JP2000117509A - Throw away cut tip made of surface covering cemented carbide having excellent wear resistance - Google Patents

Throw away cut tip made of surface covering cemented carbide having excellent wear resistance

Info

Publication number
JP2000117509A
JP2000117509A JP10291588A JP29158898A JP2000117509A JP 2000117509 A JP2000117509 A JP 2000117509A JP 10291588 A JP10291588 A JP 10291588A JP 29158898 A JP29158898 A JP 29158898A JP 2000117509 A JP2000117509 A JP 2000117509A
Authority
JP
Japan
Prior art keywords
layer
cemented carbide
crystalline
titanium
free carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10291588A
Other languages
Japanese (ja)
Inventor
Akira Osada
晃 長田
Yoshiaki Hirakawa
善朗 平川
Toru Nakamura
徹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP10291588A priority Critical patent/JP2000117509A/en
Publication of JP2000117509A publication Critical patent/JP2000117509A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide cut tips made of surface covering cemented carbide to provide a rigid covering layer with excellent wear resistance. SOLUTION: In cut tips made of surface covering cemented carbide, a rigid covering layer comprising a crystalline Ti compound layer consisting of one kind or two kinds selected from TiC layer, TiN layer, a TiCN layer, a Ti2O3 layer, TiCO layer, TiNO layer, and TiCNO layer, all of which are crystalline and each of which has an average layer thickness of 1-15 μm,; and a free carbon dispersion amorphous Al2O3 layer with an average layer thickness of 1-8 μm having a structure wherein fine free carbon is dispersed and distributed in a ratio of 1-15 wt.% on a basis metal of amorphous Al2O3 is chemically and/or physically deposited in a total average layer thickness of 5-25 μm on the surface of a WC cemented carbide base metal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、硬質被覆層を構
成する酸化アルミニウム(以下、Al23 で示す)層
を非晶質とするとともに、これに微細な遊離炭素を分散
含有させることにより、これの熱伝導性を著しく向上さ
せ、もってすぐれた熱伝導性を有する結晶質Ti化合物
層との共存において、切削加工時の放熱を促進して、切
刃の摩耗進行を抑制し、すぐれた耐摩耗性を確保するよ
うにした表面被覆超硬合金製スローアウエイ切削チップ
(以下、被覆超硬チップという)に関するものである。
The present invention relates to an aluminum oxide (hereinafter, referred to as Al 2 O 3 ) layer constituting a hard coating layer, which is made amorphous and contains fine free carbon dispersed therein. In the presence of a crystalline Ti compound layer having excellent thermal conductivity, the heat conductivity during cutting is promoted, the wear of the cutting edge is suppressed, and the heat conductivity is excellent. The present invention relates to a surface-coated cemented carbide throw-away cutting tip (hereinafter, referred to as a coated cemented carbide tip) for ensuring abrasion resistance.

【0002】[0002]

