WO2024028385A1 - Genetisch veränderte Zellen von Methylobacteriaceae zur fermentativen Produktion von Glycolsäure und Milchsäure aus Cx-Verbindungen - Google Patents

Genetisch veränderte Zellen von Methylobacteriaceae zur fermentativen Produktion von Glycolsäure und Milchsäure aus Cx-Verbindungen Download PDF

Info

Publication number
WO2024028385A1
WO2024028385A1 PCT/EP2023/071399 EP2023071399W WO2024028385A1 WO 2024028385 A1 WO2024028385 A1 WO 2024028385A1 EP 2023071399 W EP2023071399 W EP 2023071399W WO 2024028385 A1 WO2024028385 A1 WO 2024028385A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid sequence
cell
methylobacteriaceae
nucleic acid
extorquens
Prior art date
Application number
PCT/EP2023/071399
Other languages
English (en)
French (fr)
Inventor
Jonathan Thomas Fabarius
Carina SAGSTETTER
Melanie SPECK
Arne Roth
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Publication of WO2024028385A1 publication Critical patent/WO2024028385A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01079Glyoxylate reductase (NADP+) (1.1.1.79)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y504/00Intramolecular transferases (5.4)
    • C12Y504/99Intramolecular transferases (5.4) transferring other groups (5.4.99)

