred to as a communication/wireless/5G device.
  • wireless devices include robots 100a, vehicles 100b-1 and 100b-2, eXtended Reality (XR) devices 100c, hand-held devices 100d, and home appliances 100e. ), an Internet of Thing (IoT) device 100f, and an AI device/server 400.
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
  • UAV Unmanned Aerial Vehicle
  • XR devices include Augmented Reality (AR)/Virtual Reality (VR)/Mixed Reality (MR) devices. It can be implemented in the form of a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
  • Portable devices may include smart phones, smart pads, wearable devices (eg, smart watches, smart glasses), computers (eg, notebook computers, etc.).
  • Home appliances may include TVs, refrigerators, washing machines, and the like.
  • IoT devices may include sensors, smart meters, and the like.
  • the base station and the network may be implemented as a wireless device, and the specific wireless device 200a may operate as a base station/network node to other
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may communicate directly (e.g. sidelink communication) without passing through the base station/network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (e.g.
  • V2V Vehicle to Vehicle
  • V2X Vehicle to Everything
  • the IoT device eg, sensor
  • the IoT device may directly communicate with other IoT devices (eg, sensors) or other wireless devices 100a to 100f.
  • Wireless communication/connections 150a, 150b, and 150c may be established between the wireless devices 100a to 100f/base station 200, and the base station 200/base station 200.
  • wireless communication/connection includes various wireless access such as uplink/downlink communication 150a, sidelink communication 150b (or D2D communication), base station communication 150c (eg relay, Integrated Access Backhaul). This can be achieved through technology (eg 5G NR)
  • the wireless communication/connection 150a, 150b, 150c may transmit/receive signals through various physical channels.
  • various signal processing processes eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.
  • resource allocation process e.g., resource allocation process, and the like.
  • FIG. 30 illustrates a wireless device applicable to the present disclosure.
  • the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR).
  • ⁇ the first wireless device 100, the second wireless device 200 ⁇ is ⁇ wireless device 100x, base station 200 ⁇ and/or ⁇ wireless device 100x, wireless device 100x) of FIG. 29 ⁇ Can be matched.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and/or one or more antennas 108.
  • the processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 102 may process information in the memory 104 to generate first information/signal, and then transmit a radio signal including the first information/signal through the transceiver 106.
  • the processor 102 may store information obtained from signal processing of the second information/signal in the memory 104 after receiving a radio signal including the second information/signal through the transceiver 106.
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102. For example, the memory 104 may perform some or all of the processes controlled by the processor 102, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flow charts disclosed herein. It is possible to store software code including:
  • the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • the transceiver 106 may be coupled with the processor 102 and may transmit and/or receive radio signals through one or more antennas 108.
  • Transceiver 106 may include a transmitter and/or a receiver.
  • the transceiver 106 may be mixed with an RF (Radio Frequency) unit.
  • a wireless device may mean a communication modem/circuit/chip.
  • the second wireless device 200 includes one or more processors 202 and one or more memories 204, and may further include one or more transceivers 206 and/or one or more antennas 208.
  • the processor 202 controls the memory 204 and/or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 202 may process information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206.
  • the processor 202 may receive the radio signal including the fourth information/signal through the transceiver 206 and then store information obtained from signal processing of the fourth information/signal in the memory 204.
  • the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202. For example, the memory 204 may perform some or all of the processes controlled by the processor 202, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flow charts disclosed in this document. It is possible to store software code including:
  • the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • the transceiver 206 may be connected to the processor 202 and may transmit and/or receive radio signals through one or more antennas 208.
  • the transceiver 206 may include a transmitter and/or a receiver.
  • the transceiver 206 may be used interchangeably with an RF unit.
  • the wireless device may mean a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 102, 202.
  • one or more processors 102 and 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, and SDAP).
  • One or more processors 102, 202 may be configured to generate one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the description, functions, procedures, suggestions, methods, and/or operational flow charts disclosed in this document Can be generated.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102, 202 may generate messages, control information, data, or information according to the description, function, procedure, proposal, method, and/or operational flow chart disclosed herein. At least one processor (102, 202) generates a signal (e.g., a baseband signal) containing PDU, SDU, message, control information, data or information according to the functions, procedures, proposals and/or methods disclosed in this document. , It may be provided to one or more transceivers (106, 206).
  • a signal e.g., a baseband signal
  • One or more processors 102, 202 may receive signals (e.g., baseband signals) from one or more transceivers 106, 206, and the descriptions, functions, procedures, proposals, methods and/or operational flowcharts disclosed herein PDUs, SDUs, messages, control information, data, or information may be obtained according to the parameters.
  • signals e.g., baseband signals
  • One or more of the processors 102 and 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more of the processors 102 and 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • the description, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this document may be implemented using firmware or software, and firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the description, functions, procedures, proposals, methods and/or operational flow charts disclosed in this document are configured to perform firmware or software included in one or more processors 102, 202, or stored in one or more memories 104, 204, and It may be driven by the above processors 102 and 202.
  • the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document may be implemented using firmware or software in the form of codes, instructions, and/or sets of instructions.
  • One or more memories 104, 204 may be connected to one or more processors 102, 202, and may store various types of data, signals, messages, information, programs, codes, instructions and/or instructions.
  • One or more of the memories 104 and 204 may be composed of ROM, RAM, EPROM, flash memory, hard drive, registers, cache memory, computer readable storage media, and/or combinations thereof.
  • One or more memories 104 and 204 may be located inside and/or outside of one or more processors 102 and 202.
  • one or more memories 104, 204 may be connected to one or more processors 102, 202 through various technologies such as wired or wireless connection.
  • One or more transceivers 106 and 206 may transmit user data, control information, radio signals/channels, and the like mentioned in the methods and/or operation flow charts of this document to one or more other devices.
  • One or more transceivers (106, 206) may receive user data, control information, radio signals/channels, etc., mentioned in the description, functions, procedures, proposals, methods and/or operational flowcharts disclosed in this document from one or more other devices. have.
  • one or more transceivers 106 and 206 may be connected to one or more processors 102 and 202 and may transmit and receive wireless signals.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to transmit user data, control information, or radio signals to one or more other devices.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or radio signals from one or more other devices.
  • one or more transceivers (106, 206) may be connected to one or more antennas (108, 208), one or more transceivers (106, 206) through the one or more antennas (108, 208), the description and functions disclosed in this document.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • One or more transceivers (106, 206) in order to process the received user data, control information, radio signal / channel, etc. using one or more processors (102, 202), the received radio signal / channel, etc. in the RF band signal. It can be converted into a baseband signal.
  • One or more transceivers 106 and 206 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 102 and 202 from a baseband signal to an RF band signal.
  • one or more of the transceivers 106 and 206 may include (analog) oscillators and/or filters.
  • wireless communication technologies implemented in the wireless devices 100 and 200 of the present specification may include LTE, NR, and 6G as well as Narrowband Internet of Things for low power communication.
  • the NB-IoT technology may be an example of a Low Power Wide Area Network (LPWAN) technology, and may be implemented in a standard such as LTE Cat NB1 and/or LTE Cat NB2, and limited to the above name no.
  • the wireless communication technology implemented in the wireless devices 100 and 200 of the present specification may perform communication based on the LTE-M technology.
  • the LTE-M technology may be an example of an LPWAN technology, and may be referred to by various names such as enhanced machine type communication (eMTC).
  • eMTC enhanced machine type communication
  • LTE-M technology is 1) LTE CAT (LTE Category) 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL (non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, and/or 7) may be implemented in at least one of various standards such as LTE M, and is not limited to the above-described name.
  • the wireless communication technology implemented in the wireless devices 100 and 200 of the present specification includes at least one of ZigBee, Bluetooth, and Low Power Wide Area Network (LPWAN) in consideration of low power communication. Any one may be included, and the name is not limited to the above.
  • ZigBee technology can create personal area networks (PANs) related to small/low-power digital communication based on various standards such as IEEE 802.15.4, and may be referred to by various names.
  • PANs personal area networks
  • the vehicle or autonomous vehicle may be implemented as a mobile robot, a vehicle, a train, an aerial vehicle (AV), a ship, or the like.
  • AV aerial vehicle
  • the vehicle or autonomous vehicle 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a driving unit 140a, a power supply unit 140b, a sensor unit 140c, and an autonomous driving unit. It may include a unit (140d).
  • the antenna unit 108 may be configured as a part of the communication unit 110.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with external devices such as other vehicles, base stations (e.g. base stations, roadside base stations, etc.), and servers.
  • the controller 120 may perform various operations by controlling elements of the vehicle or the autonomous vehicle 100.
  • the control unit 120 may include an Electronic Control Unit (ECU).
  • the driving unit 140a may cause the vehicle or the autonomous vehicle 100 to travel on the ground.
  • the driving unit 140a may include an engine, a motor, a power train, a wheel, a brake, a steering device, and the like.
  • the power supply unit 140b supplies power to the vehicle or the autonomous vehicle 100, and may include a wired/wireless charging circuit, a battery, and the like.
  • the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
  • the sensor unit 140c is an IMU (inertial measurement unit) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight detection sensor, a heading sensor, a position module, and a vehicle advancement. /Reverse sensor, battery sensor, fuel sensor, tire sensor, steering sensor, temperature sensor, humidity sensor, ultrasonic sensor, illuminance sensor, pedal position sensor, etc. can be included.
  • the autonomous driving unit 140d is a technology that maintains a driving lane, a technology that automatically adjusts the speed such as adaptive cruise control, a technology that automatically travels along a predetermined route, and automatically sets a route when a destination is set. Technology, etc. can be implemented.
  • the communication unit 110 may receive map data, traffic information data, and the like from an external server.
  • the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data.
  • the controller 120 may control the driving unit 140a so that the vehicle or the autonomous vehicle 100 moves along the autonomous driving path according to the driving plan (eg, speed/direction adjustment).
  • the communication unit 110 asynchronously/periodically acquires the latest traffic information data from an external server, and may acquire surrounding traffic information data from surrounding vehicles.
  • the sensor unit 140c may acquire vehicle status and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and the driving plan based on the newly acquired data/information.
  • the communication unit 110 may transmit information about a vehicle location, an autonomous driving route, a driving plan, and the like to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomously driving vehicles, and may provide the predicted traffic information data to the vehicle or autonomously driving vehicles.
  • Vehicles may also be implemented as means of transportation, trains, aircraft, and ships.
  • the vehicle 100 may include a communication unit 110, a control unit 120, a memory unit 130, an input/output unit 140a, and a position measurement unit 140b.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other vehicles or external devices such as a base station.
  • the controller 120 may perform various operations by controlling components of the vehicle 100.
  • the memory unit 130 may store data/parameters/programs/codes/commands supporting various functions of the vehicle 100.
  • the input/output unit 140a may output an AR/VR object based on information in the memory unit 130.
  • the input/output unit 140a may include a HUD.
  • the location measurement unit 140b may obtain location information of the vehicle 100.
  • the location information may include absolute location information of the vehicle 100, location information within a driving line, acceleration information, location information with surrounding vehicles, and the like.
  • the location measurement unit 140b may include GPS and various sensors.
  • the communication unit 110 of the vehicle 100 may receive map information, traffic information, etc. from an external server and store it in the memory unit 130.
  • the location measurement unit 140b may acquire vehicle location information through GPS and various sensors and store it in the memory unit 130.
  • the controller 120 may generate a virtual object based on map information, traffic information, vehicle location information, and the like, and the input/output unit 140a may display the generated virtual object on a window in the vehicle (1410, 1420).
  • the controller 120 may determine whether the vehicle 100 is operating normally within the driving line based on the vehicle location information. When the vehicle 100 deviates from the driving line abnormally, the control unit 120 may display a warning on a windshield of the vehicle through the input/output unit 140a.
  • the controller 120 may broadcast a warning message regarding a driving abnormality to nearby vehicles through the communication unit 110.
  • the control unit 120 may transmit location information of the vehicle and information on driving/vehicle abnormalities to related organizations through the communication unit 110.
  • the XR device may be implemented as an HMD, a head-up display (HUD) provided in a vehicle, a television, a smartphone, a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
  • HMD head-up display
  • a television a television
  • smartphone a smartphone
  • a computer a wearable device
  • a home appliance a digital signage
  • a vehicle a robot, and the like.
  • the XR device 100a may include a communication unit 110, a control unit 120, a memory unit 130, an input/output unit 140a, a sensor unit 140b, and a power supply unit 140c. .
  • the communication unit 110 may transmit and receive signals (eg, media data, control signals, etc.) with other wireless devices, portable devices, or external devices such as a media server.
  • Media data may include images, images, sounds, and the like.
  • the controller 120 may perform various operations by controlling components of the XR device 100a.
  • the controller 120 may be configured to control and/or perform procedures such as video/image acquisition, (video/image) encoding, and metadata generation and processing.
  • the memory unit 130 may store data/parameters/programs/codes/commands required for driving the XR device 100a/generating an XR object.
  • the input/output unit 140a may obtain control information, data, etc. from the outside, and may output the generated XR object.
  • the input/output unit 140a may include a camera, a microphone, a user input unit, a display unit, a speaker, and/or a haptic module.
  • the sensor unit 140b may obtain XR device status, surrounding environment information, user information, and the like.
  • the sensor unit 140b may include a proximity sensor, an illuminance sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, and/or a radar. have.
  • the power supply unit 140c supplies power to the XR device 100a, and may include a wired/wireless charging circuit, a battery, and the like.
  • the memory unit 130 of the XR device 100a may include information (eg, data, etc.) necessary for generating an XR object (eg, AR/VR/MR object).
  • the input/output unit 140a may obtain a command to manipulate the XR device 100a from the user, and the control unit 120 may drive the XR device 100a according to the user's driving command. For example, when a user tries to watch a movie, news, etc. through the XR device 100a, the controller 120 transmits the content request information through the communication unit 130 to another device (for example, the mobile device 100b) or It can be sent to the media server.
  • another device for example, the mobile device 100b
  • the communication unit 130 may download/stream content such as movies and news from another device (eg, the portable device 100b) or a media server to the memory unit 130.
  • the control unit 120 controls and/or performs procedures such as video/image acquisition, (video/image) encoding, and metadata generation/processing for the content, and is acquired through the input/output unit 140a/sensor unit 140b.
  • An XR object may be generated/output based on information on a surrounding space or a real object.
  • the XR device 100a is wirelessly connected to the mobile device 100b through the communication unit 110, and the operation of the XR device 100a may be controlled by the mobile device 100b.
  • the portable device 100b may operate as a controller for the XR device 100a.
  • the XR device 100a may obtain 3D location information of the portable device 100b, and then generate and output an XR object corresponding to the portable device 100b.
  • Robots can be classified into industrial, medical, household, military, etc. depending on the purpose or field of use.
  • the robot 100 may include a communication unit 110, a control unit 120, a memory unit 130, an input/output unit 140a, a sensor unit 140b, and a driving unit 140c.
  • the communication unit 110 may transmit and receive signals (eg, driving information, control signals, etc.) with other wireless devices, other robots, or external devices such as a control server.
  • the controller 120 may perform various operations by controlling components of the robot 100.
  • the memory unit 130 may store data/parameters/programs/codes/commands supporting various functions of the robot 100.
  • the input/output unit 140a acquires information from the outside of the robot 100 and may output the information to the outside of the robot 100.
  • the input/output unit 140a may include a camera, a microphone, a user input unit, a display unit, a speaker, and/or a haptic module.
  • the sensor unit 140b may obtain internal information, surrounding environment information, user information, and the like of the robot 100.
  • the sensor unit 140b may include a proximity sensor, an illuminance sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, a radar, and the like.
  • the driving unit 140c may perform various physical operations such as moving a robot joint. In addition, the driving unit 140c may cause the robot 100 to travel on the ground or fly in the air.
  • the driving unit 140c may include an actuator, a motor, a wheel, a brake, a propeller, and the like.
  • AI devices include fixed devices such as TVs, projectors, smartphones, PCs, notebooks, digital broadcasting UE devices, tablet PCs, wearable devices, set-top boxes (STBs), radios, washing machines, refrigerators, digital signage, robots, vehicles, etc. It can be implemented as a movable device or the like.
  • the AI device 100 includes a communication unit 110, a control unit 120, a memory unit 130, an input/output unit 140a/140b, a running processor unit 140c, and a sensor unit 140d. It may include.
  • the communication unit 110 uses wired/wireless communication technology to provide external devices such as other AI devices (eg, FIGS. 29, 100x, 200, 400) or AI servers (eg, 400 in FIG. 29) and wired/wireless signals (eg, sensor information). , User input, learning model, control signals, etc.). To this end, the communication unit 110 may transmit information in the memory unit 130 to an external device, or may transmit a signal received from the external device to the memory unit 130.
  • AI devices eg, FIGS. 29, 100x, 200, 400
  • AI servers eg, 400 in FIG. 29
  • wired/wireless signals eg, sensor information
  • the communication unit 110 may transmit information in the memory unit 130 to an external device, or may transmit a signal received from the external device to the memory unit 130.
  • the controller 120 may determine at least one executable operation of the AI device 100 based on information determined or generated using a data analysis algorithm or a machine learning algorithm. In addition, the controller 120 may perform a determined operation by controlling the components of the AI device 100. For example, the control unit 120 may request, search, receive, or utilize data from the learning processor unit 140c or the memory unit 130, and may be a predicted or desirable operation among at least one executable operation. Components of the AI device 100 may be controlled to execute an operation. In addition, the control unit 120 collects the history information including the operation content or user's feedback on the operation of the AI device 100 and stores it in the memory unit 130 or the running processor unit 140c, or the AI server ( 29 and 400). The collected history information can be used to update the learning model.
  • the memory unit 130 may store data supporting various functions of the AI device 100.
  • the memory unit 130 may store data obtained from the input unit 140a, data obtained from the communication unit 110, output data from the running processor unit 140c, and data obtained from the sensing unit 140.
  • the memory unit 130 may store control information and/or software codes necessary for the operation/execution of the control unit 120.
  • the input unit 140a may acquire various types of data from the outside of the AI device 100.
  • the input unit 140a may acquire training data for model training and input data to which the training model is applied.
  • the input unit 140a may include a camera, a microphone, and/or a user input unit.
  • the output unit 140b may generate output related to visual, auditory, or tactile sense.
  • the output unit 140b may include a display unit, a speaker, and/or a haptic module.
  • the sensing unit 140 may obtain at least one of internal information of the AI device 100, surrounding environment information of the AI device 100, and user information by using various sensors.
  • the sensing unit 140 may include a proximity sensor, an illuminance sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, and/or a radar. have.
  • the learning processor unit 140c may train a model composed of an artificial neural network by using the training data.
  • the running processor unit 140c may perform AI processing together with the running processor unit of the AI server (FIGS. 29 and 400).
  • the learning processor unit 140c may process information received from an external device through the communication unit 110 and/or information stored in the memory unit 130.
  • the output value of the learning processor unit 140c may be transmitted to an external device through the communication unit 110 and/or may be stored in the memory unit 130.
  • Embodiments as described above can be applied to various mobile communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 개시의 일 양상으로, 무선통신시스템에서 사용자기기의 방법에 있어서, PRS(positioning reference signal) 설정 정보를 수신하고; 비면허 대역(unlicensed band)에 대하여 LBT(listen before talk)를 수행하고; 상기 비면허 대역에 포함된 복수의 채널들 중 상기 LBT에 따라 유휴(IDLE) 상태인 채널 상에서 상기 PRS 설정 정보에 기반하여 제1 PRS(positioning reference signal)를 AN(anchor node)에 전송하고; 및 상기 채널 상에서 상기 PRS 설정 정보에 기반하여 제2 PRS를 상기 AN로부터 수신하고, 상기 제1 PRS는 상기 LBT가 수행된 직후에 전송되는, 방법이다.