【従来の技術】従来、一般に、炭化タングステン基超硬
合金基体(以下、超硬基体という)の表面に、いずれも
結晶質にして、それぞれ0.1〜15μmの平均層厚を
有する、炭化チタン(以下、TiCで示す)層、窒化チ
タン(以下、同じくTiNで示す)層、炭窒化チタン
(以下、TiCNで示す)層、酸化チタン(以下、Ti
23 で示す)層、炭酸化チタン(以下、TiCOで示
す)層、窒酸化チタン(以下、TiNOで示す)層、お
よび炭窒酸化チタン(以下、TiCNOで示す)層のう
ちの1種または2種以上からなる結晶質Ti化合物層
と、1〜8μmの平均層厚を有する結晶質Al23
とで構成された硬質被覆層を5〜25μmの全体平均層
厚で化学蒸着および/または物理蒸着してなる被覆超硬
チップが知られており、またこの被覆超硬チップが鋼や
鋳鉄などの連続切削や断続切削に用いられることも知ら
れている。また、一般に上記の被覆超硬チップの硬質被
覆層を構成する結晶質Ti化合物層および結晶質Al2
3 層が粒状結晶組織を有し、かつ前記結晶質Al2
3層はα型結晶構造をもつものやκ型結晶構造をもつも
のなどが広く実用に供されることも良く知られており、
さらに例えば特開平6−8010号公報や特開平7−3
28808号公報に記載されるように、前記結晶質Ti
化合物層を構成するTiCN層を、層自身の靭性向上を
目的として、通常の化学蒸着装置にて、反応ガスとして
有機炭窒化物を含む混合ガスを使用し、700〜950
℃の中温温度域で化学蒸着することにより形成して縦長
成長結晶組織をもつようにすることも行われている。
2. Description of the Related Art Conventionally, a titanium carbide-based cemented carbide substrate (hereinafter referred to as a cemented carbide substrate) is generally made of titanium carbide having an average layer thickness of 0.1 to 15 μm, each of which is crystalline. (Hereinafter referred to as TiC) layer, titanium nitride (hereinafter also referred to as TiN) layer, titanium carbonitride (hereinafter referred to as TiCN) layer, titanium oxide (hereinafter referred to as Ti
One of a 2 O 3 layer, a titanium carbonate (hereinafter, shown as TiCO) layer, a titanium oxynitride (hereinafter, shown as TiNO) layer, and a titanium carbonitride (hereinafter, shown as TiCNO) layer Alternatively, a hard coating layer composed of a crystalline Ti compound layer composed of two or more kinds and a crystalline Al 2 O 3 layer having an average layer thickness of 1 to 8 μm is chemically vapor-deposited at a total average layer thickness of 5 to 25 μm. A coated carbide tip obtained by physical vapor deposition is known, and it is also known that the coated carbide tip is used for continuous cutting or interrupted cutting of steel, cast iron, or the like. Further, generally, the crystalline Ti compound layer and the crystalline Al 2 which constitute the hard coating layer of the coated carbide tip are
The O 3 layer has a granular crystal structure and the crystalline Al 2 O
It is well known that the three layers are widely used for those having an α-type crystal structure and those having a κ-type crystal structure.
Further, for example, JP-A-6-8010 and JP-A-7-3
No. 28808, the crystalline Ti
For the purpose of improving the toughness of the layer itself, the TiCN layer constituting the compound layer is mixed with an ordinary chemical vapor deposition apparatus using a mixed gas containing an organic carbonitride as a reaction gas.
It is also performed to form a vertically elongated crystal structure by chemical vapor deposition in a medium temperature range of ° C.

【0003】[0003]