Definitions

  • the present invention relates to a genetically modified cell from the Methylobacteriaceae family comprising at least one exogenous nucleic acid sequence encoding a glyoxylate reductase from the bacterium Escherichia, a method for producing the genetically modified Methylobacteriaceae cell, a biocatalyst comprising the genetically modified Methylobacteriaceae cell, a bioreactor comprising the biocatalyst comprising the genetically modified Methylobacteriaceae cell, a process for producing a product containing glycolic acid and a process for producing polyglycolic acid, polylactic acid or polylactide-co-glycolide.
  • Glycolic acid also hydroxyacetic acid or hydroxyethanoic acid, is an organic carboxylic acid with two carbon atoms that contains a carboxy group as functional groups and a hydroxy group on the C2 atom.
  • Glycolic acid has a wide range of uses in the textile industry, for example as a dye and tanning agent, in the food industry, for example as a flavoring and preservative or packaging material, and in the pharmaceutical industry, for example as a skin care product (Salusjärvi, L. et al., Applied Microbiology and Biotechnology, 2019, 103(6): p. 2525-2535; hereinafter Salusjäryi et al.).
  • glycolic acid can be processed together with lactic acid to form a co-polymer (polylactide-co-glycolide) or in medical technology as polyglycolic acid to form a suture material that can be absorbed by the body (Salusjäryi et al.; Jem, K.J. and B. Tan, Advanced Industrial and Engineering Polymer Research, 2020. 3(2): pp. 60-70; hereinafter Jem et al.).
  • glycolic acid is produced industrially almost exclusively petrochemically from fossil raw materials using formaldehyde, carbon monoxide and water.
  • glycolic acid from renewable substrates, such as D-glucose, D-xylose, D-arabinose, L-lyxose, L-arabinose, acetate or ethanol, via microbial fermentation is known but not yet established industrially (Salusjäryi et al., Jem et al., Gädda, TM et al., Appita Journal, 2014. 67(1): p. 12). These substrates are obtained from biogenic raw materials. There is therefore a sustainability risk when using such substrates Raw materials are used for chemical production that can also be used for the production of food and feed, such as bioethanol.
  • glycolic acid is easily accessible biotechnologically from substrates such as hexoses, pentoses or, for example, glycol nitrile, disclosed in US 7,198,927 B2, formaldehyde and hydrogen cyanide, disclosed in EP 1 828 393 B1 or ethylene glycol, disclosed in EP 2 025 760 B1.
  • substrates such as hexoses, pentoses or, for example, glycol nitrile, disclosed in US 7,198,927 B2, formaldehyde and hydrogen cyanide, disclosed in EP 1 828 393 B1 or ethylene glycol, disclosed in EP 2 025 760 B1.
  • Im the direct biotechnological synthesis of glycolic acid from CO2 is difficult to achieve biotechnologically. This is due, among other things, to the inherent limitation of the efficiency of photosynthetic metabolism or the gas-liquid mass transfer of gas fermentation. The last two approaches are still limited by low yields and conversion rates and the number of available and genetically accessible microorganisms (Frazäo, C.
  • Cx compounds for example methanol or formic acid or mixtures of these two substrates
  • methylotrophic microorganisms can be used by methylotrophic microorganisms as an energy source in order to use them for the construction of biomass or valuable products, in particular chemical products.
  • Cx compounds such as methanol or formic acid are taken up as a substrate.
  • methanol is oxidized to formic acid.
  • NAD(P)H which are required for metabolism.
  • Formic acid can then either be oxidized to CO2 or (like formaldehyde) be introduced into the serine cycle.
  • the serine cycle serves as a carbon distribution circuit for the methylotrophic microorganism and provides the precursors mainly required for biomass synthesis.
  • the serine cycle is a connecting point for other metabolic pathways that are absolutely necessary for growth on Cx compounds.
  • the serine cycle intermediate glyoxylate can be synthesized by reduction with NADH or NADPH is converted into glycolic acid coupled to a glyoxylate reductase (ghrA).
  • Glyoxylate reductases (ghrA) together with hydroxypyruvate reductases (ghrB), belong to the glyoxylate/hydroxypyruvate reductases (ghr).
  • a DNA sequence encoding an endogenous glyoxylate reductase (EC: 1.1.1.26, https://www.ncbi.nlm.nih.gov/nuccore/LT962688.) is known to be present in the M. extorquens TK 0001 genome ) coded.
  • the wild-type strain of M. extorquens TK 0001 does not produce measurable amounts of glycolic acid using HPLC or GC-MS.
  • glycolic acid it is desirable to provide fermentative production of glycolic acid from Cx compounds such as methanol or formic acid and agents therefor, in particular methylotrophic microorganisms, which are capable of converting such Cx compounds, for example methanol, formic acid or a mixture thereof, into glycolic acid. It is also desirable to provide a process according to which glycolic acid can be obtained via an integrated process cascade in a completely renewable manner from CO2 as the only raw material, i.e. without the consumption of fossil or biogenic resources.
  • Cx compounds such as methanol or formic acid and agents therefor, in particular methylotrophic microorganisms, which are capable of converting such Cx compounds, for example methanol, formic acid or a mixture thereof, into glycolic acid. It is also desirable to provide a process according to which glycolic acid can be obtained via an integrated process cascade in a completely renewable manner from CO2 as the only raw material, i.e. without the consumption of fossil or biogenic resources.
  • the technical problem underlying the present invention is therefore to overcome the aforementioned disadvantages.
  • the technical problem on which the present invention is based is to provide a biological cell which makes it possible to convert a starting material, hereinafter also referred to as starting material, containing at least one Cx compound, in particular methanol, formic acid or a mixture thereof, into a product Implement glycolic acid.
  • the technical problem underlying the present invention is to provide means and methods that make it possible to obtain such a cell, in particular means and methods that are inexpensive and easy to handle.
  • the technical problem on which the present invention is based is to provide means and processes, in particular a cost-effective and easy-to-use process, in order to obtain a product containing glycolic acid.
  • the technical problem on which the present invention is based is to provide means and methods that enable a sustainable synthesis of glycolic acid that works almost completely without, in particular without, the use of fossil resources and/or almost completely without, in particular without, biogenic raw materials and preferably start from CO2 as the only raw material.
  • the present invention is based in particular on the technical problem of providing means and processes which enable obtaining polyglycolic acid, polylactic acid or polylactide-co-glycolide.
  • the genetically modified Methylobacteriaceae cell i.e. a cell that deviates from the Methylobacteriaceae wild-type strain by at least one genetic change. Furthermore, it is provided according to the invention that the genetically modified Methylobacteriaceae cell comprises at least one exogenous nucleic acid sequence, the nucleic acid sequence encoding a glyoxylate reductase from the bacterium Escherichia.
  • the genetic modification of the wild-type strain of the Methylobacteriaceae cell is therefore at least the genetic integration of at least one exogenous nucleic acid sequence into the Methylobacteriaceae cell, the exogenous nucleic acid sequence encoding a glyoxylate reductase from the bacterium Escherichia.
  • the exogenous nucleic acid sequence may be of synthetic origin or occur naturally, particularly in Escherichia.
  • the genetically modified Methylobacteriaceae cell according to the invention comprises at least one exogenous nucleic acid sequence encoding a glyoxylate reductase, which occurs naturally or a codon-optimized, in particular Methylobacteriaceae codon-optimized, in particular Methylorubrum codeon-optimized or Methylobacterium -codon-optimized, in particular Methylorubrum extorquens-codon-optimized, in particular Methylorubrum extorquens TK 0001-, Methylorubrum extorquens PA1- or Methylorubrum AMI -codon-optimized nucleic acid sequence.
  • such a genetically modified Methylobacteriaceae cell makes it possible to convert a Cx compound into glycolic acid, in particular a starting material, namely a starting material containing at least one Cx compound, in particular methanol, formic acid or a mixture thereof, into a product containing glycolic acid, in particular quantities measurable via HPLC or GC-MS.
  • the wild-type strain of the Methylobacteriaceae cell which only has an endogenous, a glyoxylate Reductase-encoding nucleic acid sequence, on the other hand, is not able to convert a Cx compound into glycolic acid, in particular the starting material, namely a starting material containing at least one Cx compound, into a product containing glycolic acid, in particular in amounts measurable via HPLC or GC-MS , to implement.
  • the present invention therefore provides a genetically modified Methylobacteriaceae cell which is capable of converting a starting material containing at least one Cx compound, in particular methanol, formic acid or a mixture thereof, into a product containing glycolic acid.
  • Cx compounds advantageously represent renewable but non-biogenic substrates for biotechnological processes, which are also easy to handle due to their liquid state and, unlike gases, are not limited in mass transfer in liquid reaction mixtures and are used by the teaching according to the invention for glycolic acid -Manufacturing made particularly accessible.
  • glycolic acid can be produced from CO2 in a completely renewable manner, provided that the CO2 conversion to a Cx compound, in particular methanol, is operated with renewable energy.
  • PtX processes Power-to-X
  • PtY process Power-to-X-to-Y
  • the genetically modified Methylobacteriaceae cell according to the invention can accordingly advantageously be used in a process for producing glycolic acid from at least one Cx compound, in particular for producing a product containing glycolic acid by reacting a starting material containing at least one Cx compound, in particular methanol, formic acid or a mixture thereof , can be used.
  • the product containing glycolic acid obtained by the genetically modified Methylobacteriaceae cell according to the invention preferably also contains lactic acid in addition to glycolic acid. According to the invention, a particularly simple, easy-to-use and cost-effective production process for a product containing glycolic acid, in particular glycolic acid and lactic acid, is provided, so that a high level of equipment and cost-related effort is avoided.
  • the present invention is also advantageous in that it involves the polymerization of glycolic acid, in particular glycolic acid and lactic acid, which often follows a glycolic acid provision, in particular glycolic acid and lactic acid provision, for the production of polyglycolic acid, in particular polyglycolic acid, polylactic acid or Polylactide-co-glycolide, enables and accordingly the production of polyglycolic acid, in particular Polyglycol acid, polylactic acid or polylactide-co-glycolide makes it possible without having to carry out costly and extensive process steps.
  • the exogenous glyoxylate reductase present in the genetically modified Methylobacteriaceae cell according to the invention encoded by the at least one exogenous nucleic acid sequence encoding a glyoxylate reductase from the bacterium Escherichia in the serine cycle of the genetically modified cell according to the invention
  • a Cx compound is converted into glycolic acid, in particular a starting material containing at least one Cx compound, in particular methanol, formic acid or a mixture thereof, into a product containing glycolic acid, in particular in amounts measurable via HPLC or GC-MS .
  • the glyoxylate reductase of the genetically modified Methylobacteriaceae cell according to the invention which is endogenously encoded in the wild-type strain, does not release any quantities measurable via HPLC or GC-MS in the metabolism of the wild-type strain, in particular no educt containing at least one Cx compound, in particular methanol, formic acid or a mixture thereof , to a product containing glycolic acid, so that the glyoxylate reductase activity can be controlled solely by the integration of the exogenous glyoxylate reductase-encoding nucleic acid sequence in genomic or episomal form and its expression.
  • the genetically modified Methylobacteriaceae cell according to the invention is therefore characterized by the enzymatic activity of the exogenous glyoxylate reductase, in particular its ability, caused by the presence of the exogenous glyoxylate reductase, to convert a Cx compound into glycolic acid, in particular a starting material containing at least one Cx compound , in particular methanol, formic acid or a mixture thereof, in particular in a reaction medium, to be able to convert it into a product containing glycolic acid, in particular to be able to implement it in a liquid reaction medium, in particular to enzymatically catalyze this reaction.
  • the genetically modified Methylobacteriaceae cell is preferably characterized in that it, in particular its genome, is similar to the wild-type strain of the Methylobacteriaceae cell, in particular is identical to it, except for the presence of at least one exogenous glyoxylate reductase from the bacterium Escherichia coding nucleic acid sequence which gives the Methylobacteriaceae cell according to the invention the enzymatic activity advantageous according to the invention, and optionally associated exogenous nucleic acid sequences of an expression vector or an Expression cassette.
  • a Methyl ob acteriaceae according to the invention in particular its genome, in addition to the at least one nucleic acid sequence encoding the glyoxylate reductase, further, in particular genetically engineered, genetic changes can be present in comparison to the wild-type strain.
  • the bacterium is Escherichia coli, in particular E. coli K-12 MGI 655.
  • the Methylobacteriaceae cell is a Methylorubrum cell, in particular a cell of Methylorubrum extorquens, in particular Methylorubrum extorquens TK 0001, in particular Methylorubrum extorquens PA1, Methylorubrum extorquens AMI, Methylorubrum rhodesianum or Methylorubrum zatmanii.
  • the genetically modified Methylobacteriaceae cell according to the invention is a genetically modified Methylorubrum extorquens AM1 cell, genetically modified Methylorubrum extorquens TK 0001 cell, or a genetically modified Methylorubrum extorquens PA1 cell comprising at least one exogenous, one glyoxylate cell. Reductase from a bacterium Escherichia coli, in particular E. coli K-12 MGI 655 encoding nucleic acid sequence.
  • the Methylobacteriaceae cell is a Methylobacterium cell, in particular a cell of Methyl ob acterium organophilum or Methyl ob acterium radiotolerans.
  • the Methylobacteriaceae cell is a Methylorubrum cell, in particular a cell of Methylorubrum extorquens, in particular Methylorubrum extorquens AMI, Methylorubrum extorquens TK 0001, Methylorubrum extorquens PA1, Methylorubrum rhodesianum or Methylorubrum zatmanii, or a Methylobacterium cell, in particular a cell of Methyl ob acterium organophilum or Methyl ob acterium radiotolerans.
  • Methylorubrum cell in particular a cell of Methylorubrum extorquens, in particular Methylorubrum extorquens AMI, Methylorubrum extorquens TK 0001, Methylorubrum extorquens PA1, Methylorubrum
  • the exogenous glyoxylate reductase is encoded by a nucleic acid sequence according to SEQ ID No. 3 or a functional nucleic acid sequence equivalent thereof, the functional nucleic acid sequence equivalent having a nucleic acid sequence identity of at least 30.0%, preferably 30.0 to 99.9%, preferably 40.0 to 99.9%, preferably 50.0 to 99.9%, preferred 60.0 to 99.9%, preferably 70.0 to 99.9%, preferably from 76.0 to 99.9%, preferably from 80.0 to 99.9%, preferably 90.0 to 99.9% , preferably 95.0 to 99.9%, preferably 98.0 to 99.9%, preferably 90.0 to 99.0% to the nucleic acid sequence according to SEQ ID No.
  • the nucleic acid sequence identity is preferably at least 76.0 to the nucleic acid sequence according to SEQ ID No. 3.
  • the present invention therefore relates to a genetically modified Methylobacteriaceae cell, in particular a Methylorubrum cell or Methylobacterium cell, comprising a nucleic acid sequence encoding an exogenous glyoxylate reductase, in particular a nucleic acid sequence according to SEQ ID No. 3.
  • the present invention also relates to a genetically modified Methylobacteriaceae cell, in particular Methylorubrum cell or Methylobacterium cell, comprising a functional nucleic acid sequence equivalent of the at least one exogenous nucleic acid sequence encoding a glyoxylate reductase according to SEQ ID No 3, wherein the functional nucleic acid sequence equivalent has a nucleic acid sequence identity of at least 30.0%, preferably 30.0 to 99.9%, preferably 40.0 to 99.9%, preferably 50.0 to 99.9%, preferably 60 .0 to 99.9%, preferably 70.0 to 99.9%, preferably 76.0 to 99.9%, preferably 80.0 to 99.9%, preferably 90.0 to 99.9%, preferably 95 .0 to 99.9%, preferably 98.0 to 99.9%, preferably 90.0 to 99.0% to the nucleic acid sequence according to SEQ ID No. 3 and the glyoxylate reductase encoded
  • the functional nucleic acid sequence equivalent of the nucleic acid sequence according to SEQ ID No. 3 has a nucleic acid sequence with a length of at least 800, preferably at least 850, preferably at least 900, preferably at least 950, preferably at least 970 nucleic acids.
  • sequence identity of the nucleic acid sequence of the nucleic acid sequence equivalent of the nucleic acid sequence according to SEQ ID No. 3 to the nucleic acid sequence according to SEQ ID No. 3 over the entire length is preferred Nucleic acid sequence of the nucleic acid sequence equivalent of the nucleic acid sequence according to SEQ ID No. 3 is given.
  • the nucleic acid sequence according to SEQ ID No. 3 is a codon-optimized, in particular a Methylorubrum, in particular Methylorubrum extorquens, in particular Methylorubrum extorquens AMI, Methylorubrum extorquens TK 0001, in particular a Methylorubrum extorquens PA1 codon -optimized nucleic acid sequence of the native, i.e. naturally occurring, nucleic acid sequence from Escherichia, in particular E. coli, which encodes the glyoxylate reductase from Escherichia, in particular E. coli.
  • the native Escherichia nucleic acid sequence encoding the Escherichia glyoxylate reductase has the nucleic acid sequence according to SEQ ID No. 1 and represents a functional nucleic acid sequence equivalent of the nucleic acid sequence according to SEQ ID No. 3.
  • the functional nucleic acid sequence equivalent of the nucleic acid sequence according to SEQ ID No. 3 has the nucleic acid sequence according to SEQ ID No. 1.
  • the exogenous glyoxylate reductase has an amino acid sequence according to SEQ ID No. 2 or a functional amino acid sequence equivalent thereof, the functional amino acid sequence equivalent having an amino acid sequence identity of at least 30.0%, in particular 30.0 to 99 .9%, preferably 40.0 to 99.9%, preferably 50.0 to 99.9%, preferably 60.0 to 99.9%, preferably 70.0 to 99.9%, preferably from 76.0 to 99.9%, preferably from 80.0 to 99.9%, preferably 85.0 to 99.9%, preferably 90.0 to 99.9%, preferably 95.0 to 99.9%, preferably 98.0 up to 99.9%, to the amino acid sequence according to SEQ ID No. 2.
  • the amino acid sequence identity is preferably at least 90.0% to the amino acid sequence according to SEQ ID No. 2.
  • the present invention relates to a genetically modified Methylobacteriaceae cell, in particular Methylorubrum cell or Methylobacterium cell, comprising a functional amino acid sequence equivalent of the amino acid sequence of SEQ ID No.
  • the functional amino acid sequence equivalent has an amino acid sequence identity of at least 30.0%, in particular 30.0 to 99.9%, preferably 40.0 to 99.9%, preferably 50.0 to 99.9%, preferably 60.0 to 99.9%, preferably 70, 0 to 99.9%, preferably 76.0 to 99.9%, preferably 80.0 to 99.9%, preferably 85.0 to 99.9%, preferably 90.0 to 99.9%, preferably 95, 0 to 99.9%, preferably 98.0 to 99.9%, of the amino acid sequence according to SEQ ID No. 2 and which is capable of producing a starting material containing at least one Cx compound, in particular methanol, formic acid or a mixture of converting it into a product containing glycolic acid.
  • the functional amino acid sequence equivalent of the amino acid sequence according to SEQ ID No. 2 has an amino acid sequence with a length of at least 300, preferably at least 310, preferably at least 320, preferably at least 325 amino acids.
  • sequence identity of the amino acid sequence of the amino acid sequence equivalent of the amino acid sequence according to SEQ ID No. 2 to the amino acid sequence according to SEQ ID No. 2 is preferably specified over the entire length of the amino acid sequence of the amino acid sequence equivalent of the amino acid sequence according to SEQ ID No. 2.
  • the Cx compound is formic acid, methanol, methane, methylamine, acetic acid or succinic acid or a mixture thereof.
  • the Cx compound is methanol.
  • the Cx compound is formic acid.
  • the educt contains at least one Cx compound, in particular formic acid, methanol, methane, methylamine, acetic acid or succinic acid or a mixture thereof, in particular the educt consists of at least one compound of it.
  • the product obtained by reacting a starting material containing at least one Cx compound contains, in particular consists of, glycolic acid.
  • the product obtained by reacting a starting material containing at least one Cx compound contains, in particular consists of, glycolic acid and lactic acid.
  • the product containing glycolic acid contains glycolic acid and lactic acid, in particular 1 to 99% by weight, in particular 2 to 98% by weight, in particular 10 to 90% by weight, in particular 30 to 80% by weight.
  • %, in particular 40 to 70% by weight in particular 50% by weight, in particular 60% by weight of glycolic acid and in particular 1 to 99% by weight, in particular 2 to 98% by weight, in particular 10 to 90% by weight %, in particular 20 to 70% by weight, in particular 30 to 60% by weight, in particular 50% by weight, in particular 40% by weight of lactic acid (in each case based on the total dry weight of the product obtained) or consists of these proportions.
  • the growth rate gmax of a genetically modified Methylobacteriaceae cell according to the invention in particular in a reaction medium having an initial concentration of up to 10 g L' 1 of a starting material containing at least one Cx compound, in particular consisting of methanol, is at least 0 "05 h' 1 , at least 0.10 h' 1 , in particular at least 0.15 h' 1 , in particular at least 0.18 h' 1 , in particular at least 0.20 h' 1 , in particular at least 0.21 h' 1 , in particular 0.10 to 0.30 h' 1 , in particular 0.15 to 0.25 h' 1 , in particular 0.20 to 0.22 h' 1 , in particular 0.21 h' 1 .
  • the titer of a reaction medium containing the product containing glycolic acid, in particular glycolic acid and lactic acid, which after the reaction of a starting material containing at least one Cx compound, in particular consisting of methanol, by a genetically modified Methylobacteriaceae cell according to the invention is, in a reaction medium having an initial concentration of up to 10 g L' 1 educt, in particular after 40 h reaction time, at least 0.01 g L' 1 , at least 0.10 g L' 1 , in particular at least 0.15 g L' is obtained 1 , in particular at least 0.20 g L' 1 , in particular at least 0.25 g L' 1 , in particular at least 0.50 g L- 1 , in particular at least 0.75 g L' 1 , in particular at least 1.00 g L' 1 and in particular 1.50 g L' 1 (in each case based on the weight of the product per liter of reaction medium).
  • a genetically modified Methylobacteriaceae cell uses a starting material containing at least one Cx compound, in particular consisting of methanol, to a product containing glycolic acid, in particular glycolic acid and lactic acid, in particular in a reaction medium having an initial concentration of up to 10 g L' 1 of the starting material with a dry biomass substrate yield (Yx/s) of at least 10 mg g' 1 , in particular at least 50 mg g' 1 , in particular at least 100 mg g' 1 , in particular at least 150 mg g' 1 , in particular at least 200 mg g' 1 , in particular 10 to 350 mg g' 1 , in particular 50 to 320 mg g' 1 , in particular 100 to 300 mg g' 1 , in particular 200 to 300 mg g' 1 , in particular 280 mg g' 1 around (in each case based on the dry biomass of the genetically modified Methylobacteriaceae cell according to the invention per
  • the biodry matter substrate yield (Yx/s) of a genetically modified Methylobacteriaceae cell according to the invention decreases in relation to the biodry matter substrate yield (Yx/s) of the wild-type strain when reacting a starting material containing at least one Cx compound, in particular consisting of methanol, to a product containing glycolic acid, in particular glycolic acid and lactic acid, in particular in a reaction medium having an initial concentration of up to 10 g L' 1 of the starting material to less than 95%, in particular less than 90%, in particular less than 80%, especially less than 70%, especially 68%.
  • a starting material containing at least one Cx compound in particular consisting of methanol
  • a genetically modified Methylobacteriaceae cell sets a starting material containing at least one Cx compound, in particular consisting of methanol, to a product containing glycolic acid, in particular glycolic acid and lactic acid, in particular in a reaction medium having an initial concentration of up to 10 g L' 1 of the starting material, with a product-substrate yield (Yp/s) of at least 10 mg g' 1 , in particular at least 50 mg g' 1 , in particular at least 80 mg g' 1 , in particular at least 100 mg g' 1 , in particular at least 110 mg g' 1 , in particular 10 to 200 mg g' 1 , in particular 50 to 180 mg g' 1 , in particular 80 to 150 mg g' 1 , in particular 100 to 130 mg g' 1 , in particular 120 mg g ' 1 ⁇ m (based on the weight of the product per gram of educt).
  • Yp/s product-substrate yield
  • a genetically modified Methylobacteriaceae cell produces a starting material containing at least one Cx compound, in particular consisting of methanol, into a product containing glycolic acid, in particular glycolic acid and lactic acid, in particular in a reaction medium having an initial concentration of up to 10 g L' 1 of the starting material with a product dry biomass yield (Yp/x) of at least 0.10 g g' 1 , in particular at least 0, 20 g g' 1 , in particular at least 0.30 g g' 1 , in particular at least 0.40 g g' 1 , in particular at least 0.50 g g' 1 , in particular 0.10 to 0.80 g g' 1 , in particular 0.20 to 0 "70 g g' 1 , in particular 0.30 to 0.60 g g' 1 , in particular 0.40 to 0.50 g g' 1 , in particular 0.50 g g' 1 ⁇ m (in each
  • the genetically modified Methylobacteriaceae cell according to the invention comprises at least one exogenous nucleic acid sequence encoding an ethylmalonyl-CoA mutase.
  • the genetically modified Methylobacteriaceae cell according to the invention comprises at least one exogenous nucleic acid sequence encoding an ethylmalonyl-CoA mutase, which occurs naturally or a codon-optimized, in particular Methylobacteriaceae codon-optimized nucleic acid sequence, in particular a Methylobacterium, in particular Methylorubrum, in particular Methylorubrum extorquens, in particular Methylorubrum extorquens AMI, Methylorubrum extorquens TK 0001 or Methylorubrum extorquens PAI codon optimized nucleic acid sequence.
  • the exogenous nucleic acid sequence encoding an ethylmalonyl-CoA mutase comes from at least one bacterium selected from the group consisting of Methylorubrum extorquens, in particular Methylorubrum extorquens TK 0001 DSM 1337, and Rhodobacter sphaeroides, in particular Rhodobacter sphaeroides ATCC 17029.
  • the genetically modified Methylobacteriaceae cell according to the invention is a genetically modified Methyl ob acteriacea cell, in particular a Methylorubrum extorquens AMI, Methylorubrum extorquens PA1, Methylorubrum extorquens TK 0001 cell, comprising at least one exogenous, a glyoxylate reductase from a bacterium Escherichia coli, in particular E. coli K-12 MG1655, encoding nucleic acid sequence and at least one exogenous nucleic acid sequence encoding an ethylmalonyl-CoA.
  • a genetically modified Methyl ob acteriacea cell in particular a Methylorubrum extorquens AMI, Methylorubrum extorquens PA1, Methylorubrum extorquens TK 0001 cell, comprising at least one exogenous,
  • the genetically modified Methylobacteriaceae cell according to the invention is a genetically modified Methylobacteriaceae cell, in particular a Methylorubrum extorquens AMI, Methylorubrum extorquens PA1, Methylorubrum extorquens TK 0001 cell, comprising at least one exogenous, a glyoxylate reductase from one Bacterium Escherichia coli K-12 MGI 655 encoding nucleic acid sequence and at least one exogenous nucleic acid sequence encoding an ethylmalonyl-CoA mutase from a bacterium Methylorubrum extorquens TK 0001 DSM 1337.
  • the genetically modified Methylobacteriaceae cell according to the invention is a genetically modified Methylobacteriaceae cell, in particular a Methylorubrum extorquens AMI, Methylorubrum extorquens PA1, Methylorubrum extorquens TK 0001 cell, comprising at least one exogenous, a glyoxylate reductase from a bacterium Escherichia coli K-12 MGI 655 encoding nucleic acid sequence and at least one exogenous nucleic acid sequence encoding an ethylmalonyl-CoA mutase from a bacterium Rhodobacter sphaeroides ATCC 17029.
  • a Methylorubrum extorquens AMI Methylorubrum extorquens PA1
  • Methylorubrum extorquens TK 0001 cell comprising at least one exogenous,
  • the present invention also relates to a genetically modified Methylobacteriaceae cell which comprises at least two different exogenous nucleic acid sequences, i.e. a genetically modified Methylobacteriaceae cell which, in addition to the at least one exogenous, contains a glyoxylate reductase from the bacterium Escherichia coding nucleic acid sequence comprises at least one further exogenous nucleic acid sequence which encodes an ethylmalonyl-CoA mutase.
  • such a genetically modified Methylobacteriaceae cell according to the invention enables an increased glycolic acid yield, in particular glycolic acid and lactic acid yield, in comparison to the glycolic acid yield, in particular glycolic acid and lactic acid yield, obtained by the reaction of a starting material containing at least one Cx compound, in particular methanol, formic acid or a mixture thereof, by a Methylobacteriaceae cell according to the invention, comprising at least one exogenous nucleic acid sequence encoding a glyoxylate reductase from the bacterium Escherichia, which does not have an exogenous nucleic acid sequence encoding an ethylmalonyl-CoA mutase, in particular none selected from at least one bacterium the group consisting of Methylorubrum extorquens, in particular Methylorubrum extorquens TK 0001 DSM 1337, and Rhodobacter sphaeroides
  • a Methylobacteriaceae cell additionally comprising at least one exogenous nucleic acid sequence encoding an ethylmalonyl-CoA mutase, in particular from at least one bacterium selected from the group consisting of Methylorubrum extorquens, in particular Methylorubrum extorquens TK 0001 DSM 1337, and Rhodobacter sphaeroides, in particular Rhodobacter sphaeroides ATCC 17029, higher than the turnover by a Methylorubrum cell according to the invention without this at least one additional exogenous nucleic acid sequence.
  • the amount of glyoxylate in the serine cycle of the genetically modified Methylobacteriaceae cell according to the invention is increased by the exogenous ethylmalonyl-CoA mutase present in the genetically modified Methylobacteriaceae cell according to the invention, which is increased by the amount of glyoxylate in the genetically modified Methylobacteriaceae cell according to the invention Exogenous glyoxylate reductase present in the Methylobacteriaceae cell is converted.
  • the increased lactic acid yield also observed may be due, without being bound to theory, to a complex interaction with the metabolism of a reducing equivalent supply and an increased availability of the metabolite pyruvate, the precursor molecule of lactic acid.
  • the present invention relates to a genetically modified Methylobacteriaceae cell according to the invention comprising a codon-optimized nucleic acid sequence of a nucleic acid sequence from Rhodobacter sphaeroides encoding an ethylmalonyl-CoA mutase, in particular a Methylobacteriaceaea, in particular Methylobacterium, in particular a Methylorubrum, in particular Methylorubrum extorquens, in particular Methylorubrum extorquens TK 0001, in particular Methylorubrum extorquens AMI, in particular Methylorubrum extorquens PAl codon-optimized nucleic acid sequence, in particular it has SEQ ID No.
  • the present invention relates to a genetically modified Methylobacteriaceae cell according to the invention comprising a codon-optimized nucleic acid sequence of a nucleic acid sequence from Methylorubrum extorquens encoding an ethylmalonyl -Co A mutase, in particular a Methylobacteriaceae, in particular Methylobacterium, in particular Methylorubrum, in particular Methylorubrum extorquens, in particular Methylorubrum extorquens TK 0001, in particular Methylorubrum extorquens AMI, in particular Methylorubrum extorquens PAl codon-optimized nucleic acid sequence, in particular it has SEQ ID No. 13.
  • the present invention relates to a genetically modified Methylobacteriaceae cell according to the invention comprising a functional nucleic acid sequence equivalent of a nucleic acid sequence encoding an ethylmalonyl-CoA mutase according to SEQ ID No. 8 or 13.
  • the native nucleic acid sequences of the ethylmalonyl-CoA mutase from Methylorubrum or Rhodobacter according to SEQ ID Nos. 4 and 6 are also understood in connection with the present invention as functional equivalents of the codon-optimized nucleic acid sequences derived therefrom, in particular the native nucleic acid sequence according to SEQ ID No. 6 represents a functional nucleic acid sequence equivalent of the codon-optimized nucleic acid sequence according to SEQ ID No. 8 and the native nucleic acid sequence according to SEQ ID No. 4 represents a functional nucleic acid sequence equivalent of the codon-optimized nucleic acid sequence according to SEQ ID No. 13.
  • the ethylmalonyl-CoA mutase is replaced by a codon-optimized nucleic acid sequence (SEQ ID No. 13 or 8) of a native nucleic acid sequence according to SEQ ID No. 4 or 6 or a functional equivalent thereof, in particular the native nucleic acid sequence itself, i.e. a nucleic acid sequence according to SEQ ID No.
  • the functional nucleic acid sequence equivalent has a nucleic acid sequence identity of at least 30.0%, preferably 30.0 to 99.9%, preferably 40.0 to 99.9 %, preferably 50.0 to 99.9%, preferably 60.0 to 99.9%, preferably 70.0 to 99.9%, preferably 76.0 to 99.9%, preferably 80.0 to 99.9 %, preferably 90.0 to 99.9%, preferably 95.0 to 99.9%, preferably 98.0 to 99.9%, preferably 90.0 to 99.0% to the codon-optimized nucleic acid sequence according to SEQ ID No. 13 or 8, the functional equivalent having the enzymatic activity of an ethylmalonyl-CoA mutase.
  • the present invention also relates to a genetically modified Methylobacteriaceae cell according to the invention comprising a functional nucleic acid sequence equivalent of the at least one exogenous codon-optimized nucleic acid sequence encoding an ethylmalonyl-CoA mutase according to SEQ ID No. 13 or 8 , for example a native nucleic acid sequence according to SEQ ID No.
  • the functional nucleic acid sequence equivalent has a nucleic acid sequence identity of at least 30.0%, preferably 30.0 to 99.9%, preferably 40.0 to 99.9% , preferably 50.0 to 99.9%, preferably 60.0 to 99.9%, preferably 70.0 to 99.9%, preferably 76.0 to 99.9%, preferably 80.0 to 99.9% , preferably 90.0 to 99.9%, preferably 95.0 to 99.9%, preferably 98.0 to 99.9%, preferably 90.0 to 99.0% to the codon-optimized nucleic acid sequence according to SEQ ID No 13 or 8 and wherein the modified Methylobacteriaceae cell is capable of converting a starting material containing at least one Cx compound, in particular methanol, formic acid or a mixture thereof, into a product containing glycolic acid.
  • the functional nucleic acid sequence equivalent of the codon-optimized nucleic acid sequence according to SEQ ID No. 8 has the native nucleic acid sequence according to SEQ ID No. 6.
  • the functional nucleic acid sequence equivalent of the codon-optimized nucleic acid sequence according to SEQ ID No. 13 has the native nucleic acid sequence according to SEQ ID No. 4.
  • the ethylmalonyl-CoA mutase has an amino acid sequence according to SEQ ID No. 5 or 7 or a functional equivalent thereof, the functional amino acid sequence equivalent having an amino acid sequence identity of at least 30.0%, in particular 30.0 to 99.9%, preferably 40.0 to 99.9%, preferably 50.0 to 99.9%, preferably 60.0 to 99.9%, preferably 70.0 to 99.9%, preferably 76.0 to 99.9%, preferably 80.0 to 99.9%, preferably 85.0 to 99.9%, preferably 90.0 to 99.9%, preferably 95.0 to 99.9%, preferably 98.0 up to 99.9%, to the amino acid sequence according to SEQ ID No. 5 or 7 and the enzymatic activity of an ethylmalonyl-CoA mutase.
  • the present invention relates to a genetically modified Methylobacteriaceae cell according to the invention comprising a functional amino acid sequence equivalent of the amino acid sequence of SEQ ID No. 5 or 7, wherein the functional amino acid sequence equivalent is a Amino acid sequence identity of at least 30.0%, in particular 30.0 to 99.9%, preferably 40.0 to 99.9%, preferably 50.0 to 99.9%, preferably 60.0 to 99.9%, preferably 70 .0 to 99.9%, preferably 76.0 to 99.9%, preferably 80.0 to 99.9%, preferably 85.0 to 99.9%, preferably 90.0 to 99.9%, preferably 95 .0 to 99.9%, preferably 98.0 to 99.9%, to the amino acid sequence according to SEQ ID No.
  • the modified Methylobacteriaceae cell is capable of producing an educt containing at least one Cx compound , in particular methanol, formic acid or a mixture thereof, to produce a product containing glycolic acid, in particular glycolic acid and lactic acid.
  • the growth rate pimax of a genetically modified Methylobacteriaceae cell according to the invention additionally comprising at least one exogenous nucleic acid sequence encoding an ethylmalonyl-CoA mutase in a reaction medium having an initial concentration of up to 10 g L' 1 , in particular 10 g L' 1 , a starting material containing at least one Cx compound, in particular consisting of methanol, at least 0.05 h' 1 , at least 0.10 h' 1 , in particular at least 0.12 h' 1 , in particular at least 0.14 h' 1 , in particular at least 0.16 h' 1 , in particular 0.10 to 0.25 h' 1 , in particular 0.12 to 0.22 h' 1 , in particular 0.15 to 0.20 h' 1 , in particular 0, 16 h' 1 , especially 0.19 h' 1 .
  • the titer of a reaction medium containing the product containing glycolic acid, in particular glycolic acid and lactic acid is the titer after the reaction of a starting material containing at least one Cx compound, in particular consisting of methanol, by a genetically modified Methylobacteriaceae cell according to the invention comprising additionally at least one exogenous nucleic acid sequence encoding an ethylmalonyl-CoA mutase, in particular in a reaction medium having an initial concentration of up to 10 g L' 1 , in particular 10 g L' 1 ' of the starting material, in particular after a reaction time of 40 hours, at least 0.10 g L' 1 , in particular at least 0.20 g L' 1 , in particular at least 0.30 g L' 1 , in particular at least 0.40 g L' 1 , in particular 0.10 to 80 g L' 1 , in particular 0.20 to 70 g L' 1 , in particular 0.30
  • the titer resulting from the reaction of a starting material containing at least one Cx compound, in particular consisting of methanol, by the genetically modified Methylobacteriaceae cell according to the invention additionally comprising at least one exogenous nucleic acid sequence encoding an ethylmalonyl-CoA mutase, in a reaction medium, having an initial concentration of up to 10 g L' 1 of the starting material, in particular after a reaction time of 40 hours, in comparison to the titer obtained by the reaction using the Genetically modified Methylobacteriaceae cell according to the invention without the at least one exogenous nucleic acid sequence encoding an ethylmalonyl-CoA mutase by at least 10%, in particular at least 30%, in particular at least 50%, in particular at least 60%, in particular 69%, in particular 79%.
  • a genetically modified Methylobacteriaceae cell additionally comprises at least one exogenous nucleic acid sequence encoding an ethylmalonyl-CoA mutase, a starting material containing at least one Cx compound, in particular consisting of methanol, to a product containing glycolic acid, in particular Glycolic acid and lactic acid, in particular in a reaction medium having an initial concentration of up to 10 g L' 1 , in particular 10 g L' 1 , of the starting material with a dry biomass substrate yield (Yx/s) of at least 10 mg g' 1 , in particular at least 50 mg g' 1 , in particular at least 100 mg g' 1 , in particular at least 150 mg g' 1 , in particular at least 200 mg g' 1 , in particular 10 to 350 mg g' 1 , in particular 50 to 320 mg g' 1 , in particular 100 to 300 mg g' 1 , in particular 200
  • the biodry mass substrate yield (Yx/s) of a genetically modified Methylobacteriaceae cell according to the invention additionally comprising at least one exogenous nucleic acid sequence encoding an ethylmalonyl-CoA decreases in relation to the biomass substrate yield (Yx/ s) of the wild-type strain in the reaction of a starting material containing at least one Cx compound, in particular consisting of methanol, to a product containing glycolic acid, in particular glycolic acid and lactic acid, in particular in a reaction medium having an initial concentration of up to 10 g L' 1 , in particular 10 g L' 1 , of the starting material, to less than 95%, in particular to less than 90%, in particular to less than 80%, in particular to less than 70%, in particular to 68%, in particular to 51%.
  • the biomass substrate yield (Yx/s) of a genetically modified plant according to the invention decreases Methylobacteriaceae cell additionally comprising at least one exogenous nucleic acid sequence encoding an ethylmalonyl-CoA in relation to the biomass substrate yield (Yx/s) of the genetically modified Methylobacteriaceae cell according to the invention without the at least one exogenous, an ethylmalonyl-Co A mutase coding nucleic acid sequence in the reaction of a starting material containing at least one Cx compound, in particular consisting of methanol, to a product containing glycolic acid, in particular glycolic acid and lactic acid, in particular in a reaction medium having an initial concentration of up to 10 g L' 1 , in particular 10 g L ' 1 , of the starting material to less than 99%, in particular to less than 97%, in particular to 96%, in particular to 75%.
  • the biomass substrate yield (Yx/s) of a genetically modified Methylobacteriaceae cell according to the invention additionally comprises at least one exogenous, one ethylmalonyl-CoA mutase from the bacterium Rhodobacter sphaeroides, in particular Rhodobacter sphaeroides ATCC 17029, coding nucleic acid sequence in relation to the biomass substrate yield (Yx/s) of a genetically modified Methylobacteriaceae cell according to the invention comprising at least one exogenous nucleic acid sequence coding for an ethylmalonyl-CoA mutase from the bacterium Methylorubrum extorquens, in particular Methylorubrum extorquens TK 0001 DSM 1337 in the reaction of a starting material containing at least one Cx compound, in particular consisting of methanol, to a product containing glycolic acid, in particular
  • the genetically modified Methylobacteriaceae cell according to the invention additionally comprises at least one exogenous nucleic acid sequence encoding an ethylmalonyl-CoA mutase, a starting material containing at least one Cx compound, in particular consisting of methanol, to a product containing glycolic acid, in particular Glycolic acid and lactic acid, in particular in a reaction medium having an initial concentration of up to 10 g L' 1 , in particular 10 g L' 1 , of the starting material with a product-substrate yield (Yp/s) of at least 10 mg g' 1 , in particular at least 50 mg g' 1 , in particular at least 80 mg g' 1 , in particular at least 100 mg g' 1 , in particular at least 140 mg g' 1 , in particular 10 to 250 mg g' 1 , in particular 50 to 200 mg g' 1 , in particular 80 to 180 mg g' 1 , especially 100
  • the product-substrate yield (Yp/s) of a genetically modified Methylobacteriaceae cell according to the invention additionally comprising at least one exogenous nucleic acid sequence encoding an ethylmalonyl-CoA mutase increases in relation to the product-substrate yield ( Yp/s) of the genetically modified Methylobacteriaceae cell according to the invention without the at least one exogenous nucleic acid sequence encoding an ethylmalonyl-CoA mutase in the reaction of a starting material containing at least one Cx compound, in particular consisting of methanol, to a product containing glycolic acid, in particular glycolic acid and lactic acid, in particular in a reaction medium comprising up to 10 g L' 1 , in particular 10 g L' 1 , of the starting material by at least 10%, in particular at least 15%, in particular at least 20%, in particular 25%.
  • the genetically modified Methylobacteriaceae cell according to the invention additionally comprises at least one exogenous nucleic acid sequence encoding an ethylmalonyl-CoA mutase, a starting material containing at least one Cx compound, in particular consisting of methanol, to a product containing glycolic acid, in particular Glycolic acid and lactic acid, in particular in a reaction medium having an initial concentration of up to 10 g L' 1 , in particular 10 g L' 1 , of the starting material with a product dry biomass yield (Yp/x) of at least 0.10 g g' 1 , in particular at least 0.30 g g' 1 , in particular at least 0.40 g g' 1 , in particular at least 0.50 g g' 1 , in particular at least 0.60 g g' 1 , in particular 0, 10 to 0.99 g g' 1 , in particular 0 "30 to 0.90 g g' 1
  • the product dry biomass yield (Yp/x) of a genetically modified Methylobacteriaceae cell according to the invention additionally comprising at least one exogenous nucleic acid sequence encoding an ethylmalonyl-CoA mutase increases in relation to the product dry biomass yield ( Yp/x) of the genetically modified Methylobacteriaceae cell according to the invention without the at least one exogenous nucleic acid sequence encoding an ethylmalonyl-CoA mutase when reacting a starting material containing at least one Cx Compound, in particular consisting of methanol, to a product containing glycolic acid, in particular glycolic acid and lactic acid, in particular in a reaction medium having an initial concentration of up to 10 g L' 1 , in particular 10 g L' 1 , of the starting material by at least 10%, in particular at least 20%, in particular at least 30%, in particular at least 35%, in particular 40%, in particular
  • the Methylobacteriaceae cell is a cell of Methylorubrum extorquens, in particular Methylorubrum extorquens TK 0001 and in particular Methylorubrum extorquens PA1.
  • the at least one exogenous nucleic acid sequence encoding a glyoxylate reductase is integrated in the chromosome of the Methylobacteriaceae cell or is present extrachromosomally, in particular is present integrated in the cell in an episomal expression vector or minichromosome.
  • the at least one exogenous nucleic acid sequence encoding a glyoxylate reductase is stably integrated in the chromosome of the Methylobacteriaceae cell or is stably present extrachromosomally.
  • the at least one exogenous nucleic acid sequence encoding an ethylmalonyl-CoA mutase is integrated in the chromosome of the Methylobacteriaceae cell or is present extrachromosomally, in particular is present integrated in the cell in an episomal expression vector or minichromosome.
  • the at least one exogenous nucleic acid sequence encoding an ethylmalonyl-CoA mutase is stably integrated in the chromosome of the Methylobacteriaceae cell or is stably present extrachromosomally.
  • the genetically modified Methylobacteriaceae cell is the Methylorubrum cell Methylorubrum extorquens Mea-GAl, Methylorubrum extorquens Mea-GA2 or Methylorubrum extorquens Mea-GA3, each deposited on June 10, 2022 at the DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany under the accession numbers DSM 34286, DSM 34287 and DSM 34288. All deposits were made in accordance with the Budapest Treaty on the International Recognition of the Deposits of Microorganisms for the Purposes of Patent Proceedings.
  • the present invention relates to a genetically modified Methylorubrum extorquens TK 0001 cell comprising at least one exogenous codon-optimized nucleic acid sequence encoding a glyoxylate reductase from the bacterium Escherichia coli K-12 MG1655, in particular cells of the strain Methylorubrum extorquens Mea-GAl deposited on June 10, 2022 at the DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany under the deposit number DSM 34286.
  • the present invention relates to a genetically modified Methylorubrum extorquens TK 0001 cell comprising an exogenous codon-optimized nucleic acid sequence encoding a glyoxylate reductase from the bacterium Escherichia coli K-12 MGI 655 and an exogenous ethylmalonyl CoA mutase from the bacterium Methylorubrum extorquens TK 0001 DSM 1337 encoding nucleic acid sequence, in particular cells of the Methylorubrum extorquens Mea-GA2 strain, deposited on June 10, 2022 at the DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany under the deposit number DSM 34287.
  • the present invention relates to a genetically modified Methylorubrum extorquens TK 0001 cell comprising an exogenous codon-optimized nucleic acid sequence encoding a glyoxylate reductase from the bacterium Escherichia coli K-12 MGI 655 and an exogenous ethylmalonyl CoA mutase from the bacterium Rhodobacter sphaeroides ATCC 17029 encoding nucleic acid sequence, in particular cells of the Mea-GA3 strain, deposited on June 10, 2022 at the DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany under the deposit number DSM 34288.
  • the genetically modified Methylobacteriaceae cell is a cell of the Methylorubrum rhodesianum Mrh-GA4 strain (DSM 34697), Methylorubrum rhodesianum Mrh-GA5 (DSM 34698), Methylorubrum zatmanii Mza-GA14 (DSM 34701), Methylorubrum extorquens Mea-GA17 (DSM 34702), Methyl ob acterium radiotolerans Mra-GA12 (DSM 34700) or Methyl ob acterium organophilum Mor-GA8 (DSM 34699) deposited on July 19, 2023 at the DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany. All deposits were made in accordance with the Budapest Treaty on the International Recognition of the Deposits of Microorganisms for the Purposes of Patent Proceedings.
  • the present invention relates to a genetically modified Methylobacteriaceae cell, comprising an exogenous codon-optimized nucleic acid sequence (SEQ ID No. 3) encoding a glyoxylate reductase from the bacterium Escherichia coli K-12 MGI 655, in particular Cells of the strain Methylorubrum zatmanii Mza-GA14 (M. zatmanii DSM 5688 + pTE1887-ghrA eC o) deposited on July 19, 2023 at the DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany under the deposit number DSM 34701.
  • SEQ ID No. 3 an exogenous codon-optimized nucleic acid sequence
  • the present invention relates to a genetically modified Methylobacteriaceae cells comprising an exogenous codon-optimized nucleic acid sequence (SEQ ID No. 3) of the strain encoding a glyoxylate reductase from the bacterium Escherichia coli K-12 MGI 655 Methylorubrum extorquens Mea-GA17 (M. extorquens PA1 DSM 23939 + pTE1887-ghrA eC o) deposited on July 19, 2023 at the DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany under the deposit number DSM 34702.
  • SEQ ID No. 3 an exogenous codon-optimized nucleic acid sequence
  • the present invention relates to a genetically modified Methylobacteriaceae cells comprising an exogenous codon-optimized nucleic acid sequence (SEQ ID No. 3) of the strain encoding a glyoxylate reductase from the bacterium Escherichia coli K-12 MGI 655 Methylorubrum rhodesianum Mrh-GA4 (M. rhodesianum DSM 5687 + pTE1887-ghrA eC o) deposited on July 19, 2023 at the DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany under the deposit number DSM 34697.
  • SEQ ID No. 3 an exogenous codon-optimized nucleic acid sequence of the strain encoding a glyoxylate reductase from the bacterium Escherichia coli K-12 MGI 655 Methylorubrum rhodesianum Mrh-GA4 (M
  • the present invention relates to a genetically modified Methylobacteriaceae cell comprising an exogenous encoding glyoxylate reductase from the bacterium Escherichia coli K-12 MGI 655 codon-optimized nucleic acid sequence (SEQ ID No. 3) and an exogenous native nucleic acid sequence (SEQ ID No. 4) encoding an ethylmalonyl-CoA mutase from the bacterium Methylorubrum extorquens TK 0001 DSM 1337, of the strain Methylorubrum rhodesianum Mrh-GA5 (M .
  • the present invention relates to a genetically modified Methylobacteriaceae cells comprising an exogenous codon-optimized nucleic acid sequence (SEQ ID No. 3) of the strain encoding a glyoxylate reductase from the bacterium Escherichia coli K-12 MGI 655 Methyl ob acterium organophilum Mor-GA8 (M. organophilum DSM 18172 + pTE1887-ghrA e co-ecm m ea) deposited on July 19, 2023 at the DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany under the deposit number DSM 34699.
  • SEQ ID No. 3 an exogenous codon-optimized nucleic acid sequence of the strain encoding a glyoxylate reductase from the bacterium Escherichia coli K-12 MGI 655 Methyl ob acterium organophilum Mor-GA8 (M.
  • the present invention relates to a genetically modified Methylobacteriaceae cells, comprising an exogenous codon-optimized nucleic acid sequence (SEQ ID No. 3) encoding a glyoxylate reductase from the bacterium Escherichia coli K-12 MGI 655 and a exogenous native nucleic acid sequence (SEQ ID No. 4) encoding an ethylmalonyl-CoA mutase from the bacterium Methylorubrum extorquens TK 0001 DSM 1337, of the strain Methyl ob acterium radiotolerans Mra-GA12 (M.
  • SEQ ID No. 3 an exogenous codon-optimized nucleic acid sequence
  • SEQ ID No. 4 encoding a glyoxylate reductase from the bacterium Escherichia coli K-12 MGI 655
  • SEQ ID No. 4 a exogenous native nucleic acid
  • radiotolerans DSM 760 + pTE1887-ghrA e co- ecm m ea) deposited on July 19, 2023 at the DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany under the deposit number DSM 34700.
  • this relates to the specifically deposited Methylobacteriaceae cells, in particular the specifically deposited Methylorubrum strains and respective derivatives thereof.
  • the at least one exogenous nucleic acid sequence encoding a glyoxylate reductase from the bacterium Escherichia is functionally linked to additionally at least one regulatory unit to form an expression cassette, in particular a promoter, in particular an inducible, derepressible or constitutive promoter, an enhancer, a ribosomal binding site and/or a terminator.
  • the at least one exogenous nucleic acid sequence encoding an ethylmalonyl-CoA mutase, in particular an ethylmalonyl-CoA mutase, from at least one bacterium is selected from the group consisting of Methylorubrum extorquens, in particular Methylorubrum extorquens TK 0001 DSM 1337, and Rhodobacter sphaeroides, in particular Rhodobacter sphaeroides ATCC 17029, coding nucleic acid sequence, functionally linked to at least one regulatory unit to form an expression cassette, in particular a promoter, in particular an inducible, derepressible or constitutive promoter, an enhancer, a ribosomal binding site and / or a terminator .
  • the expression cassette is present in a vector, in particular expression vector, in particular episomal expression vector, in particular pTE1887.
  • the at least one exogenous nucleic acid sequence encoding a glyoxylate reductase and the at least one exogenous nucleic acid sequence encoding an ethylmalonyl-CoA mutase can be present on the same expression vector or on different expression vectors.
  • the promoter is an inducible promoter, in particular an IPT G-inducible promoter, in particular the PL/O4/AI promoter.
  • a further aspect of the present invention is a method for producing a genetically modified Methylobacteriaceae cell according to the invention, comprising the method steps: a) providing a Methylobacteriaceae cell, in particular a wild-type cell, and an expression vector or a genome editing system comprising at least one exogenous, one glyoxylate reductase from the bacterium Escherichia, in particular an expression cassette comprising this nucleic acid sequence, b) transforming the Methylobacteriaceae cell with the expression vector or the genome editing system under conditions that allow the uptake and, preferably stable, subsequent integration of the at least one exogenous nucleic acid sequence into the Methylobacteriaceae cell , enable, and c) obtaining the at least one exogenous, genetically modified Methylobacteriaceae cell having a glyoxylate reductase from the bacterium Escherichia encoding nucleic acid sequence.
  • the present invention relates to an aforementioned method, wherein in method step a) there is additionally at least one exogenous nucleic acid sequence encoding an ethylmalonyl-CoA mutase, in particular from at least one bacterium selected from the group consisting of Methylorubrum extorquens, in particular Methylorubrum extorquens TK 0001 DSM 1337, and Rhodobacter sphaeroides, in particular Rhodobacter sphaeroides ATCC 17029, in particular an expression cassette or genome editing system comprising this nucleic acid sequence is provided, in method step b) the Methylobacteriaceae cell with the exogenous nucleic acid sequence encoding an ethylmalonyl-CoA mutase, in particular the expression cassette comprising this , transformed and in process step c) at least one exogenous genetically modified Methylobacteriaceae cell having
  • the transformation according to method step b) is carried out by means of chemical, physical and/or electrical transformation processes, in particular electroporation.
  • the present invention also relates to a genetically modified Methylobacteriaceae cell which can be produced, in particular was produced, using a method according to the invention.
  • a further aspect of the present invention is a genetically modified Methylobacteriaceae cell according to the invention, wherein the cell is live, dead, lyophilized, in the form of a cell lysate or a cell extract, and wherein the cell lysate or the cell extract, in particular protein extract, was obtained from a cell lysate according to the invention genetically modified Methylobacteriaceae cell.
  • the genetically modified Methylobacteriaceae cell according to the invention which may be dead, lyophilized or in the form of a cell lysate or a cell extract, has the property provided according to the invention of converting at least one Cx compound in a reaction medium to glycolic acid and optionally lactic acid.
  • the cell present live, dead, lyophilized or in the form of a cell lysate or a cell extract at least catalyzes the conversion of at least one Cx compound to glycolic acid, in particular the conversion of a starting material containing at least one Cx compound to a product containing glycolic acid, in particular glycolic acid and lactic acid.
  • a further aspect of the present invention is a biocatalyst comprising a genetically modified Methylobacteriaceae cell according to the invention or a genetically modified Methylobacteriaceae cell according to the invention that is dead, lyophilized or in the form of a cell lysate or a cell extract, which is arranged on a support, in particular immobilized.
  • the carrier is an organic carrier or an inorganic carrier.
  • the carrier comprises, in particular consists of, a naturally occurring organic carrier, in particular wherein the carrier is selected from the group consisting of chitin, agar, agarose, alginate, carrageenan and a combination thereof.
  • the carrier comprises, in particular consists of, a synthetic organic carrier, in particular wherein the carrier is selected from the group consisting of polyvinyl alcohol (PVA), polyurethane, acrylamide, polypropylene ammonium and a combination thereof.
  • PVA polyvinyl alcohol
  • the carrier is selected from the group consisting of polyvinyl alcohol (PVA), polyurethane, acrylamide, polypropylene ammonium and a combination thereof.
  • the carrier comprises, in particular consists of, an inorganic carrier, in particular wherein the carrier is selected from the group consisting of activated carbon, zeolite, ceramic, clay, anthracite, porous glass and a combination thereof.
  • the carrier is a composite mixture of an organic carrier and an inorganic carrier, in particular comprising or consisting of polyvinyl alcohol-sodium alginate (PVA-NA), polyvinyl alcohol guar gum (PVA-GG) or both.
  • PVA-NA polyvinyl alcohol-sodium alginate
  • PVA-GG polyvinyl alcohol guar gum
  • the biocatalyst according to the invention catalyzes at least the conversion of at least one Cx compound to glycolic acid, in particular the conversion of a starting material containing at least one Cx compound, in particular consisting thereof, to a product containing glycolic acid, in particular glycolic acid and lactic acid, especially consisting of it.
  • a further aspect of the present invention is a bioreactor comprising a genetically modified Methylobacteriaceae cell according to the invention or a biocatalyst according to the invention, wherein the genetically modified Methylobacteriaceae cell or the biocatalyst according to the invention is present in particular in a reaction medium in the bioreactor.
  • the Methylobacteriaceae cell according to the invention provided in process step x) or the biocatalyst according to the invention provided in process step x) is in suspended form or immobilized form in the reaction medium.
  • the reaction medium provided in process step x) and/or used in process step y) is an aqueous salt-containing solution, in particular a culture medium, in particular a minimal medium, in particular a minimal medium consisting of up to 10 g of a Cx compound per liter of reaction medium , in particular methanol, methane, formic acid, methylamine, acetic acid or succinic acid or a mixture thereof, 1 g ammonium sulfate, 450 mg magnesium sulfate heptahydrate, 3.2 mg calcium chloride dihydrate, 7.4 mg trisodium citrate dihydrate, 190 pg zinc sulfate heptahydrate, 110 pg manganese chloride tetrahydrate, 2.75 mg ferrous sulfate heptahydrate, 1.36 mg ammonium heptamolybdate tetrahydrate, 140 pg copper sulfate pentahydrate, 260 pg cobalt
  • a culture medium in particular
  • the reaction medium provided in process step x) at the beginning of process step y) contains the starting material containing at least one Cx compound in a concentration of 1 to 100 g, in particular 5 to 90 g, in particular 6 to 80 g in particular 7 to 70 g, in particular 8 to 40 g, in particular 9 to 30 g, in particular 10 to 20 g of Cx compound per liter of reaction medium.
  • reaction medium provided in process step x) has coenzyme B 12.
  • the educt used according to the invention, containing at least one Cx compound is the only carbon source in the reaction medium.
  • a reaction medium is used which has the starting material used, containing at least one Cx compound, as the only carbon source for the Methylobacteriaceae cells.
  • reaction in process step y) takes place with the continuous or batchwise addition of glyoxylate.
  • the Cx compound of the starting material provided in process step x) and reacted in process step y) is formic acid, methanol, methane, methylamine, acetic acid, succinic acid or a mixture thereof.
  • the starting material provided in process step x) and reacted in process step y) consists of formic acid, methanol, methane, methylamine, acetic acid, succinic acid or a mixture thereof.
  • x 1 for the Cx compound of the starting material provided in process step x) and reacted in process step y) containing at least one Cx compound.
  • the Cx compound of the starting material provided in process step x) and reacted in process step y) is methanol, formic acid or a mixture thereof.
  • the starting material provided in process step x) and converted in process step y) consists of methanol, formic acid or a mixture thereof.
  • this consists in
  • this consists in
  • the educt provided in process step x) and reacted in process step y) contains methanol and formic acid, in particular 1 to 99% by weight, in particular 2 to 98% by weight, in particular 10 to 90% by weight.
  • % in particular 30 to 70% by weight, in particular 40 to 60% by weight, in particular 50% by weight, methanol and in particular 1 to 99% by weight, in particular 2 to 98% by weight, in particular 10 to 90% by weight, in particular 30 to 70% by weight, in particular 40 to 60% by weight, in particular 50% by weight of formic acid (in each case based on the total weight of the starting material provided in process step x)) or consists of these proportions.
  • the educt provided in process step x) containing at least one Cx compound, in particular methanol, formic acid or a mixture thereof, in particular methanol is in an initial concentration of 1 to 20 g L 'at the beginning of process step y). 1 , in particular 3 to 17 g L' 1 , in particular 5 to 15 g L' 1 , in particular 7 to 13 g L' 1 , in particular 9 to 11 g L' 1 , in particular 10 g L' 1 , in the reaction medium.
  • the educt provided in process step x) is methanol and is at the beginning of process step y) in an initial concentration of 1 to 20 g L' 1 , in particular 3 to 17 g L' 1 , in particular 5 to 15 g L' 1 , in particular 7 to 13 g L' 1 , in particular 9 to 11 g L' 1 , in particular 10 g L' 1 , in the reaction medium.
  • the Cx compound provided in process step x) and reacted in process step y), in particular methanol, formic acid or mixtures thereof is made from CO2, in particular synthesis gas comprising a mixture of CO2, CO and H2, in one process step w) produced, in particular by means of a heterogeneous-catalytic chemical process, in particular electrochemical process.
  • the Cx compound provided in process step x) and reacted in process step y), in particular acetic acid is produced from CO2, in particular synthesis gas comprising a mixture of CO2, CO and H2, in a process step w) by means of gas fermentation .
  • the Cx compound provided in process step x) and converted in process step y), in particular methanol is made from CO2, in particular synthesis gas comprising a mixture of CO2, CO and H2, or CO2, H2O and electric current, or CO2 and H2, produced in a process step w) by means of an electrochemical process, biochemical process, bioelectrochemical process or gas fermentation.
  • the CO2 used in process step w), in particular synthesis gas is produced by chemical conversion, in particular thermo-catalytic conversion, of organic substances or materials, in particular of sewage sludge and other biogenic residues and waste materials.
  • Process step w) used synthesis gas produced from sewage sludge.
  • Process step w) used CO2 obtained from the atmosphere or from industrial exhaust gases.
  • the present invention makes it possible to achieve a sustainable synthesis of glycolic acid and lactic acid that is cost-effective is environmentally friendly and easy to handle and which works almost completely without, in particular without, the use of fossil resources and/or almost completely without, in particular without, biogenic raw materials.
  • glycolic acid and lactic acid are advantageously obtained via an integrated process cascade in a completely renewable manner from CO2 as the only raw material, i.e. without the consumption of fossil or biogenic resources.
  • glycolic acid is advantageously produced from CO2 in a completely renewable manner using the present invention.
  • the reaction medium in process step y) has a temperature of 20 to 40 °C, in particular 22 to 38 °C, in particular 24 to 36 °C, in particular 28 to 32 °C, in particular 30 °C .
  • process step y) is carried out in a water vapor-saturated atmosphere.
  • the reaction medium at the beginning of process step y) has a pH of pH 4 to 8, in particular 5 to 7, in particular 6, in particular 6.8.
  • the reaction medium has a pH of 0 to 6, in particular 0 to 4, in particular 0 to 3, in particular 1 to 2, after 40 hours of reaction time in process step y).
  • reaction according to process step y) is carried out with mechanical agitation, in particular shaking or stirring.
  • stirring is carried out at 50 to 1000 rpm, in particular 50 to 500 rpm, in particular 50 to 250 rpm, in particular 100 to 200 rpm, in particular 150 rpm (rpm: revolutions per minute).
  • the reaction medium obtained in process step z) has the product containing at least glycolic acid.
  • the product obtained in process step z) in the reaction medium contains glycolic acid, glycolic acid or a product containing glycolic acid and lactic acid.
  • the product obtained in process step z) contains glycolic acid and lactic acid, in particular 1 to 99% by weight, in particular 2 to 98% by weight, in particular 10 to 90% by weight, in particular 30 to 80% by weight % by weight, in particular 40 to 70% by weight, in particular 50%, in particular 60% by weight, of glycolic acid and in particular 1 to 99% by weight, in particular 2 to 98% by weight, in particular 10 to 90% by weight.
  • % in particular 20 to 70% by weight, in particular 30 to 60% by weight, in particular 50%, in particular 40% by weight of lactic acid (in each case based on the total weight of the product obtained in process step z) or consists of these proportions.
  • this consists in
  • Process step z) obtained product from glycolic acid.
  • this consists in
  • Process step z) obtained product from glycolic acid and lactic acid.
  • the product containing glycolic acid and optionally lactic acid is isolated from the reaction medium, in particular separated from the reaction medium and the genetically modified Methylobacteriaceae cell according to the invention or the biocatalyst according to the invention, in particular by decanting, salting out with a base, in particular NaOH or KOH, filtration, in particular membrane filtration or column filtration, or ion exchange chromatography in combination with HPLC, extraction and/or distillation.
  • a base in particular NaOH or KOH
  • filtration in particular membrane filtration or column filtration
  • ion exchange chromatography in combination with HPLC, extraction and/or distillation.
  • the process for producing a product containing glycolic acid is a continuous process.
  • a further aspect of the present invention is a process for producing polyglycolic acid, polylactic acid or polylactide-co-glycolide, comprising carrying out a process according to the invention for producing glycolic acid, in particular a product containing glycolic acid and optionally lactic acid, and then polymerizing the products from these Process obtained glycolic acid, lactic acid or glycolic acid and lactic acid.
  • “genetically modified Methylobacteriaceae cell according to the invention” is understood to mean a genetically modified Methylobacteriaceae cell which is preferably similar to the wild-type strain of the Methylobacteriaceae cell, in particular is identical to it, with the exception of the presence of at least one exogenous, a glyoxylate Reductase from the nucleic acid sequence encoding the bacterium Escherichia, which gives the Methylobacteriaceae cell according to the invention the enzymatic glyoxylate reductase activity which is advantageous according to the invention, and optionally associated exogenous nucleic acid sequences of an expression vector or an expression cassette and optionally the at least one exogenous nucleic acid sequence encoding an ethylmalonyl-CoA mutase and optionally associated exogenous nucleic acid sequences of one Expression vector or an expression cassette.
  • a Methylobacteriaceae cell is understood to mean one, two, several, many or a numerically indefinable number of Methylobacteriaceae cells.
  • a Methylobacteriaceae cell is also called a Methylobacteriaceae strain, in particular Methylorubrum extorquens-, in particular Methylorubrum rhodesianum-, in particular Methylorubrum zatmanii-, in particular Methylorubrum extorquens TK 0001-, in particular Methylorubrum extorquens AMI-, in particular Methylorubrum extorquens PA1- , in particular Methylobacterium organophilum, in particular Methylobacterium radiotolerans strain.
  • a “derivative” of a deposited Methylobacteriaceae cell or a deposited Methylobacteriaceae strain in particular a deposited Methylorubrum strain or cell or a deposited Methylobacterium strain or cell is a Methylobacteriaceae cell, in particular a Methylobacteriaceae -Strain, in particular a Methylorubrum cell, in particular a Methylorubrum strain, or a Methylobacterium cell, in particular a Methylobacterium strain, which is characterized by the presence of the features provided according to the invention, in particular the integration of the nucleic acid sequence encoding exogenous glyoxylate reductase and obtained from a deposited Methylobacteriaceae cell and whose genome was modified while retaining the features according to the invention.
  • an “exogenous nucleic acid sequence” of an organism in particular a microorganism, in particular a bacterium, is understood to mean a nucleic acid sequence introduced into a recipient organism using recombinant, i.e. genetic engineering, process steps.
  • an “exogenous nucleic acid sequence” of an organism in particular a microorganism, in particular a bacterium, is one derived from another microorganism.
  • Strain, in particular from another type of organism, in particular from another type of bacterium is understood to be understood as meaning a nucleic acid sequence that is not endogenous and therefore not native or does not occur in the wild-type strain or wild-type species.
  • glyoxylate reductase is understood to mean an enzyme that is capable of enzymatically catalyzing the conversion of glyoxylate, in particular to glycolic acid, in particular using a cofactor, in particular NADH or NADPH.
