WO2024028954A1 - 光コネクタ及び製造方法 - Google Patents

光コネクタ及び製造方法 Download PDF

Info

Publication number
WO2024028954A1
WO2024028954A1 PCT/JP2022/029531 JP2022029531W WO2024028954A1 WO 2024028954 A1 WO2024028954 A1 WO 2024028954A1 JP 2022029531 W JP2022029531 W JP 2022029531W WO 2024028954 A1 WO2024028954 A1 WO 2024028954A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
core
fibers
fiber
block
Prior art date
Application number
PCT/JP2022/029531
Other languages
English (en)
French (fr)
Inventor
宜輝 阿部
和典 片山
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/029531 priority Critical patent/WO2024028954A1/ja
Publication of WO2024028954A1 publication Critical patent/WO2024028954A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means

Definitions

  • the present disclosure relates to an optical connector for connecting and disconnecting multi-core optical fibers.
  • Multi-core optical connectors for multi-core optical fibers use the same MT ferrules used in normal multi-core optical connectors for single-core fibers, and each multi-core optical fiber is inserted into the MT ferrule and rotated one by one.
  • Alternative methods include aligning the core position on the multi-core optical fiber end face MT in advance, or aligning the core position on the multi-core optical fiber end face MT one by one and gluing and fixing it to a member in units of one or two.
  • an object of the present invention is to provide a multi-core optical connector for multi-core optical fibers that does not require rotational alignment of the multi-core optical fibers, and a method for manufacturing the same. .
  • an optical connector according to the present invention is an optical connector for removably connecting multi-core optical fibers, and the core position of the multi-core optical fibers to be connected is An optical waveguide block with optical input/output ends formed at the transferred positions is interposed between the multi-core optical fibers.
  • the optical connector according to the present invention is an optical connector that connects multi-core fibers including a plurality of multi-core optical fibers, comprising an optical waveguide block in which the ends of the two multicore fibers are respectively connected to connection surfaces on both sides;
  • the optical waveguide block is An optical input/output end is formed on each of the connection surfaces at a position where the core of the multi-core optical fiber appearing at the end of the multi-core fiber to be connected comes into contact, and from one of the connection surfaces. It is characterized in that an optical waveguide is formed on the other connecting surface to connect the corresponding optical input/output ends.
  • the manufacturing method according to the present invention is a manufacturing method of an optical connector that connects multi-core fibers in which a plurality of multi-core optical fibers are arranged in parallel,
  • an optical waveguide block in which the ends of the two multicore fibers are respectively connected to the connection surfaces at both ends,
  • On each of the connection surfaces of the optical waveguide block a position where the core of the multi-core optical fiber appearing at the end of the multi-core fiber to be connected hits is an optical input/output end, and one of the connection surfaces It is characterized by forming an optical waveguide connecting the corresponding optical input/output ends from the connecting surface to the other connecting surface.
  • This optical connector has an optical waveguide block on which an optical waveguide is drawn, and on both connection surfaces of the optical waveguide block, the optical input/output of the optical waveguide is at the position where the core position of each multi-core fiber to be connected is transferred.
  • the edges are formed. Therefore, multi-core fibers can be connected to each other without rotationally aligning each multi-core fiber.
  • the present invention can provide a multi-core optical connector for multi-core optical fibers that does not require rotational alignment of the multi-core optical fibers, and a method for manufacturing the same.
  • the optical waveguide block of the optical connector according to the present invention includes: On one of the connection surfaces, one of the multi-core fibers is adhesively fixed so that each core of the multi-core optical fiber is connected to the optical input/output end, and on the other connection surface, The other multi-core fiber whose end portion is an MT ferrule is removably connected, and each core of the multi-core optical fiber and the optical input/output end are connected when the other multi-core fiber is connected.
  • the MT ferrule is characterized in that it has a guide pin that fits into the guide pin insertion hole of the MT ferrule so as to be connected to each other.
  • the optical waveguide block of the optical connector includes: The structure is such that it can be divided into one male block having the connecting surface and the other female block having the connecting surface, and are combined by fitting the guide pin of the male block into the guide pin insertion hole of the female block.
  • the structure is such that it can be divided into one male block having the connecting surface and the other female block having the connecting surface, and are combined by fitting the guide pin of the male block into the guide pin insertion hole of the female block.
  • the male block one of the multicore fibers is adhesively fixed on the connection surface so that each core of the multicore optical fiber and the optical input/output end are respectively connected;
  • the other multicore fiber is adhesively fixed to the connection surface so that each core of the multicore optical fiber and the optical input/output end are connected to each other, and
  • the optical waveguides may be located at predetermined positions, each of which appears on a merging surface where the male blocks are merged.
  • the present invention can provide a multi-core optical connector for multi-core optical fibers that does not require rotational alignment of the multi-core optical fibers, and a method for manufacturing the same.
  • multi-core optical fibers can be connected to each other without rotationally aligning the multi-core optical fibers. It becomes easier to manufacture a multi-core optical connector for multi-core optical fibers.
  • FIG. 1 is a diagram illustrating an optical connector according to the present invention.
  • FIG. 3 is a diagram illustrating an optical waveguide block included in the optical connector according to the present invention.
  • FIG. 2 is a schematic diagram of a connection end surface of an MT ferrule in a first example of an embodiment of an optical connector according to the present invention.
  • FIG. 2 is a schematic diagram of a connection end surface of an optical waveguide with an MT ferrule in a first example of an embodiment of an optical connector according to the present invention.
  • FIG. 2 is a schematic diagram of a connection end surface of a multi-core optical fiber that is adhesively and fixedly connected to an optical waveguide in a first example of an embodiment of an optical connector according to the present invention.
  • FIG. 2 is a schematic diagram of a connection end surface of an optical waveguide that is adhesively and fixedly connected to a multi-core optical fiber in a first example of an embodiment of an optical connector according to the present invention. It is a figure explaining the manufacturing method of the optical connector concerning the present invention. It is a schematic diagram showing a second example of an embodiment of an optical connector concerning the present invention. It is a schematic diagram of the multi-core optical fiber end surface of the left side plug in the second example of the embodiment of the optical connector according to the present invention.
