WO2024016271A1 - 显示装置和虚拟现实设备 - Google Patents

显示装置和虚拟现实设备 Download PDF

Info

Publication number
WO2024016271A1
WO2024016271A1 PCT/CN2022/107093 CN2022107093W WO2024016271A1 WO 2024016271 A1 WO2024016271 A1 WO 2024016271A1 CN 2022107093 W CN2022107093 W CN 2022107093W WO 2024016271 A1 WO2024016271 A1 WO 2024016271A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light
reflective
display device
condenser lens
Prior art date
Application number
PCT/CN2022/107093
Other languages
English (en)
French (fr)
Inventor
刘玉杰
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/107093 priority Critical patent/WO2024016271A1/zh
Priority to CN202280002308.2A priority patent/CN117957487A/zh
Publication of WO2024016271A1 publication Critical patent/WO2024016271A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display device and a virtual reality device.
  • the reflective display device is, for example, a reflective liquid crystal display device or an electronic paper display device.
  • the display principle is as follows: after the ambient light outside the reflective display panel or the light from the front light source is incident on the reflective display panel, it is reflected back, and the reflective display is made by controlling the state of the liquid crystal molecules. Each pixel of the panel reflects light at a different ratio, enabling the display.
  • the present disclosure proposes a display device and a virtual reality device.
  • the present disclosure provides a display device, including:
  • a front light source includes: a substrate and a plurality of light-emitting parts arranged on the substrate;
  • a reflective display panel is provided on the side of the front light source away from the display side; the reflective display panel includes: a first substrate, a second substrate, a reflective layer and a plurality of optical structural units, wherein the first The substrate is arranged opposite to the second substrate, the reflective layer is arranged on a side of the first substrate facing the second substrate, and the plurality of optical structural units is arranged on the reflective layer away from the first substrate.
  • the orthographic projection of the optical structural unit on the first substrate covers the orthographic projection of at least one of the light-emitting parts on the first substrate, and the optical structural unit is used to convert the light-emitting part to
  • the emitted first light is processed to generate a second light; the second light is reflected back to the optical structural unit by the reflective layer, and is processed by the optical structural unit into collimated light emitted away from the first substrate.
  • the optical structural unit is disposed on a side of the second substrate facing the first substrate.
  • each of the light-emitting parts corresponds to one of the optical structural units, and different light-emitting parts correspond to different optical structural units;
  • the optical structural unit includes a condenser lens, and the light-emitting element is located on the optical axis of the corresponding condenser lens and on a focal plane of the condenser lens away from the first substrate.
  • the condenser lens includes a flat surface and a convex surface arranged oppositely
  • the reflective display panel further includes a cover layer, the cover layer is located on a side of the convex surface of the condenser lens away from the plane
  • the covering layer includes a concave surface and a flat surface arranged oppositely, the concave surface is in contact with the convex surface, and the refractive index of the covering layer is smaller than the refractive index of the condenser lens.
  • the plane of the condenser lens faces the second substrate, and the cover layer is located on a side of the condenser lens facing the first substrate;
  • the plane of the condenser lens faces the first substrate, and the cover layer is located between the condenser lens and the second substrate.
  • the focal length f 1 of the condenser lens satisfies the following formula (1):
  • d is twice the nearest distance from the surface of the condenser lens close to the reflective layer to the reflective surface of the reflective layer;
  • f is the distance from the surface of the light-emitting element close to the reflective layer to the reflective surface of the reflective layer;
  • the radius of curvature r of the convex surface, the refractive index n 2 of the condenser lens, and the focal length f 1 of the condenser lens satisfy the following formula (2):
  • n 1 is the refractive index of the covering layer.
  • the thickness of the condenser lens is between 0.01 mm and 0.15 mm.
  • the reflective display panel has a plurality of pixel areas, each of the pixel areas includes a plurality of sub-pixel areas,
  • the reflective display panel further includes: a color filter layer, which is disposed on a side of the optical structural unit facing the first substrate, and includes a color filter located in each of the sub-pixel areas. parts, and the colors of the plurality of color filter parts in each pixel area include multiple colors.
  • the orthographic projection of the optical structural unit on the first substrate covers the orthographic projection of a plurality of color filter portions in at least one of the pixel areas on the first substrate.
  • the orthographic projection of the optical structural unit on the first substrate has a first side extending along the first direction, and a second side extending along the second direction; the optical structural unit The orthographic projection on the first substrate covers the orthographic projection of m*n pixel areas on the first substrate;
  • m is the integer closest to L1/P1
  • n is the integer closest to L2/P2
  • L1 is the length of the first side
  • L2 is the length of the second side
  • P1 is the pixel area.
  • P2 is the arrangement period of the pixel area in the second direction.
  • the reflective display panel further includes:
  • a liquid crystal layer disposed between the first substrate and the second substrate;
  • a first alignment layer disposed between the reflective layer and the liquid crystal layer
  • a second alignment layer disposed between the second substrate and the liquid crystal layer
  • a plurality of thin film transistors are provided between the first substrate and the reflective layer, and the thin film transistors are provided in each of the sub-pixel areas;
  • the reflective layer includes a reflective electrode located in each sub-pixel area, and the reflective electrode is electrically connected to the thin film transistor in the corresponding sub-pixel area.
  • the plurality of light-emitting elements in the front light source are divided into multiple light-emitting groups, the multiple light-emitting groups are arranged side by side along the first direction, and each of the light-emitting groups includes a plurality of light-emitting elements arranged along the second direction. A plurality of the light-emitting parts, the first direction intersects the second direction;
  • a first signal line, a second signal line and a plurality of first connection lines and a plurality of second connection lines are also provided on the substrate, and each of the light-emitting groups corresponds to one of the first connection lines and one of the third connection lines.
  • Two connection lines, the first pole of each light-emitting element in the light-emitting group is connected to the first signal line through a corresponding first connection line, and the second pole of each light-emitting element in the light-emitting group is connected through a corresponding The second connection line is connected to the second signal line.
  • the length of the light-emitting element in any direction parallel to the second substrate is less than 15 ⁇ m.
  • the lighting angle of the light-emitting component is less than 25°.
  • the front light source further includes a black matrix, the black matrix is located between the light-emitting element and the base substrate, and the orthographic projection of the light-emitting element on the base substrate is located at The black matrix is within the orthographic projection range on the base substrate.
  • the display device further includes:
  • a polarizing plate arranged between the front light source and the display panel
  • a half-wave plate disposed between the polarizing plate and the display panel
  • a quarter wave plate is provided between the half wave plate and the display panel.
  • an embodiment of the present disclosure also provides a virtual reality device, including the above-mentioned display device.
  • Figure 1 is a schematic diagram of a display device provided in some embodiments.
  • Figure 2 is a schematic diagram of a display device provided in some embodiments of the present disclosure.
  • FIG. 3 is a schematic diagram of the arrangement of light-emitting components provided in some embodiments of the present disclosure.
  • FIG. 4 is a partial structural diagram of an array substrate provided in some embodiments of the present disclosure.
  • FIG. 5A is a schematic diagram of an optical path of a light-emitting component provided in some embodiments of the present disclosure.