  • a “glyoxylate reductase” (ghrA) of the present invention in a preferred embodiment has a KM value of at most 2.0, in particular at most 1.5, in particular at most 1.0, in particular at most 0.6 mM, in particular 0.6 mM, for glyoxylate.
  • a “glyoxylate reductase” (ghrA) of the present invention in a preferred embodiment has a KM value of at least 0.9, in particular at least 1.0 mM, in particular 1.0 mM, for hydroxypyruvate.
  • a “glyoxylate reductase” (ghrA) of the present invention in a preferred embodiment has a KM value of at most 2.0, in particular at most 1.5, in particular at most 1.0, in particular at most 0.6 mM, in particular 0.6 mM for glyoxylate and a KM value of at least 0.9, in particular at least 1.0 mM, in particular 1.0 mM, for hydroxypyruvate.
  • a “glyoxylate reductase” (ghrA) of the present invention in a preferred embodiment has a KM value of at most 2.0 for glyoxylate and a KM value of at least 0.9 for hydroxypyruvate.
  • the glyoxylate reductase is preferably NADPH-dependent.
  • a “hydroxypyruvate reductase” has a KM value of at least 3.0, in particular at least 4.0, in particular at least 5.0, in particular at least 6.0 mM, in particular at least 6.6 mM, in particular 6, 6 mM for glyoxylate.
  • a hydroxypyruvate reductase has a KM value of at most 0.6, in particular at most 0.7 mM, in particular 0.7 mM, for hydroxypyruvate.
  • a “hydroxypyruvate reductase” has a KM value of at least 3.0, in particular at least 4.0, in particular at least 5.0, in particular at least 6.0 mM, in particular at least 6.6 mM, in particular 6, 6 mM for glyoxylate and a KM value of at most 0.6, in particular at most 0.7 mM, in particular 0.7 mM, for hydroxypyruvate.
  • the hydroxypyruvate reductase is preferably NADH-dependent.
  • the preferred calculation method is the Lineweaver-Burk evaluation method, described in Lineweaver, H. and Burk, D. (1934) Determination of the enzyme dissociation constants. J.Am. Chem. Soc. 56, 658-666.
  • a "glyoxylate reductase" of the present invention in a preferred embodiment has a higher enzyme activity in an NADPH-dependent conversion of glyoxylate to glycolate than in an NADH-dependent conversion of glyoxylate to glycolate, in particular at least 3 - times higher enzyme activity, especially under conditions as stated in the enzyme assay according to Example 5.
  • a “cell of a methylotrophic bacterium” is understood to mean in particular a cell that belongs to the Methylobacteriaceae family. In particular, these cells are able to carry out the serine cycle (https://doi.org/10.1002/9781118960608. gbm02024, https://doi.org/10.l l l l/1462-2920.12736, https://doi.org/10.3389/ fmicb.2021.740610).
  • the serine cycle is a methylotrophic metabolic pathway that enables the assimilation of CI substrates such as methanol, formate/formic acid, methylamines in microbial metabolism for the formation of biomass or chemical products/intermediates of this metabolism. It is a defined sequence of enzymatically catalyzed reactions.
  • the cycle starts with glycine.
  • the CI assimilated carbon i.e. methanol, formic acid, etc.
  • the CI assimilated carbon in the form of 5,10-methylenetetrahydrofolate and a molecule of water and glycine
  • a glycine hydroxymethyltransferase EC 2.1.2.1
  • Tetrahydrofolate is split off which is prepared for new carbon assimilation.
  • the L-serine is deaminated to hydroxypyruvate in subsequent steps by a transaminase.
  • the NH3 equivalent split off is used for transamination of glyoxylate to glycine to keep the cycle going.
  • the aforementioned Hydroxypyruvate is reduced to glycerate by a hydroxypyruvate reductase with NAD(P)H, which is phosphorylated by a kinase to 3-phosphoglycerate.
  • the 3-phosphoglycerate is converted into phosphoenolpyruvate by a phosphoglyceromutase (EC 5.4.2.11) and a water-releasing enolase (EC 4.2.1.11).
  • the phosphoenolpyruvate is carboxylated to oxaloacetate by phosphoenolpyruvate carboxylase (EC 4.1.1.31) using hydrogen carbonate/dissolved CO2.
  • the phosphoenolpyruvate is finally converted via L-malate to L-malyl-CoA using NADH and ATP as well as a cofactor A (CoA) molecule.
  • Acetyl-CoA is then split off and glyoxylate is formed.
  • a malyl-CoA lyase (EC 4.1.3.24)
  • the cycle closes and further assimilation of a single carbon can begin. (Anthony, CW (2011). "How half a century of research was required to understand bacterial growth on Cl and C2 compounds; the story of the serine cycle and the ethylmalonyl-CoA pathway.” Science progress 94 Pt 2: 109-137 ).
  • the serine cycle can be demonstrated by the presence of the metabolite hydroxypyruvate.
  • the characteristic labeling of glycine, serine and glyoxylate can be measured in labeling studies using 13C-labeled Cl substrate and unlabeled CO2 (https://doi.org/10.1186/1752-0509-5-189).
  • Methylorubrum extorquens Methylorubrum extorquens
  • Methylorubrum extorquens Methylorubrum extorquens
  • Methylorubrum rhodesianum Methylorubrum rhodesianum
  • Methylorubrum zatmanii Methylorubrum zatmanii
  • M. radiotolerans Methylobacterium radiotolerans understood.
  • pTE1887 is understood to mean a specific expression vector.
  • ghrA eC o is understood to mean a nucleic acid sequence encoding the glyoxylate reductase from Escherichia coli K-12 MG1655.
  • This nucleic acid sequence can be the native (“ghrA eC o-native”) or a codon-optimized (“ghrA eC oc-optimized”) nucleic acid sequence.
  • pTE1887-ghrA eC o is understood to mean an expression vector which contains the nucleic acid sequence encoding the glyoxylate reductase from Escherichia coli K-12 MG1655.
  • ecm me a is understood to mean the nucleic acid sequence encoding the ethylmalonyl-CoA mutase from M. extorquens TK 0001 DSM 1337. This nucleic acid sequence can be the native or a codon-optimized nucleic acid sequence.
  • pTE1887-ghrA e co-ecm m ea is understood to mean an expression vector which contains the nucleic acid sequence encoding the glyoxylate reductase from Escherichia coli K-12 MG1655 and the nucleic acid sequence encoding the ethylmalonyl-CoA mutase from M . extorquens TK 0001 DSM 1337 contains.
  • ecm rs h is understood to mean the nucleic acid sequence encoding the ethylmalonyl-CoA mutase from Rhodobacter sphaeroides ATCC 17029. This nucleic acid sequence can be the native or a codon-optimized nucleic acid sequence.
  • pTE1887-ghrAeco-ecm rs h is understood to mean an expression vector which contains the nucleic acid sequence encoding the glyoxylate reductase from Escherichia coli K-12 MG1655 and the nucleic acid sequence encoding the ethylmalonyl-CoA mutase from Rhodobacter sphaeroides ATCC 17029 contains.
  • nucleic acid sequence equivalent is understood to mean a nucleic acid sequence equivalent of a nucleic acid sequence encoding a glyoxylate reductase or an ethylmalonyl-CoA mutase, the nucleic acid equivalent having at least one difference in at least one nucleotide position from the nucleic acid sequence , that is, has at least one additional nucleotide, i.e. an inserted nucleotide, or at least one missing nucleotide, i.e.
  • nucleic acid equivalent has an amino acid sequence with the enzymatic activity of a glyoxylate reductase or encoded by an ethylmalonyl-CoA mutase.
  • “codon-optimized” means that the nucleic acid sequence of a wild-type gene, which is to be integrated as an exogenous nucleic acid sequence into a Methylobacteriaceae host cell, in particular from E. coli, before integration by genetically engineered exchange of Codons are optimized for expression, i.e.
  • transcription and translation in the host cell, and in particular by those codons that are usually not or not optimal in the exogenous nucleic acid sequence are used by the translation system of the host cell, i.e. the Methylobacteriaceae cell, in particular Methylorubrum extorquens, in particular Methylorubrum extorquens AMI, Methylorubrum extorquens TK 0001, in particular Methylorubrum extorquens PAl cell.
  • the corresponding Methylobacteriaceae-preferred codons are instead incorporated without changing the amino acid sequence encoded by the nucleic acid sequence.
  • a codon-optimized nucleic acid sequence is therefore a nucleic acid sequence optimized for expression in a Methylobacteriaceae cell. If necessary, codon optimization can also be carried out if the exogenous nucleic acid sequence comes from the same bacterial species as the host cell, but an improvement in expression is nevertheless desired.
  • the codon optimization can preferably be carried out according to the following overview (Table 1):
  • “functional nucleic acid sequence equivalent of a codon-optimized nucleic acid” is also, but not exclusively, understood to mean the native, naturally occurring nucleic acid.
  • “functional amino acid sequence equivalent” is understood to mean an amino acid sequence equivalent of an amino acid sequence of a glyoxylate reductase or an ethylmalonyl-CoA mutase, where the amino acid equivalent has at least one difference in at least one amino acid position to the amino acid sequence, that is, has at least one additional amino acid, i.e. an inserted amino acid, or at least one missing amino acid, i.e. a deleted amino acid, or has at least one exchanged amino acid, and where the amino acid equivalent has the enzymatic activity of a glyoxylate reductase or an ethylmalonyl-CoA -mutase.
  • the “identity of nucleic acid or amino acid sequences” is understood to mean a degree of identity in % determined by a sequence comparison.
  • This sequence comparison is fundamentally based on the BLAST algorithm established and commonly used in the prior art (see, for example, Altschul et al. (1990) "Basic local alignment search tool", J. Mol. Biol. 215:403-410, and Altschul et al. (1997): “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402) and basically happens because similar sequences of nucleotides or amino acids are present in the nucleic acid - or amino acid sequences are assigned to each other.
  • a tabular assignment of the relevant positions is called alignment.
  • Another algorithm available in the art is the FASTA algorithm. Sequence comparisons (alignments), especially multiple sequence comparisons, are created using computer programs. For example, the Clustal series (see e.g. Chenna et al. (2003) “Multiple sequence alignment with the Clustal series of programs", Nucleic Acids Res. 31:3497-3500), T-Coffee (see ZB Notredame et al. (2000) “T-Coffee: A novel method for multiple sequence alignments", J. Mol. Biol. 302:205-217) or programs that are based on these programs or algorithms.
  • Sequence comparisons are also possible using the computer program Vector NTI® Suite 10.3 (Invitrogen Corporation, 1600 Faraday Avenue, Carlsbad, California, USA) with the specified standard parameters, whose AlignX module for sequence comparisons is based on ClustalW. Unless otherwise stated, sequence identity reported herein is determined using the NCBI Constraint-based Multiple Alignment Tool (COBALT) (https://www.ncbi.nlm.nih.gov/, as of January 26, 2022), where SEQ ID Nos. 1 to 8 were each used as a reference for determining the percentage sequence differences. Such a comparison also allows a statement to be made about the similarity of the compared sequences to one another.
  • COBALT NCBI Constraint-based Multiple Alignment Tool
  • identity i.e. the proportion of identical nucleotides or amino acid residues in the same positions or in positions corresponding to one another in an alignment.
  • Identity information can be made about entire polypeptides or genes or just about individual regions. Identical regions of different nucleic acid or amino acid sequences are therefore defined by similarities in the sequences. Such areas often have identical functions. They can be small and contain only a few nucleotides or amino acids. Unless otherwise stated, identification information in the present teaching refers to the total length of the nucleic acid or amino acid sequence specified in each case.
  • amino acid sequence is understood to mean a sequence of linearly connected amino acids, in particular a protein, in particular a polypeptide.
  • nucleic acid sequence is understood to mean a sequence of linearly connected nucleotides, in particular a nucleic acid molecule, in particular a gene, in particular a protein-coding region of a gene.
  • the nucleic acid sequence is a DNA sequence.
  • ethylmalonyl-CoA mutase is understood to mean a coenzyme B12-dependent enzyme with intramolecular isomerase activity that is responsible in the ethylmalonyl-CoA metabolism for the conversion of ethylmalonyl-CoA to methylsuccinyl-CoA, which preferably has the EC classification EC 5.4.99.63.
  • formic acid also means formate
  • acetic acid also means acetate
  • succinic acid also means succinate
  • integration of an exogenous nucleic acid sequence into a Methylobacteriaceae cell or “presence of an exogenous nucleic acid sequence in a Methylobacteriaceae cell” understood that the respective nucleic acid sequence referred to is present chromosomally or extrachromosomally, preferably chromosomally, in the genome of the cell.
  • the exogenous nucleic acid sequence is stably integrated, with a stable integration of a nucleic acid being such an integration that is detectable and capable of expression in the microorganism at least over at least 2, 3, 5, 10, 20 or 50 generations of the microorganism.
  • “maximum growth rate” (gmax) is understood to mean the rate of cell division, i.e. microbial growth, of the Methylobacteriaceae cell according to the invention in reaction medium, in particular liquid culture medium.
  • the calculation of p max is based on the measured values of the optical density of the culture medium at 600 nm wavelength, measured in the photometer (ODeoo) over the course of the process step over time.
  • the calculation of p max can be carried out using Equation 1, taking into account the measured values of the ODeoo in the growth interval of the fastest growth observed. (Equation 1)
  • biomass mass substrate yield is the mass of microbial biodry mass (biomass completely dried to constant weight) in the reaction medium, in particular liquid culture medium, given in a unit of weight such as grams (X, gx), which can be formed by the specific microbial strain from one gram of the Cx compound (S, gcx).
  • Yx/s is therefore the slope of the time-linearly correlated change in the dry biomass
  • product-substrate yield (Yp/s) is understood to mean the mass of product, expressed in a unit of weight such as grams (P, gp), produced by the specific microbial strain from one gram of Cx - Connection (S, gcx) can be formed.
  • Equation 3 The calculation is carried out graphically with linear regression of the changes in the measured values of the product mass (AP(t) as a function of the mass of the Cx compound (ACx(t)) over time in the process step according to equation 3.
  • Yp/s is therefore the slope of the time-linearly correlated change in the product mass P as a function of the change in the mass of the Cx compound.
  • the unit of Yp/s is typically given in gp per gcx. (Equation 3)
  • product dry biomass yield (Yp/x) is understood to mean the mass of product, expressed in a unit of weight such as grams (P, gp), produced by the specific microbial strain per gram of dry biomass ( X, gx) is formed during microbial growth.
  • the calculation is carried out graphically with linear regression of the changes in the measured values of the product mass (AP(t) as a function of the dry biomass (AX(t)) over time in the process step according to equation 4.
  • Yp/x is therefore the slope of the over time linearly correlated change in the product mass P depending on the change in the dry biomass formed.
  • the unit of Yp/x is typically given in gp per gx.
  • dry biomass means the mass for example grams (X, gx), understood.
  • the dry biomass means the mass for example grams (X, gx), understood.
  • NAD nicotinic acid amide adenine dinucleotide.
  • NADH is understood to mean the reduced form of NAD.
  • NADP means nicotinic acid amide adenine dinucleotide phosphate.
  • NADPH is understood to mean the reduced form of NADP.
  • NADH/NADPH analogue means a chemical compound, for example thionicotinamide adenine dinucleotide (S-NAD), nicotinic acid adenine dinucleotide (O-NAD), nicotinic acid amide hypoxanthine dinucleotide (NHD) , nicotinic acid amide-guanine dinucleotide, or other compounds that have a similar, preferably the same, activity as NADH and / or NADPH.
  • S-NAD thionicotinamide adenine dinucleotide
  • O-NAD nicotinic acid adenine dinucleotide
  • NHS nicotinic acid amide hypoxanthine dinucleotide
  • nicotinic acid amide-guanine dinucleotide or other compounds that have a similar, preferably the same, activity as NADH and / or NADPH.
  • a “educt” is understood to mean a starting material, in particular at least one Cx compound, in particular one Cx compound or two or more or many Cx compounds, in particular a composition of Cx compounds.
  • a “product” is understood to mean at least glycolic acid, in particular glycolic acid alone, preferably glycolic acid and lactic acid, in particular a composition of compounds containing glycolic acid, in particular consisting of the compounds glycolic acid and lactic acid.
  • reaction is understood to mean a chemical reaction, in particular a catalyzed chemical reaction, in particular an enzymatic catalyzed reaction.
  • reaction medium is understood to mean a liquid medium, in particular a liquid aqueous medium, in which a reaction, in particular an enzymatically catalyzed reaction, can take place, in particular a reaction caused by microorganisms or components of microorganisms, in particular a culture medium , especially a minimal medium.
  • the term “obtaining a product” is understood to mean that the product obtained in a previous process step by reacting the educt, i.e. a starting material, is made available from the respective reaction medium, in particular culture medium or solvent is, in particular isolated from it.
  • obtaining a product is therefore to be understood as concentrating, in particular isolating, the product.
  • the processes used for this can be physical, chemical and/or biological processes.
  • “compound” is understood to mean a molecule or several identical molecules.
  • a composition containing glycolic acid is the product of a reaction according to the invention in process step b).
  • the term “at least one” is understood to mean a quantity that expresses a number of 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 and so on. In a particularly preferred embodiment, the term “at least one” can represent exactly the number 1. In a further preferred embodiment, the term “at least one” can also mean 2 or 3 or 4 or 5 or 6 or 7.
  • a “presence”, “containment”, “having” or “content” of a component is expressly mentioned or implied in connection with the present invention, this means that the respective component is present, in particular is present in a measurable amount.
  • a “presence”, “containment” or “having” of a component in an amount of 0 [unit], in particular mg/kg, pg/kg or wt.%, is expressly mentioned or implied This means that the respective components are not present in measurable quantities, in particular not present.
  • the number of decimal places specified corresponds to the precision of the measurement method used. If the first and second decimal places or the second decimal place are not specified for a number in connection with the present invention, these must be set as zero.
  • the term “and/or” is understood to mean that all members of a group which are connected by the term “and/or” are disclosed both alternatively to one another and cumulatively with one another in any combination.
  • A, B and/or C this means that the following disclosure content is to be understood: a) A or B or C or b) (A and B), or c) (A and C), or d ) (B and C), or e) (A and B and C).
  • the terms “comprising” and “having” mean that, in addition to the elements explicitly covered by these terms, there may be additional elements not explicitly mentioned. In the context of the present invention, these terms also mean that only the explicitly mentioned elements are recorded and no further elements are present. In this particular embodiment, the meaning of the terms “comprising” and “comprising” is synonymous with the term “consisting of”. In addition, the terms “comprising” and “comprising” also include compositions that, in addition to the explicitly named elements, also contain other elements not mentioned, but which are of a functional and qualitatively subordinate nature. In this embodiment, the terms “comprising” and “comprising” are synonymous with the term “consisting essentially of.”
  • SEQ ID No. 1 represents the native nucleic acid sequence encoding a glyoxylate reductase from the bacterium Escherichia coli (K-12 MG1655), in particular also referred to as ghrAeco-native, i.e. a functional nucleic acid sequence equivalent of the nucleic acid sequence according to SEQ ID No. 3 .
  • SEQ ID NO. 2 is the amino acid sequence encoded by SEQ ID Nos. 1 and 3.
  • SEQ ID No. 3 represents a Methylobacteriaceae codon-optimized nucleic acid sequence (ghrA eco - c-optimized) of the native nucleic acid sequence according to SEQ ID No. 1 encoding a glyoxylate reductase from the bacterium Escherichia coli (K-12 MG1655).
  • SEQ ID No. 4 represents the native nucleic acid sequence encoding an ethylmalonyl-CoA mutase from the bacterium Methylorubrum extorquens (TK 0001 DSM 1337), in particular also referred to as ecm me a, i.e. a functional nucleic acid sequence equivalent of the codon-optimized nucleic acid sequence according to SEQ ID No. 13.
  • SEQ ID NO. 5 is the amino acid sequence encoded by SEQ ID Nos. 4 and 13.
  • SEQ ID No. 6 represents the native nucleic acid sequence encoding an ethylmalonyl-CoA mutase from the bacterium Rhodobacter sphaeroides (ATCC 17029), in particular also referred to as ecmrsh, i.e. a functional nucleic acid sequence equivalent of the codon-optimized nucleic acid sequence according to SEQ ID No. 8.
  • SEQ ID NO. 7 is the amino acid sequence encoded by SEQ ID NOS. 6 and 8.
  • SEQ ID No. 8 represents a Methylobacteriaceae codon-optimized nucleic acid sequence of the native nucleic acid sequence according to SEQ ID No. 6 encoding an ethylmalonyl-CoA mutase from the bacterium Rhodobacter sphaeroides (ATCC 17029).
  • SEQ ID No. 9 represents the nucleic acid sequence of the expression vector pTE1887, the associated plasmid map being shown in Figure 8.
  • SEQ ID No. 10 represents the nucleic acid sequence of the expression vector pTE1887-ghrA eC o, the associated plasmid map being shown in Figure 9.
  • SEQ ID No. 11 represents the nucleic acid sequence of the expression vector pTEl 887-ghrA eco-CCnimea, the associated plasmid map being shown in Figure 10.
  • SEQ ID No. 12 represents the nucleic acid sequence of the expression vector pTE1887-EcoGoxRed l-ecmrsh, the associated plasmid map being shown in Figure 11.
  • SEQ ID No. 13 represents a Methylobacteriaceae codon-optimized nucleic acid sequence of the native nucleic acid sequence according to SEQ ID No. 4 encoding an ethylmalonyl-CoA mutase from the bacterium Methylorubrum extorquens (TK 0001 DSM 1337).
  • Figure 1 shows the screening result for glycolic acid production in recombinant, i.e. genetically modified, M. extorquens TK 0001 strains that have and express codon-optimized glyoxylate reductase genes (A), screening results according to 1A in (B and C), where Enzyme activities of the glyoxylate reductases from the biomass used according to 1 (A) expressed with the expression vector pTE1887 in the strain background M. extorquens TK 0001 with NADH (B) and NADPH (C) as cofactors are shown,
  • Figure 2 shows an HPLC chromatogram comparison of the cultivation samples (22 to 24 hours after induction) of the genetically modified Methylobacteriaceae cells M. extorquens TK 0001 glyoxylate reductase strains which have and express codon-optimized glyoxylate reductase genes,
  • Figure 5 shows a detailed view of the mass spectra of the glycolic acid peak (A) and the lactic acid peak (B) of a sample of the M. extorquens GAI cultivation 22 to 24 hours after induction and database detection of the glycolic acid identity (A) and the lactic acid -Identity (B) in the M. extorquens GAI sample,
  • Figure 6 shows the growth course (OD600), the pH value and the methanol, glyoxylate, glycolic acid and lactic acid concentrations of M. extorquens TK 0001 + pTE1887 (A + C) and M. extorquens TK 0001 + pTE1887-ghrAeco-c according to the invention -optimized (M. extorquens GAI) (B+D) in reaction medium, namely minimal medium, where the carbon source is 8 g L' 1 methanol (A+B) or 9 g L' 1 methanol + 1.5 g L' 1 glyoxylate (C+ D) was added,
  • Figure 7 shows the growth course (OD600), pH value, methanol and the glycolic acid and lactic acid concentrations of M. extorquens TK 0001 + pTE1887 (A), M. extorquens TK 0001 according to the invention + pTE1887-ghrA eC oc-optimized (M . extorquens GAI) (B), M. extorquens TK 0001 according to the invention + pTE1887-ghrAeco-c-optimized-eemmea (M. extorquens GA2) (C) and M.
  • Figure 8 shows the plasmid map of the expression vector pTE1887
  • Figure 9 shows the plasmid map of the expression vector pTE1887-ghrA eC oc-optimized
  • Figure 10 shows the plasmid map of the expression vector pTE1887-ghrA e co-c-optimized-ecm m ea
  • Figure 11 shows the plasmid map of the expression vector pTE1887-ghrA eC oc-optimized-ecm r sh
  • Figure 12 shows the results of the glyoxylate reductase enzyme activity tests of ghrA eco and ghrBeco in native and codon-optimized DNA sequence expressed with the expression vector pTEl 887 in the strain background M. extorquens TK 0001,
  • Figure 14 shows the screening result for glycolic acid and lactic acid production 22 h to 28 h after induction of gene expression in recombinant, i.e. genetic modified M. rhodesianum DSM 5687 strains that have and express codon-optimized glyoxylate reductase genes and, in some strains, additional ethylmalonyl-CoA mutases,
  • Figure 15 shows the screening result for glycolic acid and lactic acid production 22 h to 28 h after induction of gene expression in recombinant, i.e. genetically modified, M. zatmanii DSM 5688 strains which contain the codon-optimized glyoxylate reductase gene according to the invention from Escherichia and in one strain additionally have and express a codon-optimized gene of the ethylmalonyl-CoA mutase from Rhodobacter sphaeroides ATCC 17029,
  • Figure 16 shows the screening result for glycolic acid and lactic acid production 22 h to 28 h after induction of gene expression in a recombinant, i.e. genetically modified, M. radiotolerans DSM 760 strain, which contains the inventive combination of the codon-optimized glyoxylate reductase gene from Escherichia and additionally has and expresses a native ethylmalonyl-CoA mutase gene from M. extorquens TK 0001 DSM 1337,
  • Figure 17 shows the screening result for glycolic acid and lactic acid production 22 h to 28 h after induction of gene expression in recombinant, i.e. genetically modified, M. organophilum DSM 18172 strains, which contain codon-optimized genes of the glyoxylate reductases and, in some strains, additionally ethylmalonyl have and express CoA mutases,
  • Figure 18 shows the screening result for glycolic acid and lactic acid production 22 h to 28 h after induction of gene expression of a recombinant, i.e. genetically modified, M. extorquens PA1 DSM 23939 strain, which according to the invention contains the codon-optimized glyoxylate reductase gene from Escherichia coli K12 1655 has and expresses,
  • a recombinant i.e. genetically modified, M. extorquens PA1 DSM 23939 strain
  • Figure 19 shows the screening result for glycolic acid and lactic acid production 22 h to 28 h after induction of gene expression in recombinant, i.e. genetically modified, M. extorquens AMlAcel (based on the DSM 1338 strain) strains that contain codon-optimized glyoxylate reductase genes exhibit and express. Examples
  • glyoxylate reductase from Thermococcus litoralis has been identified as an NADH-dependent enzyme (Ohshima, et al., European Journal of Biochemistry, 2001, 268(17): p. 4740-4747).
  • the influence of the specific redox equivalent on glycolic acid production can be substantial, depending on the availability of the specific redox equivalent in the cytosol and the adaptation of the metabolic network to the intervention carried out (overexpression of glyoxylate reductase).
  • heterologous enzymes from Pseudomonas fluorescens PfO-1, Thermococcus litoralis, Pyrococcus furiosus DSM 3638, Saccharomyces cerevisiae, Thermus thermophilus HB27, Escherichia coli K-12 MG1655 and Acetobacter aceti were encoded by synthetic genes in a codon-optimized form for Methylobacteriaceae (BioCat GmbH, Heidelberg, Germany, Table 1) to support the best possible gene expression. Since the homologous gene from M. extorquens (SEQ ID No.
  • Figure 8 shows the vector with the following elements: lacl gene, lacl promoter, PL/O4/A1 promoter -33 region -10 region transcription start ⁇ PL/O4/A I promoter ribosomal binding site (RBS), lambda TO terminator, kanamycin resistance, mobilization genes mobS and mobL Regulatory protein RepA, Origin of replication colEl.
  • the expression vector was cut with the restriction enzyme NcoI.
  • the sequence identity and correctness of the constructs could be ensured by sequencing.
  • the constructed constructs and a wild-type strain Methylobacteriaceae cell, in particular M. extorquens TK 0001 cells and in particular M. extorquens PA1, were then provided according to method step a), and according to method step b) with the aid of electroporation into the Methylobacteriaceae cells transformed and a genetically modified Methylobacteriaceae cell obtained according to process step c).
  • Clones of Methylobacteriaceae cells i.e.
  • Methylobacteriaceae cells carrying the individually prepared constructs containing the synthetic genes in codon-optimized form were selected on minimal medium agar plates with kanamycin as a selection marker.
  • the presence of the expression vectors and the expected sequence size of the PCR product, which represents the cloned gene, in the individual clones obtained were checked via colony PCR.
  • the verified strains were secured as cryocultures at -80 °C.
  • process step x in baffled shake flasks (250 mL flask volume, 50 mL culture volume) at 30 ° C, 150 RPM (revolutions per minute) and water vapor-saturated atmosphere (process step y according to the invention)) (New BrunswickTM Innova 44, Eppendorf AG, Hamburg, Germany) and a product containing glycolic acid is obtained in the reaction medium (process step z)).
  • baffled shake flasks 250 mL flask volume, 50 mL culture volume
  • 150 RPM repetitions per minute
  • water vapor-saturated atmosphere process step y according to the invention
  • the main cultures were inoculated from precultures grown under the same conditions (final ODeoo between 3 to 5) to a starting ODeoo of 0.05. After the cultures had reached an ODeoo of 1.0, gene expression of the codon-optimized glyoxylate reductase genes was induced with 1 mM IPTG (final concentration in the culture volume). To detect the production of glycolic acid, a sample volume of 1 mL of the minimal medium was taken before inoculation and a sample volume of 1 mL of all cultures were taken from the culture volume before induction, immediately after induction and around 20 hours after induction.
  • the samples were analyzed for the concentrations of methanol, formic acid, glyoxylate, glycolic acid and lactic acid using high-performance liquid chromatography (HPLC) and refractory index detection (RID).
  • HPLC high-performance liquid chromatography
  • RID refractory index detection
  • the HPLC measurement was carried out to separate the analytes using a SynergiTM 4 pm Hydro-RP 80A, LC column 250 x 4.6 mm (Phenomenex Inc., Torrance, CA, USA) and 20 mM K2HPO4 (pH 1.5) as eluent at 30 °C and 0.5 mL min' 1 flow rate for 20 minutes per sample.
  • the analytes were identified and quantified using external standards of known concentration.
  • the clear detection of glycolic acid in the culture samples was carried out by gas chromatography coupled with mass spectrometry (GC-MS) using a glycolic acid standard (100 mg L' 1 ).
  • a glycolic acid standard 100 mg L' 1
  • the -OH or -NH groups contained in the culture samples and in the standard were converted into the corresponding tert-butyldimethylsilyl ether (TBDMS) by derivatization.
  • TDMS tert-butyldimethylsilyl ether
  • a volume of 50 pL standard or 50 pL sample was freeze-dried by lyophilization and then resuspended in 50 pL DMF+0.1% (v/v) pyridine.
  • the analytes were separated using a temperature gradient: 120 °C (2 min), ramp 8 °C min' 1 to 200 °C and 10 °C min' 1 to 325 °C.
  • the analytes were qualified using the MS in scan mode (m/z 50 to 750).
  • Methylobacteriaceae cells comprising an exogenous codon-optimized nucleic acid sequence (SEQ ID No. 3) encoding a glyoxylate reductase from the bacterium Escherichia coli K-12 MGI 655 of the strain Methylorubrum extorquens Mea-GAl were reported on June 10, 2022 deposited in the DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany under the deposit number DSM 34286.
  • SEQ ID No. 3 codon-optimized nucleic acid sequence
  • Example 2 Screening of functional glyoxylate reductases in M. extorquens TK 0001
  • the glyoxylate reductase-encoding nucleic acid sequences listed in Table 2 in codon-optimized form were cloned into the pTE1887 expression vector as described in Example 1 and the corresponding genetically modified Methylobacteriaceae strains were constructed.
  • the M. extorquens TK 0001 strain containing the pTE 1887 vector was used as a reference strain, which does not carry a recombinant plasmid but rather the pTE1887 empty vector.
  • Figure 1A shows the screening result of glycolic acid production in recombinant M. extorquens TK 0001 strains that express glyoxylate reductases, starting from the corresponding codon-optimized genes.
  • pTE1887 was used as the expression vector, which also serves as a negative control in the form of the empty vector in the reference strain M. extorquens TK 0001 + pTE1887 (first entry from the left on the x-axis).
  • both the reference strain M. extorquens TK 0001 + pTE1887 (first entry from the left) and the genetically modified Methylobacteriaceae cells showed no glycolic acid production (entries from the left: 2 and 3 and 5 to 15), with the exception of the genetically modified ones according to the invention Methylobacteriaceae cell comprising M. extorquens TK 0001 + pTE1887-ghrA eC o (in codon-optimized nucleic acid form according to SEQ ID No. 3), i.e.
  • a genetically modified Methylobacteriaceae cell comprising at least one exogenous, a glyoxylate reductase from the Bacterium Escherichia encoding nucleic acid sequence (entry from left: 4, is the only entry with a black bar).
  • Figure 9 shows the map of the vector used to generate these Methylorubrum cells with the following elements: lacl gene, lacl promoter, PL/O4/A1 promoter -33 region -10 region transcription start, PL/O4/A1 promoter ribosomal binding site (RBS), ghrA eC oc-optimized, lambda T0 terminator, kanamycin resistance, mobilization genes mobS and mob, regulatory protein RepA. Origin of replication colEl.
  • Figure IB shows a bar diagram, with the x-axis showing the genetically modified Methylobacteriaceae cells and the y-axis showing the enzyme activity in mU mg' 1 (white, unfilled bar: NADH as a cofactor).
  • Figure IC shows a bar diagram, with the x-axis showing the genetically modified Methylobacteriaceae cells and the y-axis showing the enzyme activity in mU mg' 1 (gray filled bar: NADPH as a cofactor).
  • Figure 1B and IC show the screening result of an enzyme assay with recombinant M. extorquens TK 0001 strains that express glyoxylate reductases, starting from the corresponding codon-optimized genes.
  • the enzyme assay was carried out analogously to Example 5 carried out. The biomass that was used in 1 A was used. In the case of 1B, the enzyme assay was performed with NADH as a redox cofactor. In the case of IC, the enzyme assay was performed with NADPH as a redox cofactor.
  • extorquens TK 0001 + pTE1887-ghrA eC o in codon- optimized nucleic acid form according to SEQ ID No. 3
  • a genetically modified Methylobacteriaceae cell according to the invention comprising at least one exogenous nucleic acid sequence encoding a glyoxylate reductase from the bacterium Escherichia, had a high glyoxylate reductase enzyme activity (entry from left: 4) .
  • Enzyme activity of the glyoxylate reductase Tiit was not measurable and was not associated with glycolic acid production. Only the enzyme activity of ghrA eC o, i.e. the glyoxylate reductase according to the invention from /:. coli, is associated with glycolic acid production.
  • the genetically modified Methylobacteriaceae cell according to the invention comprising M. extorquens TK 0001 + pTE1887-ghrA eC oc-optimized accordingly has NADPH, but not NADH, dependence.
  • Figure 2 shows HPLC chromatograms of the cultivation samples according to Figure 1 (22 to 24 hours after induction) of the genetically modified Methylobacteriaceae cells M. extorquens TK 0001 glyoxylate reductase strains. It can be clearly seen that only the genetically modified Methylobacteriaceae cell according to the invention M. extorquens TK 0001 + pTE1887-ghrA eC o (referred to as M.
  • extorquens GAI in Figure 2 containing the codon-optimized form of the ghrA eco gene
  • the missing glycolic acid (and Lactic acid production when using the glyoxylate reductases not according to the invention indicates a lack of functionality.
  • These enzymes could be hydroxypyruvate reductases, which reduce the hydroxypyruvate, which is also produced in the serine cycle, to D-glycerate depending on NAD(P)H. In this case, as shown in Figure 1 and Figure 2, no accumulation of glycolic acid would be observed.
  • M. extorquens GAI containing the codon-optimized form of the ghrA eco gene
  • Figure 4 shows the same samples, except for the standard, which was swapped for a 100 mg L' 1 lactic acid standard.
  • M. extorquens GAI M. extorquens GAI
  • the mass spectrum of the peak obtained in the M. extorquens TK 0001 + pTE1887-ghrA eC o sample according to the invention clearly agrees with the mass spectrum of the glycolic acid standard (FIG. 5A). This can prove the existence of glycolic acid in the M.
  • the control strain M. extorquens TK 0001 + pTE1887 did not show this phenotype: neither glycolic acid nor lactic acid could be detected as products using GC-MS.
  • the changes in the redox balance change the metabolism of the genetically modified Methylobacteriaceae cell according to the invention M. extorquens TK 0001 + pTE1887-ghrA eC o in such a way that lactic acid is synthesized as a possible by-product of glycolic acid production.
  • An NADH-dependent lactate dehydrogenase (KEGG database: Mex_lp4794), which uses pyruvate as a substrate, could be responsible for this lactic acid formation.
  • glyoxylate reductase has nonspecific substrate usage, allowing the enzyme to use pyruvate as an acceptor. In principle, the course of the methylglyoxal metabolic pathway is also conceivable.
  • the M. extorquens TK 0001 + pTE1887-ghrAeco cells according to the invention containing the codon-optimized form of the ghrA eco gene, produce a mixture of glycolic acid and lactic acid, which serves as a starting point for the polymerization to polyglycolic acid, polylactic acid or Polylactide-co-glycolide can serve.
  • M. extorquens TK 0001 + pTE1887 were carried out with M. extorquens TK 0001 + pTE1887 and according to the invention with the strain M. extorquens TK 0001 + pTE1887-ghrA eC o (M. extorquens GAI) in minimal medium (reaction medium) with 10 g L ' 1 methanol as starting material and a mixture of 10 g L' 1 methanol + 1.5 g L' 1 glyoxylate as a further starting material (Figure 6).
  • Figure 6 A to D show diagrams in which the growth curve (ODeoo, circles, black filled), the pH value (triangles, tip at the bottom) and the methanol (squares, unfilled), glyoxylate (diamonds , unfilled) and glycolic acid concentrations (diamonds, dark gray filled) as well as lactic acid concentrations (triangles, gray filled, tip at the top) of M. extorquens TK 0001 + pTE1887 (A + C) and M. extorquens TK 0001 + pTE1887-ghrA eC o (codon -optimized) (B+D) in the minimum medium and the time is indicated on the x-axis.
  • Cx compound As a carbon source (educt), i.e. Cx compound, 10 g L' 1 methanol (A+B) or 10 g L' 1 methanol + 1.5 g L' 1 glyoxylate (C+D) was added.
  • the methanol, glyoxylate and glycolic acid concentrations were measured using HPLC, refractory index detection and external standards. All concentrations are given in g L' 1 . Data represent three independent biological replicates.
  • the glyoxylate was added at the time of induction of gene expression and serves as a test of whether an in vivo increase in glyoxylate supply leads to an increase in glycolic acid production.
  • Figure 6A it can be seen that the reference strain M. extorquens TK 0001 + pTE1887 with 10 g L' 1 methanol as starting material did not produce glycolic acid and has a uniform biomass formation up to a maximum ODeoo of approx. 9 after 40 h of cultivation time. What is noticeable is the significant reduction in the pH value to below 6.5 during the course of fermentation. In comparison, in a cultivation with M.
  • the recombinant strain according to the invention M. extorquens TK 0001 + pTE1887-ghrA eC o, containing the codon-optimized form of the ghrA eco gene, produces the products glycolic acid and lactic acid in increased concentrations (- 0.35 g L' 1 or 0.25 g L' 1 in 40 h). After the methanol has been broken down, the products are completely broken down again as the cultivation progresses. The formation of glycolic acid and lactic acid is accompanied by a significant slowdown in biomass growth to a maximum ODeoo of 6.7 in 44 h. In addition, the pH value of the culture broth probably drops to up to 6.2 in this case due to the additional glycolic acid formation and increases to almost 6.5 due to the breakdown of the glycolic acid to a value comparable to the reference strain ( Figure 6B).
  • the strain-specific cultivation parameters derived from the data include p (specific growth rate), Yx/s (biodry matter substrate yield), qs (specific substrate uptake rate), Yp/s (product-substrate yield) and qp (specific product formation rate ) have been summarized in Table 3 for the strains M. extorquens TK 0001 + pTE1887 and M. extorquens TK 0001 + pTE1887- ghrA eco according to the invention, containing the codon-optimized form of the ghrA eco gene.
  • glycolic acid and lactic acid production is associated with a significant reduction in biodry matter substrate yield (70% of the reference strain and 70% of the reference strain with glyoxylate feeding) and more carbon is converted into the product or for maintenance of the redox balance must be used. It can also be seen that glyoxylate reduces the growth rate and therefore a potential toxic effect of the precursor is possible. This toxicity of glyoxylate can be avoided by optimally balancing the in vivo glyoxylate pool.
  • Examples 1 to 3 show that, according to the invention, glycolic acid and lactic acid can be produced with M. extorquens GAI from Cx compounds in a methylotrophic fermentation process.
  • glycolic acid production according to the invention in M. extorquens GAI can be significantly increased by increasing the intracellular concentration of glyoxylate, as shown in Example 3. In this case, 185% more glycolic acid was formed compared to cultivation without glyoxylate feeding.
  • Example 4 Experimental data on the fermentative glycolic acid-lactic acid production from methanol
  • the experimental procedure was carried out according to Example 1.
  • the strain used is the wild-type strain Methylorubrum extorquens TK 0001 DSM 1337.
  • pTE1887 expression vector, also called empty vector; plasmid map: Figure 8)
  • pTE1887-ghrA eC o expression vector which encodes the glyoxylate reductase from Escherichia coli K-12 MG1655 in a codon-optimized manner; with SEQ ID No. 3, plasmid map: Figure 9) (according to the invention) 3.) pTE1887-ghrAeco-ecm m ea (expression vector that natively encodes the glyoxylate reductase from Escherichia coli K-12 MGI 655 (codon-optimized) and the ethylmalonyl-CoA mutase from M. extorquens TK 0001 DSM 1337; plasmid map : Figure 10) (according to the invention)
  • pTE1887- ghrAeco-eemrsh expression vector that codon-optimizes the glyoxylate reductase from Escherichia coli K-12 MGI 655 (codon-optimized) and the ethylmalonyl-CoA mutase from Rhodobacter sphaeroides ATCC 17029; plasmid map: Figure 11) (according to the invention).
  • Methylobacteriaceae cells were produced using the methods described in Example 1.
  • Figure 10 shows the map of the vector that was used to generate the Methylobacteriaceae cells expressing the ghrA e co-ecm m ea with the following elements: lacl gene, lacl promoter, PL/O4/A1 promoter -33 region -10 region transcription start, PL/O4/A1 promoter ribosomal binding site (RBS), ghrA eco (codon-optimized), ecm me a (native), lambda T0 terminator, kanamycin resistance, mobilization genes mobS and mob, regulatory protein RepA. Origin of replication colEl.
  • Figure 11 shows the map of the vector that was used to generate these Methylobacteriaceae cells expressing the ghrA eC o-ecm r sh with the following elements: lacl gene, lacl promoter, PL/O4/A1 promoter -33 region -10 region Transcription start, PL/O4/A1 promoter ribosomal binding site (RBS), ghrA eco (codon-optimized), rsh-ecm (codon-optimized), lambda T0 terminator, kanamycin resistance, mobilization genes mobS and mob, regulatory protein RepA. Origin of replication colEl.
  • Methylorubrum extorquens TK 0001 cells comprising an exogenous codon-optimized nucleic acid sequence (SEQ ID No. 3) encoding a glyoxylate reductase from the bacterium Escherichia coli K-12 MGI 655 and an exogenous ethylmalonyl-CoA mutase
  • SEQ ID No. 3 The native nucleic acid sequence encoding the bacterium Methylorubrum extorquens TK 0001 DSM 1337 (SEQ ID No.
  • Methylorubrum extorquens TK 0001 cells comprising an exogenous codon-optimized nucleic acid sequence (SEQ ID No. 3) encoding a glyoxylate reductase from the bacterium Escherichia coli K-12 MGI 655 and an exogenous ethylmalonyl CoA mutase from the bacterium Rhodobacter sphaeroides ATCC 17029 codon-optimized nucleic acid sequence (SEQ ID No.
  • Fermentation experiments were carried out in culture medium as the reaction medium and methanol (educt) as the sole carbon source.
  • Figure 7 shows the time course of the biomass concentration (ODeoo) and the medium pH value over the course of the cultivation. At the same time, culture supernatant samples were measured using high-performance chromatography to show the substrate and product concentrations and their changes over time.
  • Figure 7 shows the time in hours on the x-axis and the growth course on the y-axes (ODeoo, circles, black filled), pH value (triangles, tip at the bottom), methanol (squares, unfilled) and glycolic acid ( Diamonds, dark gray filled) and lactic acid concentrations (triangles, gray filled, tip at the top) of M. extorquens TK 0001 + pTE1887 (A), M. extorquens TK 0001 according to the invention + pTE1887-ghrAeco (codon-optimized) (M. extorquens GAI) ( B), M.
  • extorquens TK 0001 according to the invention + pTE1887-ghrAeco-ecm me a (ghrAeco: codon-optimized; ecm me a: native) (M. extorquens GA2) (C) and M. extorquens TK 0001 according to the invention + pTE1887-ghrA eC o-ecm r sh (both genes codon-optimized) (M. extorquens GA3) (D) in culture medium with 10 g L' 1 methanol as the sole starting material, i.e. as a Cx compound.
  • extorquens GAI extorquens GAI strain according to the invention to 70% compared to the empty vector strain .
  • the product yield based on the dry biomass (Yp/x) is 0.27 g gdry biomass (Table 4).
  • the additional implementation of the exogenous ethylmalonyl-CoA mutases leads to a significant improvement in glycolic acid production performance compared to the M. extorquens TK 0001 + pTE1887-ghrA eC o strain according to the invention.
  • extorquens TK 0001 + pTE1887- strain according to the invention ghrA eC o- ecmmea was delayed with a measured growth rate (p) of 0.10 h' 1 compared to the empty vector strain (0.17 h' 1 ).
  • the dry biomass substrate yield is also reduced by 49% compared to the empty vector strain and by 27% compared to the M. extorquens TK 0001 + pTE1887-ghrA eC strain according to the invention.
  • glycolic acid production from methanol is possible.
  • the respective use of two exogenous ethylmalonyl-CoA mutase enzymes from two different prokaryotic strains increased the production performance of the production strains according to the invention compared to the strain according to the invention, comprising ghrA eco without an exogenous ethylmalonyl-CoA mutase.
  • the use of the ethylmalonyl-coa mutase ecm rs h surprisingly leads to a significantly increased and more selective lactic acid production.
  • Table 4 Summary of the cultivation parameters of M. extorquens TK 0001 + pTE1887 and M. extorquens TK 0001 + pTE1887-ghrA eC o (codon-optimized) (M. extorquens GAI), M. extorquens TK 0001 + pTE1887- according to the invention ghrAeco-ecnimea (ghrA eco : codon-optimized; ecm me a: native) (M. extorquens GA2) and M.
  • M. extorquens GA3 in culture medium with 10 g L' 1 methanol.
  • p specific growth rate
  • MeOH methanol
  • GS glycolic acid
  • BTM dry biomass.
  • Example 5 Experimental data for the detection of the enzyme activity of the glyoxylate reductase expressed according to the invention (ghrA ec0 ) and a comparison enzyme, namely an E. coli hydroxypyruvate reductase (ghrB ec0 ):
  • the strains were cultured for an initial three-day preculture (in minimal medium with methanol (see Example 1) in baffled shake flasks (250 mL flask volume, 50 mL culture volume) at 30 °C, 150 RPM and a steam-saturated atmosphere (New BrunswickTM Innova 44, Eppendorf AG, Hamburg, Germany). Subsequently, a second preculture was inoculated from the overgrown first preculture in minimal medium with methanol in baffled shake flasks (250 mL flask volume, 50 mL culture volume).
  • the initial biomass concentration used for the inoculation corresponded to an optical density of 600 nm (ODeoo) of 0.1.
  • the cell disruption to obtain crude protein extracts containing the expressed glyoxylate or hydroxypyruvate reductases was carried out in 2.0 mL reaction vessels. For this purpose, 1.5 mL of the cell suspension were transferred into these reaction vessels and then disrupted using ultrasound six times for 30 seconds each at an amplitude of 60 in an ice-water bath. Between each of the six digestion cycles, the samples were cooled on ice for 1 min. Finally, to obtain the crude protein extract, a centrifugation step followed at 21,500 rpm for 15 min at 4 °C. The protein-containing supernatant obtained was transferred to 1.5 mL reaction vessels. In order to ensure comparability of the results of the enzyme assay, the protein concentration of the respective crude protein extracts was determined using a NanoDropTM.
  • the crude extract with the lowest concentration measured was used as the target concentration for dilution of the other crude extracts with 50 mM MOPS buffer (pH 6.6). This made it possible to ensure that all crude protein extracts in the enzyme assay contained the same total protein concentration. Furthermore, these pre-diluted crude protein extracts were diluted again (1:5) with 50 mM MOPS buffer (pH 6.6) and then used in the enzyme assay.
  • the enzyme assay was carried out in 96 well microtiter plates. For this purpose, 20 pL of 50 mM glyoxylate as substrate and 20 pL of 2 mM cofactor stock solution (NADH or NADPH, final concentration in the assay 0.2 mM) were added to 160 pL of the diluted crude protein extracts. The experimental approaches are carried out in three technical replicates. Enzyme activity was measured as the change in absorbance of NADH at 340 nm at 37 °C for up to 30 min. For evaluation, the maximum change in absorbance over time in the linear region of the reaction was determined and multiplied by the dilution factor of five before calculation the enzyme activity in U mL' 1 .
  • Enzyme activity was calculated using Equation 6 and the coefficients given. (Equation 6) With enzyme activity: Measured in mol substrate min.' 1 , crude protein extract assay: volume of crude protein extract used in the assay (0.00016 L), S: change in absorption at 340 nm corrected by the dilution factor of five over time in the linear range of the reaction (Abs.34o min.' 1 ) , VAssa y : total volume of the assay (0.0002 L), s: extinction coefficient of NADH/NADPH at 340 nm (6220 L mol' 1 cm' 1 ), d: layer thickness of the absorbing reaction mixture (0.53 cm).
  • the enzyme activities obtained were assigned to the respective expression strains and the cofactors NADH or NADPH used for a graphical comparison.
  • the void vector shows only minor background activity. This was subtracted from all other measured values in order to correct the background reaction that occurred.
  • the enzyme activity caused by the gene ghrA eC oc-optimized is significantly reduced at 0.49 ⁇ 2.34 mU mL' 1 compared to ghrBeco-c-optimized. A reduction in enzyme activity of around 95% was measured here.
  • the enzyme activity of the NADH assays with the native genes is in a similar range: 4.61 ⁇ 1.61 mU mL' 1 versus 2.45 ⁇ 0.67 mU mL' 1 for ghrA eC o-native and ghrBeco-native. Codon optimization of ghrB eco resulted in an increase in activity by 329%. In summary, a clear dependence of the ghrB eco enzyme on NADH as a cofactor can be seen.
  • the increased enzyme activity with NADPH as a cofactor triggered by the expression of ghrAeco-c-optimized shows that glycolic acid production by M. extorquens is possible through the expression of this enzyme.
  • the significantly reduced enzyme activity with both NADPH and NADH, which was measured in connection with ghrB eC oc-optimized, is not sufficient to enable glycolic acid production in M. extorquens in vivo.
  • the introduction of the DNA sequence of the ghrA eC o enzyme, in particular the codon-optimized DNA sequence leads to glycolic acid production and to a surprising production of lactic acid.
  • Methylorubrum in particular M. zatmanii DSM 5688, in particular M. extorquens TK 0001 DSM 1337 (Examples 2 to 5), in particular M. extorquens PA1 DSM 23939, in particular M.
  • rhodesianum DSM 5687 a derivative, was examined in particular as a representative of the Methyl ob acteriaceae of M. extorquens AMI DSM 1338 with a deletion of a cellulase gene (M. extorquens AMlAcel: https://doi.org/10.1371/journal.pone.0062957), and Methylobacterium cells, in particular M. organophilum DSM 18172, in particular M. radiotolerans DSM 760.
  • Methylomonas methanica DSM 25384 (Gammaproteobacteria), Methylophilus methylotrophus DSM 6330 (Betaproteobacteria) and Bacillus methanolicus DSM 16454 (Firmicutes) were examined as negative examples not belonging to the family Methyl ob acteriaceae.
  • the aforementioned microorganisms are also able to metabolize methanol and have been tested for glycolic acid and/or lactic acid production according to the invention.
  • pTE1887 expression vector, also called empty vector; plasmid map: Figure 8)
  • pTE1887-ghrA eC o expression vector which encodes the glyoxylate reductase from Escherichia coli K-12 MG1655 in a codon-optimized manner; with SEQ ID No. 3, plasmid map: Figure 9) (according to the invention)
  • pTE1887-ghrAeco-ecm r sh expression vector that codon-optimizes the glyoxylate reductase from Escherichia coli K-12 MGI 655 (codon-optimized) and the ethylmalonyl-CoA mutase from Rhodobacter sphaeroides ATCC 17029; plasmid map: Figure 11) (according to the invention).
  • Methylobacteriaceae cells comprising an exogenous codon-optimized nucleic acid sequence (SEQ ID No. 3) of the strain Methylorubrum zatmanii Mza-GA14 (M. zatmanii DSM 5688 +) encoding a glyoxylate reductase from the bacterium Escherichia coli K-12 MGI 655 pTE1887-ghrA eC o) were registered on July 19, 2023 at the DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany under the accession number DSM 34701.
  • Methylobacteriaceae cells comprising an exogenous codon-optimized nucleic acid sequence (SEQ ID No. 3) of the strain Methylorubrum extorquens Mea-GA17 (M. extorquens PA1 DSM 23939) encoding a glyoxylate reductase from the bacterium Escherichia coli K-12 MGI 655 + pTE1887-ghrA eC o) were deposited on July 19, 2023 at the DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany under the deposit number DSM 34702.
  • Methylobacteriaceae cells comprising an exogenous codon-optimized nucleic acid sequence (SEQ ID No. 3) encoding a glyoxylate reductase from the bacterium Escherichia coli K-12 MGI 655 of the strain Methylorubrum rhodesianum Mrh-GA4 (M. rhodesianum DSM 5687 + pTE1887-ghrA eC o) were deposited on July 19, 2023 at the DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany under the deposit number DSM 34697.
  • SEQ ID No. 3 codon-optimized nucleic acid sequence
  • Methylobacteriaceae cells comprising an exogenous codon-optimized nucleic acid sequence (SEQ ID No. 3) encoding a glyoxylate reductase from the bacterium Escherichia coli K-12 MGI 655 and an exogenous ethylmalonyl-CoA mutase from the bacterium Methylorubrum extorquens TK 0001 DSM 1337 encoding native nucleic acid sequence (SEQ ID No. 4), of the strain Methylorubrum rhodesianum Mrh-GA5 (M.
  • Methylobacteriaceae cells comprising an exogenous codon-optimized nucleic acid sequence (SEQ ID No. 3) encoding a glyoxylate reductase from the bacterium Escherichia coli K-12 MGI 655 of the strain Methyl ob acterium organophilum Mor-GA8 (M. organophilum DSM 18172 + pTE1887-ghrA e co-ecm m ea) were deposited on July 19, 2023 at the DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany under the deposit number DSM 34699.
  • SEQ ID No. 3 codon-optimized nucleic acid sequence
  • Methylobacteriaceae cells comprising an exogenous codon-optimized nucleic acid sequence (SEQ ID No. 3) encoding a glyoxylate reductase from the bacterium Escherichia coli K-12 MGI 655 and an exogenous ethylmalonyl-CoA mutase from the bacterium Methylorubrum extorquens TK 0001 DSM 1337 encoding native nucleic acid sequence (SEQ ID No. 4), of the strain Methyl ob acterium radiotolerans Mra-GA12 (M.
  • SEQ ID No. 3 an exogenous codon-optimized nucleic acid sequence encoding a glyoxylate reductase from the bacterium Escherichia coli K-12 MGI 655 and an exogenous ethylmalonyl-CoA mutase from the bacterium Methylorubrum extorquens
  • radiotolerans DSM 760 + pTE1887-ghrA e co-ecm m ea) were reported on July 19, 2023 at DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany deposited under the deposit number DSM 34700.
  • Example 2 In order to examine the invention with the aforementioned strains, the procedure was as in Example 2. In contrast to Example 2, the cultivations were carried out using the Methylobacteriaceae cells M. rhodesianum (FIG. 14) DSM 5687, M. zatmanii DSM 5688 (FIG. 15), M. radiotolerans DSM 760 (FIG. 16), M. organophilum DSM 18172 (FIG 17), M. extorquens PA1 DSM 23939 ( Figure 18) started with a reduced amount of educt (Cx compound, 4 g L' 1 methanol) and fed additional educt between ten and twelve hours after induction (fed batch, cumulated until to 15 g L' 1 ). In addition, the samples were taken to determine the glycolic acid, lactic acid and methanol concentrations after 22 - 28 h after induction of gene expression with 1 mM IPTG.
  • M. rhodesianum FIG. 14
  • Figures 14 to 19 show the genetically modified Methylobacteriaceae cells on the x-axis and the concentration of methanol (white, open bar) or the concentration of the mixture of glycolic acid and lactic acid formed (black, filled bar) on the y-axis. in g L' 1 in the reaction medium. All sampling times are 22 to 28 hours after induction of gene expression with 1 mM IPTG. All concentrations are given in g L' 1 determined by HPLC, refractory index detection and external standards.
  • Figure 14 shows the screening result of glycolic acid and lactic acid production with recombinant M. rhodesianum DSM 5687 strains that express glyoxylate reductases, starting from the corresponding codon-optimized genes.
  • the first entry from the left shows the methanol concentration in the minimal medium at the start of cultivation.
  • pTE1887 was used as the expression vector, which also serves as a negative control in the form of the empty vector in the reference strain M. rhodesianum DSM 5687 + pTE1887 (second entry from the left on the x-axis).
  • both the reference strain M. rhodesianum DSM 5687 + pTE1887 (second entry from the left) and the genetically modified Methylobacteriaceae cells showed no glycolic acid and lactic acid production (entries from the left: 3 to 10 and 12 to 16), with the exception of ( black, filled bars in Figure 14) of the genetically modified cells according to the invention of M. rhodesianum DSM 5687 + pTE1887-ghrA eC o (in codon-optimized nucleic acid form according to SEQ ID No. 3), i.e.
  • a genetically modified Methylobacteriaceae cell comprising at least one exogenous nucleic acid sequence encoding a glyoxylate reductase from the bacterium Escherichia (entry from left: 11) and the genetically modified cells M. rhodesianum DSM 5687 + pTE1887-ghrA eC o-ecmmea, comprising an exogenous codon-optimized nucleic acid sequence encoding a glyoxylate reductase from the bacterium Escherichia coli K-12 MG1655 (SEQ ID No. 3) and an exogenous native nucleic acid sequence (SEQ ID No.
  • rhodesianum DSM 5687 + pTE1887-ghrA eC o-ecm r sh comprising an exogenous coding for a glyoxylate reductase from the bacterium Escherichia coli K-12 MGI 655 codon-optimized nucleic acid sequence (SEQ ID No. 3) and an exogenous codon-optimized nucleic acid sequence (SEQ ID No. 8) encoding an ethylmalonyl-CoA mutase from the bacterium Rhodobacter sphaeroides ATCC 17029, i.e.
  • a genetically modified Methylobacteriaceae cell comprising a genetically modified Methylobacteriaceae cell according to the invention at least one exogenous nucleic acid sequence encoding a glyoxylate reductase from the bacterium Escherichia (entry from left: 18).
  • Figure 9 shows the map of the vector used to generate these Methylobacteriaceae cells with the following elements: lacl gene, lacl promoter, PL/O4/A1 promoter - 33 region -10 region transcription start, PL/O4/A1 promoter ribosomal binding site (RBS), ghrAeco-c-optimized, lambda T0 terminator, kanamycin resistance, mobilization genes mobS and mob, regulatory protein RepA. Origin of replication colEl.
  • Figure 10 shows the map of the vector that was used to generate the Methylobacteriaceae cells expressing the ghrA e co-ecm m ea with the following elements: lacl gene, lacl promoter, PL/O4/A1 promoter -33 region -10 region transcription start, PL/O4/A1 promoter ribosomal binding site (RBS), ghrA eco (codon-optimized), ecm me a (native), lambda T0 terminator, kanamycin resistance, mobilization genes mobS and mob, regulatory protein RepA. Origin of replication colEl.
  • Figure 11 shows the map of the vector that was used to generate these Methylobacteriaceae cells expressing the ghrA eC o-ecm r sh with the following elements: lacl gene, lacl promoter, PL/O4/A1 promoter -33 region -10 region Transcription start, PL/O4/A1 promoter ribosomal binding site (RBS), ghrA eco (codon-optimized), rsh-ecm (codon-optimized), lambda T0 terminator, kanamycin resistance, mobilization genes mobS and mob, regulatory protein RepA. Origin of replication colEl.
  • mixtures of glycolic acid and lactic acid containing a total concentration of glycolic acid plus lactic acid up to 0.85 g L' 1 (M. rhodesianum DSM5687 + pTE1887-ghrAeco-eemmea), at least 0.82 g L' 1 (M. rhodesianum DSM5687 + pTE1887-ghrA eC o), at least 0.09 g L' 1 (M. rhodesianum DSM5687 + pTE1887-ghrA eC o-ecm r sh) are produced.
  • Figure 15 shows the screening result of glycolic acid and lactic acid production with recombinant M. zatmanii DSM 5688 strains, which, according to the invention, contain the glyoxylate reductase gene from Escherichia and, in one case, additionally the gene of an ethylmalonyl-CoA mutase from Rhodobacter sphaeroides ATCC 17029 express, starting from the corresponding codon-optimized genes.
  • the first entry from the left shows the methanol concentration in the minimal medium at the start of cultivation.
  • pTE1887 was used as the expression vector, which also serves as a negative control in the form of the empty vector in the reference strain M. zatmanii DSM 5688 + pTE1887 (second entry from the left on the x-axis).
  • the reference strain M. zatmanii DSM 5688 + pTE1887 (second entry from the left) showed no glycolic acid and lactic acid production, in contrast to (black, filled bars in Figure 15) the genetically modified cells of M. zatmanii DSM 5688 + pTE1887 according to the invention -ghrA eC o (in codon-optimized nucleic acid form according to SEQ ID No. 3), i.e.
  • a genetically modified Methylobacteriaceae cell comprising at least one exogenous nucleic acid sequence encoding a glyoxylate reductase from the bacterium Escherichia (entry from left: 3) and the genetically modified cells M. zatmanii DSM 5688 + pTE1887-ghrA eC o-ecm r sh, comprising an exogenous codon-optimized nucleic acid sequence encoding a glyoxylate reductase from the bacterium Escherichia coli K-12 MGI 655 (SEQ ID No. 3 ).
  • Bacterium Escherichia encoding nucleic acid sequence (entry from left: 4).
  • Figure 9 shows the map of the vector used to generate these Methylobacteriaceae cells with the following elements: lacl gene, lacl promoter, PL/O4/A1 promoter - 33 region -10 region transcription start, PL/O4/A1 promoter ribosomal binding site (RBS), ghrAeco-c-optimized, lambda TO terminator, kanamycin resistance, mobilization genes mobS and mob, regulatory protein RepA. Origin of replication colEl.
  • Figure 11 shows the map of the vector that was used to generate these Methylobacteriaceae cells expressing the ghrA eC o-ecm r sh with the following elements: lacl gene, lacl promoter, PL/O4/A1 promoter -33 region -10 region Transcription start, PL/O4/A1 promoter ribosomal binding site (RBS), ghrA eco (codon-optimized), rsh-ecm (codon-optimized), lambda TO terminator, kanamycin resistance, mobilization genes mobS and mob, regulatory protein RepA. Origin of replication colEl.
  • Figure 16 shows the screening result of glycolic acid and lactic acid production of a recombinant M. radiotolerans DSM 760 strain.
  • the first entry from the left shows the methanol concentration in the minimal medium at the start of cultivation.
  • pTE1887 was used as the expression vector, which also serves as a negative control in the form of the empty vector in the reference strain M. radiotolerans DSM 760 + pTE1887 (second entry from the left on the x-axis).
  • the reference strain M. radiotolerans DSM 760 + pTE1887 (second entry from the left) showed no glycolic acid and lactic acid production, in contrast to the genetically modified cells of M. radiotolerans DSM 760 + pTE1887-ghrAeco-ecm m ea according to the invention, comprising an exogenous , a codon-optimized nucleic acid sequence encoding a glyoxylate reductase from the bacterium Escherichia coli K-12 MGI 655 (SEQ ID No.
  • Figure 10 shows the map of the vector that was used to generate the Methylobacteriaceae cells expressing the ghrA e co-ecm m ea with the following elements: lacl gene, lacl promoter, PL/O4/A1 promoter -33 region -10 region transcription start, PL/O4/A1 promoter ribosomal binding site (RBS), ghrA eco (codon-optimized), ecm me a (native), lambda T0 terminator, kanamycin resistance, mobilization genes mobS and mob, regulatory protein RepA. Origin of replication colEl.
  • Figure 17 shows the screening result of glycolic acid and lactic acid production with recombinant M.
  • organophilum DSM 18172 strains that express glyoxylate reductases, starting from the corresponding codon-optimized genes. The first entry from the left shows the methanol concentration in the minimal medium at the start of cultivation.
  • pTE1887 was used as the expression vector, which also serves as a negative control in the form of the empty vector in the reference strain M.
  • organophilum DSM 18172 + pTE1887 (second entry from the left on the x-axis).
  • both the reference strain M. organophilum DSM 18172 + pTE1887 (second entry from the left) and the genetically modified Methylobacteriaceae cells showed no glycolic acid and lactic acid production (entries from the left: 3 to 10 and 12 to 18), with the exception of ( black, filled bars in Figure 17) of the genetically modified cells according to the invention of M. organophilum DSM 18172 + pTE1887-ghrA eC o (in codon-optimized nucleic acid form according to SEQ ID No. 3), i.e.
  • organophilum DSM 18172 + pTE1887-ghrA eC o-ecmmea comprising an exogenous glyoxylate reductase from the Bacterium Escherichia coli K-12 MG1655 encoding codon-optimized nucleic acid sequence (SEQ ID No. 3) and one exogenous native nucleic acid sequence (SEQ ID No.
  • organophilum DSM 18172 + pTE1887-ghrA eC o-ecm r sh comprising an exogenous codon coding for a glyoxylate reductase from the bacterium Escherichia coli K-12 MGI 655 - optimized nucleic acid sequence (SEQ ID No. 3) and an exogenous codon-optimized nucleic acid sequence (SEQ ID No. 8) encoding an ethylmalonyl-CoA mutase from the bacterium Rhodobacter sphaeroides ATCC 17029, i.e.
  • a genetically modified Methylobacteriaceae cell comprising at least one exogenous nucleic acid sequence encoding a glyoxylate reductase from the bacterium Escherichia (entry from left: 18).
  • Figure 9 shows the map of the vector used to generate these Methylobacteriaceae cells with the following elements: lacl gene, lacl promoter, PL/O4/A1 promoter - 33 region -10 region transcription start, PL/O4/A1 promoter ribosomal binding site (RBS), ghrAeco-c-optimized, lambda T0 terminator, kanamycin resistance, mobilization genes mobS and mob, regulatory protein RepA. Origin of replication colEl.
  • Figure 10 shows the map of the vector that was used to generate the Methylobacteriaceae cells expressing the ghrA e co-ecm m ea with the following elements: lacl gene, lacl promoter, PL/O4/A1 promoter -33 region -10 region transcription start, PL/O4/A1 promoter ribosomal binding site (RBS), ghrA eco (codon-optimized), ecm me a (native), lambda T0 terminator, kanamycin resistance, mobilization genes mobS and mob, regulatory protein RepA. Origin of replication colEl.
  • Figure 11 shows the map of the vector that was used to generate these Methylobacteriaceae cells expressing the ghrA eC o-ecm r sh with the following elements: lacl gene, lacl promoter, PL/O4/A1 promoter -33 region -10 region Transcription start, PL/O4/A1 promoter ribosomal binding site (RBS), ghrA eco (codon-optimized), rsh-ecm (codon-optimized), lambda T0 terminator, kanamycin resistance, mobilization genes mobS and mob, regulatory protein RepA. Origin of replication colEl.
  • mixtures of glycolic acid and lactic acid containing a total concentration of glycolic acid plus lactic acid of up to 0.13 g L' 1 (M. organophilum DSM 18172 + pTE1887-ghrA eC o), at least 0 , 10 g L' 1 (M. organophilum DSM 18172 + pTE1887- ghrAeco-ecirimea), at least 0.04 g L' 1 (M. organophilum DSM 18172 + pTE1887-ghrA eC o- ecmrsh) are produced.
  • Figure 18 shows the screening result of glycolic acid and lactic acid production with recombinant M. extorquens PA1 DSM 23939 strains.
  • the first entry from the left shows the methanol concentration in the minimal medium at the start of cultivation.
  • pTE1887 was used as the expression vector, which also serves as a negative control in the form of the empty vector in the reference strain M. extorquens PA1 DSM 23939 + pTE1887 (second entry from the left on the x-axis).
  • the reference strain M. extorquens PA1 DSM 23939 + pTE1887 (second entry from the left) showed no glycolic acid and lactic acid production, in contrast to the genetically modified cells of M. extorquens PA1 DSM 23939 + pTE1887-ghrA eC o (in codon -optimized nucleic acid form according to SEQ ID No. 3), i.e. a genetically modified Methylobacteriaceae cell according to the invention comprising at least one exogenous nucleic acid sequence encoding a glyoxylate reductase from the bacterium Escherichia (black filled bar in Figure 18) (entry from the left: 3 ).
  • Figure 9 shows the map of the vector used to generate these Methylobacteriaceae cells with the following elements: lacl gene, lacl promoter, PL/O4/A1 promoter - 33 region -10 region transcription start, PL/O4/A1 promoter ribosomal binding site (RBS), ghrAeco-c-optimized, lambda TO terminator, kanamycin resistance, mobilization genes mobS and mob, regulatory protein RepA. Origin of replication colEl.
  • Figure 19 shows the screening result of glycolic acid and lactic acid production with recombinant M. extorquens AMlAcel strains that express glyoxylate reductases, starting from the corresponding codon-optimized genes.
  • the first entry from the left shows the methanol concentration in the minimal medium at the start of cultivation.
  • the expression vector used was pTE1887, which also serves as a negative control in the form of the empty vector in the reference strain M. extorquens AMlAcel + pTE1887 (second entry from the left on the x-axis).
  • the reference strain M. extorquens AMlAcel + pTE1887 (second entry from the left) showed no glycolic acid and lactic acid production, with the exception (black filled bar in Figure 19) of the genetically modified cells of M. extorquens AMlAcel + pTE1887-ghrA according to the invention eC o (in codon-optimized nucleic acid form according to SEQ ID No. 3), i.e. a genetically modified Methylobacteriaceae cell according to the invention comprising at least one exogenous nucleic acid sequence encoding a glyoxylate reductase from the bacterium Escherichia (entry from the left: 11).
  • Figure 9 shows the map of the vector used to generate these Methylobacteriaceae cells with the following elements: lacl gene, lacl promoter, PL/O4/A1 promoter - 33 region -10 region transcription start, PL/O4/A1 promoter ribosomal binding site (RBS), ghrAeco-c-optimized, lambda TO terminator, kanamycin resistance, mobilization genes mobS and mob, regulatory protein RepA. Origin of replication colEl.
  • Example 1 Further studies were carried out on methylotrophic microorganisms that do not belong to the family Methylobacteriaceae.
  • the strain construction procedures according to Example 1 were carried out to generate genetically modified strains of Methylomonas methanica DSM 25384 (Gammaproteobacteria), Methylophilus methylotrophus DSM 6330 (Betaproteobacteria) and Bacillus methanolicus DSM 16454 (Firmicutes). In all cases this was not possible with the strains used.
  • Table 5 Summary of the glycolic acid and lactic acid titers achieved by tested strains of the Methyl ob acteriaceae family and comparative examples (microorganisms not belonging to the Methyl ob acteriaceae family). Abbreviations: GS, glycolic acid; MS, lactic acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