【発明が解決しようとする課題】一方、近年の切削加工
に対する省力化および省エネ化の要求は強く、これに伴
い、切削加工は高速化の傾向にあるが、上記の従来被覆
超硬チップにおいては、これを特に連続切削や断続切削
を高速で行う切削に用いると、硬質被覆層の耐摩耗性が
不十分であるために摩耗進行がきわめて速く、比較的短
時間で使用寿命に至るのが現状である。
On the other hand, in recent years, there is a strong demand for labor saving and energy saving for cutting work, and with this, cutting work tends to be performed at high speed. In particular, when this is used for high-speed continuous or intermittent cutting, the wear resistance of the hard coating layer is inadequate and the wear progresses extremely quickly, leading to a relatively short service life. It is.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、上記の従来被覆超硬チップを構
成する硬質被覆層に着目し、これの耐摩耗性性向上を図
るべく研究を行った結果、 (a)上記従来被覆超硬チップの硬質被覆層を構成する
結晶質Ti化合物層は、切削加工時の昇温温度を越え、
例えば1200℃に加熱される間も熱伝導度は室温で示
す約0.8〜1.0cal/sec・cm・℃とほとん
ど変わらず、むしろやや上昇する傾向を示すが、結晶質
Al2 3 層は、室温では上記結晶質Ti化合物層とほ
ぼ同じ熱伝導度を示すものの、切削加工時の昇温に伴っ
て熱伝導度が急激に低下し、例えば400℃での熱伝導
度は室温のそれの半分以下に、また1200℃に加熱さ
れると約1/10に低下するようになり、この結果切削
加工時の硬質被覆層の放熱は著しく抑制され、自体の温
度が上昇するようになることから、摩耗進行が促進し、
かつ偏摩耗も発生するようになること。 (b)上記の従来被覆超硬チップの硬質被覆層を構成す
る結晶質Al2 3 層は、通常の化学蒸着装置にて、例
えば、反応ガス組成:容量%で、AlCl3 :1〜10
%、CO2 :0.5〜10%、H2 S:0.02〜2
%、HCl:0.5〜5%、H2 :残り、反応雰囲気温
度:950〜1050℃、反応雰囲気圧力:40〜40
0Torr、の条件で形成されるが、上記の反応ガスに
CH4 およびCH3 CNのいずれか、または両方を加え
て、反応ガス組成を、例えば、同じく容量%で、AlC
3 :1〜10%、CO2 :0.5〜10%、H2 S:
0.02〜2%、HCl:0.5〜5%、CH4 :0.
5〜10%および/またはCH3 CN:0.1〜5%、
2 :残り、とし、反応雰囲気温度を相対的に低い85
0〜950℃とし、一方反応雰囲気圧力は同じ条件とし
て化学蒸着を行うと、非晶質Al2 3 の素地に微細な
遊離炭素が分散分布した組織を有する遊離炭素分散非晶
質Al2 3 層が形成されるようになり、この場合蒸着
条件を調整して、非晶質Al2 3 素地中の遊離炭素の
割合が1〜15重量%となるようにすると、この結果の
遊離炭素分散非晶質Al2 3 層は、切削加工時の昇温
加熱によっても素地の非晶質と微細な遊離炭素との共存
作用で熱伝導度が低下することなく、室温時の熱伝導度
を維持することから、上記の通り例えば1200℃への
温度上昇にも熱伝導度にほとんど変化がなく、ほぼ一定
の熱伝導度を示す結晶質Ti化合物層との共存におい
て、硬質被覆層の切削加工時の放熱が著しく促進され、
この結果硬質被覆層の摩耗進行が抑制され、かつ偏摩耗
の発生も低減するようになること。 以上(a)および(b)に示される研究結果を得たので
ある。
Means for Solving the Problems Accordingly, the present inventors have
From the above-mentioned viewpoints, attention was paid to the hard coating layer constituting the above-mentioned conventionally coated cemented carbide chip, and a study was conducted to improve the wear resistance thereof. The crystalline Ti compound layer constituting the hard coating layer exceeds the temperature rise during cutting,
For example, while being heated to 1200 ° C., the thermal conductivity is almost the same as about 0.8 to 1.0 cal / sec · cm · ° C. shown at room temperature and shows a tendency to slightly increase, but the crystalline Al 2 O 3 Although the layer exhibits substantially the same thermal conductivity as the crystalline Ti compound layer at room temperature, the thermal conductivity sharply decreases with the temperature rise during cutting, and for example, the thermal conductivity at 400 ° C. When heated to 1200 ° C. or less, the temperature decreases to about 1/10, and as a result, the heat radiation of the hard coating layer during cutting is significantly suppressed, and the temperature of the hard coating increases. As a result, wear progress is accelerated,
In addition, uneven wear may occur. (B) The crystalline Al 2 O 3 layer constituting the hard coating layer of the above-mentioned conventional coated superhard tip is formed by a conventional chemical vapor deposition apparatus, for example, with a reaction gas composition: volume% and AlCl 3 : 1 to 10
%, CO 2: 0.5~10%, H 2 S: 0.02~2
%, HCl: 0.5 to 5%, H 2 : remaining, reaction atmosphere temperature: 950 to 1050 ° C., reaction atmosphere pressure: 40 to 40
0 Torr, but either or both of CH 4 and CH 3 CN are added to the above reaction gas, and the reaction gas composition is changed to, for example, AlC
l 3 : 1 to 10%, CO 2 : 0.5 to 10%, H 2 S:
0.02~2%, HCl: 0.5~5%, CH 4: 0.
5-10% and / or CH 3 CN: 0.1~5%,
H 2 : remaining, and the reaction atmosphere temperature is relatively low 85
When chemical vapor deposition is carried out under the same conditions of 0 to 950 ° C. and the same reaction atmosphere pressure, a free carbon-dispersed amorphous Al 2 O having a structure in which fine free carbon is dispersed and distributed in an amorphous Al 2 O 3 substrate Three layers are formed. In this case, when the deposition conditions are adjusted so that the proportion of free carbon in the amorphous Al 2 O 3 substrate is 1 to 15% by weight, the resulting free carbon The dispersed amorphous Al 2 O 3 layer has a thermal conductivity at room temperature without a decrease in thermal conductivity due to the coexistence of the amorphous base material and fine free carbon even by heating at the time of cutting. As described above, the thermal conductivity hardly changes even when the temperature rises to, for example, 1200 ° C., and the hard coating layer is cut in the coexistence with the crystalline Ti compound layer exhibiting a substantially constant thermal conductivity. Heat dissipation during processing is greatly promoted,
As a result, the progress of wear of the hard coating layer is suppressed, and the occurrence of uneven wear is reduced. The research results shown in (a) and (b) above were obtained.

