WO2024029363A1 - Coated base material - Google Patents

Coated base material Download PDF

Info

Publication number
WO2024029363A1
WO2024029363A1 PCT/JP2023/026615 JP2023026615W WO2024029363A1 WO 2024029363 A1 WO2024029363 A1 WO 2024029363A1 JP 2023026615 W JP2023026615 W JP 2023026615W WO 2024029363 A1 WO2024029363 A1 WO 2024029363A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
base material
thickness
region
coating
Prior art date
Application number
PCT/JP2023/026615
Other languages
French (fr)
Japanese (ja)
Inventor
朋来 村田
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Publication of WO2024029363A1 publication Critical patent/WO2024029363A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes

Definitions

  • the present disclosure relates to coated substrates.
  • Patent Documents 1 to 4 disclose coated substrates provided with metal oxide films.
  • a wet film forming method is adopted.
  • a dry film forming method (dry process) is employed to control the thickness in accordance with the complex shape of the base material.
  • conventional coated base materials are not necessarily sufficient, and there has been a strong desire for the development of new coated base materials.
  • JP2011-32521A Japanese Patent Application Publication No. 2009-147192 JP2015-93821A Japanese Patent Application Publication No. 9-202606
  • the present disclosure has been made in view of the above circumstances, and aims to provide a novel coated base material that is applicable to various fields and can be mass-produced.
  • the present disclosure can be realized as the following forms.
  • the base material is covered with a film,
  • the thickness of the film is 1 nm or more and less than 800 nm,
  • the total elemental percentage of metal elements and O (oxygen) is 70 atm% or more,
  • the relative density of the film is 90% or more,
  • a coated base material that satisfies at least one of the following conditions (1) and (2).
  • Condition (1) The maximum thickness of the film formed on the edge region of the surface of the base material is greater than the thickness of the film formed on the inner region of the surface, which is inside the edge region. big.
  • Condition (2) The maximum thickness of the film formed on the region where the convex portion is present on the surface of the base material is greater than the thickness of the film formed on the region where the convex portion is not present on the surface. .
  • the maximum thickness of the coating formed on the edge region is 10% or more greater than the thickness of the coating formed on the inner region, [1] or [2] Coated substrate as described.
  • the maximum thickness of the film formed on the region where the convex portion is present is 10% or more greater than the thickness of the film formed on the region where the convex portion is not present, [1 ] or the coated base material according to [2].
  • the thickness of the coating decreases from the maximum thickness portion of the coating formed on the edge region toward the inner region. coated base material.
  • the thickness of the coating decreases from the maximum thickness portion of the coating formed on the region where the convex portion exists toward the region where the convex portion does not exist, [1] Or the coated base material according to [2].
  • the metal elements include Al (aluminum), Ti (titanium), Mo (molybdenum), Cr (chromium), Mn (manganese), Fe (iron), Co (cobalt), Ni (nickel), Zr (zirconium),
  • the coating according to [1] or [2] which is at least one member selected from the group consisting of V (vanadium), W (tungsten), Ta (tantalum), Nb (niobium), and Sn (tin). Base material.
  • a novel coated base material that is applicable to various fields and can be mass-produced is provided.
  • FIG. 3 is a schematic diagram of a cross section of a coated base material.
  • FIG. 3 is a schematic diagram of a cross section of a coated base material. It is a schematic diagram of a film-forming apparatus. It is a graph showing the relationship between electrodeposition time and deposited weight (deposited mass). It is a graph showing the relationship between the number of sample samples and the concentration of aluminum element in the bath liquid.
  • the coated base material 1 is formed by covering a base material 5 with a film 3.
  • the thickness T of the film 3 is 1 nm or more and less than 800 nm.
  • the total elemental percentage of metal elements and O (oxygen) is 70 atm % or more.
  • the relative density of the film 3 is 90% or more.
  • the coated base material 1 satisfies at least one of the following conditions (1) and (2). By satisfying at least one of condition (1) and condition (2), the functionality of the coated substrate 1 is enhanced.
  • Condition (1) The maximum thickness T1max of the coating 3 formed on the edge region S1 of the surface S of the base material 5 is the maximum thickness T1max of the coating 3 formed on the inner region S2 inside the edge region S1 of the surface S. is larger than the thickness T2.
  • Condition (2) The maximum thickness T3max of the coating 3 formed on the convexity existing region S3 on the surface S of the base material 5 is the thickness of the coating 3 formed on the convexity non-existence region S4 on the surface S. Larger than T4.
  • FIG. 1 shows a schematic cross-sectional view of an example of the coated base material 1. As shown in FIG. Although FIG. 1 shows an example in which the film 3 is formed on one side of the base material 5, the film 3 may be formed on both sides.
  • FIG. 2 shows a schematic cross-sectional view of another example of the coating base material 1. Although FIG. 2 shows an example in which the film 3 is formed on one side of the base material 5, the film 3 may be formed on both sides.
  • the base material 5 is not particularly limited. In order to improve the adhesion of the film 3 to the base material 5, at least the portion (area) of the base material 5 covered by the film 3 is made of a material that has conductivity and can serve as the negative electrode 7 (cathode). It is preferable. Since the part of the base material 5 covered by the film 3 has conductivity and becomes the negative electrode 7 (cathode), the film 3 can be easily formed on this part by the manufacturing method described below.
  • the surface portion of the base material 5 may be made of a material that has conductivity and can serve as the negative electrode 7.
  • the entire base material 5 may be made of a material that can serve as the negative electrode 7.
  • iron-based alloys and carbon are preferably used as the material that can become the negative electrode 7, for example.
  • iron alloys include Fe-Ni-Cr alloy (stainless steel), Fe-Ni alloy (permalloy), Fe-Si alloy (silicon iron), Fe-Si-Al alloy (sendust), and Fe- Preferred examples include one or more selected from Ni-Mo (supermalloy), Fe-Co alloy (permendur), and Fe-C-B alloy (amorphous).
  • the thickness T of the film 3 is the shortest distance from a point on the surface of the film 3 to the surface S of the base material 5.
  • the thickness T of the film 3 is 1 nm or more, preferably 10 nm or more, and more preferably 50 nm or more, from the viewpoint of developing a function depending on the material of the film 3.
  • the thickness is less than 800 nm, preferably 500 nm or less, and more preferably 200 nm or less.
  • the thickness T of the film 3 is 1 nm or more and less than 800 nm, preferably 10 nm or more and 500 nm or less, and more preferably 50 nm or more and 200 nm or less.
  • the thickness T of the coating 3 is not constant, the requirements for the thickness T are satisfied as long as the thickness T of at least a portion of the coating 3 is within the above-mentioned range.
  • the thickness of the film 3 can be determined by FIB-SEM observation.
  • Condition (1) is such that the maximum thickness T1max of the film 3 formed on the edge region S1 of the surface S of the base material 5 is such that the maximum thickness T1max of the film 3 formed on the inner region S2 inside the edge region S1 of the surface S is The condition is that the thickness is larger than the thickness T2 of No. 3.
  • the maximum thickness T1max of the coating 3 formed on the edge region S1 is the maximum value of the thickness T1 of the coating 3 formed on the edge region S1.
  • the edge area S1 is not particularly limited as long as it is an edge of the surface S.
  • the edge region S1 is, for example, a region within a radius of 5 mm centered on the end SE of the surface S of the base material 5 in the cross-sectional view.
  • the edge area S1 is an area surrounded by a dashed line.
  • the maximum thickness T1max is the thickness T1 at the end SE.
  • the maximum thickness T1max is not particularly limited.
  • the maximum thickness T1max is, for example, preferably 10 nm or more and 1000 nm or less, more preferably 50 nm or more and 800 nm or less, and even more preferably 100 nm or more and 500 nm or less.
  • the thickness T2 is not particularly limited as long as it is smaller than the maximum thickness T1max.
  • the thickness T2 is, for example, preferably 1 nm or more and 800 nm or less, more preferably 10 nm or more and 500 nm or less, and even more preferably 50 nm or more and 200 nm or less.
  • the maximum thickness T1max of the coating 3 formed on the edge region S1 is greater than the thickness T2 of the coating 3 formed on the inner region S2 from the viewpoint of increasing the functionality of the coating base material 1. It is preferably 10% or more, more preferably 20% or more, and even more preferably 30% or more.
  • the thickness T2 is not uniform, this relationship is satisfied if the maximum thickness T1max is larger than the thickness T2 by a predetermined percentage or more using the value of the thickness T2 in at least a part of the inner region S2. It turns out.
  • the upper limit of the ratio of the maximum thickness T1max to the thickness T2 is not limited, in condition (1), the maximum thickness T1max is preferably 400% or less of the thickness T2.
  • the thickness T of the coating 3 decreases from the region of the maximum thickness T1max of the coating 3 formed on the edge region S1 toward the inner region S2. Incidentally, irregularities of 10% or less of the maximum thickness T1max are not considered.
  • the influence of residual stress generated at the interface of the base material 5 can be alleviated over a wide area.
  • the condition (1) regarding the thickness T of the coating 3 is determined by FIB-SEM observation of a cross section of the coated substrate 1 in a direction perpendicular to the surface S of the substrate 5.
  • Condition (2) is that the maximum thickness T3max of the coating 3 formed on the convexity existing region S3 of the surface S of the base material 5 is equal to the maximum thickness T3max of the coating 3 formed on the convexity non-existence region S4 of the surface S.
  • the condition is that the thickness is greater than the thickness T4.
  • the maximum thickness T3max of the coating 3 formed on the convex portion existing region S3 is the maximum value of the thickness T3 of the coating 3 formed on the convex portion existing region S3.
  • the shape, size, and number of the convex portions 12 are not particularly limited.
  • the film 3 formed on the convex portion existing region S3 related to one convex portion 12 and the adjacent convex portion non-existent region S4 are If condition (2) is satisfied in the formed film 3, condition (2) regarding the thickness T of the film 3 is satisfied.
  • the convex portion 12 may be, for example, chevron-shaped, protruding, needle-shaped, or columnar.
  • the maximum height h of the convex portion 12 is not particularly limited, but is preferably, for example, 100 nm or more and 10 mm or less, more preferably 500 nm or more and 5 mm or less, and even more preferably 1000 nm or more and 2 mm or less.
  • the maximum height h of the convex portion 12 means the height based on the surface S of the base material 5 in the convex portion non-existing region S4.
  • the area occupied by the convex portion 12 when viewed from vertically above the base material 5 is not particularly limited, but is preferably, for example, 10 ⁇ m 2 or more and 100 mm 2 or less, more preferably 100 ⁇ m 2 or more and 10 mm 2 or less, and 500 ⁇ m 2 or more and 1 mm 2 or less. The following are more preferable.
  • the maximum thickness T3max is not particularly limited.
  • the maximum thickness T3max is, for example, preferably 10 nm or more and 1000 nm or less, more preferably 50 nm or more and 800 nm or less, and even more preferably 100 nm or more and 500 nm or less.
  • the thickness T4 is not particularly limited as long as it is smaller than the maximum thickness T3max.
  • the thickness T4 is, for example, preferably 1 nm or more and 800 nm or less, more preferably 10 nm or more and 500 nm or less, and even more preferably 50 nm or more and 200 nm or less.
  • the maximum thickness T3max of the coating 3 formed on the convex portion existing region S3 is the maximum thickness T3max of the coating formed on the convex portion non-existing region S4 from the viewpoint of increasing the functionality of the coating base material 1. It is preferably 10% or more larger than the thickness T4 of No. 3, more preferably 20% or more, and even more preferably 30% or more. If the thickness T4 is not uniform, using the value of the thickness T4 in at least a part of the convex portion non-existing region S4, if the maximum thickness T3max is larger than the thickness T4 by a predetermined percentage or more, this relationship is established. This means that it satisfies the following.
  • the maximum thickness T3max is preferably 400% or less of the thickness T4.
  • the thickness T of the film 3 decreases from the maximum thickness T3max of the film 3 formed on the convex part existing region S3 toward the convex part non-existent region S4. .
  • irregularities of 10% or less of the maximum thickness T3max are not considered. With this structure, the influence of residual stress generated at the interface of the base material 5 can be alleviated over a wide area.
  • condition (2) regarding the thickness T of the coating 3 is determined by FIB-SEM observation of a cross section of the coated substrate 1 in a direction perpendicular to the surface S of the substrate 5.
  • Elemental percentage of C (carbon) The elemental percentage of C (carbon) when the film 3 is measured by X-ray photoelectron spectroscopy (XPS method) suppresses crystal grain growth in the film 3, and From the viewpoint of stabilizing the properties, the content is 0.1 atm% or more, preferably 0.5 atm% or more, and more preferably 1 atm% or more. On the other hand, from the viewpoint of making the film 3 function sufficiently as an inorganic film, the content is less than 20 atm%, preferably 15 atm% or less, and more preferably 10 atm% or less.
  • the elemental percentage of C (carbon) is 0.1 atm% or more and less than 20 atm%, preferably 0.5 atm% or more and 15 atm% or less, and more preferably 1 atm% or more and 10 atm% or less.
  • the composition of the film 3 is not constant, if the composition of at least a part of the film 3 is within the above-mentioned range, the requirements for the element percentage of C (carbon) are satisfied.
  • Composition analysis by X-ray photoelectron spectroscopy can be performed using an X-ray photoelectron spectrometer. The measurement conditions are that the X-ray source is K alpha rays of aluminum metal, the beam diameter is 100 ⁇ m, and the X-ray incident angle to the surface to be analyzed is 45°, and the measurement can be performed by scanning the cross section.
  • the total element percentage of metal elements and O (oxygen) is From the viewpoint of fully functioning as an inorganic film, the content is 70 atm% or more, preferably 80 atm% or more, and more preferably 90 atm% or more.
  • the upper limit of the total element percentage of metal elements and O (oxygen) is a value obtained by subtracting the element percentage (atm %) of C (carbon) from 100 atm %. In the case where the composition of the coating 3 is not constant, if the composition of at least a portion of the coating 3 is within the above-mentioned range, the requirements for the total element percentage of the metal element and O (oxygen) are satisfied.
  • the relative density of film 3 is 90% or more, preferably 95% or more, and more preferably 98% or more, from the viewpoint of fully exhibiting the function of film 3.
  • the relative density of the coating 3 may be 100%.
  • the relative density of the film 3 is determined by the following method. A cross-sectional TEM image of the film 3 cut in the film thickness direction is obtained. The area of the pores is measured in a field of view of 300 nm in length and 1000 nm in width.
  • the relative density (%) is determined from the following equation (1).
  • the average value of the relative densities of the 10 visual fields is the relative density of the film 3.
  • Relative density (%) ⁇ (S1-S2)/S1 ⁇ 100 (1)
  • S1 is the area (nm 2 ) of a visual field of 300 nm long x 1000 nm wide
  • S2 is the total area (nm 2 ) of pores in the visual field of 300 nm long x 1000 nm wide.
  • the film 3 is preferably amorphous. Confirmation that it is amorphous can be performed using a TEM image. Since the film 3 is amorphous, it can be expected to exhibit unique functionality such as no crystal grains falling off and smoothing of the outermost surface due to uniform film growth.
  • the element percentage of the halogen element is preferably 0.1 atm% or more, more preferably 0.3 atm% or more, More preferably, it is 0.5 atm% or more.
  • the upper limit of the element percentage of the halogen element is 3 atm % or less. Since the halogen element is contained in a small amount in the film 3, the oxide film existing on the surface S of the base material 5 is removed by the action of the halogen element, resulting in a structure in which the film 3 and the base material 5 are in direct contact with each other. It is considered that the adhesion between the base material 5 and the film 3 is ensured.
  • the metal element is not particularly limited. From the viewpoint of making the film 3 function as a high-quality protective film for the base material 5, the metal elements include Al (aluminum), Ti (titanium), Mo (molybdenum), Cr (chromium), Mn (manganese), and Fe (iron). , Co (cobalt), Ni (nickel), Zr (zirconium), V (vanadium), W (tungsten), Ta (tantalum), Nb (niobium), and Sn (tin). It is preferable that there be more than one species.
  • a preferred manufacturing method is a method for manufacturing the coated substrate 1 using a bath liquid 2 using an organic solvent as a solvent.
  • the bath liquid 2 has a water content of less than 1% by mass, contains at least one metal element, and contains at least one halogen element.
  • the film 3 is formed on the base material 5 on the negative electrode 7 side (cathode side) by applying a voltage while the base material 5 is immersed in the bath liquid 2.
  • oxidation of the base material 5 can be suppressed more than by electrodepositing on the positive electrode 6 side (anode side).
  • the bath liquid 2 uses an organic solvent as a solvent.
  • (1.1) Moisture Content From the viewpoint of ensuring the homogeneity of the film 3 and suppressing oxidation of the base material 5, the water content of the bath liquid 2 is set to be less than 1% by mass. The moisture content is preferably less than 0.5% by mass, more preferably less than 0.1% by mass. The moisture content may be 0% by mass. The water content of the bath liquid 2 can be determined by GC-MS analysis.
  • the bath liquid 2 contains at least one metal element.
  • the metal element is not particularly limited. From the viewpoint of making the film 3 function as a high-quality protective film for the base material 5, the metal elements include Al (aluminum), Ti (titanium), Mo (molybdenum), Cr (chromium), Mn (manganese), and Fe (iron). , Co (cobalt), Ni (nickel), Zr (zirconium), V (vanadium), W (tungsten), Ta (tantalum), Nb (niobium), and Sn (tin). It is preferable that there be more than one species. In the manufacturing method of the present disclosure, an oxide film, which is the film 3, is formed depending on the metal element in the bath liquid 2.
  • the metal elements contained in the bath liquid 2 may be supplied into the bath liquid 2 by elution from the positive electrode 6 (anode).
  • the positive electrode 6 anode
  • the positive electrode 6 is at least one electrode selected from an Al electrode, a Ti electrode, and a Mo electrode.
  • the metal element in the bath liquid 2 may be supplied from a metal alkoxide and/or an inorganic metal compound.
  • the metal element When the metal element is supplied by dissolving a metal alkoxide and/or an inorganic metal compound, it is possible to handle elements that are difficult to elute and supply from the positive electrode 6 (anode). Moreover, in this case, it becomes possible to form a film in which a plurality of metal elements are combined and the composition ratio is controlled.
  • the metal alkoxide include aluminum alkoxide, titanium alkoxide, and molybdenum alkoxide.
  • aluminum alkoxide include aluminum trialkoxide.
  • Examples of aluminum trialkoxides include aluminum tripropoxide (e.g., aluminum triisopropoxide, aluminum tri-n-propoxide), aluminum triethoxide, aluminum tributoxide (e.g., aluminum trisec-butoxide, aluminum tri-n- butoxide), etc.
  • Examples of the titanium alkoxide include titanium trialkoxide and titanium tetraalkoxide, with titanium tetraalkoxide being preferred.
  • titanium tetraalkoxide examples include titanium tetrapropoxide (e.g., titanium tetraisopropoxide, titanium tetra n-propoxide, etc.), titanium tetramethoxide, titanium tetraethoxide, titanium tetrabutoxide (e.g., titanium tetraisobutoxide). , titanium tetra n-butoxide, etc.), titanium tetrapentoxide, titanium tetrahexoxide, titanium tetra(2-ethylhexoxide), and the like.
  • the inorganic metal compound examples include aluminum chloride, aluminum bromide, aluminum iodide, and titanium iodide.
  • the concentration of the metal element in the bath liquid 2 is not particularly limited.
  • the concentration of the metal element in the bath liquid 2 is preferably 1 ppm or more and 100 ppm or less, more preferably 3 ppm or more and 10 ppm or less, and even more preferably 4 ppm or more and 6 ppm or less, from the viewpoint of forming a good film 3.
  • ppm is "parts per million” and "mg/L”.
  • the concentration of the metal elements mentioned above means the total concentration of the plurality of metal elements.
  • the concentration of metal elements in the bath liquid 2 can be measured by ICP-MS analysis.
  • the bath liquid 2 contains at least one type of halogen element.
  • a halogen element By containing a halogen element in the bath liquid 2, film formation is performed at a practical speed, and the film 3 tends to be homogeneous.
  • the halogen element is not particularly limited. From the viewpoint of causing the organic electrochemical reaction to proceed rapidly and allowing the film 3 to function as a high-quality protective film for the base material 5, the halogen element is selected from the group consisting of Cl (chlorine), Br (bromine), and I (iodine). It is preferable that at least one kind is selected.
  • the concentration of the halogen element in the bath liquid 2 is not particularly limited.
  • the concentration of the halogen element is preferably 1 ppm or more and 20,000 ppm or less, and 5 ppm or more, from the viewpoint of controlling the reaction rate appropriately, controlling the homogeneity and thickness T of the film 3, and suppressing peeling of the film 3. It is more preferably 2000 ppm or more, and even more preferably 10 ppm or more and 100 ppm or less. Note that "ppm” is "parts per million” and "mg/L".
  • the concentration of the halogen element in the bath liquid 2 can be determined by the amount of halogen element added at the time of bath preparation or by ICP-MS analysis of the bath liquid.
  • the solvent contains at least one selected from the group consisting of ketones and nitriles. It is presumed that by containing a ketone or a nitrile in the solvent, a condensation reaction occurs on the electrode surface (cathode surface), making electrodeposition possible. Furthermore, it is thought that by including a ketone in the solvent, ketoenol tautomerism occurs in the presence of a halogen, thereby improving the reactivity of the bath liquid 2.
  • the ketone include acetone, methyl ethyl ketone (MEK), 1-hexanone, 2-hexanone, 4-heptanone, 2-heptanone (methyl amyl ketone), 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, Examples include diisobutyl ketone, methyl isobutyl ketone, acetylacetone, acetonyl acetone, phenylacetone, acetophenone, methyl naphthyl ketone, cyclohexanone (CHN), methylcyclohexanone, and the like.
  • acetone and methyl ethyl ketone are preferable as the ketone from the viewpoint that the film 3 is formed particularly well.
  • Nitrile Nitrile is an organic solvent containing a nitrile group (-CN) in its structure.
  • the nitrile include acetonitrile, propionitrile, valeronitrile, butyronitrile, and the like. Among these, acetonitrile is preferable as the nitrile from the viewpoint that the film 3 is formed particularly well.
  • Base material 5 Regarding the “base material 5", the explanation in the column “(1) Base material 5" in the above “1. Covered base material 1" is applied as is.
  • the positive electrode 6 and the negative electrode 7 are immersed in the bath liquid 2, and a potential gradient is generated between the two electrodes.
  • the positive electrode 6 any known conductive substrate can be used.
  • the positive electrode 6 is preferably at least one electrode selected from an Al electrode, a Ti electrode, and a Mo electrode.
  • the shape, thickness, size, etc. of the positive electrode 6 are not particularly limited.
  • the positive electrode 6 may have a foil shape, a plate shape, a foam shape, a nonwoven fabric shape, a mesh shape, a felt shape, or an expanded shape, for example. It is preferable that the positive electrode 6 and the negative electrode 7 are arranged facing each other.
  • the positive electrode 6 and the negative electrode 7 are connected to a DC power source, and a potential gradient can be generated between the positive electrode 6 and the negative electrode 7 by the DC power source.
  • a voltage For example, a constant voltage
  • the potential gradient generated between the two electrodes is preferably 10 V or more and 300 V or less, more preferably 20 V or more and 100 V or less, and even more preferably 60 V or more and 80 V or less, from the viewpoint of forming a film at a practical speed.
  • the voltage application time is not particularly limited.
  • the application time is, for example, preferably 10 seconds or more and 300 seconds or less, more preferably 30 seconds or more and 240 seconds or less, and even more preferably 60 seconds or more and 180 seconds or less. Note that the voltage may not be a constant voltage but may vary in magnitude.
  • the amount of carbon in the film 3 may be reduced by heat treatment and/or light irradiation.
  • the treatment temperature of the heat treatment is not particularly limited. From the viewpoint of efficiently reducing the amount of carbon, the temperature is preferably 100°C or more and 1000°C or less, more preferably 300°C or more and 800°C or less, and even more preferably 500°C or more and 600°C or less.
  • the treatment time of the heat treatment is not particularly limited.
  • the time is preferably 1 minute or more and 60 minutes or less, more preferably 5 minutes or more and 45 minutes or less, and even more preferably 10 minutes or more and 30 minutes or less.
  • the wavelength of light in light irradiation is not particularly limited. From the viewpoint of efficiently reducing the amount of carbon, the wavelength of the light is preferably 250 nm or more and 1100 nm or less, more preferably 300 nm or more and 800 nm or less, and even more preferably 400 nm or more and 500 nm or less.
  • the light irradiation time is not particularly limited.
  • the time is preferably 3 seconds or more and 120 seconds or less, more preferably 5 seconds or more and 60 seconds or less, and even more preferably 10 seconds or more and 30 seconds or less. Note that the decrease in the amount of carbon in the film 3 can be confirmed by XPS analysis.
  • the coating of the edge region S1 and the convex portion existing region S3 that are particularly likely to come into contact with the surrounding environment is By selectively forming a thick film of No. 3, excellent functionality and/or durability can be achieved.
  • a novel coated base material 1 that is applicable to various fields and can be mass-produced is provided.
  • the coated base material 1 of this embodiment can be formed without using expensive raw materials or with a very small amount of expensive raw materials, so it is advantageous in terms of cost.
  • the coated base material 1 of this embodiment forms the coating 3 without necessarily performing post-treatment such as heat treatment or light irradiation, the options for the material of the base material 5 and the shape of the base material 5 can be expanded. I can do it.
  • Example 1 solvent: MEK, positive electrode 6: aluminum
  • a film forming apparatus 11 shown in FIG. 3 was used.
  • An aluminum wire was used as the positive electrode 6.
  • a stainless steel plate was used as the negative electrode 7.
  • the negative electrode 7 is a base material 5 on which a film 3 is formed.
  • Methyl ethyl ketone (MEK) was used as the solvent for bath liquid 2.
  • 600 ppm of iodine as a halogen was dissolved.
  • 80 V was applied between the positive electrode 6 and the negative electrode 7 for 3 minutes.
  • the relative density of the film 3 was determined by the following method, the relative density was 100%.
  • the relative density of film 3 was determined by the following method. A cross-sectional TEM image of the film 3 cut in the film thickness direction was obtained. The area of the pores was measured in a field of view of 300 nm in length and 1000 nm in width. The relative density (%) was determined from the following equation (1). The average value of the relative densities of the 10 visual fields is the relative density of the film 3.
  • the thickness of the film 3 is smaller than 300 nm vertically, the measurement shall be performed with a field of view that matches the thickness of the film 3.
  • Relative density (%) ⁇ (S1-S2)/S1 ⁇ 100(1) (In the formula, S1 is the area (nm 2 ) of a visual field of 300 nm long x 1000 nm wide, and S2 is the total area (nm 2 ) of pores in the visual field of 300 nm long x 1000 nm wide.)
  • Example 2 (solvent: acetone, positive electrode 6: aluminum) Acetone was used as a solvent for bath liquid 2. In the bath liquid 2, 14 ppm of iodine as a halogen was dissolved. The experiment was carried out in the same manner as in Example 1 in other respects.
  • the cross section of the negative electrode 7 was observed using FIB-SEM, it was found that a 130 nm thick film 3 was formed on the surface of the base material 5. Analysis by XPS revealed that this film 3 was aluminum oxide. Further, the elemental percentage of carbon element in the film 3 was 6.5 atm%, and the total elemental percentage of aluminum element and oxygen element was 93.3 atm%. Further, the elemental percentage of iodine in this film 3 was 0.1 atm%.
  • Example 3 (solvent: MEK, positive electrode 6: titanium) A titanium wire was used as the positive electrode 6. The experiment was carried out in the same manner as in Example 1 in other respects.
  • the cross section of the negative electrode 7 was observed using FIB-SEM, it was found that a 90 nm thick film 3 was formed on the surface of the base material 5.
  • Analysis by XPS revealed that this film 3 was a titanium oxide. Further, the elemental percentage of carbon element in the film 3 was 24.6 atm%, and the total elemental percentage of titanium element and oxygen element was 78.7 atm%. Further, the elemental percentage of iodine in this film 3 was 0.3 atm%.
  • Example 4 (solvent: acetone, positive electrode 6: titanium) Acetone was used as a solvent for bath liquid 2. In the bath liquid 2, 2400 ppm of iodine as a halogen was dissolved. The experiment was conducted in the same manner as in Example 3 in other respects. When the cross section of the negative electrode 7 was observed using FIB-SEM, it was found that a 500 nm thick film 3 was formed on the surface of the base material 5. Analysis by XPS revealed that this film 3 was a titanium oxide. Further, the elemental percentage of carbon element in the film 3 was 9.2 atm%, and the total elemental percentage of titanium element and oxygen element was 83.7 atm%.
  • the elemental percentage of iodine in this film 3 was 0.4 atm %. Further, in a cross-sectional TEM image taken in the film thickness direction of the film 3, no crystal grains were observed, so it was confirmed that the film 3 was amorphous. Further, when the relative density of the film 3 was determined by the above-mentioned method, the relative density was 100%.
  • Example 5 (solvent: MEK, positive electrode 6: molybdenum) A molybdenum wire was used as the positive electrode 6. The experiment was carried out in the same manner as in Example 1 in other respects.
  • the cross section of the negative electrode 7 was observed using FIB-SEM, it was found that a 160 nm thick film 3 was formed on the surface of the base material 5.
  • Analysis by XPS revealed that this film 3 was molybdenum oxide.
  • the elemental percentage of carbon element in the film 3 was 14.8 atm%, and the total elemental percentage of molybdenum element and oxygen element was 78.7 atm%. Further, the elemental percentage of iodine in this film 3 was less than 0.1 atm % (below the detection limit).
  • Example 6 (solvent: acetone, positive electrode 6: molybdenum) Acetone was used as a solvent for bath liquid 2. In the bath liquid 2, 2400 ppm of iodine as a halogen was dissolved. The experiment was conducted in the same manner as in Example 5 except for the above. When the cross section of the negative electrode 7 was observed using FIB-SEM, it was found that a 480 nm thick film 3 was formed on the surface of the base material 5. Analysis by XPS revealed that this film 3 was molybdenum oxide. Further, the elemental percentage of carbon element in the film 3 was 12.7 atm%, and the total elemental percentage of molybdenum element and oxygen element was 78.0 atm%.
  • the elemental percentage of iodine in this film 3 was less than 0.1 atm % (below the detection limit). Further, in a cross-sectional TEM image taken in the film thickness direction of the film 3, no crystal grains were observed, so it was confirmed that the film 3 was amorphous. Further, when the relative density of the film 3 was determined by the above-mentioned method, the relative density was 100%.
  • Example 7 (solvent: acetonitrile, positive electrode 6: aluminum) Acetonitrile was used as the solvent for bath liquid 2.
  • 2400 ppm of iodine as a halogen was dissolved.
  • the experiment was carried out in the same manner as in Example 1 in other respects.
  • FIB-SEM When the cross section of the negative electrode 7 was observed using FIB-SEM, it was found that a 140 nm thick film 3 was formed on the surface of the base material 5. Analysis by XPS revealed that this film 3 was aluminum oxide. Oxygen, which was not present in the bath liquid 2, was present in the film 3. This is presumed to be oxygen derived from water contained in the bath liquid 2 or water absorbed from the atmosphere.
  • the elemental percentage of carbon element in the film 3 was 9.8 atm%, and the total elemental percentage of aluminum element and oxygen element was 90.1 atm%. Further, the elemental percentage of iodine in this film 3 was 0.1 atm%. Further, in a cross-sectional TEM image taken in the film thickness direction of the film 3, no crystal grains were observed, so it was confirmed that the film 3 was amorphous. Further, when the relative density of the film 3 was determined by the above-mentioned method, the relative density was 100%.
  • Example 1-7 A cross section of film 3 in Example 1-7 was observed by FIB-SEM.
  • the maximum thickness T1max of the film 3 formed on the edge region S1 of the surface S of the base material 5 is the maximum thickness T1max of the film 3 formed on the inner region S2 inside the edge region S1 of the surface S. It was larger than the thickness T2 of the formed film 3.
  • the maximum thickness T1max of the coating 3 formed on the edge region S1 was 10% or more larger than the thickness T2 of the coating 3 formed on the inner region S2.
  • the thickness T of the film 3 decreased from the region of the maximum thickness T1max of the film 3 formed on the edge region S1 toward the inner region S2.
  • Example 1 where the metal element is supplied from the metal alkoxide into the bath liquid (solvent: acetone, metal alkoxide: aluminum triisopropoxide)
  • a film forming apparatus 11 shown in FIG. 3 was used.
  • a carbon electrode was used as the positive electrode 6.
  • a stainless steel plate was used as the negative electrode 7.
  • the negative electrode 7 is a base material 5 on which a film 3 is formed on the surface S thereof.
  • Acetone was used as the solvent for bath liquid 2.
  • 16 mg/L (16 ppm) of aluminum triisopropoxide was dissolved, and 2400 mg/L (2400 ppm) of iodine as a halogen was dissolved.
  • Example 9 (solvent: MEK, metal alkoxide: aluminum triisopropoxide) Methyl ethyl ketone (MEK) was used as a solvent for bath liquid 2.
  • MEK Methyl ethyl ketone
  • Example 10 (solvent: acetone, metal alkoxide: titanium tetraisopropoxide) Titanium tetraisopropoxide was used in place of aluminum triisopropoxide. The experiment was conducted in the same manner as in Example 8 except for the above. When the cross section of the negative electrode 7 was observed using FIB-SEM, it was found that a film 3 was formed on the surface S of the base material 5. Analysis by XPS revealed that this film 3 was a titanium oxide. Further, the elemental percentage of carbon element in the film 3 was 8.8 atm%, and the total elemental percentage of titanium element and oxygen element was 86.1 atm%. Moreover, the elemental percentage of iodine in this film 3 was 1.3 atm %.
  • Example 11 (solvent: acetone, metal alkoxide: titanium tetra n-propoxide) Titanium tetra-n-propoxide was used in place of aluminum triisopropoxide.
  • the experiment was conducted in the same manner as in Example 8 except for the above.
  • FIB-SEM cross section of the negative electrode 7 was observed using FIB-SEM, it was found that a film 3 was formed on the surface S of the base material 5.
  • Analysis by XPS revealed that this film 3 was a titanium oxide.
  • the elemental percentage of carbon element in the film 3 was 9.5 atm%, and the total elemental percentage of titanium element and oxygen element was 85.9 atm%.
  • the elemental percentage of iodine in this film 3 was 0.9 atm%.
  • Example 8-11 A cross section of film 3 in Example 8-11 was observed by FIB-SEM.
  • the maximum thickness T1max of the coating 3 formed on the edge region S1 of the surface S of the base material 5 is the same as that of the film 3 formed on the inner region S2 inside the edge region S1 of the surface S. It was larger than the thickness T2 of the formed film 3.
  • the maximum thickness T1max of the coating 3 formed on the edge region S1 was 10% or more larger than the thickness T2 of the coating 3 formed on the inner region S2.
  • the thickness T of the coating 3 decreased from the portion of the coating 3 formed on the edge region S1 where the maximum thickness T1max was toward the inner region S2.
  • a film forming apparatus 11 shown in FIG. 1 was used.
  • An aluminum wire was used as the positive electrode 6.
  • a stainless steel plate was used as the negative electrode 7.
  • the negative electrode 7 is a base material 5 on which a film 3 is formed on the surface S thereof.
  • Various solvents such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, and diisobutyl ketone were used as the solvent for bath liquid 2.
  • MEK methyl ethyl ketone
  • diisobutyl ketone were used as the solvent for bath liquid 2.
  • 2100 mg/L (2100 ppm) of iodine as a halogen was dissolved.
  • the graph of FIG. 4 shows the relationship between the application time (electrodeposition time) and the deposited weight (deposited mass) for each solvent.
  • the deposited weight is the weight of the film formed. From the graph of FIG. 4, it was confirmed that the deposited weight tended to increase as the electrodeposition time increased. Moreover, from the graph of FIG. 4, it was confirmed that the smaller the number of carbon atoms in the hydrocarbon group of the solvent, the faster the precipitation rate.
  • the first sample was pulled out of the bath liquid 2, a new stainless steel plate was placed in the bath liquid 2, and the voltage was applied in the same manner as the first sample to prepare a second sample. In the same manner, the third and subsequent samples were successively produced.
  • the results are shown in Table 1.
  • the evaluation in Table 1 is as follows. A: Film 3 was formed. The adhesion between the film 3 and the base material 5 was good. B: Film 3 was formed. The adhesion between the film 3 and the base material 5 was slightly poor, and the film 3 tended to peel off.
  • Example 8 Examination of the types of base materials 5 Formation of the film 3 was attempted using various base materials 5. In place of the stainless steel plate as the negative electrode 7 in Example 1, a permalloy plate, a titanium plate, a copper plate, and a carbon plate were used, respectively. The experiment was carried out in the same manner as in Example 1 in other respects. A stable film 3 was formed on any of the base materials 5. Therefore, it was confirmed that stable film 3 could be formed regardless of the type of base material 5.
  • the base material is covered with a film,
  • the thickness of the film is 1 nm or more and less than 800 nm,
  • the total elemental percentage of metal elements and O (oxygen) is 70 atm% or more,
  • the relative density of the film is 90% or more,
  • a coated base material that satisfies at least one of the following conditions (1) and (2).
  • Condition (1) The maximum thickness of the film formed on the edge region of the surface of the base material is greater than the thickness of the film formed on the inner region of the surface, which is inside the edge region. big.
  • Condition (2) The maximum thickness of the film formed on the region where the convex portion is present on the surface of the base material is greater than the thickness of the film formed on the region where the convex portion is not present on the surface. .
  • the maximum thickness of the coating formed on the edge region is 10% or more greater than the thickness of the coating formed on the inner region.
  • the coated base material according to any one of the items.
  • the maximum thickness of the film formed on the region where the convex portion is present is 10% or more greater than the thickness of the film formed on the region where the convex portion is not present, [1 ] to [5].
  • the thickness of the coating decreases from the maximum thickness portion of the coating formed on the edge region toward the inner region.
  • the thickness of the coating decreases from the maximum thickness portion of the coating formed on the region where the convex portion exists toward the region where the convex portion does not exist, [1] The coated base material according to any one of [7].
  • the metal elements include Al (aluminum), Ti (titanium), Mo (molybdenum), Cr (chromium), Mn (manganese), Fe (iron), Co (cobalt), Ni (nickel), Zr (zirconium), Any one of [1] to [8], which is at least one member selected from the group consisting of V (vanadium), W (tungsten), Ta (tantalum), Nb (niobium), and Sn (tin).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

The present invention provides a novel coated base material which is applicable to various fields, while being able to be mass produced. A coated base material (1) according to the present invention is obtained by covering a base material (5) with a coating film (3). The thickness of the coating film (3) is not less than 1 nm but less than 800 nm. The total elemental percentage of metal elements and oxygen (O) in the coating film (3) is 70 atom% or more as determined by X-ray photoelectron spectroscopy. The coating film (3) has a relative density of 90% or more. This coated base material (1) satisfies at least one of the condition (1) and the condition (2) described below. Condition (1): The maximum thickness of the coating film (3) formed on an edge region of the surface of the base material (5) is larger than the thickness of the coating film (3) formed on an inner region of the surface, the inner region being inside the edge region. Condition (2): The maximum thickness of the coating film (3) formed on a region of the surface of the base material (5), the region having a projection, is larger than the thickness of the coating film (3) formed on another region of the surface, the another region having no projection.