90 ZUSAMMENFASSUNG Die vorliegende Erfindung betrifft eine genetisch veränderte Methylobacteriaceae-Zelle umfassend mindestens eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia codierende Nucleinsäuresequenz, ein Verfahren zur Herstellung der genetisch veränderten Methylobacteriaceae-Zelle, einen Biokatalysator umfassend die genetisch veränderte Methylobacteriaceae-Zelle, einen Bioreaktor umfassend die genetisch veränderte Methylobacteriaceae-Zelle, ein Verfahren zur Herstellung eines Produkts enthaltend Glycolsäure und Milchsäure und ein Verfahren zur Herstellung von Polyglycolsäure, Polymilchsäure oder Polylactid-co-Glycolid.

Description

BESCHREIBUNG
Genetisch veränderte Zellen von Methylobacteriaceae zur fermentativen Produktion von Glycolsäure und Milchsäure aus Cx-Verbindungen
Die vorliegende Erfindung betrifft eine genetisch veränderte Zelle aus der Familie der Methylobacteriaceae umfassend mindestens eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia codierende Nucleinsäuresequenz, ein Verfahren zur Herstellung der genetisch veränderten Methylobacteriaceae-Zelle, einen Biokatalysator umfassend die genetisch veränderte Methylobacteriaceae-Zelle, einen Bioreaktor umfassend den Biokatalysator umfassend die genetisch veränderte Methylobacteriaceae-Zelle, ein Verfahren zur Herstellung eines Produkts enthaltend Glycolsäure und ein Verfahren zur Herstellung von Polyglycol säure, Polymilchsäure oder Polylactid-co-Glycolid.
Glycolsäure, auch Hydroxyessigsäure oder Hydroxyethansäure, ist eine organische Carbonsäure mit zwei Kohlenstoffatomen, die als funktionelle Gruppen eine Carboxygruppe und am C2-Atom eine Hydroxygruppe enthält. Glycolsäure findet vielfältige Verwendung in der Textilindustrie, beispielsweise als Färbe- und Gerbmittel, in der Lebensmittelindustrie, beispielsweise als Geschmacks- und Konservierungsmittel oder Verpackungsmaterial sowie in der pharmazeutischen Industrie, beispielsweise als Hautpflegemittel (Salusjärvi, L. et al., Applied Microbiology and Biotechnology, 2019, 103(6): p. 2525-2535; im Folgenden Salusjäryi et al.). In der Polymerindustrie kann Glycolsäure zusammen mit Milchsäure zu einem Co-Polymer (Polylactid-co-Glycolid) oder in der Medizintechnik als Polyglycol säure zu einem vom Körper resorbierbaren Nahtmaterial verarbeitet werden (Salusjäryi et al.; Jem, K.J. and B. Tan, Advanced Industrial and Engineering Polymer Research, 2020. 3(2): p. 60-70; im Folgenden Jem et al.). Derzeit wird Glycolsäure industriell nahezu nur petrochemisch aus fossilen Rohstoffen über Formaldehyd, Kohlenstoffmonoxid und Wasser hergestellt. Es wird intensiv nach nachhaltigen Wegen gesucht, wie die wirtschaftlich relevante Verbindung Glycolsäure unabhängig von fossilen Ressourcen aus erneuerbaren Rohstoffen hergestellt werden kann.
Die Produktion von Glycolsäure aus erneuerbaren Substraten, wie D-Glucose, D-Xylose, D- Arabinose, L-Lyxose, L-Arabinose, Acetate oder Ethanol, über mikrobielle Fermentation ist bekannt, aber industriell noch nicht etabliert (Salusjäryi et al., Jem et al., Gädda, T.M. et al., Appita Journal, 2014. 67(1): p. 12). Diese Substrate werden aus biogenen Rohstoffen gewonnen. Daher besteht bei der Nutzung solcher Substrate ein Nachhaltigkeitsrisiko, da Rohstoffe zur chemischen Produktion eingesetzt werden, die auch zur Produktion von Nahrungs- und Futtermitteln verwendet werden können, wie Bioethanol.
Die Synthese von Glycolsäure ist biotechnologisch gut zugänglich aus Substraten wie Hexosen, Pentosen oder beispielsweise Glycolnitril, offenbart in der US 7,198,927 B2, Formaldehyd und Cyanwasserstoff, offenbart in der EP 1 828 393 Bl oder Ethylenglykol, offenbart in der EP 2 025 760 Bl. Im Gegensatz dazu ist die direkte biotechnologische Synthese von Glycolsäure aus CO2 biotechnologisch schwer zugänglich. Dies unter anderem aufgrund der inhärenten Limitierung der Effizienz des photosynthetischen Stoffwechsels beziehungsweise des Gas- Flüssig-Massentransfers der Gasfermentation. Die letztgenannten beiden Ansätze werden weiterhin durch niedrige Ausbeuten und Umsatzraten und die Zahl der dafür verfügbaren und genetisch zugänglichen Mikroorganismen limitiert (Frazäo, C.J.R. and T. Walther, Chemie Ingenieur Technik, 2020. 92(11): p. 1680-1699, sowie Kang, N.K., M. Kim, K. Baek, Y.K. Chang, D.R. Ort, and Y.-S. Jin, Chemical Engineering Journal, 2022. 433: p. 133636).
Biotechnologisch nutzbare Intermediate, wie Methanol oder Ameisensäure, können auf verschiedenen Wegen aus CO2 hergestellt werden (Bohlen, et al., Electrochemistry Communications, 2020. 110: p. 106597; Bowker, M., ChemCatChem, 2019, 11(17): p. 4238- 4246; Lenärd-Istvan Csepei, F.S. et al., F.-G.z.F.d.a.F. e.V., Editor, 2016: Germany) und werden im Folgenden auch als Cx- Verbindungen bezeichnet.
Cx- Verbindung en, beispielsweise Methanol oder Ameisensäure oder auch Mischungen dieser beiden Substrate, können von methylotrophen Mikroorganismen als Energiequelle verwendet werden, um diese für den Aufbau von Biomasse oder Wertprodukten, insbesondere chemischen Produkten zu nutzen. Im zentralen Kohlenstoffmetabolismus von methylotrophen Mikroorganismen werden Cx- Verbindungen wie Methanol oder Ameisensäure als Substrat aufgenommen. In ersten Reaktionsschritten wird beispielsweise Methanol zu Ameisensäure oxidiert. Dabei entstehen die im Metabolismus benötigten Redox-Äquivalente Cytochrom-C in seiner reduzierten Form und NAD(P)H. Nachfolgend kann Ameisensäure entweder zu CO2 oxidiert oder (wie auch Formaldehyd) in den Serinzyklus eingeschleust werden. Der Serinzyklus dient dem methylotrophen Mikroorganismus als Verteilerkreis des Kohlenstoffs und stellt die hauptsächlich benötigten Präkursoren für die Biomasse-Synthese bereit. Außerdem ist der Serinzyklus Anknüpfungspunkt für weitere Stoffwechselwege, die zwingend für das Wachstum auf Cx- Verbindungen benötigt werden. Beispielsweise wird im Serinzyklus durch den angeknüpften Ethylmalonyl-CoA-Stoffwechselweg das Intermediat Glyoxylat regeneriert. Das Serinzyklus-Intermediat Glyoxylat kann durch Reduktion mit NADH oder NADPH gekoppelt an eine Glyoxylat-Reduktase (ghrA) in Glycolsäure überführt werden. Glyoxylat-Reduktasen (ghrA) gehören gemeinsam mit Hydroxypyruvat-Reduktasen (ghrB) zu den Glyoxylat-/Hydroxypyruvat-Reduktasen (ghr).
Es ist bekannt, dass im M. extorquens TK 0001 -Genom eine DNA-Sequenz vorhanden ist, die eine endogene Glyoxylat-Reduktase (EC: 1.1.1.26, https://www.ncbi.nlm.nih.gov/nuccore/LT962688) codiert. Der Wildtypstamm von M. extorquens TK 0001 produziert trotz Präsenz der endogenen Glyoxlat-Reduktase-DNA- Sequenz und von Glyoxylat als Ausgangsverbindung im Stoffwechsel allerdings keine über HPLC oder GC-MS messbaren Mengen an Glycolsäure.
Wünschenswert ist die Bereitstellung einer fermentativen Produktion von Glycolsäure aus Cx- Verbindungen wie Methanol oder Ameisensäure und von Mitteln dazu, insbesondere methylotrophen Mikroorganismen, die befähigt sind, solche Cx- Verbindungen, beispielsweise Methanol, Ameisensäure oder eine Mischung davon, zu Glycolsäure umzusetzen. Wünschenswert ist auch die Bereitstellung eines Verfahrens, gemäß dem Glycolsäure über eine integrierte Prozesskaskade auf vollständig erneuerbare Weise aus CO2 als einzigem Rohstoff gewonnen werden kann, also ohne den Verbrauch fossiler oder biogener Ressourcen.
Das der vorliegenden Erfindung zugrunde liegende technische Problem liegt daher darin, die vorgenannten Nachteile zu überwinden. Insbesondere liegt das der vorliegenden Erfindung zugrunde liegende technische Problem darin, eine biologische Zelle bereitzustellen, die es ermöglicht, ein Ausgangsmaterial, im Folgenden auch Edukt genannt, enthaltend mindestens eine Cx- Verbindung, insbesondere Methanol, Ameisensäure oder eine Mischung davon, zu einem Produkt enthaltend Glycolsäure umzusetzen. Insbesondere liegt das der vorliegenden Erfindung zugrunde liegende technische Problem darin, Mittel und Verfahren bereitzustellen, die es ermöglichen, solch eine Zelle zu erhalten, insbesondere solche Mittel und Verfahren, die kostengünstig und leicht handhabbar sind. Insbesondere liegt das der vorliegenden Erfindung zugrunde liegende technische Problem darin, Mittel und Verfahren, insbesondere ein kostengünstiges und leicht handhabbares Verfahren, bereitzustellen, um ein Produkt enthaltend Glycolsäure zu erhalten. Insbesondere liegt das der vorliegenden Erfindung zugrunde liegende technische Problem darin, Mittel und Verfahren bereitzustellen, die eine nachhaltige Synthese von Glycolsäure ermöglichen, die nahezu vollständig ohne, insbesondere ohne, die Nutzung fossiler Ressourcen und/oder nahezu vollständig ohne, insbesondere ohne, biogene Rohstoffe auskommt und vorzugsweise von CO2 als einzigem Rohstoff ausgehen. Insbesondere ist es ein technisches Problem der vorliegenden Erfindung, derartige Mittel und Verfahren bereitzustellen, die kostengünstig, umweltschonend und leicht handhabbar sind. Darüber hinaus liegt der vorliegenden Erfindung insbesondere das technische Problem zugrunde, Mittel und Verfahren bereitzustellen, die ein Erhalten von Polyglycol säure, Polymilchsäure oder Polylactid-co-Glycolid ermöglichen.
Das technische Problem wird durch die Lehren der unabhängigen Ansprüche, der abhängigen Ansprüche sowie der Lehre der Beschreibung gelöst, insbesondere durch eine genetisch veränderte Methylobacteriaceae-Zelle umfassend mindestens eine exogene, eine Glyoxylat- Reduktase aus dem Bakterium Escherichia codierende Nucleinsäuresequenz.
Erfindungsgemäß ist demgemäß vorgesehen, eine genetisch veränderte Methylobacteriaceae- Zelle bereitzustellen, also eine Zelle, die durch mindestens eine genetische Veränderung vom Methylobacteriaceae-Wildtypstamm abweicht. Weiter ist erfindungsgemäß vorgesehen, dass die genetisch veränderte Methylobacteriaceae-Zelle mindestens eine exogene Nucleinsäuresequenz umfasst, wobei die Nucleinsäuresequenz eine Glyoxylat-Reduktase aus dem Bakterium Escherichia codiert. Die genetische Veränderung des Wildtypstamms der Methylobacteriaceae-Zelle ist demgemäß mindestens die genetische Integration mindestens einer exogenen Nucleinsäuresequenz in die Methylobacteriaceae-Zelle, wobei die exogene Nucleinsäuresequenz eine Glyoxylat-Reduktase aus dem Bakterium Escherichia codiert. Die exogene Nucleinsäuresequenz kann synthetischen Ursprungs sein oder natürlicherweise vorkommen, insbesondere in Escherichia. In einer bevorzugten Ausführungsform der vorliegenden Erfindung umfasst die erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle mindestens eine exogene, eine Glyoxylat-Reduktase codierende Nucleinsäuresequenz, welche natürlicherweise vorkommt oder eine codon-optimierte, insbesondere Methylobacteriaceae-codon-optimierte, insbesondere Methylorubrum-codeon- optimierte oder Methylobacterium-codon-optimierte, insbesondere Methylorubrum extorquens-codon-optimierte, insbesondere Methylorubrum extorquens TK 0001-, Methylorubrum extorquens PA1- oder Methylorubrum AMI -codon optimierte Nucleinsäuresequenz.
Überraschenderweise ermöglicht es eine solche erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle eine Cx-Verbindung zu Glycolsäure umzusetzen, insbesondere ein Ausgangsmaterial, nämlich einem Edukt enthaltend mindestens eine Cx-Verbindung, insbesondere Methanol, Ameisensäure oder eine Mischung davon, zu einem Produkt enthaltend Glycolsäure, insbesondere zu über HPLC oder GC-MS messbaren Mengen, umzusetzen. Der Wildtypstamm der Methylobacteriaceae-Zelle, der lediglich eine endogene, eine Glyoxylat- Reduktase codierende Nucleinsäuresequenz aufweist, ist hingegen nicht in der Lage, eine Cx- Verbindung zu Glycolsäure umzusetzen, insbesondere das Ausgangsmaterial, nämlich ein Edukt enthaltend mindestens eine Cx- Verbindung, zu einem Produkt enthaltend Glycolsäure, insbesondere zu über HPLC oder GC-MS messbaren Mengen, umzusetzen.
Die vorliegende Erfindung stellt also eine genetisch veränderte Methylobacteriaceae-Zelle bereit, die in der Lage ist, ein Edukt enthaltend mindestens eine Cx- Verbindung, insbesondere Methanol, Ameisensäure oder eine Mischung davon, zu einem Produkt enthaltend Glycolsäure umzusetzen. Cx- Verbindungen stellen vorteilhafterweise erneuerbare, aber nicht-biogene Substrate für biotechnologische Prozesse dar, die darüber hinaus durch ihren flüssigen Zustand einfach handhabbar und, anders als Gase, nicht im Massentransfer in flüssigen Reaktionsgemischen limitiert sind und werden durch die erfindungsgemäße Lehre für die Glycol säure-Herstellung besonders leicht zugänglich gemacht. Glycolsäure kann so erfindungsgemäß vollständig erneuerbar aus CO2 hergestellt werden, sofern die CO2- Umwandlung zu einer Cx- Verbindung, insbesondere Methanol, mit erneuerbarer Energie betrieben wird. Auf diese Weise gelingt vorteilhafterweise die Verbindung von PtX-Prozessen (Power-to-X) mit Biotechnologie zu einem beispielhaften PtXtY-Prozess (Power-to-X-to-Y).
Die erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle kann demgemäß vorteilhafterweise in einem Verfahren zur Herstellung von Glycolsäure aus mindestens einer Cx- Verbindung, insbesondere zur Herstellung eines Produkts enthaltend Glycolsäure unter Umsetzung eines Edukts enthaltend mindestens eine Cx- Verbindung, insbesondere Methanol, Ameisensäure oder eine Mischung davon, eingesetzt werden. Bevorzugt weist das durch die erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle erhaltene Produkt enthaltend Glycolsäure zusätzlich neben Glycolsäure Milchsäure auf. Erfindungsgemäß wird ein besonders einfaches, leicht handhabbares und kostengünstiges Herstellungsverfahren für ein Produkt enthaltend Glycolsäure, insbesondere Glycolsäure und Milchsäure, bereitgestellt, sodass ein hoher apparativer und kostenbezogener Aufwand vermieden wird. Die vorliegende Erfindung ist auch insofern vorteilhaft, als dass sie die sich häufig an eine Glycolsäure- Bereitstellung, insbesondere Glycolsäure- und Milchsäure-Bereitstellung, anschließende Polymerisation von Glycolsäure, insbesondere Glycolsäure und Milchsäure, zur Herstellung von Polyglycol säure, insbesondere Polyglycol säure, Polymilchsäure oder Polylactid-co- Glycolid, ermöglicht, und demgemäß die Herstellung von Polyglycol säure, insbesondere Polygly col säure, Polymilchsäure oder Polylactid-co-Glycolid ermöglicht, ohne dass kostenintensive und umfangreiche Verfahrensschritte durchgeführt werden müssten.
Ohne an die Theorie gebunden sein zu wollen, kann durch die in der erfindungsgemäßen genetisch veränderten Methylobacteriaceae-Zelle vorhandene, exogene Glyoxylat-Reduktase, codiert durch die mindestens eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia codierende Nucleinsäuresequenz im Serinzyklus der erfindungsgemäßen genetisch veränderten Methylobacteriaceae-Zelle eine Cx-Verbindung zu Glycolsäure umgesetzt werden, insbesondere ein Edukt enthaltend mindestens eine Cx-Verbindung, insbesondere Methanol, Ameisensäure oder eine Mischung davon, zu einem Produkt enthaltend Glycolsäure, insbesondere in über HPLC oder GC-MS messbare Mengen, umgesetzt werden. Bevorzugt setzt die endogen im Wildtypstamm codierte Glyoxylat-Reduktase der erfindungsgemäßen genetisch veränderten Methylobacteriaceae-Zelle im Metabolismus des Wildtypstamms keine über HPLC oder GC-MS messbaren Mengen, insbesondere kein, Edukt enthaltend mindestens eine Cx-Verbindung, insbesondere Methanol, Ameisensäure oder eine Mischung davon, zu einem Produkt enthaltend Glycolsäure um, sodass die Glyoxylat-Reduktase-Aktivität allein durch die erfindungsgemäß vorgesehene Integration der exogenen Glyoxylat-Reduktase codierenden Nucleinsäuresequenz in genomischer oder episomaler Form und deren Expression steuerbar ist.
Die erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle ist also durch die enzymatische Aktivität der exogenen Glyoxylat-Reduktase gekennzeichnet, insbesondere ihre durch das Vorhandensein der exogenen Glyoxylat-Reduktase bewirkte Fähigkeit, eine Cx- Verbindung zu Glycolsäure umzusetzen, insbesondere ein Edukt enthaltend mindestens eine Cx-Verbindung, insbesondere Methanol, Ameisensäure oder eine Mischung davon, insbesondere in einem Reaktionsmedium, zu einem Produkt enthaltend Glycolsäure umsetzen zu können, insbesondere in einem flüssigen Reaktionsmedium umsetzen zu können, insbesondere diese Reaktion enzymatisch zu katalysieren.
Die genetisch veränderte Methylobacteriaceae-Zelle zeichnet sich bevorzugt demgemäß dadurch aus, dass sie, insbesondere ihr Genom, dem Wildtypstamm der Methylobacteriaceae- Zelle gleicht, insbesondere identisch zu dieser ist, bis auf das Vorhandensein mindestens einer exogenen, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia codierenden Nucleinsäuresequenz, die der erfindungsgemäßen Methylobacteriaceae-Zelle die erfindungsgemäß vorteilhafte enzymatische Aktivität verleiht, und gegebenenfalls damit verbundener exogener Nucleinsäuresequenzen eines Expressionsvektors oder einer Expressionskassette. In einer bevorzugten Ausführungsform der vorliegenden Erfindung können in einer erfindungsgemäßen Methyl ob acteriaceae, insbesondere ihrem Genom, zusätzlich zu der mindestens einen, die Glyoxylat-Reduktase codierenden Nucleinsäuresequenz weitere, insbesondere gentechnisch erzeugte genetische Veränderungen im Vergleich zum Wildtypstamm vorliegen.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das Bakterium Escherichia coli, insbesondere E. coli K-12 MGI 655.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist die Methylobacteriaceae-Zelle eine Methylorubrum-Zelle, insbesondere eine Zelle von Methylorubrum extorquens, insbesondere Methylorubrum extorquens TK 0001, insbesondere Methylorubrum extorquens PA1, Methylorubrum extorquens AMI, Methylorubrum rhodesianum oder Methylorubrum zatmanii.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist die erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle eine genetisch veränderte Methylorubrum extorquens AMl-Zelle, genetisch veränderte Methylorubrum extorquens TK 0001-Zelle, oder eine genetisch veränderte Methylorubrum extorquens PA1 -Zelle umfassend mindestens eine exogene, eine Glyoxylat-Reduktase aus einem Bakterium Escherichia coli, insbesondere E. coli K-12 MGI 655 codierende Nucleinsäuresequenz.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist die Methylobacteriaceae-Zelle eine Methylobacterium-Zelle, insbesondere eine Zelle von Methyl ob acterium organophilum oder Methyl ob acterium radiotolerans.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist die Methylobacteriaceae-Zelle eine Methylorubrum-Zelle, insbesondere eine Zelle von Methylorubrum extorquens, insbesondere Methylorubrum extorquens AMI, Methylorubrum extorquens TK 0001, Methylorubrum extorquens PA1, Methylorubrum rhodesianum oder Methylorubrum zatmanii, oder eine Methylobacterium-Zelle, insbesondere eine Zelle von Methyl ob acterium organophilum oder Methyl ob acterium radiotolerans.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird die exogene Glyoxylat-Reduktase durch eine Nucleinsäuresequenz gemäß SEQ ID Nr. 3 oder einem funktionalen Nucleinsäuresequenz-Äquivalent davon codiert, wobei das funktionale Nucleinsäuresequenz -Äquivalent eine Nucleinsäuresequenzidentität von mindestens 30,0 %, bevorzugt 30,0 bis 99,9 %, bevorzugt 40,0 bis 99,9 %, bevorzugt 50,0 bis 99,9 % , bevorzugt 60,0 bis 99,9 %, bevorzugt 70,0 bis 99,9 %, bevorzugt von 76,0 bis 99,9 %, bevorzugt von 80,0 bis 99,9 %, bevorzugt 90,0 bis 99,9 %, bevorzugt 95,0 bis 99,9 %, bevorzugt 98,0 bis 99,9 %, bevorzugt 90,0 bis 99,0 % zu der Nucleinsäuresequenz gemäß SEQ ID Nr. 3 aufweist und wobei die davon codierte Glyoxylat-Reduktase in der Lage ist, ein Edukt enthaltend mindestens eine Cx- Verbindung, insbesondere Methanol, Ameisensäure oder eine Mischung davon, zu einem Produkt enthaltend Glycolsäure umzusetzen. Bevorzugt beträgt die Nucleinsäuresequenzidentität mindestens 76,0 zu der Nucleinsäuresequenz gemäß SEQ ID Nr. 3.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung betrifft die vorliegende Erfindung also eine genetisch veränderte Methylobacteriaceae-Zelle, insbesondere eine Methylorubrum-Zelle oder Methylobacterium-Zelle, umfassend eine eine exogene Glyoxylat- Reduktase codierende Nucleinsäuresequenz, insbesondere eine Nucleinsäuresequenz gemäß SEQ ID Nr. 3.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung betrifft die vorliegende Erfindung also auch eine genetisch veränderte Methylobacteriaceae-Zelle, insbesondere Methylorubrum-Zelle oder Methylobacterium-Zelle, umfassend ein funktionales Nucleinsäuresequenz-Äquivalent der mindestens einen exogenen, eine Glyoxylat-Reduktase codierenden Nucleinsäuresequenz gemäß SEQ ID Nr. 3, wobei das funktionale Nucleinsäuresequenz-Äquivalent eine Nucleinsäuresequenzidentität von mindestens 30,0 %, bevorzugt 30,0 bis 99,9 %, bevorzugt 40,0 bis 99,9 %, bevorzugt 50,0 bis 99,9 %, bevorzugt 60,0 bis 99,9 %, bevorzugt 70,0 bis 99,9 %, bevorzugt 76,0 bis 99,9 %, bevorzugt 80,0 bis 99,9 %, bevorzugt 90,0 bis 99,9 %, bevorzugt 95,0 bis 99,9 %, bevorzugt 98,0 bis 99,9 %, bevorzugt 90,0 bis 99,0 % zu der Nucleinsäuresequenz gemäß SEQ ID Nr. 3 aufweist und wobei die davon codierte Glyoxylat-Reduktase in der Lage ist, ein Edukt enthaltend mindestens eine Cx- Verbindung, insbesondere Methanol, Ameisensäure oder eine Mischung davon, zu einem Produkt enthaltend Glycolsäure umzusetzen.
In einer besonders bevorzugten Ausführung der vorliegenden Erfindung weist das funktionale Nucleinsäuresequenz-Äquivalent der Nucleinsäuresequenz gemäß SEQ ID Nr. 3 eine Nucleinsäuresequenz mit einer Länge von mindestens 800, bevorzugt mindestens 850, bevorzugt mindestens 900, bevorzugt mindestens 950, bevorzugt mindestens 970 Nucleinsäuren auf. Erfindungsgemäß bevorzugt wird die Sequenzidentität der Nucleinsäuresequenz des Nucleinsäuresequenz-Äquivalents der Nucleinsäuresequenz gemäß SEQ ID Nr. 3 zu der Nucleinsäuresequenz gemäß SEQ ID Nr. 3 über die gesamte Länge der Nucleinsäuresequenz des Nucleinsäuresequenz-Äquivalents der Nucleinsäuresequenz gemäß SEQ ID Nr. 3 angegeben.
In einer besonders bevorzugten Ausführung der vorliegenden Erfindung ist die Nucleinsäuresequenz gemäß SEQ ID Nr. 3 eine codon-optimierte, insbesondere eine Methylorubrum-, insbesondere Methylorubrum extorquens-, insbesondere Methylorubrum extorquens AMI, Methylorubrum extorquens TK 0001-, insbesondere eine Methylorubrum extorquens PA1 -codon-optimierte Nucleinsäuresequenz der nativen, also natürlicherweise vorkommenden Nucleinsäuresequenz aus Escherichia, insbesondere E. coli, die die Glyoxylat- Reduktase aus Escherichia, insbesondere E. coli codiert. Die native Nucleinsäuresequenz aus Escherichia, die die Glyoxylat-Reduktase aus Escherichia codiert, weist die Nucleinsäuresequenz gemäß SEQ ID Nr. 1 auf und stellt ein funktionales Nucleinsäuresequenz- Äquivalent der Nucleinsäuresequenz gemäß SEQ ID Nr. 3 dar.
In einer besonders bevorzugten Ausführung der vorliegenden Erfindung weist das funktionale Nucleinsäuresequenz-Äquivalent der Nucleinsäuresequenz gemäß SEQ ID Nr. 3 die Nucleinsäuresequenz gemäß SEQ ID Nr. 1 auf.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung codiert die exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia codierende Nucleinsäuresequenz, insbesondere gemäß SEQ ID Nr. 3 oder einem funktionalen Nucleinsäuresequenz-Äquivalent davon, zum Beispiel gemäß SEQ ID Nr. 1, eine Glyoxylat-Reduktase umfassend eine, insbesondere bestehend aus einer, Aminosäuresequenz gemäß SEQ ID Nr. 2 oder eines funktionalen Aminosäuresequenz-Äquivalents davon.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung weist die exogene Glyoxylat-Reduktase eine Aminosäuresequenz gemäß SEQ ID Nr. 2 oder eines funktionalen Aminosäuresequenz-Äquivalents davon auf, wobei das funktionale Aminosäuresequenz- Äquivalent eine Aminosäuresequenzidentität von mindestens 30,0 % insbesondere 30,0 bis 99,9 %, bevorzugt 40,0 bis 99,9 %, bevorzugt 50,0 bis 99,9 %, bevorzugt 60,0 bis 99,9 %, bevorzugt 70,0 bis 99,9 %, bevorzugt von 76,0 bis 99,9 %, bevorzugt von 80,0 bis 99,9 %, bevorzugt 85,0 bis 99,9 %, bevorzugt 90,0 bis 99,9 %, bevorzugt 95,0 bis 99,9 %, bevorzugt 98,0 bis 99,9 %, zu der Aminosäuresequenz gemäß SEQ ID Nr. 2 aufweist. Bevorzugt beträgt die Aminosäuresequenzidentität mindestens 90,0 % zu der Aminosäuresequenz gemäß SEQ ID Nr. 2. In einer bevorzugten Ausführungsform der vorliegenden Erfindung betrifft die vorliegende Erfindung eine genetisch veränderte Methylobacteriaceae-Zelle, insbesondere Methylorubrum- Zelle oder Methylobacterium-Zelle, umfassend ein funktionales Aminosäuresequenz- Äquivalent der Aminosäuresequenz der SEQ ID Nr. 2, wobei das funktionale Aminosäuresequenz -Äquivalent eine Aminosäuresequenzidentität von mindestens 30,0 %, insbesondere 30,0 bis 99,9 %, bevorzugt 40,0 bis 99,9 %, bevorzugt 50,0 bis 99,9 %, bevorzugt 60,0 bis 99,9 %, bevorzugt 70,0 bis 99,9 %, bevorzugt 76,0 bis 99,9 %, bevorzugt 80,0 bis 99,9 %, bevorzugt 85,0 bis 99,9 %, bevorzugt 90,0 bis 99,9 %, bevorzugt 95,0 bis 99,9 %, bevorzugt 98,0 bis 99,9 %, zu der Aminosäuresequenz gemäß SEQ ID Nr. 2 aufweist und das in der Lage ist, ein Edukt enthaltend mindestens eine Cx- Verbindung, insbesondere Methanol, Ameisensäure oder eine Mischung davon, zu einem Produkt enthaltend Glycol säure umzusetzen.
In einer besonders bevorzugten Ausführung der vorliegenden Erfindung weist das funktionale Aminosäuresequenz-Äquivalent der Aminosäuresequenz gemäß SEQ ID Nr. 2 eine Aminosäuresequenz mit einer Länge von mindestens 300, bevorzugt mindestens 310, bevorzugt mindestens 320, bevorzugt mindestens 325 Aminosäuren auf. Erfindungsgemäß bevorzugt wird die Sequenzidentität der Aminosäuresequenz des Aminosäuresequenz- Äquivalents der Aminosäuresequenz gemäß SEQ ID Nr. 2 zu der Aminosäuresequenz gemäß SEQ ID Nr. 2 über die gesamte Länge der Aminosäuresequenz des Aminosäuresequenz- Äquivalents der Aminosäuresequenz gemäß SEQ ID Nr. 2 angegeben.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist die Cx-Verbindung eine Cx-Verbindung mit x = 1, 2 oder 4, insbesondere x=l.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist die Cx-Verbindung Ameisensäure, Methanol, Methan, Methylamin, Essigsäure oder Bernsteinsäure oder eine Mischung davon.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist die Cx-Verbindung Methanol.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist die Cx-Verbindung Ameisensäure.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthält das Edukt mindestens eine Cx-Verbindung, insbesondere Ameisensäure, Methanol, Methan, Methylamin, Essigsäure oder Bernsteinsäure oder eine Mischung davon, insbesondere besteht das Edukt aus mindestens einer Verbindung davon. In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthält das durch die Umsetzung eines Edukts enthaltend mindestens eine Cx- Verbindung erhaltene Produkt Glycolsäure, insbesondere besteht aus dieser.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthält das durch die Umsetzung eines Edukts enthaltend mindestens eine Cx-Verbindung erhaltene Produkt Glycolsäure und Milchsäure, insbesondere besteht aus diesen.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthält das Glycolsäure enthaltende Produkt Glycolsäure und Milchsäure, insbesondere 1 bis 99 Gew.-%, insbesondere 2 bis 98 Gew.-%, insbesondere 10 bis 90 Gew.-%, insbesondere 30 bis 80 Gew.-%, insbesondere 40 bis 70 Gew.-%, insbesondere 50 Gew.-%, insbesondere 60 Gew.-% Glycolsäure und insbesondere 1 bis 99 Gew.-%, insbesondere 2 bis 98 Gew.-% insbesondere 10 bis 90 Gew.-%, insbesondere 20 bis 70 Gew.-%, insbesondere 30 bis 60 Gew.-%, insbesondere 50 Gew.-%, insbesondere 40 Gew.-% Milchsäure (jeweils bezogen auf Gesamttrockengewicht des erhaltenen Produkts) oder besteht aus diesen Anteilen.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung beträgt die Wachstumsrate gmax einer erfindungsgemäßen genetisch veränderten Methylobacteriaceae-Zelle, insbesondere in einem Reaktionsmedium aufweisend eine Anfangskonzentration von bis zu 10 g L'1 eines Edukts enthaltend mindestens eine Cx-Verbindung, insbesondere bestehend aus Methanol, mindestens 0,05 h’1, mindestens 0,10 h’1, insbesondere mindestens 0,15 h’1, insbesondere mindestens 0,18 h’1, insbesondere mindestens 0,20 h’1, insbesondere mindestens 0,21 h’1, insbesondere 0,10 bis 0,30 h’1, insbesondere 0,15 bis 0,25 h’1, insbesondere 0,20 bis 0,22 h’1, insbesondere 0,21 h'1.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung beträgt der Titer eines Reaktionsmediums enthaltend das Produkt enthaltend Glycolsäure, insbesondere Glycolsäure und Milchsäure, der nach der Umsetzung von einem Edukt enthaltend mindestens eine Cx- Verbindung, insbesondere bestehend aus Methanol durch eine erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle, in einem Reaktionsmedium aufweisend eine Anfangskonzentration von bis zu 10 g L'1 Edukt, insbesondere nach 40 h Reaktionszeit, erhalten wird mindestens 0,01 g L’1, mindestens 0,10 g L’1, insbesondere mindestens 0,15 g L’1, insbesondere mindestens 0,20 g L’1, insbesondere mindestens 0,25 g L’1, insbesondere mindestens 0,50 g L-1, insbesondere mindestens 0,75 g L’1, insbesondere mindestens 1,00 g L’ 1 und insbesondere 1,50 g L'1 (jeweils bezogen auf Gewicht des Produkts pro Liter Reaktionsmedium). In einer bevorzugten Ausführungsform der vorliegenden Erfindung setzt eine erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle ein Edukt enthaltend mindestens eine Cx- Verbindung, insbesondere bestehend aus Methanol zu einem Produkt enthaltend Glycolsäure, insbesondere Glycolsäure und Milchsäure, insbesondere in einem Reaktionsmedium aufweisend eine Anfangskonzentration von bis zu 10 g L'1 des Edukts mit einer Biotrockenmasse-Substrat- Ausbeute (Yx/s) von mindestens 10 mg g’1, insbesondere mindestens 50 mg g’1, insbesondere mindestens 100 mg g’1, insbesondere mindestens 150 mg g’1, insbesondere mindestens 200 mg g’1, insbesondere 10 bis 350 mg g’1, insbesondere 50 bis 320 mg g’1, insbesondere 100 bis 300 mg g’1, insbesondere 200 bis 300 mg g’1, insbesondere 280 mg g'1 um (jeweils bezogen auf Biotrockenmasse erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle pro Gramm des Edukts).
In einer bevorzugten Ausführungsform der vorliegenden Erfindung sinkt die Biotrockenmasse- Substrat-Ausbeute (Yx/s) einer erfindungsgemäßen genetisch veränderten Methylobacteriaceae-Zelle in Relation zu der Biotrockenmasse-Substrat-Ausbeute (Yx/s) des Wildtypstamms bei der Umsetzung eines Edukts enthaltend mindestens eine Cx- Verbindung, insbesondere bestehend aus Methanol, zu einem Produkt enthaltend Glycolsäure, insbesondere Glycolsäure und Milchsäure, insbesondere in einem Reaktionsmedium aufweisend eine Anfangskonzentration von bis zu 10 g L'1 des Edukts auf weniger als 95 %, insbesondere weniger als 90 %, insbesondere weniger als 80 %, insbesondere weniger als 70 %, insbesondere auf 68 %.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung setzt eine erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle ein Edukt enthaltend mindestens eine Cx- Verbindung, insbesondere bestehend aus Methanol, zu einem Produkt enthaltend Glycolsäure, insbesondere Glycolsäure und Milchsäure, insbesondere in einem Reaktionsmedium aufweisend eine Anfangskonzentration von bis zu 10 g L'1 des Edukts, mit einer Produkt-Substrat- Ausbeute (Yp/s) von mindestens 10 mg g’1, insbesondere mindestens 50 mg g’1, insbesondere mindestens 80 mg g’1, insbesondere mindestens 100 mg g’1, insbesondere mindestens 110 mg g’1, insbesondere 10 bis 200 mg g’1, insbesondere 50 bis 180 mg g’1, insbesondere 80 bis 150 mg g’1, insbesondere 100 bis 130 mg g’1, insbesondere 120 mg g'1 um (jeweils bezogen auf Gewicht des Produkts pro Gramm Edukt).
In einer bevorzugten Ausführungsform der vorliegenden Erfindung setzt eine erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle ein Edukt enthaltend mindestens eine Cx- Verbindung, insbesondere bestehend aus Methanol, zu einem Produkt enthaltend Glycolsäure, insbesondere Glycolsäure und Milchsäure, insbesondere in einem Reaktionsmedium aufweisend eine Anfangskonzentration von bis zu 10 g L'1 des Edukts mit einer Produkt-Biotrockenmasse- Ausbeute (Yp/x) von mindestens 0,10 g g’1, insbesondere mindestens 0,20 g g’1, insbesondere mindestens 0,30 g g’1, insbesondere mindestens 0,40 g g’1, insbesondere mindestens 0,50 g g’1, insbesondere 0,10 bis 0,80 g g’1, insbesondere 0,20 bis 0,70 g g’1, insbesondere 0,30 bis 0,60 g g’1, insbesondere 0,40 bis 0,50 g g’1, insbesondere 0,50 g g’ 1 um (jeweils bezogen auf Gewicht des Produkts pro Gramm Biotrockenmasse erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle).
In einer bevorzugten Ausführungsform der vorliegenden Erfindung umfasst die erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle mindestens eine exogene, eine Ethylmalonyl-CoA-Mutase codierende Nucleinsäuresequenz.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung umfasst die erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle mindestens eine exogene, eine Ethylmalonyl-CoA-Mutase codierende Nucleinsäuresequenz, welche natürlicherweise vorkommt oder eine codon-optimierte, insbesondere Methylobacteriaceae-codon-optimierte Nucleinsäuresequenz, insbesondere eine Methylobacterium-, insbesondere Methylorubrum-, insbesondere Methylorubrum extorquens-, insbesondere Methylorubrum extorquens AMI, Methylorubrum extorquens TK 0001 -oder Methylorubrum extorquens PAI -codon optimierte Nucleinsäuresequenz.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung stammt die exogene, eine Ethylmalonyl-CoA-Mutase codierende Nucleinsäuresequenz, insbesondere aus mindestens einem Bakterium ausgewählt aus der Gruppe bestehend aus Methylorubrum extorquens, insbesondere Methylorubrum extorquens TK 0001 DSM 1337, und Rhodobacter sphaeroides, insbesondere Rhodobacter sphaeroides ATCC 17029.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist die erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle eine genetisch veränderte Methyl ob acteriacea- Zelle, insbesondere eine Methylorubrum extorquens AMI, Methylorubrum extorquens PA1, Methylorubrum extorquens TK 0001 -Zelle, umfassend mindestens eine exogene, eine Glyoxylat-Reduktase aus einem Bakterium Escherichia coli, insbesondere E. coli K-12 MG1655, codierende Nucleinsäuresequenz und mindestens eine exogene, eine Ethylmalonyl- CoA-codierende Nucleinsäuresequenz. In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist die erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle eine genetisch veränderte Methylobacteriaceae-Zelle, insbesondere eine Methylorubrum extorquens AMI, Methylorubrum extorquens PA1, Methylorubrum extorquens TK 0001 -Zelle, umfassend mindestens eine exogene, eine Glyoxylat-Reduktase aus einem Bakterium Escherichia coli K- 12 MGI 655 codierende Nucleinsäuresequenz und mindestens eine exogene, eine Ethylmalonyl-CoA-Mutase aus einem Bakterium Methylorubrum extorquens TK 0001 DSM 1337 codierende Nucleinsäuresequenz.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle eine genetisch veränderte Methylobacteriaceae-Zelle, insbesondere eine Methylorubrum extorquens AMI, Methylorubrum extorquens PA1, Methylorubrum extorquens TK 0001 -Zelle, umfassend mindestens eine exogene, eine Glyoxylat-Reduktase aus einem Bakterium Escherichia coli K- 12 MGI 655 codierende Nucleinsäuresequenz und mindestens eine exogene, eine Ethylmalonyl-CoA-Mutase aus einem Bakterium Rhodobacter sphaeroides ATCC 17029 codierende Nucleinsäuresequenz.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung betrifft die vorliegende Erfindung also auch eine genetisch veränderte Methylobacteriaceae-Zelle, die mindestens zwei verschiedene exogene Nucleinsäuresequenzen umfasst, also eine genetisch veränderte Methylobacteriaceae-Zelle, die neben der mindestens einen exogenen, eine Glyoxylat- Reduktase aus dem Bakterium Escherichia codierende Nucleinsäuresequenz mindestens eine weitere exogene Nucleinsäuresequenz umfasst, welche eine Ethylmalonyl-CoA-Mutase codiert.
Überraschenderweise ermöglicht eine solche erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle eine erhöhte Glycolsäureausbeute, insbesondere Glycolsäure- und Milchsäureausbeute, im Vergleich zu der Glycolsäureausbeute, insbesondere Glycolsäure- und Milchsäureausbeute, erhalten durch die Umsetzung von einem Edukt enthaltend mindestens eine Cx- Verbindung, insbesondere Methanol, Ameisensäure oder eine Mischung davon, durch eine erfindungsgemäße Methylobacteriaceae-Zelle, umfassend mindestens eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia codierende Nucleinsäuresequenz, die keine exogene, eine Ethylmalonyl-CoA-Mutase codierende Nucleinsäuresequenz aufweist, insbesondere keine aus mindestens einem Bakterium ausgewählt aus der Gruppe bestehend aus Methylorubrum extorquens, insbesondere Methylorubrum extorquens TK 0001 DSM 1337, und Rhodobacter sphaeroides, insbesondere Rhodobacter sphaeroides ATCC 17029, codierende Nucleinsäuresequenz. Die Erfindung erhöht daher besonders überraschend nicht nur die Glycolsäureausbeute, sondern auch die Milchsäureausbeute.
Bevorzugt ist der Umsatz von Cx- Verbindungen zu Glycolsäure, insbesondere Glycolsäure und Milchsäure, durch eine erfindungsgemäße Methylobacteriaceae-Zelle, umfassend zusätzlich die mindestens eine exogene, eine Ethylmalonyl-CoA-Mutase codierende Nucleinsäuresequenz, insbesondere aus mindestens einem Bakterium ausgewählt aus der Gruppe bestehend aus Methylorubrum extorquens, insbesondere Methylorubrum extorquens TK 0001 DSM 1337, und Rhodobacter sphaeroides, insbesondere Rhodobacter sphaeroides ATCC 17029, höher als der Umsatz durch eine erfindungsgemäße Methylorubrum-Zelle ohne diese mindestens eine zusätzliche exogene Nucleinsäuresequenz.
Ohne an die Theorie gebunden sein zu wollen, wird durch die in der erfindungsgemäßen genetisch veränderten Methylobacteriaceae-Zelle vorhandene exogene Ethylmalonyl-CoA- Mutase die Menge an Glyoxylat im Serinzyklus der erfindungsgemäßen genetisch veränderten Methylobacteriaceae-Zelle erhöht, welches durch die in der erfindungsgemäßen genetisch veränderten Methylobacteriaceae-Zelle vorhandene exogene Glyoxylat-Reduktase umgesetzt wird. Dies führt bevorzugt zu einer verbesserten Glycolsäureausbeute im Vergleich zu der Glycolsäureausbeute erhalten durch eine erfindungsgemäße Methylobacteriaceae-Zelle umfassend mindestens eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia codierende Nucleinsäuresequenz, die keine exogene, eine Ethylmalonyl-CoA- Mutase codierende Nucleinsäuresequenz aufweist. Die ebenfalls beobachtete erhöhte Milchsäureausbeute beruht möglicherweise, ohne an die Theorie gebunden zu sein, auf einem komplexen Zusammenspiel mit dem Metabolismus einer Reduktionsäquivalent-Bereitstellung und einer erhöhten Verfügbarkeit des Metaboliten Pyruvat, dem Vorläufermolekül der Milchsäure.
In einer besonders bevorzugten Ausführung betrifft die vorliegende Erfindung eine erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle umfassend eine codon- optimierte Nucleinsäuresequenz einer Nucleinsäuresequenz aus Rhodobacter sphaeroides codierend eine Ethylmalonyl-CoA-Mutase, insbesondere eine Methylobacteriaceaea-, insbesondere Methylobacterium-, insbesondere eine Methylorubrum-, insbesondere Methylorubrum extorquens-, insbesondere Methylorubrum extorquens TK 0001, insbesondere Methylorubrum extorquens AMI, insbesondere Methylorubrum extorquens PAl-codon- optimierte Nucleinsäuresequenz, insbesondere weist sie die SEQ ID Nr. 8 auf. In einer besonders bevorzugten Ausführung betrifft die vorliegende Erfindung eine erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle umfassend eine codon- optimierte Nucleinsäuresequenz einer Nucleinsäuresequenz aus Methylorubrum extorquens codierend eine Ethylmalonyl -Co A-Mutase, insbesondere eine Methylobacteriaceae-, insbesondere Methylobacterium-, insbesondere Methylorubrum-, insbesondere Methylorubrum extorquens-, insbesondere Methylorubrum extorquens TK 0001, insbesondere Methylorubrum extorquens AMI, insbesondere Methylorubrum extorquens PAl-codon- optimierte Nucleinsäuresequenz, insbesondere weist sie die SEQ ID Nr. 13 auf.
In einer bevorzugten Ausführungsform betrifft die vorliegende Erfindung eine erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle umfassend ein funktionales Nucleinsäuresequenz-Äquivalent einer Nucleinsäuresequenz codierend eine Ethylmalonyl- CoA-Mutase gemäß SEQ ID Nr. 8 oder 13.
Die nativen Nucleinsäuresequenzen der Ethylmalonyl-CoA-Mutase aus Methylorubrum oder Rhodobacter gemäß SEQ ID Nr. 4 und 6 werden im Zusammenhang mit der vorliegenden Erfindung auch als funktionale Äquivalente der davon abgeleiteten, codon-optimierten Nucleinsäuresequenzen verstanden, insbesondere stellt die native Nucleinsäuresequenz gemäß SEQ ID Nr. 6 ein funktionales Nucleinsäuresequenz-Äquivalent der codon-optimierten Nucleinsäuresequenz gemäß SEQ ID Nr. 8 und die native Nucleinsäuresequenz gemäß SEQ ID Nr. 4 ein funktionales Nucleinsäuresequenz-Äquivalent der codon-optimierten Nucleinsäuresequenz gemäß SEQ ID Nr. 13 dar.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird die Ethylmalonyl- CoA-Mutase durch eine codon-optimierte Nucleinsäuresequenz (SEQ ID Nr. 13 oder 8) einer nativen Nucleinsäuresequenz gemäß SEQ ID Nr. 4 oder 6 oder einem funktionalen Äquivalent davon, insbesondere der nativen Nucleinsäuresequenz selbst, also eine Nucleinsäuresequenz gemäß SEQ ID Nr. 4 oder 6 , codiert, wobei das funktionale Nucleinsäuresequenz-Äquivalent, eine Nucleinsäuresequenzidentität von mindestens 30,0 %, bevorzugt 30,0 bis 99,9 %, bevorzugt 40,0 bis 99,9 %, bevorzugt 50,0 bis 99,9 %, bevorzugt 60,0 bis 99,9 %, bevorzugt 70,0 bis 99,9 %, bevorzugt 76,0 bis 99,9 %, bevorzugt 80,0 bis 99,9 %, bevorzugt 90,0 bis 99,9 %, bevorzugt 95,0 bis 99,9 %, bevorzugt 98,0 bis 99,9 %, bevorzugt 90,0 bis 99,0 % zu der codon-optimierten Nucleinsäuresequenz gemäß SEQ ID Nr. 13 oder 8 aufweist, wobei das funktionale Äquivalent die enzymatische Aktivität einer Ethylmalonyl-CoA-Mutase aufweist. In einer bevorzugten Ausführungsform der vorliegenden Erfindung betrifft die vorliegende Erfindung also auch eine erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle umfassend ein funktionales Nucleinsäuresequenz-Äquivalent der mindestens einen exogenen, eine Ethylmalonyl-CoA-Mutase codierenden codon-optimierten Nucleinsäuresequenz gemäß SEQ ID Nr. 13 oder 8, also zum Beispiel einer nativen Nucleinsäuresequenz gemäß SEQ ID Nr. 4 oder 6, wobei das funktionale Nucleinsäuresequenz-Äquivalent eine Nucleinsäuresequenzidentität von mindestens 30,0 %, bevorzugt 30,0 bis 99,9 %, bevorzugt 40,0 bis 99,9 %, bevorzugt 50,0 bis 99,9 %, bevorzugt 60,0 bis 99,9 %, bevorzugt 70,0 bis 99,9 %, bevorzugt 76,0 bis 99,9 %, bevorzugt 80,0 bis 99,9 %, bevorzugt 90,0 bis 99,9 %, bevorzugt 95,0 bis 99,9 %, bevorzugt 98,0 bis 99,9 %, bevorzugt 90,0 bis 99,0 % zu der codon-optimierten Nucleinsäuresequenz gemäß SEQ ID Nr. 13 oder 8 aufweist und wobei die veränderte Methylobacteriaceae-Zelle in der Lage ist, ein Edukt enthaltend mindestens eine Cx- Verbindung, insbesondere Methanol, Ameisensäure oder eine Mischung davon, zu einem Produkt enthaltend Glycolsäure umzusetzen.
In einer besonders bevorzugten Ausführung der vorliegenden Erfindung weist das funktionale Nucleinsäuresequenz-Äquivalent der codon-optimierten Nucleinsäuresequenz gemäß SEQ ID Nr. 8 die native Nucleinsäuresequenz gemäß SEQ ID Nr. 6 auf.
In einer besonders bevorzugten Ausführung der vorliegenden Erfindung weist das funktionale Nucleinsäuresequenz-Äquivalent der codon-optimierten Nucleinsäuresequenz gemäß SEQ ID Nr. 13 die native Nucleinsäuresequenz gemäß SEQ ID Nr. 4 auf.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung weist die Ethylmalonyl- CoA-Mutase eine Aminosäuresequenz gemäß SEQ ID Nr. 5 oder 7 oder eines funktionalen Äquivalents davon auf, wobei das funktionale Aminosäuresequenz-Äquivalent eine Aminosäuresequenzidentität von mindestens 30,0 %, insbesondere 30,0 bis 99,9 %, bevorzugt 40,0 bis 99,9 %, bevorzugt 50,0 bis 99,9 %, bevorzugt 60,0 bis 99,9 %, bevorzugt 70,0 bis 99,9 %, bevorzugt 76,0 bis 99,9 %, bevorzugt 80,0 bis 99,9 %, bevorzugt 85,0 bis 99,9 %, bevorzugt 90,0 bis 99,9 %, bevorzugt 95,0 bis 99,9 %, bevorzugt 98,0 bis 99,9 %, zu der Aminosäuresequenz gemäß SEQ ID Nr. 5 oder 7 und die enzymatische Aktivität einer Ethylmalonyl-CoA-Mutase aufweist.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung betrifft die vorliegende Erfindung eine erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle umfassend ein funktionales Aminosäuresequenz-Äquivalent der Aminosäuresequenz der SEQ ID Nr. 5 oder 7, wobei das funktionale Aminosäuresequenz -Äquivalent eine Aminosäuresequenzidentität von mindestens 30,0 %, insbesondere 30,0 bis 99,9 %, bevorzugt 40,0 bis 99,9 %, bevorzugt 50,0 bis 99,9 %, bevorzugt 60,0 bis 99,9 %, bevorzugt 70,0 bis 99,9 %, bevorzugt 76,0 bis 99,9 %, bevorzugt 80,0 bis 99,9 %, bevorzugt 85,0 bis 99,9 %, bevorzugt 90,0 bis 99,9 %, bevorzugt 95,0 bis 99,9 %, bevorzugt 98,0 bis 99,9 %, zu der Aminosäuresequenz gemäß SEQ ID Nr. 5 oder 7 aufweist und wobei die veränderte Methylobacteriaceae-Zelle in der Lage ist, ein Edukt enthaltend mindestens eine Cx- Verbindung, insbesondere Methanol, Ameisensäure oder eine Mischung davon, zu einem Produkt enthaltend Glycolsäure, insbesondere Glycolsäure und Milchsäure, umzusetzen.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung beträgt die Wachstumsrate pimax einer erfindungsgemäßen genetisch veränderten Methylobacteriaceae-Zelle umfassend zusätzlich mindestens eine exogene, eine Ethylmalonyl-CoA-Mutase codierende Nucleinsäuresequenz in einem Reaktionsmedium aufweisend eine Anfangskonzentration von bis zu 10 g L'1 , insbesondere 10 g L'1 , eines Edukts enthaltend mindestens eine Cx- Verbindung, insbesondere bestehend aus Methanol, mindestens 0,05 h’1, mindestens 0,10 h’1, insbesondere mindestens 0,12 h’1, insbesondere mindestens 0,14 h’1, insbesondere mindestens 0,16 h’1, insbesondere 0,10 bis 0,25 h’1, insbesondere 0,12 bis 0,22 h’1, insbesondere 0,15 bis 0,20 h’1, insbesondere 0,16 h’1, insbesondere 0, 19 h'1.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung beträgt der Titer eines Reaktionsmediums enthaltend das Produkt enthaltend Glycolsäure, insbesondere Glycolsäure und Milchsäure, der nach der Umsetzung von einem Edukt enthaltend mindestens eine Cx- Verbindung, insbesondere bestehend aus Methanol, durch eine erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle umfassend zusätzlich mindestens eine exogene, eine Ethylmalonyl-CoA-Mutase codierende Nucleinsäuresequenz, insbesondere in einem Reaktionsmedium aufweisend eine Anfangskonzentration von bis zu 10 g L'1 , insbesondere 10 g L'1’ des Edukts, insbesondere nach 40 h Reaktionszeit, erhalten wird mindestens 0,10 g L’1, insbesondere mindestens 0,20 g L’1, insbesondere mindestens 0,30 g L’1, insbesondere mindestens 0,40 g L’1, insbesondere 0,10 bis 80 g L’1, insbesondere 0,20 bis 70 g L’1, insbesondere 0,30 bis 60 g L’1, insbesondere 0,40 bis 55 g L’1, insbesondere 0,49 g L’1, insbesondere 0,52 g L'1 (jeweils bezogen auf Gewicht des Produkts pro Liter Reaktionsmedium).
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist der Titer, der durch die Umsetzung eines Edukts enthaltend mindestens eine Cx- Verbindung, insbesondere bestehend aus Methanol, durch die erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle, umfassend zusätzlich mindestens eine exogene, eine Ethylmalonyl-CoA-Mutase codierende Nucleinsäuresequenz, in einem Reaktionsmedium, aufweisend eine Anfangskonzentration von bis zu 10 g L'1 des Edukts, insbesondere nach 40 h Reaktionszeit, im Vergleich zu dem Titer erhalten durch die Umsetzung mittels der erfindungsgemäßen genetisch veränderten Methylobacteriaceae-Zelle ohne die mindestens eine exogene eine Ethylmalonyl-CoA-Mutase codierende Nucleinsäuresequenz um mindestens 10 %, insbesondere mindestens 30 %, insbesondere mindestens 50 %, insbesondere mindestens 60 %, insbesondere 69 %, insbesondere 79 %, erhöht.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung setzt eine erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle umfassend zusätzlich mindestens eine exogene, eine Ethylmalonyl-CoA-Mutase codierende Nucleinsäuresequenz ein Edukt enthaltend mindestens eine Cx-Verbindung, insbesondere bestehend aus Methanol, zu einem Produkt enthaltend Glycolsäure, insbesondere Glycolsäure und Milchsäure, insbesondere in einem Reaktionsmedium aufweisend eine Anfangskonzentration von bis zu 10 g L’1, insbesondere 10 g L’1, des Edukts mit einer Biotrockenmasse-Substrat- Ausbeute (Yx/s) von mindestens 10 mg g’1, insbesondere mindestens 50 mg g’1, insbesondere mindestens 100 mg g’1, insbesondere mindestens 150 mg g’1, insbesondere mindestens 200 mg g’1, insbesondere 10 bis 350 mg g’1, insbesondere 50 bis 320 mg g’1, insbesondere 100 bis 300 mg g’1, insbesondere 200 bis 300 mg g’1, insbesondere 210 mg g’1, insbesondere 270 mg g'1 um (jeweils bezogen auf Biotrockenmasse erfindungsgemäße genetisch veränderte Methylobacteriaceae- Zelle pro Gramm des Edukts).