  • FIG. 7 is a schematic diagram of a connection end surface of an optical waveguide adhesively fixed to a multi-core optical fiber of a left plug in a second example of an embodiment of an optical connector according to the present invention.
  • FIG. 7 is a schematic diagram of the connection end surface of the optical waveguide on the side that is not adhesively fixed to the multi-core optical fiber of the left plug in the second example of the embodiment of the optical connector according to the present invention.
  • FIG. 7 is a schematic view of the connection end surface of the optical waveguide on the side that is not adhesively fixed to the multi-core optical fiber of the right plug in the second example of the embodiment of the optical connector according to the present invention.
  • FIG. 1 is a schematic diagram illustrating an optical connector 301 of this embodiment.
  • the optical connector 301 is an optical connector that connects multi-core fibers (50a, 50b) including a plurality of multi-core optical fibers,
  • An optical waveguide block 100 is provided in which the ends (51a, 51b) of two multicore fibers are respectively connected to connection surfaces (11a, 11b) on both sides.
  • FIG. 2 is a diagram illustrating the optical waveguide block 100.
  • the optical waveguide block 100 is An optical input/output end 12 is formed on each connection surface (11a, 11b) at a position where the core 55 of the multicore optical fiber appearing at the end (51a, 51b) of the multicore fiber to be connected comes into contact. It is also characterized in that an optical waveguide 13 connecting the corresponding optical input/output ends 12 is formed from one connection surface 11a to the other connection surface 11b.
  • the optical waveguide block 100 is On the connection surface 11a, one multi-core fiber 50a is adhesively fixed so that each core of the multi-core optical fiber is connected to the optical input/output end 12, and on the connection surface 11b, the end portion is MT.
  • the MT ferrule is arranged so that the multi-core fiber 50b, which is the ferrule 200, is removably connected, and so that each core of the multi-core optical fiber and the optical input/output end 12 are connected to each other when the multi-core fiber 50b is connected. It is characterized by having a guide pin 21 that fits into a guide pin insertion hole 22 of 200.
  • a multi-core optical connector 301 for multi-core optical fibers includes an MT ferrule 200 to which four tape-shaped multi-core optical fibers are adhesively fixed, and four fibers on a connection surface 11a on the opposite side of the connection side to the MT ferrule 200.
  • the plug 150 includes an optical waveguide block 100 to which multi-core optical fibers are adhesively fixed and built into a plug member 155.
  • FIG. 3 is a diagram illustrating the end surface of the MT ferrule 200 on the plug 150 side.
  • a multi-core optical fiber end portion 51b of the multi-core fiber 50b appears on the end face. The positions of the cores 55 of each of the four multi-core optical fibers are not aligned.
  • the multi-core optical fiber end 51 is polished. Further, a guide pin hole 22 into which the guide pin 21 of the plug 150 fits is formed in the end surface.
  • FIG. 4 is a diagram illustrating the end surface of the plug 150 on the connection side with the MT ferrule 200.
  • the plug 150 includes an optical waveguide block 100, a flat substrate 120, a guide pin 21, and a plug member 155.
  • a V-groove 101 is formed in the optical waveguide block 100, a guide pin 21 is arranged in the V-groove 101, and the structure is covered with a flat substrate 120.
  • the optical waveguide block 100 covered with the flat substrate 120 is then housed in the plug member 155 to form the plug 150.
  • the optical input/output end 12 of the optical waveguide 13 is formed at a position where the arrangement of the core 55 of the multi-core optical fiber end portion 51b explained in FIG.
  • the multicore fibers can be connected to each waveguide 13 of the optical waveguide block 100 without rotationally aligning each multicore optical fiber of the multicore fiber 50b.
  • Each core of a 50b multi-core optical fiber can be connected.
  • FIG. 5 is a diagram illustrating a member 160 for adhesively fixing the multi-core fiber 50a to the connection surface 11a of the optical waveguide block 100.
  • FIG. 5 shows an end surface of the member 160 on the optical waveguide block 100 side.
  • the multi-core optical fiber of the multi-core fiber 50a is placed in the V-groove 165 of the V-groove substrate 161, and the lid substrate 162 is placed on top and fixed with adhesive. With this configuration, the member 160 and the multi-core optical fiber are integrated, and the position of the core 55 of each multi-core optical fiber is not aligned.
  • the multi-core optical fiber end 51a is polished.
  • FIG. 6 is a diagram illustrating the end surface of the plug 150 on the side that is adhesively fixed to the member 160.
  • the optical input/output end 12 of the optical waveguide 13 is formed at a position where the arrangement of the core 55 of the multi-core optical fiber end portion 51a described in FIG. 5 is transferred. Therefore, when the end face described in FIG. 5 and the end face in FIG. 6 are overlapped, the position of the core 55 of the multi-core optical fiber end portion 51a and the position of the optical input/output end 12 of the optical waveguide 13 match.
  • the multi-core optical fiber 50a can be connected to each waveguide 13 of the optical waveguide block 100 without rotationally aligning each multi-core optical fiber of the multi-core optical fiber 50a.
  • Each core of a multi-core optical fiber can be connected.
  • FIG. 7 is a diagram illustrating a manufacturing method for manufacturing the optical connector 301.
  • the manufacturing method is When producing an optical waveguide block 100 in which the ends (51a, 51b) of two multicore fibers (50a, 50b) are respectively connected to the connection surfaces (11a, 11b) at both ends, On each connection surface (11a, 11b) of the optical waveguide block 100, determine the position where the core of the multicore optical fiber appearing at the end (51a, 51b) of the multicore fiber (50a, 50b) to be connected hits. forming optical input/output ends 12 (step S01); and forming an optical waveguide 13 connecting the corresponding optical input/output ends 12 from the connection surface 11a to the connection surface 11b (step S02). It is characterized by
  • the optical waveguide block 100 is manufactured by a method of irradiating the inside of a glass member with a focused laser beam to form a core (optical waveguide 13).
  • a method of irradiating the inside of a glass member with a focused laser beam to form a core optical waveguide 13.
  • the route of the core within the glass member can be formed not only in a plane but also in three dimensions. Therefore, as shown in FIG. 2, the optical waveguide 13 can be formed such that the optical input/output ends 12 are arranged at desired positions on both end faces of the glass member.
  • step S01 the position of the core 55 of the multi-core optical fiber on the end face shown in FIGS. 3 and 5 is acquired as an image, and the position is digitized using coordinates.
  • the coordinates are applied to the end surfaces of the glass member (the connection surfaces 11a and 11b of the optical waveguide block 100), and are defined as the starting point and the ending point (light input/output end 12) of the optical waveguide 13.
  • step S02 the optical waveguide 13 is drawn by moving the condensing position of the laser beam from the starting point to the ending point.
  • the optical waveguide block 100 and the flat substrate 120 are adhesively fixed to the plug member 155.
  • the optical waveguide block 100 has two V-grooves 101 in which guide pins 21 are installed.