Description

被覆基材coated base material
 本開示は、被覆基材に関する。 The present disclosure relates to coated substrates.
 特許文献1-4には、金属酸化物皮膜を備えた被覆基材が開示されている。特許文献1-4では、湿式成膜法が採用されている。他方、複雑な基材形状に合わせた厚みの制御をするために乾式成膜法(ドライプロセス)が採用される場合もあった。
 種々の分野へ適用及び量産性を考慮すると、従来の被覆基材は必ずしも十分でなく、新規な被覆基材の開発が切望されていた。
Patent Documents 1 to 4 disclose coated substrates provided with metal oxide films. In Patent Documents 1 to 4, a wet film forming method is adopted. On the other hand, in some cases, a dry film forming method (dry process) is employed to control the thickness in accordance with the complex shape of the base material.
Considering application to various fields and mass production, conventional coated base materials are not necessarily sufficient, and there has been a strong desire for the development of new coated base materials.
特開2011-32521号公報JP2011-32521A 特開2009-147192号公報Japanese Patent Application Publication No. 2009-147192 特開2015-93821号公報JP2015-93821A 特開平9-202606号公報Japanese Patent Application Publication No. 9-202606
 本開示は、上記実情に鑑みてなされたものであり、種々の分野に適用可能で、量産可能な新規な被覆基材を提供することを目的とする。本開示は、以下の形態として実現することが可能である。 The present disclosure has been made in view of the above circumstances, and aims to provide a novel coated base material that is applicable to various fields and can be mass-produced. The present disclosure can be realized as the following forms.
[1]
 皮膜によって基材が被覆されてなり、
 前記皮膜の厚みは、1nm以上800nm未満であり、
 前記皮膜をX線光電子分光法で測定した際に、金属元素及びO(酸素)の合計の元素百分率が70atm%以上であり、
 前記皮膜の相対密度は、90%以上であり、
 下記条件(1)及び条件(2)の少なくとも一つを満たす、被覆基材。
 条件(1):前記基材の表面の縁部領域上に形成された前記皮膜の最大厚みは、前記表面の前記縁部領域よりも内側の内側領域上に形成された前記皮膜の厚みよりも大きい。
 条件(2):前記基材の前記表面の凸状部存在領域上に形成された前記皮膜の最大厚みは、前記表面の凸状部非存在領域上に形成された前記皮膜の厚みよりも大きい。
[2]
 前記基材で前記皮膜が形成されている部位は、導電性を有する、[1]に記載の被覆基材。
[3]
 前記皮膜をX線光電子分光法で測定した際に、C(炭素)の元素百分率が0.1atm%以上20atm%未満である、[1]又は[2]に記載の被覆基材。
[4]
 前記皮膜は、非晶質である、[1]又は[2]に記載の被覆基材。
[5]
 前記条件(1)において、前記縁部領域上に形成された前記皮膜の最大厚みは、前記内側領域上に形成された前記皮膜の厚みよりも10%以上大きい、[1]又は[2]に記載の被覆基材。
[6]
 前記条件(2)において、前記凸状部存在領域上に形成された前記皮膜の最大厚みは、前記凸状部非存在領域上に形成された前記皮膜の厚みよりも10%以上大きい、[1]又は[2]に記載の被覆基材。
[7]
 前記条件(1)において、前記皮膜の厚みは、前記縁部領域上に形成された前記皮膜の最大厚みの部位から前記内側領域に向かうにつれて減少している、[1]又は[2]に記載の被覆基材。
[8]
 前記条件(2)において、前記皮膜の厚みは、前記凸状部存在領域上に形成された前記皮膜の最大厚みの部位から前記凸状部非存在領域に向かうにつれて減少している、[1]又は[2]に記載の被覆基材。
[9]
 前記金属元素は、Al(アルミニウム)、Ti(チタン)、Mo(モリブデン)、Cr(クロム)、Mn(マンガン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Zr(ジルコニウム)、V(バナジウム)、W(タングステン)、Ta(タンタル)、Nb(ニオブ)、及びSn(スズ)からなる群より選ばれた少なくとも1種以上である、[1]又は[2]に記載の被覆基材。
[1]
The base material is covered with a film,
The thickness of the film is 1 nm or more and less than 800 nm,
When the film is measured by X-ray photoelectron spectroscopy, the total elemental percentage of metal elements and O (oxygen) is 70 atm% or more,
The relative density of the film is 90% or more,
A coated base material that satisfies at least one of the following conditions (1) and (2).
Condition (1): The maximum thickness of the film formed on the edge region of the surface of the base material is greater than the thickness of the film formed on the inner region of the surface, which is inside the edge region. big.
Condition (2): The maximum thickness of the film formed on the region where the convex portion is present on the surface of the base material is greater than the thickness of the film formed on the region where the convex portion is not present on the surface. .
[2]
The coated base material according to [1], wherein the portion of the base material where the film is formed has conductivity.
[3]
The coated substrate according to [1] or [2], wherein the elemental percentage of C (carbon) is 0.1 atm% or more and less than 20 atm% when the coating is measured by X-ray photoelectron spectroscopy.
[4]
The coated substrate according to [1] or [2], wherein the film is amorphous.
[5]
In the condition (1), the maximum thickness of the coating formed on the edge region is 10% or more greater than the thickness of the coating formed on the inner region, [1] or [2] Coated substrate as described.
[6]
In the condition (2), the maximum thickness of the film formed on the region where the convex portion is present is 10% or more greater than the thickness of the film formed on the region where the convex portion is not present, [1 ] or the coated base material according to [2].
[7]
According to [1] or [2], in the condition (1), the thickness of the coating decreases from the maximum thickness portion of the coating formed on the edge region toward the inner region. coated base material.
[8]
In the condition (2), the thickness of the coating decreases from the maximum thickness portion of the coating formed on the region where the convex portion exists toward the region where the convex portion does not exist, [1] Or the coated base material according to [2].
[9]
The metal elements include Al (aluminum), Ti (titanium), Mo (molybdenum), Cr (chromium), Mn (manganese), Fe (iron), Co (cobalt), Ni (nickel), Zr (zirconium), The coating according to [1] or [2], which is at least one member selected from the group consisting of V (vanadium), W (tungsten), Ta (tantalum), Nb (niobium), and Sn (tin). Base material.
 本開示によれば、種々の分野に適用可能で、量産可能な新規な被覆基材が提供される。 According to the present disclosure, a novel coated base material that is applicable to various fields and can be mass-produced is provided.
被覆基材の断面の模式図である。FIG. 3 is a schematic diagram of a cross section of a coated base material. 被覆基材の断面の模式図である。FIG. 3 is a schematic diagram of a cross section of a coated base material. 成膜装置の模式図である。It is a schematic diagram of a film-forming apparatus. 電析時間と析出重量(析出質量)との関係を示すグラフである。It is a graph showing the relationship between electrodeposition time and deposited weight (deposited mass). サンプルの試作数と、浴液のアルミニウム元素の濃度の関係を示すグラフである。It is a graph showing the relationship between the number of sample samples and the concentration of aluminum element in the bath liquid.
 以下、本開示を詳しく説明する。尚、本明細書において、数値範囲について「-」を用いた記載では、特に断りがない限り、下限値及び上限値を含むものとする。例えば、「10-20」という記載では、下限値である「10」、上限値である「20」のいずれも含むものとする。すなわち、「10-20」は、「10以上20以下」と同じ意味である。また、本明細書において、各数値範囲の上限値及び下限値は、任意に組み合わせることができる。 Hereinafter, the present disclosure will be explained in detail. In addition, in this specification, descriptions using "-" for numerical ranges include lower and upper limits unless otherwise specified. For example, the description "10-20" includes both the lower limit value "10" and the upper limit value "20". That is, "10-20" has the same meaning as "10 or more and 20 or less". Further, in this specification, the upper limit and lower limit of each numerical range can be arbitrarily combined.
1.被覆基材1
 被覆基材1は、皮膜3によって基材5が被覆されてなる。皮膜3の厚みTは、1nm以上800nm未満である。皮膜3をX線光電子分光法で測定した際に、金属元素及びO(酸素)の合計の元素百分率が70atm%以上である。皮膜3の相対密度は、90%以上である。被覆基材1は、下記条件(1)及び条件(2)の少なくとも一つを満たす。条件(1)及び条件(2)の少なくとも一つを満たすことによって、被覆基材1の機能性が高められる。
 条件(1):基材5の表面Sの縁部領域S1上に形成された皮膜3の最大厚みT1maxは、表面Sの縁部領域S1よりも内側の内側領域S2上に形成された皮膜3の厚みT2よりも大きい。
 条件(2):基材5の表面Sの凸状部存在領域S3上に形成された皮膜3の最大厚みT3maxは、表面Sの凸状部非存在領域S4上に形成された皮膜3の厚みT4よりも大きい。
1. Covered base material 1
The coated base material 1 is formed by covering a base material 5 with a film 3. The thickness T of the film 3 is 1 nm or more and less than 800 nm. When the film 3 is measured by X-ray photoelectron spectroscopy, the total elemental percentage of metal elements and O (oxygen) is 70 atm % or more. The relative density of the film 3 is 90% or more. The coated base material 1 satisfies at least one of the following conditions (1) and (2). By satisfying at least one of condition (1) and condition (2), the functionality of the coated substrate 1 is enhanced.
Condition (1): The maximum thickness T1max of the coating 3 formed on the edge region S1 of the surface S of the base material 5 is the maximum thickness T1max of the coating 3 formed on the inner region S2 inside the edge region S1 of the surface S. is larger than the thickness T2.
Condition (2): The maximum thickness T3max of the coating 3 formed on the convexity existing region S3 on the surface S of the base material 5 is the thickness of the coating 3 formed on the convexity non-existence region S4 on the surface S. Larger than T4.
 図1には、被覆基材1の一例の断面の模式図を示している。この図1では、基材5の一面側に皮膜3が形成された例を示すが、両面に皮膜3が形成されていてもよい。
 図2には、被覆基材1の他例の断面の模式図を示している。この図2では、基材5の一面側に皮膜3が形成された例を示すが、両面に皮膜3が形成されていてもよい。
FIG. 1 shows a schematic cross-sectional view of an example of the coated base material 1. As shown in FIG. Although FIG. 1 shows an example in which the film 3 is formed on one side of the base material 5, the film 3 may be formed on both sides.
FIG. 2 shows a schematic cross-sectional view of another example of the coating base material 1. Although FIG. 2 shows an example in which the film 3 is formed on one side of the base material 5, the film 3 may be formed on both sides.
(1)基材5
 基材5は、特に限定されない。皮膜3の基材5への密着性を高めるために、基材5の少なくとも皮膜3によって被覆される部位(領域)は、導電性を有して負極7(陰極)となり得る材質で構成されることが好ましい。基材5の皮膜3によって被覆される部位が導電性を有して負極7(陰極)となることで、この部位に、後述の製造方法によって、皮膜3を容易に形成できる。
 基材5の表面部が、導電性を有して負極7となり得る材質で構成されてもよい。基材5全体が負極7となり得る材質から構成されてもよい。負極7となり得る材質として、例えば、鉄系合金、カーボンが好適に用いられる。鉄系合金は、例えば、Fe-Ni-Cr系合金(ステンレス)、Fe-Ni系合金(パーマロイ)、Fe-Si系合金(ケイ素鉄)、Fe-Si-Al系合金(センダスト)、Fe-Ni-Mo(スーパーマロイ)、Fe-Co系合金(パーメンジュール)、及びFe-C-B系合金(アモルファス)から選択される1種又は2種以上が好適に例示される。
(1) Base material 5
The base material 5 is not particularly limited. In order to improve the adhesion of the film 3 to the base material 5, at least the portion (area) of the base material 5 covered by the film 3 is made of a material that has conductivity and can serve as the negative electrode 7 (cathode). It is preferable. Since the part of the base material 5 covered by the film 3 has conductivity and becomes the negative electrode 7 (cathode), the film 3 can be easily formed on this part by the manufacturing method described below.
The surface portion of the base material 5 may be made of a material that has conductivity and can serve as the negative electrode 7. The entire base material 5 may be made of a material that can serve as the negative electrode 7. As the material that can become the negative electrode 7, for example, iron-based alloys and carbon are preferably used. Examples of iron alloys include Fe-Ni-Cr alloy (stainless steel), Fe-Ni alloy (permalloy), Fe-Si alloy (silicon iron), Fe-Si-Al alloy (sendust), and Fe- Preferred examples include one or more selected from Ni-Mo (supermalloy), Fe-Co alloy (permendur), and Fe-C-B alloy (amorphous).
(2)皮膜3
(2.1)厚みT
 皮膜3の厚みTは、皮膜3の表面上の点から、基材5の表面Sまでの最短距離である。皮膜3の厚みTは、皮膜3の材質に応じた機能を発現させる観点から、1nm以上であり、10nm以上が好ましく、50nm以上がより好ましい。他方、皮膜3中に発生する応力に耐えて、基材5との密着性を担保する観点から、800nm未満であり、500nm以下が好ましく、200nm以下がより好ましい。これらの観点から、皮膜3の厚みTは、1nm以上800nm未満であり、10nm以上500nm以下が好ましく、50nm以上200nm以下がより好ましい。尚、皮膜3の厚みTが一定でない場合には、皮膜3の少なくとも一部の厚みTが上述の範囲であれば、厚みTの要件を充足する。皮膜3の厚みはFIB-SEM観察によって求めることができる。
(2) Film 3
(2.1) Thickness T
The thickness T of the film 3 is the shortest distance from a point on the surface of the film 3 to the surface S of the base material 5. The thickness T of the film 3 is 1 nm or more, preferably 10 nm or more, and more preferably 50 nm or more, from the viewpoint of developing a function depending on the material of the film 3. On the other hand, from the viewpoint of withstanding stress generated in the film 3 and ensuring adhesion to the base material 5, the thickness is less than 800 nm, preferably 500 nm or less, and more preferably 200 nm or less. From these viewpoints, the thickness T of the film 3 is 1 nm or more and less than 800 nm, preferably 10 nm or more and 500 nm or less, and more preferably 50 nm or more and 200 nm or less. In addition, when the thickness T of the coating 3 is not constant, the requirements for the thickness T are satisfied as long as the thickness T of at least a portion of the coating 3 is within the above-mentioned range. The thickness of the film 3 can be determined by FIB-SEM observation.
(2.2)皮膜3の厚みTに関する条件(1)
 条件(1)は、基材5の表面Sの縁部領域S1上に形成された皮膜3の最大厚みT1maxは、表面Sの縁部領域S1よりも内側の内側領域S2上に形成された皮膜3の厚みT2よりも大きいという条件である。縁部領域S1上に形成された皮膜3の最大厚みT1maxは、縁部領域S1上に形成された皮膜3の厚みT1の最大値である。
 縁部領域S1は、表面Sの縁部であれば特に限定されない。縁部領域S1は、例えば、断面図において、基材5の表面Sの端部SEを中心として半径5mm以内の領域である。図1の例では、縁部領域S1は、一点鎖線で囲まれた領域である。図1の例では、最大厚みT1maxは、端部SEにおける厚みT1である。
 最大厚みT1maxは、特に限定されない。最大厚みT1maxは、例えば10nm以上1000nm以下が好ましく、50nm以上800nm以下がより好ましく、100nm以上500nm以下が更に好ましい。
 厚みT2は、最大厚みT1maxよりも小さければ特に限定されない。厚みT2は、例えば1nm以上800nm以下が好ましく、10nm以上500nm以下がより好ましく、50nm以上200nm以下が更に好ましい。
 条件(1)において、縁部領域S1上に形成された皮膜3の最大厚みT1maxは、被覆基材1の機能性を高める観点から、内側領域S2上に形成された皮膜3の厚みT2よりも10%以上大きいことが好ましく、20%以上大きいことがより好ましく、30%以上大きいことが更に好ましい。厚みT2が均一でない場合には、内側領域S2上の少なくとも一部における厚みT2の値を用いて、最大厚みT1maxが厚みT2よりも所定の%以上大きくなっていれば、この関係を満たしていることになる。最大厚みT1maxの厚みT2に対する比率の上限値は限定されないが、条件(1)において、最大厚みT1maxは、厚みT2の400%以下であることが好ましい。
 条件(1)において、皮膜3の厚みTは、縁部領域S1上に形成された皮膜3の最大厚みT1maxの部位から内側領域S2に向かうにつれて減少していることが好ましい。尚、最大厚みT1maxの10%以下の凹凸は考慮しないものとする。この構造によって、基材5の界面に生じる残留応力の影響を広域で緩和できる。
 尚、皮膜3の厚みTに関する条件(1)は、被覆基材1について、基材5の表面Sに対して垂直な方向の断面をFIB-SEM観察することで行う。
(2.2) Conditions regarding the thickness T of the film 3 (1)
Condition (1) is such that the maximum thickness T1max of the film 3 formed on the edge region S1 of the surface S of the base material 5 is such that the maximum thickness T1max of the film 3 formed on the inner region S2 inside the edge region S1 of the surface S is The condition is that the thickness is larger than the thickness T2 of No. 3. The maximum thickness T1max of the coating 3 formed on the edge region S1 is the maximum value of the thickness T1 of the coating 3 formed on the edge region S1.
The edge area S1 is not particularly limited as long as it is an edge of the surface S. The edge region S1 is, for example, a region within a radius of 5 mm centered on the end SE of the surface S of the base material 5 in the cross-sectional view. In the example of FIG. 1, the edge area S1 is an area surrounded by a dashed line. In the example of FIG. 1, the maximum thickness T1max is the thickness T1 at the end SE.
The maximum thickness T1max is not particularly limited. The maximum thickness T1max is, for example, preferably 10 nm or more and 1000 nm or less, more preferably 50 nm or more and 800 nm or less, and even more preferably 100 nm or more and 500 nm or less.
The thickness T2 is not particularly limited as long as it is smaller than the maximum thickness T1max. The thickness T2 is, for example, preferably 1 nm or more and 800 nm or less, more preferably 10 nm or more and 500 nm or less, and even more preferably 50 nm or more and 200 nm or less.
In condition (1), the maximum thickness T1max of the coating 3 formed on the edge region S1 is greater than the thickness T2 of the coating 3 formed on the inner region S2 from the viewpoint of increasing the functionality of the coating base material 1. It is preferably 10% or more, more preferably 20% or more, and even more preferably 30% or more. If the thickness T2 is not uniform, this relationship is satisfied if the maximum thickness T1max is larger than the thickness T2 by a predetermined percentage or more using the value of the thickness T2 in at least a part of the inner region S2. It turns out. Although the upper limit of the ratio of the maximum thickness T1max to the thickness T2 is not limited, in condition (1), the maximum thickness T1max is preferably 400% or less of the thickness T2.
In condition (1), it is preferable that the thickness T of the coating 3 decreases from the region of the maximum thickness T1max of the coating 3 formed on the edge region S1 toward the inner region S2. Incidentally, irregularities of 10% or less of the maximum thickness T1max are not considered. With this structure, the influence of residual stress generated at the interface of the base material 5 can be alleviated over a wide area.
Note that the condition (1) regarding the thickness T of the coating 3 is determined by FIB-SEM observation of a cross section of the coated substrate 1 in a direction perpendicular to the surface S of the substrate 5.
(2.3)皮膜3の厚みTに関する条件(2)
 条件(2)は、基材5の表面Sの凸状部存在領域S3上に形成された皮膜3の最大厚みT3maxは、表面Sの凸状部非存在領域S4上に形成された皮膜3の厚みT4よりも大きいという条件である。凸状部存在領域S3上に形成された皮膜3の最大厚みT3maxは、凸状部存在領域S3上に形成された皮膜3の厚みT3の最大値である。凸状部12の形状、大きさ、個数は特に限定されない。尚、凸状部12が複数存在する場合には、1つの凸状部12に関わる凸状部存在領域S3上に形成された皮膜3と、これに隣接する凸状部非存在領域S4上に形成された皮膜3において条件(2)が満たされていれば、皮膜3の厚みTに関する条件(2)は満たされることになる。凸状部12は、例えば、山形、突状、針状、柱状であってもよい。凸状部12の最大高さhは、特に限定されないが、例えば100nm以上10mm以下が好ましく、500nm以上5mm以下がより好ましく、1000nm以上2mm以下が更に好ましい。凸状部12の最大高さhは、凸状部非存在領域S4における基材5の表面Sを基準とした高さを意味する。基材5の垂直上方から視たときの凸状部12の占有面積は、特に限定されないが、例えば10μm以上100mm以下が好ましく、100μm以上10mm以下がより好ましく、500μm以上1mm以下が更に好ましい。