  • FIG. 5B is a schematic diagram of an equivalent optical path of a light-emitting component provided in some embodiments of the present disclosure.
  • Figure 6 is a schematic plan view of the condenser lens and pixel area.
  • FIG. 7 is a schematic diagram of the angle distribution of emitted light from a display device provided in some embodiments of the present disclosure.
  • Figure 8 is a schematic diagram of a virtual reality device provided in some embodiments of the present disclosure.
  • the reflective display device is, for example, a reflective liquid crystal display device or an electronic paper display device.
  • the display principle is as follows: after the ambient light outside the reflective display panel or the light from the front light source is incident on the reflective display panel, it is reflected back, and the reflective display is made by controlling the state of the liquid crystal molecules. Each pixel of the panel reflects light at a different ratio, enabling the display.
  • FIG. 1 is a schematic diagram of a display device provided in some embodiments.
  • the display device is a reflective display device, which includes: a reflective display panel, a front light source 10, a polarizer 20, a quarter wave sheet 30, wherein the front light source 10 is arranged on the display side of the reflective display panel, and a polarizing plate 20, a half wave plate 31 and a quarter wave plate are arranged between the front light source 10 and the reflective display panel. 32.
  • the polarizing plate 20, the half-wave plate 31, and the quarter-wave plate 32 are arranged in sequence along the direction close to the reflective display panel.
  • the reflective display panel includes: an array substrate 40 and a cell alignment substrate 50 arranged oppositely, and a liquid crystal layer 60 located between them.
  • the array substrate 40 includes a plurality of sub-pixel areas, and a reflective electrode 41 is provided in each sub-pixel area.
  • the liquid crystal layer 60 has a phase modulation effect on light equivalent to that of the quarter-wave plate 30 in an unpowered state.
  • the light (natural light) of the light-emitting element 12 passes through the polarizing plate 20 to form a first linearly polarized light.
  • the first linearly polarized light passes through the half-wave plate 21 and the quarter-wave plate 22 , forming circularly polarized light, which becomes second linearly polarized light after passing through the liquid crystal layer 60 , and the polarization direction of the second linearly polarized light is perpendicular to the first polarization direction.
  • the polarization direction does not change.
  • the reflected light becomes the third linearly polarized light.
  • the polarization direction of the third linearly polarized light is the same as the polarization direction of the first linearly polarized light, so that it can be emitted through the polarizing plate 20 .
  • a voltage is applied to the liquid crystal layer 60 so that it has no effect on the phase of light.
  • the light (natural light) from the light-emitting element 12 passes through the polarizing plate 20 to form a first linearly polarized light.
  • the first linearly polarized light passes through the half-wave plate 21 and the quarter-wave plate 22 to form circular polarization.
  • the light, circularly polarized light does not change after passing through the liquid crystal layer 60 and being reflected by the reflective electrode 41.
  • the quarter-wave plate 22 and the half-wave plate 21 A second linearly polarized light is formed.
  • the second linearly polarized light is perpendicular to the polarization direction of the first linearly polarized light and cannot be emitted from the polarizing plate 20 , causing the reflective display device to display a black screen.
  • a voltage is applied to the liquid crystal layer 60 to cause it to deflect to a certain extent.
  • the light (natural light) from the light-emitting element 12 passes through the polarizing plate 20 to form a first linearly polarized light.
  • the first linearly polarized light passes through the half-wave plate 21 and the quarter-wave plate 22 to form elliptically polarized light.
  • the left-handed elliptically polarized light after being reflected by the reflective electrode 41, the left-handed elliptically polarized light becomes right-handed elliptically polarized light, and the right-handed elliptically polarized light passes through the liquid crystal layer 60 and the quarter wave plate. 22 and the half-wave plate 21, a fourth linearly polarized light is formed, and the angle between the polarization direction of the fourth linearly polarized light and the first linearly polarized light is greater than 0° and less than 90°, so that part of the light It can be emitted through the polarizer 20 to form a grayscale image.
  • the pixel area emits light at different angles when realizing the display.
  • the display device can only be applied to conventional display products such as mobile phones and televisions.
  • the display of Figure 1 When the display of Figure 1 When the device is used in virtual reality products, it is difficult for the human eye to receive light from all pixel areas, thus affecting the user experience.
  • FIG. 2 is a schematic diagram of a display device provided in some embodiments of the present disclosure. As shown in FIG. 2 , the display device includes: a front light source 10 and a reflective display panel.
  • the front light source 10 includes: a base substrate 11 and a plurality of light-emitting elements 12 arranged on the base substrate 11 .
  • the base substrate 11 is a transparent substrate, which can be a substrate made of glass or a flexible material such as polyimide (PI).
  • the light-emitting element 12 may be a light-emitting diode (LED), for example, a micro-LED/mini-LED.
  • the reflective display panel is disposed on the side of the front light source 10 away from the display side.
  • the display side refers to the side used for viewing the display screen of the display device.
  • the light-emitting element 12 emits light toward the side away from the base substrate 11
  • the reflective display panel is disposed on the side of the light-emitting element 12 away from the base substrate 11 .
  • the reflective display panel includes: an array substrate 40 and an opposite box substrate 50 that are arranged oppositely.
  • the array substrate 40 includes a first substrate 42 and a reflective layer 41g arranged on the first substrate 42.
  • the reflective layer 41g is arranged on the first substrate 42 toward the opposite side.
  • the cassette substrate 50 includes a second base 51 .
  • a plurality of optical structural units 52 are disposed on the side of the reflective layer 41g away from the first substrate 42.
  • the orthographic projection of the optical structural units 52 on the first substrate 42 covers the orthographic projection of at least one light-emitting element 12 on the first substrate 42.
  • Optical The structural unit 52 is used to process the first light emitted by the light-emitting element 12 to generate a second light; the second light is reflected back to the optical structural unit 52 by the reflective layer 41g, and is processed by the optical structural unit 52 to be away from the first substrate 42 Emitted collimated light.
  • the collimated light in the embodiment of the present disclosure means that the emission direction is substantially the same as the thickness direction of the reflective display panel.
  • the error range is, for example, 0 to 10°.
  • the angle between the emission direction of the collimated light and the thickness direction of the reflective display panel is 3°, or 5°, or 8°, or 10°. wait.
  • the emission direction may be exactly the same as the thickness direction of the reflective display panel.
  • the light finally emitted by the display device can be collimated light.
  • the angle of the light emitted by each pixel of the display device is basically the same.
  • the human eye can receive light from all pixel areas, thereby improving the user experience.
  • FIG 3 is a schematic diagram of the arrangement of light-emitting components provided in some embodiments of the present disclosure.
  • multiple light-emitting components 12 can be divided into multiple light-emitting groups 12g, and the multiple light-emitting groups 12g are arranged side by side along the first direction.
  • each light-emitting group 12g includes a plurality of light-emitting elements 12 arranged along the second direction, and the first direction intersects the second direction.
  • the first direction and the second direction are perpendicular.
  • the base substrate 11 is also provided with a first signal line V1, a second signal line V2 and a plurality of first connection lines L1 and second connection lines L2.