  • a guide pin 21 is adhesively fixed to the V-groove 101 with the optical waveguide block 100 and the flat substrate 120 stacked so as to cover the V-groove 101.
  • the guide pin 21 employs a guide pin used in an MT connector.
  • the center (intersection of two diagonal lines) of the four cores 55 connected to the core 55 of the multi-core optical fiber fixed to the MT ferrule 200 is aligned with the cross-sectional center of the guide pin 21 on the connection surface 11b.
  • the depth of the V-groove 101 is designed and cut so that it is located on the connected imaginary line.
  • the four multicore optical fibers of the multicore fiber 51b are adhesively fixed to the optical fiber insertion holes of the MT ferrule 200, and the ends 51b are polished.
  • the connection end surface of the MT ferrule 200 is designed so that the optical fiber insertion hole is located on an imaginary line connecting the centers of the guide pin holes 22.
  • connection surface 11a of the optical waveguide block 100 and the end surface of the member 160 are polished at an angle of 8 degrees to suppress Fresnel reflection in the connection of optical fibers.
  • the optical waveguide block 100 and the member 160 are aligned by active alignment in a state where light is conducted to the core of the multi-core optical fiber, and are fixed by adhesive.
  • the end surface of the MT ferrule 200 and the connection surface 11b of the optical waveguide block 100 may be polished at right angles.
  • a refractive index matching material whose refractive index is matched to that of the core 55 and the optical waveguide 13 of the multi-core optical fiber is filled between the two to eliminate Fresnel reflection caused by the difference in refractive index between the core 55 and the optical waveguide 13 and air. to achieve high return loss.
  • the end surface of the MT ferrule 200 and the connecting surface 11b of the optical waveguide block 100 may be polished at an angle of 8 degrees. A high return loss can be obtained without using a refractive index matching material.
  • the present invention can also be implemented as an MPO connector in which the MT ferrule is built into the plug housing and the guide pins and guide pin holes of the plug housings are fitted together within the adapter.
  • the optical waveguide side By incorporating the optical waveguide side into the plug housing of the MPO connector, the optical fiber and optical waveguide can be attached and detached simply by operating the plug housing.
  • FIG. 8 is a schematic diagram illustrating the optical connector 302 of this embodiment.
  • the optical connector 302 has a structure in which plugs of multi-core optical connectors are connected to each other instead of MT ferrules.
  • the optical waveguide block of the optical connector 302 can be divided into a male block 100a having a connection surface 11a and a female block 100b having a connection surface 11b. It has a structure that is assembled by fitting into the guide pin insertion hole 22 (present at a position not visible in FIG. 8) of the female block 100b.
  • the plug 150b includes a female block 100b, and is adhesively fixed to a member 160b at one end side (the connection surface 11b side of the female block 100b). That is, in the female block 100b, the multicore fibers 51b are adhesively fixed so that each core 55 of the multicore optical fiber and the optical input/output end 12 are connected to each other on the connection surface 11b.
  • FIG. 9 is a diagram illustrating a member 160b for adhesively fixing the multi-core fiber 50b to the connection surface 11b of the female block 100b.
  • FIG. 9 shows an end surface of the member 160b on the female block 100b side.
  • the multi-core optical fiber of the multi-core fiber 50b is placed in the V-groove 165 of the V-groove substrate 161, and the lid substrate 162 is placed on top and fixed with adhesive.
  • the member 160b and the multi-core optical fiber are integrated, and the position of the core 55 of each multi-core optical fiber is not aligned.
  • the multi-core optical fiber end 51b is polished.
  • FIG. 10 is a diagram illustrating the end surface of the plug 150b on the side that is adhesively fixed to the member 160b.
  • the optical input/output end 12 of the optical waveguide 13 is formed at a position where the arrangement of the core 55 of the multi-core optical fiber end portion 51b described in FIG. 9 is transferred. Therefore, when the end face described in FIG. 9 and the end face in FIG. 10 are overlapped, the position of the core 55 of the multi-core optical fiber end portion 51b and the position of the optical input/output end 12 of the optical waveguide 13 match.
  • the multi-core optical fibers of the multi-core fiber 50b can be connected to each waveguide 13 of the female block 100b without rotationally aligning each multi-core optical fiber of the multi-core optical fiber 50b.
  • Each core of optical fiber can be connected.
  • FIG. 11 is a diagram illustrating the combined surface 15b of the female block 100b on the side that is not adhesively fixed to the member 160b.
  • the input/output end 12 of the optical waveguide 13 is arranged at a predetermined position on the combining surface 15b.
  • the input/output ends 12 of the connecting surface 11b of the female block 100b are located at the positions of each core 55 of the multi-core optical fiber to be adhesively fixed, whereas the input/output ends 12 of the joining surface 15b are located at predetermined positions. There is a difference in that.
  • FIG. 12 is a diagram illustrating the joining surface 15a of the male block 100a on the side that is not adhesively fixed to the member 160a.
  • the input/output end 12 of the optical waveguide 13 is also arranged at a predetermined position on the combining surface 15a.
  • a V-groove 101 is formed in the optical waveguide block 100a, a guide pin 21 is arranged in this V-groove 101, and the structure is covered with a flat substrate 120.
  • the optical waveguide block 100a covered with the flat substrate 120 is then housed in the plug member 155 to form a plug 150a.
  • Member 160a is the same as member 160 described in FIG.
  • the adhesively fixed end face of the member 160a of the male block 100a is the same as the end face described in FIG. 6.
  • the positions of the optical waveguides 13 that appear on the joining surface (15a, 15b) where the male block 100a and the female block 100b are joined are at predetermined positions, so that the optical connector 302 is free from rotational deviation of the multi-core optical fiber.
  • the multi-core optical fibers of the multi-core fibers (50a, 50b) can be connected to each other regardless of the configuration. Note that Fresnel reflection between the end faces is suppressed by depositing a refractive index matching agent on the combined surfaces (15a, 15b).
  • the male block 100a and the female block 100b may be manufactured using the manufacturing method described with reference to FIG. 7, respectively. Moreover, the male block 100a and the female block 100b may be created by cutting the optical waveguide block 100 created by the manufacturing method described in FIG. 7 along a plane parallel to the connection surface 11a and the connection surface 11b. In this case, the cut surface becomes the combined surface (15a, 15b).
  • Embodiments 1 and 2 an optical connector for a four-core multi-core optical fiber having four cores has been described, but the configuration of the present invention is not limited to a multi-core optical fiber having four cores, but is applicable to a multi-core optical fiber having four cores. It can also be applied to multi-core optical fibers. Regarding the number of pieces, it can be applied to 2 pieces or 8 pieces or more.
  • Optical waveguide block 100a Male block 100b: Female block 101: V groove 120: Flat substrate 150: Plug 155: Plug members 160, 160a, 160b: Member 161: V groove substrate 162: Lid substrate 165: V groove 200 :MT ferrule 301, 302: Optical connector