Description

무선통신시스템에서 사용자기기의 측위 방법
본 개시 (present disclosure)는 무선 통신 시스템에 관한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.
무선 통신 시스템에서는 LTE, LTE-A, WiFi 등의 다양한 RAT(Radio Access Technology)이 사용되고 있으며, 5G 도 여기에 포함된다. 5G의 세 가지 주요 요구 사항 영역은 (1) 개선된 모바일 광대역 (Enhanced Mobile Broadband, eMBB) 영역, (2) 다량의 머신 타입 통신 (massive Machine Type Communication, mMTC) 영역 및 (3) 초-신뢰 및 저 지연 통신 (Ultra-reliable and Low Latency Communications, URLLC) 영역을 포함한다. 일부 사용 예(Use Case)는 최적화를 위해 다수의 영역들이 요구될 수 있고, 다른 사용 예는 단지 하나의 핵심 성능 지표 (Key Performance Indicator, KPI)에만 포커싱될 수 있다. 5G는 이러한 다양한 사용 예들을 유연하고 신뢰할 수 있는 방법으로 지원하는 것이다.
eMBB는 기본적인 모바일 인터넷 액세스를 훨씬 능가하게 하며, 풍부한 양방향 작업, 클라우드 또는 증강 현실에서 미디어 및 엔터테인먼트 애플리케이션을 커버한다. 데이터는 5G의 핵심 동력 중 하나이며, 5G 시대에서 처음으로 전용 음성 서비스를 볼 수 없을 수 있다. 5G에서, 음성은 단순히 통신 시스템에 의해 제공되는 데이터 연결을 사용하여 응용 프로그램으로서 처리될 것이 기대된다. 증가된 트래픽 양(volume)을 위한 주요 원인들은 콘텐츠 크기의 증가 및 높은 데이터 전송률을 요구하는 애플리케이션 수의 증가이다. 스트리밍 서비스 (오디오 및 비디오), 대화형 비디오 및 모바일 인터넷 연결은 더 많은 장치가 인터넷에 연결될수록 더 널리 사용될 것이다. 이러한 많은 응용 프로그램들은 사용자에게 실시간 정보 및 알림을 푸쉬하기 위해 항상 켜져 있는 연결성이 필요하다. 클라우드 스토리지 및 애플리케이션은 모바일 통신 플랫폼에서 급속히 증가하고 있으며, 이것은 업무 및 엔터테인먼트 모두에 적용될 수 있다. 그리고, 클라우드 스토리지는 상향링크 데이터 전송률의 성장을 견인하는 특별한 사용 예이다. 5G는 또한 클라우드의 원격 업무에도 사용되며, 촉각 인터페이스가 사용될 때 우수한 사용자 경험을 유지하도록 훨씬 더 낮은 단-대-단(end-to-end) 지연을 요구한다. 엔터테인먼트 예를 들어, 클라우드 게임 및 비디오 스트리밍은 모바일 광대역 능력에 대한 요구를 증가시키는 또 다른 핵심 요소이다. 엔터테인먼트는 기차, 차 및 비행기와 같은 높은 이동성 환경을 포함하는 어떤 곳에서든지 스마트폰 및 태블릿에서 필수적이다. 또 다른 사용 예는 엔터테인먼트를 위한 증강 현실 및 정보 검색이다. 여기서, 증강 현실은 매우 낮은 지연과 순간적인 데이터 양을 필요로 한다.
또한, 가장 많이 예상되는 5G 사용 예 중 하나는 모든 분야에서 임베디드 센서를 원활하게 연결할 수 있는 기능 즉, mMTC에 관한 것이다. 2020년까지 잠재적인 IoT 장치들은 204 억 개에 이를 것으로 예측된다. 산업 IoT는 5G가 스마트 도시, 자산 추적(asset tracking), 스마트 유틸리티, 농업 및 보안 인프라를 가능하게 하는 주요 역할을 수행하는 영역 중 하나이다.
URLLC는 주요 인프라의 원격 제어 및 자체-구동 차량(self-driving vehicle)과 같은 초 신뢰 / 이용 가능한 지연이 적은 링크를 통해 산업을 변화시킬 새로운 서비스를 포함한다. 신뢰성과 지연의 수준은 스마트 그리드 제어, 산업 자동화, 로봇 공학, 드론 제어 및 조정에 필수적이다.
다음으로, 다수의 사용 예들에 대해 보다 구체적으로 살펴본다.
5G는 초당 수백 메가 비트에서 초당 기가 비트로 평가되는 스트림을 제공하는 수단으로 FTTH (fiber-to-the-home) 및 케이블 기반 광대역 (또는 DOCSIS)을 보완할 수 있다. 이러한 빠른 속도는 가상 현실과 증강 현실뿐 아니라 4K 이상(6K, 8K 및 그 이상)의 해상도로 TV를 전달하는데 요구된다. VR(Virtual Reality) 및 AR(Augmented Reality) 애플리케이션들은 거의 몰입형(immersive) 스포츠 경기를 포함한다. 특정 응용 프로그램은 특별한 네트워크 설정이 요구될 수 있다. 예를 들어, VR 게임의 경우, 게임 회사들이 지연을 최소화하기 위해 코어 서버를 네트워크 오퍼레이터의 에지 네트워크 서버와 통합해야 할 수 있다.
자동차(Automotive)는 차량에 대한 이동 통신을 위한 많은 사용 예들과 함께 5G에 있어 중요한 새로운 동력이 될 것으로 예상된다. 예를 들어, 승객을 위한 엔터테인먼트는 동시의 높은 용량과 높은 이동성 모바일 광대역을 요구한다. 그 이유는 미래의 사용자는 그들의 위치 및 속도와 관계 없이 고품질의 연결을 계속해서 기대하기 때문이다. 자동차 분야의 다른 활용 예는 증강 현실 대시보드이다. 이는 운전자가 앞면 창을 통해 보고 있는 것 위에 어둠 속에서 물체를 식별하고, 물체의 거리와 움직임에 대해 운전자에게 말해주는 정보를 겹쳐서 디스플레이 한다. 미래에, 무선 모듈은 차량들 간의 통신, 차량과 지원하는 인프라구조 사이에서 정보 교환 및 자동차와 다른 연결된 디바이스들(예를 들어, 보행자에 의해 수반되는 디바이스들) 사이에서 정보 교환을 가능하게 한다. 안전 시스템은 운전자가 보다 안전한 운전을 할 수 있도록 행동의 대체 코스들을 안내하여 사고의 위험을 낮출 수 있게 한다. 다음 단계는 원격 조종되거나 자체 운전 차량(self-driven vehicle)이 될 것이다. 이는 서로 다른 자체 운전 차량들 사이 및 자동차와 인프라 사이에서 매우 신뢰성이 있고, 매우 빠른 통신을 요구한다. 미래에, 자체 운전 차량이 모든 운전 활동을 수행하고, 운전자는 차량 자체가 식별할 수 없는 교통 이상에만 집중하도록 할 것이다. 자체 운전 차량의 기술적 요구 사항은 트래픽 안전을 사람이 달성할 수 없을 정도의 수준까지 증가하도록 초 저 지연과 초고속 신뢰성을 요구한다.
스마트 사회(smart society)로서 언급되는 스마트 도시와 스마트 홈은 고밀도 무선 센서 네트워크로 임베디드될 것이다. 지능형 센서의 분산 네트워크는 도시 또는 집의 비용 및 에너지-효율적인 유지에 대한 조건을 식별할 것이다. 유사한 설정이 각 가정을 위해 수행될 수 있다. 온도 센서, 창 및 난방 컨트롤러, 도난 경보기 및 가전 제품들은 모두 무선으로 연결된다. 이러한 센서들 중 많은 것들이 전형적으로 낮은 데이터 전송 속도, 저전력 및 저비용이다. 하지만, 예를 들어, 실시간 HD 비디오는 감시를 위해 특정 타입의 장치에서 요구될 수 있다.
열 또는 가스를 포함한 에너지의 소비 및 분배는 고도로 분산화되고 있어, 분산 센서 네트워크의 자동화된 제어가 요구된다. 스마트 그리드는 정보를 수집하고 이에 따라 행동하도록 디지털 정보 및 통신 기술을 사용하여 이런 센서들을 상호 연결한다. 이 정보는 공급 업체와 소비자의 행동을 포함할 수 있으므로, 스마트 그리드가 효율성, 신뢰성, 경제성, 생산의 지속 가능성 및 자동화된 방식으로 전기와 같은 연료들의 분배를 개선하도록 할 수 있다. 스마트 그리드는 지연이 적은 다른 센서 네트워크로 볼 수도 있다.
건강 부문은 이동 통신의 혜택을 누릴 수 있는 많은 응용 프로그램을 보유하고 있다. 통신 시스템은 멀리 떨어진 곳에서 임상 진료를 제공하는 원격 진료를 지원할 수 있다. 이는 거리에 대한 장벽을 줄이는데 도움을 주고, 거리가 먼 농촌에서 지속적으로 이용하지 못하는 의료 서비스들로의 접근을 개선시킬 수 있다. 이는 또한 중요한 진료 및 응급 상황에서 생명을 구하기 위해 사용된다. 이동 통신 기반의 무선 센서 네트워크는 심박수 및 혈압과 같은 파라미터들에 대한 원격 모니터링 및 센서들을 제공할 수 있다.
무선 및 모바일 통신은 산업 응용 분야에서 점차 중요해지고 있다. 배선은 설치 및 유지 비용이 높다. 따라서, 케이블을 재구성할 수 있는 무선 링크들로의 교체 가능성은 많은 산업 분야에서 매력적인 기회이다. 그러나, 이를 달성하는 것은 무선 연결이 케이블과 비슷한 지연, 신뢰성 및 용량으로 동작하는 것과, 그 관리가 단순화될 것이 요구된다. 낮은 지연과 매우 낮은 오류 확률은 5G로 연결될 필요가 있는 새로운 요구 사항이다.
물류(logistics) 및 화물 추적(freight tracking)은 위치 기반 정보 시스템을 사용하여 어디에서든지 인벤토리(inventory) 및 패키지의 추적을 가능하게 하는 이동 통신에 대한 중요한 사용 예이다. 물류 및 화물 추적의 사용 예는 전형적으로 낮은 데이터 속도를 요구하지만 넓은 범위와 신뢰성 있는 위치 정보가 필요하다.
무선 통신 시스템은 가용한 시스템 자원(예를 들어, 대역폭, 전송 전력 등)을 공유하여 다중 사용자와의 통신을 지원하는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.
사이드링크(sidelink, SL)란 UE(User Equipment, UE)들 간에 직접적인 링크를 설정하여, 기지국(Base Station, BS)을 거치지 않고, UE 간에 음성 또는 데이터 등을 직접 주고 받는 통신 방식을 말한다. SL는 급속도로 증가하는 데이터 트래픽에 따른 기지국의 부담을 해결할 수 있는 하나의 방안으로서 고려되고 있다.
V2X(vehicle-to-everything)는 유/무선 통신을 통해 다른 차량, 보행자, 인프라가 구축된 사물 등과 정보를 교환하는 통신 기술을 의미한다. V2X는 V2V(vehicle-to-vehicle), V2I(vehicle-to-infrastructure), V2N(vehicle-to- network) 및 V2P(vehicle-to-pedestrian)와 같은 4 가지 유형으로 구분될 수 있다. V2X 통신은 PC5 인터페이스 및/또는 Uu 인터페이스를 통해 제공될 수 있다.
한편, 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라, 기존의 무선 액세스 기술(Radio Access Technology, RAT)에 비해 향상된 모바일 광대역 (mobile broadband) 통신에 대한 필요성이 대두되고 있다. 이에 따라, 신뢰도(reliability) 및 지연(latency)에 민감한 서비스 또는 UE를 고려한 통신 시스템이 논의되고 있는데, 개선된 이동 광대역 통신, 매시브 MTC(Machine Type Communication), URLLC(Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 무선 접속 기술을 새로운 RAT(new radio access technology) 또는 NR(new radio)이라 칭할 수 있다. NR에서도 V2X(vehicle-to-everything) 통신이 지원될 수 있다.
도 1은 NR 이전의 RAT에 기반한 V2X 통신과 NR에 기반한 V2X 통신을 비교하여 설명하기 위한 도면이다.
V2X 통신과 관련하여, NR 이전의 RAT에서는 BSM(Basic Safety Message), CAM(Cooperative Awareness Message), DENM(Decentralized Environmental Notification Message)과 같은 V2X 메시지를 기반으로, 안전 서비스(safety service)를 제공하는 방안이 주로 논의되었다. V2X 메시지는, 위치 정보, 동적 정보, 속성 정보 등을 포함할 수 있다. 예를 들어, UE는 주기적인 메시지(periodic message) 타입의 CAM, 및/또는 이벤트 트리거 메시지(event triggered message) 타입의 DENM을 다른 UE에게 전송할 수 있다.
예를 들어, CAM은 방향 및 속도와 같은 차량의 동적 상태 정보, 치수와 같은 차량 정적 데이터, 외부 조명 상태, 경로 내역 등 기본 차량 정보를 포함할 수 있다. 예를 들어, UE는 CAM을 방송할 수 있으며, CAM의 지연(latency)은 100ms보다 작을 수 있다. 예를 들어, 차량의 고장, 사고 등의 돌발적인 상황이 발행하는 경우, UE는 DENM을 생성하여 다른 UE에게 전송할 수 있다. 예를 들어, UE의 전송 범위 내에 있는 모든 차량은 CAM 및/또는 DENM을 수신할 수 있다. 이 경우, DENM은 CAM 보다 높은 우선 순위를 가질 수 있다.
이후, V2X 통신과 관련하여, 다양한 V2X 시나리오들이 NR에서 제시되고 있다. 예를 들어, 다양한 V2X 시나리오들은, 차량 플래투닝(vehicle platooning), 향상된 드라이빙(advanced driving), 확장된 센서들(extended sensors), 리모트 드라이빙(remote driving) 등을 포함할 수 있다.
예를 들어, 차량 플래투닝을 기반으로, 차량들은 동적으로 그룹을 형성하여 함께 이동할 수 있다. 예를 들어, 차량 플래투닝에 기반한 플라툰 동작들(platoon operations)을 수행하기 위해, 상기 그룹에 속하는 차량들은 선두 차량으로부터 주기적인 데이터를 수신할 수 있다. 예를 들어, 상기 그룹에 속하는 차량들은 주기적인 데이터를 이용하여, 차량들 사이의 간격을 줄이거나 넓힐 수 있다.
예를 들어, 향상된 드라이빙을 기반으로, 차량은 반자동화 또는 완전 자동화될 수 있다. 예를 들어, 각 차량은 근접 차량 및/또는 근접 로지컬 엔티티(logical entity)의 로컬 센서(local sensor)에서 획득된 데이터를 기반으로, 궤도(trajectories) 또는 기동(maneuvers)을 조정할 수 있다. 또한, 예를 들어, 각 차량은 근접한 차량들과 드라이빙 인텐션(driving intention)을 상호 공유할 수 있다.
예를 들어, 확장 센서들을 기반으로, 로컬 센서들을 통해 획득된 로 데이터(raw data) 또는 처리된 데이터(processed data), 또는 라이브 비디오 데이터(live video data)는 차량, 로지컬 엔티티, 보행자들의 UE 및/또는 V2X 응용 서버 간에 상호 교환될 수 있다. 따라서, 예를 들어, 차량은 자체 센서를 이용하여 감지할 수 있는 환경 보다 향상된 환경을 인식할 수 있다.
예를 들어, 리모트 드라이빙을 기반으로, 운전을 하지 못하는 사람 또는 위험한 환경에 위치한 리모트 차량을 위해, 리모트 드라이버 또는 V2X 애플리케이션은 상기 리모트 차량을 동작 또는 제어할 수 있다. 예를 들어, 대중 교통과 같이 경로를 예측할 수 있는 경우, 클라우드 컴퓨팅 기반의 드라이빙이 상기 리모트 차량의 동작 또는 제어에 이용될 수 있다. 또한, 예를 들어, 클라우드 기반의 백엔드 서비스 플랫폼(cloud-based back-end service platform)에 대한 액세스가 리모트 드라이빙을 위해 고려될 수 있다.
한편, 차량 플래투닝, 향상된 드라이빙, 확장된 센서들, 리모트 드라이빙 등 다양한 V2X 시나리오들에 대한 서비스 요구사항(service requirements)들을 구체화하는 방안이 NR에 기반한 V2X 통신에서 논의되고 있다.
본 개시의 다양한 예들은 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치를 제공할 수 있다.
구체적으로, 본 개시의 다양한 예들은 무선 통신 시스템에서 TRTD 정보의 양을 최소화하는 보고 방법 및 이를 지원하는 장치를 제공할 수 있다.
또한, 본 개시의 다양한 예들은 무선 통신 시스템에서 비면허 대역에서의 RTT 측위 방법 및 이를 지원하는 장치를 제공할 수 있다.
본 개시의 다양한 예들에서 이루고자 하는 기술적 과제들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 개시의 다양한 예들로부터 당해 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.
본 개시의 다양한 예들은 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치를 제공할 수 있다.
본 개시의 일 양상으로, 무선통신시스템에서 사용자기기의 방법에 있어서, PRS(positioning reference signal) 설정 정보를 수신하고; 비면허 대역(unlicensed band)에 대하여 LBT(listen before talk)를 수행하고; 상기 비면허 대역에 포함된 복수의 채널들 중 상기 LBT에 따라 유휴(IDLE) 상태인 채널 상에서 상기 PRS 설정 정보에 기반하여 제1 PRS(positioning reference signal)를 AN(anchor node)에 전송하고; 및 상기 채널 상에서 상기 PRS 설정 정보에 기반하여 제2 PRS를 상기 AN로부터 수신하고, 상기 제1 PRS는 상기 LBT가 수행된 직후에 전송되는, 방법이다.
상기 PRS 설정 정보는 상기 제1 PRS 및 상기 제2 PRS의 자원 패턴 및 상기 제1 PRS 및 상기 제2 PRS의 심볼의 개수를 포함할 수 있다.
상기 제1 PRS 및 상기 제2 PRS는 TRTD(Tx-Rx time difference) 획득에 사용되고, 및 상기 TRTD는 상기 AN가 상기 제1 PRS를 수신한 시점 및 상기 AN가 상기 제2 PRS를 전송한 시점 간에 시간 차이 값일 수 있다.
상기 TRTD는 제1 TRTD 정보 및 제2 TRTD 정보에 의해 지시되고, 상기 제1 TRTD 정보는
Figure PCTKR2020011659-appb-img-000001
이고, 여기서 t CB는 상기 TRTD이고, T u는 OFDM(orthogonal frequency division multiple) 심볼의 길이이고, 및 상기 제2 TRTD 정보는
Figure PCTKR2020011659-appb-img-000002
이고, 여기 cTRTD_integer는 상기 제1 TRTD 정보이고, T x는 상기 OFDM 심볼의 샘플의 길이일 수 있다.
상기 제1 PRS를 전송한 후에, 상기 제2 TRTD 정보와 연관된 신호를 수신하는 것을 더 포함하고, 및 상기 제2 TRTD 정보와 연관된 신호는 상기 제2 TRTD 정보와 동일한 길이의 시퀀스에 기반하여 생성될 수 있다.
상기 제2 TRTD 정보는 상기 제2 PRS의 시퀀스의 패턴 정보에 기반하여 지시되고, 여기서 상기 패턴 정보는 상기 제2 PRS의 시퀀스의 콤 타입(comb type) 및 순환 이동(cyclic shift) 값을 포함할 수 있다.
본 개시의 다른 일 양상으로, 무선통신시스템에서 사용자기기를 위한 장치에 있어서, 적어도 하나의 프로세서; 상기 적어도 하나의 프로세서에 동작 가능하게 연결되어 상기 적어도 하나의 프로세서가 동작들을 수행하도록 하는 적어도 하나의 명령어들(instructions)을 저장하는 적어도 하나의 메모리(memory)를 포함하고, 상기 동작들은: PRS(positioning reference signal) 설정 정보를 수신하고; 비면허 대역(unlicensed band)에 대하여 LBT(listen before talk)를 수행하고; 상기 비면허 대역에 포함된 복수의 채널들 중 상기 LBT에 따라 유휴(IDLE) 상태인 채널 상에서 상기 PRS 설정 정보에 기반하여 제1 PRS(positioning reference signal)를 AN(anchor node)에 전송하고; 및 상기 채널 상에서 상기 PRS 설정 정보에 기반하여 제2 PRS를 상기 AN로부터 수신하고, 상기 제1 PRS는 상기 LBT가 수행된 직후에 전송되는, 장치이다.
상기 PRS 설정 정보는 상기 제1 PRS 및 상기 제2 PRS의 자원 패턴 및 상기 제1 PRS 및 상기 제2 PRS의 심볼의 개수를 포함할 수 있다.
상기 제1 PRS 및 상기 제2 PRS는 TRTD(Tx-Rx time difference) 획득에 사용되고, 및 상기 TRTD는 상기 AN가 상기 제1 PRS를 수신한 시점 및 상기 AN가 상기 제2 PRS를 전송한 시점 간에 시간 차이 값일 수 있다.
상기 TRTD는 제1 TRTD 정보 및 제2 TRTD 정보에 의해 지시되고, 상기 제1 TRTD 정보는
Figure PCTKR2020011659-appb-img-000003
이고, 여기서 t CB는 상기 TRTD이고, T u는 OFDM(orthogonal frequency division multiple) 심볼의 길이이고, 및 상기 제2 TRTD 정보는
Figure PCTKR2020011659-appb-img-000004
이고, 여기 cTRTD_integer는 상기 제1 TRTD 정보이고, T x는 상기 OFDM 심볼의 샘플의 길이일 수 있다.
상기 제1 PRS를 전송한 후에, 상기 제2 TRTD 정보와 연관된 신호를 수신하는 것을 더 포함하고, 및 상기 제2 TRTD 정보와 연관된 신호는 상기 제2 TRTD 정보와 동일한 길이의 시퀀스에 기반하여 생성될 수 있다.
상기 제2 TRTD 정보는 상기 제2 PRS의 시퀀스의 패턴 정보에 기반하여 지시되고, 여기서 상기 패턴 정보는 상기 제2 PRS의 시퀀스의 콤 타입(comb type) 및 순환 이동(cyclic shift) 값을 포함할 수 있다.
상기 사용자기기는 자율주행 차량 또는 자율주행 차량에 포함된 것일 수 있다.
본 개시의 또 다른 일 양상으로, 무선통신시스템에서 사용자기기를 위한 동작들을 수행하게 하는 프로세서에 있어서, 상기 동작들은: PRS(positioning reference signal) 설정 정보를 수신하고; 비면허 대역(unlicensed band)에 대하여 LBT(listen before talk)를 수행하고; 상기 비면허 대역에 포함된 복수의 채널들 중 상기 LBT에 따라 유휴(IDLE) 상태인 채널 상에서 상기 PRS 설정 정보에 기반하여 제1 PRS(positioning reference signal)를 AN(anchor node)에 전송하고; 및 상기 채널 상에서 상기 PRS 설정 정보에 기반하여 제2 PRS를 상기 AN로부터 수신하고, 상기 제1 PRS는 상기 LBT가 수행된 직후에 전송되는, 프로세서이다.
본 개시의 또 다른 일 양상으로, 컴퓨터 판독가능한 저장 매체에 있어서, 상기 컴퓨터 판독가능한 저장 매체는 적어도 하나 이상의 프로세서에 의해 실행될 때 상기 적어도 하나 이상의 프로세서로 하여금 사용자기기를 위한 동작들을 수행하도록 하는 적어도 하나 이상의 명령어들(instructions)을 포함하는 적어도 하나 이상의 컴퓨터 프로그램을 저장하며, 상기 동작들은: PRS(positioning reference signal) 설정 정보를 수신하고; 비면허 대역(unlicensed band)에 대하여 LBT(listen before talk)를 수행하고; 상기 비면허 대역에 포함된 복수의 채널들 중 상기 LBT에 따라 유휴(IDLE) 상태인 채널 상에서 상기 PRS 설정 정보에 기반하여 제1 PRS(positioning reference signal)를 AN(anchor node)에 전송하고; 및 상기 채널 상에서 상기 PRS 설정 정보에 기반하여 제2 PRS를 상기 AN로부터 수신하고, 상기 제1 PRS는 상기 LBT가 수행된 직후에 전송되는, 컴퓨터 판독가능한 저장 매체이다.
상술한 본 개시의 다양한 예들은 본 개시의 바람직한 예들 중 일부에 불과하며, 본 개시의 다양한 예들의 기술적 특징들이 반영된 여러 가지 예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 개시의 다양한 예들에 따르면 다음과 같은 효과가 있다.
본 개시의 다양한 예들에 따르면, 무선 통신 시스템에서 TRTD 정보의 양을 최소화하는 보고 방법 및 이를 지원하는 장치를 제공할 수 있다.
또한, 본 개시의 다양한 예들은 무선 통신 시스템에서 비면허 대역에서의 RTT 측위 방법 및 이를 지원하는 장치를 제공할 수 있다.
본 개시의 다양한 예들로부터 얻을 수 있는 효과들은 이상에서 언급된 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 이하의 상세한 설명을 기반으로 당해 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다.
이하에 첨부되는 도면들은 본 개시의 다양한 예들에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 개시의 다양한 예들을 제공한다. 다만, 본 개시의 다양한 예들의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시예로 구성될 수 있다. 각 도면에서의 참조 번호 (reference numerals) 들은 구조적 구성요소 (structural elements) 를 의미한다.
도 1은 NR 이전의 RAT에 기반한 V2X 통신과 NR에 기반한 V2X 통신을 비교하여 설명하기 위한 도면이다.
도 2는 본 개시의 일 예에 따른, LTE 시스템의 구조를 나타낸다.
도 3은 본 개시의 일 예에 따른, 사용자 평면(user plane), 제어 평면(control plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸다.
도 4는 본 개시의 일 예에 따른, NR 시스템의 구조를 나타낸다.
도 5는 본 개시의 일 예에 따른, NG-RAN과 5GC 간의 기능적 분할을 나타낸다.
도 6은 실시예(들)이 적용될 수 있는 NR의 무선 프레임의 구조를 나타낸다.
도 7은 본 개시의 일 예에 따른, NR 프레임의 슬롯 구조를 나타낸다.
도 8은 본 개시의 일 예에 따른, SL 통신을 위한 무선 프로토콜 구조(radio protocol architecture)를 나타낸다.
도 9는 본 개시의 일 예에 따른, SL 통신을 위한 무선 프로토콜 구조(radio protocol architecture)를 나타낸다.
도 10은 본 개시의 일 예에 따른, CP 타입이 NCP인 경우, S-SSB의 구조를 나타낸다.
도 11은 본 개시의 일 예에 따른, CP 타입이 ECP인 경우, S-SSB의 구조를 나타낸다.
도 12는 본 개시의 일 예에 따른, V2X 또는 SL 통신을 수행하는 UE를 나타낸다.
도 13은 본 개시의 일 예에 따른, V2X 또는 SL 통신을 위한 자원 단위를 나타낸다.
도 14는 본 개시의 일 예에 따라, UE가 전송 모드에 따라 V2X 또는 SL 통신을 수행하는 절차를 나타낸다.
도 15은 본 개시의 일 예에 따라, NG-RAN (Next Generation-Radio Access Network) 또는 E-UTRAN에 접속되는 UE에 대한 측위가 가능한, 5G 시스템에서의 아키텍처의 일 예를 나타낸다.
도 16는 본 개시의 일 예에 따라 UE의 위치를 측정하기 위한 네트워크의 구현 예를 나타낸다.
도 17는 본 개시의 일 예에 따라 LMF와 UE 간의 LPP(LTE Positioning Protocol) 메시지 전송을 지원하기 위해 사용되는 프로토콜 레이어의 일 예를 나타낸다.
도 18은 본 개시의 일 예에 따라 LMF와 NG-RAN 노드 간의 NRPPa(NR Positioning Protocol A) PDU 전송을 지원하는데 사용되는 프로토콜 레이어의 일 예를 나타낸다.
도 19은 본 개시의 일 예에 따른 OTDOA(Observed Time Difference Of Arrival) 측위 방법을 설명하기 위한 도면이다.
도 20은 본 개시의 다양한 실시예들이 적용 가능한 Multi RTT (round trip time) 측위 방법의 일 예를 나타낸 도면이다.
도 21은 본 발명에 적용 가능한 비면허 대역을 지원하는 무선 통신 시스템의 예시를 나타낸다.
도 22는 비면허 밴드 내에서 자원을 점유하는 방법을 예시한다.
도 23은 UE와 AN 간 RTT 동작을 도시한 것이다.
도 24는 본 개시의 일 예에 따른 TRTD 측정 및 보고 방법의 순서도이다.
도 25은 UE 기반 RTT 측위를 위한 네트워크를 도시한 것이다.
도 26는 본 개시의 일 예에 따른 위치 서버/LMF, UE, AN간 RTT 측위 방법의 순서도이다.
도 27는 TRTD 및 fTRTD 측정을 설명하기 위한 것이다.
도 28은 본 개시의 일 예에 따른 사용자기기의 신호 전송 방법이다.
도 29 내지 도 35은 실시예(들)이 적용될 수 있는 다양한 장치를 설명하는 도면이다.
본 개시의 다양한 예에서, “/” 및 “,”는 “및/또는”을 나타내는 것으로 해석되어야 한다. 예를 들어, “A/B”는 “A 및/또는 B”를 의미할 수 있다. 나아가, “A, B”는 “A 및/또는 B”를 의미할 수 있다. 나아가, “A/B/C”는 “A, B 및/또는 C 중 적어도 어느 하나”를 의미할 수 있다. 나아가, “A, B, C”는 “A, B 및/또는 C 중 적어도 어느 하나”를 의미할 수 있다.
본 개시의 다양한 예에서, “또는”은 “및/또는”을 나타내는 것으로 해석되어야 한다. 예를 들어, “A 또는 B”는 “오직 A”, “오직 B”, 및/또는 “A 및 B 모두”를 포함할 수 있다. 다시 말해, “또는”은 “부가적으로 또는 대안적으로”를 나타내는 것으로 해석되어야 한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(institute of electrical and electronics engineers) 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에 기반한 시스템과의 하위 호환성(backward compatibility)를 제공한다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA(evolved-UMTS terrestrial radio access)를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
5G NR은 LTE-A의 후속 기술로서, 고성능, 저지연, 고가용성 등의 특성을 가지는 새로운 Clean-slate 형태의 이동 통신 시스템이다. 5G NR은 1GHz 미만의 저주파 대역에서부터 1GHz~10GHz의 중간 주파 대역, 24GHz 이상의 고주파(밀리미터파) 대역 등 사용 가능한 모든 스펙트럼 자원을 활용할 수 있다.
설명을 명확하게 하기 위해, LTE-A 또는 5G NR을 위주로 기술하지만 본 개시의 일 예에 따른 기술적 사상이 이에 제한되는 것은 아니다.
도 2는 본 개시의 일 예에 따른, LTE 시스템의 구조를 나타낸다. 이는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라고 불릴 수 있다.
도 2를 참조하면, E-UTRAN은 UE(10)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20)을 포함한다. UE(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), MT(Mobile Terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 UE(10)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다.
EPC(30)는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)로 구성된다. MME는 UE의 접속 정보나 UE의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 UE의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN(Packet Date Network)을 종단점으로 갖는 게이트웨이이다.
UE와 네트워크 사이의 무선인터페이스 프로토콜(Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection, OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1 (제 1 계층), L2 (제 2 계층), L3(제 3 계층)로 구분될 수 있다. 이 중에서 제 1 계층에 속하는 물리 계층은 물리 채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제 3 계층에 위치하는 RRC(Radio Resource Control) 계층은 UE와 네트워크 간에 무선 자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 UE와 기지국 간 RRC 메시지를 교환한다.
도 3(a)는 본 개시의 일 예에 따른, 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸다.
도 3(b)은 본 개시의 일 예에 따른, 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸다. 사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다.
도 3(a) 및 A3을 참조하면, 물리 계층(physical layer)은 물리 채널을 이용하여 상위 계층에게 정보 전송 서비스를 제공한다. 물리 계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송 채널(transport channel)을 통해 연결되어 있다. 전송 채널을 통해 MAC 계층과 물리 계층 사이로 데이터가 이동한다. 전송 채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리 계층 사이는 물리 채널을 통해 데이터가 이동한다. 상기 물리 채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선 자원으로 활용한다.
MAC 계층은 논리 채널(logical channel)을 통해 상위 계층인 RLC(radio link control) 계층에게 서비스를 제공한다. MAC 계층은 복수의 논리 채널에서 복수의 전송 채널로의 맵핑 기능을 제공한다. 또한, MAC 계층은 복수의 논리 채널에서 단수의 전송 채널로의 맵핑에 의한 논리 채널 다중화 기능을 제공한다. MAC 부 계층은 논리 채널상의 데이터 전송 서비스를 제공한다.
RLC 계층은 RLC SDU(Serving Data Unit)의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)을 수행한다. 무선 베어러(Radio Bearer, RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. RB는 UE와 네트워크간의 데이터 전달을 위해 제 1 계층(physical 계층 또는 PHY 계층) 및 제 2 계층(MAC 계층, RLC 계층, PDCP(Packet Data Convergence Protocol) 계층)에 의해 제공되는 논리적 경로를 의미한다.
사용자 평면에서의 PDCP 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결성 보호(integrity protection)를 포함한다.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling Radio Bearer)와 DRB(Data Radio Bearer) 두 가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