【0005】この発明は、上記の研究結果に基づいてな
されたものであって、超硬基体の表面に、いずれも結晶
質にして、それぞれ0.1〜15μmの平均層厚を有す
る、TiC層、TiN層、TiCN層、Ti2 3 層、
TiCO層、TiNO層、およびTiCNO層のうちの
1種または2種以上からなる結晶質Ti化合物層と、1
〜8μmの平均層厚を有し、かつ非晶質Al2 3 の素
地に1〜15重量%の割合で微細な遊離炭素が分散分布
した組織を有する遊離炭素分散非晶質Al23 層、で
構成された硬質被覆層を5〜25μmの全体平均層厚で
化学蒸着および/または物理蒸着してなる、硬質被覆層
がすぐれた耐摩耗性を発揮する被覆超硬チップに特徴を
有するものである。
The present invention has been made on the basis of the above-mentioned research results, and is based on a TiC layer on a surface of a cemented carbide substrate, each having a crystalline thickness of 0.1 to 15 μm. , TiN layer, TiCN layer, Ti 2 O 3 layer,
A crystalline Ti compound layer comprising one or more of a TiCO layer, a TiNO layer, and a TiCNO layer;
Has an average layer thickness of ~8Myuemu, and amorphous Al 2 O fine free carbon in an amount of 1-15 wt% to the base material 3 is free carbon dispersion having a dispersed distribution organization amorphous Al 2 O 3 The hard coating layer is formed by chemical vapor deposition and / or physical vapor deposition with a total average layer thickness of 5 to 25 μm. The hard coating layer is characterized by a coated superhard tip exhibiting excellent wear resistance. Things.

【0006】なお、この発明の被覆超硬チップにおい
て、硬質被覆層を構成する遊離炭素分散非晶質Al2
3 層の遊離炭素の割合を1〜15重量%としたのは、そ
の割合が1重量%未満では、切削加工時の昇温加熱に伴
う熱伝導度の低下を十分満足に抑制することができず、
一方その割合が15重量%を越えると、層自体の強度が
低下し、切刃に欠けやチッピングが発生し易くなるとい
う理由によるものであり、望ましくは3〜10重量%の
含有がよい。
In the coated superhard tip of the present invention, the free carbon-dispersed amorphous Al 2 O constituting the hard coating layer
The reason why the ratio of free carbon in the three layers is 1 to 15% by weight is that if the ratio is less than 1% by weight, the decrease in thermal conductivity due to heating at the time of cutting can be sufficiently suppressed. Without
On the other hand, if the proportion exceeds 15% by weight, the strength of the layer itself is reduced and chipping or chipping of the cutting edge is liable to occur, and the content is preferably 3 to 10% by weight.

【0007】また、この発明の被覆超硬チップにおい
て、硬質被覆層を構成する結晶質Ti化合物層および遊
離炭素分散非晶質Al23 層の平均層厚をそれぞれ
0.1〜15μmおよび1〜8μmとし、かつ硬質被覆
層の全体平均層厚を5〜25μmとしたのは、これらの
層厚のうちのいずれかの層厚でも前記下限値未満になる
と、所望の耐摩耗性を確保することができず、一方これ
らの層厚のうちのいずれかの層厚でも前記上限値を越え
ると、切刃に欠けやチッピングが発生し易くなるという
理由からである。
In the coated cemented carbide tip of the present invention, the average thickness of the crystalline Ti compound layer and the free carbon dispersed amorphous Al 2 O 3 layer constituting the hard coating layer is 0.1 to 15 μm and 1 to 15 μm, respectively. The thickness of the hard coating layer is set to 5 to 25 μm, and the desired wear resistance is ensured when any one of these thicknesses is less than the lower limit. On the other hand, if any one of these layer thicknesses exceeds the upper limit, chipping or chipping is likely to occur in the cutting edge.