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

マルチコア光ファイバの回転調心が不要であるマルチコア光ファイバ用の多心光コネクタ及びその製造方法を提供することを目的とする。 本発明に係る光コネクタ(301)は、複数のマルチコア光ファイバが含まれる多心ファイバ(50a、50b)同士を接続する光コネクタ(301)であって、2つの多心ファイバ(50a、50b)の端部(51a、51b)が両側の接続面(11a、11b)にそれぞれ接続される光導波路ブロック(100)を備える。光導波路ブロック(100)は、それぞれの接続面(11a、11b)に、接続しようとする多心ファイバ(50a、50b)の端部(51a、51b)に現れているマルチコア光ファイバのコア(55)が当たる位置に光入出力端(12)が形成されていること、及び一方の接続面(11a)から他方の接続面(11b)へ、対応する光入出力端(12)同士を結ぶ光導波路(13)が形成されていることを特徴とする。

Description

光コネクタ及び製造方法
 本開示は、マルチコア光ファイバを着脱接続するための光コネクタに関する。
 複数のコアを有するマルチコア光ファイバについて、複数本のマルチコア光ファイバを一括接続するための多心光コネクタが報告されている。マルチコア光ファイバの接続では、接続端面で複数のコア位置を一致させることが必要である。マルチコア光ファイバ用多心光コネクタでは、通常のシングルコアファイバ用多心光コネクタで使用しているMTフェルールを用いており、MTフェルール内でマルチコア光ファイバを挿入した状態で1本毎に回転させてマルチコア光ファイバ端面におけるコア位置を調心する方法、もしくは、あらかじめマルチコア光ファイバ端面MTにおけるコア位置を1本毎に調心して部材に1本もしくは2本単位で接着固定して、その部材をMTフェルールに挿入することでマルチコア光ファイバ端面におけるコア位置を調心する方法がある(例えば、非特許文献1を参照。)。マルチコア光ファイバ用多心光コネクタの作製においては、1本毎に回転して接続端面におけるマルチコア光ファイバのコア位置を調心することが必要であった。
阿部 他, "異種構造の多心マルチコア光ファイバコネクタの接続結果," 電子情報通信学会総合大会, B-13-23, 2021.
 通常の多心光ファイバはテープ化されて一体化されており、マルチコア光ファイバを用いて多心光ケーブルを作製した場合も、光ケーブル内ではマルチコア光ファイバはテープ化されることになる。テープ化されたマルチコア光ファイバを単心に分離して、1本毎に回転調心してマルチコア光ファイバ用多心光コネクタを作製することは実用的ではない。複数心のマルチコア光ファイバを並べてテープ化する段階で、マルチコア光ファイバのコア位置を精密に回転調心した状態でテープ化できれば、マルチコア光ファイバ用多心光コネクタの作製時には回転調心が不要になる。しかしながら、テープ化段階でマルチコア光ファイバを回転調心することは難しく、将来的にテープ化する際に一定の精度で回転調心できるようになったとしても、光コネクタで求められる精度で回転調心することは困難であることが予想される。
 そこで、本発明は上記の事情に鑑み提案されたものであって、マルチコア光ファイバの回転調心が不要であるマルチコア光ファイバ用の多心光コネクタ及びその製造方法を提供することを目的とする。
 前記課題を解決するために、本発明に係る光コネクタは、多心のマルチコア光ファイバを着脱可能に接続するための光コネクタであって、両側の接続面の、接続するマルチコア光ファイバのコア位置を転写した位置に光入出力端を形成した光導波路ブロックをマルチコア光ファイバ間に介在させる構成とした。
 具体的には、本発明に係る光コネクタは、複数のマルチコア光ファイバが含まれる多心ファイバ同士を接続する光コネクタであって、
 2つの前記多心ファイバの端部が両側の接続面にそれぞれ接続される光導波路ブロックを備えており、
 前記光導波路ブロックは、
 それぞれの前記接続面に、接続しようとする前記多心ファイバの端部に現れている前記マルチコア光ファイバのコアが当たる位置に光入出力端が形成されていること、及び
 一方の前記接続面から他方の前記接続面へ、対応する前記光入出力端同士を結ぶ光導波路が形成されていること
を特徴とする。
 また、本発明に係る製造方法は、複数のマルチコア光ファイバが並列する多心ファイバを接続する光コネクタの製造方法であって、
 2つの前記多心ファイバの端部が両端の接続面にそれぞれ接続される光導波路ブロックを作製するときに、
 光導波路ブロックのそれぞれの前記接続面において、接続しようとする前記多心ファイバの端部に現れている前記マルチコア光ファイバのコアが当たる位置を光入出力端とすること、及び
 一方の前記接続面から他方の前記接続面へ、対応する前記光入出力端同士を結ぶ光導波路を形成すること
を特徴とする。
 本光コネクタは、光導波路が描画された光導波路ブロックを有しており、光導波路ブロックの両接続面において、接続すべき各マルチコアファイバのコア位置を転写した位置に当該光導波路の光入出力端が形成されている。このため、それぞれのマルチコアファイバを回転調心することなく、多心のマルチコアファイバ同士を接続することができる。
 従って、本発明は、マルチコア光ファイバの回転調心が不要であるマルチコア光ファイバ用の多心光コネクタ及びその製造方法を提供することができる。
 本発明に係る光コネクタの前記光導波路ブロックは、
 一方の前記接続面において、前記マルチコア光ファイバの各コアと前記光入出力端とがそれぞれ接続するように、一方の前記多心ファイバが接着固定されていること、及び
 他方の前記接続面において、前記端部がMTフェルールである他方の前記多心ファイバが着脱可能に接続されるように、且つ他方の前記多心ファイバを接続した時に前記マルチコア光ファイバの各コアと前記光入出力端とがそれぞれ接続するように、前記MTフェルールのガイドピン挿入孔に嵌合するガイドピンを有していること
を特徴とする。
 本発明に係る光コネクタの前記光導波路ブロックは、
 一方の前記接続面を有する雄ブロックと他方の前記接続面を有する雌ブロックに分割可能であり、前記雄ブロックのガイドピンが前記雌ブロックのガイドピン挿入孔に嵌合することで合体する構造であること、
 前記雄ブロックは、前記接続面において、前記マルチコア光ファイバの各コアと前記光入出力端とがそれぞれ接続するように、一方の前記多心ファイバが接着固定されていること、
 前記雌ブロックは、前記接続面において、前記マルチコア光ファイバの各コアと前記光入出力端とがそれぞれ接続するように、他方の前記多心ファイバが接着固定されていること、及び
 前記雌ブロックと前記雄ブロックが合体する合体面に現れる前記光導波路の位置は、それぞれが予め定められた位置であること
を特徴とするであってもよい。
 本発明は、マルチコア光ファイバの回転調心が不要であるマルチコア光ファイバ用の多心光コネクタ及びその製造方法を提供することができる。
 本発明に係る光コネクタによれば、マルチコア光ファイバを回転調心することなく、多心のマルチコア光ファイバ同士を接続できる。マルチコア光ファイバ用多心光コネクタの製造が容易になる。