  • Each light-emitting group 12g corresponds to a first connection line L1 and a second connection line L1.
  • the connection line L2, the first pole of each light-emitting element 12 in the light-emitting group 12g is connected to the first signal line V1 through the corresponding first connection line L1, and the second pole of each light-emitting element 12 in the light-emitting group 12g is connected through the corresponding first connection line L1.
  • the second connection line L2 is connected to the second signal line V2.
  • the first electrode of the light-emitting element 12 can be a positive electrode
  • the second electrode can be a negative electrode.
  • the light-emitting element 12 can be set to a smaller size.
  • the length of the light-emitting element 12 in any direction parallel to the second substrate 51 is less than 15 ⁇ m, which is beneficial to improving the aperture ratio of the display device and thereby improving the light output. efficiency utilization.
  • the orthographic projection of the light-emitting element 12 on the base substrate 11 is a circle, then the diameter of the light-emitting element 12 is less than 15 ⁇ m; for another example, if the orthographic projection of the light-emitting element 12 on the base substrate 11 is a rectangle, then the opposite direction of the rectangle Angular line is less than 15 ⁇ m.
  • the front light source 10 also includes a first black matrix 13 disposed on the substrate 11 .
  • the first black matrix 13 is located between the light-emitting element 12 and the substrate 11 , and the light-emitting element 12 is on the substrate.
  • the orthographic projection on the substrate 11 is located within the orthographic projection range of the first black matrix 13 on the base substrate 11 .
  • the orthographic projection of the first signal line V1, the second signal line V2, the first connection line L1 and the second connection line L2 on the base substrate 11 is also located on the orthogonal projection of the first black matrix 13 on the base substrate 11. within the projection range.
  • the reflective display panel is a liquid crystal display panel. As shown in FIG. 2 , the reflective display panel includes: an array substrate 40, an alignment substrate 50, and a liquid crystal layer 60 located between them.
  • Figure 4 is a partial structural diagram of an array substrate provided in some embodiments of the present disclosure.
  • the liquid crystal display panel includes multiple pixel areas, and the multiple pixel areas can be arranged in an array.
  • Each pixel area includes a plurality of sub-pixel areas Sp, and the multiple sub-pixel areas Sp in each pixel area may include a red sub-pixel area, a green sub-pixel area and a blue sub-pixel area.
  • FIG. 4 only shows the structure of the array substrate 40 corresponding to one sub-pixel area Sp.
  • the array substrate 40 includes: a first substrate 42 and a thin film transistor T1 disposed on the first substrate 42 , a reflective electrode 41 and a first alignment layer 43 .
  • the thin film transistor T1 may be a bottom-gate thin film transistor T1 or a top-gate thin film transistor T1.
  • its gate Tg is disposed on the first substrate 42 and is active.
  • the layer Ta is disposed on a side of the gate electrode Tg away from the base substrate 11 , and the active layer Ta and the gate electrode Tg are separated by the gate insulating layer GI.
  • the material of the gate Tg may include, for example, metal, metal alloy, metal nitride, conductive metal oxide, transparent conductive material, etc.
  • the gate Tg may include gold, gold alloy, silver, silver alloy, aluminum, aluminum alloy, aluminum nitride, tungsten, tungsten nitride, copper, copper alloy, nickel, chromium, chromium nitride, molybdenum , Molybdenum alloys, titanium, titanium nitride, platinum, tantalum, tantalum nitride, neodymium, scandium, strontium ruthenium oxide, zinc oxide, tin oxide, indium oxide, gallium oxide, indium tin oxide, indium zinc oxide, etc.
  • the gate Tg may have a single layer or multiple layers.
  • the gate insulating layer GI material may include, for example, silicon compounds and metal oxides.
  • the material of the gate insulating layer GI may include silicon nitride oxide, silicon oxide, silicon nitride, silicon oxycarbide, silicon nitride carbide, aluminum oxide, aluminum nitride, tantalum oxide, hafnium oxide, zirconium oxide, titanium oxide, etc.
  • the gate insulating layer GI may be formed as a single layer or multiple layers.
  • the active layer Ta includes a channel portion and a source connecting portion and a drain connecting portion located on both sides of the channel portion.
  • the source electrode overlaps the source connecting portion, and the drain electrode overlaps the drain connecting portion.
  • Both the source connection part and the drain connection part may be doped with impurities (for example, N-type impurities or P-type impurities) that are higher than the impurity concentration of the channel part.
  • the channel portion is opposite to the gate Tg of the thin film transistor T1. When the voltage signal loaded on the gate Tg reaches a certain value, a carrier path is formed in the channel portion, causing the source and drain of the thin film transistor T1 to conduct.
  • the source electrode and the drain electrode may include metal, alloy, metal nitride, conductive metal oxide, transparent conductive material, etc.
  • the source electrode and the drain electrode may be a single layer or multiple layers composed of metal.
  • the passivation layer PVX is disposed on the side of the thin film transistor T1 away from the first substrate 42 .
  • the material of the passivation layer PVX may include, for example, silicon oxynitride, silicon oxide, silicon nitride, etc.
  • the planarization layer PLN is disposed on the side of the passivation layer PVX away from the first substrate 4211.
  • the planarization layer PLN can be made of organic insulating materials.
  • the organic insulating materials include polyimide, epoxy resin, and acrylic. , polyester, photoresist, polyacrylate, polyamide, silicone and other resin materials, etc.
  • the reflective layer 41g includes a plurality of reflective electrodes 41, and each sub-pixel area Sp is provided with a reflective electrode 41.
  • the reflective electrode 41 is connected to the drain of the thin film transistor T1 through a via hole penetrating the planarization layer PLN and the passivation layer PVX.
  • the reflective electrode 41 may adopt a multi-layer structure.
  • the reflective electrode 41 is a stack of indium tin oxide/silver/indium tin oxide.
  • the cell-to-box substrate 50 includes: a second substrate 51 and a plurality of optical structural units 52 provided on the second substrate 51.
  • each light-emitting element 12 corresponds to an optical structural unit 52
  • different light-emitting elements 12 correspond to different optical structural units 52 .
  • the optical structural unit 52 includes a condenser lens 52a, and the light-emitting element 12 is located on the optical axis of the corresponding condenser lens 52a, and is located on the focal plane of the condenser lens 52a away from the first substrate 42, so that the condenser lens 52a is aligned with the condenser lens 52a.
  • the light of the light-emitting member 12 is concentrated.
  • the optical structural unit 52 may be disposed on the side of the second substrate 51 facing the first substrate 42 , or may be disposed on the side of the second substrate 51 away from the first substrate 42 .
  • the light emitted by the light-emitting component 12 may be white light.
  • the box-matching substrate 50 further includes a color filter layer disposed on the second substrate 51 .
  • the color filter layer is disposed on the side of the plurality of optical structural units 52 facing the first substrate 42 .
  • the color filter layer includes a color filter portion 54 located in each sub-pixel area Sp, where the plurality of color filter portions 54 in each pixel area P include multiple colors.
  • the colors of the plurality of color filter portions 54 in each pixel area P include red, green, and blue.
  • the color filter layer may also include a second black matrix 55 that separates different color filter portions 54 in the same pixel area.