【0008】[0008]

【発明の実施の形態】つぎに、この発明の被覆超硬チッ
プを実施例により具体的に説明する。原料粉末として、
平均粒径:1.5μm有する細粒WC粉末、同3μmの
中粒WC粉末、同1.2μmの(Ti,W)CN(重量
比で、以下同じ、TiC/TiN/WC=24/20/
56)粉末、同1.3μmの(Ta,Nb)C(TaC
/NbC=90/10)粉末、同1μmのCr粉末、同
1.2μmのZrC粉末、および同1.2μmのCo粉
末を用意し、これら原料粉末を表1に示される配合組成
に配合し、ボールミルで72時間湿式混合し、乾燥した
後、この混合粉末をISO規格CNMG120412に
則した形状の圧粉体にプレス成形し、この圧粉体を同じ
く表1に示される条件で真空焼結することにより超硬基
体A〜Eをそれぞれ製造した。さらに、上記超硬基体E
に対して、80TorrのCH4 ガス雰囲気中、温度:
1410℃に1時間保持後、徐冷の滲炭処理を施し、処
理後、超硬基体表面に付着するカーボンとCoを酸およ
びバレル研磨で除去することにより、表面から10μm
の位置で最大Co含有量:17.5重量%、深さ:35
μmのCo富化帯域を基体表面部に形成した。また、い
ずれも焼結したままで、上記超硬基体Cには、表面部に
表面から18μmの位置で最大Co含有量:10.8重
量%、深さ:25μmのCo富化帯域、超硬基体Dに
は、表面部に表面から24μmの位置で最大Co含有
量:12.7重量%、深さ:30μmのCo富化帯域が
それぞれ形成されており、残りの超硬基体AおよびBに
は、前記Co富化帯域の形成がなく、全体的に均質な組
織をもつものであった。なお、表1には、上記超硬基体
A〜Eの内部硬さ(ロックウエル硬さAスケール)をそ
れぞれ示した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the coated carbide tip of the present invention will be specifically described with reference to examples. As raw material powder,
Average particle size: fine WC powder having 1.5 μm, medium WC powder having 3 μm, (Ti, W) CN having 1.2 μm (the same in weight ratio, hereinafter, TiC / TiN / WC = 24/20 /
56) Powder, 1.3 μm of (Ta, Nb) C (TaC
/ NbC = 90/10) powder, the same 1 μm Cr powder, the same 1.2 μm ZrC powder, and the same 1.2 μm Co powder were prepared, and these raw material powders were blended into the blending composition shown in Table 1, After wet-mixing with a ball mill for 72 hours and drying, the mixed powder is pressed into a green compact having a shape conforming to ISO standard CNMG120412, and the green compact is vacuum-sintered under the same conditions as shown in Table 1. The super-hard substrates A to E were respectively manufactured by the methods described above. Further, the above-mentioned carbide substrate E
In a 80 Torr CH 4 gas atmosphere, the temperature was:
After holding at 1410 ° C. for 1 hour, a slow cooling carburizing treatment is performed, and after the treatment, carbon and Co adhering to the surface of the super hard substrate are removed by acid and barrel polishing to obtain 10 μm from the surface.
Position, maximum Co content: 17.5% by weight, depth: 35
A μm-rich Co zone was formed on the surface of the substrate. In addition, the sintered body C was provided with a Co-rich zone having a maximum Co content of 10.8% by weight and a depth of 25 μm at a position of 18 μm from the surface on the surface of the cemented carbide substrate C. In the substrate D, a Co-enriched zone having a maximum Co content of 12.7% by weight and a depth of 30 μm was formed at a position 24 μm from the surface on the surface portion. Had a homogeneous structure as a whole without the formation of the Co-rich zone. Table 1 shows the internal hardness (Rockwell hardness A scale) of each of the carbide substrates A to E.