本発明に係る光コネクタを説明する図である。 本発明に係る光コネクタが備える光導波路ブロックを説明する図である。 本発明に係る光コネクタの実施の形態の第一例におけるMTフェルールの接続端面の模式図である。 本発明に係る光コネクタの実施の形態の第一例における光導波路のMTフェルールとの接続端面の模式図である。 本発明に係る光コネクタの実施の形態の第一例における光導波路と接着固定で接続するマルチコア光ファイバの接続端面の模式図である。 本発明に係る光コネクタの実施の形態の第一例におけるマルチコア光ファイバと接着固定で接続する光導波路の接続端面の模式図である。 本発明に係る光コネクタの製造方法を説明する図である。 本発明に係る光コネクタの実施の形態の第二例を示す概略図である。 本発明に係る光コネクタの実施の形態の第二例における左側プラグのマルチコア光ファイバ端面の模式図である。 本発明に係る光コネクタの実施の形態の第二例における左側プラグのマルチコア光ファイバと接着固定した光導波路の接続端面の模式図である。 本発明に係る光コネクタの実施の形態の第二例における左側プラグのマルチコア光ファイバと接着固定していない側の光導波路の接続端面の模式図である。 本発明に係る光コネクタの実施の形態の第二例における右側プラグのマルチコア光ファイバと接着固定していない側の光導波路の接続端面の模式図である。
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
 本明細書では、一例として、4つのコアを有するマルチコア光ファイバが4本並列するテープファイバを接続する多心光コネクタについて説明する。
(実施形態1)
 図1は、本実施形態の光コネクタ301を説明する概略図である。光コネクタ301は、複数のマルチコア光ファイバが含まれる多心ファイバ同士(50a、50b)を接続する光コネクタであって、
 2つの多心ファイバの端部(51a、51b)が両側の接続面(11a、11b)にそれぞれ接続される光導波路ブロック100を備える。
 図2は、光導波路ブロック100を説明する図である。光導波路ブロック100は、
 それぞれの接続面(11a、11b)に、接続しようとする多心ファイバの端部(51a、51b)に現れているマルチコア光ファイバのコア55が当たる位置に光入出力端12が形成されていること、及び
 一方の接続面11aから他方の接続面11bへ、対応する光入出力端12同士を結ぶ光導波路13が形成されていること
を特徴とする。
 本実施形態の場合、光導波路ブロック100は、
 接続面11aにおいて、マルチコア光ファイバの各コアと光入出力端12とがそれぞれ接続するように、一方の多心ファイバ50aが接着固定されていること、及び
 接続面11bにおいて、前記端部がMTフェルール200である多心ファイバ50bが着脱可能に接続されるように、且つ多心ファイバ50bを接続した時に前記マルチコア光ファイバの各コアと光入出力端12とがそれぞれ接続するように、MTフェルール200のガイドピン挿入孔22に嵌合するガイドピン21を有していること
を特徴とする。
 マルチコア光ファイバ用の多心光コネクタ301は、テープ化された4本のマルチコア光ファイバが接着固定されたMTフェルール200と、MTフェルール200との接続側の反対側にある接続面11aに4本のマルチコア光ファイバが接着固定された光導波路ブロック100をプラグ部材155に内蔵したプラグ150で構成されている。
 図3は、MTフェルール200のプラグ150側の端面を説明する図である。当該端面には、多心ファイバ50bのマルチコア光ファイバ端部51bが現れている。4本の各マルチコア光ファイバのコア55の位置は調心されていない状態である。マルチコア光ファイバ端部51は研磨されている。また、当該端面にはプラグ150のガイドピン21が嵌合するガイドピン孔22が形成されている。
 図4は、プラグ150のMTフェルール200との接続側の端面を説明する図である。プラグ150は、光導波路ブロック100、平板基板120、ガイドピン21、及びプラグ部材155を備える。光導波路ブロック100にはV溝101が形成されており、このV溝101にガイドピン21が配置されて平板基板120で蓋をされる構成である。そして、平板基板120で蓋をされた光導波路ブロック100がプラグ部材155に収められてプラグ150となる。光導波路ブロック100の接続端11bには、図3で説明したマルチコア光ファイバ端部51bのコア55の配置を転写した位置に光導波路13の光入出力端12が形成される。このため、図3で説明した端面と図4の端面とを重ねるとマルチコア光ファイバ端部51bのコア55の位置と光導波路13の光入出力端12の位置とが一致する。
 従って、光導波路ブロック100の接続面11bにMTフェルール200を接続することで、多心ファイバ50bの各マルチコア光ファイバを回転調心させることなく、光導波路ブロック100の各導波路13に多心ファイバ50bのマルチコア光ファイバの各コアを接続できる。
 図5は、光導波路ブロック100の接続面11aに多心ファイバ50aを接着固定させる部材160を説明する図である。図5は部材160の光導波路ブロック100側の端面である。多心ファイバ50aのマルチコア光ファイバはV溝基板161のV溝165に置かれ、上から蓋板162を載せて接着剤で固定する。この構成により部材160とマルチコア光ファイバは一体化しており、各マルチコア光ファイバのコア55の位置は調心されていない。マルチコア光ファイバ端部51aは研磨されている。
 図6は、プラグ150の部材160との接着固定側の端面を説明する図である。光導波路ブロック100の接続面11aには、図5で説明したマルチコア光ファイバ端部51aのコア55の配置を転写した位置に光導波路13の光入出力端12が形成される。このため、図5で説明した端面と図6の端面とを重ねるとマルチコア光ファイバ端部51aのコア55の位置と光導波路13の光入出力端12の位置とが一致する。
 従って、光導波路ブロック100の接続面11aに部材160を突き当てることで、多心ファイバ50aの各マルチコア光ファイバを回転調心させることなく、光導波路ブロック100の各導波路13に多心ファイバ50aのマルチコア光ファイバの各コアを接続できる。
 図7は、光コネクタ301を製造する製造方法を説明する図である。当該製造方法は、
 2つの多心ファイバ(50a、50b)の端部(51a、51b)が両端の接続面(11a、11b)にそれぞれ接続される光導波路ブロック100を作製するときに、
 光導波路ブロック100のそれぞれの接続面(11a、11b)において、接続しようとする多心ファイバ(50a、50b)の端部(51a、51b)に現れている前記マルチコア光ファイバのコアが当たる位置を光入出力端12とすること(ステップS01)、及び
 接続面11aから接続面11bへ、対応する光入出力端12同士を結ぶ光導波路13を形成すること(ステップS02)
を特徴とする。
 光導波路ブロック100は、集光させたレーザ光をガラス部材の内部に照射してコア(光導波路13)を形成する方法で作製される。当該方法は、ガラス部材内でのレーザ光の集光位置を動かすことでガラス部材内でのコアのルートを平面だけでなく立体的に形成できる。このため、図2で示したように、ガラス部材の両端面において所望の位置に光入出力端12を配置するように光導波路13を形成できる。
 具体的には、ステップS01にて、図3と図5に示した端面におけるマルチコア光ファイバのコア55の位置を画像で取得し、その位置を座標で数値化する。ガラス部材の端面(光導波路ブロック100の接続面11aと11b)上に当該座標をあてはめ、光導波路13の始点と終点(光入出力端12)とする。そして、ステップS02にて、レーザ光の集光位置を当該始点から終点へ動かすことで光導波路13を描画する。