UE의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC connection)이 확립되면, UE는 RRC_CONNECTED 상태에 있게 되고, 그렇지 못할 경우 RRC_IDLE 상태에 있게 된다. NR의 경우, RRC_INACTIVE 상태가 추가로 정의되었으며, RRC_INACTIVE 상태의 UE는 코어 네트워크와의 연결을 유지하는 반면 기지국과의 연결을 해지(release)할 수 있다.
네트워크에서 UE로 데이터를 전송하는 하향링크 전송 채널로는 시스템 정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어 메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, UE에서 네트워크로 데이터를 전송하는 상향링크 전송 채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송 채널 상위에 있으며, 전송 채널에 맵핑되는 논리 채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
물리 채널(Physical Channel)은 시간 영역에서 여러 개의 OFDM 심벌과 주파수 영역에서 여러 개의 부반송파(sub-carrier)로 구성된다. 하나의 서브프레임(sub-frame)은 시간 영역에서 복수의 OFDM 심벌(symbol)들로 구성된다. 자원 블록은 자원 할당 단위로, 복수의 OFDM 심벌들과 복수의 부반송파(sub-carrier)들로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel) 즉, L1/L2 제어 채널을 위해 해당 서브프레임의 특정 OFDM 심벌들(예, 첫 번째 OFDM 심볼)의 특정 부반송파들을 이용할 수 있다. TTI(Transmission Time Interval)는 서브프레임 전송의 단위시간이다.
도 4는 본 개시의 일 예에 따른, NR 시스템의 구조를 나타낸다.
도 4를 참조하면, NG-RAN(Next Generation - Radio Access Network)은 UE에게 사용자 평면 및 제어 평면 프로토콜 종단(termination)을 제공하는 gNB(next generation-Node B) 및/또는 eNB를 포함할 수 있다. 도 4에서는 gNB만을 포함하는 경우를 예시한다. gNB 및 eNB는 상호 간에 Xn 인터페이스로 연결되어 있다. gNB 및 eNB는 5세대 코어 네트워크(5G Core Network: 5GC)와 NG 인터페이스를 통해 연결되어 있다. 보다 구체적으로, AMF(access and mobility management function)과는 NG-C 인터페이스를 통해 연결되고, UPF(user plane function)과는 NG-U 인터페이스를 통해 연결된다.
도 5는 본 개시의 일 예에 따른, NG-RAN과 5GC 간의 기능적 분할을 나타낸다.
도 5를 참조하면, gNB는 인터 셀 간의 무선 자원 관리(Inter Cell RRM), 무선 베어러 관리(RB control), 연결 이동성 제어(Connection Mobility Control), 무선 허용 제어(Radio Admission Control), 측정 설정 및 제공(Measurement configuration & Provision), 동적 자원 할당(dynamic resource allocation) 등의 기능을 제공할 수 있다. AMF는 NAS(Non Access Stratum) 보안, 아이들 상태 이동성 처리 등의 기능을 제공할 수 있다. UPF는 이동성 앵커링(Mobility Anchoring), PDU(Protocol Data Unit) 처리 등의 기능을 제공할 수 있다. SMF(Session Management Function)는 UE IP(Internet Protocol) 주소 할당, PDU 세션 제어 등의 기능을 제공할 수 있다.
도 6은 실시예(들)이 적용될 수 있는 NR의 무선 프레임의 구조를 나타낸다.
도 6을 참조하면, NR에서 상향링크 및 하향링크 전송에서 무선 프레임을 사용할 수 있다. 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의될 수 있다. 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)을 포함할 수 있다. 서브프레임은 하나 이상의 슬롯으로 분할될 수 있으며, 서브프레임 내 슬롯 개수는 부반송파 간격(Subcarrier Spacing, SCS)에 따라 결정될 수 있다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함할 수 있다.
노멀 CP(normal CP)가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함할 수 있다. 확장 CP가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함할 수 있다. 여기서, 심볼은 OFDM 심볼 (또는, CP-OFDM 심볼), SC-FDMA 심볼 (또는, DFT-s-OFDM 심볼)을 포함할 수 있다.
다음 표 1은 노멀 CP가 사용되는 경우, SCS 설정(μ)에 따라 슬롯 별 심볼의 개수(N slot symb), 프레임 별 슬롯의 개수(N frame,u slot)와 서브프레임 별 슬롯의 개수(N subframe,u slot)를 예시한다.
SCS (15*2u) N slot symb N frame,u slot N subframe,u slot
15KHz (u=0) 14 10 1
30KHz (u=1) 14 20 2
60KHz (u=2) 14 40 4
120KHz (u=3) 14 80 8
240KHz (u=4) 14 160 16
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수를 예시한다.
SCS (15*2^u) N slot symb N frame,u slot N subframe,u slot
60KHz (u=2) 12 40 4
NR 시스템에서는 하나의 UE에게 병합되는 복수의 셀들간에 OFDM(A) 뉴머놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, 서브프레임, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다.
NR에서, 다양한 5G 서비스들을 지원하기 위한 다수의 뉴머놀로지(numerology) 또는 SCS가 지원될 수 있다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)이 지원될 수 있고, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)이 지원될 수 있다. SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)을 극복하기 위해 24.25GHz보다 큰 대역폭이 지원될 수 있다.
NR 주파수 밴드(frequency band)는 두 가지 타입의 주파수 범위(frequency range)로 정의될 수 있다. 상기 두 가지 타입의 주파수 범위는 FR1 및 FR2일 수 있다. 주파수 범위의 수치는 변경될 수 있으며, 예를 들어, 상기 두 가지 타입의 주파수 범위는 하기 표 3과 같을 수 있다. NR 시스템에서 사용되는 주파수 범위 중 FR1은 “sub 6GHz range”를 의미할 수 있고, FR2는 “above 6GHz range”를 의미할 수 있고 밀리미터 웨이브(millimeter wave, mmW)로 불릴 수 있다.
Frequency Range designation Corresponding frequency range Subcarrier Spacing (SCS)
FR1 450MHz - 6000MHz 15, 30, 60kHz
FR2 24250MHz - 52600MHz 60, 120, 240kHz
상술한 바와 같이, NR 시스템의 주파수 범위의 수치는 변경될 수 있다. 예를 들어, FR1은 하기 표 4와 같이 410MHz 내지 7125MHz의 대역을 포함할 수 있다. 즉, FR1은 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역을 포함할 수 있다. 예를 들어, FR1 내에서 포함되는 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역은 비면허 대역(unlicensed band)을 포함할 수 있다. 비면허 대역은 다양한 용도로 사용될 수 있고, 예를 들어 차량을 위한 통신(예를 들어, 자율주행)을 위해 사용될 수 있다.
Frequency Range designation Corresponding frequency range Subcarrier Spacing (SCS)
FR1 410MHz - 7125MHz 15, 30, 60kHz
FR2 24250MHz - 52600MHz 60, 120, 240kHz
도 7은 본 개시의 일 예에 따른, NR 프레임의 슬롯 구조를 나타낸다.도 7을 참조하면, 슬롯은 시간 영역에서 복수의 심볼들을 포함한다. 예를 들어, 노멀 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함할 수 있다. 또는 노멀 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함할 수 있다.
반송파는 주파수 영역에서 복수의 부반송파들을 포함한다. RB(Resource Block)는 주파수 영역에서 복수(예를 들어, 12)의 연속한 부반송파로 정의될 수 있다. BWP(Bandwidth Part)는 주파수 영역에서 복수의 연속한 (P)RB((Physical) Resource Block)로 정의될 수 있으며, 하나의 뉴머놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예를 들어, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행될 수 있다. 각각의 요소는 자원 그리드에서 자원요소(Resource Element, RE)로 지칭될 수 있고, 하나의 복소 심볼이 맵핑될 수 있다.
한편, UE와 UE 간 무선 인터페이스 또는 UE와 네트워크 간 무선 인터페이스는 L1 계층, L2 계층 및 L3 계층으로 구성될 수 있다. 본 개시의 다양한 예에서, L1 계층은 물리(physical) 계층을 의미할 수 있다. 또한, 예를 들어, L2 계층은 MAC 계층, RLC 계층, PDCP 계층 및 SDAP 계층 중 적어도 하나를 의미할 수 있다. 또한, 예를 들어, L3 계층은 RRC 계층을 의미할 수 있다.
이하, V2X 또는 SL(sidelink) 통신에 대하여 설명한다.
도 8은 본 개시의 일 예에 따른, SL 통신을 위한 무선 프로토콜 구조(radio protocol architecture)를 나타낸다. 구체적으로, 도 8의 (a)는 LTE의 사용자 평면 프로토콜 스택을 나타내고, 도 8의 (b)는 LTE의 제어 평면 프로토콜 스택을 나타낸다.
도 9는 본 개시의 일 예에 따른, SL 통신을 위한 무선 프로토콜 구조(radio protocol architecture)를 나타낸다. 구체적으로, 도 9의 (a)는 NR의 사용자 평면 프로토콜 스택을 나타내고, 도 9의 (b)는 NR의 제어 평면 프로토콜 스택을 나타낸다.
이하, SL 동기 신호(Sidelink Synchronization Signal, SLSS) 및 동기화 정보에 대해 설명한다.
SLSS는 SL 특정적인 시퀀스(sequence)로, PSSS(Primary Sidelink Synchronization Signal)와 SSSS(Secondary Sidelink Synchronization Signal)를 포함할 수 있다. 상기 PSSS는 S-PSS(Sidelink Primary Synchronization Signal)라고 칭할 수 있고, 상기 SSSS는 S-SSS(Sidelink Secondary Synchronization Signal)라고 칭할 수 있다. 예를 들어, 길이-127 M-시퀀스(length-127 M-sequences)가 S-PSS에 대하여 사용될 수 있고, 길이-127 골드-시퀀스(length-127 Gold sequences)가 S-SSS에 대하여 사용될 수 있다. 예를 들어, UE는 S-PSS를 이용하여 최초 신호를 검출(signal detection)할 수 있고, 동기를 획득할 수 있다. 예를 들어, UE는 S-PSS 및 S-SSS를 이용하여 세부 동기를 획득할 수 있고, 동기 신호 ID를 검출할 수 있다.
PSBCH(Physical Sidelink Broadcast Channel)는 SL 신호 송수신 전에 UE가 가장 먼저 알아야 하는 기본이 되는 (시스템) 정보가 전송되는 (방송) 채널일 수 있다. 예를 들어, 상기 기본이 되는 정보는 SLSS에 관련된 정보, 듀플렉스 모드(Duplex Mode, DM), TDD UL/DL(Time Division Duplex Uplink/Downlink) 구성, 리소스 풀 관련 정보, SLSS에 관련된 애플리케이션의 종류, 서브프레임 오프셋, 방송 정보 등일 수 있다. 예를 들어, PSBCH 성능의 평가를 위해, NR V2X에서, PSBCH의 페이로드 크기는 24 비트의 CRC를 포함하여 56 비트일 수 있다.
S-PSS, S-SSS 및 PSBCH는 주기적 전송을 지원하는 블록 포맷(예를 들어, SL SS(Synchronization Signal)/PSBCH 블록, 이하 S-SSB(Sidelink-Synchronization Signal Block))에 포함될 수 있다. 상기 S-SSB는 캐리어 내의 PSCCH(Physical Sidelink Control Channel)/PSSCH(Physical Sidelink Shared Channel)와 동일한 뉴머놀로지(즉, SCS 및 CP 길이)를 가질 수 있고, 전송 대역폭은 (미리) 설정된 SL BWP(Sidelink BWP) 내에 있을 수 있다. 예를 들어, S-SSB의 대역폭은 11 RB(Resource Block)일 수 있다. 예를 들어, PSBCH는 11 RB에 걸쳐있을 수 있다. 그리고, S-SSB의 주파수 위치는 (미리) 설정될 수 있다. 따라서, UE는 캐리어에서 S-SSB를 발견하기 위해 주파수에서 가설 검출(hypothesis detection)을 수행할 필요가 없다.
한편, NR SL 시스템에서, 서로 다른 SCS 및/또는 CP 길이를 가지는 복수의 뉴머놀로지가 지원될 수 있다. 이 때, SCS가 증가함에 따라서, 전송 UE가 S-SSB를 전송하는 시간 자원의 길이가 짧아질 수 있다. 이에 따라, S-SSB의 커버리지(coverage)가 감소할 수 있다. 따라서, S-SSB의 커버리지를 보장하기 위하여, 전송 UE는 SCS에 따라 하나의 S-SSB 전송 주기 내에서 하나 이상의 S-SSB를 수신 UE에게 전송할 수 있다. 예를 들어, 전송 UE가 하나의 S-SSB 전송 주기 내에서 수신 UE에게 전송하는 S-SSB의 개수는 전송 UE에게 사전에 설정되거나(pre-configured), 설정(configured)될 수 있다. 예를 들어, S-SSB 전송 주기는 160ms 일 수 있다. 예를 들어, 모든 SCS에 대하여, 160ms의 S-SSB 전송 주기가 지원될 수 있다.
예를 들어, SCS가 FR1에서 15kHz인 경우, 전송 UE는 하나의 S-SSB 전송 주기 내에서 수신 UE에게 1개 또는 2개의 S-SSB를 전송할 수 있다. 예를 들어, SCS가 FR1에서 30kHz인 경우, 전송 UE는 하나의 S-SSB 전송 주기 내에서 수신 UE에게 1개 또는 2개의 S-SSB를 전송할 수 있다. 예를 들어, SCS가 FR1에서 60kHz인 경우, 전송 UE는 하나의 S-SSB 전송 주기 내에서 수신 UE에게 1개, 2개 또는 4개의 S-SSB를 전송할 수 있다.
예를 들어, SCS가 FR2에서 60kHz인 경우, 전송 UE는 하나의 S-SSB 전송 주기 내에서 수신 UE에게 1개, 2개, 4개, 8개, 16개 또는 32개의 S-SSB를 전송할 수 있다. 예를 들어, SCS가 FR2에서 120kHz인 경우, 전송 UE는 하나의 S-SSB 전송 주기 내에서 수신 UE에게 1개, 2개, 4개, 8개, 16개, 32개 또는 64개의 S-SSB를 전송할 수 있다.
한편, SCS가 60kHz인 경우, 두 가지 타입의 CP가 지원될 수 있다. 또한, CP 타입에 따라서 전송 UE가 수신 UE에게 전송하는 S-SSB의 구조가 상이할 수 있다. 예를 들어, 상기 CP 타입은 Normal CP(NCP) 또는 Extended CP(ECP)일 수 있다. 구체적으로, 예를 들어, CP 타입이 NCP인 경우, 전송 UE가 전송하는 S-SSB 내에서 PSBCH를 맵핑하는 심볼의 개수는 9 개 또는 8 개일 수 있다. 반면, 예를 들어, CP 타입이 ECP인 경우, 전송 UE가 전송하는 S-SSB 내에서 PSBCH를 맵핑하는 심볼의 개수는 7 개 또는 6 개일 수 있다. 예를 들어, 전송 UE가 전송하는 S-SSB 내의 첫 번째 심볼에는, PSBCH가 맵핑될 수 있다. 예를 들어, S-SSB를 수신하는 수신 UE는 S-SSB의 첫 번째 심볼 구간에서 AGC(Automatic Gain Control) 동작을 수행할 수 있다.
도 10은 본 개시의 일 예에 따른, CP 타입이 NCP인 경우, S-SSB의 구조를 나타낸다.
예를 들어, CP 타입이 NCP인 경우, S-SSB의 구조, 즉, 전송 UE가 전송하는 S-SSB 내에 S-PSS, S-SSS 및 PSBCH가 맵핑되는 심볼들의 순서는 도 10을 참조할 수 있다.
도 11은 본 개시의 일 예에 따른, CP 타입이 ECP인 경우, S-SSB의 구조를 나타낸다.
예를 들어, CP 타입이 ECP인 경우, 도 10과 달리, 전송 UE가 S-SSB 내에서 S-SSS 이후에 PSBCH를 맵핑하는 심볼의 개수가 6개일 수 있다. 따라서, CP 타입이 NCP 또는 ECP인지 여부에 따라 S-SSB의 커버리지가 상이할 수 있다.
한편, 각각의 SLSS는 SL 동기화 식별자(Sidelink Synchronization Identifier, SLSS ID)를 가질 수 있다.
예를 들어, LTE SL 또는 LTE V2X의 경우, 2개의 서로 다른 S-PSS 시퀀스와 168개의 서로 다른 S-SSS 시퀀스의 조합을 기반으로, SLSS ID의 값이 정의될 수 있다. 예를 들어, SLSS ID의 개수는 336개일 수 있다. 예를 들어, SLSS ID의 값은 0 내지 335 중 어느 하나일 수 있다.
예를 들어, NR SL 또는 NR V2X의 경우, 2개의 서로 다른 S-PSS 시퀀스와 336개의 서로 다른 S-SSS 시퀀스의 조합을 기반으로, SLSS ID의 값이 정의될 수 있다. 예를 들어, SLSS ID의 개수는 672개일 수 있다. 예를 들어, SLSS ID의 값은 0 내지 671 중 어느 하나일 수 있다. 예를 들어, 2개의 서로 다른 S-PSS 중에서, 하나의 S-PSS는 인-커버리지(in-coverage)와 연관될 수 있고, 나머지 하나의 S-PSS는 아웃-커버리지(out-of-coverage)와 연관될 수 있다. 예를 들어, 0 내지 335의 SLSS ID는 인-커버리지에서 사용될 수 있고, 336 내지 671의 SLSS ID는 아웃-커버리지에서 사용될 수 있다.
한편, 전송 UE는 수신 UE의 S-SSB 수신 성능을 향상시키기 위해, S-SSB를 구성하는 각각의 신호의 특성에 따라 전송 전력을 최적화할 필요가 있다. 예를 들어, S-SSB를 구성하는 각각의 신호의 PAPR(Peak to Average Power Ratio) 등에 따라, 전송 UE는 각각의 신호에 대한 MPR(Maximum Power Reduction) 값을 결정할 수 있다. 예를 들어, PAPR 값이 S-SSB를 구성하는 S-PSS 및 S-SSS 사이에 서로 다르면, 수신 UE의 S-SSB 수신 성능을 향상시키기 위해, 전송 UE는 S-PSS 및 S-SSS의 전송에 대하여 각각 최적의 MPR 값을 적용할 수 있다. 또한, 예를 들어, 전송 UE가 각각의 신호에 대하여 증폭 동작을 수행하기 위해서, 천이 구간(transient period)이 적용될 수 있다. 천이 구간은 전송 UE의 전송 전력이 달라지는 경계에서 전송 UE의 송신단 앰프가 정상 동작을 수행하는데 필요한 시간을 보호(preserve)할 수 있다. 예를 들어, FR1의 경우, 상기 천이 구간은 10us일 수 있다. 예를 들어, FR2의 경우, 상기 천이 구간은 5us일 수 있다. 예를 들어, 수신 UE가 S-PSS를 검출하기 위한 검색 윈도우(search window)는 80ms 및/또는 160ms일 수 있다.
도 12는 본 개시의 일 예에 따른, V2X 또는 SL 통신을 수행하는 UE를 나타낸다.
도 12를 참조하면, V2X 또는 SL 통신에서 UE가라는 용어는 주로 사용자의 UE를 의미할 수 있다. 하지만, 기지국과 같은 네트워크 장비가 UE 사이의 통신 방식에 따라 신호를 송수신하는 경우, 기지국 또한 일종의 UE로 간주될 수도 있다. 예를 들어, UE 1은 제 1 장치(100)일 수 있고, UE 2 는 제 2 장치(200)일 수 있다.
예를 들어, UE 1은 일련의 자원의 집합을 의미하는 자원 풀(resource pool) 내에서 특정한 자원에 해당하는 자원 단위(resource unit)를 선택할 수 있다. 그리고, UE 1은 상기 자원 단위를 사용하여 SL 신호를 전송할 수 있다. 예를 들어, 수신 UE인 UE 2는 UE 1이 신호를 전송할 수 있는 자원 풀을 설정 받을 수 있고, 상기 자원 풀 내에서 UE 1의 신호를 검출할 수 있다.
여기서, UE 1이 기지국의 연결 범위 내에 있는 경우, 기지국이 자원 풀을 UE 1에게 알려줄 수 있다. 반면, UE 1이 기지국의 연결 범위 밖에 있는 경우, 다른 UE가 UE 1에게 자원 풀을 알려주거나, 또는 UE 1은 사전에 설정된 자원 풀을 사용할 수 있다.
일반적으로 자원 풀은 복수의 자원 단위로 구성될 수 있고, 각 UE는 하나 또는 복수의 자원 단위를 선택하여 자신의 SL 신호 전송에 사용할 수 있다.
도 13은 본 개시의 일 예에 따른, V2X 또는 SL 통신을 위한 자원 단위를 나타낸다.
도 13을 참조하면, 자원 풀의 전체 주파수 자원이 NF개로 분할될 수 있고, 자원 풀의 전체 시간 자원이 NT개로 분할될 수 있다. 따라서, 총 NF * NT 개의 자원 단위가 자원 풀 내에서 정의될 수 있다. 도 13은 해당 자원 풀이 NT 개의 서브프레임의 주기로 반복되는 경우의 예를 나타낸다.
도 13에 나타난 바와 같이, 하나의 자원 단위(예를 들어, Unit #0)는 주기적으로 반복하여 나타날 수 있다. 또는, 시간 또는 주파수 차원에서의 다이버시티(diversity) 효과를 얻기 위해서, 하나의 논리적인 자원 단위가 맵핑되는 물리적 자원 단위의 인덱스가 시간에 따라 사전에 정해진 패턴으로 변화할 수도 있다. 이러한 자원 단위의 구조에 있어서, 자원 풀이란 SL 신호를 전송하고자 하는 UE가 전송에 사용할 수 있는 자원 단위들의 집합을 의미할 수 있다.
자원 풀은 여러 종류로 세분화될 수 있다. 예를 들어, 각 자원 풀에서 전송되는 SL 신호의 컨텐츠(content)에 따라, 자원 풀은 아래와 같이 구분될 수 있다.
(1) 스케줄링 할당(Scheduling Assignment, SA)은 전송 UE가 SL 데이터 채널의 전송으로 사용하는 자원의 위치, 그 외 데이터 채널의 복조를 위해서 필요한 MCS(Modulation and Coding Scheme) 또는 MIMO(Multiple Input Multiple Output) 전송 방식, TA(Timing Advance)등의 정보를 포함하는 신호일 수 있다. SA는 동일 자원 단위 상에서 SL 데이터와 함께 멀티플렉싱되어 전송되는 것도 가능하며, 이 경우 SA 자원 풀이란 SA가 SL 데이터와 멀티플렉싱되어 전송되는 자원 풀을 의미할 수 있다. SA는 SL 제어 채널(control channel)로 불릴 수도 있다.
(2) SL 데이터 채널(Physical Sidelink Shared Channel, PSSCH)은 전송 UE가 사용자 데이터를 전송하는데 사용하는 자원 풀일 수 있다. 만약 동일 자원 단위 상에서 SL 데이터와 함께 SA가 멀티플렉싱되어 전송되는 경우, SA 정보를 제외한 형태의 SL 데이터 채널만이 SL 데이터 채널을 위한 자원 풀에서 전송 될 수 있다. 다시 말해, SA 자원 풀 내의 개별 자원 단위 상에서 SA 정보를 전송하는데 사용되었던 REs(Resource Elements)는 SL 데이터 채널의 자원 풀에서 여전히 SL 데이터를 전송하기 위해 사용될 수 있다. 예를 들어, 전송 UE는 연속적인 PRB에 PSSCH를 맵핑시켜서 전송할 수 있다.
(3) 디스커버리 채널은 전송 UE가 자신의 ID 등의 정보를 전송하기 위한 자원 풀일 수 있다. 이를 통해, 전송 UE는 인접 UE가 자신을 발견하도록 할 수 있다.
이상에서 설명한 SL 신호의 컨텐츠가 동일한 경우에도, SL 신호의 송수신 속성에 따라서 상이한 자원 풀을 사용할 수 있다. 일 예로, 동일한 SL 데이터 채널이나 디스커버리 메시지라 하더라도, SL 신호의 전송 타이밍 결정 방식(예를 들어, 동기 기준 신호의 수신 시점에서 전송되는지 아니면 상기 수신 시점에서 일정한 타이밍 어드밴스를 적용하여 전송되는지), 자원 할당 방식(예를 들어, 개별 신호의 전송 자원을 기지국이 개별 전송 UE에게 지정해주는지 아니면 개별 전송 UE가 자원 풀 내에서 자체적으로 개별 신호 전송 자원을 선택하는지), 신호 포맷(예를 들어, 각 SL 신호가 한 서브프레임에서 차지하는 심볼의 개수, 또는 하나의 SL 신호의 전송에 사용되는 서브프레임의 개수), 기지국으로부터의 신호 세기, SL UE의 송신 전력 세기 등에 따라서 다시 상이한 자원 풀로 구분될 수도 있다.
이하, SL에서 자원 할당(resource allocation)에 대하여 설명한다.
도 14는 본 개시의 일 예에 따라, UE가 전송 모드에 따라 V2X 또는 SL 통신을 수행하는 절차를 나타낸다. 본 개시의 다양한 예에서, 전송 모드는 모드 또는 자원 할당 모드라고 칭할 수 있다. 이하, 설명의 편의를 위해, LTE에서 전송 모드는 LTE 전송 모드라고 칭할 수 있고, NR에서 전송 모드는 NR 자원 할당 모드라고 칭할 수 있다.
예를 들어, 도 14의 (a)는 LTE 전송 모드 1 또는 LTE 전송 모드 3과 관련된 UE 동작을 나타낸다. 또는, 예를 들어, 도 14의 (a)는 NR 자원 할당 모드 1과 관련된 UE 동작을 나타낸다. 예를 들어, LTE 전송 모드 1은 일반적인 SL 통신에 적용될 수 있고, LTE 전송 모드 3은 V2X 통신에 적용될 수 있다.
예를 들어, 도 14의 (b)는 LTE 전송 모드 2 또는 LTE 전송 모드 4와 관련된 UE 동작을 나타낸다. 또는, 예를 들어, 도 14의 (b)는 NR 자원 할당 모드 2와 관련된 UE 동작을 나타낸다.
도 14의 (a)를 참조하면, LTE 전송 모드 1, LTE 전송 모드 3 또는 NR 자원 할당 모드 1에서, 기지국은 SL 전송을 위해 UE에 의해 사용될 SL 자원을 스케줄링할 수 있다. 예를 들어, 기지국은 UE 1에게 PDCCH(보다 구체적으로 DCI(Downlink Control Information))를 통해 자원 스케줄링을 수행할 수 있고, UE 1은 상기 자원 스케줄링에 따라 UE 2와 V2X 또는 SL 통신을 수행할 수 있다. 예를 들어, UE 1은 PSCCH(Physical Sidelink Control Channel)를 통해 SCI(Sidelink Control Information)를 UE 2에게 전송한 후, 상기 SCI에 기반한 데이터를 PSSCH(Physical Sidelink Shared Channel)를 통해 UE 2에게 전송할 수 있다.
예를 들어, NR 자원 할당 모드 1에서, UE는 동적 그랜트(dynamic grant)를 통해 하나의 TB(Transport Block)의 하나 이상의 SL 전송을 위한 자원을 기지국으로부터 제공 또는 할당받을 수 있다. 예를 들어, 기지국은 동적 그랜트를 이용하여 PSCCH 및/또는 PSSCH의 전송을 위한 자원을 UE에게 제공할 수 있다. 예를 들어, 전송 UE는 수신 UE로부터 수신한 SL HARQ(Hybrid Automatic Repeat Request) 피드백을 기지국에게 보고할 수 있다. 이 경우, 기지국이 SL 전송을 위한 자원을 할당하기 위한 PDCCH 내의 지시(indication)를 기반으로, SL HARQ 피드백을 기지국에게 보고하기 위한 PUCCH 자원 및 타이밍(timing)이 결정될 수 있다.
예를 들어, DCI는 DCI 수신과 DCI에 의해 스케줄링된 첫 번째 SL 전송 사이의 슬롯 오프셋을 나타낼 수 있다. 예를 들어, SL 전송 자원을 스케줄링하는 DCI와 첫 번째 스케줄링된 SL 전송 자원 사이의 최소 갭은 해당 UE의 처리 시간(processing time)보다 작지 않을 수 있다.
예를 들어, NR 자원 할당 모드 1에서, UE는 설정된 그랜트(configured grant)를 통해 복수의 SL 전송을 위해 주기적으로 자원 세트를 기지국으로부터 제공 또는 할당받을 수 있다. 예를 들어, 상기 설정될 그랜트는 설정된 그랜트 타입 1 또는 설정된 그랜트 타입 2를 포함할 수 있다. 예를 들어, UE는 주어진 설정된 그랜트(given configured grant)에 의해 지시되는 각각의 경우(occasions)에서 전송할 TB를 결정할 수 있다.
예를 들어, 기지국은 동일한 캐리어 상에서 SL 자원을 UE에게 할당할 수 있고, 서로 다른 캐리어 상에서 SL 자원을 UE에게 할당할 수 있다.
예를 들어, NR 기지국은 LTE 기반의 SL 통신을 제어할 수 있다. 예를 들어, NR 기지국은 LTE SL 자원을 스케줄링하기 위해 NR DCI를 UE에게 전송할 수 있다. 이 경우, 예를 들어, 상기 NR DCI를 스크램블하기 위한 새로운 RNTI가 정의될 수 있다. 예를 들어, 상기 UE는 NR SL 모듈 및 LTE SL 모듈을 포함할 수 있다.
예를 들어, NR SL 모듈 및 LTE SL 모듈을 포함하는 UE가 gNB로부터 NR SL DCI를 수신한 후, NR SL 모듈은 NR SL DCI를 LTE DCI 타입 5A로 변환할 수 있고, NR SL 모듈은 X ms 단위로 LTE SL 모듈에 LTE DCI 타입 5A를 전달할 수 있다. 예를 들어, LTE SL 모듈이 NR SL 모듈로부터 LTE DCI 포맷 5A를 수신한 후, LTE SL 모듈은 Z ms 후에 첫 번째 LTE 서브프레임에 활성화 및/또는 해제를 적용할 수 있다. 예를 들어, 상기 X는 DCI의 필드를 사용하여 동적으로 표시될 수 있다. 예를 들어, 상기 X의 최솟값은 UE 능력(UE capability)에 따라 상이할 수 있다. 예를 들어, UE는 UE 능력에 따라 하나의 값(single value)을 보고할 수 있다. 예를 들어, 상기 X는 양수일 수 있다.
도 14의 (b)를 참조하면, LTE 전송 모드 2, LTE 전송 모드 4 또는 NR 자원 할당 모드 2에서, UE는 기지국/네트워크에 의해 설정된 SL 자원 또는 미리 설정된 SL 자원 내에서 SL 전송 자원을 결정할 수 있다. 예를 들어, 상기 설정된 SL 자원 또는 미리 설정된 SL 자원은 자원 풀일 수 있다. 예를 들어, UE는 자율적으로 SL 전송을 위한 자원을 선택 또는 스케줄링할 수 있다. 예를 들어, UE는 설정된 자원 풀 내에서 자원을 스스로 선택하여, SL 통신을 수행할 수 있다. 예를 들어, UE는 센싱(sensing) 및 자원 (재)선택 절차를 수행하여, 선택 윈도우 내에서 스스로 자원을 선택할 수 있다. 예를 들어, 상기 센싱은 서브채널 단위로 수행될 수 있다. 그리고, 자원 풀 내에서 자원을 스스로 선택한 UE 1은 PSCCH를 통해 SCI를 UE 2에게 전송한 후, 상기 SCI에 기반한 데이터를 PSSCH를 통해 UE 2에게 전송할 수 있다.
예를 들어, UE는 다른 UE에 대한 SL 자원 선택을 도울 수 있다. 예를 들어, NR 자원 할당 모드 2에서, UE는 SL 전송을 위한 설정된 그랜트(configured grant)를 설정받을 수 있다. 예를 들어, NR 자원 할당 모드 2에서, UE는 다른 UE의 SL 전송을 스케줄링할 수 있다. 예를 들어, NR 자원 할당 모드 2에서, UE는 블라인드 재전송을 위한 SL 자원을 예약할 수 있다.
예를 들어, NR 자원 할당 모드 2에서, 제 1 UE는 SCI를 이용하여 SL 전송의 우선 순위를 제 2 UE에게 지시할 수 있다. 예를 들어, 제 2 UE는 상기 SCI를 디코딩할 수 있고, 제 2 UE는 상기 우선 순위를 기반으로 센싱 및/또는 자원 (재)선택을 수행할 수 있다. 예를 들어, 상기 자원(재)선택 절차는, 제 2 UE가 자원 선택 윈도우에서 후보 자원을 식별하는 단계 및 제 2 UE가 식별된 후보 자원 중에서 (재)전송을 위한 자원을 선택하는 단계를 포함할 수 있다. 예를 들어, 자원 선택 윈도우는 UE가 SL 전송을 위한 자원을 선택하는 시간 간격(time interval)일 수 있다. 예를 들어, 제 2 UE가 자원 (재)선택을 트리거한 이후, 자원 선택 윈도우는 T1 ≥ 0에서 시작할 수 있고, 자원 선택 윈도우는 제 2 UE의 남은 패킷 지연 버짓(remaining packet delay budget)에 의해 제한될 수 있다. 예를 들어, 제 2 UE가 자원 선택 윈도우에서 후보 자원을 식별하는 단계에서, 제 2 UE가 제 1 UE로부터 수신한 SCI에 의해 특정 자원이 지시되고 및 상기 특정 자원에 대한 L1 SL RSRP 측정값이 SL RSRP 임계값을 초과하면, 상기 제 2 UE는 상기 특정 자원을 후보 자원으로 결정하지 않을 수 있다. 예를 들어, SL RSRP 임계값은 제 2 UE가 제 1 UE로부터 수신한 SCI에 의해 지시되는 SL 전송의 우선 순위 및 제 2 UE가 선택한 자원 상에서 SL 전송의 우선 순위를 기반으로 결정될 수 있다.
예를 들어, 상기 L1 SL RSRP는 SL DMRS(Demodulation Reference Signal)를 기반으로 측정될 수 있다. 예를 들어, 자원 풀 별로 시간 영역에서 하나 이상의 PSSCH DMRS 패턴이 설정되거나 사전에 설정될 수 있다. 예를 들어, PDSCH DMRS 설정 타입 1 및/또는 타입 2는 PSSCH DMRS의 주파수 영역 패턴과 동일 또는 유사할 수 있다. 예를 들어, 정확한 DMRS 패턴은 SCI에 의해 지시될 수 있다. 예를 들어, NR 자원 할당 모드 2에서, 전송 UE는 자원 풀에 대하여 설정된 또는 사전에 설정된 DMRS 패턴 중에서 특정 DMRS 패턴을 선택할 수 있다.