【0009】ついで、これらの超硬基体A〜Eの表面
に、ホーニング加工を施した状態で、通常の化学蒸着装
置を用い、表2、3(表2におけるl−TiCNは、縦
長成長結晶組織をもつTiCN層の形成条件を示すもの
であり、これ以外の条件で形成された層はいずれも粒状
結晶組織をもつものである)に示される条件にて、表
4、5に示される組成および目標層厚(切刃の逃げ面)
の硬質被覆層を形成することにより本発明被覆超硬チッ
プ1〜10および従来被覆超硬チップ1〜10をそれぞ
れ製造した。なお、この結果得られた本発明被覆超硬チ
ップ1〜10の硬質被覆層を構成する遊離炭素分散非晶
質Al2 3 層について、遊離炭素の分散含有割合を電
子プローブマイクロアナライザー(EPMA)を用いて
測定したところ、表3に示される目標値に相当する値を
示した。また、硬質被覆層を構成する構成層もそれぞれ
目標層厚と実質的に同じ平均層厚を示した。
Then, the surfaces of these superhard substrates A to E were subjected to honing processing, and a conventional chemical vapor deposition apparatus was used. Tables 2 and 3 (l-TiCN in Table 2 shows a vertically grown crystal structure. The conditions shown in Tables 4 and 5 are shown under the conditions shown in Tables 4 and 5 under the conditions shown in Tables 1 and 2. All the layers formed under the other conditions have a granular crystal structure. Target layer thickness (flank of cutting edge)
The coated superhard chips 1 to 10 of the present invention and the conventionally coated superhard chips 1 to 10 were produced by forming the hard coating layers of the present invention. For the free carbon-dispersed amorphous Al 2 O 3 layer constituting the hard coating layer of the coated superhard chips 1 to 10 of the present invention obtained as a result, the dispersion ratio of free carbon was determined by an electron probe microanalyzer (EPMA). As a result, a value corresponding to the target value shown in Table 3 was shown. In addition, the constituent layers constituting the hard coating layer also showed substantially the same average layer thickness as the target layer thickness.

【0010】つぎに、上記本発明被覆超硬チップ1〜1
0および従来被覆超硬チップ1〜10について、 被削材:S45Cの長さ方向等間隔4本縦溝入り丸棒、 切削速度:350m/min.、 切り込み:1.5mm、 送り:0.3mm/rev.、 切削時間:10分、 の条件での炭素鋼の乾式高速断続切削試験、並びに、 被削材:FCD450の丸棒、 切削速度:350m/min.、 切り込み:1.5mm、 送り:0.3mm/rev.、 切削時間:10分、 の条件でのダクタイル鋳鉄の湿式高速連続切削試験を行
い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定し
た。この測定結果を表6に示した。
Next, the coated carbide tips 1 to 1 of the present invention will be described.
0 and conventional coated carbide tips 1 to 10, Work material: S45C round bar with four longitudinal grooves at regular intervals in the longitudinal direction, Cutting speed: 350 m / min. Infeed: 1.5 mm Feed: 0.3 mm / rev. , Cutting time: 10 minutes, Dry high-speed intermittent cutting test of carbon steel under the following conditions: Work material: FCD450 round bar, Cutting speed: 350 m / min. Infeed: 1.5 mm Feed: 0.3 mm / rev. The cutting time: 10 minutes, a wet high-speed continuous cutting test of ductile cast iron was performed under the following conditions, and the flank wear width of the cutting edge was measured in each cutting test. Table 6 shows the measurement results.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【表2】 [Table 2]

【0013】[0013]

【表3】 [Table 3]

【0014】[0014]

【表4】 [Table 4]

【0015】[0015]

【表5】 [Table 5]

【0016】[0016]

【表6】 [Table 6]

【0017】[0017]