 図4と図6に示したように、光導波路ブロック100と平板基板120はプラグ部材155に接着固定されている。光導波路ブロック100にはガイドピン21を設置するための2本のV溝101がある。V溝101に蓋をするように光導波路ブロック100と平板基板120を重ねた状態でV溝101にガイドピン21が接着固定されている。ガイドピン21は、MTコネクタで使用されるガイドピンを採用する。
 光導波路ブロック100は、接続面11bにおいて、MTフェルール200に固定されたマルチコア光ファイバのコア55と接続する4個単位のコア55の中心(対角線2本の交点)がガイドピン21の断面中心を結んだ仮想的な線上に位置するようにV溝101の深さが設計され、切削加工されている。
 多心ファイバ51bの4本のマルチコア光ファイバは、MTフェルール200の光ファイバ挿入孔に接着固定されて、端部51bは研磨加工されている。MTフェルール200の接続端面では、ガイドピン孔22の中心を結んだ仮想的な線上に光ファイバ挿入孔が位置するように設計されている。光導波路ブロック100に固定されたガイドピン21をMTフェルール200のガイドピン孔22に挿入することで、光導波路ブロック100の光導波路13の各光入出力端12とMTフェルール200に固定されているマルチコア光ファイバの各コアとが調心された状態で接続できる。ガイドピン21とガイドピン孔22を嵌合させた後で、MTコネクタで使用されているクランプスプリングで嵌合状態を維持する。
 光導波路ブロック100の接続面11aと、部材160の端面は、斜め8度に研磨され、光ファイバの接続におけるフレネル反射を抑制する。光導波路ブロック100と部材160とは、マルチコア光ファイバのコアに光を導通させた状態で調心するアクティブアライメントで位置合わせを行い、接着固定している。
 一方、MTフェルール200の端面と光導波路ブロック100の接続面11bは直角研磨されてもよい。両者の間にはマルチコア光ファイバのコア55及び光導波路13と屈折率を整合させた屈折率整合材を充填し、コア55及び光導波路13と空気との屈折率の違いにより発生するフレネル反射を抑えて、高い反射減衰量を実現する。なお、MTフェルール200の端面と光導波路ブロック100の接続面11bを斜め8度に研磨してもよい。屈折率整合材を使用しなくても、高い反射減衰量を得ることができる。
 また、MTフェルールをプラグハウジングに内蔵して、アダプタ内でプラグハウジング同士をガイドピンとガイドピン孔を嵌合させるMPOコネクタの形態としても、本発明を実施できる。光導波路側をMPOコネクタのプラグハウジングに内蔵することで、プラグハウジングの操作のみで、光ファイバと光導波路を着脱できる。
(実施形態2)
 図8は、本実施形態の光コネクタ302を説明する概略図である。光コネクタ302は、MTフェルールではなく、多心光コネクタのプラグ同士が接続する構造である。
 図2の光導波路ブロック100に対し、光コネクタ302の光導波路ブロックは、接続面11aを有する雄ブロック100aと接続面11bを有する雌ブロック100bに分割可能であり、雄ブロック100aのガイドピン21が雌ブロック100bのガイドピン挿入孔22(図8では見えない位置に存在する)に嵌合することで合体する構造である。
 プラグ150bは、雌ブロック100bを備え、一端側(雌ブロック100bの接続面11b側)において、部材160bと接着固定される。つまり、雌ブロック100bは、接続面11bにおいて、マルチコア光ファイバの各コア55と光入出力端12とがそれぞれ接続するように、多心ファイバ51bが接着固定されている。
 図9は、雌ブロック100bの接続面11bに多心ファイバ50bを接着固定させる部材160bを説明する図である。図9は部材160bの雌ブロック100b側の端面である。多心ファイバ50bのマルチコア光ファイバはV溝基板161のV溝165に置かれ、上から蓋基板162を載せて接着剤で固定する。この構成により部材160bとマルチコア光ファイバは一体化しており、各マルチコア光ファイバのコア55の位置は調心されていない。マルチコア光ファイバ端部51bは研磨されている。
 図10は、プラグ150bの部材160bとの接着固定側の端面を説明する図である。雌ブロック100bの接続面11bには、図9で説明したマルチコア光ファイバ端部51bのコア55の配置を転写した位置に光導波路13の光入出力端12が形成される。このため、図9で説明した端面と図10の端面とを重ねるとマルチコア光ファイバ端部51bのコア55の位置と光導波路13の光入出力端12の位置とが一致する。
 従って、雌ブロック100bの接続面11bに部材160bを突き当てることで、多心ファイバ50bの各マルチコア光ファイバを回転調心させることなく、雌ブロック100bの各導波路13に多心ファイバ50bのマルチコア光ファイバの各コアを接続できる。
 図11は、雌ブロック100bの部材160bと接着固定していない側の合体面15bを説明する図である。合体面15bにおいて光導波路13の入出力端12は予め定められた位置に配置される。つまり、雌ブロック100bの接続面11bの入出力端12は、接着固定されるマルチコア光ファイバの各コア55の位置にあることに対し、合体面15bの入出力端12は、予め定められた位置にあるという違いがある。
 雄ブロック100aは、接続面11aにおいて、前記マルチコア光ファイバの各コア55と光入出力端12とがそれぞれ接続するように、多心ファイバ50aが接着固定されている。
 図12は、雄ブロック100aの部材160aと接着固定していない側の合体面15aを説明する図である。合体面15aにも光導波路13の入出力端12が予め定められた位置に配置される。また、光導波路ブロック100aにはV溝101が形成されており、このV溝101にガイドピン21が配置されて平板基板120で蓋をされる構成である。そして、平板基板120で蓋をされた光導波路ブロック100aがプラグ部材155に収められてプラグ150aとなる。
 部材160aは、図5で説明した部材160と同じである。
 雄ブロック100aの部材160aの接着固定側の端面は図6で説明した端面と同じである。
 光コネクタ302は、雄ブロック100aと雌ブロック100bとが合体する合体面(15a、15b)に現れる光導波路13の位置が、それぞれが予め定められた位置であるため、マルチコア光ファイバの回転ずれによらず、多心ファイバ(50a、50b)のマルチコア光ファイバ同士を接続することができる。なお、合体面(15a、15b)において屈折率整合剤を付着させることで、端面間でのフレネル反射を抑制する。
 雄ブロック100aと雌ブロック100bは、それぞれを図7で説明した製造方法で作成してもよい。また、雄ブロック100aと雌ブロック100bは、図7で説明した製造方法で作成した光導波路ブロック100を接続面11aと接続面11bに平行な面で切断して作成してもよい。この場合、切断面が合体面(15a、15b)となる。
(他の実施形態)
 実施形態1と2では、4つのコアを有するマルチコア光ファイバ4心用の光コネクタを説明したが、本発明の構成は、4つのコアを有するマルチコア光ファイバに限らず、4つ以外のコアをもつマルチコア光ファイバにも適用できる。本数についても2本や8本以上でも適用できる。
11a、11b:接続面
12:光入出力端
13:光導波路
15a、15b:合体面
21:ガイドピン
22:ガイドピン孔
50a、50b:多心ファイバ
51a、51b:多心ファイバの端部
55:コア
100:光導波路ブロック
100a:雄ブロック
100b:雌ブロック
101:V溝
120:平板基板
150:プラグ
155:プラグ部材
160、160a、160b:部材
161:V溝基板
162:蓋基板
165:V溝
200:MTフェルール
301、302:光コネクタ