  • the color filter portions 54 in different pixel areas can also be separated by the second black matrix 55 .
  • each optical structural unit 52 on the first substrate 42 can cover the orthographic projection of the plurality of color filter portions 54 in at least one pixel area P on the first substrate 42 .
  • FIG. 2 only takes the optical structural unit 52 being disposed between the second substrate 51 and the color filter layer as an example. In other embodiments, the optical structural unit 52 can also be disposed far away from the color filter layer. one side of the second base 51 .
  • the condenser lens 52a when the optical structural unit 52 includes a condenser lens 52a, the condenser lens 52a includes an oppositely arranged flat surface and a convex surface.
  • the reflective display panel also includes a first covering layer 53, The first covering layer 53 is located on the side of the convex surface of the condenser lens 52a away from the plane, and the first covering layer 53 includes a concave surface and a flat surface that are oppositely arranged. The concave surface is in contact with the convex surface, and the flat surface can be in contact with other structures.
  • the color filter layer can be disposed on the flat surface of the first cover layer 53 superior.
  • the refractive index of the first covering layer 53 is smaller than the refractive index of the condenser lens 52a, so as to ensure that the condenser lens 52a can achieve the light gathering function.
  • the condenser lens 52a can be disposed on the side of the second substrate 51 facing the first substrate 42, with the first substrate
  • the cover layer 53 is provided on the side of the condenser lens 52a away from the second substrate 51, and the surface of the condenser lens 52a facing the second substrate 51 is set as a plane, and the surface of the condenser lens 52a facing the first substrate 42 is set as a convex surface. .
  • the first covering layer 53 is in contact with the convex surface, and its surface away from the second base 51 is a flat surface, and the color filter layer is disposed on the surface of the first covering layer 53 away from the second base 51 , to facilitate the setting of the color filter layer.
  • the refractive index of the first covering layer 53 is smaller than the refractive index of the condenser lens 52a, and the first covering layer 53 may be a transparent optical glue layer.
  • the flat surface refers to a surface with relatively high flatness.
  • the height difference between any two points on the flat surface is less than 1/10 of the arch height of the condenser lens 52a.
  • the flat surface can also be a plane.
  • the condensing lens 52a can also be disposed on the side of the second substrate 51 facing the first substrate 42, and the first covering layer 53 can be disposed between the condensing lens 52a and the second substrate. 51, at this time, the plane of the condenser lens 52a faces the first substrate 42, the convex surface faces the second substrate 51, and the color filter layer can be in contact with the plane of the condenser lens 52a.
  • the reflective layer 41g is also provided with a first orientation layer 43 on the side away from the first substrate 42, and the second orientation layer 58 is provided on the side of the color filter layer away from the second substrate 51.
  • the reflective display panel also has The liquid crystal layer 60 is included between the first alignment layer 43 and the second alignment layer 58 .
  • the first alignment layer 43 and the second alignment layer 58 are used to orient the liquid crystal molecules in the liquid crystal layer 60 .
  • the cell substrate 50 may also include a third covering layer 56 and a common electrode 57 disposed on the second substrate 51.
  • the third covering layer 56 is disposed between the second orientation layer 58 and the color filter layer, which can provide a flat surface. transformation effect.
  • the common electrode 57 is disposed between the third covering layer 56 and the second alignment layer 58.
  • the display device also includes: a second covering layer 14 , a polarizing plate 20 , a half-wave plate 21 and a quarter-wave plate 22 .
  • the second covering layer 14 is located on the side of the plurality of light-emitting elements 12 away from the base substrate 11 , and the polarizing plate 20 is disposed between the second covering layer 14 and the display panel.
  • the polarizing plate 20 is a linear polarizing plate 20 .
  • the half-wave plate 21 is disposed between the polarizing plate 20 and the display panel; the quarter-wave plate 22 is disposed between the half-wave plate 21 and the reflective display panel.
  • the sub-pixel area Sp can be made to appear as desired. required brightness.
  • the specific principles please refer to the description of Figure 1 above, and will not be repeated here.
  • Figure 5A is a schematic diagram of the optical path of the light-emitting component provided in some embodiments of the present disclosure.
  • Figure 5B is a schematic diagram of the equivalent optical path of the light-emitting component provided in some embodiments of the present disclosure.
  • light emitting After the light emitted by the component 12 is modulated by the condenser lens 52a, it is irradiated to the reflective layer 41g and reflected by the reflective layer 41g to the condenser lens 52a. After being modulated by the condenser lens 52a again, it forms collimated light. The light passes through the condenser lens 52a twice, which is equivalent to passing through two condenser lenses 52a (ie, lens groups).
  • the focal length f of the lens group and the focal length f 1 of the condenser lens 52a satisfy the following formula (1):
  • d is the optical path distance between the two condenser lenses 52a in the lens group, that is, twice the nearest distance from the surface of the condenser lens 52a close to the reflective layer 41g to the reflective surface of the reflective layer 41g.
  • d (thickness of the color filter layer + thickness of the common electrode 57 + thickness of the first alignment layer 43 + thickness of the liquid crystal layer 60 + thickness of the second alignment layer 58 ) ⁇ 2 .
  • the reflective surface is a surface used by the reflective layer 41g to reflect light.
  • the focal length f of the lens group is the distance from the surface of the light-emitting element 12 close to the reflective layer 41g to the reflective surface of the reflective layer 41g.
  • the surface of the reflective layer 41g facing the second substrate 51 is a reflective surface.
  • f is equal to the second covering layer, the polarizing plate 20, the second substrate 51, the condenser lens 52a, the first covering layer 53, the color filter layer, The sum of the thicknesses of the common electrode 57 , the first alignment layer 43 , the second alignment layer 58 and the liquid crystal layer 60 .
  • the thickness of the second covering layer, the polarizing plate 20 , the second substrate 51 , the first covering layer 53 , the color filter layer, the common electrode 57 , the first alignment layer 43 , the second alignment layer 58 and the liquid crystal layer 60 The total is approximately 0.755 mm, that is, f is approximately the sum of 0.755 mm and the thickness of the condenser lens 52a.
  • the radius of curvature r of the convex surface of the condenser lens 52a, the refractive index n2 of the condenser lens 52a, and the focal length f1 of the condenser lens 52a satisfy the following formula (2):
  • n 1 is the refractive index of the first covering layer 53 .
  • n 1 can be as small as possible, so that when the focal length f 1 is determined, the radius of curvature r can be made as large as possible, which is beneficial to reducing the thickness of the condenser lens 52a.
  • n 1 is between 1.3 and 1.6.
  • n 1 is 1.4 and n 2 is 1.7.
  • the thickness of the condenser lens 52a can be set first, so that the above f value can be determined, and then the focal length of the condenser lens 52a can be determined according to formula (1) f 1 , and then determine the radius of curvature of the condenser lens 52a according to the refractive index of the condenser lens 52a.
  • the thickness of the condenser lens 52a is larger, the diameter of the condenser lens 52a is larger, and the angle range of the light irradiated from the light-emitting element 12 to the condenser lens 52a is larger.
  • the energy of the light emitted by the light-emitting element 12 and the light-emitting angle satisfy the cosine distribution.