 最大厚みT3maxは、特に限定されない。最大厚みT3maxは、例えば10nm以上1000nm以下が好ましく、50nm以上800nm以下がより好ましく、100nm以上500nm以下が更に好ましい。
 厚みT4は、最大厚みT3maxよりも小さければ特に限定されない。厚みT4は、例えば1nm以上800nm以下が好ましく、10nm以上500nm以下がより好ましく、50nm以上200nm以下が更に好ましい。
 条件(2)において、凸状部存在領域S3上に形成された皮膜3の最大厚みT3maxは、被覆基材1の機能性を高める観点から、凸状部非存在領域S4上に形成された皮膜3の厚みT4よりも10%以上大きいことが好ましく、20%以上大きいことがより好ましく、30%以上大きいことが更に好ましい。厚みT4が均一でない場合には、凸状部非存在領域S4上の少なくとも一部における厚みT4の値を用いて、最大厚みT3maxが厚みT4よりも所定の%以上大きくなっていれば、この関係を満たしていることになる。最大厚みT3maxの厚みT4に対する比率の上限値は限定されないが、条件(2)において、最大厚みT3maxは、厚みT4の400%以下であることが好ましい。
 条件(2)において、皮膜3の厚みTは、凸状部存在領域S3上に形成された皮膜3の最大厚みT3maxの部位から凸状部非存在領域S4に向かうにつれて減少していることが好ましい。尚、最大厚みT3maxの10%以下の凹凸は考慮しないものとする。この構造によって、基材5の界面に生じる残留応力の影響を広域で緩和できる。
 尚、皮膜3の厚みTに関する条件(2)は、被覆基材1について、基材5の表面Sに対して垂直な方向の断面をFIB-SEM観察することで行う。
(2.3) Conditions regarding the thickness T of the film 3 (2)
Condition (2) is that the maximum thickness T3max of the coating 3 formed on the convexity existing region S3 of the surface S of the base material 5 is equal to the maximum thickness T3max of the coating 3 formed on the convexity non-existence region S4 of the surface S. The condition is that the thickness is greater than the thickness T4. The maximum thickness T3max of the coating 3 formed on the convex portion existing region S3 is the maximum value of the thickness T3 of the coating 3 formed on the convex portion existing region S3. The shape, size, and number of the convex portions 12 are not particularly limited. In addition, when a plurality of convex portions 12 exist, the film 3 formed on the convex portion existing region S3 related to one convex portion 12 and the adjacent convex portion non-existent region S4 are If condition (2) is satisfied in the formed film 3, condition (2) regarding the thickness T of the film 3 is satisfied. The convex portion 12 may be, for example, chevron-shaped, protruding, needle-shaped, or columnar. The maximum height h of the convex portion 12 is not particularly limited, but is preferably, for example, 100 nm or more and 10 mm or less, more preferably 500 nm or more and 5 mm or less, and even more preferably 1000 nm or more and 2 mm or less. The maximum height h of the convex portion 12 means the height based on the surface S of the base material 5 in the convex portion non-existing region S4. The area occupied by the convex portion 12 when viewed from vertically above the base material 5 is not particularly limited, but is preferably, for example, 10 μm 2 or more and 100 mm 2 or less, more preferably 100 μm 2 or more and 10 mm 2 or less, and 500 μm 2 or more and 1 mm 2 or less. The following are more preferable.
The maximum thickness T3max is not particularly limited. The maximum thickness T3max is, for example, preferably 10 nm or more and 1000 nm or less, more preferably 50 nm or more and 800 nm or less, and even more preferably 100 nm or more and 500 nm or less.
The thickness T4 is not particularly limited as long as it is smaller than the maximum thickness T3max. The thickness T4 is, for example, preferably 1 nm or more and 800 nm or less, more preferably 10 nm or more and 500 nm or less, and even more preferably 50 nm or more and 200 nm or less.
In condition (2), the maximum thickness T3max of the coating 3 formed on the convex portion existing region S3 is the maximum thickness T3max of the coating formed on the convex portion non-existing region S4 from the viewpoint of increasing the functionality of the coating base material 1. It is preferably 10% or more larger than the thickness T4 of No. 3, more preferably 20% or more, and even more preferably 30% or more. If the thickness T4 is not uniform, using the value of the thickness T4 in at least a part of the convex portion non-existing region S4, if the maximum thickness T3max is larger than the thickness T4 by a predetermined percentage or more, this relationship is established. This means that it satisfies the following. Although the upper limit of the ratio of the maximum thickness T3max to the thickness T4 is not limited, in condition (2), the maximum thickness T3max is preferably 400% or less of the thickness T4.
In condition (2), it is preferable that the thickness T of the film 3 decreases from the maximum thickness T3max of the film 3 formed on the convex part existing region S3 toward the convex part non-existent region S4. . Incidentally, irregularities of 10% or less of the maximum thickness T3max are not considered. With this structure, the influence of residual stress generated at the interface of the base material 5 can be alleviated over a wide area.
Note that condition (2) regarding the thickness T of the coating 3 is determined by FIB-SEM observation of a cross section of the coated substrate 1 in a direction perpendicular to the surface S of the substrate 5.
(2.4)C(炭素)の元素百分率
 皮膜3をX線光電子分光法(XPS法)で測定した際のC(炭素)の元素百分率は、皮膜3における結晶粒成長を抑制し、皮膜3の性質を安定化する観点から、0.1atm%以上であり、0.5atm%以上が好ましく、1atm%以上がより好ましい。他方、皮膜3を無機皮膜として十分に機能させる観点から、20atm%未満であり、15atm%以下が好ましく、10atm%以下がより好ましい。これらの観点から、C(炭素)の元素百分率は、は、0.1atm%以上20atm%未満であり、0.5atm%以上15atm%以下が好ましく、1atm%以上10atm%以下がより好ましい。尚、皮膜3の組成が一定でない場合には、皮膜3の少なくとも一部の組成が上述の範囲であれば、C(炭素)の元素百分率の要件を充足する。
 X線光電子分光法による組成分析は、X線光電子分光分析装置を用いて行うことができる。測定条件として、X線源をアルミニウム金属のKアルファ線、ビーム径を100μm、分析する面に対するX線入射角度を45°とし、断面を走査することによって測定することができる。
(2.4) Elemental percentage of C (carbon) The elemental percentage of C (carbon) when the film 3 is measured by X-ray photoelectron spectroscopy (XPS method) suppresses crystal grain growth in the film 3, and From the viewpoint of stabilizing the properties, the content is 0.1 atm% or more, preferably 0.5 atm% or more, and more preferably 1 atm% or more. On the other hand, from the viewpoint of making the film 3 function sufficiently as an inorganic film, the content is less than 20 atm%, preferably 15 atm% or less, and more preferably 10 atm% or less. From these viewpoints, the elemental percentage of C (carbon) is 0.1 atm% or more and less than 20 atm%, preferably 0.5 atm% or more and 15 atm% or less, and more preferably 1 atm% or more and 10 atm% or less. In addition, when the composition of the film 3 is not constant, if the composition of at least a part of the film 3 is within the above-mentioned range, the requirements for the element percentage of C (carbon) are satisfied.
Composition analysis by X-ray photoelectron spectroscopy can be performed using an X-ray photoelectron spectrometer. The measurement conditions are that the X-ray source is K alpha rays of aluminum metal, the beam diameter is 100 μm, and the X-ray incident angle to the surface to be analyzed is 45°, and the measurement can be performed by scanning the cross section.
(2.5)金属元素及びO(酸素)の合計の元素百分率
 皮膜3をX線光電子分光法(XPS法)で測定した際の金属元素及びO(酸素)の合計の元素百分率は、皮膜3を無機皮膜として十分に機能させる観点から、70atm%以上であり、80atm%以上が好ましく、90atm%以上がより好ましい。尚、金属元素及びO(酸素)の合計の元素百分率の上限は、100atm%から、C(炭素)の元素百分率(atm%)を引いた値となる。皮膜3の組成が一定でない場合には、皮膜3の少なくとも一部の組成が上述の範囲であれば、金属元素及びO(酸素)の合計の元素百分率の要件を充足する。
(2.5) Total element percentage of metal elements and O (oxygen) When coating 3 is measured by X-ray photoelectron spectroscopy (XPS method), the total element percentage of metal elements and O (oxygen) is From the viewpoint of fully functioning as an inorganic film, the content is 70 atm% or more, preferably 80 atm% or more, and more preferably 90 atm% or more. Note that the upper limit of the total element percentage of metal elements and O (oxygen) is a value obtained by subtracting the element percentage (atm %) of C (carbon) from 100 atm %. In the case where the composition of the coating 3 is not constant, if the composition of at least a portion of the coating 3 is within the above-mentioned range, the requirements for the total element percentage of the metal element and O (oxygen) are satisfied.
(2.6)皮膜3の相対密度
 皮膜3の相対密度は、皮膜3の機能を十分に発揮させる観点から、90%以上であり、95%以上が好ましく、98%以上がより好ましい。皮膜3の相対密度は、100%であってもよい。
 皮膜3の相対密度は、次の方法により求められる。皮膜3の膜厚方向に切断した断面TEM像を取得する。縦300nm、横1000nmの視野で気孔の面積を測定する。下記(1)式から相対密度(%)を求める。10箇所の視野の相対密度の平均値が皮膜3の相対密度である。尚、皮膜3の厚さが縦300nmよりも小さい場合、皮膜3の厚さに合わせた視野で測定を行うものとする。
 相対密度(%)={(S1-S2)/S1}×100      (1)
(式中S1は縦300nm×横1000nmの視野の面積(nm)で、S2は縦300nm×横1000nmの視野内における気孔の合計面積(nm)である)
(2.6) Relative Density of Film 3 The relative density of film 3 is 90% or more, preferably 95% or more, and more preferably 98% or more, from the viewpoint of fully exhibiting the function of film 3. The relative density of the coating 3 may be 100%.
The relative density of the film 3 is determined by the following method. A cross-sectional TEM image of the film 3 cut in the film thickness direction is obtained. The area of the pores is measured in a field of view of 300 nm in length and 1000 nm in width. The relative density (%) is determined from the following equation (1). The average value of the relative densities of the 10 visual fields is the relative density of the film 3. In addition, when the thickness of the film 3 is smaller than 300 nm vertically, the measurement shall be performed with a field of view that matches the thickness of the film 3.
Relative density (%) = {(S1-S2)/S1}×100 (1)
(In the formula, S1 is the area (nm 2 ) of a visual field of 300 nm long x 1000 nm wide, and S2 is the total area (nm 2 ) of pores in the visual field of 300 nm long x 1000 nm wide.)
(2.7)非晶質
 皮膜3は、非晶質であることが好ましい。非晶質であることの確認は、TEM像を用いて行うことができる。皮膜3が非晶質であることによって、結晶粒の脱落がないことや、均一な膜成長による最表面の平滑化等の特有の機能性の発現が期待できる。
(2.7) Amorphous The film 3 is preferably amorphous. Confirmation that it is amorphous can be performed using a TEM image. Since the film 3 is amorphous, it can be expected to exhibit unique functionality such as no crystal grains falling off and smoothing of the outermost surface due to uniform film growth.
(2.8)C-H結合、C=O結合、C-O結合のうち少なくとも1種類の構造を有する化合物
 皮膜3には、C-H結合、C=O結合、C-O結合のうち少なくとも1種類の構造を有する化合物が含有されていることが好ましい。C-H、C=O、C-O結合のうち少なくとも1種類の構造を有する化合物は、C単体(カーボン)よりも低温で揮発し、皮膜3の収縮を誘発するから、皮膜3の緻密性が向上すると推測される。
 また、皮膜3に、C-H結合、C=O結合、C-O結合のうち少なくとも1種類の構造を有する化合物が残留することで、皮膜3の柔軟性が保持され、皮膜3の基材5への密着性も向上すると推測される。
(2.8) A compound having at least one type of structure among a C-H bond, a C=O bond, and a C-O bond. It is preferable that a compound having at least one type of structure is contained. A compound having at least one type of structure among C-H, C=O, and C-O bonds evaporates at a lower temperature than C alone (carbon) and induces contraction of the film 3, so that the denseness of the film 3 is reduced. is expected to improve.
Furthermore, since a compound having at least one type of structure among C-H bonds, C=O bonds, and C-O bonds remains in the film 3, the flexibility of the film 3 is maintained, and the base material of the film 3 It is presumed that the adhesion to No. 5 is also improved.
(2.9)ハロゲン元素
 皮膜3をX線光電子分光法で測定した際に、ハロゲン元素の元素百分率が0.1atm%以上であることが好ましく、0.3atm%以上であることがより好ましく、0.5atm%以上であることが更に好ましい。ハロゲン元素の元素百分率の上限値は、3atm%以下である。
 皮膜3中にハロゲン元素が微量に含まれることで、基材5の表面Sに存在した酸化被膜がハロゲン元素の作用によって除去されて、皮膜3と基材5が直に接する構造となり、結果的に基材5と皮膜3との密着性が担保されると考えられる。
(2.9) Halogen element When the coating 3 is measured by X-ray photoelectron spectroscopy, the element percentage of the halogen element is preferably 0.1 atm% or more, more preferably 0.3 atm% or more, More preferably, it is 0.5 atm% or more. The upper limit of the element percentage of the halogen element is 3 atm % or less.
Since the halogen element is contained in a small amount in the film 3, the oxide film existing on the surface S of the base material 5 is removed by the action of the halogen element, resulting in a structure in which the film 3 and the base material 5 are in direct contact with each other. It is considered that the adhesion between the base material 5 and the film 3 is ensured.
(2.10)金属元素
 金属元素は、特に限定されない。皮膜3を基材5の良質な保護膜として機能させる観点から、金属元素は、Al(アルミニウム)、Ti(チタン)、Mo(モリブデン)、Cr(クロム)、Mn(マンガン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Zr(ジルコニウム)、V(バナジウム)、W(タングステン)、Ta(タンタル)、Nb(ニオブ)、及びSn(スズ)からなる群より選ばれた少なくとも1種以上であることが好ましい。
(2.10) Metal Element The metal element is not particularly limited. From the viewpoint of making the film 3 function as a high-quality protective film for the base material 5, the metal elements include Al (aluminum), Ti (titanium), Mo (molybdenum), Cr (chromium), Mn (manganese), and Fe (iron). , Co (cobalt), Ni (nickel), Zr (zirconium), V (vanadium), W (tungsten), Ta (tantalum), Nb (niobium), and Sn (tin). It is preferable that there be more than one species.
2.被覆基材1の製造方法
 本開示の被覆基材1の製造方法は、特に限定されない。
 以下、好ましい製造方法について説明する(図3参照)。好ましい製造方法は、有機溶剤を溶媒とした浴液2を用いた被覆基材1の製造方法である。浴液2は、水分含有量が1質量%未満であり、少なくとも1種類以上の金属元素を含有し、かつ少なくとも1種類以上のハロゲン元素を含有する。基材5を浴液2中に浸漬した状態で、電圧印加することで負極7側(陰極側)の基材5上に皮膜3を形成する。本開示の製造方法では、負極7側に電析することで正極6側(陽極側)に電析するよりも基材5の酸化を抑制できる。
2. Method for manufacturing coated base material 1 The method for manufacturing coated base material 1 of the present disclosure is not particularly limited.
A preferred manufacturing method will be described below (see FIG. 3). A preferred manufacturing method is a method for manufacturing the coated substrate 1 using a bath liquid 2 using an organic solvent as a solvent. The bath liquid 2 has a water content of less than 1% by mass, contains at least one metal element, and contains at least one halogen element. The film 3 is formed on the base material 5 on the negative electrode 7 side (cathode side) by applying a voltage while the base material 5 is immersed in the bath liquid 2. In the manufacturing method of the present disclosure, by electrodepositing on the negative electrode 7 side, oxidation of the base material 5 can be suppressed more than by electrodepositing on the positive electrode 6 side (anode side).
(1)浴液2
 浴液2は、有機溶剤を溶媒としている。
(1.1)水分含有率
 皮膜3の均質性を担保し、基材5の酸化を抑制する観点から、浴液2の水分含有率は、1質量%未満とされている。水分含有率は、0.5質量%未満が好ましく、0.1質量%未満がより好ましい。水分含有率は、0質量%であってもよい。浴液2の水分含有率はGC-MS分析によって求めることができる。
(1) Bath liquid 2
The bath liquid 2 uses an organic solvent as a solvent.
(1.1) Moisture Content From the viewpoint of ensuring the homogeneity of the film 3 and suppressing oxidation of the base material 5, the water content of the bath liquid 2 is set to be less than 1% by mass. The moisture content is preferably less than 0.5% by mass, more preferably less than 0.1% by mass. The moisture content may be 0% by mass. The water content of the bath liquid 2 can be determined by GC-MS analysis.
(1.2)金属元素
 浴液2は、少なくとも1種類以上の金属元素を含有している。金属元素は、特に限定されない。皮膜3を基材5の良質な保護膜として機能させる観点から、金属元素は、Al(アルミニウム)、Ti(チタン)、Mo(モリブデン)、Cr(クロム)、Mn(マンガン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Zr(ジルコニウム)、V(バナジウム)、W(タングステン)、Ta(タンタル)、Nb(ニオブ)、及びSn(スズ)からなる群より選ばれた少なくとも1種以上であることが好ましい。本開示の製造方法では、浴液2中の金属元素に依存した皮膜3である酸化物膜が形成される。
 浴液2に、含有される金属元素は、正極6(陽極)の溶出により浴液2中に供給されていてもよい。金属元素が正極6から浴液2中に溶出する場合には、成膜速度の管理が容易となる他、複数の基材5への連続かつ安定した成膜が可能となる。正極6の溶出により金属元素を浴液2に供給する場合には、正極6はAlの電極、Tiの電極、及びMoの電極より選ばれた少なくとも1種以上の電極が用いられることが好ましい。
 浴液2中の金属元素は、金属アルコキシド及び/又は無機金属化合物から供給されてもよい。金属元素が金属アルコキシド及び/又は無機金属化合物の溶解により供給される場合には、正極6(陽極)を溶出させて供給することが困難な元素にも対応できる。また、この場合には、複数の金属元素を複合して組成比率を制御した皮膜形成が可能となる。
 金属アルコキシドとしては、例えば、アルミニウムアルコキシド、チタンアルコキシド、モリブデンアルコキシド等が例示される。
 アルミニウムアルコキシドとしては、例えば、アルミニウムトリアルコキシドが挙げられる。アルミニウムトリアルコキシドとしては、例えば、アルミニウムトリプロポキシド(例えば、アルミニウムトリイソプロポキシド、アルミニウムトリn-プロポキシド)、アルミニウムトリエトキシド、アルミニウムトリブトキシド(例えば、アルミニウムトリsec-ブトキシド、アルミニウムトリn-ブトキシド)等が挙げられる。
 チタンアルコキシドとしては、例えば、チタントリアルコキシド、チタンテトラアルコキシドなどが挙げられ、好ましくは、チタンテトラアルコキシドが挙げられる。チタンテトラアルコキシドとしては、例えば、チタンテトラプロポキシド(例えば、チタンテトライソプロポキシド、チタンテトラn-プロポキシドなど)、チタンテトラメトキシド、チタンテトラエトキシド、チタンテトラブトキシド(例えば、チタンテトライソブトキシド、チタンテトラn-ブトキシドなど)、チタンテトラペントキシド、チタンテトラヘキソキシド、チタンテトラ(2-エチルヘキソキシド)等が挙げられる。
 無機金属化合物としては、例えば、塩化アルミニウム、臭化アルミニウム、ヨウ化アルミニウム、ヨウ化チタン等が例示される。
 浴液2中の金属元素が、金属アルコキシド及び/又は無機金属化合物から供給される場合には、浴液2における金属元素の濃度は、特に限定されない。この場合には、浴液2における金属元素の濃度は、良好な皮膜3を形成する観点から、1ppm以上100ppm以下であることが好ましく、3ppm以上10ppm以下がより好ましく、4ppm以上6ppm以下が更に好ましい。尚、「ppm」は、「百万分率」であり、「mg/L」である。また、浴液2に複数の金属元素を含む場合には、上記金属元素の濃度は、複数の金属元素の合計濃度を意味する。浴液2における金属元素の濃度は、ICP-MS分析により測定することができる。