Claims (4)

  1.  複数のマルチコア光ファイバが含まれる多心ファイバ同士を接続する光コネクタであって、
     2つの前記多心ファイバの端部が両側の接続面にそれぞれ接続される光導波路ブロックを備えており、
     前記光導波路ブロックは、
     それぞれの前記接続面に、接続しようとする前記多心ファイバの端部に現れている前記マルチコア光ファイバのコアが当たる位置に光入出力端が形成されていること、及び
     一方の前記接続面から他方の前記接続面へ、対応する前記光入出力端同士を結ぶ光導波路が形成されていること
    を特徴とする光コネクタ。
  2.  前記光導波路ブロックは、
     一方の前記接続面において、前記マルチコア光ファイバの各コアと前記光入出力端とがそれぞれ接続するように、一方の前記多心ファイバが接着固定されていること、及び
     他方の前記接続面において、前記端部がMTフェルールである他方の前記多心ファイバが着脱可能に接続されるように、且つ他方の前記多心ファイバを接続した時に前記マルチコア光ファイバの各コアと前記光入出力端とがそれぞれ接続するように、前記MTフェルールのガイドピン挿入孔に嵌合するガイドピンを有していること
    を特徴とする請求項1に記載の光コネクタ。
  3.  前記光導波路ブロックは、
     一方の前記接続面を有する雄ブロックと他方の前記接続面を有する雌ブロックに分割可能であり、前記雄ブロックのガイドピンが前記雌ブロックのガイドピン挿入孔に嵌合することで合体する構造であること、
     前記雄ブロックは、前記接続面において、前記マルチコア光ファイバの各コアと前記光入出力端とがそれぞれ接続するように、一方の前記多心ファイバが接着固定されていること、
     前記雌ブロックは、前記接続面において、前記マルチコア光ファイバの各コアと前記光入出力端とがそれぞれ接続するように、他方の前記多心ファイバが接着固定されていること、及び
     前記雌ブロックと前記雄ブロックが合体する合体面に現れる前記光導波路の位置は、それぞれが予め定められた位置であること
    を特徴とする請求項1に記載の光コネクタ。
  4.  複数のマルチコア光ファイバが並列する多心ファイバを接続する光コネクタの製造方法であって、
     2つの前記多心ファイバの端部が両端の接続面にそれぞれ接続される光導波路ブロックを作製するときに、
     光導波路ブロックのそれぞれの前記接続面において、接続しようとする前記多心ファイバの端部に現れている前記マルチコア光ファイバのコアが当たる位置を光入出力端とすること、及び
     一方の前記接続面から他方の前記接続面へ、対応する前記光入出力端同士を結ぶ光導波路を形成すること
    を特徴とする光コネクタ製造方法。
PCT/JP2022/029531 2022-08-01 2022-08-01 光コネクタ及び製造方法 WO2024028954A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029531 WO2024028954A1 (ja) 2022-08-01 2022-08-01 光コネクタ及び製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029531 WO2024028954A1 (ja) 2022-08-01 2022-08-01 光コネクタ及び製造方法