예를 들어, NR 자원 할당 모드 2에서, 센싱 및 자원 (재)선택 절차를 기반으로, 전송 UE는 예약 없이 TB(Transport Block)의 초기 전송을 수행할 수 있다. 예를 들어, 센싱 및 자원 (재)선택 절차를 기반으로, 전송 UE는 제 1 TB와 연관된 SCI를 이용하여 제 2 TB의 초기 전송을 위한 SL 자원을 예약할 수 있다.
예를 들어, NR 자원 할당 모드 2에서, UE는 동일한 TB(Transport Block)의 이전 전송과 관련된 시그널링을 통해, 피드백 기반의 PSSCH 재전송을 위한 자원을 예약할 수 있다. 예를 들어, 현재 전송을 포함하여 하나의 전송에 의해 예약되는 SL 자원의 최대 개수는 2개, 3개 또는 4개일 수 있다. 예를 들어, 상기 SL 자원의 최대 개수는 HARQ 피드백이 인에이블되는지 여부와 관계 없이 동일할 수 있다. 예를 들어, 하나의 TB에 대한 최대 HARQ (재)전송 횟수는 설정 또는 사전 설정에 의해 제한될 수 있다. 예를 들어, 최대 HARQ (재)전송 횟수는 최대 32일 수 있다. 예를 들어, 상기 설정 또는 사전 설정이 없으면, 최대 HARQ (재)전송 횟수는 지정되지 않은 것일 수 있다. 예를 들어, 상기 설정 또는 사전 설정은 전송 UE를 위한 것일 수 있다. 예를 들어, NR 자원 할당 모드 2에서, UE가 사용하지 않는 자원을 해제하기 위한 HARQ 피드백이 지원될 수 있다.
예를 들어, NR 자원 할당 모드 2에서, UE는 SCI를 이용하여 상기 UE에 의해 사용되는 하나 이상의 서브채널 및/또는 슬롯을 다른 UE에게 지시할 수 있다. 예를 들어, UE는 SCI를 이용하여 PSSCH (재)전송을 위해 상기 UE에 의해 예약된 하나 이상의 서브채널 및/또는 슬롯을 다른 UE에게 지시할 수 있다. 예를 들어, SL 자원의 최소 할당 단위는 슬롯일 수 있다. 예를 들어, 서브채널의 사이즈는 UE에 대하여 설정되거나 미리 설정될 수 있다.
이하, SCI(Sidelink Control Information)에 대하여 설명한다.
기지국이 PDCCH를 통해 UE에게 전송하는 제어 정보를 DCI(Downlink Control Information)라 칭하는 반면, UE가 PSCCH를 통해 다른 UE에게 전송하는 제어 정보를 SCI라 칭할 수 있다. 예를 들어, UE는 PSCCH를 디코딩하기 전에, PSCCH의 시작 심볼 및/또는 PSCCH의 심볼 개수를 알고 있을 수 있다. 예를 들어, SCI는 SL 스케줄링 정보를 포함할 수 있다. 예를 들어, UE는 PSSCH를 스케줄링하기 위해 적어도 하나의 SCI를 다른 UE에게 전송할 수 있다. 예를 들어, 하나 이상의 SCI 포맷(format)이 정의될 수 있다.
예를 들어, 전송 UE는 PSCCH 상에서 SCI를 수신 UE에게 전송할 수 있다. 수신 UE는 PSSCH를 전송 UE로부터 수신하기 위해 하나의 SCI를 디코딩할 수 있다.
예를 들어, 전송 UE는 PSCCH 및/또는 PSSCH 상에서 두 개의 연속적인 SCI(예를 들어, 2-stage SCI)를 수신 UE에게 전송할 수 있다. 수신 UE는 PSSCH를 전송 UE로부터 수신하기 위해 두 개의 연속적인 SCI(예를 들어, 2-stage SCI)를 디코딩할 수 있다. 예를 들어, (상대적으로) 높은 SCI 페이로드(payload) 크기를 고려하여 SCI 구성 필드들을 두 개의 그룹으로 구분한 경우에, 제 1 SCI 구성 필드 그룹을 포함하는 SCI를 제 1 SCI 또는 1st SCI라고 칭할 수 있고, 제 2 SCI 구성 필드 그룹을 포함하는 SCI를 제 2 SCI 또는 2nd SCI라고 칭할 수 있다. 예를 들어, 전송 UE는 PSCCH를 통해서 제 1 SCI를 수신 UE에게 전송할 수 있다. 예를 들어, 전송 UE는 PSCCH 및/또는 PSSCH 상에서 제 2 SCI를 수신 UE에게 전송할 수 있다. 예를 들어, 제 2 SCI는 (독립된) PSCCH를 통해서 수신 UE에게 전송되거나, PSSCH를 통해 데이터와 함께 피기백되어 전송될 수 있다. 예를 들어, 두 개의 연속적인 SCI는 서로 다른 전송(예를 들어, 유니캐스트(unicast), 브로드캐스트(broadcast) 또는 그룹캐스트(groupcast))에 대하여 적용될 수도 있다.
예를 들어, 전송 UE는 SCI를 통해서, 아래 정보 중에 일부 또는 전부를 수신 UE에게 전송할 수 있다. 여기서, 예를 들어, 전송 UE는 아래 정보 중에 일부 또는 전부를 제 1 SCI 및/또는 제 2 SCI를 통해서 수신 UE에게 전송할 수 있다.
- PSSCH 및/또는 PSCCH 관련 자원 할당 정보, 예를 들어, 시간/주파수 자원 위치/개수, 자원 예약 정보(예를 들어, 주기), 및/또는
- SL CSI 보고 요청 지시자 또는 SL (L1) RSRP (및/또는 SL (L1) RSRQ 및/또는 SL (L1) RSSI) 보고 요청 지시자, 및/또는
- (PSSCH 상의) SL CSI 전송 지시자 (또는 SL (L1) RSRP (및/또는 SL (L1) RSRQ 및/또는 SL (L1) RSSI) 정보 전송 지시자), 및/또는
- MCS 정보, 및/또는
- 전송 전력 정보, 및/또는
- L1 데스티네이션(destination) ID 정보 및/또는 L1 소스(source) ID 정보, 및/또는
- SL HARQ 프로세스(process) ID 정보, 및/또는
- NDI(New Data Indicator) 정보, 및/또는
- RV(Redundancy Version) 정보, 및/또는
- (전송 트래픽/패킷 관련) QoS 정보, 예를 들어, 우선 순위 정보, 및/또는
- SL CSI-RS 전송 지시자 또는 (전송되는) SL CSI-RS 안테나 포트의 개수 정보
- 전송 UE의 위치 정보 또는 (SL HARQ 피드백이 요청되는) 타겟 수신 UE의 위치 (또는 거리 영역) 정보, 및/또는
- PSSCH를 통해 전송되는 데이터의 디코딩 및/또는 채널 추정과 관련된 참조 신호(예를 들어, DMRS 등) 정보, 예를 들어, DMRS의 (시간-주파수) 맵핑 자원의 패턴과 관련된 정보, 랭크(rank) 정보, 안테나 포트 인덱스 정보;
예를 들어, 제 1 SCI는 채널 센싱과 관련된 정보를 포함할 수 있다. 예를 들어, 수신 UE는 PSSCH DMRS를 이용하여 제 2 SCI를 디코딩할 수 있다. PDCCH에 사용되는 폴라 코드(polar code)가 제 2 SCI에 적용될 수 있다. 예를 들어, 자원 풀에서, 제 1 SCI의 페이로드 사이즈는 유니캐스트, 그룹캐스트 및 브로드캐스트에 대하여 동일할 수 있다. 제 1 SCI를 디코딩한 이후에, 수신 UE는 제 2 SCI의 블라인드 디코딩을 수행할 필요가 없다. 예를 들어, 제 1 SCI는 제 2 SCI의 스케줄링 정보를 포함할 수 있다.
한편, 본 개시의 다양한 예에서, 전송 UE는 PSCCH를 통해 SCI, 제 1 SCI 및/또는 제 2 SCI 중 적어도 어느 하나를 수신 UE에게 전송할 수 있으므로, PSCCH는 SCI, 제 1 SCI 및/또는 제 2 SCI 중 적어도 어느 하나로 대체/치환될 수 있다. 그리고/또는, 예를 들어, SCI는 PSCCH, 제 1 SCI 및/또는 제 2 SCI 중 적어도 어느 하나로 대체/치환될 수 있다. 그리고/또는, 예를 들어, 전송 UE는 PSSCH를 통해 제 2 SCI를 수신 UE에게 전송할 수 있으므로, PSSCH는 제 2 SCI로 대체/치환될 수 있다.
이하, CAM(Cooperative Awareness Message) 및 DENM(Decentralized Environmental Notification Message)에 대하여 설명한다.
차량간 통신에서는 주기적인 메시지(periodic message) 타입의 CAM, 이벤트 트리거 메시지(event triggered message) 타입의 DENM 등이 전송될 수 있다. CAM은 방향 및 속도와 같은 차량의 동적 상태 정보, 치수와 같은 차량 정적 데이터, 외부 조명 상태, 경로 내역 등 기본 차량 정보를 포함할 수 있다. CAM의 크기는 50-300 바이트일 수 있다. CAM은 방송되며, 지연(latency)은 100ms보다 작아야 한다. DENM은 차량의 고장, 사고 등의 돌발적인 상황 시 생성되는 메시지일 수 있다. DENM의 크기는 3000 바이트보다 작을 수 있으며, 전송 범위 내에 있는 모든 차량이 메시지를 수신할 수 있다. 이 때, DENM은 CAM 보다 높은 우선 순위를 가질 수 있다.
이하, 반송파 재선택(carrier reselection)에 대하여 설명한다.
V2X 또는 SL 통신에서, UE는 설정된 반송파들의 CBR(Channel Busy Ratio) 및/또는 전송될 V2X 메시지의 PPPP(Prose Per-Packet Priority)를 기반으로 반송파 재선택을 수행할 수 있다. 예를 들어, 반송파 재선택은 UE의 MAC 계층에 의해 수행될 수 있다. 본 개시의 다양한 예에서, PPPP(ProSe Per Packet Priority)는 PPPR(ProSe Per Packet Reliability)로 대체될 수 있으며, PPPR은 PPPP로 대체될 수 있다. 예를 들어, PPPP 값이 작을수록 높은 우선 순위를 의미할 수 있고, PPPP 값이 클수록 낮은 우선 순위를 의미할 수 있다. 예를 들어, PPPR 값이 작을수록 높은 신뢰성을 의미할 수 있고, PPPR 값이 클수록 낮은 신뢰성을 의미할 수 있다. 예를 들어, 높은 우선 순위와 관련된 서비스, 패킷 또는 메시지와 관련된 PPPP 값은 낮은 우선 순위와 관련된 서비스, 패킷 또는 메시지와 관련된 PPPP 값보다 작을 수 있다. 예를 들어, 높은 신뢰성과 관련된 서비스, 패킷 또는 메시지와 관련된 PPPR 값은 낮은 신뢰성과 관련된 서비스, 패킷 또는 메시지와 관련된 PPPR 값보다 작을 수 있다.
CBR은 UE에 의해 측정된 S-RSSI(Sidelink-Received Signal Strength Indicator)가 미리 설정된 임계치를 넘는 것으로 감지된 자원 풀에서 서브채널 부분(the portion of sub-channels)을 의미할 수 있다. 각 논리 채널과 관련된 PPPP가 존재할 수 있으며, PPPP 값의 설정은 UE 및 기지국 모두에 요구되는 레이턴시를 반영해야 한다. 반송파 재선택 시, UE는 가장 낮은 CBR로부터 증가하는 순서로 후보 반송파들 중 하나 이상의 반송파를 선택할 수 있다.
이하, SL 측정(measurement) 및 보고(reporting)에 대하여 설명한다.
QoS 예측(prediction), 초기 전송 파라미터 셋팅(initial transmission parameter setting), 링크 적응(link adaptation), 링크 관리(link management), 어드미션 제어(admission control) 등의 목적으로, UE 간의 SL 측정 및 보고(예를 들어, RSRP, RSRQ)가 SL에서 고려될 수 있다. 예를 들어, 수신 UE는 전송 UE로부터 참조 신호를 수신할 수 있고, 수신 UE는 참조 신호를 기반으로 전송 UE에 대한 채널 상태를 측정할 수 있다. 그리고, 수신 UE는 채널 상태 정보(Channel State Information, CSI)를 전송 UE에게 보고할 수 있다. SL 관련 측정 및 보고는 CBR의 측정 및 보고, 및 위치 정보의 보고를 포함할 수 있다. V2X에 대한 CSI(Channel Status Information)의 예는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Index), RI(Rank Indicator), RSRP(Reference Signal Received Power), RSRQ(Reference Signal Received Quality), 경로이득(pathgain)/경로손실(pathloss), SRI(SRS, Sounding Reference Symbols, Resource Indicator), CRI(CSI-RS Resource Indicator), 간섭 조건(interference condition), 차량 동작(vehicle motion) 등일 수 있다. 유니캐스트 통신의 경우, CQI, RI 및 PMI 또는 그 중 일부는 네 개 이하의 안테나 포트를 가정한 비-서브밴드-기반의 비주기 CSI 보고(non-subband-based aperiodic CSI report)에서 지원될 수 있다. CSI 절차는 스탠드얼론 참조 신호(standalone RS)에 의존하지 않을 수 있다. CSI 보고는 설정에 따라 활성화 및 비활성화될 수 있다.
예를 들어, 전송 UE는 CSI-RS를 수신 UE에게 전송할 수 있고, 수신 UE는 상기 CSI-RS를 이용하여 CQI 또는 RI를 측정할 수 있다. 예를 들어, 상기 CSI-RS는 SL CSI-RS라고 칭할 수 있다. 예를 들어, 상기 CSI-RS는 PSSCH 전송 내에 국한(confined)될 수 있다. 예를 들어, 전송 UE는 PSSCH 자원 상에 CSI-RS를 포함시켜 수신 UE에게 전송할 수 있다.
이하, HARQ(Hybrid Automatic Repeat Request) 절차에 대하여 설명한다.
통신의 신뢰성을 확보하기 위한 에러 보상 기법은 FEC(Forward Error Correction) 방식(scheme)과 ARQ(Automatic Repeat Request) 방식을 포함할 수 있다. FEC 방식에서는 정보 비트들에 여분의 에러 정정 코드를 추가시킴으로써, 수신단에서의 에러를 정정할 수 있다. FEC 방식은 시간 지연이 적고 송수신단 사이에 별도로 주고 받는 정보가 필요 없다는 장점이 있지만, 양호한 채널 환경에서 시스템 효율이 떨어지는 단점이 있다. ARQ 방식은 전송 신뢰성을 높일 수 있지만, 시간 지연이 생기게 되고 열악한 채널 환경에서 시스템 효율이 떨어지는 단점이 있다.
HARQ(Hybrid Automatic Repeat Request) 방식은 FEC와 ARQ를 결합한 것으로, 물리계층이 수신한 데이터가 복호할 수 없는 오류를 포함하는지 여부를 확인하고, 오류가 발생하면 재전송을 요구함으로써 성능을 높일 수 있다.
SL 유니캐스트 및 그룹캐스트의 경우, 물리 계층에서의 HARQ 피드백 및 HARQ 컴바이닝(combining)이 지원될 수 있다. 예를 들어, 수신 UE가 자원 할당 모드 1 또는 2로 동작하는 경우, 수신 UE는 PSSCH를 전송 UE로부터 수신할 수 있고, 수신 UE는 PSFCH(Physical Sidelink Feedback Channel)를 통해 SFCI(Sidelink Feedback Control Information) 포맷을 사용하여 PSSCH에 대한 HARQ 피드백을 전송 UE에게 전송할 수 있다.
예를 들어, SL HARQ 피드백은 유니캐스트에 대하여 인에이블될 수 있다. 이 경우, non-CBG(non-Code Block Group) 동작에서, 수신 UE가 상기 수신 UE를 타겟으로 하는 PSCCH를 디코딩하고, 및 수신 UE가 상기 PSCCH와 관련된 전송 블록을 성공적으로 디코딩하면, 수신 UE는 HARQ-ACK을 생성할 수 있다. 그리고, 수신 UE는 HARQ-ACK을 전송 UE에게 전송할 수 있다. 반면, 수신 UE가 상기 수신 UE를 타겟으로 하는 PSCCH를 디코딩한 이후에, 수신 UE가 상기 PSCCH와 관련된 전송 블록을 성공적으로 디코딩하지 못하면, 수신 UE는 HARQ-NACK을 생성할 수 있다. 그리고, 수신 UE는 HARQ-NACK을 전송 UE에게 전송할 수 있다.
예를 들어, SL HARQ 피드백은 그룹캐스트에 대하여 인에이블될 수 있다. 예를 들어, non-CBG 동작에서, 두 가지 HARQ 피드백 옵션이 그룹캐스트에 대하여 지원될 수 있다.
(1) 그룹캐스트 옵션 1: 수신 UE가 상기 수신 UE를 타겟으로 하는 PSCCH를 디코딩한 이후에, 수신 UE가 상기 PSCCH와 관련된 전송 블록의 디코딩에 실패하면, 수신 UE는 HARQ-NACK을 PSFCH를 통해 전송 UE에게 전송할 수 있다. 반면, 수신 UE가 상기 수신 UE를 타겟으로 하는 PSCCH를 디코딩하고, 및 수신 UE가 상기 PSCCH와 관련된 전송 블록을 성공적으로 디코딩하면, 수신 UE는 HARQ-ACK을 전송 UE에게 전송하지 않을 수 있다.
(2) 그룹캐스트 옵션 2: 수신 UE가 상기 수신 UE를 타겟으로 하는 PSCCH를 디코딩한 이후에, 수신 UE가 상기 PSCCH와 관련된 전송 블록의 디코딩에 실패하면, 수신 UE는 HARQ-NACK을 PSFCH를 통해 전송 UE에게 전송할 수 있다. 그리고, 수신 UE가 상기 수신 UE를 타겟으로 하는 PSCCH를 디코딩하고, 및 수신 UE가 상기 PSCCH와 관련된 전송 블록을 성공적으로 디코딩하면, 수신 UE는 HARQ-ACK을 PSFCH를 통해 전송 UE에게 전송할 수 있다.
예를 들어, 그룹캐스트 옵션 1이 SL HARQ 피드백에 사용되면, 그룹캐스트 통신을 수행하는 모든 UE는 PSFCH 자원을 공유할 수 있다. 예를 들어, 동일한 그룹에 속하는 UE는 동일한 PSFCH 자원을 이용하여 HARQ 피드백을 전송할 수 있다.
예를 들어, 그룹캐스트 옵션 2가 SL HARQ 피드백에 사용되면, 그룹캐스트 통신을 수행하는 각각의 UE는 HARQ 피드백 전송을 위해 서로 다른 PSFCH 자원을 사용할 수 있다. 예를 들어, 동일한 그룹에 속하는 UE는 서로 다른 PSFCH 자원을 이용하여 HARQ 피드백을 전송할 수 있다.
예를 들어, SL HARQ 피드백이 그룹캐스트에 대하여 인에이블될 때, 수신 UE는 TX-RX(Transmission-Reception) 거리 및/또는 RSRP를 기반으로 HARQ 피드백을 전송 UE에게 전송할지 여부를 결정할 수 있다.
예를 들어, 그룹캐스트 옵션 1에서 TX-RX 거리 기반 HARQ 피드백의 경우, TX-RX 거리가 통신 범위 요구 사항보다 작거나 같으면, 수신 UE는 PSSCH에 대한 HARQ 피드백을 전송 UE에게 전송할 수 있다. 반면, TX-RX 거리가 통신 범위 요구 사항보다 크면, 수신 UE는 PSSCH에 대한 HARQ 피드백을 전송 UE에게 전송하지 않을 수 있다. 예를 들어, 전송 UE는 상기 PSSCH와 관련된 SCI를 통해 상기 전송 UE의 위치를 수신 UE에게 알릴 수 있다. 예를 들어, 상기 PSSCH와 관련된 SCI는 제 2 SCI일 수 있다. 예를 들어, 수신 UE는 TX-RX 거리를 상기 수신 UE의 위치와 상기 전송 UE의 위치를 기반으로 추정 또는 획득할 수 있다. 예를 들어, 수신 UE는 PSSCH와 관련된 SCI를 디코딩하여, 상기 PSSCH에 사용되는 통신 범위 요구 사항을 알 수 있다.
예를 들어, 자원 할당 모드 1의 경우에, PSFCH 및 PSSCH 사이의 시간은 설정되거나, 미리 설정될 수 있다. 유니캐스트 및 그룹캐스트의 경우, SL 상에서 재전송이 필요하면, 이것은 PUCCH를 사용하는 커버리지 내의 UE에 의해 기지국에게 지시될 수 있다. 전송 UE는 HARQ ACK/NACK의 형태가 아닌 SR(Scheduling Request)/BSR(Buffer Status Report)과 같은 형태로 상기 전송 UE의 서빙 기지국에게 지시(indication)를 전송할 수도 있다. 또한, 기지국이 상기 지시를 수신하지 않더라도, 기지국은 SL 재전송 자원을 UE에게 스케줄링 할 수 있다. 예를 들어, 자원 할당 모드 2의 경우에, PSFCH 및 PSSCH 사이의 시간은 설정되거나, 미리 설정될 수 있다.
예를 들어, 캐리어에서 UE의 전송 관점에서, PSCCH/PSSCH와 PSFCH 사이의 TDM이 슬롯에서 SL를 위한 PSFCH 포맷에 대하여 허용될 수 있다. 예를 들어, 하나의 심볼을 가지는 시퀀스-기반 PSFCH 포맷이 지원될 수 있다. 여기서, 상기 하나의 심볼은 AGC 구간이 아닐 수 있다. 예를 들어, 상기 시퀀스-기반 PSFCH 포맷은 유니캐스트 및 그룹캐스트에 적용될 수 있다.
예를 들어, 자원 풀과 연관된 슬롯 내에서, PSFCH 자원은 N 슬롯 구간으로 주기적으로 설정되거나, 사전에 설정될 수 있다. 예를 들어, N은 1 이상의 하나 이상의 값으로 설정될 수 있다. 예를 들어, N은 1, 2 또는 4일 수 있다. 예를 들어, 특정 자원 풀에서의 전송에 대한 HARQ 피드백은 상기 특정 자원 풀 상의 PSFCH를 통해서만 전송될 수 있다.
예를 들어, 전송 UE가 슬롯 #X 내지 슬롯 #N에 걸쳐 PSSCH를 수신 UE에게 전송하는 경우, 수신 UE는 상기 PSSCH에 대한 HARQ 피드백을 슬롯 #(N + A)에서 전송 UE에게 전송할 수 있다. 예를 들어, 슬롯 #(N + A)은 PSFCH 자원을 포함할 수 있다. 여기서, 예를 들어, A는 K보다 크거나 같은 가장 작은 정수일 수 있다. 예를 들어, K는 논리적 슬롯의 개수일 수 있다. 이 경우, K는 자원 풀 내의 슬롯의 개수일 수 있다. 또는, 예를 들어, K는 물리적 슬롯의 개수일 수 있다. 이 경우, K는 자원 풀 내부 및 외부의 슬롯의 개수일 수 있다.
예를 들어, 전송 UE가 수신 UE에게 전송한 하나의 PSSCH에 대한 응답으로, 수신 UE가 PSFCH 자원 상에서 HARQ 피드백을 전송하는 경우, 수신 UE는 설정된 자원 풀 내에서 암시적 메커니즘을 기반으로 상기 PSFCH 자원의 주파수 영역(frequency domain) 및/또는 코드 영역(code domain)을 결정할 수 있다. 예를 들어, 수신 UE는 PSCCH/PSSCH/PSFCH와 관련된 슬롯 인덱스, PSCCH/PSSCH와 관련된 서브채널, 및/또는 그룹캐스트 옵션 2 기반의 HARQ 피드백을 위한 그룹에서 각각의 수신 UE를 구별하기 위한 식별자 중 적어도 어느 하나를 기반으로, PSFCH 자원의 주파수 영역 및/또는 코드 영역을 결정할 수 있다. 그리고/또는, 예를 들어, 수신 UE는 SL RSRP, SINR, L1 소스 ID, 및/또는 위치 정보 중 적어도 어느 하나를 기반으로, PSFCH 자원의 주파수 영역 및/또는 코드 영역을 결정할 수 있다.
예를 들어, UE의 PSFCH를 통한 HARQ 피드백 전송과 PSFCH를 통한 HARQ 피드백 수신이 중첩되는 경우, 상기 UE는 우선 순위 규칙을 기반으로 PSFCH를 통한 HARQ 피드백 전송 또는 PSFCH를 통한 HARQ 피드백 수신 중 어느 하나를 선택할 수 있다. 예를 들어, 우선 순위 규칙은 관련 PSCCH/PSSCH의 최소 우선 순위 지시(priority indication)를 기반으로 할 수 있다.
예를 들어, UE의 복수의 UE에 대한 PSFCH를 통한 HARQ 피드백 전송이 중첩되는 경우, 상기 UE는 우선 순위 규칙을 기반으로 특정 HARQ 피드백 전송을 선택할 수 있다. 예를 들어, 우선 순위 규칙은 관련 PSCCH/PSSCH의 최소 우선 순위 지시(priority indication)를 기반으로 할 수 있다.
이하, 포지셔닝(positioning)에 대하여 설명한다.
도 15은 본 개시의 일 예에 따라, NG-RAN (Next Generation-Radio Access Network) 또는 E-UTRAN에 접속되는 UE에 대한 측위가 가능한, 5G 시스템에서의 아키텍처의 일 예를 나타낸다.
도 15을 참조하면, AMF는 특정 타겟 UE와 관련된 위치 서비스에 대한 요청을 GMLC(Gateway Mobile Location Center)와 같은 다른 엔티티(entity)로부터 수신하거나, AMF 자체에서 특정 타겟 UE를 대신하여 위치 서비스를 시작하기로 결정할 수 있다. 그러면, AMF는 LMF(Location Management Function)에게 위치 서비스 요청을 전송할 수 있다. 상기 위치 서비스 요청을 수신한 LMF는 상기 위치 서비스 요청을 처리하여 UE의 추정된 위치 등을 포함하는 처리 결과를 AMF에 반환할 수 있다. 한편, 위치 서비스 요청이 AMF이 이외에 GMLC와 같은 다른 엔티티로부터 수신된 경우에, AMF는 LMF로부터 수신한 처리 결과를 다른 엔티티로 전달할 수 있다.
ng-eNB(new generation evolved-NB) 및 gNB는 위치 추정을 위한 측정 결과를 제공할 수 있는 NG-RAN의 네트워크 요소이며, 타겟 UE에 대한 무선 신호를 측정하고 그 결과값을 LMF에 전달할 수 있다. 또한, ng-eNB는 원격 무선 헤드(remote radio heads)와 같은 몇몇 TP (Transmission Point)들 또는 E-UTRA를 위한 PRS(Positioning Reference Signal) 기반 비콘 시스템을 지원하는 PRS 전용 TP들을 제어할 수 있다.
LMF는 E-SMLC(Enhanced Serving Mobile Location Centre)와 연결되고, E-SMLC는 LMF가 E-UTRAN에 접속 가능하게 할 수 있다. 예를 들어, E-SMLC는 LMF가 eNB 및/또는 E-UTRAN 내의 PRS 전용 TP들로부터 전송된 신호를 통해 타겟 UE가 획득한 하향링크 측정을 이용하여 E-UTRAN의 측위 방법들 중 하나인 OTDOA (Observed Time Difference Of Arrival)을 지원하도록 할 수 있다.
한편, LMF는 SLP(SUPL Location Platform)에 연결될 수 있다. LMF는 타겟 UE들에 대한 서로 상이한 위치 결정 서비스들을 지원하고 관리할 수 있다. LMF는 UE의 위치 측정을 획득하기 위하여, 타겟 UE를 위한 서빙 ng-eNB 또는 서빙 gNB와 상호 작용할 수 있다. 타겟 UE의 측위를 위하여, LMF는 LCS(Location Service) 클라이언트 유형, 요구되는 QoS(Quality of Service), UE 측위 능력(UE positioning capabilities), gNB 측위 능력 및 ng-eNB 측위 능력 등에 기반하여 측위 방법을 결정하고, 이러한 측위 방법을 서빙 gNB 및/또는 서빙 ng-eNB에게 적용할 수 있다. 그리고, LMF는 타겟 UE에 대한 위치 추정치와 위치 추정 및 속도의 정확도와 같은 추가 정보를 결정할 수 있다. SLP는 사용자 평면(user plane)을 통해 측위를 담당하는 SUPL (Secure User Plane Location) 엔티티이다.
UE는 NG-RAN 및 E-UTRAN, 서로 상이한 GNSS(Global Navigation Satellite System), TBS(Terrestrial Beacon System), WLAN(Wireless Local Access Network) 접속 포인트, 블루투스 비콘 및 UE 기압 센서 등과 같은 소스 등을 통해 하향링크 신호를 측정할 수 있다. UE는 LCS 어플리케이션을 포함할 수도 있고, UE가 접속된 네트워크와의 통신 또는 UE에 포함된 다른 어플리케이션을 통해 LCS 어플리케이션에 접속할 수 있다. LCS 어플리케이션은 UE의 위치를 결정하는 데 필요한 측정 및 계산 기능을 포함할 수 있다. 예를 들어, UE는 GPS (Global Positioning System) 과 같은 독립적인 측위 기능을 포함할 수 있고, NG-RAN 전송과는 독립적으로 UE의 위치를 보고할 수 있다. 이러한 독립적으로 획득한 측위 정보는 네트워크로부터 획득한 측위 정보의 보조 정보로서 활용될 수도 있다.
도 16는 본 개시의 일 예에 따라 UE의 위치를 측정하기 위한 네트워크의 구현 예를 나타낸다.
UE가 CM-IDLE(Connection Management - IDLE) 상태에 있을 때, AMF가 위치 서비스 요청을 수신하면, AMF는 UE와의 시그널링 연결을 수립하고, 특정 서빙 gNB 또는 ng-eNB를 할당하기 위해 네트워크 트리거 서비스를 요청할 수 있다. 이러한 동작 과정은 도 16에서는 생략되어 있다. 즉, 도 16에서는 UE가 연결 모드(connected mode)에 있는 것으로 가정할 수 있다. 하지만, 시그널링 및 데이터 비활성 등의 이유로 NG-RAN에 의해 시그널링 연결이 측위 과정이 진행되는 도중에 해제될 수도 있다.
도 16를 참조하여 구체적으로 UE의 위치를 측정하기 위한 네트워크의 동작 과정을 살펴보면, 단계 1a에서, GMLC와 같은 5GC 엔티티는 서빙 AMF로 타겟 UE의 위치를 측정하기 위한 위치 서비스를 요청할 수 있다. 다만, GMLC가 위치 서비스를 요청하지 않더라도, 단계 1b에 따라, 서빙 AMF가 타겟 UE의 위치를 측정하기 위한 위치 서비스가 필요하다고 결정할 수도 있다. 예를 들어, 긴급 호출(emergency call)을 위한 UE의 위치를 측정하기 위하여, 서빙 AMF가 직접 위치 서비스를 수행할 것을 결정할 수도 있다.
그 후, AMF는 단계 2에 따라, LMF로 위치 서비스 요청을 전송하고, 단계 3a에 따라, LMF는 위치 측정 데이터 또는 위치 측정 보조 데이터를 획득하기 위한 위치 절차(location procedures)를 서빙 ng-eNB, 서빙 gNB와 함께 시작할 수 있다. 추가적으로, 단계 3b에 따라, LMF는 UE와 함께 하향링크 측위를 위한 위치 절차(location procedures) 시작할 수 있다. 예를 들어, LMF는 UE에게 위치 보조 데이터(Assistance data defined in 3GPP TS 36.355)를 전송하거나, 위치 추정치 또는 위치 측정치를 획득할 수 있다. 한편, 단계 3b는 단계 3a가 수행된 이후 추가적으로 수행될 수도 있으나, 단계 3a에 대신하여 수행될 수도 있다.
단계 4에서 LMF는 AMF에 위치 서비스 응답을 제공할 수 있다. 또한, 위치 서비스 응답에는 UE의 위치 추정이 성공했는지 여부에 대한 정보 및 UE의 위치 추정치가 포함될 수 있다. 그 후, 단계 1a에 의해 도 16의 절차가 개시되었다면, AMF는 GMLC와 같은 5GC 엔티티에 위치 서비스 응답을 전달할 수 있으며, 단계 1b에 의해 도 16의 절차가 개시되었다면, AMF는 긴급 호출 등에 관련된 위치 서비스 제공을 위하여, 위치 서비스 응답을 이용할 수 있다.
도 17는 본 개시의 일 예에 따라 LMF와 UE 간의 LPP(LTE Positioning Protocol) 메시지 전송을 지원하기 위해 사용되는 프로토콜 레이어의 일 예를 나타낸다.
LPP PDU는 AMF와 UE 간의 NAS PDU를 통해 전송될 수 있다. 도 17를 참조하면, LPP는 타겟 장치(예들 들어, 제어 평면에서의 UE 또는 사용자 평면에서의 SET(SUPL Enabled Terminal))와 위치 서버(예를 들어, 제어 평면에서의 LMF 또는 사용자 평면에서의 SLP) 사이를 연결(terminated)할 수 있다. LPP 메시지는 NG-C(NG-Control Plane) 인터페이스를 통한 NGAP(NG Application Protocol), LTE-Uu 및 NR-Uu 인터페이스를 통한 NAS/RRC 등의 적절한 프로토콜을 사용하여 중간 네트워크 인터페이스를 통해 트랜스패런트(Transparent) PDU 형태로 전달될 수 있다. LPP 프로토콜은 다양항 측위 방법을 사용하여 NR 및 LTE를 위한 측위가 가능하도록 한다.
예를 들어, LPP 프로토콜을 통하여 타겟 장치 및 위치 서버는 상호 간의 성능(capability) 정보 교환, 측위를 위한 보조 데이터 교환 및/또는 위치 정보를 교환할 수 있다. 또한, LPP 메시지를 통해 에러 정보 교환 및/또는 LPP 절차의 중단 지시 등을 수행할 수도 있다.
도 18은 본 개시의 일 예에 따라 LMF와 NG-RAN 노드 간의 NRPPa(NR Positioning Protocol A) PDU 전송을 지원하는데 사용되는 프로토콜 레이어의 일 예를 나타낸다.
NRPPa는 NG-RAN 노드와 LMF 간의 정보 교환에 사용될 수 있다. 구체적으로 NRPPa는 ng-eNB에서 LMF로 전송되는 측정을 위한 E-CID(Enhanced-Cell ID), OTDOA 측위 방법을 지원하기 위한 데이터, NR Cell ID 측위 방법을 위한 Cell-ID 및 Cell 위치 ID 등을 교환할 수 있다. AMF는 연관된 NRPPa 트랜잭션(transaction)에 대한 정보가 없더라도, NG-C 인터페이스를 통해 연관된 LMF의 라우팅 ID를 기반으로 NRPPa PDU들을 라우팅할 수 있다.
위치 및 데이터 수집을 위한 NRPPa 프로토콜의 절차는 2가지 유형으로 구분될 수 있다. 첫 번째 유형은, 특정 UE에 대한 정보 (예를 들어, 위치 측정 정보 등)를 전달하기 위한 UE 관련 절차(UE associated procedure)이고, 두 번째 유형은, NG-RAN 노드 및 관련된 TP들에 적용 가능한 정보 (예를 들어, gNB/ng-eNB/TP 타이밍 정보 등)을 전달하기 위한 비 UE 관련 절차 (non UE associated procedure)이다. 상기 2가지 유형의 절차는 독립적으로 지원될 수도 있고, 동시에 지원될 수도 있다.
한편, NG-RAN에서 지원하는 측위 방법들에는 GNSS, OTDOA, E-CID(enhanced cell ID), 기압 센서 측위, WLAN 측위, 블루투스 측위 및 TBS (terrestrial beacon system), UTDOA(Uplink Time Difference of Arrival) 등이 있을 수 있다. 상기 측위 방법들 중, 어느 하나의 측위 방법을 이용하여 UE의 위치를 측정할 수도 있지만, 둘 이상의 측위 방법을 이용하여 UE의 위치를 측정할 수도 있다.
(1) OTDOA (Observed Time Difference Of Arrival)
도 19은 본 개시의 일 예에 따른 OTDOA(Observed Time Difference Of Arrival) 측위 방법을 설명하기 위한 도면이다
OTDOA 측위 방법은 UE가 eNB, ng-eNB 및 PRS 전용 TP를 포함하는 다수의 TP들로부터 수신된 하향링크 신호들의 측정 타이밍을 이용한다. UE는 위치 서버로부터 수신된 위치 보조 데이터를 이용하여 수신된 하향링크 신호들의 타이밍을 측정한다. 그리고 이러한 측정 결과 및 이웃 TP들의 지리적 좌표들을 기반으로 UE의 위치를 결정할 수 있다.
gNB에 연결된 UE는 TP로부터 OTDOA 측정을 위한 측정 갭(gap)을 요청할 수 있다. 만약, UE가 OTDOA 보조 데이터 내의 적어도 하나의 TP를 위한 SFN(Single Frequency Network)을 인지하지 못하면, UE는 RSTD(Reference Signal Time Difference) 측정(Measurement)을 수행하기 위한 측정 갭을 요청하기 전에 OTDOA 참조 셀(reference cell)의 SFN을 획득하기 위해 자율적인 갭(autonomous gap)을 사용할 수 있다.
여기서, RSTD는 참조 셀과 측정 셀로부터 각각 수신된 2개의 서브프레임들의 경계 간의 가장 작은 상대적인 시간 차를 기반으로 정의될 수 있다. 즉, RSTD는 측정 셀로부터 수신된 서브 프레임의 시작 시간에 가장 가까운 참조 셀의 서브프레임의 시작 시간 및 측정 셀로부터 수신된 서브 프레임의 시작 시간에 가장 가까운 참조 셀의 서브프레임의 시작 시간 사이의 상대적인 시간 차이를 기반으로 계산될 수 있다. 한편, 참조 셀은 UE에 의해 선택될 수 있다.