(1.2) Metal Element The bath liquid 2 contains at least one metal element. The metal element is not particularly limited. From the viewpoint of making the film 3 function as a high-quality protective film for the base material 5, the metal elements include Al (aluminum), Ti (titanium), Mo (molybdenum), Cr (chromium), Mn (manganese), and Fe (iron). , Co (cobalt), Ni (nickel), Zr (zirconium), V (vanadium), W (tungsten), Ta (tantalum), Nb (niobium), and Sn (tin). It is preferable that there be more than one species. In the manufacturing method of the present disclosure, an oxide film, which is the film 3, is formed depending on the metal element in the bath liquid 2.
The metal elements contained in the bath liquid 2 may be supplied into the bath liquid 2 by elution from the positive electrode 6 (anode). When the metal element is eluted from the positive electrode 6 into the bath liquid 2, it becomes easy to control the film formation rate, and continuous and stable film formation on a plurality of substrates 5 becomes possible. When the metal element is supplied to the bath liquid 2 by elution of the positive electrode 6, it is preferable that the positive electrode 6 is at least one electrode selected from an Al electrode, a Ti electrode, and a Mo electrode.
The metal element in the bath liquid 2 may be supplied from a metal alkoxide and/or an inorganic metal compound. When the metal element is supplied by dissolving a metal alkoxide and/or an inorganic metal compound, it is possible to handle elements that are difficult to elute and supply from the positive electrode 6 (anode). Moreover, in this case, it becomes possible to form a film in which a plurality of metal elements are combined and the composition ratio is controlled.
Examples of the metal alkoxide include aluminum alkoxide, titanium alkoxide, and molybdenum alkoxide.
Examples of aluminum alkoxide include aluminum trialkoxide. Examples of aluminum trialkoxides include aluminum tripropoxide (e.g., aluminum triisopropoxide, aluminum tri-n-propoxide), aluminum triethoxide, aluminum tributoxide (e.g., aluminum trisec-butoxide, aluminum tri-n- butoxide), etc.
Examples of the titanium alkoxide include titanium trialkoxide and titanium tetraalkoxide, with titanium tetraalkoxide being preferred. Examples of titanium tetraalkoxide include titanium tetrapropoxide (e.g., titanium tetraisopropoxide, titanium tetra n-propoxide, etc.), titanium tetramethoxide, titanium tetraethoxide, titanium tetrabutoxide (e.g., titanium tetraisobutoxide). , titanium tetra n-butoxide, etc.), titanium tetrapentoxide, titanium tetrahexoxide, titanium tetra(2-ethylhexoxide), and the like.
Examples of the inorganic metal compound include aluminum chloride, aluminum bromide, aluminum iodide, and titanium iodide.
When the metal element in the bath liquid 2 is supplied from a metal alkoxide and/or an inorganic metal compound, the concentration of the metal element in the bath liquid 2 is not particularly limited. In this case, the concentration of the metal element in the bath liquid 2 is preferably 1 ppm or more and 100 ppm or less, more preferably 3 ppm or more and 10 ppm or less, and even more preferably 4 ppm or more and 6 ppm or less, from the viewpoint of forming a good film 3. . Note that "ppm" is "parts per million" and "mg/L". Moreover, when the bath liquid 2 contains a plurality of metal elements, the concentration of the metal elements mentioned above means the total concentration of the plurality of metal elements. The concentration of metal elements in the bath liquid 2 can be measured by ICP-MS analysis.
(1.3)ハロゲン元素
 浴液2は、少なくとも1種類以上のハロゲン元素を含有している。浴液2にハロゲン元素を含有することで、皮膜形成が実用的な速度で行われ、しかも皮膜3が均質になりやすい。ハロゲン元素は、特に限定されない。有機電気化学反応を速やかに進行させ、皮膜3を基材5の良質な保護膜として機能させる観点から、ハロゲン元素は、Cl(塩素)、Br(臭素)、及びI(ヨウ素)からなる群より選ばれた少なくとも1種以上であることが好ましい。
 浴液2におけるハロゲン元素の濃度は、特に限定されない。ハロゲン元素の濃度は、反応速度を適度に抑制するとともに、皮膜3の均質性や厚みTの制御に優位で、皮膜3の剥離を抑制する観点から、1ppm以上20000ppm以下であることが好ましく、5ppm以上2000ppm以下がより好ましく、10ppm以上100ppm以下が更に好ましい。尚、「ppm」は、「百万分率」であり、「mg/L」である。浴液2におけるハロゲン元素の濃度は、建浴時のハロゲン元素添加量、もしくは浴液のICP-MS分析により求めることができる。
(1.3) Halogen Element The bath liquid 2 contains at least one type of halogen element. By containing a halogen element in the bath liquid 2, film formation is performed at a practical speed, and the film 3 tends to be homogeneous. The halogen element is not particularly limited. From the viewpoint of causing the organic electrochemical reaction to proceed rapidly and allowing the film 3 to function as a high-quality protective film for the base material 5, the halogen element is selected from the group consisting of Cl (chlorine), Br (bromine), and I (iodine). It is preferable that at least one kind is selected.
The concentration of the halogen element in the bath liquid 2 is not particularly limited. The concentration of the halogen element is preferably 1 ppm or more and 20,000 ppm or less, and 5 ppm or more, from the viewpoint of controlling the reaction rate appropriately, controlling the homogeneity and thickness T of the film 3, and suppressing peeling of the film 3. It is more preferably 2000 ppm or more, and even more preferably 10 ppm or more and 100 ppm or less. Note that "ppm" is "parts per million" and "mg/L". The concentration of the halogen element in the bath liquid 2 can be determined by the amount of halogen element added at the time of bath preparation or by ICP-MS analysis of the bath liquid.
(1.4)有機溶剤
 浴液2の溶媒を有機溶剤とすることで、皮膜形成中のガスの発生や基材5自体の酸化が抑制される。皮膜3が良好に形成されるという観点から、溶媒は、ケトン、及びニトリルからなる群より選ばれた少なくとも1種以上を含むことが好ましい。溶媒にケトン、ニトリルを含むことで、縮合反応が電極表面(陰極表面)で起こり電析が可能となると推測される。また、溶媒にケトンを含むことで、ハロゲンの存在下でケトエノール互変異性が生じ、浴液2の反応性が向上すると考えられる。
(1.4) Organic Solvent By using an organic solvent as the solvent of the bath liquid 2, gas generation during film formation and oxidation of the base material 5 itself are suppressed. From the viewpoint of forming the film 3 well, it is preferable that the solvent contains at least one selected from the group consisting of ketones and nitriles. It is presumed that by containing a ketone or a nitrile in the solvent, a condensation reaction occurs on the electrode surface (cathode surface), making electrodeposition possible. Furthermore, it is thought that by including a ketone in the solvent, ketoenol tautomerism occurs in the presence of a halogen, thereby improving the reactivity of the bath liquid 2.
(1.4.1)ケトン
 ケトンは、エステル結合以外のカルボニル基(-C(=O)-)を有する有機溶剤であれば、特に限定されない。
 ケトンとしては、例えば、アセトン、メチルエチルケトン(MEK)、1-ヘキサノン、2-ヘキサノン、4-ヘプタノン、2-ヘプタノン(メチルアミルケトン)、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、ジイソブチルケトン、メチルイソブチルケトン、アセチルアセトン、アセトニルアセトン、フェニルアセトン、アセトフェノン、メチルナフチルケトン、シクロヘキサノン(CHN)、メチルシクロヘキサノン等が挙げられる。これらの中でも、皮膜3が特に良好に形成されるという観点から、ケトンとしては、アセトン、メチルエチルケトンが好ましい。
(1.4.1) Ketone Ketone is not particularly limited as long as it is an organic solvent having a carbonyl group (-C(=O)-) other than an ester bond.
Examples of the ketone include acetone, methyl ethyl ketone (MEK), 1-hexanone, 2-hexanone, 4-heptanone, 2-heptanone (methyl amyl ketone), 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, Examples include diisobutyl ketone, methyl isobutyl ketone, acetylacetone, acetonyl acetone, phenylacetone, acetophenone, methyl naphthyl ketone, cyclohexanone (CHN), methylcyclohexanone, and the like. Among these, acetone and methyl ethyl ketone are preferable as the ketone from the viewpoint that the film 3 is formed particularly well.
(1.4.2)ニトリル
 ニトリルは、構造中にニトリル基(-CN)を含む有機溶剤である。ニトリルとしては、例えば、アセトニトリル、プロピオ二トリル、バレロニトリル、ブチロ二トリル等が挙げられる。これらの中でも、皮膜3が特に良好に形成されるという観点から、ニトリルとしては、アセトニトリルが好ましい。
(1.4.2) Nitrile Nitrile is an organic solvent containing a nitrile group (-CN) in its structure. Examples of the nitrile include acetonitrile, propionitrile, valeronitrile, butyronitrile, and the like. Among these, acetonitrile is preferable as the nitrile from the viewpoint that the film 3 is formed particularly well.
(2)基材5
 「基材5」については、上記の「1.被覆基材1」における「(1)基材5」の欄の説明をそのまま適用する。
(2) Base material 5
Regarding the "base material 5", the explanation in the column "(1) Base material 5" in the above "1. Covered base material 1" is applied as is.
(3)電圧印加
 基材5を浴液2中に浸漬した状態で、電圧印加することで負極7側の基材5上に皮膜3を形成する。具体的には、浴液2に正極6と負極7(基材5)とを浸漬し、両電極間に電位勾配を発生させる。
 正極6としては、公知の導電性基板のいずれも使用できる。浴液2中の金属元素が、正極6の溶出によって供給される場合には、正極6は、Alの電極、Tiの電極、及びMoの電極より選ばれた少なくとも1種以上の電極が好ましい。正極6の形状、厚さ、大きさ等は、特に限定されない。正極6は、例えば、箔状、板状、発泡状、不織布状、メッシュ状、フェルト状、エキスパンデッド状であってもよい。
 正極6と負極7は、対向して配置されることが好ましい。
 正極6と負極7は、直流電源に接続され、直流電源によって正極6と負極7間に電位勾配を発生させることができる。
 正極6と負極7間に電位勾配を発生するためには、浴液2に正極6と負極7とを浸漬した状態で、正極6と負極7に接続されている電源によって、両電極に電圧(例えば定電圧)を印加する。
 両電極間に発生させる電位勾配は、皮膜形成を実用的な速度で行う観点から、定電圧の場合には、10V以上300V以下が好ましく、20V以上100V以下がより好ましく、60V以上80V以下が更に好ましい。
 電圧を印加する印加時間は、特に限定されない。印加時間は、例えば、10秒以上300秒以下が好ましく、30秒以上240秒以下がより好ましく、60秒以上180秒以下が更に好ましい。
 尚、電圧は、定電圧ではなく、大きさを変化させてもよい。
(3) Voltage application With the base material 5 immersed in the bath liquid 2, a voltage is applied to form the film 3 on the base material 5 on the negative electrode 7 side. Specifically, the positive electrode 6 and the negative electrode 7 (base material 5) are immersed in the bath liquid 2, and a potential gradient is generated between the two electrodes.
As the positive electrode 6, any known conductive substrate can be used. When the metal element in the bath liquid 2 is supplied by elution from the positive electrode 6, the positive electrode 6 is preferably at least one electrode selected from an Al electrode, a Ti electrode, and a Mo electrode. The shape, thickness, size, etc. of the positive electrode 6 are not particularly limited. The positive electrode 6 may have a foil shape, a plate shape, a foam shape, a nonwoven fabric shape, a mesh shape, a felt shape, or an expanded shape, for example.
It is preferable that the positive electrode 6 and the negative electrode 7 are arranged facing each other.
The positive electrode 6 and the negative electrode 7 are connected to a DC power source, and a potential gradient can be generated between the positive electrode 6 and the negative electrode 7 by the DC power source.
In order to generate a potential gradient between the positive electrode 6 and the negative electrode 7, with the positive electrode 6 and the negative electrode 7 immersed in the bath liquid 2, a voltage ( For example, a constant voltage) is applied.
From the viewpoint of forming a film at a practical speed, the potential gradient generated between the two electrodes is preferably 10 V or more and 300 V or less, more preferably 20 V or more and 100 V or less, and even more preferably 60 V or more and 80 V or less, from the viewpoint of forming a film at a practical speed. preferable.
The voltage application time is not particularly limited. The application time is, for example, preferably 10 seconds or more and 300 seconds or less, more preferably 30 seconds or more and 240 seconds or less, and even more preferably 60 seconds or more and 180 seconds or less.
Note that the voltage may not be a constant voltage but may vary in magnitude.
(4)皮膜形成後の処理工程
 皮膜3の形成後に、熱処理及び/又は光照射によって皮膜3中のカーボン量を減少させてもよい。熱処理及び/又は光照射によって皮膜3中のカーボン量を減少させることで、無機酸化膜としての純度を制御できる。
 熱処理の処理温度は、特に限定されない。カーボン量を効率的に減少させる観点から、100℃以上1000℃以下が好ましく、300℃以上800℃以下がより好ましく、500℃以上600℃以下が更に好ましい。
 熱処理の処理時間は、特に限定されない。カーボン量を効率的に減少させる観点から、1分以上60分以下が好ましく、5分以上45分以下がより好ましく、10分以上30分以下が更に好ましい。
 光照射における光の波長は、特に限定されない。光の波長は、カーボン量を効率的に減少させる観点から、250nm以上1100nm以下が好ましく、300nm以上800nm以下がより好ましく、400nm以上500nm以下が更に好ましい。
 光の照射時間は、特に限定されない。カーボン量を効率的に減少させる観点から、3秒以上120秒以下が好ましく、5秒以上60秒以下がより好ましく、10秒以上30秒以下が更に好ましい。
 尚、皮膜3中のカーボン量の減少はXPS分析によって確認することができる。
(4) Treatment step after film formation After the film 3 is formed, the amount of carbon in the film 3 may be reduced by heat treatment and/or light irradiation. By reducing the amount of carbon in the film 3 through heat treatment and/or light irradiation, the purity of the inorganic oxide film can be controlled.
The treatment temperature of the heat treatment is not particularly limited. From the viewpoint of efficiently reducing the amount of carbon, the temperature is preferably 100°C or more and 1000°C or less, more preferably 300°C or more and 800°C or less, and even more preferably 500°C or more and 600°C or less.
The treatment time of the heat treatment is not particularly limited. From the viewpoint of efficiently reducing the amount of carbon, the time is preferably 1 minute or more and 60 minutes or less, more preferably 5 minutes or more and 45 minutes or less, and even more preferably 10 minutes or more and 30 minutes or less.
The wavelength of light in light irradiation is not particularly limited. From the viewpoint of efficiently reducing the amount of carbon, the wavelength of the light is preferably 250 nm or more and 1100 nm or less, more preferably 300 nm or more and 800 nm or less, and even more preferably 400 nm or more and 500 nm or less.
The light irradiation time is not particularly limited. From the viewpoint of efficiently reducing the amount of carbon, the time is preferably 3 seconds or more and 120 seconds or less, more preferably 5 seconds or more and 60 seconds or less, and even more preferably 10 seconds or more and 30 seconds or less.
Note that the decrease in the amount of carbon in the film 3 can be confirmed by XPS analysis.
3.本実施形態の被覆基材1の作用効果
 本実施形態の被覆基材1は、被覆基材1を使用する際に、特に周辺環境と接しやすい縁部領域S1や凸状部存在領域S3の皮膜3を選択的に厚く成膜することで機能性及び/又は耐久性に優れる。
 本実施形態によれば、種々の分野に適用可能で、量産可能な新規な被覆基材1が提供される。
 本実施形態の被覆基材1は、高価な原料を用いることなく、又は高価な原料の使用量をごく少量にして形成できるため、コスト的に有利である。
 また、本実施形態の被覆基材1は、熱処理や光照射等の後処理を必ずしも行う必要なく、皮膜3が形成されるから、基材5の材質や基材5の形状の選択肢を広げることができる。
3. Effects of the coated base material 1 of this embodiment When the coated base material 1 of this embodiment is used, the coating of the edge region S1 and the convex portion existing region S3 that are particularly likely to come into contact with the surrounding environment is By selectively forming a thick film of No. 3, excellent functionality and/or durability can be achieved.
According to this embodiment, a novel coated base material 1 that is applicable to various fields and can be mass-produced is provided.
The coated base material 1 of this embodiment can be formed without using expensive raw materials or with a very small amount of expensive raw materials, so it is advantageous in terms of cost.
In addition, since the coated base material 1 of this embodiment forms the coating 3 without necessarily performing post-treatment such as heat treatment or light irradiation, the options for the material of the base material 5 and the shape of the base material 5 can be expanded. I can do it.
 実施例により本開示を更に具体的に説明する。
 尚、以下の説明において、XPS(X線光電子分光法)の測定条件は以下の通りである。
[測定条件]
 X線ビーム径:100μmΦ
 信号の取り込み角:45.0°
 パスエネルギー:140eV
 Arエッチング30秒(エッチングレート: SiO換算で10nm/min)
The present disclosure will be explained in more detail with reference to Examples.
In the following description, the measurement conditions for XPS (X-ray photoelectron spectroscopy) are as follows.
[Measurement condition]
X-ray beam diameter: 100μmΦ
Signal intake angle: 45.0°
Pass energy: 140eV
Ar etching for 30 seconds (etching rate: 10 nm/min in terms of SiO2 )
1.金属元素が正極6の溶出により浴液2中に供給される実施例
(1)実施例1(溶媒:MEK、正極6:アルミニウム)
 図3に示す成膜装置11を用いた。正極6としてアルミニウムワイヤを用いた。負極7としてステンレス板を用いた。負極7は、表面に皮膜3を形成する基材5である。浴液2の溶媒には、メチルエチルケトン(MEK)を用いた。浴液2には、ハロゲンとしてのヨウ素を600ppm溶解させた。
 浴液2に正極6と負極7を浸漬した状態で、正極6と負極7間に80Vを3分間印加した。負極7の断面をFIB-SEM(電界放出型走査電子顕微鏡)にて観察したところ、図2に示すように、基材5の表面に700nmの皮膜3が形成されていた。XPSでArエッチングを30秒間行った後に分析したところ、この皮膜3はアルミニウム酸化物であることが分かった。
 また、皮膜3における炭素元素の元素百分率は5.8atm%であり、アルミニウム元素及び酸素元素の合計の元素百分率は93.9atm%であった。
 また、この皮膜3におけるヨウ素元素の元素百分率は、0.1atm%未満(測定下限)であった。
 また、皮膜3の膜厚方向に切断した断面TEM像では、結晶粒が観察されないことから、皮膜3は非晶質であることが確認された。
 また、次の方法によって、皮膜3の相対密度を求めたところ、相対密度は100%であった。
 皮膜3の相対密度は、次の方法により求めた。皮膜3の膜厚方向に切断した断面TEM像を取得した。縦300nm、横1000nmの視野で気孔の面積を測定した。下記(1)式から相対密度(%)を求めた。10箇所の視野の相対密度の平均値が皮膜3の相対密度である。尚、皮膜3の厚さが縦300nmよりも小さい場合、皮膜3の厚さに合わせた視野で測定を行うものとする。
 相対密度(%)={(S1-S2)/S1}×100(1)
(式中S1は縦300nm×横1000nmの視野の面積(nm)で、S2は縦300nm×横1000nmの視野内における気孔の合計面積(nm)である)
1. Example (1) in which the metal element is supplied into the bath liquid 2 by elution from the positive electrode 6 Example 1 (solvent: MEK, positive electrode 6: aluminum)
A film forming apparatus 11 shown in FIG. 3 was used. An aluminum wire was used as the positive electrode 6. A stainless steel plate was used as the negative electrode 7. The negative electrode 7 is a base material 5 on which a film 3 is formed. Methyl ethyl ketone (MEK) was used as the solvent for bath liquid 2. In the bath liquid 2, 600 ppm of iodine as a halogen was dissolved.