Publications (1)

Publication Number Publication Date
WO2024028954A1 true WO2024028954A1 (ja) 2024-02-08

Family

ID=89848625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029531 WO2024028954A1 (ja) 2022-08-01 2022-08-01 光コネクタ及び製造方法

Country Status (1)

Country Link
WO (1) WO2024028954A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014178628A (ja) * 2013-03-15 2014-09-25 Hitachi Ltd マルチコアファイバ接続用ファンイン・ファンアウトデバイス及び光接続装置、並びに光接続方式
US20140294350A1 (en) * 2013-03-28 2014-10-02 Ofs Fitel, Llc Apparatus For Alignment of A Multicore Fiber in A Multifiber Connector And Method of Using Same
JP2015145989A (ja) * 2014-02-04 2015-08-13 住友電気工業株式会社 マルチコアファイバの調芯方法、コネクタの製造方法、及びリボンファイバの製造方法
WO2016031678A1 (ja) * 2014-08-29 2016-03-03 古河電気工業株式会社 多心コネクタ、コネクタおよびコネクタ接続構造
JP2018194670A (ja) * 2017-05-17 2018-12-06 コニカミノルタ株式会社 光学素子及び光コネクタ
WO2019131441A1 (ja) * 2017-12-27 2019-07-04 日本電信電話株式会社 接続装置、光コネクタ製造装置、接続方法及び光コネクタ製造方法
JP2019152804A (ja) * 2018-03-05 2019-09-12 株式会社フジクラ 光コネクタ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014178628A (ja) * 2013-03-15 2014-09-25 Hitachi Ltd マルチコアファイバ接続用ファンイン・ファンアウトデバイス及び光接続装置、並びに光接続方式
US20140294350A1 (en) * 2013-03-28 2014-10-02 Ofs Fitel, Llc Apparatus For Alignment of A Multicore Fiber in A Multifiber Connector And Method of Using Same
JP2015145989A (ja) * 2014-02-04 2015-08-13 住友電気工業株式会社 マルチコアファイバの調芯方法、コネクタの製造方法、及びリボンファイバの製造方法
WO2016031678A1 (ja) * 2014-08-29 2016-03-03 古河電気工業株式会社 多心コネクタ、コネクタおよびコネクタ接続構造
JP2018194670A (ja) * 2017-05-17 2018-12-06 コニカミノルタ株式会社 光学素子及び光コネクタ
WO2019131441A1 (ja) * 2017-12-27 2019-07-04 日本電信電話株式会社 接続装置、光コネクタ製造装置、接続方法及び光コネクタ製造方法
JP2019152804A (ja) * 2018-03-05 2019-09-12 株式会社フジクラ 光コネクタ

Similar Documents

Publication Publication Date Title
US11125950B2 (en) Optical connector, and optical connector connection structure
EP2790046B1 (en) Junction structure for multicore optical fiber and method for manufacturing junction structure for multicore optical fiber
US10955622B2 (en) Connection device, optical connector manufacturing device, connection method, and method for manufacturing optical connector
US11105981B2 (en) Optical connectors and detachable optical connector assemblies for optical chips
JP5491440B2 (ja) マルチコアファイバ用ファンナウト部品
CN112305678B (zh) 光学连接器
WO2024028954A1 (ja) 光コネクタ及び製造方法
WO2022269692A1 (ja) 光コネクタプラグ、光コネクタ及び光導波路の製造方法
JP3517010B2 (ja) 光コネクタ
JP2843338B2 (ja) 光導波路・光ファイバ接続コネクタ
JPS62297809A (ja) バンチフアイバ接続用光導波型接続部材およびそれを用いたコネクタ
CN218446077U (zh) 一种非接触式多芯光纤连接器及连接装置
JP3298975B2 (ja) 光結合器と光ファイバとの接続構造および接続方法
WO2023175865A1 (ja) 円筒多心フェルール及び光コネクタ
US20230400637A1 (en) Method for constructing light transmission system, and on-site construction set
WO2022244039A1 (ja) 光コネクタ及びその製造方法
JP7107194B2 (ja) 光接続構造
JP2005308918A (ja) 光接続構造及びその製造方法並びに光デバイス
WO2017094629A1 (ja) 光導波路基板及びその製造方法、光コネクタシステム、並びにアクティブ光ケーブル
JP2002148486A (ja) 多心光コネクタ
JP2019144510A (ja) 光コネクタ、光接続構造、及び光コネクタの製造方法
JP2000310723A (ja) 光コネクタ及びその作製方法
JP2004177903A (ja) フォトニック結晶ファイバ接続用光コネクタプラグの組立方法
JPH07318757A (ja) 光コネクタおよびその接続方法
JPH08160245A (ja) 光ファイバの無反射終端部

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953943

Country of ref document: EP

Kind code of ref document: A1