정확한 OTDOA 측정을 위해서는 지리적으로 분산된 3개 이상의 TP들 또는 기지국들로부터 수신된 신호의 TOA(time of arrival)을 측정하는 것이 필요하다. 예를 들어, TP 1, TP 2 및 TP 3 각각에 대한 TOA를 측정하고, 3개의 TOA를 기반으로 TP 1-TP 2에 대한 RSTD, TP 2-TP 3에 대한 RSTD 및 TP 3-TP 1에 대한 RSTD를 계산하여, 이를 기반으로 기하학적 쌍곡선을 결정하고, 이러한 쌍곡선이 교차하는 지점을 UE의 위치로 추정할 수 있다. 이 때, 각 TOA 측정에 대한 정확도 및/또는 불확실성이 생길 수 있는 바, 추정된 UE의 위치는 측정 불확실성에 따른 특정 범위로 알려질 수도 있다.
예를 들어, 두 TP에 대한 RSTD는 수학식 1을 기반으로 산출될 수 있다.
[수학식 1]
Figure PCTKR2020011659-appb-img-000005
여기서, c는 빛의 속도이고, {xt, yt}는 타겟 UE의 (알려지지 않은) 좌표이고, {xi, yi}는 (알려진) TP의 좌표이며, {x1, y1}은 참조 TP (또는 다른 TP)의 좌표일 수 있다. 여기서, (Ti-T1)은 두 TP 간의 전송 시간 오프셋으로서, “Real Time Differences” (RTDs)로 명칭될 수 있으며, ni, n1은 UE TOA 측정 에러에 관한 값을 나타낼 수 있다.
(2) E-CID (Enhanced Cell ID)
셀 ID (CID) 측위 방법에서, UE의 위치는 UE의 서빙 ng-eNB, 서빙 gNB 및/또는 서빙 셀의 지리적 정보를 통해 측정될 수 있다. 예를 들어, 서빙 ng-eNB, 서빙 gNB 및/또는 서빙 셀의 지리적 정보는 페이징(paging), 등록(registration) 등을 통해 획득될 수 있다.
한편, E-CID 측위 방법은 CID 측위 방법에 더하여 UE 위치 추정치를 향상 시키기 위한 추가적인 UE 측정 및/또는 NG-RAN 무선 자원 등을 이용할 수 있다. E-CID 측위 방법에서, RRC 프로토콜의 측정 제어 시스템과 동일한 측정 방법들 중 일부를 사용할 수 있지만, 일반적으로 UE의 위치 측정만을 위하여 추가적인 측정을 하지 않는다. 다시 말해, UE의 위치를 측정하기 위하여 별도의 측정 설정 (measurement configuration) 또는 측정 제어 메시지(measurement control message)는 제공되지 않을 수 있으며, UE 또한 위치 측정만을 위한 추가적인 측정 동작이 요청될 것을 기대하지 않고, UE가 일반적으로 측정 가능한 측정 방법들을 통해 획득된 측정값을 보고할 수 있다.
예를 들어, 서빙 gNB는 UE로부터 제공되는 E-UTRA 측정치를 사용하여 E-CID 측위 방법을 구현할 수 있다.
E-CID 측위를 위해 사용할 수 있는 측정 요소의 예를 들면 다음과 같을 수 있다.
- UE 측정: E-UTRA RSRP (Reference Signal Received Power), E-UTRA RSRQ (Reference Signal Received Quality), UE E-UTRA 수신-송신 시간차 (Rx-Tx Time difference), GERAN(GSM EDGE Random Access Network)/WLAN RSSI (Reference Signal Strength Indication), UTRAN CPICH (Common Pilot Channel) RSCP (Received Signal Code Power), UTRAN CPICH Ec/Io
- E-UTRAN 측정: ng-eNB 수신-송신 시간차 (Rx-Tx Time difference), 타이밍 어드밴스 (Timing Advance, TADV), Angle of Arrival (AoA)
여기서, TADV는 아래와 같이 Type 1과 Type 2로 구분될 수 있다.
TADV Type 1 = (ng-eNB 수신-송신 시간차)+(UE E-UTRA 수신-송신 시간차)
TADV Type 2 = ng-eNB 수신-송신 시간차
한편, AoA는 UE의 방향을 측정하는데 사용될 수 있다. AoA는 기지국/TP로부터 반 시계 방향으로 UE의 위치에 대한 추정 각도로 정의될 수 있다. 이 때, 지리적 기준 방향은 북쪽일 수 있다. 기지국/TP는 AoA 측정을 위해 SRS (Sounding Reference Signal) 및/또는 DMRS (Demodulation Reference Signal)과 같은 상향링크 신호를 이용할 수 있다. 또한, 안테나 어레이의 배열이 클수록 AoA의 측정 정확도가 높아지며, 동일한 간격으로 안테나 어레이들이 배열된 경우, 인접한 안테나 소자들에서 수신된 신호들은 일정한 위상 변화(Phase-Rotate)를 가질 수 있다.
(3) UTDOA (Uplink Time Difference of Arrival)
UTDOA는 SRS의 도달 시간을 추정하여 UE의 위치를 결정하는 방법이다. 추정된 SRS 도달 시간을 산출할 때, 서빙 셀이 참조 셀로 사용하여, 다른 셀 (혹은 기지국/TP)와의 도달 시간 차이를 통해 UE의 위치를 추정할 수 있다. UTDOA를 구현하기 위해 E-SMLC는 타겟 UE에게 SRS 전송을 지시하기 위해, 타겟 UE의 서빙 셀을 지시할 수 있다. 또한, E-SMLC는 SRS의 주기적/비주기적 여부, 대역폭 및 주파수/그룹/시퀀스 호핑 등과 같은 설정(configuration)을 제공할 수 있다.
(4) Multi RTT (Multi-cell RTT)
네트워크 내 TP 들 간의 좋은 (fine) 동기화(예를 들어, nano-second level)를 요구하는 OTDOA 등과는 달리, RTT 는 OTDOA 등과 마찬가지로 TOA 측정을 기반으로 하나, 대략적인 (coarse) TRP (예를 들어, 기지국) 타이밍 동기화 (timing synchronization) 만을 필요로 한다.
도 20은 본 개시의 다양한 실시예들이 적용 가능한 Multi RTT (round trip time) 측위 방법의 일 예를 나타낸 도면이다.
도 20 (a) 을 참조하면, initiating device 와 responding device 에서 TOA 측정이 수행되고, responding device 가 RTT 측정 (계산) 을 위하여 initiating device 에 TOA 측정을 제공하는 RTT 과정을 예시한다. 예를 들어, initiating device 는 TRP 및/또는 UE일 수 있고, responding device 는 UE 및/또는 TRP 일 수 있다.
2501 에서 initiating device 는 RTT 측정 요청을 송신하고, responding device 는 이를 수신할 수 있다.
2503 에서, initiating device 는 RTT 측정 신호를 t0 에서 송신할 수 있고, responding device 는 TOA 측정 t1 을 획득할 수 있다.
2505 에서, responding device 는 RTT 측정 신호를 t2 에서 송신할 수 있고, initiating device 는 TOA 측정 t3 을 획득할 수 있다.
동작 2507 에서, responding device 는 [t2-t1] 에 대한 정보를 송신할 수 있고, initiating device 는 해당 정보를 수신하여, 아래 수학식 2 에 기초하여 RTT 를 계산할 수 있다. 해당 정보는 별개 신호에 기초하여 송수신될 수도 있고, 2505 의 RTT 측정 신호에 포함되어 송수신될 수도 있다.
[수학식 2]
RTT = t 3 - t 0 - [t 2 - t 1]
도 20 (b) 을 참조하면, 해당 RTT 는 두 디바이스 간의 double-range 측정과 대응할 수 있다. 해당 정보로부터 측위 추정 (positioning estimation) 이 수행될 수 있으며, multilateration 기법이 사용될 수 있다. 측정된 RTT 에 기반하여 d1, d2, d3 가 결정될 수 있으며, 각 BS1, BS2, BS3 (또는 TRP) 를 중심으로 하고 각 d1, d2, d3 를 반지름으로 하는 원주의 교차점으로 target device location 이 결정될 수 있다.
도 21은 본 발명에 적용 가능한 비면허 대역을 지원하는 무선 통신 시스템의 예시를 나타낸다. 예를 들어, 도 21은 NR-U(Unlicensed spectrum) 무선 통신 시스템을 포함할 수 있다.
이하 설명에 있어, 면허 대역(이하, L-band)에서 동작하는 셀을 LCell로 정의하고, LCell의 캐리어를 (DL/UL) LCC라고 정의한다. 또한, 비면허 대역(이하, U-band)에서 동작하는 셀을 UCell로 정의하고, UCell의 캐리어를 (DL/UL) UCC라고 정의한다. 셀의 캐리어/캐리어-주파수는 셀의 동작 주파수(예, 중심 주파수)를 의미할 수 있다. 셀/캐리어(예, CC)는 셀로 통칭한다.
도 21(a)와 같이 단말과 기지국이 반송파 결합된 LCC 및 UCC를 통해 신호를 송수신하는 경우, LCC는 PCC(Primary CC)로 설정되고 UCC는 SCC(Secondary CC)로 설정될 수 있다. 도 21(b)와 같이, 단말과 기지국은 하나의 UCC 또는 반송파 결합된 복수의 UCC를 통해 신호를 송수신할 수 있다. 즉, 단말과 기지국은 LCC 없이 UCC(s)만을 통해 신호를 송수신할 수 있다. 스탠드얼론 동작을 위해, UCell에서 PRACH, PUCCH, PUSCH, SRS 전송 등이 지원될 수 있다.
이하, 본 명세서에서 기술하는 비면허 대역에서의 신호 송수신 동작은 (별도의언급이 없으면) 상술한 배치 시나리오에 기초하여 수행될 수 있다.
별도의 언급이 없으면, 아래의 정의가 본 명세서에서 사용되는 용어에 적용될 수 있다.
- 채널(channel): 공유 스펙트럼(shared spectrum)에서 채널 접속 과정이 수행되는 연속된 RB들로 구성되며, 반송파 또는 반송파의 일부를 지칭할 수 있다.
- 채널 접속 과정(Channel Access Procedure, CAP): 신호 전송 전에 다른 통신 노드(들)의 채널 사용 여부를 판단하기 위해, 센싱에 기반하여 채널 가용성을 평가하는 절차를 나타낸다. 센싱을 위한 기본 유닛(basic unit)은 Tsl=9us 구간(duration)의 센싱 슬롯이다. 기지국 또는 단말이 센싱 슬롯 구간동안 채널을 센싱하고, 센싱 슬롯 구간 내에서 적어도 4us 동안 검출된 전력이 에너지 검출 임계값 XThresh보다 작은 경우, 센싱 슬롯 구간 Tsl은 휴지 상태로 간주된다. 그렇지 않은 경우, 센싱 슬롯 구간 Tsl=9us은 비지 상태로 간주된다. CAP는 LBT(Listen-Before-Talk)로 지칭될 수 있다.
- 채널 점유(channel occupancy): 채널 접속 절차의 수행 후, 기지국/단말에 의한 채널(들) 상의 대응되는 전송(들)을 의미한다.
- 채널 점유 시간(Channel Occupancy Time, COT): 기지국/단말이 채널 접속 절차의 수행 후, 상기 기지국/단말 및 채널 점유를 공유하는 임의의(any) 기지국/단말(들)이 채널 상에서 전송(들)을 수행할 수 있는 총 시간을 지칭한다. COT 결정 시, 전송 갭이 25us 이하이면, 갭 구간도 COT에 카운트된다. COT는 기지국과 대응 단말(들) 사이의 전송을 위해 공유될 수 있다.
- DL 전송 버스트(burst): 16us를 초과하는 갭이 없는, 기지국으로부터의 전송 세트로 정의된다. 16us를 초과하는 갭에 의해 분리된, 기지국으로부터의 전송들은 서로 별개의 DL 전송 버스트로 간주된다. 기지국은 DL 전송 버스트 내에서 채널 가용성을 센싱하지 않고 갭 이후에 전송(들)을 수행할 수 있다.
- UL 전송 버스트: 16us를 초과하는 갭이 없는, 단말로부터의 전송 세트로 정의된다. 16us를 초과하는 갭에 의해 분리된, 단말로부터의 전송들은 서로 별개의 UL 전송 버스트로 간주된다. 단말은 UL 전송 버스트 내에서 채널 가용성을 센싱하지 않고 갭 이후에 전송(들)을 수행할 수 있다.
- 디스커버리 버스트: (시간) 윈도우 내에 한정되고 듀티 사이클과 연관된, 신호(들) 및/또는 채널(들)의 세트를 포함하는 DL 전송 버스트를 지칭한다. LTE-기반 시스템에서 디스커버리 버스트는 기지국에 의해 개시된 전송(들)으로서, PSS, SSS 및 CRS(cell-specific RS)를 포함하고, 논-제로 파워 CSI-RS를 더 포함할 수 있다. NR-기반 시스템에서 디스커버리 버스트는 기기국에 의해 개시된 전송(들)으로서, 적어도 SS/PBCH 블록을 포함하며, SIB1을 갖는 PDSCH를 스케줄링하는 PDCCH를 위한 CORESET, SIB1을 운반하는 PDSCH 및/또는 논-제로 파워 CSI-RS를 더 포함할 수 있다.
도 22는 비면허 밴드 내에서 자원을 점유하는 방법을 예시한다.
도 22를 참조하면, 비면허 대역 내의 통신 노드(예, 기지국, 단말)는 신호 전송 전에 다른 통신 노드(들)의 채널 사용 여부를 판단해야 한다. 이를 위해, 비면허 대역 내의 통신 노드는 전송(들)이 수행되는 채널(들)에 접속하기 위해 채널 접속 과정(CAP)을 수행할 수 있다. 채널 접속 과정은 센싱에 기반하여 수행될 수 있다. 예를 들어, 통신 노드는 신호 전송 전에 먼저 CS(Carrier Sensing)를 수행하여 다른 통신 노드(들)이 신호 전송을 하는지 여부를 확인할 수 있다. 다른 통신 노드(들)이 신호 전송을 하지 않는다고 판단된 경우를 CCA(Clear Channel Assessment)가 확인됐다고 정의한다. 기-정의된 혹은 상위계층(예, RRC)에 의해 설정된 CCA 임계치(예, XThresh)가 있는 경우, 통신 노드는 CCA 임계치보다 높은 에너지가 채널에서 검출되면 채널 상태를 비지(busy)로 판단하고, 그렇지 않으면 채널 상태를 휴지(idle)로 판단할 수 있다. 채널 상태가 휴지라고 판단되면, 통신 노드는 비면허 대역에서 신호 전송을 시작할 수 있다. CAP는 LBT로 대체될 수 있다.
표 5은 NR-U에서 지원되는 채널 접속 과정(CAP)을 예시한다.
Type Explanation
DL Type 1 CAP CAP with random back-off- time duration spanned by the sensing slots that are sensed to be idle before a downlink transmission(s) is random
Type 2 CAP- Type 2A, 2B, 2C CAP without random back-off- time duration spanned by sensing slots that are sensed to be idle before a downlink transmission(s) is deterministic
UL Type 1 CAP CAP with random back-off- time duration spanned by the sensing slots that are sensed to be idle before a downlink transmission(s) is random
Type 2 CAP- Type 2A, 2B, 2C CAP without random back-off- time duration spanned by sensing slots that are sensed to be idle before a downlink transmission(s) is deterministic
방법 1. RTT 측위에서의 TRTD 측정 및 보고 방법
NR에서는 UE가 RTT 측위를 수행할 경우에 대한 기술이 정의되어 있지 않으며, 특히 NR-V2X의 사이드링크를 이용한 RTT 측위에 있어, AN (Anchor Node)에서의 TRTD (Tx-Rx Time Difference) 측정 및 UE에게 리포팅하는 방법에 대해 정의가 되어야 할 수 있다.
구체적으로, UE가 RTT 측위를 수행하기 위해서는 1) 측위를 위해 구성된 네트워크 내의 각 AN의 안테나 위치정보, 2) 각 AN이 UE로부터 송신된 UL-PRS (UpLink-Positioning Reference Signal)을 수신한 시간과 응답으로 AN이 UE로 DL-PRS (DownLink-PRS)을 송신한 시간 정보, 3) UE에서 AN으로 송신된 UL-PRS 송신 시간과 UE가 AN으로부터 수신한 DL-PRS 수신 시간 정보가 필요하다. 특히, 본 개시의 방법 1에서는 AN이 UE로부터 UL-PRS을 수신하고 응답으로 UE로 DL-PRS을 송신하기까지 소요되는 시간차, 즉 TRTD를 측정하고 UE에게 보고 (reporting) 하는 방법에 대한 다양한 예들이 개시된다.
여기서, 본 개시의 방법 1은 면허 대역 (Licensed-band) 또는 비면허 대역 (Unlicensed-band)에서 UE가 AN와 Uu 통신 또는 사이드링크 통신을 통해 RTT 측위를 수행하는 방법에 대한 다양한 예들이 개시된다. 이때, UE는 모바일 디바이스, V2X 모듈, IoT 디바이스가 될 수 있으며, AN은 기지국 및/또는 UE가 될 수 있다. 이때, AN로써 기지국은 고정된 (또는 절대적인) 위치정보를 제공할 수 있는 eNB, gNB, LTE-LAA, NR-U, TP (Transmission point), RHC (Remote Head Control), gNB-type RSU (Road-Side Unit)등을 포함하며, AN로써 UE는 신뢰성이 높은 위치정보를 제공할 수 있는 UE, 고정된 위치정보를 제공하는 UE-type RSU등을 포함할 수 있다.
도 23은 UE와 AN 간 RTT 동작을 도시한 것이다.
도 23을 참조하면, RTT를 통한 기본적인 거리 측정 방법은 UE에서 송신되는 UL-PRS 신호와 AN에서 송신되는 DL-PRS 신호에 기반하여 수행될 수 있다. UE에서 송신되는 UL-PRS 신호와 AN에서 송신되는 DL-PRS 신호는 같거나 혹은 다를 수 있다. 또한, UL-PRS/DL-PRS는 LTE/NR 표준에서 기술된 SRS 또는 PRS가 될 수 있다.
UE에서 전송된 UL-PRS가 AN에 도달한 후, UL-PRS에 대한 응답으로 AN에서 전송된 DL-PRS가 UE에게 돌아오기까지의 RTT를 측정하여 UE - AN 간 거리가 측정될 수 있다.
UE에서 RTT 측정을 위해 필요한 정보는 하기와 같을 수 있다.
- UE에서 측정하는 RTTD (Rx-Tx Time difference) 시간 정보 : 즉, AN으로부터 DL-PRS 수신시간 (t D)과 UE로부터 UL-PRS 전송시간 (t A)간의 상대적 시간 차이인 t DA= t D - t A
- AN에서 측정하는 TRTD 시간 정보 : 즉, AN으로부터 DL-PRS 전송시간 (t C)과 UE로부터 UL-PRS 수신시간 (t B) 간의 상대적 시간 차이인 t CB = t C - t B
UE는 UE에서 측정된 RTT 시간, 즉 상술한 RTTD 정보 및 TRTD 정보에 기반하여 거리 (D)를 측정할 수 있다. UE - AN 간 거리 D는 하기의 수학식 3에 의해 측정될 수 있다.
[수학식 3]
Figure PCTKR2020011659-appb-img-000006
여기서, t DA = t CB인 경우, c = 3 X 10 8일 수 있다.
한편, 도 23로부터 UE에서 RTT 거리 측정에 기반한 측위를 수행하기 위해서는 AN에서 측정된 TRTD 정보가 UE에게 제공되어야 한다. 이하에서는, TRTD를 효율적으로 측정하고 리포팅하는 방법에 대한 다양한 예들이 개시된다. 특히, TRTD 측정 방법은 UE와 AN간의 동기 여부에 따라 구분될 수 있다.
방법 1-1. UE와 AN 간 동기에 무관한 TRTD 측정 방법
방법 1-1은 UE와 AN간의 동기와 상관없이 적용될 수 있다. 구체적으로, TRTD(t CB)는 cTRTD (coarse TRTD, t TRTD,c)와 fTRTD (fine TRTD, t TRTD,f)로 분해 (decomposition)할 수 있다. TRTD는 하기의 수학식 4에 의해 정의될 수 있다.
[수학식 4]
t CB = t C - t B = t TRTD,c + t TRTD,f
cTRTD 는 OFDM 심볼 길이에 대한 정수배 (cTRTD _integer)로 나타낼 수 있다. 이때, OFDM 심볼 길이는 RTT 측정방식에 따라 CP (Cyclic-Prefix)를 포함하거나 혹은 포함하지 않을 수 있다. cTRTD_integer는 하기의 수학식 5 또는 수학식 6에 의해 정의될 수 있다.
[수학식 5]
Figure PCTKR2020011659-appb-img-000007
[수학식 6]
Figure PCTKR2020011659-appb-img-000008
여기서, T u는 CP를 포함하지 않는 OFDM 심볼의 길이이고, T g는 CP를 포함하는 OFDM 심볼의 길이이고,
Figure PCTKR2020011659-appb-img-000009
는 바닥(floor) 연산자이다. 즉, OFDM 심볼이 CP를 포함하여 전송될 때 cTRTD는 수학식 6에 의해 측정될 수 있고, CP를 포함하지 않고 전송될 때 cTRTD는 수학식 5에 의해 측정될 수 있다.
fTRTD는 TRTD 에서 cTRTD 를 뺀 후 잔류 시간 (= TRTD - cTRTD)에 대해 OFDM 샘플에 대한 정수배 (fTRTD _integer) 또는 임의의 값에 대한 정수배로 나타낼 수 있다. fTRTD_integer는 하기의 수학식 7 또는 수학식 8에 의해 정의될 수 있다.
[수학식 7]
Figure PCTKR2020011659-appb-img-000010
[수학식 8]
Figure PCTKR2020011659-appb-img-000011
여기서, T x는 OFDM 심볼에 대한 임의의 샘플 길이로써 fTRTD의 해상도(resolution)에 따라 결정될 수 있다. 예를 들어, 임의의 샘플이란 OFDM 심볼 하나의 길이를 다시 세분화하는 것으로써, OFDM 심볼 하나의 길이를 특정 값으로 나눈 길이를 의미할 수 있다.
예를 들어, OFDM 샘플 길이 T x는 하기와 같을 수 있다.
- T x = T s. 여기서, T s는 OFDM 샘플의 길이로써 예를 들면 T s = T u / N u일 수 있다. 이때, N u는 FFT (fast fourier transform)의 길이일 수 있다.
- T x = kT s. 여기서, k는 정수로써, 예를 들면 T x = 2T s일 수 있다.
- T x = T s / k. 여기서, k는 정수로써, 예를 들면 T x = 0.5T s일 수 있다.
상술한 본 개시의 다양한 예들에서, fTRTD 해상도의 결정에 미치는 k와 같은 변수는 사전에 정의되거나 혹은 시그널링을 통해 AN에 전송될 수 있다. 예를 들어, AN이 UE인 경우 기지국으로부터 L1 시그널링이나 상위 계층 시그널링을 통해 k 값을 설정받을 수 있다.
방법 1-2. UE와 AN 간 동기를 가정한 TRTD 측정 방법
방법 1-2는 UE와 AN 간 동기를 가정하여 TRTD가 측정될 수 있다. 특히, 방법 1-2는 UE가 기지국에게 UL-PRS를 전송하기 전에 기지국이 전송하는 SSB를 검출하고 그에 동기화하였으며, 또한, 기지국과 UE 간의 타이밍 오차가 CP 길이를 벗어나지 않는 시나리오에 적합할 수 있다.
방법 1-1에서 설명한 바와 같이, TRTD는 cTRTD와 fTRTD로 분해 가능할 수 있다. 이때, UE는 UL/DL-PRS의 스케줄링 정보를 이용하여 cTRTD를 알 수 있다.
TRTD의 fTRTD는 AN의 OFDM 심볼 경계 (symbol boundary) 시점 (즉, 자신이 가정하는 동기 기준)과 AN이 UE로부터 UL-PRS를 수신한 시간 간의 차이 값인 시간 갭 (TIME_GAP)으로 정의된다. 즉, AN은 UE와 동기가 유지되는 경우 AN의 OFDM 심볼 경계 시점과 AN이 UE로부터 UL-PRS를 수신한 시점의 시간 차이 값을 시간 갭으로써 측정하고, 해당 시간 갭에 기반하여 fTRTD를 측정할 수 있다.
측정된 시간 갭에 대한 fTRTD_integer은 상술한 예들에 기반하여 측정될 수 있다. 구체적으로, AN은 측정된 시간 갭을 T x로 나눈 값에 바닥 연산자를 취하여 fTRTD_integer를 얻을 수 있다. 이때, Tx는 상술한 바와 같이 OFDM 심볼 샘플의 길이일 수 있다.
방법 1-3. TRTD 보고 방법
상술한 TRTD 분해 방법에 대한 다양한 예들에 기반하여, AN은 cTRTD 계산 시 필요한 정수 cTRTD_integer 정보와 fTRTD 계산 시 필요한 정수 fTRTD_integer 정보를 UE에게 보고함으로써 UE가 시스템 정보 (예, OFDM 심볼 길이, OFDM 샘플 길이)를 이용하여 TRTD를 계산하도록 한다.
AN은 다음과 같이 2가지 옵션 중 하나를 선택하여 TRTD를 리포팅 할 수 있다.
- 옵션 1 : AN은 메시지를 이용하여 TRTD를 UE에게 보고할 수 있다. 구체적으로, AN은 UE와 AN간의 동기 여부에 따라 하기와 같은 정보를 UE에게 제공할 수 있다.
-- UE와 AN간의 동기 여부를 고려하지 않는 경우, AN은 cTRTD _integer와 fTRTD _integer를 UE에게 제공할 수 있다.
-- UE와 AN간의 동기를 고려하는 경우, AN은 fTRTD _integer만을 UE에게 제공할 수 있다. 상술한 바와 같이, UE와 AN 간 동기가 유지되는 경우, UE는 UL/DL-PRS 스케줄링 정보로부터 cTRTD _integer 정보의 획득이 가능하므로, AN은 fTRTD _integer 정보만을 제공함으로써 시그널링 오버헤드를 줄일 수 있다.
- 옵션 2 : AN은 다양한 DL-PRS 시퀀스 패턴 정보를 이용하여 TRTD를 UE에게 보고할 수 있다. 즉, AN은 DL-PRS 시퀀스 패턴 정보를 이용하여 cTRTD _integer 정보와 fTRTD _integer 정보를 UE에게 제공할 수 있다.
옵션 2에 대하여 구체적으로 설명하면, 예를 들어 AN이 n개의 시퀀스 패턴을 가지는 DL-PRS를 고려할 경우, 다시 말해서 AN이 n개의 시퀀스 패턴에 기반하여 DL-PRS를 생성 및 전송하는 경우, 각 시퀀스 패턴을 특정 정수에 매핑하여 사용할 수 있다.
또는, 예를 들어 SRS를 DL-PRS에 적용할 경우, 하기의 표 6과 같이 하나의 OFDM 심볼 내에서 SRS의 comb type (또는 주파수 오프셋 (frequency offset))과 순환 이동 (cyclic-shift) 값에 따라 (n=16)개의 시퀀스 패턴이 형성될 수 있다.
Comb type-0 Comb type-1 Comb type-2 Comb type-3
Cyclic-shift-0 0 1 2 3
Cyclic-shift-1 4 5 6 7
Cyclic-shift-2 8 9 10 11
Cyclic-shift-3 12 13 14 15
표 6에서, comb type-2와 순환이동-2를 적용하여 생성된 SRS 시퀀스는 정수 10을 나타낸다. 즉, SRS의 comb type과 순환 이동 값에 기반하여 16개의 정수가 지시될 수 있다.
이에 따라, 1개의 OFDM 심볼은 16개의 정수를 나타낼 수 있다. 예를 들어, 표 7과 같이 0부터 15까지의 정수가 지시될 수 있다. 또한, 3개의 OFDM 심볼을 이용할 경우 0 부터 4096 (=16x16x16)개의 정수를 나타낼 수 있다. 즉, p개의 OFDM 심볼을 이용할 경우 n의 p 자승 (n p)개의 정수를 나타낼 수 있다.
예를 들어, AN이 측정된 cTRTD _integer (예, 7)과 fTRTD _integer (예, 400) 정보를 UE에게 보고할 경우, cTRTD _integer를 나타내기 위한 1개의 OFDM 심볼과 fTRTD _integer를 나타내기 위한 3개의 OFDM 심볼 등 총 4개의 OFDM 심볼에 기반하여 cTRTD _integer 정보와 fTRTD _integer 정보를 보고할 수 있다.
도 24는 본 개시의 일 예에 따른 TRTD 측정 및 보고 방법의 순서도이다.
S1201에서, AN은 UE로부터 UL-PRS를 수신할 수 있다.
S1203에서, AN은 수신한 UL-PRS에 기반하여 TRTD를 측정할 수 있다. 예를 들어, TRTD는 상술한 바와 같이 cTRTD 및 fTRTD 각각에 대하여 측정될 수 있다.
S1205에서, AN은 cTRTD 계산 시 필요한 정수 cTRTD_integer 정보와 fTRTD 계산 시 필요한 정수 fTRTD_integer 정보를 UE에게 전송할 수 있다. 예를 들어, cTRTD_integer 정보와 fTRTD_integer 정보는 수학식 5 내지 8에 기반하여 획득될 수 있다.
NR에서 UE가 RTT 측위를 수행할 경우에 대한 기술이 정의되어 있지 않으나, 본 개시의 방법 1에 따르면 NR-V2X의 사이드링크를 이용한 RTT 측위에 있어, AN에서의 TRTD 측정 및 UE에게 보고하는 방법이 정의될 수 있다.
또한, 본 개시의 방법 1에 따르면 측정된 TRTD을 cTRTD _integer 값과 fTRTD _integer 값으로 분해하여 UE에게 제공할 수 있으므로, TRTD 자체 값을 제공하는 것 보다 TRTD 정보의 양을 최소화 할 수 있다.
또한, 본 개시의 방법 1에서 사이드링크 NR-V2X와 같은 CP 길이 내에서 UE와 AN간의 동기가 보장되는 시스템에서 제안된 fTRTD _integer 만을 측정 후 리포팅하는 방법은 TRTD 정보의 양을 최소화 할 수 있다.
또한, 본 개시의 방법 1에서 제안된 DL-PRS 시퀀스 패턴 정보를 이용한 TRTD 리포팅 방법은 메시지를 이용한 방법과 비교시 메시지 디코딩 과정이 필요하지 않기 때문에 빠른 RTT 측위 동작을 제공한다.
방법 2. U-band에서의 UE 기반 RTT 측위
본 개시의 방법 2는 비면허 대역에서 UE가 AN와 Uu 통신 또는 사이드링크 통신을 통해 RTT 측위를 수행하는 방법 및 수행절차에 관한 것이다. 여기서, 비면허 대역은 WiFi UE, 또는 기타 UE와 공존하여 사용이 가능한 주파수 대역을 의미하며, NR의 경우 NR-U (NR Unlicensed)를 통해 비면허 대역에서 동작을 수행할 수 있다.
NR 시스템의 RTT 거리측정 (또는 RTT를 기반한 거리측정)을 이용한 UE의 측위는 1) 면허대역을 이용한 측위를 고려하며, 2) 위치 서버 (location server) /LMF 및/또는 AN 이 UE에서 측정된 TRTD (또는 RTTD) 정보를 받아서 위치를 측정한 후 UE에게 위치정보를 전송한다.
이와 같은 네트워크 기반 측위 방법은 UE가 위치 정보를 수신하기까지 큰 지연을 야기시킴으로써 정보의 신뢰성을 저하시킬 수 있으며, 면허대역에서 측위를 위해 제한적으로 할당된 주파수/시간 자원은 거리측정의 정확도를 저하시킬 수 있다. 이때, 거리측정의 정확도는 주파수 대역폭과 PRS 전송 주기/횟수에 비례한다. 따라서 상술한 문제를 해결하기 위해 본 개시의 방법 2에서는 비면허 대역을 이용하여 UE가 빠르게 위치를 측정할 수 있는 동작 및 방법을 제안한다.
방법 2-1. RTT 측위 동작 방법-1
본 개시의 방법 2-1의 비면허 대역 RTT 측위 방법은 AN간 동기가 맞지 않은 비동기 네트워크 환경을 가정하며, RTT 측위 동작은 UE가 비면허 대역에 대하여 UL LBT (Listen Before Talk) 동작을 통해 채널 접근 (또는 사용) 기회를 성공적으로 획득한 상태를 가정하고 수행될 수 있다.
다시 말해서, UE는 UL-PRS 전송 전에 비면허 대역에 대하여 LBT를 수행하고, 상기 비면허 대역에 포함된 복수의 채널들 중 상기 LBT에 따라 유휴(IDLE) 상태인 채널 상에서 UL-PRS를 전송할 수 있다.
도 25은 UE 기반 RTT 측위를 위한 네트워크를 도시한 것이다.
도 25을 참조하면, UE의 신뢰성 있는 2차원 위치정보 추정을 위해 네트워크는 1개의 서빙 AN (Serving AN)과 2개의 주변 AN (Neighbor AN) 등 적어도 3개 이상의 AN으로 구성된다 가정하며, UE의 신뢰성 있는 3차원 위치정보 추정을 위해서는 적어도 4개 이상의 AN가 구성된다 가정한다. 여기서, 서빙 AN은 UE가 속해 있는 AN를 의미한다. 즉, UE는 서빙 AN의 셀 범위 내에 포함되어 있고, 주변 AN의 셀 범위 내에는 포함되어 있거나 혹은 포함되어 있지 않을 수 있다.
도 26는 본 개시의 일 예에 따른 위치 서버/LMF, UE, AN간 RTT 측위 방법의 순서도이다.
도 26는 특히 RTT 측위를 위해 채널을 점유한 UE가 주어진 MCOT (maximum channel occupation) 내에 다수의 AN들과의 빠른 측위를 수행하는 동작 과정을 나타낸다. 도 26에서 버스트 전송 (burst transmission)은 UE와 다수의 AN간 PRS 전송을 의미할 수 있다. 이하에서는 도 26에 도시된 각 단계의 동작에 대하여 상세히 설명하기로 한다. 단계-0은 RTT 측위를 위한 AN과 UE간의 사전 준비 단계이며, 단계-1부터 단계-6 과정은 UE와 하나의 AN간 수행되는 RTT 거리측정 과정으로써 네트워크를 구성하는 모든 AN에 대해 동일하게 적용될 수 있다. 반면에 예외적으로, UE는 서빙 AN으로부터는 TA (Timing Advance)를 제공받을 수 있기 때문에 서빙 AN과의 RTT 거리측정을 수행하거나 혹은 수행하지 않을 수 있다.
[단계-0]
단계-0에서, UE는 위치 서버/LMF 및/또는 서빙 AN에 RTT 측위를 수행하는데 있어서 필요한 정보를 면허 대역 등 다른 대역을 통해 사전에 요청하고, 해당 정보를 수신한 후 저장하여 사용할 수 있다. 하기는 UE가 측위를 수행하기 위해 사전에 위치 서버/LMF 및/또는 서빙 AN으로부터 수신된 주요 정보를 나타낸다.
a) AN에서 UL-PRS와 DL-PRS가 송수신되는 안테나의 위치 정보
b) RTT 측위 수행을 위한 채널 관련 정보
- 채널 번호, 주파수 대역폭
- 이때, 채널 선택은 UE가 UE 관점에서 유효한 비면허 채널을 센싱 후 후보 채널을 위치 서버/LMF 및/또는 서빙 AN에 전송하고, 위치 서버/LMF 및/또는 서빙 AN이 최종 결정하여 UE에게 알려주는 동작을 통해 수행되거나, 혹은 위치 서버/LMF 및/또는 서빙 AN에서 유효한 비면허 채널을 센싱 후 최종 선택된 채널을 UE에게 알려주는 동작을 통해 수행될 수 있다.
c) UE와 서빙 AN간의 TA (Timing Advance) 정보
- 이때, UE와 주변 AN간의 동기는 맞지 않는다고 가정한다.
d) AN과 UE간 사전에 정의된 UL-PRS/DL-PRS 패턴 정보 또는 UL-PRS ID/DL-PRS ID 정보
- 이에 따라, UE와 각 AN은 사전에 정의된 UL-PRS/DL-PRS 패턴 정보를 이용하여 RTT 거리측정 과정을 수행할 수 있다.
e) LBT 동작 정의 및 관련 파라미터 정보
e-1) ED (Energy Detection)을 위한 임계값 설정 정보
- UE와 AN가 에너지 검출을 통해 채널의 IDLE/BUSY 상태를 판단하기 위한 임계치로써, PRS 전송을 위한 대역폭 및/또는 송신 전력에 따라 자동으로 조절되거나 또는 사전에 설정되거나 또는 위치 서버/LMF 및/또는 서빙 AN으로부터 제공받을 수 있다. 예를 들어, UE는 측위를 위해 구성된 네트워크 내 채널의 IDLE/BUSY 상태를 판단할 정도로 충분히 낮은 ED 임계값을 위치 서버/LMF 및/또는 서빙 AN으로부터 제공받거나 또는 사전에 정의된 값을 적용할 수 있다.