【発明の効果】表4〜6に示される結果から、硬質被覆
層中に遊離炭素分散非晶質Al2 3層が存在する本発
明被覆超硬チップ1〜10は、いずれも前記遊離炭素分
散非晶質Al2 3 層が切削加工時の昇温加熱に影響さ
れない熱伝導性を具備し、これと同じ熱伝導性を有する
結晶質Ti化合物層との共存において、硬質被覆層の放
熱が促進されるようになることから、硬質被覆層が結晶
質Ti化合物層と結晶質Al2 3 層で構成された従来
被覆超硬チップ1〜10に比して、苛酷な切削条件であ
る高速断続切削および高速連続切削にもかかわらず、一
段とすぐれた耐摩耗性をを示し、長期に亘ってすぐれた
切削性能を発揮することが明らかである。上述のよう
に、この発明の被覆超硬チップは、これの硬質被覆層を
構成する遊離炭素分散非晶質Al2 3 層によって、前
記硬質被覆層の切削加工時の放熱が促進されるようにな
るので、例えば鋼や鋳鉄などの通常の条件での連続切削
や断続切削は勿論のこと、特にこれらの切削を高速で行
っても、長期に亘ってすぐれた切削性能を発揮し、した
がって切削加工の高速化に十分満足に対応でき、かつ省
力化にも寄与するものである。
From the results shown in Tables 4 to 6, the coated superhard chips 1 to 10 according to the present invention in which the free carbon-dispersed amorphous Al 2 O 3 layer is present in the hard coating layer are all The dispersed amorphous Al 2 O 3 layer has thermal conductivity unaffected by heating and heating during cutting, and in the presence of a crystalline Ti compound layer having the same thermal conductivity, heat dissipation of the hard coating layer , The cutting conditions are more severe than those of the conventional coated carbide tips 1 to 10 in which the hard coating layer is composed of a crystalline Ti compound layer and a crystalline Al 2 O 3 layer. In spite of the high-speed interrupted cutting and the high-speed continuous cutting, it is apparent that they exhibit more excellent wear resistance and exhibit excellent cutting performance over a long period of time. As described above, in the coated cemented carbide tip of the present invention, heat dissipation during cutting of the hard coating layer is promoted by the free carbon dispersed amorphous Al 2 O 3 layer constituting the hard coating layer. Therefore, for example, continuous cutting and interrupted cutting under normal conditions such as steel and cast iron, of course, even if these cutting is performed at high speed, it exhibits excellent cutting performance over a long period of time, and therefore cutting It can sufficiently satisfy high-speed processing and contribute to labor saving.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年10月20日(1998.10.
20)
[Submission date] October 20, 1998 (1998.10.
20)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0011】[0011]

【表1】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 徹 茨城県結城郡石下町大字古間木1511番地 三菱マテリアル株式会社筑波製作所内 Fターム(参考) 3C046 FF03 FF10 FF18 FF25 FF32 FF40 FF42 4K044 AA09 AB05 BA12 BA13 BA18 BB02 BB17 BC01 CA13 CA14 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Toru Nakamura 1511 Furamagi, Ishishita-cho, Yuki-gun, Ibaraki Pref. BA18 BB02 BB17 BC01 CA13 CA14

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭化タングステン基超硬合金基体の表面
に、 いずれも結晶質にして、それぞれ0.1〜15μmの平
均層厚を有する、炭化チタン層、窒化チタン層、炭窒化
チタン層、酸化チタン層、炭酸化チタン層、窒酸化チタ
ン層、および炭窒酸化チタン層のうちの1種または2種
以上からなる結晶質Ti化合物層と、 1〜8μmの平均層厚を有し、かつ非晶質酸化アルミニ
ウムの素地に1〜15重量%の割合で微細な遊離炭素が
分散分布した組織を有する遊離炭素分散非晶質酸化アル
ミニウム層、で構成された硬質被覆層を5〜25μmの
全体平均層厚で化学蒸着および/または物理蒸着してな
る、硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆
超硬合金製スローアウエイ切削チップ。
1. A titanium carbide layer, a titanium nitride layer, a titanium carbonitride layer, and an oxide, all of which are crystalline and have an average thickness of 0.1 to 15 μm, respectively, on the surface of a tungsten carbide-based cemented carbide substrate. A crystalline Ti compound layer comprising one or more of a titanium layer, a titanium carbonate layer, a titanium oxynitride layer, and a titanium oxycarbonitride layer, and an average layer thickness of 1 to 8 μm; A hard carbon coating layer composed of a free carbon-dispersed amorphous aluminum oxide layer having a structure in which fine free carbon is dispersed and distributed at a ratio of 1 to 15% by weight on a base of crystalline aluminum oxide; Throw-away cutting inserts made of surface-coated cemented carbide with a hard coating layer exhibiting excellent wear resistance, made by chemical vapor deposition and / or physical vapor deposition with a layer thickness.
JP10291588A 1998-10-14 1998-10-14 Throw away cut tip made of surface covering cemented carbide having excellent wear resistance Withdrawn JP2000117509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10291588A JP2000117509A (en) 1998-10-14 1998-10-14 Throw away cut tip made of surface covering cemented carbide having excellent wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10291588A JP2000117509A (en) 1998-10-14 1998-10-14 Throw away cut tip made of surface covering cemented carbide having excellent wear resistance