In einer bevorzugten Ausführungsform der vorliegenden Erfindung sinkt die Biotrockenmasse- Substrat-Ausbeute (Yx/s) einer erfindungsgemäßen genetisch veränderten Methylobacteriaceae-Zelle umfassend zusätzlich mindestens eine exogene, eine Ethylmalonyl- CoA codierende Nucleinsäuresequenz in Relation zu der Biomasse-Substrat-Ausbeute (Yx/s) des Wildtypstamms bei der Umsetzung eines Edukts enthaltend mindestens eine Cx- Verbindung, insbesondere bestehend aus Methanol, zu einem Produkt enthaltend Glycolsäure, insbesondere Glycolsäure und Milchsäure, insbesondere in einem Reaktionsmedium aufweisend eine Anfangskonzentration von bis zu 10 g L'1 , insbesondere 10 g L’1, des Edukts, auf weniger als 95 %, insbesondere weniger als 90 %, insbesondere weniger als 80 %, insbesondere weniger als 70 %, insbesondere auf 68 %, insbesondere auf 51 %.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung sinkt die Biomasse- Substrat-Ausbeute (Yx/s) einer erfindungsgemäßen genetisch veränderten Methylobacteriaceae-Zelle umfassend zusätzlich mindestens eine exogene, eine Ethylmalonyl- CoA-codierende Nucleinsäuresequenz in Relation zu der Biomasse-Substrat-Ausbeute (Yx/s) der erfindungsgemäßen genetisch veränderten Methylobacteriaceae-Zelle ohne die mindestens eine exogene, eine Ethylmalonyl -Co A-Mutase codierende Nucleinsäuresequenz bei der Umsetzung eines Edukts enthaltend mindestens eine Cx- Verbindung, insbesondere bestehend aus Methanol, zu einem Produkt enthaltend Glycolsäure, insbesondere Glycolsäure und Milchsäure, insbesondere in einem Reaktionsmedium aufweisend eine Anfangskonzentration von bis zu 10 g L'1 , insbesondere 10 g L’1, des Edukts auf weniger als 99 %, insbesondere weniger als 97 %, insbesondere auf 96 %, insbesondere auf 75 %.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist die Biomasse-Substrat- Ausbeute (Yx/s) einer erfindungsgemäßen genetisch veränderten Methylobacteriaceae-Zelle umfassend zusätzlich mindestens eine exogene, eine Ethylmalonyl-CoA-Mutase aus dem Bakterium Rhodobacter sphaeroides, insbesondere Rhodobacter sphaeroides ATCC 17029, codierende Nucleinsäuresequenz in Relation zu der Biomasse-Substrat- Ausbeute (Yx/s) einer erfindungsgemäßen genetisch veränderten Methylobacteriaceae-Zelle umfassend mindestens eine exogene, eine Ethylmalonyl-CoA-Mutase aus dem Bakterium Methylorubrum extorquens, insbesondere Methylorubrum extorquens TK 0001 DSM 1337, codierende Nucleinsäuresequenz bei der Umsetzung eines Edukts enthaltend mindestens eine Cx- Verbindung, insbesondere bestehend aus Methanol, zu einem Produkt enthaltend Glycolsäure, insbesondere Glycolsäure und Milchsäure, insbesondere in einem Reaktionsmedium aufweisend eine Anfangskonzentration von bis zu 10 g L'1 , insbesondere 10 g L’1, des Edukts um mindestens 5 %, insbesondere mindestens 10 %, insbesondere mindestens 20 %, insbesondere mindestens 25 %, insbesondere 28 % erhöht.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung setzt die erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle umfassend zusätzlich mindestens eine exogene, eine Ethylmalonyl-CoA-Mutase codierende Nucleinsäuresequenz ein Edukt enthaltend mindestens eine Cx- Verbindung, insbesondere bestehend aus Methanol, zu einem Produkt enthaltend Glycolsäure, insbesondere Glycolsäure und Milchsäure, insbesondere in einem Reaktionsmedium aufweisend eine Anfangskonzentration von bis zu 10 g L’1 , insbesondere 10 g L’1, des Edukts mit einer Produkt-Substrat- Ausbeute (Yp/s) von mindestens 10 mg g’1, insbesondere mindestens 50 mg g’1, insbesondere mindestens 80 mg g’1, insbesondere mindestens 100 mg g’1, insbesondere mindestens 140 mg g’1, insbesondere 10 bis 250 mg g’1, insbesondere 50 bis 200 mg g’1, insbesondere 80 bis 180 mg g’1, insbesondere 100 bis 160 mg g’1, insbesondere 150 mg g'1 um (bezogen auf Gewicht des Produkts pro Gramm Edukt).
In einer bevorzugten Ausführungsform der vorliegenden Erfindung steigt die Produkt- Substrat- Ausbeute (Yp/s) einer erfindungsgemäßen genetisch veränderten Methylobacteriaceae-Zelle umfassend zusätzlich mindestens eine exogene, eine Ethylmalonyl-CoA-Mutase codierende Nucleinsäuresequenz in Relation zu der Produkt-Substrat-Ausbeute (Yp/s) der erfindungsgemäßen genetisch veränderten Methylobacteriaceae-Zelle ohne die mindestens eine exogene, eine Ethylmalonyl-CoA-Mutase codierende Nucleinsäuresequenz bei der Umsetzung eines Edukts enthaltend mindestens eine Cx-Verbindung, insbesondere bestehend aus Methanol, zu einem Produkt enthaltend Glycolsäure, insbesondere Glycolsäure und Milchsäure, insbesondere in einem Reaktionsmedium aufweisend bis zu 10 g L'1 , insbesondere 10 g L’1, des Edukts um mindestens 10 %, insbesondere mindestens 15 %, insbesondere mindestens 20 %, insbesondere 25 %.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung setzt die erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle umfassend zusätzlich mindestens eine exogene, eine Ethylmalonyl-CoA-Mutase codierende Nucleinsäuresequenz ein Edukt enthaltend mindestens eine Cx-Verbindung, insbesondere bestehend aus Methanol, zu einem Produkt enthaltend Glycolsäure, insbesondere Glycolsäure und Milchsäure, insbesondere in einem Reaktionsmedium aufweisend eine Anfangskonzentration von bis zu 10 g L’1 , insbesondere 10 g L’1, des Edukts mit einer Produkt-Biotrockenmasse-Ausbeute (Yp/x) von mindestens 0, 10 g g’1, insbesondere mindestens 0,30 g g’1, insbesondere mindestens 0,40 g g’1, insbesondere mindestens 0,50 g g’1, insbesondere mindestens 0,60 g g’1, insbesondere 0, 10 bis 0,99 g g’1, insbesondere 0,30 bis 0,90 g g’1, insbesondere 0,40 bis 0,80 g g’1, insbesondere 0,50 bis 0,75 g g’1, insbesondere 0,70 g g’1, insbesondere 0,71 g g'1 um (jeweils bezogen auf Gewicht des Produkts pro Gramm Biotrockenmasse erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle).
In einer bevorzugten Ausführungsform der vorliegenden Erfindung steigt die Produkt- Biotrockenmasse-Ausbeute (Yp/x) einer erfindungsgemäßen genetisch veränderten Methylobacteriaceae-Zelle umfassend zusätzlich mindestens eine exogene, eine Ethylmalonyl- CoA-Mutase codierende Nucleinsäuresequenz in Relation zu der Produkt-Biotrockenmasse- Ausbeute (Yp/x) der erfindungsgemäßen genetisch veränderten Methylobacteriaceae-Zelle ohne die mindestens eine exogene, eine Ethylmalonyl-CoA-Mutase codierende Nucleinsäuresequenz bei der Umsetzung eines Edukts enthaltend mindestens eine Cx- Verbindung, insbesondere bestehend aus Methanol, zu einem Produkt enthaltend Glycolsäure, insbesondere Glycolsäure und Milchsäure, insbesondere in einem Reaktionsmedium aufweisend eine Anfangskonzentration von bis zu 10 g L'1 , insbesondere 10 g L’1, des Edukts um mindestens 10 %, insbesondere mindestens 20 %, insbesondere mindestens 30 %, insbesondere mindestens 35 %, insbesondere 40 %, insbesondere 42 %.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist die Methylobacteriaceae-Zelle eine Zelle von Methylorubrum extorquens, insbesondere Methylorubrum extorquens TK 0001 und insbesondere Methylorubrum extorquens PA1.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist die mindestens eine exogene, eine Glyoxylat-Reduktase codierende Nucleinsäuresequenz im Chromosom der Methylobacteriaceae-Zelle integriert oder liegt extrachromosomal vor, insbesondere liegt in der Zelle in einem episomalen Expressionsvektor oder Minichromosom integriert vor.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist die mindestens eine exogene, eine Glyoxylat-Reduktase codierende Nucleinsäuresequenz im Chromosom der Methylobacteriaceae-Zelle stabil integriert oder liegt stabil extrachromosomal vor.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung liegen im Genom der Methylobacteriaceae-Zelle mehr als eine Kopie, insbesondere 2, 3, 4, 5, 6 oder mehr Kopien der exogenen, eine Glyoxylat-Reduktase codierenden Nucleinsäuresequenz, vorzugsweise stabil im Chromosom integriert, oder, vorzugsweise stabil, extrachromosomal vor.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist die mindestens eine exogene, eine Ethylmalonyl-CoA-Mutase codierende Nucleinsäuresequenz im Chromosom der Methylobacteriaceae-Zelle integriert oder liegt extrachromosomal vor, insbesondere liegt in der Zelle in einem episomalen Expressionsvektor oder Minichromosom integriert vor.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist die mindestens eine exogene, eine Ethylmalonyl-CoA-Mutase codierende Nucleinsäuresequenz im Chromosom der Methylobacteriaceae-Zelle stabil integriert oder liegt stabil extrachromosomal vor.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung liegen im Genom der Methylobacteriaceae-Zelle mehr als eine Kopie, insbesondere 2, 3, 4, 5, 6 oder mehr Kopien der exogenen, eine Ethylmalonyl-CoA-Mutase codierenden Nucleinsäuresequenz, vorzugsweise stabil im Chromosom integriert, oder, vorzugsweise stabil, extrachromosomal vor. In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist die genetisch veränderte Methylobacteriaceae-Zelle die Methylorubrum -Zelle Methylorubrum extorquens Mea-GAl, Methylorubrum extorquens Mea-GA2 oder Methylorubrum extorquens Mea-GA3, jeweils hinterlegt am 10. Juni 2022 bei der DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Deutschland unter den Hinterlegungsnummern DSM 34286, DSM 34287 und DSM 34288. Sämtliche Hinterlegungen erfolgten gemäß des Budapester Vertrags über die internationale Anerkennung der Hinterlegung von Mikroorganismen für die Zwecke von Patentverfahren.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung betrifft die vorliegende Erfindung eine genetisch veränderte Methylorubrum extorquens TK 0001 -Zelle umfassend mindestens eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia coli K-12 MG1655 codierende codon-optimierte Nucleinsäuresequenz, insbesondere Zellen des Stamms Methylorubrum extorquens Mea-GAl hinterlegt am 10. Juni 2022 bei der DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Deutschland unter der Hinterlegungsnummer DSM 34286.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung betrifft die vorliegende Erfindung eine genetisch veränderte Methylorubrum extorquens TK 0001 -Zelle umfassend eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia coli K-12 MGI 655 codierende codon-optimierte Nucleinsäuresequenz und eine exogene, eine Ethylmalonyl-CoA- Mutase aus dem Bakterium Methylorubrum extorquens TK 0001 DSM 1337 codierende Nucleinsäuresequenz insbesondere Zellen des Stamms Methylorubrum extorquens Mea-GA2 hinterlegt am 10. Juni 2022 bei der DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Deutschland unter der Hinterlegungsnummer DSM 34287.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung betrifft die vorliegende Erfindung eine genetisch veränderte Methylorubrum extorquens TK 0001 -Zelle umfassend eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia coli K-12 MGI 655 codierende codon-optimierte Nucleinsäuresequenz und eine exogene, eine Ethylmalonyl-CoA- Mutase aus dem Bakterium Rhodobacter sphaeroides ATCC 17029 codierende Nucleinsäuresequenz, insbesondere Zellen des Stamms Mea-GA3 hinterlegt am 10. Juni 2022 bei der DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Deutschland unter der Hinterlegungsnummer DSM 34288.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist die genetisch veränderte Methylobacteriaceae-Zelle eine Zelle des Stammes Methylorubrum rhodesianum Mrh-GA4 (DSM 34697), Methylorubrum rhodesianum Mrh-GA5 (DSM 34698), Methylorubrum zatmanii Mza-GA14 (DSM 34701), Methylorubrum extorquens Mea-GA17 (DSM 34702), Methyl ob acterium radiotolerans Mra-GA12 (DSM 34700) oder Methyl ob acterium organophilum Mor-GA8 (DSM 34699) jeweils hinterlegt am 19. Juli 2023 bei der DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Deutschland. Sämtliche Hinterlegungen erfolgten gemäß des Budapester Vertrags über die internationale Anerkennung der Hinterlegung von Mikroorganismen für die Zwecke von Patentverfahren.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung betrifft die vorliegende Erfindung eine genetisch veränderte Methylobacteriaceae-Zelle, umfassend eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia coli K-12 MGI 655 codierende codon - optimierte Nucleinsäuresequenz (SEQ ID Nr. 3), insbesondere Zellen des Stamms Methylorubrum zatmanii Mza-GA14 (M. zatmanii DSM 5688 + pTE1887-ghrAeCo) hinterlegt am 19. Juli 2023 bei der DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Deutschland unter der Hinterlegungsnummer DSM 34701.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung betrifft die vorliegende Erfindung eine genetisch veränderte Methylobacteriaceae-Zellen, umfassend eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia coli K-12 MGI 655 codierende codon-optimierte Nucleinsäuresequenz (SEQ ID Nr. 3) des Stamms Methylorubrum extorquens Mea-GA17 (M. extorquens PA1 DSM 23939 + pTE1887-ghrAeCo) hinterlegt am 19. Juli 2023 bei der DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Deutschland unter der Hinterlegungsnummer DSM 34702.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung betrifft die vorliegende Erfindung eine genetisch veränderte Methylobacteriaceae-Zellen, umfassend eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia coli K-12 MGI 655 codierende codon-optimierte Nucleinsäuresequenz (SEQ ID Nr. 3) des Stamms Methylorubrum rhodesianum Mrh-GA4 (M. rhodesianum DSM 5687 + pTE1887-ghrAeCo) hinterlegt am 19. Juli 2023 bei der DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Deutschland unter der Hinterlegungsnummer DSM 34697.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung betrifft die vorliegende Erfindung eine genetisch veränderte Methylobacteriaceae-Zellen, umfassend eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia coli K-12 MGI 655 codierende codon-optimierte Nucleinsäuresequenz (SEQ ID Nr. 3) und eine exogene, eine Ethylmalonyl- CoA-Mutase aus dem Bakterium Methylorubrum extorquens TK 0001 DSM 1337 codierende native Nucleinsäuresequenz (SEQ ID Nr. 4), des Stamms Methylorubrum rhodesianum Mrh- GA5 (M. rhodesianum DSM 5687 + pTE1887-ghrAeco-ecmmea) hinterlegt am 19. Juli 2023 bei der DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Deutschland unter der Hinterlegungsnummer DSM 34698.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung betrifft die vorliegende Erfindung eine genetisch veränderte Methylobacteriaceae-Zellen, umfassend eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia coli K-12 MGI 655 codierende codon-optimierte Nucleinsäuresequenz (SEQ ID Nr. 3) des Stamms Methyl ob acterium organophilum Mor-GA8 (M. organophilum DSM 18172 + pTE1887-ghrAeco-ecmmea) hinterlegt am 19. Juli 2023 bei der DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Deutschland unter der Hinterlegungsnummer DSM 34699.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung betrifft die vorliegende Erfindung eine genetisch veränderte Methylobacteriaceae-Zellen, umfassend eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia coli K-12 MGI 655 codierende codon-optimierte Nucleinsäuresequenz (SEQ ID Nr. 3) und eine exogene, eine Ethylmalonyl- CoA-Mutase aus dem Bakterium Methylorubrum extorquens TK 0001 DSM 1337 codierende native Nucleinsäuresequenz (SEQ ID Nr. 4), des Stamms Methyl ob acterium radiotolerans Mra- GA12 (M. radiotolerans DSM 760 + pTE1887-ghrAeco-ecmmea) hinterlegt am 19. Juli 2023 bei der DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Deutschland unter der Hinterlegungsnummer DSM 34700.
In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung betrifft diese die konkret hinterlegten Methylobacteriaceae-Zellen, insbesondere die konkret hinterlegten Methylorubrum-Stämme sowie jeweilige Derivate davon.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist die mindestens eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia codierende Nucleinsäuresequenz funktional mit zusätzlich mindestens einer regulatorischen Einheit unter Ausbildung einer Expressionskassette verbunden, insbesondere einem Promoter, insbesondere einem induzierbaren, dereprimierbaren oder konstitutiven Promoter, einem Enhancer, einer ribosomalen Bindestelle und/oder einem Terminator.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist die mindestens eine exogene, eine Ethylmalonyl-CoA-Mutase codierende Nucleinsäuresequenz, insbesondere eine Ethylmalonyl-CoA-Mutase aus mindestens einem Bakterium ausgewählt aus der Gruppe bestehend aus Methylorubrum extorquens, insbesondere Methylorubrum extorquens TK 0001 DSM 1337, und Rhodobacter sphaeroides, insbesondere Rhodobacter sphaeroides ATCC 17029, codierende Nucleinsäuresequenz, funktional mit zusätzlich mindestens einer regulatorischen Einheit unter Ausbildung einer Expressionskassette verbunden, insbesondere einem Promoter, insbesondere einem induzierbaren, dereprimierbaren oder konstitutiven Promoter, einem Enhancer, einer ribosomalen Bindestelle und/oder einem Terminator.
In bevorzugter Ausführungsform liegt die Expressionskassette in einem Vektor, insbesondere Expressionsvektor, insbesondere episomalen Expressionsvektor, insbesondere pTE1887, vor.
In besonders bevorzugter Ausführungsform kann die die mindestens eine exogene, eine Glyoxylat-Reduktase codierende Nucleinsäuresequenz und die die mindestens eine exogene, eine Ethylmalonyl-CoA-Mutase codierende Nucleinsäuresequenz auf dem gleichen Expressionsvektor oder auf verschiedenen Expressionsvektoren vorliegen.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist der Promoter ein induzierbarer Promoter, insbesondere ein IPT G-induzierbarer Promoter, insbesondere der PL/O4/AI -Promoter.
Ein weiterer Aspekt der vorliegenden Erfindung ist ein Verfahren zur Herstellung einer erfindungsgemäßen genetisch veränderten Methylobacteriaceae-Zelle, umfassend die Verfahrensschritte: a) Bereitstellen einer Methylobacteriaceae-Zelle, insbesondere einer Wildtypzelle, und eines Expressionsvektors oder eines Genomeditierungssystems umfassend mindestens eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia codierende Nucleinsäuresequenz, insbesondere eine diese Nucleinsäuresequenz umfassende Expressionskassette, b) Transformieren der Methylobacteriaceae-Zelle mit dem Expressionsvektor oder dem Genomeditierungssystem unter Bedingungen, die die Aufnahme und, vorzugsweise stabile, anschließende Integration der mindestens einen exogenen Nucleinsäuresequenz in die Methylobacteriaceae-Zelle, ermöglichen, und c) Erhalten der mindestens eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia codierende Nucleinsäuresequenz aufweisenden genetisch veränderten Methylobacteriaceae-Zelle.
In besonders bevorzugter Ausführungsform betrifft die vorliegende Erfindung ein vorgenanntes Verfahren, wobei in Verfahrensschritt a) zusätzlich mindestens eine exogene, eine Ethylmalonyl-CoA-Mutase codierende Nucleinsäuresequenz, insbesondere aus mindestens einem Bakterium ausgewählt aus der Gruppe bestehend aus Methylorubrum extorquens, insbesondere Methylorubrum extorquens TK 0001 DSM 1337, und Rhodobacter sphaeroides, insbesondere Rhodobacter sphaeroides ATCC 17029, insbesondere eine diese Nucleinsäuresequenz umfassende Expressionskassette oder Genomeditierungssystem bereitgestellt wird, in Verfahrensschritt b) die Methylobacteriaceae-Zelle mit der exogenen, eine Ethylmalonyl-CoA-Mutase codierenden Nucleinsäuresequenz, insbesondere der diese umfassenden Expressionskassette, transformiert und in Verfahrensschritt c) eine mindestens eine exogene, eine Glyoxylat-Reduktase aufweisende genetisch veränderte Methylobacteriaceae-Zelle, die zusätzlich mindestens eine exogene, eine Ethylmalonyl-CoA- Mutase codierende Nucleinsäuresequenz aufweist, erhalten wird.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird das Transformieren gemäß Verfahrensschritt b) mittels chemischer, physikalischer und/oder elektrischer Transformationsverfahren, insbesondere Elektroporation, durchgeführt.
Die vorliegende Erfindung betrifft auch eine genetisch veränderte Methylobacteriaceae-Zelle, die mittels eines erfindungsgemäßen Verfahrens herstellbar ist, insbesondere hergestellt wurde.
Ein weiterer Aspekt der vorliegenden Erfindung ist eine erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle, wobei die Zelle lebend, tot, lyophilisiert, in Form eines Zelllysats oder eines Zellextrakts, vorliegt, und wobei das Zelllysat oder der Zellextrakt, insbesondere Proteinextrakt, gewonnen wurde aus einer erfindungsgemäßen genetisch veränderten Methylobacteriaceae-Zelle. Erfindungsgemäß ist vorgesehen, dass die gegebenenfalls tot, lyophilisiert oder in Form eines Zelllysats oder eines Zellextrakts vorliegende erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle die erfindungsgemäß bereitgestellte Eigenschaft aufweist, mindestens eine Cx-Verbindung in einem Reaktionsmedium zu Glykolsäure und optional Milchsäure umzusetzen.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung katalysiert die lebend, tot, lyophilisiert oder in Form eines Zelllysats oder eines Zellextrakts vorliegende Zelle zumindest die Umsetzung von mindestens einer Cx-Verbindung zu Glycolsäure, insbesondere die Umsetzung eines Edukts enthaltend mindestens eine Cx-Verbindung zu einem Produkt enthaltend Glycolsäure, insbesondere Glycolsäure und Milchsäure.
Ein weiterer Aspekt der vorliegenden Erfindung ist ein Biokatalysator umfassend eine erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle oder eine tot, lyophilisiert oder in Form eines Zelllysats oder eines Zellextrakts vorliegende erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle, wobei diese auf einem Träger angeordnet, insbesondere immobilisiert ist.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist der Träger ein organischer Träger oder ein anorganischer Träger. In einer bevorzugten Ausführungsform der vorliegenden Erfindung umfasst der Träger einen in der Natur vorkommenden organischen Träger, insbesondere besteht aus diesem, insbesondere wobei der Träger ausgewählt ist aus der Gruppe bestehend aus Chitin, Agar, Agarose, Alginat, Carrageenan und einer Kombination davon.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung umfasst der Träger einen synthetischen organischen Träger, insbesondere besteht aus diesem, insbesondere wobei der Träger ausgewählt ist aus der Gruppe bestehend aus Polyvinylalkohol (PVA), Polyurethan, Acrylamid, Polypropylenammonium und einer Kombination davon.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung umfasst der Träger einen anorganischen Träger, insbesondere besteht aus diesem, insbesondere wobei der Träger ausgewählt ist aus der Gruppe bestehend aus Aktivkohle, Zeolith, Keramik, Ton, Anthrazit, porösem Glas und einer Kombination davon.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist der Träger eine Kompositmischung eines organischen Trägers und eines anorganischen Trägers, insbesondere umfassend oder bestehend aus Polyvinylalkohol-Natriumalginat (PVA-NA), Polyvinylalkoholguargummi (PVA-GG) oder beiden.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung katalysiert der erfindungsgemäße Biokatalysator zumindest die Umsetzung von mindestens einer Cx- Verbindung zu Glycolsäure, insbesondere die Umsetzung eines Edukts enthaltend mindestens eine Cx-Verbindung, insbesondere bestehend daraus, zu einem Produkt enthaltend Glycolsäure, insbesondere Glycolsäure und Milchsäure, insbesondere bestehend daraus. Ein weiterer Aspekt der vorliegenden Erfindung ist ein Bioreaktor umfassend eine erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle oder einen erfindungsgemäßen Biokatalysator, wobei die genetisch veränderte Methylobacteriaceae-Zelle oder der erfindungsgemäße Biokatalysator insbesondere in einem Reaktionsmedium im Bioreaktor vorliegt.
Ein weiterer Aspekt der vorliegenden Erfindung ist ein Verfahren zur Herstellung von Glycolsäure aus mindestens einer Cx- Verbindung, insbesondere eines Produkts enthaltend Glycolsäure aus einem Edukt enthaltend mindestens eine Cx- Verbindung, wobei x vorzugsweise = 1, 2 oder 4 ist, umfassend die Verfahrensschritte: x) Bereitstellen einer erfindungsgemäßen genetisch veränderten Methylobacteriaceae-Zelle oder eines erfindungsgemäßen Biokatalysators, eines Reaktionsmediums und mindestens einer Cx- Verbindung, insbesondere eines Edukts enthaltend mindestens eine Cx- Verbindung, y) Umsetzen der mindestens einen Cx- Verbindung, insbesondere des Edukts, in dem Reaktionsmedium unter Bedingungen, die die Bildung von Glycolsäure aus der Cx-Verbindung ermöglichen, und z) Erhalten von Glycolsäure, insbesondere des Produkts, enthaltend Glycolsäure, aus dem Reaktionsmedium.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung liegt die in Verfahrensschritt x) bereitgestellte erfindungsgemäße Methylobacteriaceae-Zelle oder der in Verfahrensschritt x) bereitgestellte erfindungsgemäße Biokatalysator in im Reaktionsmedium suspendierter Form oder immobilisierter Form vor.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das in Verfahrensschritt x) bereitgestellte und oder in Verfahrensschritt y) eingesetzte Reaktionsmedium eine wässrige salzhaltige Lösung, insbesondere ein Kulturmedium, insbesondere ein Minimalmedium, insbesondere ein Minimalmedium bestehend pro Liter Reaktionsmedium aus bis zu 10 g einer Cx Verbindung, insbesondere Methanol, Methan, Ameisensäure, Methylamin, Essigsäure oder Bernsteinsäure oder einer Mischung davon, 1 g Ammoniumsulfat, 450 mg Magnesiumsulfat- Heptahydrat, 3,2 mg Calciumchlorid-Dihydrat, 7,4 mg Trinatriumcitrat-Dihydrat, 190 pg Zinksulfat-Heptahydrat, 110 pg Manganchlorid-Tetrahydrat, 2,75 mg Eisensulfat-Heptahydrat, 1,36 mg Ammoniumheptamolybdat-Tetrahydrat, 140 pg Kupfersulfat-Pentahydrat, 260 pg Cobaltchlorid-Hexahydrat, 390 pg Natriumwolframat, 30 pg Borsäure, 2,02 g Kaliumdihydrogenphosphat und 4,14 g Dinatriumhydrogenphosphat-Dihydrat. In einer bevorzugten Ausführungsform der vorliegenden Erfindung weist das in Verfahrensschritt x) bereitgestellte Reaktionsmedium das Edukt enthaltend mindestens eine Cx- Verbindung auf.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung weist das in Verfahrensschritt x) bereitgestellte Reaktionsmedium zu Beginn von Verfahrensschritt y) das Edukt enthaltend mindestens eine Cx-Verbindung in einer Konzentration von 1 bis 100 g, insbesondere 5 bis 90 g, insbesondere 6 bis 80 g, insbesondere 7 bis 70 g, insbesondere 8 bis 40 g, insbesondere 9 bis 30 g, insbesondere 10 bis 20 g Cx-Verbindung pro Liter Reaktionsmedium auf.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung weist das in Verfahrensschritt x) bereitgestellte Reaktionsmedium Coenzym B 12 auf.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das erfindungsgemäß eingesetzte Edukt, enthaltend mindestens eine Cx-Verbindung, die einzige Kohlenstoffquelle im Reaktionsmedium. Demgemäß wird in einer bevorzugten Ausführungsform ein Reaktionsmedium eingesetzt, das als einzige Kohlenstoffquelle für die Methylobacteriaceae- Zellen das eingesetzte Edukt, enthaltend mindestens eine Cx-Verbindung, aufweist.
Bevorzugt ist erfindungsgemäß vorgesehen, dass das Umsetzen in Verfahrensschritt y) unter kontinuierlicher oder batchweiser Zugabe von Glyoxylat erfolgt.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist die Cx-Verbindung des in Verfahrensschritt x) bereitgestellten und in Verfahrensschritt y) umgesetzten Edukts Ameisensäure, Methanol, Methan, Methylamin, Essigsäure, Bernsteinsäure oder eine Mischung davon.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung besteht das in Verfahrensschritt x) bereitgestellte und in Verfahrensschritt y) umgesetzte Edukt aus Ameisensäure, Methanol, Methan, Methylamin, Essigsäure, Bernsteinsäure oder einer Mischung davon.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist x = 1 bei der Cx- Verbindung des in Verfahrensschritt x) bereitgestellten und in Verfahrensschritt y) umgesetzten Edukts enthaltend mindestens eine Cx-Verbindung. In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist die Cx-Verbindung des in Verfahrensschritt x) bereitgestellten und in Verfahrensschritt y) umgesetzten Edukts Methanol, Ameisensäure oder eine Mischung davon.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung besteht das in Verfahrensschritt x) bereitgestellte und in Verfahrensschritt y) umgesetzte Edukt aus Methanol, Ameisensäure oder einer Mischung davon.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung besteht das in
Verfahrensschritt x) bereitgestellte und in Verfahrensschritt y) umgesetzte Edukt aus Methanol.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung besteht das in
Verfahrensschritt x) bereitgestellte und in Verfahrensschritt y) umgesetzte Edukt aus Ameisensäure.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthält das in Verfahrensschritt x) bereitgestellte und in Verfahrensschritt y) umgesetzte Edukt Methanol und Ameisensäure, insbesondere 1 bis 99 Gew.-%, insbesondere 2 bis 98 Gew.-%, insbesondere 10 bis 90 Gew.-%, insbesondere 30 bis 70 Gew.-%, insbesondere 40 bis 60 Gew.-%, insbesondere 50 Gew.-%, Methanol und insbesondere 1 bis 99 Gew.-%, insbesondere 2 bis 98 Gew.-% , insbesondere 10 bis 90 Gew.-%, insbesondere 30 bis 70 Gew.-%, insbesondere 40 bis 60 Gew - %, insbesondere 50 Gew.-% Ameisensäure (jeweils bezogen auf Gesamtgewicht des Edukts bereitgestellt in Verfahrensschritt x)) oder besteht aus diesen Anteilen.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung liegt das in Verfahrensschritt x) bereitgestellte Edukt enthaltend mindestens eine Cx-Verbindung, insbesondere Methanol, Ameisensäure oder eine Mischung davon, insbesondere Methanol, zu Beginn von Verfahrensschritt y) in einer Anfangskonzentration von 1 bis 20 g L’1, insbesondere 3 bis 17 g L’1, insbesondere 5 bis 15 g L’1, insbesondere 7 bis 13 g L’1, insbesondere 9 bis 11 g L’1, insbesondere 10 g L’1, in dem Reaktionsmedium vor.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das in Verfahrensschritt x) bereitgestellte Edukt Methanol und liegt zu Beginn von Verfahrensschritt y) in einer Anfangskonzentration von 1 bis 20 g L’1, insbesondere 3 bis 17 g L’1, insbesondere 5 bis 15 g L’1, insbesondere 7 bis 13 g L’1, insbesondere 9 bis 11 g L’1, insbesondere 10 g L’1, in dem Reaktionsmedium vor.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird die in Verfahrensschritt x) bereitgestellte und in Verfahrensschritt y) umgesetzte Cx-Verbindung, insbesondere CI -Verbindung, insbesondere Methanol, Ameisensäure oder eine Mischung davon, aus CO2, CO oder einer Mischung in einem Verfahrensschritt w) hergestellt, insbesondere einem Verfahrensschritt w), der mit erneuerbarer Energie betrieben wird, insbesondere elektrischer Strom aus Sonnen-, Wind-, geothermischer oder Wasserkraft- Energie.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird die in Verfahrensschritt x) bereitgestellte und in Verfahrensschritt y) umgesetzte Cx- Verbindung, insbesondere Methanol, Ameisensäure oder Mischungen davon, aus CO2, insbesondere Synthesegas umfassend eine Mischung aus CO2, CO und H2, in einem Verfahrensschritt w) hergestellt, insbesondere mittels eines heterogen-katalytischen chemischen Verfahrens, insbesondere elektrochemischen Verfahrens.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird die in Verfahrensschritt x) bereitgestellte und in Verfahrensschritt y) umgesetzte Cx- Verbindung, insbesondere Essigsäure, aus CO2, insbesondere Synthesegas umfassend eine Mischung aus CO2, CO und H2, in einem Verfahrensschritt w) mittels Gasfermentation hergestellt.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird die in Verfahrensschritt x) bereitgestellte und in Verfahrensschritt y) umgesetzte Cx- Verbindung, insbesondere Methanol, aus CO2, insbesondere Synthesegas umfassend eine Mischung aus CO2, CO und H2, oder CO2, H2O und elektrischem Strom, oder CO2 und H2, in einem Verfahrensschritt w) mittels eines elektrochemischen Verfahrens, biochemischen Verfahrens, bioelektrochemischen Verfahrens oder Gasfermentation hergestellt.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird das in Verfahrensschritt w) verwendete CO2, insbesondere Synthesegas durch chemische Konversion, insbesondere thermo-katalytische Konversion, von organischen Stoffen oder Materialien, insbesondere von Klärschlamm und anderen biogenen Rest- und Abfall stoffen, hergestellt.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird das in
Verfahrensschritt w) verwendete Synthesegas aus Klärschlamm hergestellt.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird das in
Verfahrensschritt w) verwendete CO2 aus der Atmosphäre oder aus industriellen Abgasen gewonnen.
In bevorzugter Ausführungsform ist es also durch die vorliegende Erfindung möglich eine nachhaltige Synthese von Glycolsäure und Milchsäure zu ermöglichen, die kostengünstig umweltschonend und leicht handhabbar ist und die nahezu vollständig ohne, insbesondere ohne, die Nutzung fossiler Ressourcen und/oder nahezu vollständig ohne, insbesondere ohne, biogene Rohstoffe auskommt. Erfindungsgemäß bevorzugt wird also vorteilhafterweise Glycolsäure und Milchsäure über eine integrierte Prozesskaskade auf vollständig erneuerbare Weise aus CO2 als einzigem Rohstoff gewonnen, also ohne den Verbrauch fossiler oder biogener Ressourcen. Erfindungsgemäß bevorzugt wird also vorteilhafterweise durch die vorliegende Erfindung Glycolsäure vollständig erneuerbar aus CO2 hergestellt.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung weist das Reaktionsmedium in Verfahrensschritt y) eine Temperatur von 20 bis 40 °C, insbesondere 22 bis 38 °C, insbesondere 24 bis 36 °C, insbesondere 28 bis 32 °C, insbesondere 30 °C, auf.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird Verfahrensschritt y) in einer Wasserdampf-gesättigten Atmosphäre durchgeführt.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung weist das Reaktionsmedium zu Beginn des Verfahrensschritts y) einen pH-Wert von pH 4 bis 8, insbesondere 5 bis 7, insbesondere 6, insbesondere 6,8 auf.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung weist das Reaktionsmedium nach 40 h Reaktionszeit des Verfahrensschritt y) einen pH-Wert von pH 0 bis 6, insbesondere 0 bis 4, insbesondere 0 bis 3, insbesondere 1 bis 2, auf.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird das Umsetzen gemäß Verfahrensschritt y) unter mechanischer Agitation, insbesondere Schütteln oder Rühren, durchgeführt.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird in Verfahrensschritt y) ein Rühren bei 50 bis 1000 rpm, insbesondere 50 bis 500 rpm, insbesondere 50 bis 250 rpm, insbesondere 100 bis 200 rpm, insbesondere 150 rpm (rpm: Umdrehungen pro Minute) durchgeführt.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung weist das in Verfahrensschritt z) erhaltene Reaktionsmedium das Produkt, enthaltend mindestens Glycolsäure, auf.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das in Verfahrensschritt z) im Reaktionsmedium erhaltene Produkt, enthaltend Glycolsäure, Glycolsäure oder ein Glycolsäure und Milchsäure enthaltendes Produkt. In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthält das in Verfahrensschritt z) erhaltene Produkt Glycolsäure und Milchsäure, insbesondere 1 bis 99 Gew.-%, insbesondere 2 bis 98 Gew.-%, insbesondere 10 bis 90 Gew.-%, insbesondere 30 bis 80 Gew.-%, insbesondere 40 bis 70 Gew.-%, insbesondere 50 %, insbesondere 60 Gew.-% Glycolsäure und insbesondere 1 bis 99 Gew.-%, insbesondere 2 bis 98 Gew.-% insbesondere 10 bis 90 Gew.-%, insbesondere 20 bis 70 Gew.-%, insbesondere 30 bis 60 Gew.-%, insbesondere 50 %, insbesondere 40 Gew.-% Milchsäure (jeweils bezogen auf Gesamtgewicht des in Verfahrensschritt z) erhaltenen Produkts) oder besteht aus diesen Anteilen.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung besteht das in
Verfahrensschritt z) erhaltene Produkt aus Glycolsäure.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung besteht das in
Verfahrensschritt z) erhaltene Produkt aus Glycolsäure und Milchsäure.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird nach Verfahrensschritt z) in einem Verfahrensschritt zl) das Produkt, enthaltend Glycolsäure und optional Milchsäure, aus dem Reaktionsmedium isoliert, insbesondere von dem Reaktionsmedium und der erfindungsgemäßen genetisch veränderten Methylobacteriaceae-Zelle oder dem erfindungsgemäßen Biokatalysator abgetrennt, insbesondere durch Dekantieren, Aussalzen mit einer Base, insbesondere NaOH oder KOH, Filtrieren, insbesondere Membranfiltration oder Säulenfiltration, oder lonenaustauschchromatographie in Kombination mit HPLC, Extrahieren oder/und Destillieren.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das Verfahren zur Herstellung eines Produkts enthaltend Glycolsäure ein kontinuierliches Verfahren.
Ein weiterer Aspekt der vorliegenden Erfindung ist ein Verfahren zur Herstellung von Polyglycol säure, Polymilchsäure oder Polylactid-co-Glycolid, umfassend das Durchführen eines erfindungsgemäßen Verfahrens zur Herstellung von Glycolsäure, insbesondere eines Produkts, enthaltend Glycolsäure und optional Milchsäure, und anschließendes Polymerisieren der aus diesen Verfahren erhaltenen Glycolsäure, Milchsäure oder Glycolsäure und Milchsäure.
Im Zusammenhang mit der vorliegenden Erfindung wird unter „erfindungsgemäßer genetisch veränderter Methylobacteriaceae-Zelle“ eine genetisch veränderte Methylobacteriaceae-Zelle verstanden, die bevorzugt dem Wildtypstamm der Methylobacteriaceae-Zelle gleicht, insbesondere identisch dazu ist, mit Ausnahme des Vorhandenseins mindestens einer exogenen, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia codierenden Nucleinsäuresequenz, die der erfindungsgemäßen Methylobacteriaceae-Zelle die erfindungsgemäß vorteilhafte enzymatische Glyoxylat-Reduktase-Aktivität verleiht, und gegebenenfalls damit verbundener exogenen Nucleinsäuresequenzen eines Expressionsvektors oder einer Expressionskassette sowie optional der mindestens einen exogenen, eine Ethylmalonyl-CoA-Mutase codierenden Nucleinsäuresequenz und gegebenenfalls damit verbundener exogenen Nucleinsäuresequenzen eines Expressionsvektors oder einer Expressionskassette.
Im Zusammenhang mit der vorliegenden Erfindung wird unter „einer“ genetisch veränderten Methylobacteriaceae-Zelle eine, zwei, mehrere, viele oder eine zahlenmäßig nicht näher definierbare Anzahl an Methylobacteriaceae-Zellen verstanden. In bevorzugter Ausführungsform der vorliegenden Erfindung ist eine Methylobacteriaceae-Zelle auch als Methylobacteriaceae-Stamm, insbesondere Methylorubrum extorquens-, insbesondere Methylorubrum rhodesianum-, insbesondere Methylorubrum zatmanii-, insbesondere Methylorubrum extorquens TK 0001-, insbesondere Methylorubrum extorquens AMI-, insbesondere Methylorubrum extorquens PA1-, insbesondere Methylobacterium organophilum-, insbesondere Methylobacterium radiotolerans-Stamm zu verstehen.
Im Zusammenhang mit der vorliegenden Erfindung wird unter einem „Derivat“ einer hinterlegten Methylobacteriaceae-Zelle oder eines hinterlegten Methylobacteriaceae-Stammes, insbesondere eines hinterlegten Methylorubrum-Stammes oder -Zelle oder eines hinterlegten Methylobacterium-Stammes oder -Zelle eine Methylobacteriaceae-Zelle, insbesondere ein Methylobacteriaceae-Stamm, insbesondere eine Methylorubrum-Zelle insbesondere ein Methylorubrum-Stamm, oder eine Methylobacterium-Zelle, insbesondere ein Methylobacterium-Stamm, verstanden, die sich durch die Anwesenheit der erfindungsgemäß vorgesehenen Merkmale, insbesondere die Integration der exogenen Glyoxylat-Reduktase codierende Nucleinsäuresequenz, auszeichnet und aus einer hinterlegten Methylobacteriaceae- Zelle gewonnen und deren Genom unter Beibehaltung der erfindungsgemäßen Merkmale abgewandelt wurde.
Im Zusammenhang mit der vorliegenden Erfindung wird unter einer „exogenen Nucleinsäuresequenz“ eines Organismus, insbesondere eines Mikroorganismus, insbesondere eines Bakteriums, eine mittels rekombinanter, also gentechnischer Mittel, Verfahrensschritte in einen Empfängerorganismus eingebrachte Nucleinsäuresequenz verstanden.
Im Zusammenhang mit der vorliegenden Erfindung wird in bevorzugter Ausführungsform unter einer „exogenen Nucleinsäuresequenz“ eines Organismus, insbesondere eines Mikroorganismus, insbesondere eines Bakteriums, eine von einem anderen Mikroorganismus- Stamm, insbesondere einer anderen Organismusart, insbesondere einer anderen Bakteriumart, stammende, also nicht endogene, und damit nicht native beziehungswiese nicht im Wildtypstamm oder Wildtypart vorkommende Nucleinsäuresequenz verstanden.
Im Zusammenhang mit der vorliegenden Erfindung wird unter einer „Glyoxylat-Reduktase“ ein Enzym verstanden, das fähig ist die Umsetzung von Glyoxylat enzymatisch zu katalysieren, insbesondere zu Glycolsäure, insbesondere unter Verwendung eines Cofaktors, insbesondere NADH oder NADPH.
Im Zusammenhang mit der vorliegenden Erfindung weist eine „Glyoxylat-Reduktase“ (ghrA) der vorliegenden Erfindung in bevorzugter Ausführungsform einen KM-Wert von höchstens 2,0, insbesondere höchstens 1,5, insbesondere höchstens 1,0, insbesondere höchstens 0.6 mM, insbesondere 0,6 mM, für Glyoxylat auf.
Im Zusammenhang mit der vorliegenden Erfindung weist eine „Glyoxylat-Reduktase“ (ghrA) der vorliegenden Erfindung in bevorzugter Ausführungsform einen KM-Wert von mindestens 0,9, insbesondere mindestens 1,0 mM, insbesondere 1,0 mM, für Hydroxypyruvat auf.
Im Zusammenhang mit der vorliegenden Erfindung weist eine „Glyoxylat-Reduktase“ (ghrA) der vorliegenden Erfindung in bevorzugter Ausführungsform einen KM-Wert von höchstens 2,0, insbesondere höchstens 1,5, insbesondere höchstens 1,0, insbesondere höchstens 0.6 mM, insbesondere 0,6 mM für Glyoxylat und einen KM-Wert von mindestens 0,9, insbesondere mindestens 1,0 mM, insbesondere 1,0 mM, für Hydroxypyruvat auf.
Im Zusammenhang mit der vorliegenden Erfindung weist eine „Glyoxylat-Reduktase“ (ghrA) der vorliegenden Erfindung in bevorzugter Ausführungsform einen KM-Wert von höchstens 2,0 für Glyoxylat und einen KM-Wert von mindestens 0,9 für Hydroxypyruvat auf.
Bevorzugt ist die Glyoxylat-Reduktase NADPH-abhängig.
Demgegenüber weist eine „Hydroxypyruvat-Reduktase“ (ghrB) einen KM-Wert von mindestens 3,0, insbesondere mindestens 4,0, insbesondere mindestens 5,0, insbesondere mindestens 6,0 mM, insbesondere mindestens 6,6 mM, insbesondere 6,6 mM für Glyoxylat auf. Insbesondere weist eine Hydroxypyruvat-Reduktase (ghrB) einen KM-Wert von höchstens 0,6, insbesondere höchstens 0,7 mM, insbesondere 0,7 mM, für Hydroxypyruvat auf.
Insbesondere weist eine „Hydroxypyruvat-Reduktase“ (ghrB) einen KM-Wert von mindestens 3,0, insbesondere mindestens 4,0, insbesondere mindestens 5,0, insbesondere mindestens 6,0 mM, insbesondere mindestens 6,6 mM, insbesondere 6,6 mM für Glyoxylat und einen KM-Wert von höchstens 0,6, insbesondere höchstens 0,7 mM, insbesondere 0,7 mM, für Hydroxypyruvat auf.
Bevorzugt ist die Hydroxypyruvat-Reduktase NADH-abhängig.
Für die Definition der Michaelis-Menten-Konstante, KM, die als die Substratkonzentration definiert ist bei der die halbmaximale Umsatzrate eines spezifischen Enzyms unter festen Reaktionsbedingungen erreicht ist, wird als Berechnungsmethode die Lineweaver-Burk- Auswertungsmethode bevorzugt, beschrieben in Lineweaver, H. and Burk, D. (1934) Determination of the enzyme dissociation constants. J. Am. Chem. Soc. 56, 658-666.
Im Zusammenhang mit der vorliegenden Erfindung weist eine „Glyoxylat-Reduktase“ der vorliegenden Erfindung in bevorzugter Ausführungsform eine höhere Enzymaktivität bei einer NADPH-abhängigen Umsetzung von Glyoxylat zu Glycolat als bei einer NADH-abhängigen Umsetzung von Glyoxylat zu Glycolat auf, insbesondere eine mindestens 3 -fach höhere Enzymaktivität, insbesondere unter Bedingungen wie in dem Enzymassay gemäß Beispiel 5 angegeben.
Im Zusammenhang mit der vorliegenden Erfindung wird unter einer „Zelle eines methylotrophen Bakteriums“ insbesondere eine Zelle verstanden, die zu der Familie der Methylobacteriaceae zählt. Insbesondere sind diese Zellen befähigt, den Serinzyklus durchzuführen (https://doi.org/10.1002/9781118960608. gbm02024, https://doi.org/10.l l l l/1462-2920.12736, https://doi.org/10.3389/fmicb.2021.740610).
Der Serinzyklus ist ein methylotropher Stoffwechselweg der die Assimilation von CI Substraten, wie Methanol, Formiat/ Ameisensäure, Methylamine im mikrobiellen Stoffwechsel ermöglicht für die Bildung von Biomasse oder chemischen Produkten/Intermediaten dieses Stoffwechsels. Es handelt sich um eine definierte Abfolge enzymatisch katalysierter Reaktionen.
Der Zyklus startet mit Glycin. In einem ersten Schritt wird aus dem CI assimilierten Kohlenstoff (sprich Methanol, Ameisensäure, etc.) in Form von 5,10-Methylenetetrahydrofolat und einem Molekül Wasser und Glycin durch eine Glycin-Hydroxymethyltransferase (EC 2.1.2.1) die namensgebende Aminosäure L-Serin gebildet. Dabei wird Tetrahydrofolat abgespalten welches für eine neue Kohlenstoffassimilation vorbereitet wird. Das L-Serin wird im Serinzyklus in nachfolgenden Schritten durch eine Transaminase desaminiert zu Hydroxypyruvat. Das abgespaltene NH3 -Äquivalent wird für eine Transaminierung von Glyoxylat zu Glycin genutzt, um den Zyklus am Laufen zu halten. Das vorig genannte Hydroxypyruvat wird durch eine Hydroxypyruvat Reduktase mit NAD(P)H reduziert zu Glycerat, welches durch eine Kinase phosphoryliert wird zu 3-Phosphoglycerat. In zwei aufeinander folgenden Reaktionsschritten wird eine Umwandlung des 3-Phosphoglycerat in Phosphoenolpyruvat durchgeführt durch eine Phosphoglyceromutase (EC 5.4.2.11) und eine wasserab spaltende Enolase (EC 4.2.1.11). Das Phosphoenolpyruvat wird carboxyliert zu Oxalacetat durch Phosphoenolpyruvat Carboxylase (EC 4.1.1.31) unter Nutzung von Hydrogencarbonat/gelöstem CO2. Das Phosphoenolpyruvat wird schließlich über L-Malat zu L-Malyl-CoA mit Aufwendung von NADH und ATP sowie einem Cofaktor A (CoA) Molekül umgewandelt. Anschließend wird Acetyl-CoA abgespalten und es entsteht Glyoxylat. Mit dieser Reaktion, die durch eine Malyl-CoA Lyase (EC 4.1.3.24) durchgeführt, schließt sich der Zyklus und eine weitere Assimilation eines einzelnen Kohlenstoffs kann beginnen. (Anthony, C. W. (2011). "How half a century of research was required to understand bacterial growth on Cl and C2 compounds; the story of the serine cycle and the ethylmalonyl-CoA pathway." Science progress 94 Pt 2: 109-137).
Der Serinzyklus lässt sich nachweisen durch das Vorkommen des Metaboliten Hydroxypyruvat. Daneben kann mit 13C-markiertem Cl-Substrat und unmarkiertem CO2 in Markierungs-Studien die charakteristische Markierung von Glycin, Serin und Glyoxylat gemessen werden (https://doi.org/10.1186/1752-0509-5-189).
Im Zusammenhang mit der vorliegenden Erfindung wird unter „M. extorquens“ Methylorubrum extorquens, unter „M. rhodesianum“ Methylorubrum rhodesianum, unter „M. zatmanii“ Methylorubrum zatmanii, unter „M. organophilum“ Methyl ob acterium organophilum, unter „M. radiotolerans“ Methylobacterium radiotolerans verstanden.
Im Zusammenhang mit der vorliegenden Erfindung wird unter „pTE1887“ ein bestimmter Expressionsvektor verstanden.
Im Zusammenhang mit der vorliegenden Erfindung wird unter „ghrAeCo“ eine Nucleinsäuresequenz codierend die Glyoxylat-Reduktase aus Escherichia coli K-12 MG1655 verstanden. Diese Nucleinsäuresequenz kann die native („ghrAeCo-nativ“) oder eine codon- optimierte („ghrAeCo-c-optimiert“) Nucleinsäuresequenz sein.
Im Zusammenhang mit der vorliegenden Erfindung wird unter „pTE1887-ghrAeCo“ ein Expressionsvektor verstanden, der die Nucleinsäuresequenz codierend die Glyoxylat- Reduktase aus Escherichia coli K-12 MG1655 enthält. Im Zusammenhang mit der vorliegenden Erfindung wird unter „ecmmea“ die Nucleinsäuresequenz codierend die Ethylmalonyl-CoA-Mutase aus M. extorquens TK 0001 DSM 1337 verstanden. Diese Nucleinsäuresequenz kann die native oder eine codon-optimierte Nucleinsäuresequenz sein.
Im Zusammenhang mit der vorliegenden Erfindung wird unter „pTE1887- ghrAeco-ecmmea“ ein Expressionsvektor verstanden, der die Nucleinsäuresequenz codierend die Glyoxylat- Reduktase aus Escherichia coli K-12 MG1655 und die Nucleinsäuresequenz codierend die Ethylmalonyl-CoA-Mutase aus M. extorquens TK 0001 DSM 1337 enthält.
Im Zusammenhang mit der vorliegenden Erfindung wird unter „ecmrsh“ die Nucleinsäuresequenz codierend die Ethylmalonyl-CoA-Mutase aus Rhodobacter sphaeroides ATCC 17029 verstanden. Diese Nucleinsäuresequenz kann die native oder eine codon- optimierte Nucleinsäuresequenz sein.
Im Zusammenhang mit der vorliegenden Erfindung wird unter „pTE1887- ghrAeco-ecmrsh“ ein Expressionsvektor verstanden, der die Nucleinsäuresequenz codierend die Glyoxylat- Reduktase aus Escherichia coli K-12 MG1655 und die Nucleinsäuresequenz codierend die Ethylmalonyl-CoA-Mutase aus Rhodobacter sphaeroides ATCC 17029 enthält.