e-2) MCOT 관련 정보
- MCOT는 RTT 측위에 대한 채널 접근 우선 순위에 의해 결정될 수 있다. 이때, 채널 접근 우선 순위는 위치 서버/LMF 및/또는 서빙 AN으로부터 조절 및 제공받거나 또는 사전에 정의될 수 있다. 예를 들어, UE, 위치 서버, LMF 및/또는 서빙 AN은 일반적인 측위에 대해서는 우선순위를 낮추는 반면에 위급하거나 긴급한 상황 대처를 위한 측위에 대해서는 우선순위를 높일 수 있다. 이때, MCOT는 채널 접근 우선 순위가 높을수록 짧게 설정될 수 있고, 채널 접근 우선 순위가 낮을수록 길게 설정될 수 있다.
e-3) Fast LBT 과정
UE가 하나의 AN와 RTT 거리측정 동작을 완료 후 Y 시간 동안 (예를 들어, Y = 25us) CCA (Channel Clear Assessment)를 수행하며, 채널이 IDLE하면 LBT 백오프(backoff) 과정 없이 연속적으로 다른 AN와 RTT 거리측정 동작을 수행할 수 있다.
보다 구체적으로, UE는 어느 하나의 AN과 RTT 측위를 수행한 후에, LBT를 다시 수행할 수 있다. 이때, UE는 LBT 백오프 과정 없이 LBT 수행 직후에 연속적으로 UL-PRS를 전송할 수 있다. 즉, UE가 RTT 측위를 위해 수행하는 LBT의 결과에 따라 해당 채널이 IDLE이면, UE는 백오프 카운트 값을 기다리지 않고 LBT 수행 직후 곧바로 UL-PRS를 전송할 수 있다.
f) AN의 TRTD 관련 정보
- TRTD는 상술한 바와 같이 AN이 UE로부터 UL-PRS 수신 후 응답으로 DL-PRS를 UE로 송신하기까지 소요되는 지연 시간을 나타낸다. TRTD는 cTRTD와 fTRTD 로 분해될 수 있으며, cTRTD는 OFDM 심볼 길이에 대한 정수배 (cTRTD_integer)로 나타내며, 이때 OFDM 심볼 길이는 RTT 측정방식에 따라 CP를 포함하거나 포함하지 않을 수 있다. 반면에, fTRTD는 TRTD에서 cTRTD를 뺀 후 잔류 시간에 대해 OFDM 샘플에 대한 정수배 (fTRTD_integer) 또는 임의의 값에 대한 정수배로 나타낸다.
- UE 관점에서 AN의 cTRTD 정보는 UL-PRS와 DL-PRS의 전송 타이밍 스케줄링 방식에 따라 예측되거나 설정될 수 있는 반면에, fTRTD 정보는 TA의 오차, UE와 AN간의 전파 시간 (propagation time) 변동 등의 변수로 인해 예측하거나 설정되기 어렵다.
- UE가 주변 AN과 RTT 동작을 수행하는데 있어서, UE와 AN간의 동기가 맞지 않기 때문에 UL-PRS와 DL-PRS의 전송 타이밍이 동적으로 스케줄링되도록 할 수 있다. 즉, UE는 임의의 시간에 UL-PRS를 전송하고, AN은 블라인드 검출 (blind detection) 과정을 통해 UL-PRS를 수신하며, AN은 TRTD 이후에 DL-PRS를 전송하고 UE는 DL-PRS을 블라인드 검출한다. 상술한 UL-PRS와 DL-PRS의 동적 스케줄링 방식은 빠른 RTT 동작을 제공하지만, UE는 AN으로부터 cTRTD 와 fTRTD 정보를 모두 받아야 한다.
- 상술한 예들에서 cTRTD 정보 제공은 특히 UL-PRS와 DL-PRS의 전송 타이밍이 동적으로 스케줄링 되는 경우 중요하다. 위치 서버/LMF 및/또는 AN은 UE에게 cTRTD 정보를 제공할 수 있으며, 이때 cTRTD는 각 AN 마다 같거나 다를 수 있다. 이때, OFDM 심볼 길이는 CP를 포함한 길이에 대한 정수배로 나타낸다.
g) UE의 UL-PRS 심볼 개수 정보 (또는 심볼의 반복 횟수 정보), AN의 DL-PRS 심볼 개수 정보 (또는 심볼의 반복 횟수 정보)
- 본 개시에 따르면, UE는 복수의 UL-PRS들을 AN에게 전송할 수 있다. 구체적으로, AN이 UE로부터 UL-PRS를 수신한 후에, TRTD 시간 동안 채널이 IDLE하면 다른 사용자에 의해 간섭을 받을 수 있다. 이에 따라, UE에서 복수수 개의 UL-PRS들을 전송하는 목적은 상술한 다른 사용자에 의한 간섭을 제거함과 동시에 다수개의 UL-PRS들을 전송함으로써 AN에서의 TRTD 측정 정확도를 향상시키기 위함일 수 있다. 이때, UE의 UL-PRS 심볼 개수는 cTRTD_integer 보다 작게 설정되어야 한다.
- 또한, 본 개시에 따르면 AN는 복수의 DL-PRS들을 UE에게 전송할 수 있다. 구체적으로, AN의 복수 개의 DL-PRS들을 전송하는 목적은 UE에서의 TOA 측정 정확도를 향상시키기 위함일 수 있다.
한편, 상술한 정보들에서 PRS 송수신을 위한 d) 및 g)는 PRS 설정 정보일 수 있다. 즉, UE 및/또는 AN은 PRS 설정 정보에 기반하여 PRS 송수신을 수행할 수 있다.
[단계-1]
UE는 TDD-UL (Time Duplex Division-UL) 모드를 통해 AN과 RTT 거리측정을 수행 시 사전에 UE와 AN간에 정의된 UL-PRS 패턴 정보, 심볼 개수 정보를 이용하여 해당 AN에 UL-PRS를 전송하며 전송 시간을 측정한다.
이때, UL-PRS 패턴 정보나 심볼 개수 정보는 단계-0에서 위치 서버/LMF 및/또는 서빙 AN로부터 설정받은 정보이거나, 혹은 미리 정의된 것일 수 있다.
[단계-2]
AN은 UE로부터 UL-PRS을 수신할 수 있다. 또한, UE로부터 UL-PRS를 수신한 시간을 측정할 수 있다. 한편, UE가 주변 AN과 RTT를 수행하되 UE와 주변 AN의 동기가 맞지 않는 경우, AN은 블라인드 검출을 통해서 UL-PRS 수신 시간을 측정할 수 있다.
[단계-3]
AN은 fTRTD 측정 및 DL-PRS와 측정된 fTRTD 정보를 UE에게 전송한다.
도 27는 TRTD 및 fTRTD 측정을 설명하기 위한 것이다.
도 27는 cTRTD_integer = 3인 경우를 예시로 하였으나, 이에 제한되는 것은 아니다. cTRTD _integer는 수학식 5 또는 수학식 6에 의해 정의될 수 있다. 예를 들어, 도 27에서 cTRTD_integer는 AN이 UL-PRS를 수신한 후에 3개의 OFDM 심볼 후에 DL-PRS를 전송하라는 의미를 나타낼 수 있다. 다시 말해서, cTRTD_integer는 TRTD 내 수신되는 UL-PRS의 OFDM 심볼의 개수와 동일할 수 있다. 이때, cTRTD_integer는 UL-PRS를 수신한 시점에 해당되는 OFDM 심볼을 포함하여 측정될 수 있다.
GI (Guard Interval)는 TDD-UL 모드에서 TDD-DL 모드로 전환 시 필요로 하는 시간을 확보하는 구간을 나타내며, 실제 필요로 하는 시간은 AN의 처리 능력에 따라 다를 수 있다. 이때, GI 구간은 다른 사용자에 의해서 야기될 수 있는 간섭을 제거하기 위해 AN의 예약 신호나 UE의 UL-PRS 전송을 통해 예약될 수 있다.
fTRTD는 AN에서 UL-PRS가 수신된 시점에 해당하는 OFDM 심볼을 기준으로 CP를 포함한 OFDM 심볼 길이에서 UL-PRS 수신 시간을 뺀 잔류 시간을 나타낸다. 다시 말해서, AN 측의 서브프레임 타이밍을 기준으로, UL-PRS가 수신되는 시점이 포함된 하나의 OFDM 심볼의 길이에서 상기 하나의 OFDM 심볼의 시간 도메인 상 시작 시점과 UL-PRS 수신 시점 사이의 시간 길이만큼을 뺀 나머지 시간 길이가 fTRTD일 수 있다.
상술한 본 개시의 예들에 따라 측정된 fTRTD 정보는 상술한 OFDM 샘플에 대한 정수배 정보(fTRTD_integer)를 통해서 UE에게 제공될 수 있다. 즉, AN은 UE에게 fTRTD_integer 정보를 전송할 수 있다.
구체적으로, AN은 우선 AN과 UE 간 사전에 정의되거나 혹은 설정된 M 길이의 PN(pseudo noise) 시퀀스 또는 상응하는 랜덤 시퀀스를 정의할 수 있다.
다음으로, AN은 M 길이의 PN 시퀀스에서 fTRTD_integer에 해당하는 길이를 잘라내서 도 27와 같이 DL-PRS 전송 전에 삽입하여 UE에게 전송할 수 있다. 구체적으로, AN은 하기의 옵션 1 내지 2와 같이 fTRTD_integer 길이에 기반하여 fTRTD_integer 정보를 UE에게 시퀀스에 기반하여 제공할 수 있다.
- 옵션 1 : AN은 fTRTD_integer 길이와 상관없이 M 길이의 PN 시퀀스에서 fTRTD_integer에 해당하는 길이를 잘라내서 DL-PRS 전송 전에 삽입하여 UE에게 전송할 수 있다.
- 옵션 2 : AN은 fTRTD_integer 길이가 일정 길이 이상이면 (예, OFDM 심볼 길이의 절반 이상) M 길이의 PN 시퀀스에서 fTRTD_integer에 해당하는 길이를 잘라내서 DL-PRS 전송 전에 삽입하여 UE에게 전송할 수 있다. 또는, AN은 fTRTD_integer 길이가 일정 길이 이하이면, OFDM 심볼 길이에 fTRTD_integer 길이를 더해서 OFDM 심볼 길이보다 긴 PN 시퀀스를 전송한다. 옵션 2에 의하면, PN 시퀀스의 상관성 (correlation) 성능이 향상될 수 있다.
[단계-4]
UE는 TDD-DL 모드를 통해 AN으로부터 수신된 DL-PRS을 수신한다. 또한, UE는 DL-PRS를 수신한 시간을 측정하고, AN으로부터 DL-PRS 전에 송신된 PN 시퀀스 또는 상응하는 랜덤 시퀀스에 대해 상관기 (correlator) 등의 신호처리를 통해 fTRTD를 추정할 수 있다.
구체적으로, UE는 우선 DL-PRS를 이용하여 OFDM 심볼 동기를 획득하면, 동기 획득 과정에서 DL-PRS 보다 이전에 수신된 신호는 저장한다.
다음으로, UE는 DL-PRS에서 획득된 동기를 이용하여 수신된 신호로부터 PN 시퀀스에 상응하는 신호를 추출한다. 이때, UE는 PN 시퀀스의 시작은 알 수 없는 반면에 PN 시퀀스의 끝은 알 수 있다.
다음으로, UE는 추출된 신호와 수신기에 저장된 PN 시퀀스 간에 상관기 동작을 수행하여 PN 시퀀스 길이를 추정한다. 구체적으로, UE는 PN 시퀀스의 시작점을 추정하기 위해 추출된 신호를 역순으로 상관기에 통과시킨다. 상관기의 출력에서 피크가 검출되면, UE는 상관기에 입력된 추출 신호의 샘플 개수를 카운트하여 길이를 추정한다.
UE는 추정된 PN 시퀀스 길이에 OFDM 샘플 길이를 곱하여 최종적으로 fTRTD를 산출한다.
[단계-5]
UE는 UL-PRS를 전송한 시간, DL-PRS가 수신된 시간 및 AN에서 소요된 TRTD 시간 정보를 이용하여 해당 AN에 대한 RTT 거리측정을 수행한다. 예를 들어, UE는 수학식 2에 기반하여 AN에 대한 RTT 거리 측정을 수행할 수 있다.
[단계-6]
UE는 DL-PRS 수신 후 다른 AN과 RTT 거리 측정을 위해 TDD-DL 모드에서 TDD-UL 모드로 전환하며 fast LBT 과정을 수행한다. 즉, Y 시간 동안 (예를 들어, Y = 25us) CCA를 수행하며 채널의 BUSY/IDLE를 판단한다. 다시 말해서, 단계-1 내지 단계-5를 수행한 AN에 대한 RTT 거리 측정 과정이 종료된 후에, UE는 다른 AN과의 RTT 거리 측정을 위하여 채널에 대한 fast LBT 과정을 수행한다.
fast LBT 과정을 통해 채널이 IDLE인 경우, UE는 다른 AN과 위에서 상술한 단계-1부터 단계-6까지 RTT 동작을 수행한다.
이에 따라, UE는 모든 AN에 대해 단계-1 내지 단계-6을 반복적으로 수행하여 RTT 거리 측정을 수행하고, RTT 거리 측정이 완료된 후에 각 AN의 안테나 위치정보와 각 AN에서 측정된 거리측정 정보를 이용하여 RTT 측위를 수행한다.
방법 2-2. RTT 측위 동작 과정-2
본 개시의 방법 2-2에 따르면, 상술한 방법 2-1의 단계-1 내지 단계-6에서 단계-1, 단계-2, 단계-5 및 단계-6은 동일하게 수행되나, 단계-3 및 단계-4 대신에 단계-3-1 및 단계-4-1이 수행될 수 있다. 이에 따라, 단계-1 내지 단계-6에서 단계-1, 단계-2, 단계-5 및 단계-6에 대한 설명은 상술한 방법 2-1의 설명으로 대체하고, 하기에서는 단계-3-1 및 단계-4-1에 대하여만 설명한다.
[단계-3-1]
AN은 UL-PRS를 수신한 후, cTRTD에 해당하는 시간 이후에 DL-PRS를 전송한다. 이때, DL-PRS는 AN의 심볼 경계에서 전송되거나 혹은 임의의 위치에서 전송될 수 있다. 단계-3-1에 따르면, AN의 유동적인 기준 시간 운용은 fTRTD를 발생시키지 않으며, UE에서의 빠른 RTT 동작을 제공할 수 있다.
[단계-4-1]
UE는 TDD-DL 모드를 통해 AN으로부터 DL-PRS를 수신하고, DL-PRS을 수신한 시간을 측정한다. 이때, UE는 fTRTD 추정하는 별도의 단계는 수행하지 않을 수 있다.
도 28은 본 개시의 일 예에 따른 사용자기기의 신호 전송 방법이다.
도 28을 참조하면, S1301에서, 사용자기기는 위치 서버/LMF 및/또는 서빙 AN로부터 PRS(positioning reference signal) 설정 정보를 수신할 수 있다. 여기서, 상기 PRS 설정 정보는 상기 제1 PRS 및 상기 제2 PRS의 자원 패턴 및 상기 제1 PRS 및 상기 제2 PRS의 심볼의 개수를 포함할 수 있다.
S1303에서, 사용자기기는 비면허 대역(unlicensed band)에 대하여 LBT(listen before talk)를 수행할 수 있다.
S1305에서, 사용자기기는 상기 비면허 대역에 포함된 복수의 채널들 중 상기 LBT에 따라 유휴(IDLE) 상태인 채널 상에서 상기 PRS 설정 정보에 기반하여 제1 PRS(positioning reference signal)를 AN(anchor node)에 전송할 수 있다. 여기서, 제1 PRS는 UL-PRS일 수 있다.
이때, 상기 제1 PRS는 상기 LBT가 수행된 직후에 전송될 수 있다. 구체적으로, 상기 제1 PRS는 LBT 백오프 과정 없이 LBT 수행 직후에 연속적으로 전송될 수 있다.
S1307에서, 사용자기기는 상기 채널 상에서 상기 PRS 설정 정보에 기반하여 제2 PRS를 상기 AN로부터 수신할 수 있다.
상술한 상기 제1 PRS 및 상기 제2 PRS는 TRTD(Tx-Rx time difference) 획득에 사용될 수 있다. 이때, 상기 TRTD는 상기 AN가 상기 제1 PRS를 수신한 시점 및 상기 AN가 상기 제2 PRS를 전송한 시점 간에 시간 차이 값일 수 있다.
상기 TRTD는 제1 TRTD 정보 및 제2 TRTD 정보에 의해 지시되고, 상기 제1 TRTD 정보는
Figure PCTKR2020011659-appb-img-000012
이고, 여기서 t CB는 상기 TRTD이고, T u는 OFDM(orthogonal frequency division multiple) 심볼의 길이이고, 및 상기 제2 TRTD 정보는
Figure PCTKR2020011659-appb-img-000013
이고, 여기 cTRTD_integer는 상기 제1 TRTD 정보이고, T x는 상기 OFDM 심볼의 샘플의 길이일 수 있다.
또는, 상술한 상기 제1 PRS 및 상기 제2 PRS는 RTTD(Rx-Tx time difference) 획득에 사용될 수 있다. 이때, 상기 RTTD는 상기 사용자기기가 상기 제1 PRS를 전송한 시점 및 상기 사용자기기가 상기 제2 PRS를 수신한 시점 간에 시간 차이 값일 수 있다.
또는, 상기 사용자기기의 신호 전송 방법은 상기 제1 PRS를 전송한 후에, 상기 제2 TRTD 정보와 연관된 신호를 수신하는 것을 더 포함할 수 있다. 이때, 상기 제2 TRTD정보와 연관된 신호는 상기 제2 TRTD와 동일한 길이의 시퀀스에 기반하여 생성될 수 있다.
또는, 상기 제2 TRTD 정보는 상기 제2 PRS의 시퀀스의 패턴 정보에 기반하여 지시되고, 여기서 상기 패턴 정보는 상기 제2 PRS의 시퀀스의 콤 타입(comb type) 및 순환 이동(cyclic shift) 값을 포함할 수 있다.
본 개시의 방법 2에 따르면, NR의 면허 대역에서 네트워크 기반의 RTT 측위 방법과 비교 시에 보다 빠른 UE 측위가 가능하며, 대역폭이 넓은 비면허 대역을 사용함으로써 정확한 거리 측정이 가능할 수 있다.
또한, UE에서의 빠른 RTT 측위를 위해 채널을 점유한 UE가 주어진 MCOT 내에 다수의 AN들과 측위 동작을 수행할 수 있다.
또한, 본 개시의 방법 2에 따른 cTRTD 결정 및 결정된 cTRTD에 기반한 UL-PRS와 DL-PRS의 동적 스케줄링은 빠른 RTT 동작을 제공할 수 있다.
또한, 본 개시의 방법 2에 따른 UE 기반의 RTT 동작에서 시퀀스를 이용한 fTRTD 정보 제공 방법은 메시지를 이용한 방법과 비교 시에 메시지 디코딩 과정이 필요하지 않기 때문에 UE의 빠른 RTT 측위 동작을 제공할 수 있다.
또한, 본 개시의 방법 2에 따른 UE 기반의 RTT 동작에서 AN의 유동적인 기준시간 운용은 fTRTD를 발생시키지 않으며, UE에서 fTRTD 추정과 관련된 동작이 수행되지 않기 때문에 UE의 복잡도가 낮으며 빠른 RTT 동작을 제공할 수 있다.
상술한 설명에서 제안 방식에 대한 일례들 또한 본 개시의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수 도 있지만, 일부 제안 방식들의 조합 (혹은 병합) 형태로 구현될 수 도 있다. 일례로, 본 개시에서는 설명의 편의를 위해 3GPP NR시스템을 기반으로 제안 방식을 설명하였지만, 제안 방식이 적용되는 시스템의 범위는 3GPP NR 시스템 외에 다른 시스템으로도 확장 가능하다. 일례로, 본 개시의 제안 방식들은 D2D 통신을 위해서도 확장 적용 가능하다. 여기서, 일례로, D2D 통신은 UE가 다른 UE와 직접 무선 채널을 이용하여 통신하는 것을 의미하며, 여기서, 일례로 UE는 사용자의 UE를 의미하지만, 기지국과 같은 네트워크 장비가 UE 사이의 통신 방식에 따라서 신호를 송/수신하는 경우에는 역시 일종의 UE로 간주될 수 있다. 또한, 일례로, 본 개시의 제안 방식들은 MODE 3 V2X 동작 (및/또는 MODE 4 V2X 동작)에만 한정적으로 적용될 수 도 있다. 또한, 일례로, 본 개시의 제안 방식들은 사전에 설정(/시그널링)된 (특정) V2X 채널(/시그널) 전송 (예를 들어, PSSCH (및/또는 (연동된) PSCCH 및/또는 PSBCH))에만 한정적으로 적용될 수 도 있다. 또한, 일례로, 본 개시의 제안 방식들은 PSSCH와 (연동된) PSCCH가 (주파수 영역 상에서) 인접 (ADJACENT) (및/또는 이격 (NON-ADJACENT))되어 전송될 경우 (및/또는 사전에 설정(/시그널링)된 MCS (및/또는 코딩레이트 및/또는 RB) (값(/범위)) 기반의 전송이 수행될 경우)에만 한정적으로 적용될 수 도 있다. 또한, 일례로, 본 개시의 제안 방식들은 MODE#3 (및/또는 MODE#4) V2X CARRIER (및/또는 (MODE#4(/3)) SL(/UL) SPS (및/또는 SL(/UL) DYNAMIC SCHEDULING) CARRIER) 간에만 한정적으로 적용될 수 도 있다. 또한, 일례로, 본 개시의 제안 방식들은 CARRIER 간에 동기 시그널 (송신 (및/또는 수신)) 자원 위치 및/또는 개수 (및/또는 V2X 자원 풀 관련 서브프레임 위치 및/또는 개수 (및/또는 서브채널 크기 및/또는 개수))가 동일한 (및/또는 (일부) 상이한) 경우에만 (한정적으로) 적용될 수 도 있다. 일례로, 본 개시의 제안 방식들은 기지국과 UE 간의 (V2X) 통신에서도 확장 적용될 수 도 있다. 일례로, 본 개시의 제안 방식들은 UNICAST (사이드링크) 통신 (및/또는 MULTICAST (혹은 GROUPCAST) (사이드링크) 통신 및/또는 BROADCAST (사이드링크) 통신)에만 한정적으로 적용될 수 도 있다.
본 개시가 적용되는 통신 시스템 예
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 개시의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 29은 본 개시에 적용되는 통신 시스템(1)을 예시한다.
도 29을 참조하면, 본 개시에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 개시의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
본 개시가 적용되는 무선 기기 예
도 30은 본 개시에 적용될 수 있는 무선 기기를 예시한다.
도 30을 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 29의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
여기서, 본 명세서의 무선 기기(100, 200)에서 구현되는 무선 통신 기술은 LTE, NR 및 6G뿐만 아니라 저전력 통신을 위한 Narrowband Internet of Things를 포함할 수 있다. 이때, 예를 들어 NB-IoT 기술은 LPWAN(Low Power Wide Area Network) 기술의 일례일 수 있고, LTE Cat NB1 및/또는 LTE Cat NB2 등의 규격으로 구현될 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기(100, 200)에서 구현되는 무선 통신 기술은 LTE-M 기술을 기반으로 통신을 수행할 수 있다. 이때, 일 예로, LTE-M 기술은 LPWAN 기술의 일례일 수 있고, eMTC(enhanced Machine Type Communication) 등의 다양한 명칭으로 불릴 수 있다. 예를 들어, LTE-M 기술은 1) LTE CAT(LTE Category) 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL(non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, 및/또는 7) LTE M 등의 다양한 규격 중 적어도 어느 하나로 구현될 수 있으며 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기(100, 200)에서 구현되는 무선 통신 기술은 저전력 통신을 고려한 지그비(ZigBee), 블루투스(Bluetooth) 및 저전력 광역 통신망(Low Power Wide Area Network, LPWAN) 중 적어도 어느 하나를 포함할 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 일 예로 ZigBee 기술은 IEEE 802.15.4 등의 다양한 규격을 기반으로 소형/저-파워 디지털 통신에 관련된 PAN(personal area networks)을 생성할 수 있으며, 다양한 명칭으로 불릴 수 있다.
본 개시가 적용되는 차량 또는 자율 주행 차량 예
도 31는 본 개시에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 31를 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
본 개시가 적용되는 AR/VR 및 차량 예
도 32은 본 개시에 적용되는 차량을 예시한다. 차량은 운송수단, 기차, 비행체, 선박 등으로도 구현될 수 있다.
도 32을 참조하면, 차량(100)은 통신부(110), 제어부(120), 메모리부(130), 입출력부(140a) 및 위치 측정부(140b)를 포함할 수 있다.
통신부(110)는 다른 차량, 또는 기지국 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 메모리부(130)는 차량(100)의 다양한 기능을 지원하는 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(140a)는 메모리부(130) 내의 정보에 기반하여 AR/VR 오브젝트를 출력할 수 있다. 입출력부(140a)는 HUD를 포함할 수 있다. 위치 측정부(140b)는 차량(100)의 위치 정보를 획득할 수 있다. 위치 정보는 차량(100)의 절대 위치 정보, 주행선 내에서의 위치 정보, 가속도 정보, 주변 차량과의 위치 정보 등을 포함할 수 있다. 위치 측정부(140b)는 GPS 및 다양한 센서들을 포함할 수 있다.
일 예로, 차량(100)의 통신부(110)는 외부 서버로부터 지도 정보, 교통 정보 등을 수신하여 메모리부(130)에 저장할 수 있다. 위치 측정부(140b)는 GPS 및 다양한 센서를 통하여 차량 위치 정보를 획득하여 메모리부(130)에 저장할 수 있다. 제어부(120)는 지도 정보, 교통 정보 및 차량 위치 정보 등에 기반하여 가상 오브젝트를 생성하고, 입출력부(140a)는 생성된 가상 오브젝트를 차량 내 유리창에 표시할 수 있다(1410, 1420). 또한, 제어부(120)는 차량 위치 정보에 기반하여 차량(100)이 주행선 내에서 정상적으로 운행되고 있는지 판단할 수 있다. 차량(100)이 주행선을 비정상적으로 벗어나는 경우, 제어부(120)는 입출력부(140a)를 통해 차량 내 유리창에 경고를 표시할 수 있다. 또한, 제어부(120)는 통신부(110)를 통해 주변 차량들에게 주행 이상에 관한 경고 메세지를 방송할 수 있다. 상황에 따라, 제어부(120)는 통신부(110)를 통해 관계 기관에게 차량의 위치 정보와, 주행/차량 이상에 관한 정보를 전송할 수 있다.
본 개시가 적용되는 XR 기기 예
도 33은 본 개시에 적용되는 XR 기기를 예시한다. XR 기기는 HMD, 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등으로 구현될 수 있다.
도 33을 참조하면, XR 기기(100a)는 통신부(110), 제어부(120), 메모리부(130), 입출력부(140a), 센서부(140b) 및 전원공급부(140c)를 포함할 수 있다.
통신부(110)는 다른 무선 기기, 휴대 기기, 또는 미디어 서버 등의 외부 기기들과 신호(예, 미디어 데이터, 제어 신호 등)를 송수신할 수 있다. 미디어 데이터는 영상, 이미지, 소리 등을 포함할 수 있다. 제어부(120)는 XR 기기(100a)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 예를 들어, 제어부(120)는 비디오/이미지 획득, (비디오/이미지) 인코딩, 메타데이터 생성 및 처리 등의 절차를 제어 및/또는 수행하도록 구성될 수 있다. 메모리부(130)는 XR 기기(100a)의 구동/XR 오브젝트의 생성에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(140a)는 외부로부터 제어 정보, 데이터 등을 획득하며, 생성된 XR 오브젝트를 출력할 수 있다. 입출력부(140a)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부, 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다. 센서부(140b)는 XR 기기 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140b)는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰 및/또는 레이더 등을 포함할 수 있다. 전원공급부(140c)는 XR 기기(100a)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다.
일 예로, XR 기기(100a)의 메모리부(130)는 XR 오브젝트(예, AR/VR/MR 오브젝트)의 생성에 필요한 정보(예, 데이터 등)를 포함할 수 있다. 입출력부(140a)는 사용자로부터 XR 기기(100a)를 조작하는 명령을 회득할 수 있으며, 제어부(120)는 사용자의 구동 명령에 따라 XR 기기(100a)를 구동시킬 수 있다. 예를 들어, 사용자가 XR 기기(100a)를 통해 영화, 뉴스 등을 시청하려고 하는 경우, 제어부(120)는 통신부(130)를 통해 컨텐츠 요청 정보를 다른 기기(예, 휴대 기기(100b)) 또는 미디어 서버에 전송할 수 있다. 통신부(130)는 다른 기기(예, 휴대 기기(100b)) 또는 미디어 서버로부터 영화, 뉴스 등의 컨텐츠를 메모리부(130)로 다운로드/스트리밍 받을 수 있다. 제어부(120)는 컨텐츠에 대해 비디오/이미지 획득, (비디오/이미지) 인코딩, 메타데이터 생성/처리 등의 절차를 제어 및/또는 수행하며, 입출력부(140a)/센서부(140b)를 통해 획득한 주변 공간 또는 현실 오브젝트에 대한 정보에 기반하여 XR 오브젝트를 생성/출력할 수 있다.
또한, XR 기기(100a)는 통신부(110)를 통해 휴대 기기(100b)와 무선으로 연결되며, XR 기기(100a)의 동작은 휴대 기기(100b)에 의해 제어될 수 있다. 예를 들어, 휴대 기기(100b)는 XR 기기(100a)에 대한 콘트롤러로 동작할 수 있다. 이를 위해, XR 기기(100a)는 휴대 기기(100b)의 3차원 위치 정보를 획득한 뒤, 휴대 기기(100b)에 대응하는 XR 개체를 생성하여 출력할 수 있다.
본 개시가 적용되는 로봇 예
도 34은 본 개시에 적용되는 로봇을 예시한다. 로봇은 사용 목적이나 분야에 따라 산업용, 의료용, 가정용, 군사용 등으로 분류될 수 있다.
도 34을 참조하면, 로봇(100)은 통신부(110), 제어부(120), 메모리부(130), 입출력부(140a), 센서부(140b) 및 구동부(140c)를 포함할 수 있다.
통신부(110)는 다른 무선 기기, 다른 로봇, 또는 제어 서버 등의 외부 기기들과 신호(예, 구동 정보, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 로봇(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 메모리부(130)는 로봇(100)의 다양한 기능을 지원하는 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(140a)는 로봇(100)의 외부로부터 정보를 획득하며, 로봇(100)의 외부로 정보를 출력할 수 있다. 입출력부(140a)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부, 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다. 센서부(140b)는 로봇(100)의 내부 정보, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140b)는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰, 레이더 등을 포함할 수 있다. 구동부(140c)는 로봇 관절을 움직이는 등의 다양한 물리적 동작을 수행할 수 있다. 또한, 구동부(140c)는 로봇(100)을 지상에서 주행하거나 공중에서 비행하게 할 수 있다. 구동부(140c)는 액츄에이터, 모터, 바퀴, 브레이크, 프로펠러 등을 포함할 수 있다.
본 개시가 적용되는 AI 기기 예
도 35는 본 개시에 적용되는 AI 기기를 예시한다. AI 기기는 TV, 프로젝터, 스마트폰, PC, 노트북, 디지털방송용 UE기, 태블릿 PC, 웨어러블 장치, 셋톱박스(STB), 라디오, 세탁기, 냉장고, 디지털 사이니지, 로봇, 차량 등과 같은, 고정형 기기 또는 이동 가능한 기기 등으로 구현될 수 있다.
도 35를 참조하면, AI 기기(100)는 통신부(110), 제어부(120), 메모리부(130), 입/출력부(140a/140b), 러닝 프로세서부(140c) 및 센서부(140d)를 포함할 수 있다.
통신부(110)는 유무선 통신 기술을 이용하여 다른 AI 기기(예, 도 29, 100x, 200, 400)나 AI 서버(예, 도 29의 400) 등의 외부 기기들과 유무선 신호(예, 센서 정보, 사용자 입력, 학습 모델, 제어 신호 등)를 송수신할 수 있다. 이를 위해, 통신부(110)는 메모리부(130) 내의 정보를 외부 기기로 전송하거나, 외부 기기로부터 수신된 신호를 메모리부(130)로 전달할 수 있다.
제어부(120)는 데이터 분석 알고리즘 또는 머신 러닝 알고리즘을 사용하여 결정되거나 생성된 정보에 기초하여, AI 기기(100)의 적어도 하나의 실행 가능한 동작을 결정할 수 있다. 그리고, 제어부(120)는 AI 기기(100)의 구성 요소들을 제어하여 결정된 동작을 수행할 수 있다. 예를 들어, 제어부(120)는 러닝 프로세서부(140c) 또는 메모리부(130)의 데이터를 요청, 검색, 수신 또는 활용할 수 있고, 적어도 하나의 실행 가능한 동작 중 예측되는 동작이나, 바람직한 것으로 판단되는 동작을 실행하도록 AI 기기(100)의 구성 요소들을 제어할 수 있다. 또한, 제어부(120)는 AI 장치(100)의 동작 내용이나 동작에 대한 사용자의 피드백 등을 포함하는 이력 정보를 수집하여 메모리부(130) 또는 러닝 프로세서부(140c)에 저장하거나, AI 서버(도 29, 400) 등의 외부 장치에 전송할 수 있다. 수집된 이력 정보는 학습 모델을 갱신하는데 이용될 수 있다.
메모리부(130)는 AI 기기(100)의 다양한 기능을 지원하는 데이터를 저장할 수 있다. 예를 들어, 메모리부(130)는 입력부(140a)로부터 얻은 데이터, 통신부(110)로부터 얻은 데이터, 러닝 프로세서부(140c)의 출력 데이터, 및 센싱부(140)로부터 얻은 데이터를 저장할 수 있다. 또한, 메모리부(130)는 제어부(120)의 동작/실행에 필요한 제어 정보 및/또는 소프트웨어 코드를 저장할 수 있다.
입력부(140a)는 AI 기기(100)의 외부로부터 다양한 종류의 데이터를 획득할 수 있다. 예를 들어, 입력부(140a)는 모델 학습을 위한 학습 데이터, 및 학습 모델이 적용될 입력 데이터 등을 획득할 수 있다. 입력부(140a)는 카메라, 마이크로폰 및/또는 사용자 입력부 등을 포함할 수 있다. 출력부(140b)는 시각, 청각 또는 촉각 등과 관련된 출력을 발생시킬 수 있다. 출력부(140b)는 디스플레이부, 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다. 센싱부(140)는 다양한 센서들을 이용하여 AI 기기(100)의 내부 정보, AI 기기(100)의 주변 환경 정보 및 사용자 정보 중 적어도 하나를 얻을 수 있다. 센싱부(140)는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰 및/또는 레이더 등을 포함할 수 있다.
러닝 프로세서부(140c)는 학습 데이터를 이용하여 인공 신경망으로 구성된 모델을 학습시킬 수 있다. 러닝 프로세서부(140c)는 AI 서버(도 29, 400)의 러닝 프로세서부와 함께 AI 프로세싱을 수행할 수 있다. 러닝 프로세서부(140c)는 통신부(110)를 통해 외부 기기로부터 수신된 정보, 및/또는 메모리부(130)에 저장된 정보를 처리할 수 있다. 또한, 러닝 프로세서부(140c)의 출력 값은 통신부(110)를 통해 외부 기기로 전송되거나/되고, 메모리부(130)에 저장될 수 있다.
상술한 바와 같은 실시형태들은 다양한 이동통신 시스템에 적용될 수 있다.