With the positive electrode 6 and the negative electrode 7 immersed in the bath liquid 2, 80 V was applied between the positive electrode 6 and the negative electrode 7 for 3 minutes. When the cross section of the negative electrode 7 was observed using an FIB-SEM (field emission scanning electron microscope), a 700 nm thick film 3 was formed on the surface of the base material 5, as shown in FIG. Analysis after performing Ar etching for 30 seconds using XPS revealed that this film 3 was aluminum oxide.
Further, the elemental percentage of carbon element in the film 3 was 5.8 atm%, and the total elemental percentage of aluminum element and oxygen element was 93.9 atm%.
Moreover, the elemental percentage of iodine in this film 3 was less than 0.1 atm % (lower limit of measurement).
Further, in a cross-sectional TEM image taken in the film thickness direction of the film 3, no crystal grains were observed, so it was confirmed that the film 3 was amorphous.
Further, when the relative density of the film 3 was determined by the following method, the relative density was 100%.
The relative density of film 3 was determined by the following method. A cross-sectional TEM image of the film 3 cut in the film thickness direction was obtained. The area of the pores was measured in a field of view of 300 nm in length and 1000 nm in width. The relative density (%) was determined from the following equation (1). The average value of the relative densities of the 10 visual fields is the relative density of the film 3. In addition, when the thickness of the film 3 is smaller than 300 nm vertically, the measurement shall be performed with a field of view that matches the thickness of the film 3.
Relative density (%) = {(S1-S2)/S1}×100(1)
(In the formula, S1 is the area (nm 2 ) of a visual field of 300 nm long x 1000 nm wide, and S2 is the total area (nm 2 ) of pores in the visual field of 300 nm long x 1000 nm wide.)
(2)実施例2(溶媒:アセトン、正極6:アルミニウム)
 浴液2の溶媒として、アセトンを用いた。浴液2には、ハロゲンとしてのヨウ素を14ppm溶解させた。それ以外の点は、実施例1と同様にして実験した。負極7の断面をFIB-SEMにて観察したところ、基材5の表面に130nmの皮膜3が形成されていた。XPSで分析したところ、この皮膜3はアルミニウム酸化物であることが分かった。
 また、皮膜3における炭素元素の元素百分率は6.5atm%であり、アルミニウム元素及び酸素元素の合計の元素百分率は93.3atm%であった。
 また、この皮膜3におけるヨウ素元素の元素百分率は、0.1atm%であった。
 また、皮膜3の膜厚方向に切断した断面TEM像では、結晶粒が観察されないことから、皮膜3は非晶質であることが確認された。
 また、上述の方法によって、皮膜3の相対密度を求めたところ、相対密度は100%であった。
(2) Example 2 (solvent: acetone, positive electrode 6: aluminum)
Acetone was used as a solvent for bath liquid 2. In the bath liquid 2, 14 ppm of iodine as a halogen was dissolved. The experiment was carried out in the same manner as in Example 1 in other respects. When the cross section of the negative electrode 7 was observed using FIB-SEM, it was found that a 130 nm thick film 3 was formed on the surface of the base material 5. Analysis by XPS revealed that this film 3 was aluminum oxide.
Further, the elemental percentage of carbon element in the film 3 was 6.5 atm%, and the total elemental percentage of aluminum element and oxygen element was 93.3 atm%.
Further, the elemental percentage of iodine in this film 3 was 0.1 atm%.
Further, in a cross-sectional TEM image taken in the film thickness direction of the film 3, no crystal grains were observed, so it was confirmed that the film 3 was amorphous.
Further, when the relative density of the film 3 was determined by the above-mentioned method, the relative density was 100%.
(3)実施例3(溶媒:MEK、正極6:チタン)
 正極6としてチタンワイヤを用いた。それ以外の点は、実施例1と同様にして実験した。負極7の断面をFIB-SEMにて観察したところ、基材5の表面に90nmの皮膜3が形成されていた。XPSで分析したところ、この皮膜3はチタン酸化物であることが分かった。
 また、皮膜3における炭素元素の元素百分率は24.6atm%であり、チタン元素及び酸素元素の合計の元素百分率は78.7atm%であった。
 また、この皮膜3におけるヨウ素元素の元素百分率は、0.3atm%であった。
 また、皮膜3の膜厚方向に切断した断面TEM像では、結晶粒が観察されないことから、皮膜3は非晶質であることが確認された。
 また、上述の方法によって、皮膜3の相対密度を求めたところ、相対密度は100%であった。
(3) Example 3 (solvent: MEK, positive electrode 6: titanium)
A titanium wire was used as the positive electrode 6. The experiment was carried out in the same manner as in Example 1 in other respects. When the cross section of the negative electrode 7 was observed using FIB-SEM, it was found that a 90 nm thick film 3 was formed on the surface of the base material 5. Analysis by XPS revealed that this film 3 was a titanium oxide.
Further, the elemental percentage of carbon element in the film 3 was 24.6 atm%, and the total elemental percentage of titanium element and oxygen element was 78.7 atm%.
Further, the elemental percentage of iodine in this film 3 was 0.3 atm%.
Further, in a cross-sectional TEM image taken in the film thickness direction of the film 3, no crystal grains were observed, so it was confirmed that the film 3 was amorphous.
Further, when the relative density of the film 3 was determined by the above-mentioned method, the relative density was 100%.
(4)実施例4(溶媒:アセトン、正極6:チタン)
 浴液2の溶媒として、アセトンを用いた。浴液2には、ハロゲンとしてのヨウ素を2400ppm溶解させた。それ以外の点は、実施例3と同様にして実験した。負極7の断面をFIB-SEMにて観察したところ、基材5の表面に500nmの皮膜3が形成されていた。XPSで分析したところ、この皮膜3はチタン酸化物であることが分かった。
 また、皮膜3における炭素元素の元素百分率は9.2atm%であり、チタン元素及び酸素元素の合計の元素百分率は83.7atm%であった。
 また、この皮膜3におけるヨウ素元素の元素百分率は、0.4atm%であった。
 また、皮膜3の膜厚方向に切断した断面TEM像では、結晶粒が観察されないことから、皮膜3は非晶質であることが確認された。
 また、上述の方法によって、皮膜3の相対密度を求めたところ、相対密度は100%であった。
(4) Example 4 (solvent: acetone, positive electrode 6: titanium)
Acetone was used as a solvent for bath liquid 2. In the bath liquid 2, 2400 ppm of iodine as a halogen was dissolved. The experiment was conducted in the same manner as in Example 3 in other respects. When the cross section of the negative electrode 7 was observed using FIB-SEM, it was found that a 500 nm thick film 3 was formed on the surface of the base material 5. Analysis by XPS revealed that this film 3 was a titanium oxide.
Further, the elemental percentage of carbon element in the film 3 was 9.2 atm%, and the total elemental percentage of titanium element and oxygen element was 83.7 atm%.
Moreover, the elemental percentage of iodine in this film 3 was 0.4 atm %.
Further, in a cross-sectional TEM image taken in the film thickness direction of the film 3, no crystal grains were observed, so it was confirmed that the film 3 was amorphous.
Further, when the relative density of the film 3 was determined by the above-mentioned method, the relative density was 100%.
(5)実施例5(溶媒:MEK、正極6:モリブデン)
 正極6としてモリブデンワイヤを用いた。それ以外の点は、実施例1と同様にして実験した。負極7の断面をFIB-SEMにて観察したところ、基材5の表面に160nmの皮膜3が形成されていた。XPSで分析したところ、この皮膜3はモリブデン酸化物であることが分かった。
 また、皮膜3における炭素元素の元素百分率は14.8atm%であり、モリブデン元素及び酸素元素の合計の元素百分率は78.7atm%であった。
 また、この皮膜3におけるヨウ素元素の元素百分率は、0.1atm%未満(検出限界以下)であった。
 また、皮膜3の膜厚方向に切断した断面TEM像では、結晶粒が観察されないことから、皮膜3は非晶質であることが確認された。
 また、上述の方法によって、皮膜3の相対密度を求めたところ、相対密度は100%であった。
(5) Example 5 (solvent: MEK, positive electrode 6: molybdenum)
A molybdenum wire was used as the positive electrode 6. The experiment was carried out in the same manner as in Example 1 in other respects. When the cross section of the negative electrode 7 was observed using FIB-SEM, it was found that a 160 nm thick film 3 was formed on the surface of the base material 5. Analysis by XPS revealed that this film 3 was molybdenum oxide.
Further, the elemental percentage of carbon element in the film 3 was 14.8 atm%, and the total elemental percentage of molybdenum element and oxygen element was 78.7 atm%.
Further, the elemental percentage of iodine in this film 3 was less than 0.1 atm % (below the detection limit).
Further, in a cross-sectional TEM image taken in the film thickness direction of the film 3, no crystal grains were observed, so it was confirmed that the film 3 was amorphous.
Further, when the relative density of the film 3 was determined by the above-mentioned method, the relative density was 100%.
(6)実施例6(溶媒:アセトン、正極6:モリブデン)
 浴液2の溶媒として、アセトンを用いた。浴液2には、ハロゲンとしてのヨウ素を2400ppm溶解させた。それ以外の点は、実施例5と同様にして実験した。負極7の断面をFIB-SEMにて観察したところ、基材5の表面に480nmの皮膜3が形成されていた。XPSで分析したところ、この皮膜3はモリブデン酸化物であることが分かった。
また、皮膜3における炭素元素の元素百分率は12.7atm%であり、モリブデン元素及び酸素元素の合計の元素百分率は78.0atm%であった。
 また、この皮膜3におけるヨウ素元素の元素百分率は、0.1atm%未満(検出限界以下)であった。
 また、皮膜3の膜厚方向に切断した断面TEM像では、結晶粒が観察されないことから、皮膜3は非晶質であることが確認された。
 また、上述の方法によって、皮膜3の相対密度を求めたところ、相対密度は100%であった。
(6) Example 6 (solvent: acetone, positive electrode 6: molybdenum)
Acetone was used as a solvent for bath liquid 2. In the bath liquid 2, 2400 ppm of iodine as a halogen was dissolved. The experiment was conducted in the same manner as in Example 5 except for the above. When the cross section of the negative electrode 7 was observed using FIB-SEM, it was found that a 480 nm thick film 3 was formed on the surface of the base material 5. Analysis by XPS revealed that this film 3 was molybdenum oxide.
Further, the elemental percentage of carbon element in the film 3 was 12.7 atm%, and the total elemental percentage of molybdenum element and oxygen element was 78.0 atm%.
Further, the elemental percentage of iodine in this film 3 was less than 0.1 atm % (below the detection limit).
Further, in a cross-sectional TEM image taken in the film thickness direction of the film 3, no crystal grains were observed, so it was confirmed that the film 3 was amorphous.
Further, when the relative density of the film 3 was determined by the above-mentioned method, the relative density was 100%.
(7)実施例7(溶媒:アセトニトリル、正極6:アルミニウム)
 浴液2の溶媒として、アセトニトリルを用いた。浴液2には、ハロゲンとしてのヨウ素を2400ppm溶解させた。それ以外の点は、実施例1と同様にして実験した。負極7の断面をFIB-SEMにて観察したところ、基材5の表面に140nmの皮膜3が形成されていた。XPSで分析したところ、この皮膜3はアルミニウム酸化物であることが分かった。皮膜3には、浴液2には存在しない酸素が存在していた。これは、浴液2に含有されていた水、又は大気中から吸湿した水に由来する酸素であると推定される。
 また、皮膜3における炭素元素の元素百分率は9.8atm%であり、アルミニウム元素及び酸素元素の合計の元素百分率は90.1atm%であった。
 また、この皮膜3におけるヨウ素元素の元素百分率は、0.1atm%であった。
 また、皮膜3の膜厚方向に切断した断面TEM像では、結晶粒が観察されないことから、皮膜3は非晶質であることが確認された。
 また、上述の方法によって、皮膜3の相対密度を求めたところ、相対密度は100%であった。
(7) Example 7 (solvent: acetonitrile, positive electrode 6: aluminum)
Acetonitrile was used as the solvent for bath liquid 2. In the bath liquid 2, 2400 ppm of iodine as a halogen was dissolved. The experiment was carried out in the same manner as in Example 1 in other respects. When the cross section of the negative electrode 7 was observed using FIB-SEM, it was found that a 140 nm thick film 3 was formed on the surface of the base material 5. Analysis by XPS revealed that this film 3 was aluminum oxide. Oxygen, which was not present in the bath liquid 2, was present in the film 3. This is presumed to be oxygen derived from water contained in the bath liquid 2 or water absorbed from the atmosphere.
Further, the elemental percentage of carbon element in the film 3 was 9.8 atm%, and the total elemental percentage of aluminum element and oxygen element was 90.1 atm%.
Further, the elemental percentage of iodine in this film 3 was 0.1 atm%.
Further, in a cross-sectional TEM image taken in the film thickness direction of the film 3, no crystal grains were observed, so it was confirmed that the film 3 was amorphous.
Further, when the relative density of the film 3 was determined by the above-mentioned method, the relative density was 100%.
(8)実施例1-7における皮膜3のFIB-SEM観察
 実施例1-7の皮膜3の断面をFIB-SEM観察した。実施例1-7のいずれにおいても、基材5の表面Sの縁部領域S1上に形成された皮膜3の最大厚みT1maxは、表面Sの縁部領域S1よりも内側の内側領域S2上に形成された皮膜3の厚みT2よりも大きかった。
 また、実施例1-7のいずれにおいても、縁部領域S1上に形成された皮膜3の最大厚みT1maxは、内側領域S2上に形成された皮膜3の厚みT2よりも10%以上大きかった。
 また、実施例1-7のいずれにおいても、皮膜3の厚みTは、縁部領域S1上に形成された皮膜3の最大厚みT1maxの部位から内側領域S2に向かうにつれて減少していた。
(8) FIB-SEM observation of film 3 in Example 1-7 A cross section of film 3 in Example 1-7 was observed by FIB-SEM. In any of Examples 1-7, the maximum thickness T1max of the film 3 formed on the edge region S1 of the surface S of the base material 5 is the maximum thickness T1max of the film 3 formed on the inner region S2 inside the edge region S1 of the surface S. It was larger than the thickness T2 of the formed film 3.
Further, in any of Examples 1-7, the maximum thickness T1max of the coating 3 formed on the edge region S1 was 10% or more larger than the thickness T2 of the coating 3 formed on the inner region S2.
Furthermore, in all of Examples 1 to 7, the thickness T of the film 3 decreased from the region of the maximum thickness T1max of the film 3 formed on the edge region S1 toward the inner region S2.
2.金属元素が金属アルコキシドから浴液中に供給される実施例
(1)実施例8(溶媒:アセトン、金属アルコキシド:アルミニウムトリイソプロポキシド)
 図3に示す成膜装置11を用いた。正極6として炭素電極を用いた。負極7としてステンレス板を用いた。負極7は、表面Sに皮膜3を形成する基材5である。浴液2の溶媒には、アセトンを用いた。
 浴液2には、アルミニウムトリイソプロポキシドを16mg/L(16ppm)溶解させ、ハロゲンとしてのヨウ素を2400mg/L(2400ppm)溶解させた。
 浴液2に正極6と負極7を浸漬した状態で、正極6と負極7間に80Vを3分間印加した。
 負極7の断面をFIB-SEM(電界放出型走査電子顕微鏡)にて観察したところ、基材5の表面に140nmの皮膜3が形成されていた。XPS(X線光電子分光法)で分析したところ、この皮膜3はアルミニウム酸化物であることが分かった。
 また、皮膜3における炭素元素の元素百分率は8.4atm%であり、アルミニウム元素及び酸素元素の合計の元素百分率は84.3atm%であった。
 また、この皮膜3におけるヨウ素元素の元素百分率は、0.1atm%未満(検出限界以下)であった。
 また、皮膜3の膜厚方向に切断した断面TEM像では、結晶粒が観察されないことから、皮膜3は非晶質であることが確認された。
 また、上述の方法によって、皮膜3の相対密度を求めたところ、相対密度は100%であった。
2. Example (1) Example 8 where the metal element is supplied from the metal alkoxide into the bath liquid (solvent: acetone, metal alkoxide: aluminum triisopropoxide)
A film forming apparatus 11 shown in FIG. 3 was used. A carbon electrode was used as the positive electrode 6. A stainless steel plate was used as the negative electrode 7. The negative electrode 7 is a base material 5 on which a film 3 is formed on the surface S thereof. Acetone was used as the solvent for bath liquid 2.
In the bath liquid 2, 16 mg/L (16 ppm) of aluminum triisopropoxide was dissolved, and 2400 mg/L (2400 ppm) of iodine as a halogen was dissolved.
With the positive electrode 6 and the negative electrode 7 immersed in the bath liquid 2, 80 V was applied between the positive electrode 6 and the negative electrode 7 for 3 minutes.
When the cross section of the negative electrode 7 was observed using an FIB-SEM (field emission scanning electron microscope), it was found that a 140 nm thick film 3 was formed on the surface of the base material 5. Analysis by XPS (X-ray photoelectron spectroscopy) revealed that this film 3 was aluminum oxide.
Further, the elemental percentage of carbon element in the film 3 was 8.4 atm%, and the total elemental percentage of aluminum element and oxygen element was 84.3 atm%.
Further, the elemental percentage of iodine in this film 3 was less than 0.1 atm % (below the detection limit).
Further, in a cross-sectional TEM image taken in the film thickness direction of the film 3, no crystal grains were observed, so it was confirmed that the film 3 was amorphous.
Further, when the relative density of the film 3 was determined by the above-mentioned method, the relative density was 100%.
(2)実施例9(溶媒:MEK、金属アルコキシド:アルミニウムトリイソプロポキシド)
 浴液2の溶媒として、メチルエチルケトン(MEK)を用いた。それ以外の点は、実施例8と同様にして実験した。負極7の断面をFIB-SEMにて観察したところ、基材5の表面Sに皮膜3が形成されていた。XPSでの分析したところ、この皮膜3はアルミニウム酸化物であることが分かった。
 また、皮膜3における炭素元素の元素百分率は8.6atm%であり、アルミニウム元素及び酸素元素の合計の元素百分率は83.6atm%であった。
 また、この皮膜3におけるヨウ素元素の元素百分率は、0.1atm%未満(検出限界以下)であった。
 また、皮膜3の膜厚方向に切断した断面TEM像では、結晶粒が観察されないことから、皮膜3は非晶質であることが確認された。
 また、上述の方法によって、皮膜3の相対密度を求めたところ、相対密度は100%であった。
(2) Example 9 (solvent: MEK, metal alkoxide: aluminum triisopropoxide)
Methyl ethyl ketone (MEK) was used as a solvent for bath liquid 2. The experiment was conducted in the same manner as in Example 8 except for the above. When the cross section of the negative electrode 7 was observed using FIB-SEM, it was found that a film 3 was formed on the surface S of the base material 5. Analysis by XPS revealed that this film 3 was aluminum oxide.
Further, the elemental percentage of carbon element in the film 3 was 8.6 atm%, and the total elemental percentage of aluminum element and oxygen element was 83.6 atm%.
Further, the elemental percentage of iodine in this film 3 was less than 0.1 atm % (below the detection limit).
Further, in a cross-sectional TEM image taken in the film thickness direction of the film 3, no crystal grains were observed, so it was confirmed that the film 3 was amorphous.
Further, when the relative density of the film 3 was determined by the above-mentioned method, the relative density was 100%.
(3)実施例10(溶媒:アセトン、金属アルコキシド:チタンテトライソプロポキシド)
 アルミニウムトリイソプロポキシドに代えて、チタンテトライソプロポキシドを用いた。それ以外の点は、実施例8と同様にして実験した。負極7の断面をFIB-SEMにて観察したところ、基材5の表面Sに皮膜3が形成されていた。XPSでの分析したところ、この皮膜3はチタン酸化物であることが分かった。