Im Zusammenhang mit der vorliegenden Erfindung wird unter „funktionales Nucleinsäuresequenz -Äquivalent“ ein Nucleinsäuresequenz-Äquivalent einer eine Glyoxylat- Reduktase beziehungsweise eine Ethylmalonyl-CoA-Mutase codierenden Nucleinsäuresequenz verstanden, wobei das Nucleinsäure-Äquivalent mindestens einen Unterschied an mindestens einer Nucleotidposition zu der Nucleinsäuresequenz aufweist, das heißt weist mindestens ein zusätzliches Nucleotid, also ein insertiertes Nucleotid oder mindestens ein fehlendes Nucleotid, also ein deletiertes Nucleotid, auf oder weist mindestens ein ausgetauschtes Nucleotid auf, und wobei das Nucleinsäure-Äquivalent eine Aminosäuresequenz mit der enzymatischen Aktivität einer Glyoxylat-Reduktase beziehungsweise einer Ethylmalonyl-CoA-Mutase codiert. Im Zusammenhang mit der vorliegenden Erfindung wird unter „codon-optimiert“ verstanden, dass die Nucleinsäuresequenz eines Genes eines Wildtyps, die als exogene Nucleinsäuresequenz in eine Methylobacteriaceae-Wirtszelle integriert werden soll, insbesondere aus E. coli, vor der Integration durch gentechnisch bewirkten Austausch von Codons für eine Expression, also Transkription und Translation in der Wirtszelle optimiert wird, und insbesondere zwar von solchen Codons, die in der exogenen Nucleinsäuresequenz gewöhnlich nicht oder nicht optimal vom Translationssystem der Wirtszelle, also der Methylobacteriaceae-Zelle, insbesondere Methylorubrum extorquens-, insbesondere Methylorubrum extorquens AMI, Methylorubrum extorquens TK 0001, insbesondere Methylorubrum extorquens PAl-Zelle genutzt werden. Durch zum Beispiel in-vitro-Mutagenese werden statt dessen die entsprechenden Methylobacteriaceae-bevorzugten Codons eingebaut, ohne dass sich die durch die Nucleinsäuresequenz codierte Aminosäuresequenz verändert. Im Zusammenhang mit der vorliegenden Erfindung ist eine codon-optimierte Nucleinsäuresequenz also eine für die Expression in einer Methylobacteriaceae-Zelle optimierte Nucleinsäuresequenz. Gegebenenfalls kann eine Codon-Optimierung auch vorgenommen werden, wenn die exogene Nucleinsäuresequenz aus der gleichen Bakterienart stammt wie die Wirtszelle, gleichwohl aber eine Expressionsverbesserung angestrebt wird. Bevorzugt kann die Codon-Optimierung gemäß folgender Übersicht durchgeführt werden (Tabelle 1):
Im Zusammenhang mit der vorliegenden Erfindung wird unter „funktionales Nucleinsäuresequenz-Äquivalent einer codon-optimierten Nucleinsäure“ auch, aber nicht allein, die native, natürlicherweise vorkommende Nucleinsäure verstanden.
Tabelle 1 : Codon-Optimierung
Figure imgf000041_0001
Im Zusammenhang mit der vorliegenden Erfindung wird unter „funktionales Aminosäuresequenz-Äquivalent“ ein Aminosäuresequenz-Äquivalent einer Aminosäuresequenz einer Glyoxylat-Reduktase beziehungsweise einer Ethylmalonyl-CoA- Mutase verstanden, wobei das Aminosäure-Äquivalent mindestens einen Unterschied an mindestens einer Aminosäureposition zu der Aminosäuresequenz aufweist, das heißt weist mindestens eine zusätzliche Aminosäure, also eine insertierte Aminosäure oder mindestens eine fehlende Aminosäure, also eine deletierte Aminosäure, auf oder weist mindestens eine ausgetauschte Aminosäure auf, und wobei das Aminosäure-Äquivalent die enzymatische Aktivität einer Glyoxylat-Reduktase beziehungsweise einer Ethylmalonyl-CoA-Mutase aufweist.
Im Zusammenhang mit der vorliegenden Erfindung wird unter der „Identität von Nucleinsäure- oder Aminosäuresequenzen“ ein durch einen Sequenzvergleich ermittelter Grad an Identität in % verstanden. Dieser Sequenzvergleich basiert grundsätzlich auf dem im Stand der Technik etablierten und üblicherweise genutzten BLAST-Algorithmus (vgl. z.B. Altschul et al. (1990) "Basic local alignment search tool", J. Mol. Biol. 215:403-410, und Altschul et al. (1997): "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402) und geschieht prinzipiell dadurch, dass ähnliche Abfolgen von Nucleotiden oder Aminosäuren in den Nucleinsäure- oder Aminosäuresequenzen einander zugeordnet werden. Eine tabellarische Zuordnung der betreffenden Positionen wird als Alignment bezeichnet. Ein weiterer im Stand der Technik verfügbarer Algorithmus ist der FASTA-Algorithmus. Sequenzvergleiche (Alignments), insbesondere multiple Sequenzvergleiche, werden mit Computerprogrammen erstellt. Häufig genutzt werden beispielsweise die Clustal-Serie (vgl. z.B. Chenna et al. (2003) "Multiple sequence alignment with the Clustal series of programs", Nucleic Acids Res. 31 :3497-3500), T-Coffee (vgl. Z.B. Notredame et al. (2000) "T-Coffee: A novel method for multiple sequence alignments", J. Mol. Biol. 302:205-217) oder Programme, die auf diesen Programmen beziehungsweise Algorithmen basieren. Ferner möglich sind Sequenzvergleiche (Alignments) mit dem Computer-Programm Vector NTI® Suite 10.3 (Invitrogen Corporation, 1600 Faraday Avenue, Carlsbad, Kalifornien, USA) mit den vorgegebenen Standardparametern, dessen AlignX- Modul für die Sequenzvergleiche auf ClustalW basiert. Soweit nicht anders angegeben, wird die hierin angegebene Sequenzidentität mit dem NCBI Constraint-based Multiple Allignment- Tool (COBALT) (https://www.ncbi.nlm.nih.gov/, Stand 26.01.2022) bestimmt, wobei die SEQ ID Nr. 1 bis 8 jeweils als Referenz für die Bestimmung der prozentualen Sequenzunterschiede verwendet wurden. Solch ein Vergleich erlaubt auch eine Aussage über die Ähnlichkeit der verglichenen Sequenzen zueinander. Sie wird vorliegend in Prozent „Identität“, das heißt dem Anteil der identischen Nucleotide oder Aminosäurereste an denselben oder in einem Alignment einander entsprechenden Positionen angegeben. Identitätsangaben können über ganze Polypeptide oder Gene oder nur über einzelne Bereiche getroffen werden. Identische Bereiche von verschiedenen Nucleinsäure- oder Aminosäuresequenzen sind daher durch Übereinstimmungen in den Sequenzen definiert. Solche Bereiche weisen oftmals identische Funktionen auf. Sie können klein sein und nur wenige Nucleotide oder Aminosäuren umfassen. Soweit nicht anders angegeben, beziehen sich Identitätsangaben in der vorliegenden Lehre auf die Gesamtlänge der jeweils angegebenen Nucleinsäure- oder Aminosäuresäuresequenz.
Im Zusammenhang mit der vorliegenden Erfindung wird unter einer „Aminosäuresequenz“ eine Abfolge linear verbundener Aminosäuren verstanden, insbesondere ein Protein, insbesondere ein Polypeptid.
Im Zusammenhang mit der vorliegenden Erfindung wird unter einer „Nucleinsäuresequenz“ eine Abfolge linear verbundener Nucleotide, insbesondere eine Nucleinsäure-Molekül, verstanden, insbesondere ein Gen, insbesondere ein Protein-codierender Bereich eines Gens. In besonders bevorzugter Ausführungsform ist die Nucleinsäuresequenz eine DNA-Sequenz.
Im Zusammenhang mit der vorliegenden Erfindung wird unter „Ethylmalonyl-CoA-Mutase“ ein im Ethylmalonyl-CoA-Stoffwechsel für die Umsetzung von Ethylmalonyl-CoA zu Methylsuccinyl-CoA verantwortliches Coenzym Bl 2-abhängiges, Enzym mit intramolekularer Isomerase-Aktivität verstanden, welches vorzugsweise die EC -Klassifizierung EC 5.4.99.63 aufweist.
Im Zusammenhang mit der vorliegenden Erfindung wird unter „Cx-Verbindung“ eine chemische Kohlenstoff (C)-, Wasserstoff (H)- und Sauerstoff (O)-haltige Verbindung verstanden, die x Kohlenstoffatome enthält, wobei x bevorzugt eine natürliche Zahl ist. Erfindungsgemäß bevorzugt ist x = 1, 2 oder 4, insbesondere 1. Vorzugsweise weist die Cx- Verbindung allein C-, H- und O-Atome und demgemäß keine anderen Atome auf.
Im Zusammenhang mit der vorliegenden Erfindung wird unter Ameisensäure auch Formiat, unter Essigsäure auch Acetat und unter Bernsteinsäure auch Succinat verstanden.
Im Zusammenhang mit der vorliegenden Erfindung wird unter einer „Integration einer exogenen Nucleinsäurensequenz in eine Methylobacteriaceae-Zelle“ oder unter einem „Vorliegen einer exogenen Nucleinsäurensequenz in einer Methylobacteriaceae-Zelle“ verstanden, dass die jeweilige in Bezug genommene Nucleinsäurensequenz chromosomal oder extrachromosomal, vorzugsweise chromosomal, im Genom der Zelle vorliegt.
In bevorzugter Ausführungsform liegt die exogene Nucleinsäuresequenz stabil integriert vor, wobei eine stabile Integration einer Nucl einsäure eine solche Integration ist, die zumindest über mindestens 2, 3, 5, 10, 20 oder 50 Generationen des Mikroorganismus im Mikroorganismus nachweisbar und expressionsfähig ist.
Im Zusammenhang mit der vorliegenden Erfindung wird unter „maximaler Wachstumsrate“ (gmax) die Rate der Zellteilung, also des mikrobiellen Wachstums, der erfindungsgemäßen Methylobacteriaceae-Zelle in Reaktionsmedium, insbesondere flüssigem Kulturmedium, verstanden. Die Berechnung von pmax basiert auf den Messwerten der Optischen Dichte des Kulturmediums bei 600 nm Wellenlänge, gemessen im Photometer (ODeoo) über den zeitlichen Verlauf des Verfahrensschrittes. Die Berechnung von pmax kann mit Gleichung 1 durchgeführt werden, unter Berücksichtigung der Messwerte der ODeoo im Wachstumsintervall des schnellsten zu beobachteten Wachstums. (Gleichung 1)
Figure imgf000044_0001
Gleichung 1 mit ty - tx als Zeitintervall des Wachstumsintervall des schnellsten zu beobachteten Wachstums und ty > tx. Das Zeitintervall wird typischerweise in Stunden (h) angegeben. Im Zusammenhang mit der vorliegenden Erfindung wird unter „Biotrockenmasse-Substrat- Ausbeute“ (Yx/s) die Masse an mikrobieller Biotrockenmasse (Biomasse vollständig getrocknet bis zur Gewichtskonstanz) im Reaktionsmedium, insbesondere flüssigem Kulturmedium, angegeben in einer Gewichtseinheit wie beispielsweise Gramm (X, gx), verstanden, die vom spezifischen mikrobiellen Stamm aus einem Gramm der Cx-Verbindung (S, gcx) gebildet werden kann. Die Berechnung erfolgt graphisch mit linearer Regression der Änderungen der Messwerte der Biotrockenmasse (AX(t) in Abhängigkeit von der Masse der Cx-Verbindung (ACx(t)) im zeitlichen Verlauf im Verfahrensschritt nach Gleichung 2. Nach Gleichung 2 ist Yx/s somit die Steigung der zeitlich linear korrelierenden Änderung der Biotrockenmasse X in Abhängigkeit der Änderung der Masse der Cx-Verbindung. Die Einheit von Yx/s wird typischerweise in gx pro gcx angegeben. (Gleichung 2)
Figure imgf000044_0002
Im Zusammenhang mit der vorliegenden Erfindung wird unter „Produkt-Substrat-Ausbeute“ (Yp/s) die Masse an Produkt, angegeben in einer Gewichtseinheit wie beispielsweise Gramm (P, gp), verstanden, die vom spezifischen mikrobiellen Stamm aus einem Gramm der Cx- Verbindung (S, gcx) gebildet werden kann. Die Berechnung erfolgt graphisch mit linearer Regression der Änderungen der Messwerte der Produktmasse (AP(t) in Abhängigkeit von der Masse der Cx-Verbindung (ACx(t)) im zeitlichen Verlauf im Verfahrensschritt nach Gleichung 3. Nach Gleichung 3 ist Yp/s somit die Steigung der zeitlich linear korrelierenden Änderung der Produktmasse P in Abhängigkeit der Änderung der Masse der Cx-Verbindung. Die Einheit von Yp/s wird typischerweise in gp pro gcx angegeben. (Gleichung 3)
Figure imgf000045_0001
Im Zusammenhang mit der vorliegenden Erfindung wird unter „Produkt-Biotrockenmasse- Ausbeute“ (Yp/x) die Masse an Produkt, angegeben in einer Gewichtseinheit wie beispielsweise Gramm (P, gp), verstanden, die vom spezifischen mikrobiellen Stamm pro Gramm gebildeter Biotrockenmasse (X, gx) gebildet wird während des mikrobiellen Wachstums. Die Berechnung erfolgt graphisch mit linearer Regression der Änderungen der Messwerte der Produktmasse (AP(t) in Abhängigkeit von der Biotrockenmasse (AX(t)) im zeitlichen Verlauf im Verfahrensschritt nach Gleichung 4. Nach Gleichung 4 ist Yp/x somit die Steigung der zeitlich linear korrelierenden Änderung der Produktmasse P in Abhängigkeit der Änderung der gebildeten Biotrockenmasse. Die Einheit von Yp/x wird typischerweise in gp pro gx angegeben.
YP/x = i™ [g] (Gleichung 4)
Im Zusammenhang mit der vorliegenden Erfindung wird unter „Biotrockenmasse“ die Masse X(t) an mikrobieller Biotrockenmasse (Biomasse vollständig getrocknet bis zur Gewichtskonstanz) im Reaktionsmedium, insbesondere flüssigem Kulturmedium mit dem Volumen v(t) zum Zeitpunkt t, angegeben in einer Gewichtseinheit wie beispielsweise Gramm (X, gx), verstanden. Die Biotrockenmasse X lässt sich aus den Messwerten der ODeoo bestimmen mit dem Korrelationsfaktor z nach Gleichung 5, wobei z = 0,305 gx pro 1 ODeoo definiert ist.
X(t) = 0,305 * ODeoo(t) * v [gx] (Gleichung 5) Im Zusammenhang mit der vorliegenden Erfindung wird unter der Abkürzung „NAD“ Nicotinsäureamid-Adenin-Dinucleotid verstanden. Im Zusammenhang mit der vorliegenden Erfindung wird unter „NADH“ die reduzierte Form von NAD verstanden. Im Zusammenhang mit der vorliegenden Erfindung wird unter der Abkürzung „NADP“ Nicotinsäureamid-Adenin- Dinucleotid-Phosphat verstanden. Im Zusammenhang mit der vorliegenden Erfindung wird unter „NADPH“ die reduzierte Form von NADP verstanden. Im Zusammenhang mit der vorliegenden Erfindung wird unter „NADH/NADPH-Analogon“ eine chemische Verbindung zum Beispiel Thionicotinsäureamid-Adenin-Dinucleotid (S-NAD), Nicotinsäure-Adenin- Dinucleotid (O-NAD), Nicotinsäureamid-Hypoxanthin-Dinucleotid (NHD), Nicotinsäureamid-Guanin-Dinucleotid, oder weitere Verbindungen, die eine ähnliche, bevorzugt gleiche Aktivität wie NADH und/oder NADPH aufweisen, verstanden.
Im Zusammenhang mit der vorliegenden Erfindung wird unter einem „Edukt“ ein Ausgangsmaterial verstanden, insbesondere mindestens eine Cx- Verbindung, insbesondere eine Cx-Verbindung oder zwei oder mehrere oder viele Cx- Verbindungen, insbesondere eine Zusammensetzung von Cx-Verbindungen.
Im Zusammenhang mit der vorliegenden Erfindung wird unter einem „Produkt“ mindestens die Glycolsäure, insbesondere allein Glycolsäure, vorzugsweise Glycolsäure und Milchsäure, insbesondere eine Zusammensetzung von Verbindungen, enthaltend Glycolsäure verstanden, insbesondere bestehend aus den Verbindungen Glycolsäure und Milchsäure.
Im Zusammenhang mit der vorliegenden Erfindung wird unter einer „Umsetzung“ eine chemische Reaktion, insbesondere eine katalysierte chemische Reaktion, insbesondere eine enzymatische katalysierte Reaktion verstanden.
In Zusammenhang mit der vorliegenden Erfindung wird unter einem „Reaktionsmedium“ ein flüssiges Medium, insbesondere ein flüssiges wässriges Medium verstanden, in dem eine Umsetzung, insbesondere eine enzymatisch katalysierte Umsetzung stattfinden kann, insbesondere eine durch Mikroorganismen oder Bestandteile von Mikroorganismen bewirkte Umsetzung, insbesondere ein Kulturmedium, insbesondere ein Minimalmedium.
Im Zusammenhang mit der vorliegenden Erfindung wird unter dem Begriff „Erhalten eines Produkts“ verstanden, dass das in einem vorhergehenden Verfahrensschritt durch Umsetzung von dem Edukt, also einem Ausgangsmaterial, gewonnene Produkt aus dem jeweiligen Reaktionsmedium, insbesondere Kulturmedium oder Lösungsmittel, heraus verfügbar gemacht wird, insbesondere aus diesem isoliert wird. Insbesondere ist ein Erhalten eines Produkts daher als ein Aufkonzentrieren, insbesondere Isolieren, des Produkts zu verstehen. Die dazu eingesetzten Verfahren können physikalische, chemische und/oder biologische Verfahren sein.
Im Zusammenhang mit der vorliegenden Erfindung wird unter „Verbindung“ ein Molekül oder mehrere identische Moleküle verstanden.
Im Zusammenhang mit der vorliegenden Erfindung ist eine Zusammensetzung enthaltend Glycolsäure das Produkt einer erfindungsgemäßen Umsetzung in Verfahrensschritt b).
Sofern im Zusammenhang mit der vorliegenden Erfindung quantitative Angaben, insbesondere Prozentangaben, von Komponenten eines Produktes oder einer Zusammensetzung angegeben sind, addieren diese, sofern nicht explizit anders angegeben oder fachmännisch ersichtlich, zusammen mit den anderen explizit angegeben oder fachmännisch ersichtlichen weiteren Komponenten der Zusammensetzung oder des Produktes auf 100 % der Zusammensetzung und/oder des Produktes auf.
Im Zusammenhang mit der vorliegenden Erfindung wird unter dem Begriff „mindestens eine“ eine Mengenangabe verstanden, die eine Anzahl von 1 oder 2 oder 3 oder 4 oder 5 oder 6 oder 7 oder 8 oder 9 oder 10 und so weiter ausdrückt. In einer besonders bevorzugten Ausführungsform kann die Bezeichnung „mindestens eine“ genau die Anzahl 1 darstellen. In einer weiteren bevorzugten Ausführungsform kann die Begrifflichkeit „mindestens eine“ auch 2 oder 3 oder 4 oder 5 oder 6 oder 7 bedeuten.
Sofern im Zusammenhang mit der vorliegenden Erfindung ein „Vorhandensein“, ein „Enthalten“, ein „Aufweisen“ oder ein „Gehalt“ einer Komponente ausdrücklich erwähnt oder impliziert wird bedeutet dies, dass die jeweilige Komponente vorhanden ist, insbesondere in messbarer Menge vorhanden ist.
Sofern im Zusammenhang mit der vorliegenden Erfindung ein „Vorhandensein“, ein „Enthalten“ oder ein „Aufweisen“ einer Komponente in einer Menge von 0 [Einheit], insbesondere mg/kg, pg/kg oder Gew.-%, ausdrücklich erwähnt oder impliziert wird, bedeutet dies, dass die jeweiligen Komponenten nicht in messbarer Menge vorhanden, insbesondere nicht vorhanden ist.
Die Zahl der angegebenen Nachkommastellen entspricht der Präzision der jeweils angewandten Messmethode. Sofern im Zusammenhang mit der vorliegenden Erfindung für eine Zahl die erste und zweite Nachkommastelle oder die zweite Nachkommastelle nicht angegeben sind/ist, sind/ist diese als Null zu setzen.
Unter dem Begriff „und/oder“ wird in Zusammenhang mit der vorliegenden Erfindung verstanden, dass alle Mitglieder einer Gruppe, welche durch den Begriff „und/oder“ verbunden sind, sowohl alternativ zueinander als auch jeweils untereinander kumulativ in einer beliebigen Kombination offenbart sind. Dies bedeutet für den Ausdruck „A, B und/oder C“, dass folgender Offenbarungsgehalt darunter zu verstehen ist: a) A oder B oder C oder b) (A und B), oder c) (A und C), oder d) (B und C), oder e) (A und B und C).
Im Zusammenhang mit der vorliegenden Erfindung wird unter den Begriffen „umfassend“ und „aufweisend“ verstanden, dass zusätzlich zu den von diesen Begriffen explizit erfassten Elementen noch weitere, nicht explizit genannte Elemente hinzutreten können. Im Zusammenhang mit der vorliegenden Erfindung wird unter diesen Begriffen auch verstanden, dass allein die explizit genannten Elemente erfasst werden und keine weiteren Elemente vorliegen. In dieser besonderen Ausführungsform ist die Bedeutung der Begriffe „umfassend“ und „aufweisend“ gleichbedeutend mit dem Begriff „bestehend aus“. Darüber hinaus erfassen die Begriffe „umfassend“ und „aufweisend“ auch Zusammensetzungen, die neben den explizit genannten Elementen auch weitere nicht genannte Elemente enthalten, die jedoch von funktioneller und qualitativ untergeordneter Natur sind. In dieser Ausführungsform sind die Begriffe „umfassend“ und „aufweisend“ gleichbedeutend mit dem Begriff „im Wesentlichen bestehend aus“.
Die Bezeichnung „DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Deutschland“ steht für „Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7B, 38124 Braunschweig“.
Weitere bevorzugte Ausführungsformen der vorliegenden Erfindung ergeben sich aus den Unteransprüchen.
Die Erfindung wird nachstehend ohne Einschränkung des allgemeinen Erfindungsgedankens anhand von Beispielen und dazugehöriger Figuren näher beschrieben.
Das Sequenzprotokoll zeigt: SEQ ID Nr. 1 stellt die native Nucleinsäuresequenz codierend eine Glyoxylat-Reduktase aus dem Bakterium Escherichia coli (K-12 MG1655) dar, insbesondere auch bezeichnet als, ghrAeco-nativ, also ein funktionales Nucleinsäuresequenz-Äquivalent der Nucleinsäuresequenz gemäß SEQ ID Nr. 3.
SEQ ID Nr. 2 die durch SEQ ID Nr. 1 und 3 codierte Aminosäuresequenz.
SEQ ID Nr. 3 stellt eine Methylobacteriaceae-codon-optimierte Nucleinsäuresequenz (ghrAeco- c-optimiert) der nativen Nucleinsäuresequenz gemäß SEQ ID Nr. 1 codierend eine Glyoxylat- Reduktase aus dem Bakterium Escherichia coli (K-12 MG1655) dar.
SEQ ID Nr. 4 stellt die native Nucleinsäuresequenz codierend eine Ethylmalonyl-CoA-Mutase aus dem Bakterium Methylorubrum extorquens (TK 0001 DSM 1337) dar, insbesondere auch bezeichnet als ecmmea, also ein funktionales Nucleinsäuresequenz-Äquivalent der codon- optimierten Nucleinsäuresequenz gemäß SEQ ID Nr. 13.
SEQ ID Nr. 5 die die durch SEQ ID Nr. 4 und 13 codierte Aminosäuresequenz.
SEQ ID Nr. 6 stellt die native Nucleinsäuresequenz codierend eine Ethylmalonyl-CoA-Mutase aus dem Bakterium Rhodobacter sphaeroides (ATCC 17029) dar, insbesondere auch bezeichnet als ecmrsh also ein funktionales Nucleinsäuresequenz-Äquivalent der codon-optimierten Nucleinsäuresequenz gemäß SEQ ID Nr. 8.
SEQ ID Nr. 7 die durch SEQ ID Nr. 6 und 8 codierte Aminosäuresequenz.
SEQ ID Nr. 8 stellt eine Methylobacteriaceae-codon-optimierte Nucleinsäuresequenz der nativen Nucleinsäuresequenz gemäß SEQ ID Nr. 6 codierend eine Ethylmalonyl-CoA-Mutase aus dem Bakterium Rhodobacter sphaeroides (ATCC 17029) dar.
SEQ ID Nr. 9 stellt die Nucleinsäuresequenz des Expressionsvektors pTE1887 dar, wobei in Figur 8 die zugehörige Plasmidkarte gezeigt ist.
SEQ ID Nr. 10 stellt die Nucleinsäuresequenz des Expressionsvektors pTE1887-ghrAeCo dar, wobei in Figur 9 die zugehörige Plasmidkarte gezeigt ist.
SEQ ID Nr. 11 stellt die Nucleinsäuresequenz des Expressionsvektors pTEl 887-ghrA eco-CCnimea dar, wobei in Figur 10 die zugehörige Plasmidkarte gezeigt ist. SEQ ID Nr. 12 stellt die Nucleinsäuresequenz des Expressionsvektors pTE1887- EcoGoxRed l-ecmrsh dar, wobei in Figur 11 die zugehörige Plasmidkarte gezeigt ist.
SEQ ID Nr. 13 stellt eine Methylobacteriaceae-codon-optimierte Nucleinsäuresequenz der nativen Nucleinsäuresequenz gemäß SEQ ID Nr. 4 codierend eine Ethylmalonyl-CoA-Mutase aus dem Bakterium Methylorubrum extorquens (TK 0001 DSM 1337) dar.
Die Figuren zeigen:
Figur 1 das Screeningergebnis zur Glycol säure-Produktion in rekombinanten, also genetisch veränderten, M. extorquens TK 0001 Stämmen, die codon-optimierte Gene der Glyoxylat-Reduktasen aufweisen und exprimieren (A), Screeningergebnisse gemäß 1A in (B und C), wobei Enzym-Aktivitäten der Glyoxylat-Reduktasen aus der gemäß 1(A) verwendeten Biomasse exprimiert mit dem Expressionsvektor pTE1887 im Stammhintergrund M. extorquens TK 0001 mit NADH (B) und NADPH (C) als Cofaktor dargestellt werden,
Figur 2 eine HPLC-Chromatogramm-Gegenüberstellung der Kultivierungsproben (22 bis 24 h nach Induktion) der genetisch veränderten Methylobacteriaceae-Zellen M. extorquens TK 0001 Glyoxylat-Reduktase Stämme, die codon-optimierte Gene der Glyoxylat-Reduktasen aufweisen und exprimieren,
Figur 3 ein GC -MS-Chromatogramm und Massenspektren des Glycol säure-Peaks (Retentionszeit: 7,22 min) eines 100 mg L'1 Glycol säure- Standards, einer Probe des Reaktionsmediums zum Zeitpunkt t = 0 h, einer Probe der M. extorquens TK 0001 + pTE1887-Leervektor-Kultivierung nach der Induktion, und einer erfindungsgemäßen Probe der + pTE1887-ghrAeCo-c-optimiert (M. extorquens GAI) Kultivierung nach der Induktion,
Figur 4 ein GC -MS-Chromatogramm und Massenspektren des Milchsäure-Peaks (Retentionszeit: 6,88 min) eines 100 mg L'1 Milchsäuresäure-Standards, einer Probe des Reaktionsmediums zum Zeitpunkt t = 0 h, einer Probe der M. extorquens TK 0001 + pTE1887-Leervektor Kultivierung 22 - 24h nach der Induktion, und einer erfindungsgemäßen Probe der M. extorquens TK 0001 + pTE1887-ghrAeco-c-optimiert (M. extorquens GAI) Kultivierung 22 bis 24h nach der Induktion, Figur 5 eine Detailansicht der Massenspektren des Glycol säure-Peaks (A) und des Milchsäure-Peaks (B) einer Probe der M. extorquens GAI -Kultivierung 22 bis 24h nach der Induktion und Datenbanknachweis der Glycol säure-Identität (A) und der Milchsäure-Identität (B) in der M. extorquens GAI Probe,
Figur 6 den Wachstumsverlauf (OD600), den pH-Wert und die Methanol-, Glyoxylat-, Glycolsäure- und Milchsäurekonzentrationen von M. extorquens TK 0001 + pTE1887 (A+C) und erfindungsgemäßer M. extorquens TK 0001 + pTE1887- ghrAeco-c-optimiert (M. extorquens GAI) (B+D) in Reaktionsmedium, nämlich Minimalmedium, wobei als Kohlenstoffquelle 8 g L'1 Methanol (A+B) oder 9 g L'1 Methanol + 1.5 g L'1 Glyoxylat (C+D) zugegeben wurde,
Figur 7 den Wachstumsverlauf (OD600), pH-Wert, Methanol- und die Glycolsäure- und Milchsäure-Konzentrationen von M. extorquens TK 0001 + pTE1887 (A), erfindungsgemäßer M. extorquens TK 0001 + pTE1887-ghrAeCo-c-optimiert (M. extorquens GAI) (B), erfindungsgemäßer M. extorquens TK 0001 + pTE1887- ghrAeco-c-optimiert-eemmea (M. extorquens GA2) (C) und erfindungsgemäßer M. extorquens TK 0001 + pTE1887-ghrAeco-c-optimiert-ecmrsh (M. extorquens GA3) (D) in Reaktionsmedium mit 9 g L'1 Methanol als alleiniges Substrat,
Figur 8 die Plasmidkarte des Expressionsvektors pTE1887,
Figur 9 die Plasmidkarte des Expressionsvektors pTE1887-ghrAeCo-c-optimiert,
Figur 10 die Plasmidkarte des Expressionsvektors pTE1887-ghrAeco-c-optimiert-ecmmea,
Figur 11 die Plasmidkarte des Expressionsvektors pTE1887-ghrAeCo-c-optimiert-ecmrsh,
Figur 12 die Ergebnisse der Glyoxylat-Reduktase-Enzymaktivitätstests von ghrAeco und ghrBeco in nativer und codon-optimierter DNA-Sequenz exprimiert mit dem Expressionsvektor pTEl 887 im Stammhintergrund M. extorquens TK 0001,
Figur 13 die Taxonomische Einordnung der mit den erfindungsgemäßen Expressionsvektoren getesteten methylotrophen Mikroorganismen,
Figur 14 das Screeningergebnis zur Glycolsäure- und Milchsäure-Produktion 22 h bis 28 h nach Induktion der Genexpression in rekombinanten, also genetisch veränderten, M. rhodesianum DSM 5687 Stämmen, die codon-optimierte Gene der Glyoxylat-Reduktasen und in einigen Stämmen zusätzlich Ethylmalonyl- CoA-Mutasen aufweisen und exprimieren,
Figur 15 das Screeningergebnis zur Glycolsäure- und Milchsäure-Produktion 22 h bis 28 h nach Induktion der Genexpression in rekombinanten, also genetisch veränderten, M. zatmanii DSM 5688 Stämmen, die das erfindungsgemäße codon-optimierte Gen der Glyoxylat-Reduktase aus Escherichia und in einem Stamm zusätzlich ein codon-optimiertes Gen der Ethylmalonyl-CoA-Mutase aus Rhodobacter sphaeroides ATCC 17029 aufweisen und exprimieren,
Figur 16 das Screeningergebnis zur Glycolsäure- und Milchsäure-Produktion 22 h bis 28 h nach Induktion der Genexpression in einem rekombinanten, also genetisch veränderten, M. radiotolerans DSM 760 Stamm, der die erfindungsgemäße Kombination des codon-optimierten Gens der Glyoxylat-Reduktase aus Escherichia und zusätzlich einem nativen Gen der Ethylmalonyl-CoA-Mutase aus M. extorquens TK 0001 DSM 1337 aufweist und exprimiert,
Figur 17 das Screeningergebnis zur Glycolsäure- und Milchsäure-Produktion 22 h bis 28 h nach Induktion der Genexpression in rekombinanten, also genetisch veränderten, M. organophilum DSM 18172 Stämmen, die codon-optimierte Gene der Glyoxylat-Reduktasen und in einigen Stämmen zusätzlich Ethylmalonyl-CoA-Mutasen aufweisen und exprimieren,
Figur 18 das Screeningergebnis zur Glycolsäure- und Milchsäure-Produktion 22 h bis 28 h nach Induktion der Genexpression eines rekombinanten, also genetisch veränderten, M. extorquens PA1 DSM 23939 Stammes, der erfindungsgemäß das codon-optimierte Gen der Glyoxylat-Reduktase aus Escherichia coli K12 1655 aufweist und exprimiert,
Figur 19 das Screeningergebnis zur Glycolsäure- und Milchsäure-Produktion 22 h bis 28 h nach Induktion der Genexpression in rekombinanten, also genetisch veränderten, M. extorquens AMlAcel (basierend auf dem Stamm DSM 1338) Stämmen, die codon-optimierte Gene der Glyoxylat-Reduktasen aufweisen und exprimieren. Beispiele
Beispiel 1: Herstellung genetisch veränderter Methylobacteriaceae-Zellen
Es wurden mit bioinformati sehen Methoden unter Nutzung der KEGG-Datenbank (www.genome.jp/kegg/) und der Brenda Enzymes-Datenbank (https ://www.brenda- enzymes.org/) 12 verschiedene exogene Glyoxylat-Reduktasen identifiziert und die zugehörigen DNA- und Aminosäuresequenzen extrahiert. Hierbei wurden nur Glyoxylat- Reduktasen berücksichtigt, die in Prokaryoten oder Saccharomyces cerevisiae vorkommen. Auch die native Glyoxylat-Reduktase aus M. extorquens TK 0001 wurde ausgewählt. Eine Übersicht über die 13 ausgewählten Glyoxylat-Reduktasen ist in Tabelle 2 zusammengefasst. Insbesondere die Glyoxylat-Reduktase aus Thermococcus litoralis wurde als NADH- abhängiges Enzym identifiziert (Ohshima, et al., European Journal of Biochemistry, 2001, 268(17): p. 4740-4747). Der Einfluss des spezifischen Redox-Äquivalents auf die Glycolsäure- Produktion kann substanziell sein, je nach Verfügbarkeit des spezifischen Redox-Äquivalents im Cytosol und die Adaption des metabolischen Netzwerks an die getätigte Intervention (Überexpression der Glyoxylat-Reduktase).
Tabelle 2: Zusammenfassung der getesteten Enzyme
Figure imgf000053_0001
Figure imgf000054_0001
Die heterologen Enzyme aus Pseudomonas fluorescens PfO-l, Thermococcus litoralis, Pyrococcus furiosus DSM 3638, Saccharomyces cerevisiae, Thermus thermophilus HB27, Escherichia coli K-12 MG1655 und Acetobacter aceti wurden durch synthetische Gene in für Methylobacteriaceae codon-optimierter Form codiert (BioCat GmbH, Heidelberg, Deutschland, Tabelle 1), um eine bestmögliche Genexpression zu unterstützen. Da das homologe Gen aus M. extorquens (SEQ ID Nr. 1) das Startcodon „TTG“ aufwies, wurde über PCR das Startcodon zu „ATG“ geändert (Kozak, M., Gene, 1999, 234(2): p. 187-208). Im weiteren Verlauf wurden beide Genvarianten der SEQ ID Nr. 1 und 3 getestet. Somit ergeben sich 14 Varianten der getesteten Glyoxylat Reduktasen.
Die synthetischen Gene wurden in codon-optimierter Form mit Hilfe von Gibson- Assembly auf den episomalen Expressionsvektor pTE1887 (Carrillo, M. et al., ACS Synthetic Biology, 2019, 8(11): p. 2451-2456) unter Kontrolle des PL/O4/AI -Promotors (IPTG-induzierbar) kloniert (Figur 8). Figur 8 zeigt den Vektor mit folgenden Elementen: lacl Gen, lacl Promoter, PL/O4/A1 Promoter -33 Region -10 Region Transkriptionsstart^PL/O4/A I Promoter Ribosomale Bindestelle (RBS), Lambda TO Terminator, Kanamycin Resistenz, Mobilisation Gene mobS und mobL Regulatory protein RepA, Origin of replication colEl.
Für diese Klonierung wurde der Expressionsvektor mit dem Restriktionsenzym Ncol geschnitten. Die Sequenzidentität und Korrektheit der Konstrukte konnten durch Sequenzierung sichergestellt werden. Anschließend wurden die hergestellten Konstrukte und eine Wildtypstamm-Methylobacteriaceae-Zelle, insbesondere M. extorquens TK 0001 -Zellen und insbesondere M. extorquens PA1, gemäß Verfahrensschritt a) bereitgestellt, und gemäß Verfahrensschritt b) mit Hilfe von Elektroporati on jeweils in die Methylobacteriaceae-Zellen transformiert und eine genetisch veränderte Methylobacteriaceae-Zelle gemäß Verfahrensschritt c) erhalten. Klone der Methylobacteriaceae-Zellen, also genetisch veränderte Methylobacteriaceae-Zellen, die die individuell hergestellten Konstrukte, enthaltend die synthetischen Gene in codon-optimierter Form, tragen, wurden auf Minimalmedium- Agarplatten, mit Kanamycin als Selektionsmarker, selektiert. Über Kolonie-PCR ist die Anwesenheit der Expressionsvektoren und die jeweils erwartete Sequenzgröße des PCR- Produkts, welches das klonierte Gen repräsentiert, in den erhaltenen individuellen Klonen geprüft worden. Die verifizierten Stämme sind bei -80 °C als Kryokulturen sichergestellt worden.
Um die Fähigkeit der genetisch modifizierten Methylobacteriaceae-Stämme auf Glycolsäure- Produktion zu testen, wurden die Stämme, ein Minimalmedium als Reaktionsmedium, insbesondere auch als Kulturmedium bezeichnet, und als Edukt eine Cx-Verbindung mit x=l, nämlich Methanol (Cui, L.-Y. et al., Biochemical Engineering Journal, 2017, 119: p. 67-73) bereitgestellt (erfindungsgemäßer Verfahrensschritt x)), in schikanierten Schüttelkolben (250 mL Kolbenvolumen, 50 mL Kulturvolumen) bei 30 °C, 150 RPM (Umdrehungen pro Minute) und Wasserdampf-gesättigter Atmosphäre kultiviert (erfindungsgemäßer Verfahrensschritt y)) (New Brunswick™ Innova 44, Eppendorf AG, Hamburg, Deutschland) und in dem Reaktionsmedium ein Produkt enthaltend Glycolsäure erhalten (Verfahrensschritt z)). Analog ist eine Kultivierung unter anderem auch mit Ameisensäure möglich, die ebenso als Edukt für die Glycol säure-Produktion genutzt werden kann.
Die Inokulation der Hauptkulturen erfolgte aus unter gleichen Bedingungen angezogenen Vorkulturen (End-ODeoo zwischen 3 bis 5) zu einer Start-ODeoo von 0,05. Nachdem die Kulturen eine ODeoo von 1,0 erreicht hatten, wurde mit 1 mM IPTG (Endkonzentration im Kulturvolumen) die Genexpression der codon-optimierten Glyoxylat-Reduktase Gene induziert. Um die Produktion von Glycolsäure nachzuweisen, wurde ein Probevolumen von 1 mL des Minimalmediums vor der Inokulation und jeweils ein Probenvolumen von 1 mL aller Kulturen vor der Induktion, direkt nach der Induktion und rund 20 Stunden nach der Induktion dem Kulturvolumen entnommen. Nach Abtrennung der Biomasse über Zentrifugation vom Reaktionsmedium wurden die Proben mit Hilfe der Hochleistungs-Flüssig-Chromatographie (HPLC) und Refraktär-Index-Detektion (RID) hinsichtlich der enthaltenen Konzentrationen von Methanol, Ameisensäure, Glyoxylat, Glycolsäure und Milchsäure analysiert. Die HPLC- Messung erfolgte zur Auftrennung der Analyten mit einer Synergi™ 4 pm Hydro-RP 80A, LC- Säule 250 x 4,6 mm (Phenomenex Inc., Torrance, CA, USA) und 20 mM K2HPO4 (pH 1.5) als Eluent bei 30 °C und 0,5 mL min'1 Flussrate für 20 Minuten pro Probe. Die Identifikation und Quantifizierung der Analyten erfolgten mit externen Standards bekannter Konzentration. Der eindeutige Nachweis von Glycolsäure in den Kulturproben erfolgte durch Gaschromatographie gekoppelt mit Massenspektrometrie (GC-MS) unter Verwendung eines Glycol säure- Standards (100 mg L'1). Hierfür sind die in den Kulturproben und im Standard enthaltenen -OH bzw. -NH-Gruppen durch Derivatisierung in die korrespondierenden tert- Butyldimethylsilyl-Ether (TBDMS) umgesetzt worden. Dafür wurde ein Volumen von 50 pL Standard bzw. 50 pL Probe durch Lyophilisierung gefriergetrocknet und anschließend in 50 pL DMF+0,1 % (v/v) Pyridin resuspendiert. Die Derivatisierung wurde mit 50 pL N-Methyl-N- tert-butyldimethylsilyltrifluoracetamid (MBDSTFA, Macherey-Nagel) und Inkubation bei 80 °C für 30 Minuten durchgeführt. Entstandene Präzipitationen wurden durch Zentrifugation entfernt und die Proben anschließend über GC-MS analysiert. Die GC -Methode wurde festgelegt mit einem Trägergas-Strom von 1,7 mL min'1, einer Inlet-Temperatur von 250 °C, einer Interface-Temperatur von 230 °C und einer Quadrupol-Temperatur von 150 °C. Die Auftrennung der Analyten erfolgte durch einen Temperaturgradienten: 120 °C (2 min), Rampe 8 °C min'1 bis 200 °C und 10 °C min'1 bis 325 °C. Über das MS wurden die Analyten im Scan- Modus (m/z 50 bis 750) qualifiziert.
Genetisch veränderte Methylobacteriaceae-Zellen, umfassend eine exogene, eine Glyoxylat- Reduktase aus dem Bakterium Escherichia coli K-12 MGI 655 codierende codon-optimierte Nucleinsäuresequenz (SEQ ID Nr. 3) des Stamms Methylorubrum extorquens Mea-GAl wurden am 10. Juni 2022 bei der DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Deutschland unter der Hinterlegungsnummer DSM 34286 hinterlegt.
Beispiel 2: Screening funktionaler Glyoxylat-Reduktasen in M. extorquens TK 0001
Die in Tab. 2 aufgeführten Glyoxylat-Reduktase-codierenden Nucleinsäuresequenzen in codon-optimierter Form wurden wie in Beispiel 1 beschrieben in den pTE1887- Expressionsvektor kloniert und die korrespondierenden genetisch veränderten Methylobacteriaceae-Stämme konstruiert. Als Referenzstamm wurde der Stamm M. extorquens TK 0001 enthaltend den pTE 1887- Vektor verwendet, der kein rekombinantes Plasmid trägt, sondern den pTE1887-Leervektor.
In einem ersten experimentellen Schritt sind diese initial konstruierten Stämme, wie in Beispiel 1 beschrieben, auf ihre Fähigkeit zur Glycolsäure-Produktion untersucht worden. Die Ergebnisse sind in Figur 1 zusammengefasst.
Figur 1A zeigt ein Balkendiagramm, wobei auf der x-Achse die genetisch veränderten Methylobacteriaceae-Zellen wiedergegeben sind und die y-Achse die Konzentration von Glycolsäure (schwarz ausgefüllter Balken) in g L'1 im Reaktionsmedium zeigt. Alle Probenentnahmezeitpunkte liegen 22 bis 24 Stunden nach Induktion der Genexpression mit 1 mM IPTG. Um die aufgenommene Menge an Methanol zu bestimmen, wurde das Reaktionsmedium zum Zeitpunkt t = 0 h vermessen. Alle Konzentrationen sind in g L'1 angegeben, bestimmt durch HPLC, Refraktärindex-Detektion und externen Standards.
Figur 1A zeigt das Screeningergebnis der Glycol säure-Produktion in rekombinanten M. extorquens TK 0001 -Stämmen, die Glyoxylat-Reduktasen exprimieren, ausgehend von den korrespondierenden codon-optimierten Genen. Als Expressionsvektor wurde pTE1887 genutzt, der in Form des Leervektors im Referenzstamm M. extorquens TK 0001 + pTE1887 auch als Negativkontrolle dient (erster Eintrag von links auf der x-Achse).
Überraschenderweise zeigten sowohl der Referenzstamm M. extorquens TK 0001 + pTE1887 (erster Eintrag von links) als auch die genetisch veränderten Methylobacteriaceae-Zellen keine Glycolsäure-Produktion (Einträge von links: 2 und 3 und 5 bis 15), mit Ausnahme der erfindungsgemäßen genetisch veränderten Methylobacteriaceae-Zelle umfassend M. extorquens TK 0001 + pTE1887-ghrAeCo (in codon-optimierter Nucleinsäure-Form nach SEQ ID Nr. 3), also eine erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle umfassend mindestens eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia codierende Nucleinsäuresequenz (Eintrag von links: 4, zeigt als einziger Eintrag einen schwarzen Balken). Figur 9 zeigt die Karte des Vektors, der für die Generierung dieser Methylorubrum-Zellen verwendet wurde mit folgenden Elementen: lacl Gen, lacl Promoter, PL/O4/A1 Promoter
Figure imgf000057_0002
-33 Region
Figure imgf000057_0001
-10 Region Transkriptionsstart, PL/O4/A1 Promoter Ribosomale Bindestelle (RBS), ghrAeCo-c-optimiert, Lambda T0 Terminator, Kanamycin Resistenz, Mobilisation Gene mobS und mob, Regulatory protein RepA. Origin of replication colEl.
Figur IB zeigt ein Balkendiagramm, wobei auf der x-Achse die genetisch veränderten Methylobacteriaceae-Zellen wiedergegeben sind und die y-Achse die Enzym Aktivität in mU mg'1 wiedergibt (weißer, nicht ausgefüllter Balken: NADH als Cofaktor).
Figur IC zeigt ein Balkendiagramm, wobei auf der x-Achse die genetisch veränderten Methylobacteriaceae-Zellen wiedergegeben sind und die y-Achse die Enzym Aktivität in mU mg'1 wiedergibt (grau ausgefüllter Balken: NADPH als Cofaktor).
Figur 1B und IC zeigen das Screeningergebnis eines Enzym Assays mit rekombinanten M. extorquens TK 0001 -Stämmen, die Glyoxylat-Reduktasen exprimieren, ausgehend von den korrespondierenden codon-optimierten Genen. Der Enzym Assay wurde analog zu Beispiel 5 durchgeführt. Es wurde die Biomasse verwendet, die in 1 A eingesetzt wurde. Im Fall von 1B wurde der Enzym Assay mit NADH als Redox-Cofaktor durchgeführt. Im Fall von IC wurde der Enzym Assay mit NADPH als Redox-Cofaktor durchgeführt.
Im Fall von 1B zeigen alle getesteten Methylobacteriaceae-Zellen enthaltend rekombinante Glyoxylat-Reduktasen keine messbare Glyoxylat-Reduktase Enzymaktivität mit NADH als Cofaktor mit Ausnahme der nicht-erfindungsgemäßen Methylobacteriaceae-Zelle enthaltend die Glyoxylat-Reduktase ghrBeco (Eintrag von links: 5).
In Figur IC zeigt der Referenzstamm M. extorquens TK 0001 + pTE1887 (erster Eintrag von links), sowie mehrere getestete Methylobacteriaceae-Zellen enthaltend rekombinante Glyoxylat-Reduktasen (Einträge von links: 2, 8 und 9, 11 bis 15) keine messbare Glyoxylat- Reduktase Enzymaktivität mit NADPH als Cofaktor. Nur die genetisch veränderten Methylobacteriaceae-Zellen (Einträge von links: 3 bis 7 und 10) zeigten eine erhöhte Glyoxylat- Reduktase Enzymaktivität, wobei die erfindungsgemäßen genetisch veränderten Methylobacteriaceae-Zellen von M. extorquens TK 0001 + pTE1887-ghrAeCo (in codon- optimierter Nucleinsäure-Form nach SEQ ID Nr. 3), also eine erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle umfassend mindestens eine exogene, eine Glyoxylat- Reduktase aus dem Bakterium Escherichia codierende Nucleinsäuresequenz, eine hohe Glyoxylat-Reduktase Enzymaktivität aufwiesen (Eintrag von links: 4).
Eine Enzymaktivität der Glyoxylat-Reduktase Tiit war nicht messbar und auch nicht assoziiert mit einer Glycolsäure-Produktion. Allein die Enzymaktivität von ghrAeCo, also die erfindungsgemäße Glyoxylat-Reduktase aus /:. coli, ist mit einer Glycolsäure-Produktion verbunden.
Die erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle umfassend M. extorquens TK 0001 + pTE1887-ghrAeCo-c-optimiert weist demgemäß NADPH-, nicht aber NADH-Abhängigkeit auf.
Figur 2 zeigt HPLC-Chromatogramme der Kultivierungsproben gemäß Figur 1 (22 bis 24 Stunden nach Induktion) der genetisch veränderten Methylobacteriaceae-Zellen M. extorquens TK 0001 Glyoxylat-Reduktase-Stämme. Es ist deutlich erkennbar, dass einzig die erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle M. extorquens TK 0001 + pTE1887-ghrAeCo (in Figur 2 als M. extorquens GAI bezeichnet, enthaltend die codon- optimierte Form des ghrAeco Gens) als einziger Stamm die Mischung aus Glycolsäure und Milchsäure (Glycol säure-Retentionszeit = 6,20 min und Milchsäure-Retentionszeit = 9,1 min) produziert (Vergleich Standards - Spur 1 und Spur 2 - mit M. extorquens TK 0001 + pTE1887- ghrAeco, M. extorquens GAI - Spur 7 in 1 A und Spur 5 in 1B). Die fehlende Glycolsäure- (und Milchsäure-Produktion bei Einsatz der nicht-erfindungsgemäßen Glyoxylat Reduktasen deutet auf fehlende Funktionalität hin. Es könnte sich bei diesen Enzymen um Hydroxypyruvat- Reduktasen handeln, die das im Serinzyklus ebenfalls anfallende Hydroxypyruvat in Abhängigkeit von NAD(P)H zu D-Glycerat reduzieren. In diesem Fall wäre, wie in Figur 1 und Figur 2 gezeigt, keine Akkumulation von Glycolsäure zu beobachten.
Im Vergleich zu externen Standards wurde diese Probe mit Hilfe der GC-MS vermessen, um die Anwesenheit von Glycolsäure und Milchsäure in der Probe zu bestätigen und somit die Glycolsäure-Produktion und die überraschende Milchsäure-Produktion durch Expression des ghrAeco-Enzym zu verifizieren. Weitere Peaks: Glyoxylat (Retentionszeit = 5,40 min), Methanol (Retentionszeit = 7,6 min), hier nicht näher beschriebene Peaks (Retentionszeit = 6,50 min und 8,00 min).
Bei der erfindungsgemäßen genetisch veränderten Methylobacteriaceae-Zelle konnten in der HPLC-Messung etwa 0,6 g L'1 der Mischung aus Glycolsäure und Milchsäure nachgewiesen Werden (
Figure imgf000059_0001
In den meisten Kultivierungen war nach ungefähr 22 bis 24 h Dauer nach der Induktion die initiale Methanolkonzentration von 8 g L'1 aufgebraucht. Einzig der Stamm M. extorquens GAI zeigte eine deutlich messbare Methanol -Konzentration zum Probenahmezeitpunkt (Figur 1 A Spur 7 und Figur 1B Spur 5). Dies kann auf ein Ungleichgewicht im Stoffwechsel durch die Genexpression der Glyoxylat-Reduktase hindeuten. Zum einen kann die Enzymexpression an sich das Wachstum der Stämme reduzieren. Aber auch eine erhöhte Enzymaktivität einer Glyoxylat-Reduktase kann grundsätzlich einen Abzug des Glyoxylats aus dem Serinzyklus in Richtung Glycolsäure verursachen. Dadurch fehlt dem Mikroorganismus Glyoxylat zum Aufbau der Biomasse. Dieser Mangel kann das Wachstum verlangsamen und dazu führen, dass die Kohlenstoffquelle nicht komplett aufgebraucht wird.
Um die Anwesenheit von Glycolsäure und Milchsäure in der erfindungsgemäßen ghrAeco Probe im Vergleich zu externen Standards (je 100 mg L'1 Milchsäure und Glycolsäure) zu bestätigen, wurde diese Probe wie in Beispiel 1 beschrieben, mit einer GC -MS-Messung untersucht (Figur 3 bis Figur 5).
Figur 3 zeigt ein GC -MS-Chromatogramm und Massenspektren eines 100 mg L'1 Glycolsäure Standards, einer Probe des Mediums zum Zeitpunkt t = 0 h, einer Probe der M. extorquens TK 0001 + pTE1887-Leervektor-Kultivierung 22 - 24h nach der Induktion und einer erfindungsgemäßen Probe der M. extorquens TK 0001 + pTE1887-ghrAeCo (in Figur 3 als M. extorquens GAI bezeichnet, enthaltend die codon-optimierte Form des ghrAeco Gens) Kultivierung 22 bis 24h nach der Induktion. Figur 4 zeigt diesselben Proben, mit Ausnahme des Standards, der gegen einen 100 mg L'1 Milchsäure-Standard getauscht wurde. Die Messungen belegen, dass im Vergleich mit dem Glycolsäure-Standard (Retentionszeit = 7,22 min) in der erfindungsgemäßen Kultivierungsprobe von M. extorquens TK 0001 + pTE1887- ghrAeCo (M. extorquens GAI) eindeutig Glycolsäure gebildet wurde. Das Massenspektrum des erhaltenen Peaks in der erfindungsgemäßen M. extorquens TK 0001 + pTE1887-ghrAeCo-Probe stimmt eindeutig mit dem Massenspektrum des Glycolsäure-Standards überein (Figur 5A). Damit kann die Existenz von Glycolsäure in der erfindungsgemäßen M. extorquens TK 0001 + pTE1887-ghrAeCo-Probe belegt und somit die Produktion von Glycolsäure durch diesen Stamm bewiesen werden. Im Vergleich kann in der Probe des M. extorquens TK 0001 + pTE1887- Leervektor-Stammes keine Glycolsäure nachgewiesen werden. Überraschenderweise zeigte sich auch die Bildung von Milchsäure (Retentionszeit = 6,88 min) ausschließlich in der Probe der erfindungsgemäßen M. extorquens TK 0001 + pTE1887-ghrAeCo Kultivierung. Auch hier stimmt das Massenspektrum mit dem des Milchsäure-Standards überein (Figur 5B)
Diese Vorgehensweise konnte eindeutig belegen, dass Glycolsäure durch die erfindungsgemäße genetisch veränderte Methylorubrum-Zelle M. extorquens TK 0001 + pTE1887-ghrAeCo produziert wurde. Überraschenderweise konnte außerdem gezeigt werden, dass dieser Stamm eine Mischung aus Glycolsäure und Milchsäure produziert (siehe Figur 5). Figur 5 zeigt Detailaufnahmen der Massenspektren im Vergleich von einer identischen Probe der erfindungsgemäßen M. extorquens TK 0001 + pTE1887-ghrAeCo (in Figur 5 als M. extorquens GAI bezeichnet, enthaltend die codon-optimierte Form des ghrAeco Gens) Kultivierung 22 bis 24h nach der Induktion mit Datenbanknachweis der Glycol säure-Identität in der M. extorquens GAI Probe (A) und der Milchsäure-Identität in der M. extorquens GAI Probe (B).
Es konnte überraschenderweise in der Kultivierung von M. extorquens TK 0001 + pTE1887- ghrAeco per GC-MS sowohl die Produktion von Glycolsäure (Retentionszeit = 7,22 min) und auch Milchsäure (Retentionszeit = 6,88 min) nachgewiesen werden (Figur 3 bis Figur 5). Der Peak mit einer Retentionszeit von 6,88 min in dieser Probe konnte durch Vergleich mit einem externen Standard und im Datenbankabgleich des Massenspektrums mit einer 89-91 % Wahrscheinlichkeit als Milchsäure 2xTBDMS (Derivat von Milchsäure mit MBDSTFA) identifiziert werden (Figur 5B).
Diesen Phänotyp zeigte der Kontrollstamm M. extorquens TK 0001 + pTE1887 nicht: Weder Glycolsäure noch Milchsäure konnten mit der GC-MS als Produkte detektiert werden. Ohne an die Theorie gebunden sein zu wollen, verändern die Änderungen im Redoxhaushalt den Metabolismus der erfindungsgemäßen genetisch veränderten Methylobacteriaceae-Zelle M. extorquens TK 0001 + pTE1887-ghrAeCo so, dass Milchsäure als ein mögliches Nebenprodukt der Glycolsäure-Produktion synthetisiert wird. Für diese Milchsäure-Bildung könnte eine NADH-abhängige Lactat Dehydrogenase (KEGG-Datenbank: Mex_lp4794) verantwortlich sein, die Pyruvat als Substrat nutzt. Eine alternative Möglichkeit ist, dass die Glyoxylat-Reduktase eine unspezifische Substratnutzung aufweist, die es dem Enzym ermöglicht, Pyruvat als Akzeptor zu nutzen. Auch ist grundsätzlich der Ablauf des Methylglyoxal-Stoffwechselwegs denkbar.
Es kann also gezeigt werden, dass die erfindungsgemäßen M. extorquens TK 0001 + pTE1887- ghrAeco Zellen, enthaltend die codon-optimierte Form des ghrAeco Gens, eine Mischung aus Glycolsäure und Milchsäure herstellen, welche als Ausgangspunkt für die Polymerisation zu Polyglycolsäure, Polymilchsäure oder Polylactid-co-Glycolid dienen können.
Beispiel 3: Wachstumsexperimente
Weiterhin wurden Wachstumsexperimente mit M. extorquens TK 0001 + pTE1887 und erfindungsgemäß mit dem Stamm M. extorquens TK 0001 + pTE1887-ghrAeCo (M. extorquens GAI) in Minimalmedium (Reaktionsmedium) mit 10 g L'1 Methanol als Edukt und einer Mischung von 10 g L'1 Methanol + 1.5 g L'1 Glyoxylat als weiteres Edukt durchgeführt (Figur 6).
Figur 6 A bis D zeigen Diagramme, bei denen auf den y-Achsen der Wachstumsverlauf (ODeoo, Kreise, schwarz gefüllt), der pH-Wert (Dreiecke, Spitze unten) und die Methanol-(Vierecke, ungefüllt), Glyoxylat-(Rauten, ungefüllt) und Glycolsäurekonzentrationen (Rauten, dunkelgrau gefüllt) sowie Milchsäurekonzentrationen (Dreiecke, grau gefüllt, Spitze oben) von M. extorquens TK 0001 + pTE1887 (A+C) und erfindungsgemäßer M. extorquens TK 0001 + pTE1887-ghrAeCo (codon-optimiert) (B+D) im Minimalmedium und auf der x-Achse die Zeit angegeben sind. Als Kohlenstoffquelle (Edukt), also Cx-Verbindung, wurde 10 g L'1 Methanol (A+B) oder 10 g L'1 Methanol + 1.5 g L'1 Glyoxylat (C+D) zugegeben. Die Messung der Methanol-, Glyoxylat- und der Glycol Säurekonzentration erfolgte mit HPLC, Refraktärindex- Detektion und externen Standards. Alle Konzentrationen sind in g L'1 angegeben. Die Daten repräsentieren drei unabhängige biologische Replikate.
Das Glyoxylat wurde zum Zeitpunkt der Induktion der Genexpression zugegeben und dient als Test, ob eine in vivo Erhöhung der Glyoxylat-Versorgung zu einer Erhöhung der Glycolsäure- Produktion führt. In Figur 6A ist zu erkennen, dass der Referenzstamm M. extorquens TK 0001 + pTE1887 mit 10 g L'1 Methanol als Edukt keine Glycolsäure produzierte und eine gleichmäßige Biomassebildung aufweist bis zu einer maximalen ODeoo von ca. 9 nach 40 h Kultivierungsdauer. Auffällig ist die deutliche Erniedrigung des pH-Wertes auf unter 6.5 im Laufe der Fermentation. Im Vergleich führt in einer Kultivierung mit M. extorquens TK 0001 + pTE1887 die Zufütterung von Glyoxylat zu einem leicht verzögerten Wachstum und einer leicht höheren maximalen ODeoo von ca. 10 nach rund 42 h. Auch in diesem Fall wurde keine Glycolsäure produziert (Figur 6C). Allerdings konnte der pH-Wert in dieser Kultivierung beim initialen pH-Wert von rund 7.0 gehalten werden, was wahrscheinlich auf die Glyoxylat- Fütterung zurückzuführen ist.
Es konnte gezeigt werden, dass der erfmdungsgemäße rekombinante Stamm M. extorquens TK 0001 + pTE1887-ghrAeCo, enthaltend die codon-optimierte Form des ghrAeco Gens, aus 10 g L’ 1 Methanol die Produkte Glycolsäure und Milchsäure in erhöhten Konzentrationen (-0,35 g L’ 1 respektive 0,25 g L'1 in 40 h) bildete. Nachdem das Methanol abgebaut ist, werden im weiteren Verlauf der Kultivierung die Produkte wieder vollständig abgebaut. Die Bildung von Glycolsäure und Milchsäure geht einher mit einer deutlichen Verlangsamung des Biomassewachstums auf eine maximale ODeoo von 6,7 in 44 h. Außerdem sinkt der pH-Wert der Kulturbrühe vermutlich in diesem Fall durch die zusätzliche Glycolsäure-Bildung auf bis zu 6,2 und steigt durch Abbau der Glycolsäure auf einen zum Referenzstamm vergleichbaren Wert auf knapp 6,5 (Figur 6B).