  • the energy of the light with a smaller emission angle is higher, and the energy of the light with a larger emission angle is lower. If the angle range of the light irradiating to the condenser lens 52a If it is larger, the brightness uniformity of the multiple sub-pixels covered by the condenser lens 52a will be poor.
  • the thickness of the condenser lens 52a can be set so that the light emitted from the light-emitting element 12 to the condenser lens 52a
  • the emission angle of light is less than 25°, so that the uniformity of the light energy of each sub-pixel can be greater than 90%.
  • the emission angle of the light refers to the angle between the emission direction of the light and the optical axis direction of the condenser lens 52a.
  • the maximum emission angle of the light irradiated by the light-emitting element 12 to the condenser lens 52a is ⁇ , then the relationship between ⁇ and the diameter D of the condenser lens 52a satisfies formula (3):
  • H is the distance from the light-emitting element 12 to the condenser lens 52a.
  • the orthographic projection of the condenser lens 52a on the first substrate is substantially square.
  • the aperture of the condenser lens 52a is the side length in the forward direction.
  • the corresponding relationship between the condenser lens 52a and the pixel area can be determined based on the aperture size of the condenser lens 52a and the arrangement period of the pixel area.
  • Figure 6 is a schematic plan view of the condenser lens and the pixel area. As shown in Figure 6, the orthographic projection of the condenser lens 52a on the first substrate includes a first side E1 extending along the first direction and a first side extending along the second direction.
  • the second side for example, the first direction is perpendicular to the second direction.
  • the length of the first side E1 is denoted as L1
  • the length of the second side E2 is denoted as L2.
  • the arrangement period of the pixel area P in the first direction is P1
  • the arrangement period of the pixel area in the second direction is P2.
  • the orthographic projection of the condenser lens 52a on the first substrate covers m*n pixel areas P. Orthographic projection on the first base 42; where m is the integer closest to L1/P1, and n is the integer closest to L2/P2.
  • the arrangement period of the pixel area P in the first direction refers to the center distance between two adjacent pixel areas P in the first direction; the arrangement period of the pixel area P in the second direction refers to the distance between the centers of the two adjacent pixel areas P in the first direction. The center distance between two adjacent pixel areas P in the second direction.
  • H is 0.75 mm
  • f is 10 ⁇ m
  • the second covering layer, the polarizing plate 20, the second substrate 51, the first covering layer 53, the color filter layer, the common electrode 57, the first alignment layer 43, the The total thickness of the two alignment layers 58 and the liquid crystal layer 60 is approximately 0.755 mm.
  • Table 1 shows the parameters of the condenser lens 52a and the maximum emission angle ⁇ of the light irradiated to the condenser lens 52a by the light emitting member 12 in several examples.
  • the number of pixel arrangements can be designed according to the requirements for different pixel densities and the above optional aperture values. For example, if the pixel density is 500PPI, the size of the pixel area is 51 ⁇ m*51 ⁇ m. If the condenser lens The thickness of 52a is 0.07mm, and the aperture of condenser lens 52a is 0.52mm, then one condenser lens 52a corresponds to 10*10 pixel areas, that is, the orthographic projection of one condenser lens 52a on the first substrate 42 covers 10* Orthographic projection of the 10 pixel areas on the first substrate 42 .
  • Figure 7 is a schematic diagram of the angular distribution of emitted light from the display device provided in some embodiments of the present disclosure.
  • the emission angle of the display device can be within the range of [-3.5°, 3.5°]. It should be understood that if the exit angle is a positive value, it means that the exit light is on one side of the normal; if the exit angle is a negative value, it means that the exit light is on the other side of the normal.
  • the liquid crystal layer 60 acts as a half-wave plate; while for the reflective display panel Specifically, the light from the light-emitting element 12 will be modulated twice by the liquid crystal layer 60.
  • the liquid crystal layer 60 is equivalent to a quarter-wave plate. Therefore, the liquid crystal layer 60 in the reflective display panel can be set to be smaller. thickness of.
  • d is the thickness of the liquid crystal layer 60
  • is the rotational viscosity of the liquid crystal molecules
  • K eff is the equivalent elastic coefficient of the liquid crystal molecules
  • ⁇ 0 is the dielectric constant in vacuum
  • is the parallel and vertical medium of the liquid crystal layer 60
  • V th is the threshold voltage (that is, the voltage when driving the liquid crystal layer 60 to the maximum transmittance state)
  • K 11 , K 22 , and K 33 are the elastic coefficients of splay, bending, and twisting.
  • the response time of the liquid crystal is proportional to the square of the thickness of the liquid crystal layer 60. Therefore, compared with the transmissive display panel, the reflective display panel used in the embodiment of the present disclosure can reduce the response time, thereby improving the refresh rate of the display screen. frequency.
  • supporting structures such as soft spacer pillars and microspheres can also be provided between the array substrate 40 and the cell alignment substrate 50 to support the display panel.
  • the manufacturing process of the front light source 10 includes: forming the first black matrix 13 on the base substrate 11; and then forming the above-mentioned first connection line L1, the second connection line L2, the first signal line V1 and the first black matrix 13. Two signal lines V2; and then a plurality of light-emitting elements 12 are formed on the base substrate 11 by transfer.
  • the first pole of each light-emitting element 12 is connected to a first connection line L1
  • the second pole of each light-emitting element 12 is connected to a first connection line L1.
  • a second covering layer covering the plurality of light-emitting elements 12 is formed.
  • the manufacturing process of the reflective display panel includes: forming the thin film transistor T1, the reflective layer 41g, and the first alignment layer 43 on the first substrate 42 to obtain the array substrate 40; sequentially forming the optical structural unit 52, A cover layer 53 , a color filter layer, a third cover layer 56 , a common electrode 57 and a second alignment layer 58 are provided to obtain the cell-matching substrate 50 .
  • a frame sealant is formed on one of the cell alignment substrate 50 and the array substrate 40 , liquid crystal is dripped in the area surrounded by the frame sealant, and then the array substrate 40 and the cell alignment substrate 50 are aligned to obtain a reflective display panel.
  • FIG. 8 is a schematic diagram of a virtual reality device provided in some embodiments of the present disclosure.
  • the virtual reality device includes a display device 100, an optical waveguide 200, a coupling grating 300 and a coupling grating 400.
  • the coupling grating 300 is disposed on the surface of the optical waveguide 200 and is opposite to the display device 100.