Claims (15)

  1. 무선통신시스템에서 사용자기기의 방법에 있어서,
    PRS(positioning reference signal) 설정 정보를 수신하고;
    비면허 대역(unlicensed band)에 대하여 LBT(listen before talk)를 수행하고;
    상기 비면허 대역에 포함된 복수의 채널들 중 상기 LBT에 따라 유휴(IDLE) 상태인 채널 상에서 상기 PRS 설정 정보에 기반하여 제1 PRS(positioning reference signal)를 AN(anchor node)에 전송하고; 및
    상기 채널 상에서 상기 PRS 설정 정보에 기반하여 제2 PRS를 상기 AN로부터 수신하고,
    상기 제1 PRS는 상기 LBT가 수행된 직후에 전송되는,
    방법.
  2. 제1항에 있어서,
    상기 PRS 설정 정보는 상기 제1 PRS 및 상기 제2 PRS의 자원 패턴 및 상기 제1 PRS 및 상기 제2 PRS의 심볼의 개수를 포함하는,
    방법.
  3. 제1항에 있어서,
    상기 제1 PRS 및 상기 제2 PRS는 TRTD(Tx-Rx time difference) 획득에 사용되고, 및
    상기 TRTD는 상기 AN가 상기 제1 PRS를 수신한 시점 및 상기 AN가 상기 제2 PRS를 전송한 시점 간에 시간 차이 값인,
    방법.
  4. 제3항에 있어서,
    상기 TRTD는 제1 TRTD 정보 및 제2 TRTD 정보에 의해 지시되고,
    상기 제1 TRTD 정보는
    Figure PCTKR2020011659-appb-img-000014
    이고, 여기서 t CB는 상기 TRTD이고, T u는 OFDM(orthogonal frequency division multiple) 심볼의 길이이고, 및
    상기 제2 TRTD 정보는
    Figure PCTKR2020011659-appb-img-000015
    이고, 여기 cTRTD_integer는 상기 제1 TRTD 정보이고, T x는 상기 OFDM 심볼의 샘플의 길이인,
    방법.
  5. 제4항에 있어서,
    상기 제1 PRS를 전송한 후에, 상기 제2 TRTD 정보와 연관된 신호를 수신하는 것을 더 포함하고, 및
    상기 제2 TRTD 정보와 연관된 신호는 상기 제2 TRTD 정보와 동일한 길이의 시퀀스에 기반하여 생성되는,
    방법.
  6. 제4항에 있어서,
    상기 제2 TRTD 정보는 상기 제2 PRS의 시퀀스의 패턴 정보에 기반하여 지시되고, 여기서 상기 패턴 정보는 상기 제2 PRS의 시퀀스의 콤 타입(comb type) 및 순환 이동(cyclic shift) 값을 포함하는,
    방법.
  7. 무선통신시스템에서 사용자기기를 위한 장치에 있어서,
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하게 연결되어 상기 적어도 하나의 프로세서가 동작들을 수행하도록 하는 적어도 하나의 명령어들(instructions)을 저장하는 적어도 하나의 메모리(memory)를 포함하고, 상기 동작들은:
    PRS(positioning reference signal) 설정 정보를 수신하고;
    비면허 대역(unlicensed band)에 대하여 LBT(listen before talk)를 수행하고;
    상기 비면허 대역에 포함된 복수의 채널들 중 상기 LBT에 따라 유휴(IDLE) 상태인 채널 상에서 상기 PRS 설정 정보에 기반하여 제1 PRS(positioning reference signal)를 AN(anchor node)에 전송하고; 및
    상기 채널 상에서 상기 PRS 설정 정보에 기반하여 제2 PRS를 상기 AN로부터 수신하고,
    상기 제1 PRS는 상기 LBT가 수행된 직후에 전송되는,
    장치.
  8. 제7항에 있어서,
    상기 PRS 설정 정보는 상기 제1 PRS 및 상기 제2 PRS의 자원 패턴 및 상기 제1 PRS 및 상기 제2 PRS의 심볼의 개수를 포함하는,
    장치.
  9. 제7항에 있어서,
    상기 제1 PRS 및 상기 제2 PRS는 TRTD(Tx-Rx time difference) 획득에 사용되고, 및
    상기 TRTD는 상기 AN가 상기 제1 PRS를 수신한 시점 및 상기 AN가 상기 제2 PRS를 전송한 시점 간에 시간 차이 값인,
    장치.
  10. 제9항에 있어서,
    상기 TRTD는 제1 TRTD 정보 및 제2 TRTD 정보에 의해 지시되고,
    상기 제1 TRTD 정보는
    Figure PCTKR2020011659-appb-img-000016
    이고, 여기서 t CB는 상기 TRTD이고, T u는 OFDM(orthogonal frequency division multiple) 심볼의 길이이고, 및
    상기 제2 TRTD 정보는
    Figure PCTKR2020011659-appb-img-000017
    이고, 여기 cTRTD_integer는 상기 제1 TRTD 정보이고, T x는 상기 OFDM 심볼의 샘플의 길이인,
    장치.
  11. 제10항에 있어서,
    상기 제1 PRS를 전송한 후에, 상기 제2 TRTD 정보와 연관된 신호를 수신하는 것을 더 포함하고, 및
    상기 제2 TRTD 정보와 연관된 신호는 상기 제2 TRTD 정보와 동일한 길이의 시퀀스에 기반하여 생성되는,
    장치.
  12. 제10항에 있어서,
    상기 제2 TRTD 정보는 상기 제2 PRS의 시퀀스의 패턴 정보에 기반하여 지시되고, 여기서 상기 패턴 정보는 상기 제2 PRS의 시퀀스의 콤 타입(comb type) 및 순환 이동(cyclic shift) 값을 포함하는,
    장치.
  13. 제7항에 있어서,
    상기 사용자기기는 자율주행 차량 또는 자율주행 차량에 포함된 것인,
    장치.
  14. 무선통신시스템에서 사용자기기를 위한 동작들을 수행하게 하는 프로세서에 있어서,
    상기 동작들은:
    PRS(positioning reference signal) 설정 정보를 수신하고;
    비면허 대역(unlicensed band)에 대하여 LBT(listen before talk)를 수행하고;
    상기 비면허 대역에 포함된 복수의 채널들 중 상기 LBT에 따라 유휴(IDLE) 상태인 채널 상에서 상기 PRS 설정 정보에 기반하여 제1 PRS(positioning reference signal)를 AN(anchor node)에 전송하고; 및
    상기 채널 상에서 상기 PRS 설정 정보에 기반하여 제2 PRS를 상기 AN로부터 수신하고,
    상기 제1 PRS는 상기 LBT가 수행된 직후에 전송되는,
    프로세서.
  15. 컴퓨터 판독가능한 저장 매체에 있어서,
    상기 컴퓨터 판독가능한 저장 매체는 적어도 하나 이상의 프로세서에 의해 실행될 때 상기 적어도 하나 이상의 프로세서로 하여금 사용자기기를 위한 동작들을 수행하도록 하는 적어도 하나 이상의 명령어들(instructions)을 포함하는 적어도 하나 이상의 컴퓨터 프로그램을 저장하며, 상기 동작들은:
    PRS(positioning reference signal) 설정 정보를 수신하고;
    비면허 대역(unlicensed band)에 대하여 LBT(listen before talk)를 수행하고;
    상기 비면허 대역에 포함된 복수의 채널들 중 상기 LBT에 따라 유휴(IDLE) 상태인 채널 상에서 상기 PRS 설정 정보에 기반하여 제1 PRS(positioning reference signal)를 AN(anchor node)에 전송하고; 및
    상기 채널 상에서 상기 PRS 설정 정보에 기반하여 제2 PRS를 상기 AN로부터 수신하고,
    상기 제1 PRS는 상기 LBT가 수행된 직후에 전송되는,
    컴퓨터 판독가능한 저장 매체.
PCT/KR2020/011659 2019-08-29 2020-08-31 무선통신시스템에서 사용자기기의 측위 방법 WO2021040501A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/634,800 US11903026B2 (en) 2019-08-29 2020-08-31 Positioning method by user device in wireless communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190106472 2019-08-29
KR20190106436 2019-08-29
KR10-2019-0106472 2019-08-29
KR10-2019-0106436 2019-08-29