Im Experiment mit erfindungsgemäßer M. extorquens TK 0001 + pTE1887-ghrAeCo, enthaltend die codon-optimierte Form des ghrAeco Gens, und Zufütterung von Glyoxylat konnte eine deutliche Steigerung der Glycolsäure-Produktion auf bis zu 1,0 g L'1 in 44 h erreicht werden. Die gebildete Menge an Milchsäure verhielt sich vergleichbar zur Kultivierung ohne Glyoxylat- Zufütterung (6B). Damit konnte gezeigt werden, dass Glyoxylat als Prekursor der Glycolsäure- Bildung eine wichtige Rolle spielt, und die Erhöhung der in vivo Konzentration von Glyoxylat eine verbesserte Glycolsäure-Produktion bewirkt. Auch in diesem Experiment wurde die gebildete Glycolsäure und Milchsäure verstoffwechselt, nachdem das Methanol verbraucht worden ist. Die in diesem Versuch gesteigerte Produktbildung führte erneut zu einer weiteren Erniedrigung des Biomassewachstums, wobei eine maximale ODeoo von rund 4,5 erreicht wurde. Im Gegensatz zum Referenzstamm ist in diesem Fall eine deutliche Erniedrigung des pH-Wertes trotz Glyoxylat-Zugabe zu beobachten, da Glycolsäure und Milchsäure produziert wurden. Analog zu beobachten ist aber auch die Erhöhung des pH-Wertes beim Abbau der gebildeten Glycolsäure und Milchsäure nachdem das Methanol aufgebraucht ist (Figur 6D). Zusammenfassend sind die aus den Daten abgeleiteten stammspezifischen Kultivierungs- Parameter wie p (spezifische Wachstumsrate), Yx/s (Biotrockenmasse-Substrat-Ausbeute), qs (spezifische Substrataufnahmerate), Yp/s (Produkt-Substrat-Ausbeute) und qp (spezifische Produktbildungsrate) in Tabelle 3 für die Stämme M. extorquens TK 0001 + pTE1887 und erfindungsgemäßem M. extorquens TK 0001 + pTE1887- ghrAeco, enthaltend die codon- optimierte Form des ghrAeco Gens, zusammengefasst worden. Diese Daten legen nahe, dass die Glycolsäure- und Milchsäure-Produktion mit einer deutlichen Verringerung der Biotrockenmasse-Substrat-Ausbeute (70 % des Referenzstammes und 70 % des Referenzstammes mit Glyoxylat-Fütterung) einhergeht und mehr Kohlenstoff in das Produkt umgesetzt wird oder zur Aufrechterhaltung des Redoxhaushalts verwendet werden muss. Auch ist ersichtlich, dass Glyoxylat die Wachstumsrate reduziert und somit ist ein potenzieller toxischer Effekt des Precursors möglich. Diese Toxizität von Glyoxylat kann durch eine optimale Ausbalancierung des in vivo Glyoxylat-Pools vermieden werden.
Tabelle 1. Zusammenfassung der Kultivierungs-Parameter von M. extorquens TK 0001 + pTE1887 und erfindungsgemäßem AT. extorquens TK 0001 + pTE1887-ghrAeCo (M. extorquens GAI), enthaltend die codon-optimierte Form des ghrAeco Gens, in Minimalmedium mit 10 g L’ 1 Methanol oder zusätzlich + 1.5 g L-1 Glyoxylate. Abkürzungen: p, spezifische Wachstumsrate MeOH, Methanol; GS, Glycolsäure; BTM, Biotrockenmasse.
Figure imgf000063_0001
Figure imgf000064_0001
1 Ausbeuten sind geschätzt durch die kumulierte Substratnutzung von Methanol und Glyoxylat.
Beispiele 1 bis 3 zeigen, dass erfindungsgemäß Glycolsäure und Milchsäure mit M. extorquens GAI aus Cx- Verbindungen in einem methylotrophen Fermentationsprozess produziert werden kann.
Es ist insbesondere hervorzuheben, dass die erfindungsgemäße Glycolsäure-Produktion in M. extorquens GAI deutlich durch eine Erhöhung der intrazellulären Konzentration von Glyoxylat gesteigert werden kann, wie in Beispiel 3 gezeigt wurde. In diesem Fall wurden 185 % mehr Glycolsäure gebildet im Vergleich zu der Kultivierung ohne Glyoxylat-Fütterung.
Beispiel 4: Experimentelle Daten der fermentativen Glycolsäure-Milchsäure-Herstellung aus Methanol
Das experimentelle Vorgehen ist gemäß Beispiel 1 durchgeführt worden. Der verwendete Stamm ist der Wildtypstamm Methylorubrum extorquens TK 0001 DSM 1337.
Folgende Expressionsvektoren (1 bis 4) wurden verwendet:
1.) pTE1887 (Expressionsvektor, auch Leervektor genannt; Plasmidkarte: Figur 8)
2.) pTE1887-ghrAeCo (Expressionsvektor, der die Glyoxylat-Reduktase aus Escherichia coli K- 12 MG1655 codon-optimiert codiert; mit SEQ ID Nr. 3, Plasmidkarte: Figur 9) (erfindungsgemäß) 3.) pTE1887-ghrAeco-ecmmea (Expressionsvektor, der die Glyoxylat-Reduktase aus Escherichia coli K-12 MGI 655 (codon-optimiert) und die Ethylmalonyl-CoA-Mutase aus M. extorquens TK 0001 DSM 1337 nativ codiert; Plasmidkarte: Figur 10) (erfindungsgemäß)
4.) pTE1887- ghrAeco-eemrsh (Expressionsvektor, der die Glyoxylat-Reduktase aus Escherichia coli K-12 MGI 655 (codon-optimiert) und die Ethylmalonyl-CoA-Mutase aus Rhodobacter sphaeroides ATCC 17029 codon-optimiert; Plasmidkarte: Figur 11) (erfindungsgemäß).
Mittels der Verfahren wie in Beispiel 1 beschrieben wurden genetisch veränderte Methylobacteriaceae-Zellen hergestellt.
Figur 10 zeigt die Karte des Vektors, der für die Generierung der Methylobacteriaceae-Zellen exprimierend die ghrAeco-ecmmea verwendet wurde mit folgenden Elementen: lacl Gen, lacl Promoter, PL/O4/A1 Promoter
Figure imgf000065_0002
-33 Region
Figure imgf000065_0001
-10 Region Transkriptionsstart, PL/O4/A1 Promoter Ribosomale Bindestelle (RBS), ghrAeco (codon-optimiert), ecmmea (nativ), Lambda T0 Terminator, Kanamycin Resistenz, Mobilisation Gene mobS und mob, Regulatory protein RepA. Origin of replication colEl.
Figur 11 zeigt die Karte des Vektors, der für die Generierung dieser Methylobacteriaceae- Zellen exprimierend die ghrAeCo-ecmrsh verwendet wurde mit folgenden Elementen: lacl Gen, lacl Promoter, PL/O4/A1 Promoter
Figure imgf000065_0003
-33 Region
Figure imgf000065_0004
-10 Region
Figure imgf000065_0005
Transkriptionsstart, PL/O4/A1 Promoter Ribosomale Bindestelle (RBS), ghrAeco (codon-optimiert), rsh-ecm (codon-optimiert), Lambda T0 Terminator, Kanamycin Resistenz, Mobilisation Gene mobS und mob, Regulatory protein RepA. Origin of replication colEl.
Genetisch veränderte Methylorubrum extorquens TK 0001 -Zellen, umfassend eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia coli K-12 MGI 655 codierende codon-optimierte Nucleinsäuresequenz (SEQ ID Nr. 3) und eine exogene, eine Ethylmalonyl- CoA-Mutase aus dem Bakterium Methylorubrum extorquens TK 0001 DSM 1337 codierende native Nucleinsäuresequenz (SEQ ID Nr. 4), des Stamms Methylorubrum extorquens Mea- GA2 wurden am 10. Juni 2022 bei der DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Deutschland unter der Hinterlegungsnummer DSM 34287 hinterlegt.
Genetisch veränderte Methylorubrum extorquens TK 0001 -Zellen, umfassend eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia coli K-12 MGI 655 codierende codon-optimierte Nucleinsäuresequenz (SEQ ID Nr. 3) und eine exogene, eine Ethylmalonyl- CoA-Mutase aus dem Bakterium Rhodobacter sphaeroides ATCC 17029 codierende codon- optimierte Nucleinsäuresequenz (SEQ ID Nr. 8), des Stamms Methylorubrum extorquens Mea- GA3 wurden am 10. Juni 2022 bei der DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Deutschland unter der Hinterlegungsnummer DSM 34288 hinterlegt.
Es wurden Fermentationsversuche in Kulturmedium als Reaktionsmedium und Methanol (Edukt) als einziger Kohlenstoffquelle durchgeführt.
In Figur 7 ist der zeitliche Verlauf der Biomassekonzentration (ODeoo) und des Medium pH- Wertes über den Verlauf der Kultivierung dargestellt. Zeitgleich wurden Kulturüberstandsproben mit Hochleistungs-Chromatographie vermessen, um die Substrat- und Produkt-Konzentration und deren Änderungen über den zeitlichen Verlauf darzustellen.
Figur 7 zeigt auf der x-Achse die Zeit in Stunden und auf den y-Achsen den Wachstumsverlauf (ODeoo, Kreise, schwarz gefüllt), pH-Wert (Dreiecke, Spitze unten), Methanol-(Vierecke, ungefüllt) und Glycolsäure- (Rauten, dunkelgrau gefüllt) sowie Milchsäurekonzentrationen (Dreiecke, grau gefüllt, Spitze oben) von M. extorquens TK 0001 + pTE1887 (A), erfindungsgemäßer M. extorquens TK 0001 + pTE1887- ghrAeco (codon-optimiert) (M. extorquens GAI) (B), erfindungsgemäßer M. extorquens TK 0001 + pTE1887-ghrAeco-ecmmea (ghrAeco: codon-optimiert; ecmmea: nativ) (M. extorquens GA2) (C) und erfindungsgemäßer M. extorquens TK 0001 + pTE1887-ghrAeCo-ecmrsh (beide Gene codon-optimiert) (M. extorquens GA3) (D) in Kulturmedium mit 10 g L'1 Methanol als alleiniges Edukt, also als Cx-Verbindung.
Es konnte erneut gezeigt werden, dass das Enzym ghrAeco, eine Produktion von Glycolsäure im Stammhintergrund M. extorquens TK 0001 erlaubt. Hierbei wird ebenso Milchsäure produziert. Im Vergleich zeigt der Wildtypstamm, der den Leervektor pTE1887 enthält, keine Produktion von Glycolsäure oder Milchsäure. In diesen Versuchen wurden ca. 250 mg L'1 Glycolsäure und ca. 200 mg L'1 Milchsäure hergestellt mit einer Produkt-Substratausbeute von rund 50 mg gMethanoi'1 (Glycolsäure + Milchsäure). Es ist zu beobachten, dass die initiierte Glycolsäure- Synthese die Biotrockenmasse-Substrat-Ausbeute (Yx/s) des erfindungsgemäßen Stammes M. extorquens TK 0001 + pTE1887- ghrAeco (M. extorquens GAI) auf 70 % im Vergleich zum Leervektor-Stamm senkt. Die Produktausbeute bezogen auf die Biotrockenmasse (Yp/x) liegt bei 0,27 g gBiotrockenmasse (Tabelle 4). Überraschenderweise führt die zusätzliche Implementierung der exogenen Ethylmalonyl-CoA- Mutasen zu einer signifikanten Verbesserung der Glycolsäure-Produktionsleistung im Vergleich zum erfindungsgemäßen Stamm M. extorquens TK 0001 + pTE1887-ghrAeCo. Das Wachstum des erfindungsgemäßen Stammes M. extorquens TK 0001 + pTE1887-ghrAeCo- ecmmea war mit einer gemessenen Wachstumsrate (p) von 0,10 h'1 verzögert im Vergleich zum Leervektorstamm (0,17 h'1). Der Einsatz des ecm-Gens aus M. extorquens TK 0001 DSM 1337 führte zu einer Erhöhung des Glycolsäure-Titers um 18 % nach 40 h Kultivierungsdauer im Vergleich zum erfindungsgemäßen Stamm M. extorquens TK 0001 + pTE1887-ghrAeCo (0,26 g L'1 versus 0,22 g L’1, Tabelle 4). Ebenfalls ist die Biotrockenmasse-Substrat-Ausbeute im Vergleich zum Leervektorstamm um 49 % und im Vergleich zum erfindungsgemäßen Stamm M. extorquens TK 0001 + pTE1887-ghrAeCoum 27 % reduziert.
Eine leichte Änderung ist bei der Produktausbeute bezogen auf die Biotrockenmasse (Yp/x) zu beobachten. Im Vergleich zum erfindungsgemäßen Stamm M. extorquens TK 0001 + pTE1887-ghrAeCo konnte eine Erhöhung dieser Ausbeute um 11 % erzielt werden (Tabelle 4).
Der Einsatz des exogenen codon-optimierten ecmrsh-Gens führte im Vergleich zum erfindungsgemäßen Stamm, umfassend das exogene ecmmea-Gen, zu den aus Tabelle 4 ersichtlichen überraschenden Abweichungen der Kultivierungs-Parameter. Hier konnte der höchste gemessene Milchsäure-Titer von 0,37 g L'1 beobachtet werden. Eine markante Änderung betrifft die Biotrockenmasse-Substrat-Ausbeute (Yx/s), die im Vergleich zum erfindungsgemäßen Stamm M. extorquens TK 0001 + pTE1887-ghrAeco-ecmmea um 26 % erhöht ist (0,24 g gBiotrockenmasse )•
Es konnte demonstriert werden, dass die Glycolsäure-Produktion aus Methanol möglich ist. Der jeweilige Einsatz zweier exogener Ethylmalonyl-CoA-Mutase-Enzyme aus zwei verschiedenen prokaryotischen Stämmen erhöhte die Produktionsleistung der erfindungsgemäßen Produktionsstämme im Vergleich zum erfindungsgemäßen Stamm, umfassend ghrAeco ohne eine exogene Ethylmalonyl-CoA-Mutase. Insbesondere führt der Einsatz der Ethylmalonyl- Coa-Mutase ecmrsh überraschend zu einer deutlich erhöhten und selektiveren Milchsäure- Produktion.
Tabelle 4: Zusammenfassung der Kultivierungs-Parameter von M. extorquens TK 0001 + pTE1887 und erfindungsgemäßer M. extorquens TK 0001 + pTE1887-ghrAeCo (codon- optimiert) (M. extorquens GAI), erfindungsgemäßer M. extorquens TK 0001 + pTE1887- ghrAeco-ecnimea (ghrAeco: codon-optimiert; ecmmea: nativ) (M. extorquens GA2) und erfindungsgemäßer M. extorquens TK 0001 + pTE1887-ghrAeCo-ecmrsh (beide Gene codon- optimiert) (M. extorquens GA3) in Kulturmedium mit 10 g L'1 Methanol. Abkürzungen: p, spezifische Wachstumsrate; MeOH, Methanol; GS, Glycolsäure; BTM, Biotrockenmasse.
Figure imgf000068_0001
Beispiel 5: Experimentelle Daten des Nachweises der Enzym aktivität der erfindungsgemäß exprimierten Glyoxylat-Reduktase (ghrAec0) und eines Vergleichsenzyms, nämlich einer E. coli Hydroxypyruvat-Reduktase (ghrBec0):
Zur Erbringung des experimentellen Nachweises der Anwesenheit der Enzymaktivität der exprimierten Glyoxylat-Reduktase ghrAeco und der Hydroxypyruvat-Reduktase ghrBeco (Nunez, M.F., M.T. Pellicer, J. Badia, J. Aguilar, and L. Baldoma, Biochem J, 2001. 354(Pt 3): p. 707-15, Datenbankeintrag für ghrA: https://biocyc.org/gene?orgid=ECOLI&id=G6539, Datenbankeintrag für ghrB: https://biocyc.org/gene?orgid=ECOLI&id=EG12272) im Stammhintergrund Methylorubrum extorquens TK 0001 wurden Enzymassays durchgeführt. Es wurden von beiden Genen die native Form der DNA-Sequenzen (wie in Escherichia coli K- 12 MG1655 vorkommend) sowie die für die Expression in Methylobacteriaceae codon- optimierten synthetischen DNA-Sequenzen (c-optimiert) getestet, um den Einfluss der Codon- Optimierung auf die Genexpression und die resultierende Enzymaktivität zu evaluieren.
Die Vorgehensweise der Durchführung sowie die Ergebnisse sind im Folgenden zusammengefasst.
Um ausreichend Biomasse der genetisch modifizierten M. extorquens TK 0001 Stämme enthaltend pTE1887-ghrAeCo-c-optimiert (SEQ ID Nr. 3), pTE1887-ghrBeCo-c-optimiert, pTE1887-ghrAeCo-nativ (SEQ ID Nr.l) und pTE1887-ghrBeCo-nativ für einen Zellaufschluss zu gewinnen, wurde folgendes Anzuchtprotokoll angewendet. Als Negativkontrolle wurde der Stamm M. extorquens TK 0001 + pTE1887, den Leervektor enthaltend, mitgeführt. Alle Stämme wurden als drei unabhängigen biologische Replikate kultiviert, geerntet und aufgeschlossen.
Die Stämme wurden für eine erste dreitägige Vorkultur (in Minimalmedium mit Methanol (siehe Beispiel 1) in schikanierten Schüttelkolben (250 mL Kolbenvolumen, 50 mL Kulturvolumen) bei 30 °C, 150 RPM und Wasserdampf-gesättigter Atmosphäre kultiviert (New Brunswick™ Innova 44, Eppendorf AG, Hamburg, Deutschland). Anschließend wurde aus der bewachsenen ersten Vorkultur eine zweite Vorkultur inokuliert in Minimalmedium mit Methanol in schikanierten Schüttelkolben (250 mL Kolbenvolumen, 50 mL Kulturvolumen). Hierbei entsprach die eingesetzte initiale Biomassekonzentration für die Inokulation einer Optischen Dichte bei 600 nm (ODeoo) von 0,1. Die darauffolgende Kultivierung erfolgte bei 30 °C, 150 rpm und Wasserdampf-gesättigter Atmosphäre. Am nächsten Tag, Dienstag, wurden mit den bewachsenen zweiten Vorkulturen die Hauptkulturen inokuliert (50 mL Minimalmedium mit Methanol in 250 mL schikanierten Schüttelkolben, initiale ODeoo = 0,05) und bei 30 °C, 150 rpm und unter Wasserdampf-gesättigter Atmosphäre inkubiert. Nachdem die Kulturen eine ODeoo von 0, 9-1,0 erreicht hatten, wurde mit 1 mM IPTG (Endkonzentration im Kulturvolumen) die Genexpression der Glyoxylat-Reduktasen induziert. Anschließend wurde die Biomasse bis zu einer finalen OD600 von ca. 4-7 angezogen.
Für die eigentliche Ernte der Biomasse wurden konische Zentrifugationsgefäße mit einem Volumen von 50 mL leer, gewogen, mit jeweils den bewachsenen 50 mL Hauptkultur befüllt und abschließend bei 4.200 rpm für 15 Min. bei 4 °C zentrifugiert. Nach dem Zentrifugationsschritt wurde der Überstand verworfen und die erhaltenen Biomassepellets mit jeweils 20 mL 50 mM Tris-HCl (pH 7,5) Puffer gewaschen. Danach erfolgte eine erneute Zentrifugation unter den vorherigen Bedingungen gefolgt von der sorgfältigen Abnahme des Überstands mit einer Pipette. Die erhaltenen Biomassepellets wurden gewogen und in jeweils 50 mM MOPS-Puffer (pH 6,6) resuspendiert. Hierfür wurde pro 1 g Nasspellet ein Puffervolumen von 7 mL verwendet.
Der Zellaufschluss zur Gewinnung von Proteinrohextrakten, enthaltend die exprimierten Glyoxylat- bzw. Hydroxypyruvat-Reduktasen, erfolgte in 2,0 mL Reaktionsgefäßen. Hierfür wurden jeweils 1,5 mL der Zellsuspension in diese Reaktionsgefäße überführt und anschließend im Eiswasserbad sechsmal für jeweils 30 Sek. bei einer Amplitude von 60 per Ultraschall aufgeschlossen. Jeweils zwischen den sechs Aufschlusszyklen wurden die Proben für 1 Min. auf Eis gekühlt. Abschließend, zur Gewinnung des Proteinrohextrakts, folgte eine Zentrifugationsschritt bei 21.500 rpm für 15 Min bei 4 °C. Der erhaltene proteinhaltige Überstand wurde in 1,5 mL Reaktionsgefäße überführt. Um eine Vergleichbarkeit der Ergebnisse des Enzymassays zu gewährleisten, wurde die Proteinkonzentration der jeweiligen Proteinrohextrakte bestimmt mit Hilfe eines NanoDrop™. Der Rohextrakt mit der niedrigsten gemessenen Konzentration wurde als Zielkonzentration für die Verdünnung der anderen Rohextrakte mit 50 mM MOPS-Puffer (pH 6,6) verwendet. Somit konnte sichergestellt werden, dass alle Proteinrohextrakte im Enzymassay die gleiche Gesamtproteinkonzentration enthalten. Des Weiteren wurden diese vorverdünnten Proteinrohextrakte ein weiteres Mal verdünnt (1 :5) mit 50 mM MOPS-Puffer (pH 6,6) und anschließend im Enzymassay eingesetzt.
Der Enzymassay wurde in 96 Well-Mikrotiterplatten durchgeführt. Dafür wurden 160 pL der verdünnten Proteinrohextrakte mit 20 pL 50 mM Glyoxylat als Substrat und 20 pL 2 mM Cofaktor-Stocklösung (NADH oder NADPH, Endkonzentration im Assay 0,2 mM) versetzt. Die experimentellen Ansätze sind in drei technischen Replikaten ausgeführt. Die Enzymaktivität wurde gemessen als Änderung der Absorption von NADH bei 340 nm bei 37 °C für bis zu 30 Min. Für die Auswertung wurde die maximale Änderung der Absorption über die Zeit im linearen Bereich der Reaktion bestimmt und mit dem Verdünnungsfaktor von fünf multipliziert vor Berechnung der Enzymaktivität in U mL’1.
Die Enzymaktivität wurde mit Hilfe der Gleichung 6 berechnet und den angegebenen Koeffizienten. (Gleichung 6)
Figure imgf000070_0001
Mit Enzymaktivität: Gemessen in molsubstrat Min.'1, Vproteinrohextrakt- Assay: Im Assay eingesetztes Volumen des Proteinrohextraktes (0,00016 L), S: Um den Verdünnungsfaktor von fünf korrigierte Änderung der Absorption bei 340 nm über die Zeit im linearen Bereich der Reaktion (Abs.34o Min.'1), VAssay: Gesamtvolumen des Assays (0,0002 L), s : Extinktionskoeffizient von NADH/NADPH bei 340 nm (6220 L mol'1 cm'1), d: Schichtdicke des absorbierenden Reaktionsansatzes (0,53 cm).
Für eine Umrechnung der Enzymaktivität von molsubstrat min'1 in die konventionelle Einheit für Enzymaktivität mU mL'1 (1 U = 1 pmolsubstrat min'1) wird das berechnete Ergebnis mit dem Faktor 106 multipliziert.
Die erhaltenen Enzymaktivitäten wurden den jeweiligen Expressionsstämmen und den eingesetzten Cofaktoren NADH oder NADPH zugeordnet für einen graphischen Vergleich.
Die erhobenen Daten für die Enzymaktivitäten von ghrAeCo-c-optimiert, ghrBeCo-c-optimiert, ghrAeco-nativ, ghrBeCo-nativ und der Negativkontrolle (pTE1887-Leervektor) sind in Figur 12 zusammengefasst. Die Messungen und die jeweils angezeigte Standardabweichung basiert auf drei biologischen Replikaten mit jeweils drei technischen Replikaten des Assays.
Wie zu erwarten, zeigt der Leervektor nur eine geringfügige Hintergrundaktivität. Diese wurde von allen weiteren Messwerten subtrahiert, um die stattfindende Hintergrundreaktion zu korrigieren.
Die in Figur 12A und 12B dargestellten Enzymaktivitäten in Hinblick auf den Umsatz von Glyoxylat zu Glycolsäure zeigen, dass lediglich die beiden erfindungsgemäß eingesetzten Enzyme ghrAeCo-c-optimiert und ghrAeCo-nativ (also ghrAeco) eine insbesondere für eine großtechnische Produktion ausreichende Aktivität zeigen. Es können zudem deutliche Unterschiede in der Enzymaktivität in Abhängigkeit vom verwendeten Cofaktor nachgewiesen werden. Im Assay zeigt sich, dass eine eindeutige Cofaktor-Abhängigkeit von ghrAeco und ghrBeco besteht. Unter Verwendung von NADH als Cofaktor (Figurl2 A) wird die höchste Enzymaktivität mit ghrBeCo-c-optimiert erzielt (10,53 ± 1,50 mU mL'1). Die Enzymaktivität, verursacht durch das Gen ghrAeCo-c-optimiert, ist mit 0,49 ± 2,34 mU mL'1 im Vergleich mit ghrBeco-c-optimiert deutlich reduziert. Hier konnte eine Reduktion der Enzymaktivität um rund 95 % gemessen werden. Die Enzymaktivität der NADH-Assays mit den nativen Genen liegt in einem ähnlichen Bereich: 4,61 ± 1,61 mU mL'1 versus 2,45 ± 0,67 mU mL'1 für ghrAeCo-nativ und ghrBeco-nativ. Die Codon-Optimierung von ghrBeco führte zu einer Steigerung der Aktivität um 329 %. Zusammenfassend lässt sich eine eindeutige Abhängigkeit des ghrBeco Enzyms von NADH als Cofaktor erkennen.
Im Gegensatz dazu zeigte sich bei der Verwendung von NADPH als Cofaktor ein anderes Bild (Figur 12 B).
Hier können mit ghrAeCo-c-optimiert und ghrAeC0-nativ (33,86 ± 1,29 mU mL’1 und21,76 ± 1,49 mU mL’1) die mit Abstand höchsten in den vorliegenden Tests gemessenen Enzymaktivitäten erreicht werden. Die Steigerung durch die Codon-Optimierung beträgt 55 % (21,76 ± 1,49 versus 33,86 ± 1,29 mU mL’1). Es kann zudem eindeutig belegt werden, dass das ghrAeco Enzym eine NADPH-Abhängigkeit aufweist. Dies wird unterstrichen durch die geringfügige gemessene Aktivität von ghrBeco. In diesem Fall wurde sowohl beim Einsatz der codon- optimierten Variante des Gens (ghrBeCo-c-optimiert) als auch mit der nativen Variante des Gens (ghrBeco-nativ) lediglich eine Enzymaktivität von 3, 17 ± 0,29 respektive 0,81 ± 0,30 mU mL’1 gemessen (Figur 12 B), was zeigt, daß ghrBeco nicht nur hinsichtlich der beobachteten sehr geringen NADPH-Abhängigkeit, sondern primär auch hinsichtlich der geringen Enzymaktivität beim Umsatz von Glyoxylat zu Glycolsäure deutlich von ghrA unterscheidbar ist.
Die erhöhte Enzymaktivität mit NADPH als Cofaktor ausgelöst durch die Expression von ghrAeco-c-optimiert zeigt, dass die Glycolsäure-Produktion durch M. extorquens durch die Expression dieses Enzyms möglich wird. Die sowohl mit NADPH als auch mit NADH deutlich reduzierte Enzymaktivität, die im Zusammenhang mit ghrBeCo-c-optimiert gemessen wurde, reicht nicht aus, um in vivo die Glycolsäure-Produktion in M. extorquens zu ermöglichen.
Die mit M. extorquens TK 0001 + pTE1887-ghrAeCo-c-optimiert beobachtete Glycolsäure- Produktion scheint in Abhängigkeit mit der Verfügbarkeit von NADPH als Cofaktor zu stehen. Diese Ergebnisse bestätigen die Ergebnisse aus Beispiel 2.
Überraschenderweise führt die Einbringung der DNA-Sequenz des ghrAeCo Enzyms, insbesondere der codon-optimierten DNA-Sequenz, zu einer Glycolsäure-Produktion sowie zu einer überraschenden Produktion von Milchsäure.
Beispiel 6:
Expression von exogener, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia codierender Nucleinsäuresequenz in Zellen von weiteren Methylobacteriaceae (Erfindung) sowie anderen Mikroorganismen (Vergleich) Es wurden weitere Gattungen der Familie der Methyl ob acteriaceae (Alphaproteobacteria) nach Beispiel 1 genetisch modifiziert. Figur 13 zeigt beispielhaft die untersuchten Mikroorganismen. Insbesondere stellvertretend untersucht für die Methyl ob acteriaceae wurden Methylorubrum, insbesondere M. zatmanii DSM 5688, insbesondere M. extorquens TK 0001 DSM 1337 (Beispiele 2 bis 5), insbesondere M. extorquens PA1 DSM 23939, insbesondere M. rhodesianum DSM 5687, ein Derivat von M. extorquens AMI DSM 1338 mit einer Deletion eines Cellulase-Gens (M. extorquens AMlAcel: https://doi.org/10.1371/journal.pone.0062957), und Methylobacterium-Zellen, insbesondere M. organophilum DSM 18172, insbesondere M. radiotolerans DSM 760.
Zusätzlich wurden Methylomonas methanica DSM 25384 (Gammaproteobacteria), Methylophilus methylotrophus DSM 6330 (Betaproteobacteria) und Bacillus methanolicus DSM 16454 (Firmicutes) als nicht in die Familie der Methyl ob acteriaceae gehörende Negativbeispiele untersucht. Die vorgenannten Mikroorganismen sind ebenfalls in der Lage Methanol zu verstoffwechseln und wurden getestet auf die erfindungsgemäße Glycolsäure- und/oder Milchsäure-Produktion.
Folgende Expressionsvektoren (1 bis 4) wurden verwendet:
1.) pTE1887 (Expressionsvektor, auch Leervektor genannt; Plasmidkarte: Figur 8)
2.) pTE1887-ghrAeCo (Expressionsvektor, der die Glyoxylat-Reduktase aus Escherichia coli K- 12 MG1655 codon-optimiert codiert; mit SEQ ID Nr. 3, Plasmidkarte: Figur 9) (erfmdungsgemäß)
3.) pTE1887-ghrAeco-ecmmea (Expressionsvektor, der die Glyoxylat-Reduktase aus Escherichia coli K-12 MGI 655 (codon-optimiert) und die Ethylmalonyl-CoA-Mutase aus M. extorquens TK 0001 DSM 1337 nativ codiert; Plasmidkarte: Figur 10) (erfmdungsgemäß)
4.) pTE1887-ghrAeco-ecmrsh (Expressionsvektor, der die Glyoxylat-Reduktase aus Escherichia coli K-12 MGI 655 (codon-optimiert) und die Ethylmalonyl-CoA-Mutase aus Rhodobacter sphaeroides ATCC 17029 codon-optimiert; Plasmidkarte: Figur 11) (erfmdungsgemäß).
Genetisch veränderte Methylobacteriaceae-Zellen, umfassend eine exogene, eine Glyoxylat- Reduktase aus dem Bakterium Escherichia coli K-12 MGI 655 codierende codon-optimierte Nucleinsäuresequenz (SEQ ID Nr. 3) des Stamms Methylorubrum zatmanii Mza-GA14 (M. zatmanii DSM 5688 + pTE1887-ghrAeCo) wurden am 19. Juli 2023 bei der DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Deutschland unter der Hinterlegungsnummer DSM 34701 hinterlegt.
Genetisch veränderte Methylobacteriaceae-Zellen, umfassend eine exogene, eine Glyoxylat- Reduktase aus dem Bakterium Escherichia coli K-12 MGI 655 codierende codon-optimierte Nucleinsäuresequenz (SEQ ID Nr. 3) des Stamms Methylorubrum extorquens Mea-GA17 (M. extorquens PA1 DSM 23939 + pTE1887-ghrAeCo) wurden am 19. Juli 2023 bei der DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Deutschland unter der Hinterlegungsnummer DSM 34702 hinterlegt.
Genetisch veränderte Methylobacteriaceae-Zellen, umfassend eine exogene, eine Glyoxylat- Reduktase aus dem Bakterium Escherichia coli K-12 MGI 655 codierende codon-optimierte Nucleinsäuresequenz (SEQ ID Nr. 3) des Stamms Methylorubrum rhodesianum Mrh-GA4 (M. rhodesianum DSM 5687 + pTE1887-ghrAeCo) wurden am 19. Juli 2023 bei der DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Deutschland unter der Hinterlegungsnummer DSM 34697 hinterlegt.
Genetisch veränderte Methylobacteriaceae-Zellen, umfassend eine exogene, eine Glyoxylat- Reduktase aus dem Bakterium Escherichia coli K-12 MGI 655 codierende codon-optimierte Nucleinsäuresequenz (SEQ ID Nr. 3) und eine exogene, eine Ethylmalonyl-CoA-Mutase aus dem Bakterium Methylorubrum extorquens TK 0001 DSM 1337 codierende native Nucleinsäuresequenz (SEQ ID Nr. 4), des Stamms Methylorubrum rhodesianum Mrh-GA5 (M. rhodesianum DSM 5687 + pTE1887-ghrAeco-ecmmea) wurden am 19. Juli 2023 bei der DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Deutschland unter der Hinterlegungsnummer DSM 34698 hinterlegt.
Genetisch veränderte Methylobacteriaceae-Zellen, umfassend eine exogene, eine Glyoxylat- Reduktase aus dem Bakterium Escherichia coli K-12 MGI 655 codierende codon-optimierte Nucleinsäuresequenz (SEQ ID Nr. 3) des Stamms Methyl ob acterium organophilum Mor-GA8 (M. organophilum DSM 18172 + pTE1887-ghrAeco-ecmmea) wurden am 19. Juli 2023 bei der DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Deutschland unter der Hinterlegungsnummer DSM 34699 hinterlegt.
Genetisch veränderte Methylobacteriaceae-Zellen, umfassend eine exogene, eine Glyoxylat- Reduktase aus dem Bakterium Escherichia coli K-12 MGI 655 codierende codon-optimierte Nucleinsäuresequenz (SEQ ID Nr. 3) und eine exogene, eine Ethylmalonyl-CoA-Mutase aus dem Bakterium Methylorubrum extorquens TK 0001 DSM 1337 codierende native Nucleinsäuresequenz (SEQ ID Nr. 4), des Stamms Methyl ob acterium radiotolerans Mra-GA12 (M. radiotolerans DSM 760 + pTE1887-ghrAeco-ecmmea) wurden am 19. Juli 2023 bei der DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Deutschland unter der Hinterlegungsnummer DSM 34700 hinterlegt.
Um die Erfindung mit den vorgenannten Stämmen zu untersuchen, wurde nach Beispiel 2 verfahren. Abweichend zu Beispiel 2 wurden die Kultivierungen mit den verwendeten Methylobacteriaceae-Zellen M. rhodesianum (Figur 14) DSM 5687, M. zatmanii DSM 5688 (Figur 15), M. radiotolerans DSM 760 (Figur 16), M. organophilum DSM 18172 (Figur 17), M. extorquens PA1 DSM 23939 (Figur 18) mit einer reduzierten Menge an Edukt (Cx- Verbindung, 4 g L'1 Methanol) gestartet und zwischen zehn und zwölf Stunden nach Induktion zusätzliches Edukt zugefüttert (Fed-Batch, kumuliert bis zu 15 g L'1). Außerdem wurden die Proben zur Bestimmung der Glycolsäure-, Milchsäure- und Methanol-Konzentration nach 22 - 28 h nach Induktion der Genexpression mit 1 mM IPTG entnommen.
Die Figuren 14 bis 19 zeigen auf der x-Achse die genetisch veränderten Methylobacteriaceae- Zellen und auf der y-Achse die Konzentration von Methanol (weißer, nicht ausgefüllter Balken) beziehungsweise die Konzentration der Mischung aus gebildeter Glycolsäure und Milchsäure (schwarzer, ausgefüllter Balken) in g L'1 im Reaktionsmedium. Alle Probenentnahmezeitpunkte liegen 22 bis 28 Stunden nach Induktion der Genexpression mit 1 mM IPTG. Alle Konzentrationen sind in g L'1 angegeben, bestimmt durch HPLC, Refraktärindex-Detektion und externen Standards.
Figur 14 zeigt das Screeningergebnis der Glycolsäure- und Milchsäure-Produktion mit rekombinanten M. rhodesianum DSM 5687-Stämmen, die Glyoxylat-Reduktasen exprimieren, ausgehend von den korrespondierenden codon-optimierten Genen. Der erste Eintrag von Links zeigt die Methanolkonzentration im Minimalmedium zum Beginn der Kultivierung. Als Expressionsvektor wurde pTE1887 genutzt, der in Form des Leervektors im Referenzstamm M. rhodesianum DSM 5687 + pTE1887 auch als Negativkontrolle dient (zweiter Eintrag von links auf der x-Achse).
Überraschenderweise zeigten sowohl der Referenzstamm M. rhodesianum DSM 5687 + pTE1887 (zweiter Eintrag von links) als auch die genetisch veränderten Methylobacteriaceae- Zellen keine Glycolsäure- und Milchsäure-Produktion (Einträge von links: 3 bis 10 und 12 bis 16), mit Ausnahme (schwarze, ausgefüllte Balken in Figur 14) der erfindungsgemäßen genetisch veränderten -Zellen von M. rhodesianum DSM 5687 + pTE1887-ghrAeCo (in codon- optimierter Nucleinsäure-Form nach SEQ ID Nr. 3), also eine erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle umfassend mindestens eine exogene, eine Glyoxylat- Reduktase aus dem Bakterium Escherichia codierende Nucleinsäuresequenz (Eintrag von links: 11) und der genetisch veränderten Zellen M. rhodesianum DSM 5687 + pTE1887-ghrAeCo- ecmmea, umfassend eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia coli K-12 MG1655 codierende codon-optimierte Nucleinsäuresequenz (SEQ ID Nr. 3) und eine exogene, eine Ethylmalonyl-CoA-Mutase aus dem Bakterium Methylorubrum extorquens TK 0001 DSM 1337 codierende native Nucleinsäuresequenz (SEQ ID Nr. 4), also eine erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle umfassend mindestens eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia codierende Nucleinsäuresequenz (Eintrag von links: 17) und der genetisch veränderten Zellen M. rhodesianum DSM 5687 + pTE1887-ghrAeCo-ecmrsh, umfassend eine exogene, eine Glyoxylat- Reduktase aus dem Bakterium Escherichia coli K-12 MGI 655 codierende codon-optimierte Nucleinsäuresequenz (SEQ ID Nr. 3) und eine exogene, eine Ethylmalonyl-CoA-Mutase aus dem Bakterium Rhodobacter sphaeroides ATCC 17029 codierende codon-optimierte Nucleinsäuresequenz (SEQ ID Nr. 8), also eine erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle umfassend mindestens eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia codierende Nucleinsäuresequenz (Eintrag von links: 18).
Figur 9 zeigt die Karte des Vektors, der für die Generierung dieser Methylobacteriaceae-Zellen verwendet wurde mit folgenden Elementen: lacl Gen, lacl Promoter, PL/O4/A1 Promoter
Figure imgf000076_0001
- 33 Region -10 Region Transkriptionsstart, PL/O4/A1 Promoter Ribosomale Bindestelle (RBS), ghrAeco-c-optimiert, Lambda T0 Terminator, Kanamycin Resistenz, Mobilisation Gene mobS und mob, Regulatory protein RepA. Origin of replication colEl.
Figur 10 zeigt die Karte des Vektors, der für die Generierung der Methylobacteriaceae-Zellen exprimierend die ghrAeco-ecmmea verwendet wurde mit folgenden Elementen: lacl Gen, lacl Promoter, PL/O4/A1 Promoter
Figure imgf000076_0003
-33 Region
Figure imgf000076_0002
-10 Region Transkriptionsstart, PL/O4/A1 Promoter Ribosomale Bindestelle (RBS), ghrAeco (codon-optimiert), ecmmea (nativ), Lambda T0 Terminator, Kanamycin Resistenz, Mobilisation Gene mobS und mob, Regulatory protein RepA. Origin of replication colEl.
Figur 11 zeigt die Karte des Vektors, der für die Generierung dieser Methylobacteriaceae- Zellen exprimierend die ghrAeCo-ecmrsh verwendet wurde mit folgenden Elementen: lacl Gen, lacl Promoter, PL/O4/A1 Promoter
Figure imgf000076_0004
-33 Region
Figure imgf000076_0005
-10 Region
Figure imgf000076_0006
Transkriptionsstart, PL/O4/A1 Promoter Ribosomale Bindestelle (RBS), ghrAeco (codon-optimiert), rsh-ecm (codon-optimiert), Lambda T0 Terminator, Kanamycin Resistenz, Mobilisation Gene mobS und mob, Regulatory protein RepA. Origin of replication colEl.
Es konnten mit den erfindungsgemäß gentechnisch veränderten Zellen von M. rhodesianum DSM 5687Mischungen von Glycolsäure und Milchsäure enthaltend eine Gesamtkonzentration von Glycolsäure plus Milchsäure bis 0,85 g L'1 (M. rhodesianum DSM5687 + pTE1887- ghrAeco-eemmea), wenigstens 0,82 g L'1 (M. rhodesianum DSM5687 + pTE1887-ghrAeCo), wenigstens 0,09 g L'1 (M. rhodesianum DSM5687 + pTE1887-ghrAeCo-ecmrsh) produziert werden.
Diese experimentellen Daten demonstrieren, dass eine erfindungsgemäße Glycolsäure- und Milchsäure-Produktion innerhalb der Familie der Methyl ob acteriaceae möglich ist.
Figur 15 zeigt das Screeningergebnis der Glycolsäure- und Milchsäure-Produktion mit rekombinanten M. zatmanii DSM 5688-Stämmen, die erfindungsgemäß das Gen der Glyoxylat- Reduktase aus Escherichia und in einem Fall zusätzlich das Gen einer Ethylmalonyl-CoA- Mutase aus Rhodobacter sphaeroides ATCC 17029 exprimieren, ausgehend von den korrespondierenden codon-optimierten Genen. Der erste Eintrag von Links zeigt die Methanolkonzentration im Minimalmedium zum Beginn der Kultivierung. Als Expressionsvektor wurde pTE1887 genutzt, der in Form des Leervektors im Referenzstamm M. zatmanii DSM 5688 + pTE1887 auch als Negativkontrolle dient (zweiter Eintrag von links auf der x-Achse).
Überraschenderweise zeigte der Referenzstamm M. zatmanii DSM 5688 + pTE1887 (zweiter Eintrag von links) keine Glycolsäure- und Milchsäure-Produktion, im Gegensatz zu (schwarze, ausgefüllte Balken in Figur 15) den erfindungsgemäßen genetisch veränderten Zellen von M. zatmanii DSM 5688 + pTE1887-ghrAeCo (in codon-optimierter Nucleinsäure-Form nach SEQ ID Nr. 3), also eine erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle umfassend mindestens eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia codierende Nucleinsäuresequenz (Eintrag von links: 3) und der genetisch veränderten Zellen M. zatmanii DSM 5688 + pTE1887-ghrAeCo-ecmrsh, umfassend eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia coli K-12 MGI 655 codierende codon-optimierte Nucleinsäuresequenz (SEQ ID Nr. 3) und eine exogene, eine Ethylmalonyl-CoA-Mutase aus dem Bakterium Rhodobacter sphaeroides ATCC 17029 codierende codon-optimierte Nucleinsäuresequenz (SEQ ID Nr. 8), also eine erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle umfassend mindestens eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia codierende Nucleinsäuresequenz (Eintrag von links: 4).
Figur 9 zeigt die Karte des Vektors, der für die Generierung dieser Methylobacteriaceae-Zellen verwendet wurde mit folgenden Elementen: lacl Gen, lacl Promoter, PL/O4/A1 Promoter - 33 Region -10 Region Transkriptionsstart, PL/O4/A1 Promoter Ribosomale Bindestelle (RBS), ghrAeco-c-optimiert, Lambda TO Terminator, Kanamycin Resistenz, Mobilisation Gene mobS und mob, Regulatory protein RepA. Origin of replication colEl.
Figur 11 zeigt die Karte des Vektors, der für die Generierung dieser Methylobacteriaceae- Zellen exprimierend die ghrAeCo-ecmrsh verwendet wurde mit folgenden Elementen: lacl Gen, lacl Promoter, PL/O4/A1 Promoter
Figure imgf000078_0001
-33 Region
Figure imgf000078_0002
-10 Region
Figure imgf000078_0003
Transkriptionsstart, PL/O4/A1 Promoter Ribosomale Bindestelle (RBS), ghrAeco (codon-optimiert), rsh-ecm (codon-optimiert), Lambda TO Terminator, Kanamycin Resistenz, Mobilisation Gene mobS und mob, Regulatory protein RepA. Origin of replication colEl.
Es konnten mit den erfindungsgemäß gentechnisch veränderten Zellen von M. zatmanii DSM 5688 Mischungen von Glycolsäure und Milchsäure enthaltend eine Gesamtkonzentration von Glycolsäure plus Milchsäure bis 0,56 g L'1 (M. zatmanii DSM 5688 + pTE1887-ghrAeCo), wenigstens 0,48 g L'1 (M. zatmanii DSM 5688 + pTE1887-ghrAeCo-ecmrsh) produziert werden. Diese experimentellen Daten demonstrieren, dass die erfindungsgemäße Glycolsäure- und Milchsäure-Produktion innerhalb der Familie der Methylobacteriaceae, möglich ist.
Figur 16 zeigt das Screeningergebnis der Glycolsäure- und Milchsäure-Produktion eines rekombinanten M. radiotolerans DSM 760-Stammes. Der erste Eintrag von Links zeigt die Methanolkonzentration im Minimalmedium zum Beginn der Kultivierung. Als Expressionsvektor wurde pTE1887 genutzt, der in Form des Leervektors im Referenzstamm M. radiotolerans DSM 760 + pTE1887 auch als Negativkontrolle dient (zweiter Eintrag von links auf der x-Achse).
Überraschenderweise zeigte der Referenzstamm M. radiotolerans DSM 760 + pTE1887 (zweiter Eintrag von links) keine Glycolsäure- und Milchsäure-Produktion im Gegensatz zu den erfindungsgemäßen genetisch veränderten Zellen von M. radiotolerans DSM 760 + pTE1887-ghrAeco-ecmmea, umfassend eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia coli K-12 MGI 655 codierende codon-optimierte Nucleinsäuresequenz (SEQ ID Nr. 3) und eine exogene, eine Ethylmalonyl-CoA-Mutase aus dem Bakterium Methylorubrum extorquens TK 0001 DSM 1337 codierende native Nucleinsäuresequenz (SEQ ID Nr. 4), also eine erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle umfassend mindestens eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia codierende Nucleinsäuresequenz (Eintrag von links: 3) (schwarzer ausgefüllter Balken in Figur 16). Die Kombination von ghrAeco und ecmmea (eine erfindungsgemäße Ethylmalonyl-CoA-Mutase aus M. extorquens TK 0001 DSM 1337) führte zu einer erfindungsgemäßen Glycol säure- und Milchsäure-Produktion.
Figur 10 zeigt die Karte des Vektors, der für die Generierung der Methylobacteriaceae-Zellen exprimierend die ghrAeco-ecmmea verwendet wurde mit folgenden Elementen: lacl Gen, lacl Promoter, PL/O4/A1 Promoter
Figure imgf000079_0002
-33 Region
Figure imgf000079_0001
-10 Region Transkriptionsstart, PL/O4/A1 Promoter Ribosomale Bindestelle (RBS), ghrAeco (codon-optimiert), ecmmea (nativ), Lambda T0 Terminator, Kanamycin Resistenz, Mobilisation Gene mobS und mob, Regulatory protein RepA. Origin of replication colEl.
Es konnten mit den erfindungsgemäß gentechnisch veränderten Zellen von M. radiotolerans DSM 760 Mischungen von Glycolsäure und Milchsäure enthaltend eine Gesamtkonzentration von Glycolsäure plus Milchsäure bis 0,39 g L'1 (M. radiotolerans DSM 760 + pTE1887- ghrAeco-eemmea) produziert werden.
Diese experimentellen Daten demonstrieren, dass die erfindungsgemäße Glycolsäure- und Milchsäure-Produktion innerhalb der Familie der Methylobacteriaceae, möglich ist.
Figur 17 zeigt das Screeningergebnis der Glycolsäure- und Milchsäure-Produktion mit rekombinanten M. organophilum DSM 18172-Stämmen, die Glyoxylat-Reduktasen exprimieren, ausgehend von den korrespondierenden codon-optimierten Genen. Der erste Eintrag von Links zeigt die Methanolkonzentration im Minimalmedium zum Beginn der Kultivierung. Als Expressionsvektor wurde pTE1887 genutzt, der in Form des Leervektors im Referenzstamm M. organophilum DSM 18172 + pTE1887 auch als Negativkontrolle dient (zweiter Eintrag von links auf der x-Achse).
Überraschenderweise zeigten sowohl der Referenzstamm M. organophilum DSM 18172 + pTE1887 (zweiter Eintrag von links) als auch die genetisch veränderten Methylobacteriaceae- Zellen keine Glycolsäure- und Milchsäure-Produktion (Einträge von links: 3 bis 10 und 12 bis 18), mit Ausnahme (schwarze, ausgefüllte Balken in Figur 17) der erfindungsgemäßen genetisch veränderten Zellen von M. organophilum DSM 18172 + pTE1887-ghrAeCo (in codon- optimierter Nucleinsäure-Form nach SEQ ID Nr. 3), also eine erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle umfassend mindestens eine exogene, eine Glyoxylat- Reduktase aus dem Bakterium Escherichia codierende Nucleinsäuresequenz (Eintrag von links: 11) und der genetisch veränderten Zellen M. organophilum DSM 18172 + pTE1887-ghrAeCo- ecmmea, umfassend eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia coli K-12 MG1655 codierende codon-optimierte Nucleinsäuresequenz (SEQ ID Nr. 3) und eine exogene, eine Ethylmalonyl-CoA-Mutase aus dem Bakterium Methylorubrum extorquens TK 0001 DSM 1337 codierende native Nucleinsäuresequenz (SEQ ID Nr. 4), also eine erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle umfassend mindestens eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia codierende Nucleinsäuresequenz (Eintrag von links: 17) und der genetisch veränderten Zellen M. organophilum DSM 18172 + pTE1887-ghrAeCo-ecmrsh, umfassend eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia coli K-12 MGI 655 codierende codon - optimierte Nucleinsäuresequenz (SEQ ID Nr. 3) und eine exogene, eine Ethylmalonyl-CoA- Mutase aus dem Bakterium Rhodobacter sphaeroides ATCC 17029 codierende codon- optimierte Nucleinsäuresequenz (SEQ ID Nr. 8), also eine erfmdungsgemäße genetisch veränderte Methylobacteriaceae-Zelle umfassend mindestens eine exogene, eine Glyoxylat- Reduktase aus dem Bakterium Escherichia codierende Nucleinsäuresequenz (Eintrag von links: 18).
Figur 9 zeigt die Karte des Vektors, der für die Generierung dieser Methylobacteriaceae-Zellen verwendet wurde mit folgenden Elementen: lacl Gen, lacl Promoter, PL/O4/A1 Promoter
Figure imgf000080_0001
- 33 Region -10 Region Transkriptionsstart, PL/O4/A1 Promoter Ribosomale Bindestelle (RBS), ghrAeco-c-optimiert, Lambda T0 Terminator, Kanamycin Resistenz, Mobilisation Gene mobS und mob, Regulatory protein RepA. Origin of replication colEl.
Figur 10 zeigt die Karte des Vektors, der für die Generierung der Methylobacteriaceae-Zellen exprimierend die ghrAeco-ecmmea verwendet wurde mit folgenden Elementen: lacl Gen, lacl Promoter, PL/O4/A1 Promoter
Figure imgf000080_0003
-33 Region
Figure imgf000080_0002
-10 Region Transkriptionsstart, PL/O4/A1 Promoter Ribosomale Bindestelle (RBS), ghrAeco (codon-optimiert), ecmmea (nativ), Lambda T0 Terminator, Kanamycin Resistenz, Mobilisation Gene mobS und mob, Regulatory protein RepA. Origin of replication colEl.
Figur 11 zeigt die Karte des Vektors, der für die Generierung dieser Methylobacteriaceae- Zellen exprimierend die ghrAeCo-ecmrsh verwendet wurde mit folgenden Elementen: lacl Gen, lacl Promoter, PL/O4/A1 Promoter
Figure imgf000080_0004
-33 Region
Figure imgf000080_0005
-10 Region
Figure imgf000080_0006
Transkriptionsstart, PL/O4/A1 Promoter Ribosomale Bindestelle (RBS), ghrAeco (codon-optimiert), rsh-ecm (codon-optimiert), Lambda T0 Terminator, Kanamycin Resistenz, Mobilisation Gene mobS und mob, Regulatory protein RepA. Origin of replication colEl.
Es konnten mit den erfindungsgemäß gentechnisch veränderten Zellen von M. organophilum DSM 18172 Mischungen von Glycolsäure und Milchsäure enthaltend eine Gesamtkonzentration von Glycolsäure plus Milchsäure bis 0,13 g L'1 (M. organophilum DSM 18172 + pTE1887-ghrAeCo), wenigstens 0, 10 g L'1 (M. organophilum DSM 18172 + pTE1887- ghrAeco-ecirimea), wenigstens 0,04 g L'1 (M. organophilum DSM 18172 + pTE1887-ghrAeCo- ecmrsh) produziert werden.
Diese experimentellen Daten demonstrieren, dass die erfindungsgemäße Glycolsäure- und Milchsäure-Produktion innerhalb der Familie der Methylobacteriaceae, möglich ist.
Figur 18 zeigt das Screeningergebnis der Glycolsäure- und Milchsäure-Produktion mit rekombinanten M. extorquens PA1 DSM 23939-Stämmen. Der erste Eintrag von Links zeigt die Methanolkonzentration im Minimalmedium zum Beginn der Kultivierung. Als Expressionsvektor wurde pTE1887 genutzt, der in Form des Leervektors im Referenzstamm M. extorquens PA1 DSM 23939 + pTE1887 auch als Negativkontrolle dient (zweiter Eintrag von links auf der x-Achse).
Überraschenderweise zeigte der Referenzstamm M. extorquens PA1 DSM 23939 + pTE1887 (zweiter Eintrag von links) keine Glycolsäure- und Milchsäure-Produktion, im Gegensatz zu den erfindungsgemäßen genetisch veränderten Zellen von M. extorquens PA1 DSM 23939 + pTE1887-ghrAeCo (in codon-optimierter Nucleinsäure-Form nach SEQ ID Nr. 3), also eine erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle umfassend mindestens eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia codierende Nucleinsäuresequenz (schwarzer ausgefüllter Balken in Figur 18) (Eintrag von links: 3).
Figur 9 zeigt die Karte des Vektors, der für die Generierung dieser Methylobacteriaceae-Zellen verwendet wurde mit folgenden Elementen: lacl Gen, lacl Promoter, PL/O4/A1 Promoter
Figure imgf000081_0001
- 33 Region -10 Region Transkriptionsstart, PL/O4/A1 Promoter Ribosomale Bindestelle (RBS), ghrAeco-c-optimiert, Lambda TO Terminator, Kanamycin Resistenz, Mobilisation Gene mobS und mob, Regulatory protein RepA. Origin of replication colEl.
Es konnte mit den erfindungsgemäß gentechnisch veränderten Zellen von M. extorquens PA1 DSM 23939 Mischungen von Glycolsäure und Milchsäure enthaltend eine Gesamtkonzentration von Glycolsäure plus Milchsäure bis 1,50 g L'1 (M. extorquens PA1 DSM 23939 + pTE1887-ghrAeCo) (M. extorquens GA17) produziert werden.
Diese experimentellen Daten demonstrieren, dass die erfindungsgemäße Glycolsäure- und Milchsäure-Produktion innerhalb der Familie der Methylobacteriaceae, möglich ist.
Figur 19 zeigt das Screeningergebnis der Glycolsäure- und Milchsäure-Produktion mit rekombinanten M. extorquens AMlAcel-Stämmen, die Glyoxylat-Reduktasen exprimieren, ausgehend von den korrespondierenden codon-optimierten Genen. Der erste Eintrag von Links zeigt die Methanolkonzentration im Minimalmedium zum Beginn der Kultivierung. Als Expressionsvektor wurde pTE1887 genutzt, der in Form des Leervektors im Referenzstamm M. extorquens AMlAcel + pTE1887 auch als Negativkontrolle dient (zweiter Eintrag von links auf der x-Achse).
Überraschenderweise zeigte der Referenz stamm M. extorquens AMlAcel + pTE1887 (zweiter Eintrag von links) keine Glycolsäure- und Milchsäure-Produktion, mit Ausnahme (schwarzer ausgefüllter Balken in Figur 19) der erfmdungsgemäßen genetisch veränderten -Zellen von M. extorquens AMlAcel + pTE1887-ghrAeCo (in codon-optimierter Nucleinsäure-Form nach SEQ ID Nr. 3), also eine erfindungsgemäße genetisch veränderte Methylobacteriaceae-Zelle umfassend mindestens eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia codierende Nucleinsäuresequenz (Eintrag von links: 11).
Figur 9 zeigt die Karte des Vektors, der für die Generierung dieser Methylobacteriaceae-Zellen verwendet wurde mit folgenden Elementen: lacl Gen, lacl Promoter, PL/O4/A1 Promoter
Figure imgf000082_0001
- 33 Region -10 Region Transkriptionsstart, PL/O4/A1 Promoter Ribosomale Bindestelle (RBS), ghrAeco-c-optimiert, Lambda TO Terminator, Kanamycin Resistenz, Mobilisation Gene mobS und mob, Regulatory protein RepA. Origin of replication colEl.
Es konnte mit den erfindungsgemäß gentechnisch veränderten Zellen von M. extorquens AMlAcel Mischungen von Glycolsäure und Milchsäure enthaltend eine Gesamtkonzentration von Glycolsäure plus Milchsäure bis 0,60 g L'1 (M. extorquens AMlAcel + pTE1887-ghrAeCo) produziert werden.
Diese experimentellen Daten demonstrieren, dass die erfindungsgemäße Glycolsäure- und Milchsäure-Produktion innerhalb der Familie der Methylobacteriaceaemöglich ist. Eine Deletion des Cellulase Gens (Acel) wirkt sich nicht auf den Glyoxylat-Glycolsäure-Milchsäure- Stoffwechsel aus.
Die Ergebnisse dieser Untersuchungen sind in Tabelle 5 (nachstehend) zusammengefasst.
Es wurden weitere Untersuchungen an methylotrophen Mikroorganismen durchgeführt, die nicht zu der Familie der Methylobacteriaceae gehören. Zu diesem Zweck wurden die Stammkonstruktionsverfahren gemäß Beispiel 1 zur Erzeugung gentechnisch veränderter Stämme von Methylomonas methanica DSM 25384 (Gammaproteobacteria), Methylophilus methylotrophus DSM 6330 (Betaproteobacteria) und Bacillus methanolicus DSM 16454 (Firmicutes) durchgeführt. Dies war in allen Fällen nicht möglich mit den verwendeten Stämmen. Die untersuchten Stämme zeigten für sämtliche eingesetzte Vektoren pTE1887, pTE1887-ghrAeCo, pTE1887-ghrAeco-ecmmea und pTE1887-ghrAeCo-ecmrsh kein Wachstum während des in Beispiel 1 beschriebenen Stammkonstruktionsverfahrens (Tabelle 5).
Tabelle 5: Zusammenfassung der erreichten Glycolsäure- und Milchsäure-Titer von getesteten Stämmen der Familie der Methyl ob acteriaceae und Vergleichsbeispielen (nicht zu der Familie der Methyl ob acteriaceae gehörenden Mikroorganismen). Abkürzungen: GS, Glycolsäure; MS, Milchsäure.
Figure imgf000083_0001
Figure imgf000084_0001
Figure imgf000085_0001
1 Bei Wachstumstest verwendete Temperaturen: Methylophilus methylotrophus DSM 6330 (37
°C), Bacillus methanolicus DSM 16454 (45 °C).