 また、皮膜3における炭素元素の元素百分率は8.8atm%であり、チタン元素及び酸素元素の合計の元素百分率は86.1atm%であった。
 また、この皮膜3におけるヨウ素元素の元素百分率は、1.3atm%であった。
 また、皮膜3の膜厚方向に切断した断面TEM像では、結晶粒が観察されないことから、皮膜3は非晶質であることが確認された。
 また、上述の方法によって、皮膜3の相対密度を求めたところ、相対密度は100%であった。
(3) Example 10 (solvent: acetone, metal alkoxide: titanium tetraisopropoxide)
Titanium tetraisopropoxide was used in place of aluminum triisopropoxide. The experiment was conducted in the same manner as in Example 8 except for the above. When the cross section of the negative electrode 7 was observed using FIB-SEM, it was found that a film 3 was formed on the surface S of the base material 5. Analysis by XPS revealed that this film 3 was a titanium oxide.
Further, the elemental percentage of carbon element in the film 3 was 8.8 atm%, and the total elemental percentage of titanium element and oxygen element was 86.1 atm%.
Moreover, the elemental percentage of iodine in this film 3 was 1.3 atm %.
Further, in a cross-sectional TEM image taken in the film thickness direction of the film 3, no crystal grains were observed, so it was confirmed that the film 3 was amorphous.
Further, when the relative density of the film 3 was determined by the above-mentioned method, the relative density was 100%.
(4)実施例11(溶媒:アセトン、金属アルコキシド:チタンテトラn-プロポキシド)
 アルミニウムトリイソプロポキシドに代えて、チタンテトラn-プロポキシドを用いた。それ以外の点は、実施例8と同様にして実験した。負極7の断面をFIB-SEMにて観察したところ、基材5の表面Sに皮膜3が形成されていた。XPSで分析したところ、この皮膜3はチタン酸化物であることが分かった。
 また、皮膜3における炭素元素の元素百分率は9.5atm%であり、チタン元素及び酸素元素の合計の元素百分率は85.9atm%であった。
 また、この皮膜3におけるヨウ素元素の元素百分率は、0.9atm%であった。
 また、皮膜3の膜厚方向に切断した断面TEM像では、結晶粒が観察されないことから、皮膜3は非晶質であることが確認された。
 また、上述の方法によって、皮膜3の相対密度を求めたところ、相対密度は100%であった。
(4) Example 11 (solvent: acetone, metal alkoxide: titanium tetra n-propoxide)
Titanium tetra-n-propoxide was used in place of aluminum triisopropoxide. The experiment was conducted in the same manner as in Example 8 except for the above. When the cross section of the negative electrode 7 was observed using FIB-SEM, it was found that a film 3 was formed on the surface S of the base material 5. Analysis by XPS revealed that this film 3 was a titanium oxide.
Further, the elemental percentage of carbon element in the film 3 was 9.5 atm%, and the total elemental percentage of titanium element and oxygen element was 85.9 atm%.
Further, the elemental percentage of iodine in this film 3 was 0.9 atm%.
Further, in a cross-sectional TEM image taken in the film thickness direction of the film 3, no crystal grains were observed, so it was confirmed that the film 3 was amorphous.
Further, when the relative density of the film 3 was determined by the above-mentioned method, the relative density was 100%.
(5)実施例8-11における皮膜3のFIB-SEM観察
 実施例8-11の皮膜3の断面をFIB-SEM観察した。実施例8-11のいずれにおいても、基材5の表面Sの縁部領域S1上に形成された皮膜3の最大厚みT1maxは、表面Sの縁部領域S1よりも内側の内側領域S2上に形成された皮膜3の厚みT2よりも大きかった。
 また、実施例8-11のいずれにおいても、縁部領域S1上に形成された皮膜3の最大厚みT1maxは、内側領域S2上に形成された皮膜3の厚みT2よりも10%以上大きかった。
 また、実施例8-11のいずれにおいても、皮膜3の厚みTは、縁部領域S1上に形成された皮膜3の最大厚みT1maxの部位から内側領域S2に向かうにつれて減少していた。
(5) FIB-SEM observation of film 3 in Example 8-11 A cross section of film 3 in Example 8-11 was observed by FIB-SEM. In any of Examples 8 to 11, the maximum thickness T1max of the coating 3 formed on the edge region S1 of the surface S of the base material 5 is the same as that of the film 3 formed on the inner region S2 inside the edge region S1 of the surface S. It was larger than the thickness T2 of the formed film 3.
Furthermore, in all of Examples 8-11, the maximum thickness T1max of the coating 3 formed on the edge region S1 was 10% or more larger than the thickness T2 of the coating 3 formed on the inner region S2.
Furthermore, in all of Examples 8 to 11, the thickness T of the coating 3 decreased from the portion of the coating 3 formed on the edge region S1 where the maximum thickness T1max was toward the inner region S2.
3.皮膜3のFT-IRによる分析
 実施例1,2,3,7で形成された皮膜3についてFT-IRで分析した。測定条件は以下の通りである。
 測定方法 :1回反射ATR法
 積算回数 :64回
 分解能  :4cm-1
 アパーチャ:150μm
3. Analysis of Film 3 by FT-IR The films 3 formed in Examples 1, 2, 3, and 7 were analyzed by FT-IR. The measurement conditions are as follows.
Measurement method: Single reflection ATR method Number of integration: 64 times Resolution: 4cm -1
Aperture: 150μm
 いずれの皮膜3においても3000cm-1-2800cm-1にC-H伸縮振動と推定されるピークが検出された。 In each film 3, a peak estimated to be the C--H stretching vibration was detected at 3000 cm -1 -2800 cm -1 .
4.皮膜3のXPSによる分析
 実施例1,2,3で形成された皮膜3についてXPSで分析した。いずれの皮膜3においてもC=O結合、C-O結合が検出された。
4. Analysis of Film 3 by XPS The film 3 formed in Examples 1, 2, and 3 was analyzed by XPS. In all films 3, C═O bonds and C—O bonds were detected.
5.溶媒の種類による皮膜形成速度の相違
 電析時間と析出重量との関係を各種溶媒について調べた。
 図1に示す成膜装置11を用いた。正極6としてアルミニウムワイヤを用いた。負極7としてステンレス板を用いた。負極7は、表面Sに皮膜3を形成する基材5である。浴液2の溶媒には、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン、ジイソブチルケトンの各種溶媒を用いた。浴液2には、それぞれハロゲンとしてのヨウ素を2100mg/L(2100ppm)溶解させた。
 浴液2に正極6と負極7を浸漬した状態で、正極6と負極7間に80Vを1分間-3分間印加した。
 各溶媒を用いた場合について、印加時間(電析時間)と析出重量(析出質量)との関係を図4のグラフに示す。析出重量は、形成された皮膜の重量である。
 図4のグラフから、電析時間が大きくなるに伴って析出重量が大きくなる傾向にあることが確認された。また、図4のグラフから、溶媒の炭化水素基の炭素数が少ない程、析出速度が速いことが確認された。
5. Differences in film formation rate depending on the type of solvent The relationship between the electrodeposition time and the deposited weight was investigated for various solvents.
A film forming apparatus 11 shown in FIG. 1 was used. An aluminum wire was used as the positive electrode 6. A stainless steel plate was used as the negative electrode 7. The negative electrode 7 is a base material 5 on which a film 3 is formed on the surface S thereof. Various solvents such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, and diisobutyl ketone were used as the solvent for bath liquid 2. In each bath liquid 2, 2100 mg/L (2100 ppm) of iodine as a halogen was dissolved.
With the positive electrode 6 and the negative electrode 7 immersed in the bath liquid 2, 80V was applied between the positive electrode 6 and the negative electrode 7 for 1 minute to 3 minutes.
The graph of FIG. 4 shows the relationship between the application time (electrodeposition time) and the deposited weight (deposited mass) for each solvent. The deposited weight is the weight of the film formed.
From the graph of FIG. 4, it was confirmed that the deposited weight tended to increase as the electrodeposition time increased. Moreover, from the graph of FIG. 4, it was confirmed that the smaller the number of carbon atoms in the hydrocarbon group of the solvent, the faster the precipitation rate.
6.浴液2中の金属元素濃度と皮膜の密着性の関係
 実施例1と同様にして、最初(第1番目)のサンプル(被覆基材1)を作製した。第1番目のサンプルを浴液2から引き上げて、新たなステンレス板を浴液2に入れて実施例1と同様に印加して第2番目のサンプルを作製した。同様にして、第3,4番目のサンプルを作製した。各サンプルを浴液2から引き上げる際に、浴液2の一部を取り出して、ICP―MSにてアルミニウム元素の濃度を測定した。
 サンプルの試作数と、浴液2のアルミニウム元素の濃度の関係を図5のグラフに示す。図5のグラフから、試作数が増えるとアルミニウム元素の濃度が上昇する傾向にあることが分かった。また、第4番目のサンプルでは、皮膜3が基材5から剥離気味であった。よって、連続的にサンプルを作製するためには、アルミニウム元素の濃度は、1ppm以上6ppm以下であることが好ましいことが分かった。
6. Relationship between metal element concentration in bath liquid 2 and film adhesion A first (first) sample (coated base material 1) was produced in the same manner as in Example 1. The first sample was pulled out of the bath liquid 2, a new stainless steel plate was placed in the bath liquid 2, and the voltage was applied in the same manner as in Example 1 to prepare a second sample. Third and fourth samples were produced in the same manner. When each sample was pulled up from the bath liquid 2, a portion of the bath liquid 2 was taken out and the concentration of aluminum element was measured by ICP-MS.
The relationship between the number of prototype samples and the concentration of aluminum element in the bath liquid 2 is shown in the graph of FIG. From the graph in FIG. 5, it was found that as the number of prototypes increased, the concentration of aluminum element tended to increase. Further, in the fourth sample, the film 3 was slightly peeled off from the base material 5. Therefore, in order to continuously produce samples, it was found that the concentration of aluminum element is preferably 1 ppm or more and 6 ppm or less.
7.浴液2中のハロゲン元素の濃度と皮膜の密着性の関係
 図3に示す成膜装置11を用いた。正極6としてアルミニウムワイヤを用いた。負極7としてステンレス板を用いた。負極7は、表面Sに皮膜3を形成する基材5である。浴液2の溶媒には、アセトン、メチルエチルケトン(MEK)の各種溶媒を用いた。各浴液2には、それぞれハロゲンとしてのヨウ素を表1に示す量溶解させた。
 各浴液2に正極6と負極7を浸漬した状態で、正極6と負極7間に80Vを3分間印加して、最初(第1番目)のサンプル(被覆基材1)を作製した。第1番目のサンプルを浴液2から引き上げて、新たなステンレス板を浴液2に入れて第1番目のサンプルと同様に印加して第2番目のサンプルを作製した。同様にして、第3番目以降のサンプルを連続して作製した。
 結果を表1に示す。表1における評価は以下の通りである。
 A:皮膜3が形成された。皮膜3と基材5の密着性は良好であった。
 B:皮膜3が形成された。皮膜3と基材5の密着性がやや劣り、皮膜3は剥離気味であった。
7. Relationship between concentration of halogen element in bath liquid 2 and adhesion of film A film forming apparatus 11 shown in FIG. 3 was used. An aluminum wire was used as the positive electrode 6. A stainless steel plate was used as the negative electrode 7. The negative electrode 7 is a base material 5 on which a film 3 is formed on the surface S thereof. Various solvents such as acetone and methyl ethyl ketone (MEK) were used as the solvent for bath liquid 2. In each bath liquid 2, iodine as a halogen was dissolved in the amount shown in Table 1.
With the positive electrode 6 and the negative electrode 7 immersed in each bath liquid 2, 80 V was applied between the positive electrode 6 and the negative electrode 7 for 3 minutes to prepare a first sample (coated base material 1). The first sample was pulled out of the bath liquid 2, a new stainless steel plate was placed in the bath liquid 2, and the voltage was applied in the same manner as the first sample to prepare a second sample. In the same manner, the third and subsequent samples were successively produced.
The results are shown in Table 1. The evaluation in Table 1 is as follows.
A: Film 3 was formed. The adhesion between the film 3 and the base material 5 was good.
B: Film 3 was formed. The adhesion between the film 3 and the base material 5 was slightly poor, and the film 3 tended to peel off.
 表1の結果から、ヨウ素の濃度がいずれの場合であっても皮膜3の形成は可能であった。ヨウ素の濃度は、皮膜3の剥離を抑制する観点から、0.001g/L以上0.10g/L以下(1mg/L以上100mg/L以下=1ppm以上100ppm以下)であることが好ましいことが確認された。 From the results in Table 1, it was possible to form the film 3 regardless of the iodine concentration. It was confirmed that the concentration of iodine is preferably 0.001 g/L or more and 0.10 g/L or less (1 mg/L or more and 100 mg/L or less = 1 ppm or more and 100 ppm or less) from the viewpoint of suppressing peeling of the film 3. It was done.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
8.基材5の種類の検討
 種々の基材5を用いた場合について皮膜3の形成を試みた。実施例1における負極7であるステンレス板の代わりに、パーマロイ板、チタン板、銅板、炭素板をそれぞれ用いた。それ以外の点は、実施例1と同様にして実験した。
 いずれの基材5においても安定した皮膜3が形成された。よって、基材5の種類によらずに、安定した皮膜3の形成ができることが確認された。
8. Examination of the types of base materials 5 Formation of the film 3 was attempted using various base materials 5. In place of the stainless steel plate as the negative electrode 7 in Example 1, a permalloy plate, a titanium plate, a copper plate, and a carbon plate were used, respectively. The experiment was carried out in the same manner as in Example 1 in other respects.
A stable film 3 was formed on any of the base materials 5. Therefore, it was confirmed that stable film 3 could be formed regardless of the type of base material 5.
9.実施例の効果
 本実施例によれば、種々の分野に適用可能で、量産可能な新規な被覆基材1が提供される。
9. Effects of Example According to this example, a novel coated base material 1 that is applicable to various fields and can be mass-produced is provided.
 本発明は上記で詳述した実施形態に限定されず、本発明の請求項に示した範囲で様々な変形又は変更が可能である。 The present invention is not limited to the embodiments detailed above, and various modifications and changes can be made within the scope of the claims of the present invention.
(付記)
 本明細書には以下の発明が含まれる。
[1]
 皮膜によって基材が被覆されてなり、
 前記皮膜の厚みは、1nm以上800nm未満であり、
 前記皮膜をX線光電子分光法で測定した際に、金属元素及びO(酸素)の合計の元素百分率が70atm%以上であり、
 前記皮膜の相対密度は、90%以上であり、
 下記条件(1)及び条件(2)の少なくとも一つを満たす、被覆基材。
 条件(1):前記基材の表面の縁部領域上に形成された前記皮膜の最大厚みは、前記表面の前記縁部領域よりも内側の内側領域上に形成された前記皮膜の厚みよりも大きい。
 条件(2):前記基材の前記表面の凸状部存在領域上に形成された前記皮膜の最大厚みは、前記表面の凸状部非存在領域上に形成された前記皮膜の厚みよりも大きい。
[2]
 前記基材で前記皮膜が形成されている部位は、導電性を有する、[1]に記載の被覆基材。
[3]
 前記皮膜をX線光電子分光法で測定した際に、C(炭素)の元素百分率が0.1atm%以上20atm%未満である、[1]又は[2]に記載の被覆基材。
[4]
 前記皮膜は、非晶質である、[1]から[3]のいずれか1項に記載の被覆基材。
[5]
 前記条件(1)において、前記縁部領域上に形成された前記皮膜の最大厚みは、前記内側領域上に形成された前記皮膜の厚みよりも10%以上大きい、[1]から[4]のいずれか1項に記載の被覆基材。
[6]
 前記条件(2)において、前記凸状部存在領域上に形成された前記皮膜の最大厚みは、前記凸状部非存在領域上に形成された前記皮膜の厚みよりも10%以上大きい、[1]から[5]のいずれか1項に記載の被覆基材。
[7]
 前記条件(1)において、前記皮膜の厚みは、前記縁部領域上に形成された前記皮膜の最大厚みの部位から前記内側領域に向かうにつれて減少している、[1]から[6]のいずれか1項に記載の被覆基材。
[8]
 前記条件(2)において、前記皮膜の厚みは、前記凸状部存在領域上に形成された前記皮膜の最大厚みの部位から前記凸状部非存在領域に向かうにつれて減少している、[1]から[7]のいずれか1項に記載の被覆基材。
[9]
 前記金属元素は、Al(アルミニウム)、Ti(チタン)、Mo(モリブデン)、Cr(クロム)、Mn(マンガン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Zr(ジルコニウム)、V(バナジウム)、W(タングステン)、Ta(タンタル)、Nb(ニオブ)、及びSn(スズ)からなる群より選ばれた少なくとも1種以上である、[1]から[8]のいずれか1項に記載の被覆基材。
(Additional note)
This specification includes the following inventions.
[1]
The base material is covered with a film,
The thickness of the film is 1 nm or more and less than 800 nm,
When the film is measured by X-ray photoelectron spectroscopy, the total elemental percentage of metal elements and O (oxygen) is 70 atm% or more,
The relative density of the film is 90% or more,
A coated base material that satisfies at least one of the following conditions (1) and (2).
Condition (1): The maximum thickness of the film formed on the edge region of the surface of the base material is greater than the thickness of the film formed on the inner region of the surface, which is inside the edge region. big.
Condition (2): The maximum thickness of the film formed on the region where the convex portion is present on the surface of the base material is greater than the thickness of the film formed on the region where the convex portion is not present on the surface. .
[2]
The coated base material according to [1], wherein the portion of the base material where the film is formed has conductivity.
[3]
The coated substrate according to [1] or [2], wherein the elemental percentage of C (carbon) is 0.1 atm% or more and less than 20 atm% when the coating is measured by X-ray photoelectron spectroscopy.
[4]
The coated substrate according to any one of [1] to [3], wherein the film is amorphous.
[5]
[1] to [4], wherein in the condition (1), the maximum thickness of the coating formed on the edge region is 10% or more greater than the thickness of the coating formed on the inner region. The coated base material according to any one of the items.
[6]
In the condition (2), the maximum thickness of the film formed on the region where the convex portion is present is 10% or more greater than the thickness of the film formed on the region where the convex portion is not present, [1 ] to [5]. The coated base material according to any one of [5].
[7]
In any one of [1] to [6], in the condition (1), the thickness of the coating decreases from the maximum thickness portion of the coating formed on the edge region toward the inner region. The coated base material according to item 1.
[8]
In the condition (2), the thickness of the coating decreases from the maximum thickness portion of the coating formed on the region where the convex portion exists toward the region where the convex portion does not exist, [1] The coated base material according to any one of [7].
[9]
The metal elements include Al (aluminum), Ti (titanium), Mo (molybdenum), Cr (chromium), Mn (manganese), Fe (iron), Co (cobalt), Ni (nickel), Zr (zirconium), Any one of [1] to [8], which is at least one member selected from the group consisting of V (vanadium), W (tungsten), Ta (tantalum), Nb (niobium), and Sn (tin). The coated base material described in section.
1    …被覆基材
2    …浴液
3    …皮膜
5    …基材
6    …正極
7    …負極
11   …成膜装置
12   …凸状部
S    …表面
S1   …縁部領域
S2   …内側領域
S3   …凸状部存在領域
S4   …凸状部非存在領域
SE   …端部
T    …厚み
T1   …厚み
T1max…最大厚み
T2   …厚み
T3   …厚み
T3max…最大厚み
T4   …厚み
h    …最大高さ
1...Coated base material 2...Bath liquid 3...Coating 5...Base material 6...Positive electrode 7...Negative electrode 11...Film forming device 12...Convex portion S...Surface S1...Edge region S2...Inner region S3...Convex portion present Area S4...Protrusion-free area SE...End T...Thickness T1...Thickness T1max...Maximum thickness T2...Thickness T3...Thickness T3max...Maximum thickness T4...Thickness h...Maximum height