  • the coupling grating 300 is used to couple the light emitted from the display device 100 into the optical waveguide 200 for total reflection propagation; coupling out
  • the grating 400 is disposed on the surface of the optical waveguide 200 and is used to extract the light propagated by total reflection in the optical waveguide 200 to form emitted light toward the human eye.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示装置和虚拟现实设备,显示装置包括:前置光源(10)和反射式显示面板;前置光源(10)包括:衬底基板(11)和设置在衬底基板(11)上的多个发光件(12);反射式显示面板设置在前置光源(10)远离显示侧的一侧,反射式显示面板包括:第一基底(42)、第二基底(51)、反射层(41g)和多个光学结构单元(52),第一基底(42)与第二基底(51)相对设置,反射层(41g)设置在第一基底(42)朝向第二基底(51)的一侧,多个光学结构单元(52)设置在反射层(41g)远离第一基底(42)的一侧;光学结构单元(52)在第一基底(42)上的正投影覆盖至少一个发光件(12)在第一基底(42)上的正投影,光学结构单元(52)用于将发光件(12)所发射的第一光线进行处理,生成第二光线,第二光线被反射层(41g)反射回光学结构单元(52),并被光学结构单元(52)处理为背离第一基底(42)发射的准直光,当显示装置用于虚拟现实设备中时,人眼可以接收到全部像素区的光线,从而改善用户体验。

Description

显示装置和虚拟现实设备 技术领域
本公开涉及显示技术领域,具体涉及一种显示装置和虚拟现实设备。
背景技术
反射式显示装置例如是反射式液晶显示装置或者电子纸显示装置等。以反射式液晶显示装置为例,其显示原理如下:反射式显示面板外部的环境光线或者前置光源的光线入射到反射式显示面板后,被反射回去,通过控制液晶分子的状态使得反射式显示面板的每个像素反射的光的比率不同,从而实现显示。
发明内容
本公开提出了一种显示装置和虚拟现实设备。
第一方面,本公开提供一种显示装置,包括:
前置光源,所述前置光源包括:衬底基板和设置在所述衬底基板上的多个发光件;
反射式显示面板,设置在所述前置光源远离显示侧的一侧;所述反射式显示面板包括:第一基底、第二基底、反射层和多个光学结构单元,其中,所述第一基底与所述第二基底相对设置,所述反射层设置在所述第一基底朝向所述第二基底的一侧,所述多个光学结构单元设置在所述反射层远离所述第一基底的一侧;所述光学结构单元在所述第一基底上的正投影覆盖至少一个所述发光件在所述第一基底上的正投影,所述光学结构单元用于将所述发光件所发射的第一光线进行处理,生成第二光线;所述第二光线被反射层反射回所述光学结构单元,并被所述光学结构单元处理为背离所述第一基底发射的准直光。
在一些实施例中,所述光学结构单元设置在所述第二基底朝向所述第 一基底的一侧。
在一些实施例中,每个所述发光件对应一个所述光学结构单元,不同的发光件对应不同的光学结构单元;
所述光学结构单元包括聚光透镜,所述发光件位于相应的所述聚光透镜的光轴上,且位于所述聚光透镜远离所述第一基底的焦平面上。
在一些实施例中,所述聚光透镜包括相对设置的平面和凸面,所述反射式显示面板还包括覆盖层,所述覆盖层位于所述聚光透镜的凸面远离所述平面的一侧,所述覆盖层包括相对设置的凹面和平坦面,所述凹面与所述凸面接触,所述覆盖层的折射率小于所述聚光透镜的折射率。
在一些实施例中,所述聚光透镜的平面朝向所述第二基底,所述覆盖层位于所述聚光透镜朝向所述第一基底的一侧;
或者,所述聚光透镜的平面朝向所述第一基底,所述覆盖层位于所述聚光透镜与所述第二基底之间。
在一些实施例中,所述聚光透镜的焦距f 1满足以下公式(1):
Figure PCTCN2022107093-appb-000001
其中,d为所述聚光透镜靠近所述反射层的表面到所述反射层的反射面的最近距离的两倍;
f为所述发光件靠近所述反射层的表面到所述反射层的反射面的距离;
所述凸面的曲率半径r、所述聚光透镜的折射率n 2、所述聚光透镜的焦距f 1满足以下公式(2):
Figure PCTCN2022107093-appb-000002
其中,n 1为所述覆盖层的折射率。
在一些实施例中,所述聚光透镜的厚度在0.01mm~0.15mm之间。
在一些实施例中,所述反射式显示面板具有多个像素区,每个所述像 素区包括多个子像素区,
所述反射式显示面板还包括:彩膜层,所述彩膜层设置在所述光学结构单元朝向所述第一基底的一侧,且包括位于每个所述子像素区中的彩色滤光部,每个所述像素区中的多个彩色滤光部的颜色包括多种。
在一些实施例中,所述光学结构单元在所述第一基底上的正投影覆盖至少一个所述像素区中的多个彩色滤光部在所述第一基底上的正投影。
在一些实施例中,所述光学结构单元在所述第一基底上的正投影具有沿第一方向延伸的第一侧边,以及沿第二方向延伸的第二侧边;所述光学结构单元在所述第一基底上的正投影覆盖m*n个所述像素区在所述第一基底上的正投影;
其中,m为最接近L1/P1的整数,n为最接近L2/P2的整数,L1为所述第一侧边的长度,L2为所述第二侧边的长度,P1为所述像素区在第一方向上的排布周期,P2为所述像素区在所述第二方向上的排布周期。
在一些实施例中,所述反射式显示面板还包括:
液晶层,设置在所述第一基底与所述第二基底之间;
第一取向层,设置在所述反射层与所述液晶层之间;
第二取向层,设置在所述第二基底与所述液晶层之间;
多个薄膜晶体管,设置在所述第一基底与所述反射层之间,每个所述子像素区中均设置有所述薄膜晶体管;
其中,所述反射层包括位于每个所述子像素区中的反射电极,所述反射电极与相应子像素区中的薄膜晶体管电连接。
在一些实施例中,所述前置光源中的多个发光件分为多个发光组,所述多个发光组沿第一方向并排设置,每个所述发光组包括沿第二方向排列的多个所述发光件,所述第一方向与所述第二方向交叉;
所述衬底基底上还设置有第一信号线、第二信号线以及多条第一连接线和第二连接线,每个所述发光组对应一条所述第一连接线和一条所述第 二连接线,所述发光组中的每个发光件的第一极通过相应的第一连接线与所述第一信号线连接,所述发光组中的每个发光件的第二极通过相应的第二连接线与所述第二信号线连接。
在一些实施例中,所述发光件在平行于所述第二基底的任意方向上的长度均小于15μm。
在一些实施例中,所述发光件的发光角度小于25°。