Publications (1)

Publication Number Publication Date
WO2021040501A1 true WO2021040501A1 (ko) 2021-03-04

Family

ID=74684855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011659 WO2021040501A1 (ko) 2019-08-29 2020-08-31 무선통신시스템에서 사용자기기의 측위 방법

Country Status (2)

Country Link
US (1) US11903026B2 (ko)
WO (1) WO2021040501A1 (ko)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113866714A (zh) * 2021-09-23 2021-12-31 星觅(上海)科技有限公司 一种位置确定***和方法
CN113892276A (zh) * 2021-09-02 2022-01-04 北京小米移动软件有限公司 一种信息传输方法和装置
US11438119B2 (en) * 2020-11-20 2022-09-06 Qualcomm Incorporated Reference signal and supplemental signal configurations
US11506746B1 (en) 2021-05-25 2022-11-22 Qualcomm Incorporated Sidelink-based positioning using sidelink signaling
WO2022260820A1 (en) * 2021-06-07 2022-12-15 Qualcomm Incorporated Techniques for sidelink reference signal transmission
WO2023018504A1 (en) * 2021-08-10 2023-02-16 Qualcomm Incorporated Sidelink aided time difference of arrival based positioning
US11741093B1 (en) 2021-07-21 2023-08-29 T-Mobile Usa, Inc. Intermediate communication layer to translate a request between a user of a database and the database
WO2023130127A3 (en) * 2022-04-28 2023-09-07 Futurewei Technologies, Inc. Sidelink unlicensed priorities for channel access and resource reservation
WO2023207493A1 (zh) * 2022-04-29 2023-11-02 华为技术有限公司 通信的方法和装置
WO2023206324A1 (en) * 2022-04-29 2023-11-02 Zte Corporation Sidelink positioning configurations
US11832212B2 (en) 2020-07-27 2023-11-28 Samsung Electronics Co., Ltd. Positioning in RRC idle and inactive states
WO2024031377A1 (zh) * 2022-08-09 2024-02-15 Oppo广东移动通信有限公司 通信方法以及终端设备
US11924711B1 (en) 2021-08-20 2024-03-05 T-Mobile Usa, Inc. Self-mapping listeners for location tracking in wireless personal area networks

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11930480B2 (en) * 2020-06-22 2024-03-12 Qualcomm Incorporated Reduced sensing procedure for sidelink communications
WO2022006267A2 (en) * 2020-07-01 2022-01-06 Qualcomm Incorporated Signaling timing offset between stations for user equipment based positioning
US11864231B2 (en) * 2020-08-20 2024-01-02 Qualcomm Incorporated Listen-before-talk (LBT) aware autonomous sensing for sidelink
US11979906B2 (en) * 2020-08-28 2024-05-07 Qualcomm Incorporated Resource reservation for NR-U SL
CN116368829A (zh) * 2020-10-09 2023-06-30 苹果公司 使用辅助ue信令确定目标ue的位置
US20230224721A1 (en) * 2022-01-12 2023-07-13 Qualcomm Incorporated Active user equipment counting
WO2024072166A1 (ko) * 2022-09-29 2024-04-04 엘지전자 주식회사 비면허 대역에서 생성된 cot을 공유하는 방법 및 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016144028A1 (ko) * 2015-03-06 2016-09-15 엘지전자 주식회사 무선 통신 시스템에서 참조 신호 수신 방법 및 이를 위한 장치
US20180054750A1 (en) * 2015-04-03 2018-02-22 Lg Electronics Inc. Method for receiving or transmitting pilot signal in wireless communication system, and apparatus therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110730501B (zh) * 2018-07-17 2021-12-28 华为技术有限公司 定位方法、装置及设备
US11483794B2 (en) * 2019-08-23 2022-10-25 Qualcomm Incorporated Ranging signal transmission in unlicensed band

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016144028A1 (ko) * 2015-03-06 2016-09-15 엘지전자 주식회사 무선 통신 시스템에서 참조 신호 수신 방법 및 이를 위한 장치
US20180054750A1 (en) * 2015-04-03 2018-02-22 Lg Electronics Inc. Method for receiving or transmitting pilot signal in wireless communication system, and apparatus therefor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Discussion on Multi-RTT procedure", 3GPP TSG-RAN3 MEETING #105; R3-194265, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 16 August 2019 (2019-08-16), Ljubljana, Slovenia; 20190826 - 20190830, XP051770457 *
QUALCOMM INCORPORATED: "Other Considerations for Two-Step RACH", 3GPP TSG-RAN WG1 MEETING #98; R1-1909241, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 17 August 2019 (2019-08-17), Prague, Czech Republic; 20190826 - 20190830, XP051765846 *
VIVO: "Discussion on UL RS for NR positioning", 3GPP TSG RAN WG1 #97; R1-1906178, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 1 May 2019 (2019-05-01), Reno, USA; 20190513 - 20190517, XP051708217 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11832212B2 (en) 2020-07-27 2023-11-28 Samsung Electronics Co., Ltd. Positioning in RRC idle and inactive states
US11438119B2 (en) * 2020-11-20 2022-09-06 Qualcomm Incorporated Reference signal and supplemental signal configurations
US11506746B1 (en) 2021-05-25 2022-11-22 Qualcomm Incorporated Sidelink-based positioning using sidelink signaling
WO2022250857A1 (en) * 2021-05-25 2022-12-01 Qualcomm Incorporated Sidelink-based positioning using sidelink signaling
WO2022260820A1 (en) * 2021-06-07 2022-12-15 Qualcomm Incorporated Techniques for sidelink reference signal transmission
US11741093B1 (en) 2021-07-21 2023-08-29 T-Mobile Usa, Inc. Intermediate communication layer to translate a request between a user of a database and the database
WO2023018504A1 (en) * 2021-08-10 2023-02-16 Qualcomm Incorporated Sidelink aided time difference of arrival based positioning
US11924711B1 (en) 2021-08-20 2024-03-05 T-Mobile Usa, Inc. Self-mapping listeners for location tracking in wireless personal area networks
WO2023028962A1 (zh) * 2021-09-02 2023-03-09 北京小米移动软件有限公司 一种信息传输方法和装置
CN113892276A (zh) * 2021-09-02 2022-01-04 北京小米移动软件有限公司 一种信息传输方法和装置
CN113866714A (zh) * 2021-09-23 2021-12-31 星觅(上海)科技有限公司 一种位置确定***和方法
WO2023130127A3 (en) * 2022-04-28 2023-09-07 Futurewei Technologies, Inc. Sidelink unlicensed priorities for channel access and resource reservation
WO2023207493A1 (zh) * 2022-04-29 2023-11-02 华为技术有限公司 通信的方法和装置
WO2023206324A1 (en) * 2022-04-29 2023-11-02 Zte Corporation Sidelink positioning configurations
WO2024031377A1 (zh) * 2022-08-09 2024-02-15 Oppo广东移动通信有限公司 通信方法以及终端设备

Also Published As

Publication number Publication date
US11903026B2 (en) 2024-02-13
US20220279581A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
WO2021040501A1 (ko) 무선통신시스템에서 사용자기기의 측위 방법
WO2021002723A1 (ko) 무선통신시스템에서 사이드링크 drx에 관련된 ue의 동작 방법
WO2020153749A1 (ko) 무선통신시스템에서 psfch를 전송할 슬롯을 결정하는 방법
WO2020209564A1 (ko) 무선통신시스템에서 사이드링크 통신 및 피드백에 관련된 ue의 동작 방법
WO2020145803A1 (ko) 무선통신시스템에서 피드백 정보를 전송하는 방법
WO2020153721A1 (ko) 무선통신시스템에서 사이드링크 harq 피드백을 전송하는 방법
WO2020145802A1 (ko) 무선통신시스템에서 피드백 정보를 전송하는 타이밍에 관련된 방법
WO2020197327A1 (ko) 무선통신시스템에서 rrc 재개 후 rlf에 관련된 rrc 메시지를 전송하는 사이드링크 tx ue의 동작 방법
WO2021040495A1 (ko) 무선통신시스템에서 사용자기기의 방법
WO2020197328A1 (ko) 무선통신시스템에서 랜덤 액세스 절차 후 링크를 수립한 tx ue의 rlf의 보고 관련된 tx ue의 동작 방법
WO2021040494A1 (ko) 무선통신시스템에서 사용자기기의 방법
WO2020153709A1 (ko) 무선통신시스템에서 사이드링크 harq 피드백을 전송하는 방법
WO2020246818A1 (ko) 무선통신시스템에서 사이드링크 신호를 송신하는 방법
WO2020209594A1 (ko) 무선통신시스템에서 사이드링크 통신 및 피드백에 관련된 ue의 동작 방법
WO2020145807A1 (ko) 무선통신시스템에서 단말이 기지국으로 사이드링크 피드백을 전송하는 방법
WO2020184955A1 (ko) 무선 통신 시스템에서 사이드링크 자원 할당 방법
WO2021045575A1 (ko) 무선통신시스템에서 단말의 위치를 측정하는 방법 및 장치
WO2020218872A1 (ko) 무선통신시스템에서 사이드링크 그룹캐스트에서 피드백 자원 결정에 관련된 ue의 동작 방법
WO2020262906A1 (ko) 무선통신시스템에서 성상도의 이동에 관련된 사이드링크 단말의 동작 방법
WO2020256462A1 (ko) 무선통신시스템에서 사이드링크 drx에 관련된 ue의 동작 방법
WO2020190064A1 (ko) 무선 통신 시스템에서 사이드링크 신호 전송 방법
WO2020226386A1 (ko) 무선통신시스템에서 사이드링크 신호를 송신하는 방법
WO2020242211A1 (ko) 무선통신시스템에서 사이드링크 신호를 송신하는 방법
WO2020222613A1 (ko) 무선 통신 시스템에서 신호 송수신 방법
WO2020209623A1 (ko) 무선통신시스템에서 사이드링크 신호를 전송하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857593

Country of ref document: EP

Kind code of ref document: A1