Publications (1)

Publication Number Publication Date
JP2000117509A true JP2000117509A (en) 2000-04-25

Family

ID=17770894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10291588A Withdrawn JP2000117509A (en) 1998-10-14 1998-10-14 Throw away cut tip made of surface covering cemented carbide having excellent wear resistance

Country Status (1)

Country Link
JP (1) JP2000117509A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020006487A (en) * 2018-07-10 2020-01-16 三菱マテリアル株式会社 Surface cutting tool of which hard coating layer exhibits excellent chipping resistance
WO2024029362A1 (en) * 2022-08-05 2024-02-08 日本特殊陶業株式会社 Coated substrate
WO2024029363A1 (en) * 2022-08-05 2024-02-08 日本特殊陶業株式会社 Coated base material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020006487A (en) * 2018-07-10 2020-01-16 三菱マテリアル株式会社 Surface cutting tool of which hard coating layer exhibits excellent chipping resistance
JP7121234B2 (en) 2018-07-10 2022-08-18 三菱マテリアル株式会社 A surface cutting tool with a hard coating that exhibits excellent chipping resistance
WO2024029362A1 (en) * 2022-08-05 2024-02-08 日本特殊陶業株式会社 Coated substrate
WO2024029363A1 (en) * 2022-08-05 2024-02-08 日本特殊陶業株式会社 Coated base material

Similar Documents

Publication Publication Date Title
JP3887811B2 (en) Cutting tool made of surface-coated tungsten carbide based cemented carbide with a hard coating layer that provides excellent wear resistance in high-speed cutting
JP3436169B2 (en) Surface-coated cemented carbide cutting tool with an aluminum oxide layer that forms the hard coating layer exhibits excellent toughness
JP3282592B2 (en) Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting
JPH08118105A (en) Surface-coated cemented carbide alloy cutting tool with tungsten carbide group having hard coating layer excellent in interlayer adhesion
JP2000158204A (en) Surface-covering cemented carbide alloy cutting tool having hard covering layer exhibiting excellent chipping resistance
JP2004299023A (en) Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance
JP3994590B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with high efficiency cutting and hard coating layer
JPH10204639A (en) Cutting tool made of surface-coated cemented carbide in which hard coating layer has excellent chipping resistance
JP2000117509A (en) Throw away cut tip made of surface covering cemented carbide having excellent wear resistance
JP2003071609A (en) Surface coated cemented carbide cutting tool exerting excellent heat-resisting plastic deformation in high- speed cutting
JP2000117508A (en) Throw away cut tip made of surface covering cemented carbide to provide rigid covering layer with excellent wear resistance
JP3837959B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent wear resistance due to hard coating layer
JP3230396B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JP3371796B2 (en) Surface coated cemented carbide cutting tool with excellent fracture resistance
JP3358530B2 (en) Slow-away cutting insert made of surface-coated cemented carbide with excellent fracture resistance
JP2000246509A (en) Throw-awy cutting tip made of surface sheathed super hard alloy exhibiting excellent initial tipping resistant property at its hard coated layer
JP2000246511A (en) Throw-away cutting tip made of surface coated super hard alloy exhibiting excellent initial conformity at its hard coated layer
JP3282600B2 (en) Surface-coated cemented carbide cutting tool with a hard coating layer that exhibits excellent fracture resistance
JP3358533B2 (en) Slow-away cutting insert made of surface-coated cemented carbide with excellent fracture resistance
JP2000158207A (en) Surface-covering tungsten carbide group cemented carbide alloy cutting tool having its hard covering layer exhibit excellent wear resistance
JP2001062603A (en) Surface coated cutting tool made of tungsten cemented carbide super hard alloy whose hard coated layer displays excellent tipping resistance in interrupted heavy cutting
JP3358538B2 (en) Slow-away cutting insert made of cemented carbide with excellent wear resistance
JP2004188502A (en) Cutting tool of surface-coated cermet with hard coating layer having excellent thermal shock resistance
JP2000054133A (en) Throw-away cut tip made of surface-coated sintered hard alloy with its thickened hard coating layer exhibiting excellent chipping resistance
JP2000117511A (en) Throw away cut tip made of surface covering cemented carbide having rigid covering layer providing excellent initial drape

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110