Claims

ANSPRÜCHE
1. Genetisch veränderte Methylobacteriaceae-Zelle, umfassend mindestens eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia codierende Nucleinsäuresequenz.
2. Genetisch veränderte Zelle nach Anspruch 1, wobei die Methylobacteriaceae-Zelle eine Methylorubrum-Zelle, insbesondere eine Zelle von Methylorubrum extorquens, insbesondere Methylorubrum extorquens AMI, Methylorubrum extorquens TK 0001, Methylorubrum extorquens PA1, Methylorubrum rhodesianum oder Methylorubrum zatmanii, oder eine Methylobacterium-Zelle, insbesondere eine Zelle von Methyl ob acterium organophilum oder Methyl ob acterium radiotolerans ist.
3. Genetisch veränderte Methylobacteriaceae-Zelle nach Anspruch 1 oder 2, wobei das Bakterium Escherichia coli, insbesondere E. coli K-12 MG1655 ist.
4. Genetisch veränderte Methylobacteriaceae-Zelle nach einem der vorhergehenden Ansprüche, wobei die Glyoxylat-Reduktase aus dem Bakterium Escherichia durch eine Nucleinsäuresequenz gemäß SEQ ID Nr. 3 oder einem funktionalen Äquivalent davon codiert wird, wobei das funktionale Nucleinsäuresequenz-Äquivalent eine Nucleinsäuresequenzidentität von 30,0 bis 99,9 % zu der Nucleinsäuresequenz gemäß SEQ ID Nr. 3 aufweist, oder wobei die Glyoxylat-Reduktase eine Aminosäuresequenz gemäß SEQ ID Nr. 2 oder eines funktionalen Aminosäuresequenz-Äquivalents davon aufweist, wobei das funktionale Aminosäuresequenz-Äquivalent eine Aminosäuresequenzidentität von 30,0 bis 99,9 % zu der Aminosäuresequenz gemäß SEQ ID Nr. 2 aufweist.
5. Genetisch veränderte Methylobacteriaceae-Zelle nach einem der vorhergehenden Ansprüche, umfassend mindestens eine exogene Nucleinsäuresequenz, die eine Ethylmalonyl-CoA-Mutase codiert, insbesondere aus mindestens einem Bakterium ausgewählt aus der Gruppe bestehend aus Methylorubrum extorquens, insbesondere Methylorubrum extorquens TK 0001 DSM 1337, und Rhodobacter sphaeroides, insbesondere Rhodobacter sphaeroides ATCC 17029. Genetisch veränderte Methylobacteriaceae-Zelle nach Anspruch 5 wobei die Ethylmalonyl - CoA-Mutase durch eine Nucleinsäuresequenz gemäß SEQ ID Nr. 8 oder 13 oder einem funktionalen Äquivalent davon codiert wird, wobei das funktionale Nucleinsäuresequenz- Äquivalent eine Nucleinsäuresequenzidentität von 30,0 bis 99,9 % zu der Nucleinsäuresequenz gemäß SEQ ID Nr. 8 oder 13 aufweist, oder wobei die Ethylmalonyl - CoA-Mutase eine Aminosäuresequenz gemäß SEQ ID Nr. 5 oder 7 oder eines funktionalen Äquivalents davon aufweist, wobei das funktionale Aminosäuresequenz-Äquivalent eine Aminosäuresequenzidentität von 30,0 bis 99,9 % zu der Aminosäuresequenz gemäß SEQ ID Nr. 5 oder 7 aufweist. Genetisch veränderte Methylobacteriaceae-Zelle nach einem der vorhergehenden Ansprüche, wobei die mindestens eine exogene Nucleinsäuresequenz codierend die Glyoxylat-Reduktase und/oder codierend die Ethylmalonyl-CoA-Mutase im Chromosom der Methylobacteriaceae-Zelle integriert ist oder extrachromosomal vorliegt, insbesondere in der Zelle in einem episomalen Expressionsvektor integriert vorliegt. Genetisch veränderte Methylobacteriaceae-Zelle nach einem der vorhergehenden Ansprüche, wobei die genetisch veränderte Methylobacteriaceae-Zelle eine Zelle des Methylorubrum-Stammes Methylorubrum extorquens Mea-GAl, (DSM 34286), Methylorubrum extorquens Mea-GA2, (DSM 34287) oder Methylorubrum extorquens Mea-GA3 (DSM 34288), jeweils hinterlegt am 10. Juni 2022 bei der DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Deutschland oder ein Derivat davon ist, oder wobei die genetisch veränderte Methylobacteriaceae-Zelle eine Zelle des Methylorubrum-Stammes Methylorubrum rhodesianum Mrh-GA4 (DSM 34697), Methylorubrum rhodesianum Mrh-GA5 (DSM 34698), Methylorubrum zatmanii Mza- GA14 (DSM 34701) Methylorubrum extorquens Mea-GA17 (DSM 34702) oder eine Zelle des Methylobacterium-Stammes Methyl ob acterium radiotolerans Mra-GA12 (DSM 34700) oder Methyl ob acterium organophilum Mor-GA8 (DSM 34699) jeweils hinterlegt am 19. Juli 2023 bei der DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Deutschland oder ein Derivat davon ist. Genetisch veränderte Methylobacteriaceae-Zelle nach einem der vorhergehenden Ansprüche, wobei die mindestens eine exogene Nucleinsäuresequenz codierend die Glyoxylat-Reduktase und/oder codierend die Ethylmalonyl-CoA-Mutase funktional mit zusätzlich mindestens einer regulatorischen Einheit unter Ausbildung einer Expressionskassette verbunden ist, insbesondere einem Promoter, insbesondere einem induzierbaren, dereprimierbaren oder konstitutiven Promoter, einem Enhancer, einer ribosomalen Bindestelle und/oder einem Terminator. Verfahren zur Herstellung einer genetisch veränderten Methylobacteriaceae-Zelle nach einem der Ansprüche 1 bis 9, umfassend die Verfahrensschritte: a) Bereitstellen einer Methylobacteriaceae-Zelle, insbesondere einer Wildtypzelle, und eines Expressionsvektors oder eines Genomeditierungssystems umfassend mindestens eine exogene, eine Glyoxylat-Reduktase aus dem Bakterium Escherichia codierende Nucleinsäuresequenz, insbesondere eine diese Nucleinsäuresequenz umfassende Expressionskassette, b) Transformieren der Methylobacteriaceae-Zelle mit dem Expressionsvektor oder dem Genomeditierungssystem unter Bedingungen, die die Aufnahme, und, optional stabile, Integration der mindestens einen exogenen Nucleinsäuresequenz in die Methylobacteriaceae-Zelle ermöglichen, und c) Erhalten der mindestens eine exogene, eine Glyoxylat-Reduktase aufweisenden genetisch veränderten Methylobacteriaceae-Zelle. Verfahren nach Anspruch 10, wobei in Verfahrensschritt a) mindestens eine exogene, eine Ethylmalonyl-CoA-Mutase codierende Nucleinsäuresequenz, insbesondere aus mindestens einem Bakterium ausgewählt aus der Gruppe bestehend aus Methylorubrum extorquens, insbesondere Methylorubrum extorquens TK 0001 DSM 1337, und Rhodobacter sphaeroides, insbesondere Rhodobacter sphaeroides ATCC 17029, insbesondere eine diese Nucleinsäuresequenz umfassende Expressionskassette bereitgestellt wird, in Verfahrensschritt b) die Methylobacteriaceae-Zelle mit der exogenen, eine Ethylmalonyl- CoA-Mutase codierenden Nucleinsäuresequenz, insbesondere der diese umfassenden Expressionskassette, transformiert und in Verfahrensschritt c) eine mindestens eine exogene, eine Glyoxylat-Reduktase aufweisende genetisch veränderte Methylobacteriaceae-Zelle, die zusätzlich mindestens eine exogene, eine Ethylmalonyl- CoA-Mutase codierende Nucleinsäuresequenz aufweist, erhalten wird. Genetisch veränderte Methylobacteriaceae-Zelle nach einem der Ansprüche 1 bis 9 oder hergestellt nach dem Verfahren nach Anspruch 10 oder 11, wobei die Zelle lebend oder tot oder lyophilisiert oder in Form eines Zelllysats oder Zellextrakts, gewonnen aus einer genetisch veränderten Methylobacteriaceae-Zelle nach einem der Ansprüche 1 bis 9 oder hergestellt nach dem Verfahren nach Anspruch 10 oder 11, vorliegt. Biokatalysator umfassend eine genetisch veränderte Methylobacteriaceae-Zelle nach einem der Ansprüche 1 bis 9 oder 12 oder hergestellt nach dem Verfahren nach Anspruch 10 oder 11, wobei diese auf einem Träger angeordnet ist. Bioreaktor umfassend eine genetisch veränderte Methylobacteriaceae-Zelle nach einem der Ansprüche 1 bis 9 oder 12 oder hergestellt nach dem Verfahren nach Anspruch 10 oder 11, oder einen Biokatalysator nach Anspruch 12. Verfahren zur Herstellung eines Produkts enthaltend Glycolsäure aus einem Edukt enthaltend mindestens eine Cx- Verbindung, umfassend die Verfahrensschritte: x) Bereitstellen einer genetisch veränderten Methylobacteriaceae-Zelle nach einem der vorhergehenden Ansprüche 1 bis 9 oder 12 oder eines Biokatalysators nach Anspruch 13, eines Reaktionsmediums und des Edukts enthaltend mindestens eine Cx- Verbindung, y) Umsetzen des Edukts unter Bedingungen, die die Bildung von Glycolsäure aus der Cx-Verbindung ermöglichen, und z) Erhalten des Produkts, enthaltend Glycolsäure, aus dem Reaktionsmedium. Verfahren nach Anspruch 15, wobei die Cx-Verbindung eine Cx-Verbindung mit x = 1, 2 oder 4 ist, insbesondere Ameisensäure, Methanol, Methan, Methylamin, Essigsäure oder Bemsteinsäure ist. Verfahren nach Anspruch 15 oder 16, wobei das Produkt, enthaltend Glycolsäure, ein Glycolsäure und Milchsäure enthaltendes Produkt ist. Verfahren nach einem der Ansprüche 15 bis 17, wobei die Cx-Verbindung aus CO2, insbesondere Synthesegas umfassend eine Mischung aus CO2, CO und H2, hergestellt wird, insbesondere mittels eines heterogen-katalytischen chemischen Verfahrens. Verfahren nach Anspruch 18, wobei das CO2, insbesondere Synthesegas, durch chemische Konversion von organischen Stoffen oder Materialien, insbesondere von Klärschlamm und anderen biogenen Rest- und Abfall stoffen, hergestellt wird. Verfahren zur Herstellung von Polyglycol säure, Polymilchsäure oder Polylactid-co- Glycolid, umfassend das Durchführen eines Verfahrens nach einem der Ansprüche 15 bis 19 und anschließendes Polymerisieren der aus diesen Verfahren erhaltenen Glycolsäure, Milchsäure oder Mischung aus Glycolsäure und Milchsäure.
PCT/EP2023/071399 2022-08-03 2023-08-02 Genetisch veränderte Zellen von Methylobacteriaceae zur fermentativen Produktion von Glycolsäure und Milchsäure aus Cx-Verbindungen WO2024028385A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022119514.7 2022-08-03
DE102022119514.7A DE102022119514A1 (de) 2022-08-03 2022-08-03 Genetisch veränderte Zellen von Methylorubrum zur fermentativen Produktion von Glycolsäure und Milchsäure aus Cx-Verbindungen

Publications (1)

Publication Number Publication Date
WO2024028385A1 true WO2024028385A1 (de) 2024-02-08

Family

ID=87571650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/071399 WO2024028385A1 (de) 2022-08-03 2023-08-02 Genetisch veränderte Zellen von Methylobacteriaceae zur fermentativen Produktion von Glycolsäure und Milchsäure aus Cx-Verbindungen

Country Status (2)

Country Link
DE (1) DE102022119514A1 (de)
WO (1) WO2024028385A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7198927B2 (en) 2004-12-22 2007-04-03 E. I. Du Pont De Nemours And Company Enzymatic production of glycolic acid
EP1828393A2 (de) 2004-12-22 2007-09-05 E.I. Dupont De Nemours And Company Verfahren zur herstellung von glykolsäure aus formaldehyd und hydrogencyanid
EP2025760A1 (de) 2006-05-09 2009-02-18 Mitsui Chemicals, Inc. Verfahren zur herstellung von hydroxycarbonsäure durch coenzymregeneration
WO2020198830A1 (en) * 2019-04-04 2020-10-08 Braskem S.A. Metabolic engineering for simultaneous consumption of xylose and glucose for production of chemicals from second generation sugars

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7198927B2 (en) 2004-12-22 2007-04-03 E. I. Du Pont De Nemours And Company Enzymatic production of glycolic acid
EP1828393A2 (de) 2004-12-22 2007-09-05 E.I. Dupont De Nemours And Company Verfahren zur herstellung von glykolsäure aus formaldehyd und hydrogencyanid
EP2025760A1 (de) 2006-05-09 2009-02-18 Mitsui Chemicals, Inc. Verfahren zur herstellung von hydroxycarbonsäure durch coenzymregeneration
WO2020198830A1 (en) * 2019-04-04 2020-10-08 Braskem S.A. Metabolic engineering for simultaneous consumption of xylose and glucose for production of chemicals from second generation sugars

Non-Patent Citations (26)

* Cited by examiner, † Cited by third party
Title
ALTSCHUL ET AL.: "Basic local alignment search tool", J. MOL. BIOL., vol. 215, 1990, pages 403 - 410, XP002949123, DOI: 10.1006/jmbi.1990.9999
ALTSCHUL ET AL.: "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", NUCLEIC ACIDS RES., vol. 25, 1997, pages 3389 - 3402, XP002905950, DOI: 10.1093/nar/25.17.3389
BOHLEN ET AL., ELECTROCHEMISTRY COMMUNICATIONS, vol. 110, 2020, pages 106597
BOWKER, M., CHEMCATCHEM, vol. 11, no. 17, 2019, pages 4238 - 4246
CARRILLO, M. ET AL., ACS SYNTHETIC BIOLOGY, vol. 8, no. 11, 2019, pages 2451 - 2456
CHENNA ET AL.: "Multiple sequence alignment with the Clustal series of programs", NUCLEIC ACIDS RES., vol. 31, 2003, pages 3497 - 3500, XP002316493, DOI: 10.1093/nar/gkg500
CUI, L.-Y. ET AL., BIOCHEMICAL ENGINEERING JOURNAL, vol. 119, 2017, pages 67 - 73
DATABASE EMBL [online] 27 February 2007 (2007-02-27), "Rhodobacter sphaeroides ATCC 17029 methylmalonyl-CoA mutase ID - ABN77723; SV 1; linear; genomic DNA; STD; PRO; 1959 BP.", XP002810489, retrieved from EBI accession no. EMBL:ABN77723 *
DATABASE EMBL [online] 29 December 2008 (2008-12-29), "Rhodobacter sphaeroides strain 2.4.1 ethylmalonyl-CoA mutase (ecm) gene, partial cds.", XP002810490, retrieved from EBI accession no. EM_STD:FJ445412 Database accession no. FJ445412 *
DATABASE EMBL [online] 4 December 1995 (1995-12-04), "Methylobacterium extorquens methylmalonylCoA mutase (meaA) and ORFB genes, complete cds, and 3-oxoacyl-(acyl carrier protein) reductase homolog gene, partial cds.", XP002810488, retrieved from EBI accession no. EM_STD:U28335 Database accession no. U28335 *
ERB TOBIAS J. ET AL: "Ethylmalonyl-CoA Mutase from Rhodobacter sphaeroides Defines a New Subclade of Coenzyme B12-dependent Acyl-CoA Mutases", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 283, no. 47, 1 November 2008 (2008-11-01), US, pages 32283 - 32293, XP093101106, ISSN: 0021-9258, DOI: 10.1074/jbc.M805527200 *
FELISA NUN M ET AL: "Biochemical characterization of the 2-ketoacid reductases encoded by ycdW and yiaE genes in Escherichia coli", 1 January 2001 (2001-01-01), XP093101309, Retrieved from the Internet <URL:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1221703/pdf/11237876.pdf> [retrieved on 20231114] *
FRAZÄO, C.J.R.T. WALTHER, CHEMIE INGENIEUR TECHNIK, vol. 92, no. 11, 2020, pages 1680 - 1699
GÄDDA, T.M. ET AL., APPITA JOURNAL, vol. 67, no. 1, 2014, pages 12
GREEN PETER N. ET AL: "Review of the genus Methylobacterium and closely related organisms: a proposal that some Methylobacterium species be reclassified into a new genus, Methylorubrum gen. nov.", INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol. 68, no. 9, 19 July 2018 (2018-07-19), GB, pages 2727 - 2748, XP093070792, ISSN: 1466-5026, DOI: 10.1099/ijsem.0.002856 *
HANA SMEJKALOVÁ ET AL: "Methanol Assimilation in Methylobacterium extorquens AM1: Demonstration of All Enzymes and Their Regulation", PLOS ONE, vol. 5, no. 10, 1 October 2010 (2010-10-01), pages e13001, XP055141693, DOI: 10.1371/journal.pone.0013001 *
KANG, N.K.M. KIMK. BAEKY.K. CHANGD.R. ORTY.-S. JIN, CHEMICAL ENGINEERING JOURNAL, vol. 433, 2022, pages 133636
KOZAK, M., GENE, vol. 234, no. 2, 1999, pages 187 - 208
LINEWEAVER, H.BURK, D.: "Determination of the enzyme dissociation constants", J. AM. CHEM. SOC., vol. 56, 1934, pages 658 - 666
NUNEZ, M.F.M.T. PELLICERJ. BADIAJ. AGUILARL. BALDOMA, BIOCHEM J, vol. 354, no. 3, 2001, pages 707 - 15
OHSHIMA ET AL., EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 268, no. 17, 2001, pages 4740 - 4747
PEI-HONG SHEN ET AL: "Over-expression of a hydroxypyruvate reductase in Methylobacterium sp. MB200 enhances glyoxylate accumulation", JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, SPRINGER, BERLIN, DE, vol. 34, no. 10, 25 July 2007 (2007-07-25), pages 657 - 663, XP019521834, ISSN: 1476-5535, DOI: 10.1007/S10295-007-0238-0 *
SALUSJÄRVI, L. ET AL., APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 103, no. 6, 2019, pages 2525 - 2535
SALUSJÄRYIJEM, K.J.B. TAN ET AL., ADVANCED INDUSTRIAL AND ENGINEERING POLYMER RESEARCH, vol. 3, no. 2, 2020, pages 60 - 70
SMITH LORAINE M. ET AL: "A protein having similarity with methylmalonyl-CoA mutase is required for the assimilation of methanol and ethanol by Methylobacterium extorquens AM1", MICROBIOLOGY, 1 March 1996 (1996-03-01), Reading, pages 675 - 684, XP093101112, ISSN: 1350-0872, DOI: 10.1099/13500872-142-3-675 *
Z.B. NOTREDAME ET AL.: "T-Coffee: A novel method for multiple sequence alignments", J. MOL. BIOL., vol. 302, 2000, pages 205 - 217, XP004469125, DOI: 10.1006/jmbi.2000.4042

Also Published As

Publication number Publication date
DE102022119514A1 (de) 2024-02-08

Similar Documents

Publication Publication Date Title
EP2185682B1 (de) Carbonsäure produzierendes mitglied der pasteurellaceae
EP2396401B1 (de) Neue mikrobielle bernsteinsäure-produzenten und aufreinigung von bernsteinsäure
EP2202294B1 (de) Bakterienzellen mit Glyoxylat-Shunt zur Herstellung von Bernsteinsäure
KR20120002593A (ko) 발효에 의해 많은 양의 글리콜산을 생산하는 방법
EP2204443B1 (de) Bakterienzellen mit Formatdehydrogenaseaktivität zur Herstellung von Bernsteinsäure
US10415068B2 (en) Microorganism for production of putrescine and methods for production of putrescine using the same
DE102007047206B4 (de) Biotechnologische Fixierung von Kohlenstoffdioxid
JP5496356B2 (ja) アラビノース代謝経路が導入されたキシリトール生産菌株及びそれを用いたキシリトール生産方法
US9328359B2 (en) Fermentation process for producing chemicals
DE10129711B4 (de) Verfahren zur fermentativen Herstellung von Pyruvat
CN106574236B (zh) 遗传修饰的产生(r)-乳酸的嗜热细菌
JP4745753B2 (ja) コリネ型細菌を用いる還元条件でのアミノ酸の製造方法
DE102007059248A1 (de) Zelle, welche in der Lage ist, CO2 zu fixieren
WO2024028385A1 (de) Genetisch veränderte Zellen von Methylobacteriaceae zur fermentativen Produktion von Glycolsäure und Milchsäure aus Cx-Verbindungen
EP2357222A1 (de) Scyllo-inositol-produzierende zelle und verfahren zur scyllo-inositol-produktion anhand dieser zellen
WO2022156857A1 (de) Verfahren zur herstellung von 2,4-dihydroxybutyrat oder l-threonin unter nutzung eines mikrobiellen stoffwechselweges
JP4647391B2 (ja) コリネ型細菌による高効率なジカルボン酸の製造方法
US9127323B2 (en) Isolated yeast strain having high xylose consumption rate and process for production of ethanol using the strain
KR100556099B1 (ko) 루멘 박테리아 변이균주 및 이를 이용한 숙신산의 제조방법
KR102028161B1 (ko) 형질전환 미생물을 이용한 2,3-부탄디올 생산방법
KR20050051149A (ko) 루멘 박테리아 변이균주 및 이를 이용한 숙신산의 제조방법
JP2024513194A (ja) 副産物の生成が低減した2,3-ブタンジオール生産用の組換え微生物、及びこれを用いる2,3-ブタンジオールの生産方法
KR20230083153A (ko) 신규한 피키아 쿠드리압즈비 균주 및 이의 용도
JP2003284579A (ja) 2−ケト酪酸の製造方法
CN114517174A (zh) 合成三七素的工程菌和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23754709

Country of ref document: EP

Kind code of ref document: A1