在一些实施例中,所述前置光源还包括黑矩阵,所述黑矩阵位于所述发光件与所述衬底基板之间,且所述发光件在所述衬底基板上的正投影位于所述黑矩阵在所述衬底基板上的正投影范围内。
在一些实施例中,所述显示装置还包括:
偏振片,设置在所述前置光源所述显示面板之间;
二分之一波片,设置在所述偏振片与所述显示面板之间;
四分之一波片,设置在所述二分之一波片与所述显示面板之间。
第二方面,本公开实施例还提供一种虚拟现实设备,包括上述的显示装置。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1为一些实施例中提供的显示装置的示意图。
图2为本公开的一些实施例中提供的显示装置的示意图。
图3为本公开的一些实施例中提供的发光件的排布示意图。
图4为本公开的一些实施例中提供的阵列基板的局部结构示意图。
图5A为本公开的一些实施例中提供的发光件的光路原理图。
图5B为本公开的一些实施例中提供的发光件的等效光路的示意图。
图6为聚光透镜和像素区的平面示意图。
图7为本公开的一些实施例中提供的显示装置的出射光线的角度分布示意图。
图8为本公开的一些实施例中提供的虚拟现实设备的示意图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,本公开实施例使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
反射式显示装置例如是反射式液晶显示装置或者电子纸显示装置等。以反射式液晶显示装置为例,其显示原理如下:反射式显示面板外部的环 境光线或者前置光源的光线入射到反射式显示面板后,被反射回去,通过控制液晶分子的状态使得反射式显示面板的每个像素反射的光的比率不同,从而实现显示。
图1为一些实施例中提供的显示装置的示意图,如图1所示,显示装置为反射式显示装置,其包括:反射式显示面板、前置光源10、偏振片20、四分之一波片30,其中,前置光源10设置在反射式显示面板的显示侧,前置光源10与反射式显示面板之间设置有偏振片20、二分之一波片31和四分之一波片32,偏振片20、二分之一波片31、四分之一波片32沿靠近反射式显示面板的方向依次设置。
反射式显示面板包括:相对设置的阵列基板40和对盒基板50、以及位于二者之间的液晶层60,阵列基板40包括多个子像素区,每个子像素区中设置有反射电极41。
下面以反射式显示面板为常白模式为例,对图1中显示装置实现显示的原理进行介绍。其中,在常白模式的反射式显示面板中,液晶层60在未加电的状态下,对光线的相位调制作用相当于四分之一波片30的作用。
在实现亮态显示时,发光件12的光线(自然光)经过偏振片20,从而形成第一线偏振光,该第一线偏振光经过二分之一波片21和四分之一波片22,形成圆偏振光,圆偏振光经过液晶层60后变成第二线偏振光,该第二线偏振光的偏振方向与第一偏振方向垂直。第二线偏振光被反射电极41反射后,偏振方向未发生变化,反射光线经过液晶层60、四分之一波片22和二分之一波片21后,变成第三线偏振光,该第三线偏振光的偏振方向与第一线偏振光的偏振方向相同,从而可以透过偏振片20而射出。
在实现暗态显示时,为液晶层60施加电压,使其对光线的相位不起作用。此时,发光件12的光线(自然光)经过偏振片20,从而形成第一线偏振光,该第一线偏振光经过二分之一波片21和四分之一波片22,形成圆偏振光,圆偏振光经过液晶层60后以及反射电极41的反射后,并不发生变 化,之后,圆偏振光经过液晶层60、四分之一波片22和二分之一波片21后,形成第二线偏振光,该第二线偏振光与第一线偏振光的偏振方向垂直,从而无法从偏振片20射出,使得反射式显示装置显示黑画面。
在实现中间态显示时(即显示介于白画面和黑画面之间的灰度画面)时,为液晶层60施加电压,使其发生一定的偏转。此时,发光件12的光线(自然光)经过偏振片20,从而形成第一线偏振光,该第一线偏振光经过二分之一波片21和四分之一波片22,形成椭圆偏振光,以该椭圆偏振光为左旋椭圆偏振光为例,左旋椭圆偏振光被反射电极41反射后,变成右旋椭圆偏振光,右旋椭圆偏振光经过液晶层60、四分之一波片22和二分之一波片21后,形成第四线偏振光,该第四线偏振光与第一线偏振光的偏振方向之间的夹角大于0°且小于90°,从而使得一部分光可以透过偏振片20射出,形成灰度画面。
在图1的显示装置中,像素区在实现显示时,是向各个不同的角度发光的,这种情况下,显示装置只能应用于手机、电视等常规的显示产品,而当图1的显示装置应用于虚拟现实产品时,人眼难以接收到全部像素区的光线,从而影响用户体验。
图2为本公开的一些实施例中提供的显示装置的示意图,如图2所示,显示装置包括:前置光源10和反射式显示面板。
其中,前置光源10包括:衬底基板11和设置在衬底基板11上的多个发光件12。其中,衬底基板11为透明基板,其可以为玻璃材质的基板,也可以为聚酰亚胺(PI)等柔性材质的基板。发光件12可以为发光二极管(LED),例如,微发光二极管(micro-LED/mini-LED)。
反射式显示面板设置在前置光源10远离显示侧的一侧。其中,显示侧是指,用于观看显示装置显示画面的一侧。具体地,发光件12朝向远离衬底基板11的一侧发光,反射式显示面板设置在发光件12远离衬底基板11的一侧。反射式显示面板包括:相对设置的阵列基板40和对盒基板50,阵 列基板40包括第一基底42以及设置在第一基底42上的反射层41g,反射层41g设置在第一基底42朝向对盒基板50的一侧。对盒基板50包括:第二基底51。多个光学结构单元52设置在反射层41g远离第一基底42的一侧,光学结构单元52在第一基底42上的正投影覆盖至少一个发光件12在第一基底42上的正投影,光学结构单元52用于将发光件12所发射的第一光线进行处理,生成第二光线;第二光线被反射层41g反射回光学结构单元52,并被光学结构单元52处理为背离第一基底42发射的准直光。
需要说明的是,本公开实施例中的准直光是指,发射方向与反射式显示面板的厚度方向大致相同,例如,发射方向与反射式显示面板的厚度方向之间的夹角可以存在一定的误差范围,该误差范围例如为0~10°,例如,准直光的发射方向与反射式显示面板的厚度方向之间的夹角为3°,或5°,或8°,或10°等。当然,也可以是发射方向与反射式显示面板的厚度方向完全相同。
在本公开实施例中,通过光学结构单元52和反射层41g的配合,可以使显示装置最终出射的光线为准直光,这样,显示装置各像素的出射光线的角度基本一致,当显示装置用于虚拟现实设备中时,人眼可以接收到全部像素区的光线,从而改善用户体验。
图3为本公开的一些实施例中提供的发光件的排布示意图,如图3所示,多个发光件12可以分为多个发光组12g,多个发光组12g沿第一方向并排设置,每个发光组12g包括沿第二方向排列的多个发光件12,第一方向与第二方向交叉。例如,第一方向和第二方向垂直。