Claims (9)

  1.  皮膜によって基材が被覆されてなり、
     前記皮膜の厚みは、1nm以上800nm未満であり、
     前記皮膜をX線光電子分光法で測定した際に、金属元素及びO(酸素)の合計の元素百分率が70atm%以上であり、
     前記皮膜の相対密度は、90%以上であり、
     下記条件(1)及び条件(2)の少なくとも一つを満たす、被覆基材。
     条件(1):前記基材の表面の縁部領域上に形成された前記皮膜の最大厚みは、前記表面の前記縁部領域よりも内側の内側領域上に形成された前記皮膜の厚みよりも大きい。
     条件(2):前記基材の前記表面の凸状部存在領域上に形成された前記皮膜の最大厚みは、前記表面の凸状部非存在領域上に形成された前記皮膜の厚みよりも大きい。
    The base material is covered with a film,
    The thickness of the film is 1 nm or more and less than 800 nm,
    When the film is measured by X-ray photoelectron spectroscopy, the total elemental percentage of metal elements and O (oxygen) is 70 atm% or more,
    The relative density of the film is 90% or more,
    A coated base material that satisfies at least one of the following conditions (1) and (2).
    Condition (1): The maximum thickness of the film formed on the edge region of the surface of the base material is greater than the thickness of the film formed on the inner region of the surface, which is inside the edge region. big.
    Condition (2): The maximum thickness of the film formed on the region where the convex portion is present on the surface of the base material is greater than the thickness of the film formed on the region where the convex portion is not present on the surface. .
  2.  前記基材で前記皮膜が形成されている部位は、導電性を有する、請求項1に記載の被覆基材。 The coated base material according to claim 1, wherein the portion of the base material where the film is formed has electrical conductivity.
  3.  前記皮膜をX線光電子分光法で測定した際に、C(炭素)の元素百分率が0.1atm%以上20atm%未満である、請求項1又は請求項2に記載の被覆基材。 The coated substrate according to claim 1 or 2, wherein the elemental percentage of C (carbon) is 0.1 atm% or more and less than 20 atm% when the coating is measured by X-ray photoelectron spectroscopy.
  4.  前記皮膜は、非晶質である、請求項1又は請求項2に記載の被覆基材。 The coated substrate according to claim 1 or 2, wherein the film is amorphous.
  5.  前記条件(1)において、前記縁部領域上に形成された前記皮膜の最大厚みは、前記内側領域上に形成された前記皮膜の厚みよりも10%以上大きい、請求項1又は請求項2に記載の被覆基材。 According to claim 1 or claim 2, in the condition (1), the maximum thickness of the coating formed on the edge region is 10% or more larger than the thickness of the coating formed on the inner region. Coated substrate as described.
  6.  前記条件(2)において、前記凸状部存在領域上に形成された前記皮膜の最大厚みは、前記凸状部非存在領域上に形成された前記皮膜の厚みよりも10%以上大きい、請求項1又は請求項2に記載の被覆基材。 In the condition (2), the maximum thickness of the film formed on the region where the convex portion is present is 10% or more greater than the thickness of the film formed on the region where the convex portion is not present. The coated substrate according to claim 1 or claim 2.
  7.  前記条件(1)において、前記皮膜の厚みは、前記縁部領域上に形成された前記皮膜の最大厚みの部位から前記内側領域に向かうにつれて減少している、請求項1又は請求項2に記載の被覆基材。 According to claim 1 or 2, in the condition (1), the thickness of the coating decreases from a maximum thickness portion of the coating formed on the edge region toward the inner region. coated base material.
  8.  前記条件(2)において、前記皮膜の厚みは、前記凸状部存在領域上に形成された前記皮膜の最大厚みの部位から前記凸状部非存在領域に向かうにつれて減少している、請求項1又は請求項2に記載の被覆基材。 Claim 1, wherein in the condition (2), the thickness of the coating decreases from the maximum thickness portion of the coating formed on the convex portion existing region toward the convex portion non-existing region. Or the coated substrate according to claim 2.
  9.  前記金属元素は、Al(アルミニウム)、Ti(チタン)、Mo(モリブデン)、Cr(クロム)、Mn(マンガン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Zr(ジルコニウム)、V(バナジウム)、W(タングステン)、Ta(タンタル)、Nb(ニオブ)、及びSn(スズ)からなる群より選ばれた少なくとも1種以上である、請求項1又は請求項2に記載の被覆基材。 The metal elements include Al (aluminum), Ti (titanium), Mo (molybdenum), Cr (chromium), Mn (manganese), Fe (iron), Co (cobalt), Ni (nickel), Zr (zirconium), The coating according to claim 1 or 2, which is at least one member selected from the group consisting of V (vanadium), W (tungsten), Ta (tantalum), Nb (niobium), and Sn (tin). Base material.
PCT/JP2023/026615 2022-08-05 2023-07-20 Coated base material WO2024029363A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-125323 2022-08-05
JP2022125323 2022-08-05

Publications (1)

Publication Number Publication Date
WO2024029363A1 true WO2024029363A1 (en) 2024-02-08

Family

ID=89848926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026615 WO2024029363A1 (en) 2022-08-05 2023-07-20 Coated base material

Country Status (1)

Country Link
WO (1) WO2024029363A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248103A (en) * 1989-06-20 1990-02-16 Sumitomo Electric Ind Ltd Coated cemented carbide tool and its manufacturing process
JPH11264066A (en) * 1998-03-16 1999-09-28 Hitachi Tool Eng Ltd Coated-hard tool
JP2000117509A (en) * 1998-10-14 2000-04-25 Mitsubishi Materials Corp Throw away cut tip made of surface covering cemented carbide having excellent wear resistance
JP2010105979A (en) * 2008-10-31 2010-05-13 General Electric Co <Ge> Metal oxide coating
JP2012233223A (en) * 2011-04-28 2012-11-29 Waseda Univ Electroplating composition and electroplating liquid
US20140178659A1 (en) * 2012-12-26 2014-06-26 Shanghua Wu Al2o3 or al2o3-contained multilayer coatings for silicon nitride cutting tools by physical vapor deposition and methods of making the same
JP2020006487A (en) * 2018-07-10 2020-01-16 三菱マテリアル株式会社 Surface cutting tool of which hard coating layer exhibits excellent chipping resistance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248103A (en) * 1989-06-20 1990-02-16 Sumitomo Electric Ind Ltd Coated cemented carbide tool and its manufacturing process
JPH11264066A (en) * 1998-03-16 1999-09-28 Hitachi Tool Eng Ltd Coated-hard tool
JP2000117509A (en) * 1998-10-14 2000-04-25 Mitsubishi Materials Corp Throw away cut tip made of surface covering cemented carbide having excellent wear resistance
JP2010105979A (en) * 2008-10-31 2010-05-13 General Electric Co <Ge> Metal oxide coating
JP2012233223A (en) * 2011-04-28 2012-11-29 Waseda Univ Electroplating composition and electroplating liquid
US20140178659A1 (en) * 2012-12-26 2014-06-26 Shanghua Wu Al2o3 or al2o3-contained multilayer coatings for silicon nitride cutting tools by physical vapor deposition and methods of making the same
JP2020006487A (en) * 2018-07-10 2020-01-16 三菱マテリアル株式会社 Surface cutting tool of which hard coating layer exhibits excellent chipping resistance

Similar Documents

Publication Publication Date Title
Ahmed et al. Binary Fe− Co alloy nanoparticles showing significant enhancement in electrocatalytic activity compared with bulk alloys
Sultana et al. Gold doping in a layered Co‐Ni hydroxide system via galvanic replacement for overall electrochemical water splitting
Ishizaki et al. Corrosion resistance and chemical stability of super-hydrophobic film deposited on magnesium alloy AZ31 by microwave plasma-enhanced chemical vapor deposition
US20200308719A1 (en) Catalysts for hydrogen evolution reaction including transition metal chalcogenide films and methods of forming the same
JP6700492B2 (en) Multilayer structure and method for manufacturing multilayer structure
Yin et al. Preparation and properties of super-hydrophobic coating on magnesium alloy
Li et al. Near-surface dilution of trace Pd atoms to facilitate Pd-H bond cleavage for giant enhancement of electrocatalytic hydrogen evolution
Jung et al. An electrochemical impedance spectroscopy and polarization study of nanocrystalline Co and Co–P alloy in 0.1 M H2SO4 solution
Chen et al. A fast electrodeposition method for fabrication of lanthanum superhydrophobic surface with hierarchical micro-nanostructures
Krawiec et al. Structure and corrosion behaviour of electrodeposited Co-Mo/TiO2 nano-composite coatings
El-Sayed et al. The impact of fabrication conditions on the quality of Au nanoparticle arrays on dimpled Ta templates
Geerts et al. Highly active oxygen evolution reaction model electrode based on supported gas-phase NiFe clusters
Atalay et al. Influences of deposition time and pH on magnetic NiFe nanowires fabrication
WO2024029363A1 (en) Coated base material
Winiarski et al. Titanium anodization in deep eutectic solvents: The effect of anodizing time on the morphology and structure of anodic layers
Cysewska et al. The effect of cobalt incorporation into nickel–iron oxide/(oxy) hydroxide catalyst on electrocatalytic performance toward oxygen evolution reaction
WO2024029362A1 (en) Coated substrate
Hemmous et al. Structure, surface morphology and electrical properties of evaporated Ni thin films: Effect of substrates, thickness and Cu underlayer
Assaf et al. Influence of current density on the mechanism of electrodeposition and dissolution of Zn–Fe–Co alloys
Flis-Kabulska et al. Plasma carburizing for improvement of Ni-Fe cathodes for alkaline water electrolysis
Balachandran et al. Effects of ultrasonic field in pulse electrodeposition of NiFe film on Cu substrate
JP2024022027A (en) Production method of coated substrate
Sun et al. Ternary PtRuNi nanocatalysts supported on N-doped carbon nanotubes: deposition process, material characterization, and electrochemistry
Datta et al. Utilizing ballistic nanoparticle impact to reconfigure the metal support interaction in Pt–TiN electrocatalysts
Hoor et al. Electrochemical synthesis of Fe–Mo and Fe–Mo–Pt alloys and their electrocatalytic activity for methanol oxidation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849918

Country of ref document: EP

Kind code of ref document: A1