衬底基板11上还设置有第一信号线V1、第二信号线V2以及多条第一连接线L1和第二连接线L2,每个发光组12g对应一条第一连接线L1和一条第二连接线L2,发光组12g中的每个发光件12的第一极通过相应的第一连接线L1与第一信号线V1连接,发光组12g中的每个发光件12的第二极通过相应的第二连接线L2与第二信号线V2连接。其中,发光件12的第一 极可以为正极,第二极可以为负极。
其中,发光件12可以设置为较小的尺寸,可选地,发光件12在平行于第二基底51的任意方向上的长度均小于15μm,从而有利于提高显示装置的开口率,进而提高光效利用率。例如,发光件12在衬底基板11上的正投影为圆形,则发光件12的直径小于15μm;又例如,发光件12在衬底基板11上的正投影为矩形,则该矩形的对角线小于15μm。
如图2所示,前置光源10还包括设置在衬底基板11上的第一黑矩阵13,第一黑矩阵13位于发光件12与衬底基板11之间,且发光件12在衬底基板11上的正投影位于第一黑矩阵13在衬底基板11上的正投影范围内。另外,上述第一信号线V1、第二信号线V2、第一连接线L1和第二连接线L2在衬底基板11上的正投影也位于第一黑矩阵13在衬底基板11上的正投影范围内。
在一些实施例中,反射式显示面板为液晶显示面板,如图2所示,反射式显示面板包括:阵列基板40、对盒基板50以及位于二者之间的液晶层60。
图4为本公开的一些实施例中提供的阵列基板的局部结构示意图,如图2和图4所示,液晶显示面板包括多个像素区,多个像素区可以呈阵列排布。每个像素区包括多个子像素区Sp,每个像素区中的多个子像素区Sp可以包括红色子像素区、绿色子像素区和蓝色子像素区。图4中仅示出了阵列基板40对应于一个子像素区Sp的结构。
如图4所示,阵列基板40包括:第一基底42以及设置在第一基底42上的薄膜晶体管T1、反射电极41和第一取向层43。薄膜晶体管T1可以为底栅型薄膜晶体管T1,也可以为顶栅型薄膜晶体管T1,以薄膜晶体管T1为底栅型薄膜晶体管T1为例,其栅极Tg设置在第一基底42上,有源层Ta设置在栅极Tg远离衬底基板11的一侧,且有源层Ta和栅极Tg通过栅绝缘层GI间隔开。栅极Tg的材料可以包括例如金属、金属合金、金属氮 化物、导电金属氧化物、透明导电材料等。例如,栅极Tg可以包括金、金的合金、银、银的合金、铝、铝的合金、氮化铝、钨、氮化钨、铜、铜的合金、镍、铬、氮化铬、钼、钼的合金、钛、氮化钛、铂、钽、氮化钽、钕、钪、氧化锶钌、氧化锌、氧化锡、氧化铟、氧化镓、氧化铟锡、氧化铟锌等。栅极Tg可以具有单层或多层。
栅绝缘层GI材料可以包括例如硅化合物、金属氧化物。例如,栅绝缘层GI的材料可以包括氮氧化硅、氧化硅、氮化硅、碳氧化硅、氮碳化硅、氧化铝、氮化铝、氧化钽、氧化铪、氧化锆、氧化钛等。栅绝缘层GI可以形成为单层或多层。
有源层Ta包括沟道部和位于该沟道部两侧的源极连接部和漏极连接部,源极搭接在源极连接部上,漏极搭接在漏极连接部上。源极连接部和漏极连接部均可以掺杂有比沟道部的杂质浓度高的杂质(例如,N型杂质或P型杂质)。沟道部与薄膜晶体管T1的栅极Tg正对,当栅极Tg加载的电压信号达到一定值时,沟道部中形成载流子通路,使薄膜晶体管T1的源极和漏极导通。源极和漏极可以包括金属、合金、金属氮化物、导电金属氧化物、透明导电材料等,源极和漏极可以为金属构成的单层或多层。
钝化层PVX设置在薄膜晶体管T1远离第一基底42的一侧,钝化层PVX的材料可以包括例如氮氧化硅、氧化硅、氮化硅等。平坦化层PLN设置在钝化层PVX远离第一基底4211的一侧,平坦化层PLN可以采用有机绝缘材料制成,例如,该有机绝缘材料包括聚酰亚胺、环氧树脂、压克力、聚酯、光致抗蚀剂、聚丙烯酸酯、聚酰胺、硅氧烷等树脂类材料等。
反射层41g包括多个反射电极41,每个子像素区Sp均设置有反射电极41。反射电极41通过贯穿平坦化层PLN和钝化层PVX的过孔与薄膜晶体管T1的漏极连接。反射电极41可以采用多层结构,例如,反射电极41为氧化铟锡/银/氧化铟锡的叠层。
对盒基板50包括:第二基底51以及设置在第二基底51上的多个光学 结构单元52。在一些实施例中,每个发光件12对应一个光学结构单元52,不同的发光件12对应不同的光学结构单元52。其中,光学结构单元52包括聚光透镜52a,发光件12位于相应的聚光透镜52a的光轴上,且位于聚光透镜52a远离第一基底42的焦平面上,从而使聚光透镜52a对发光件12的光线进行聚拢。
其中,将光学结构单元52设置在第二基底51上有利于工艺制作。其中,光学结构单元52可以设置在第二基底51朝向第一基底42的一侧,也可以设置在第二基底51远离第一基底42的一侧。
在一些实施例中,发光件12所发出的光可以为白光,此时,为了实现彩色显示,如图2所示,对盒基板50还包括设置在第二基底51上的彩膜层。为了便于工艺制作,在一些实施例中,将彩膜层设置在多个光学结构单元52朝向第一基底42的一侧。彩膜层包括位于每个子像素区Sp中的彩色滤光部54,其中,每个像素区P中的多个彩色滤光部54的颜色包括多种。例如,每个像素区P中的多个彩色滤光部54的颜色包括红色、绿色、蓝色。另外,彩膜层还可以包括第二黑矩阵55,第二黑矩阵55将同一像素区中的不同的彩色滤光部54间隔开。当然,不同像素区中的彩色滤光部54也可以被第二黑矩阵55间隔开。
其中,每个光学结构单元52在第一基底42上的正投影可以覆盖至少一个像素区P中的多个彩色滤光部54在第一基底42上的正投影。
需要说明的是,图2中仅以光学结构单元52设置在第二基底51和彩膜层之间为例进行示意,在其他实施例中,也可以将光学结构单元52设置在彩膜层远离第二基底51的一侧。
在一些实施例中,当光学结构单元52包括聚光透镜52a时,聚光透镜52a包括相对设置的平面和凸面,另外,如图2所示,反射式显示面板还包括第一覆盖层53,第一覆盖层53位于聚光透镜52a的凸面远离平面的一侧,且第一覆盖层53包括相对设置的凹面和平坦面,凹面与凸面接触,平坦面 可以与其他结构接触,例如,当聚光透镜52a位于第二基底51与彩膜层之间,且聚光透镜52a位于第一覆盖层53与第二基底51之间时,可以将彩膜层设置在第一覆盖层53的平坦面上。其中,第一覆盖层53的折射率小于聚光透镜52a的折射率,以保证聚光透镜52a能够实现聚光作用。
为了便于聚光透镜52a的制作,并减小反射式显示面板的整体厚度,如图2所示,可以将聚光透镜52a设置在第二基底51朝向第一基底42的一侧,将第一覆盖层53设置在聚光透镜52a远离第二基底51的一侧,并将聚光透镜52a朝向第二基底51的表面设置为平面,将聚光透镜52a朝向第一基底42的表面设置为凸面。这种情况下,如图2所示,第一覆盖层53与凸面接触,其远离第二基底51的表面为平坦面,彩膜层设置在第一覆盖层53远离第二基底51的表面上,以便于设置彩膜层。其中,第一覆盖层53的折射率小于聚光透镜52a的折射率,第一覆盖层53可以为透明的光学胶层。
需要说明的是,平坦面是指平坦度较高的表面,例如,平坦面上的任意两点之间的高度差小于聚光透镜52a拱高的1/10。当然,平坦面也可以是平面。
还需要说明的是,在其他实施例中,也可以将聚光透镜52a设置在第二基底51朝向第一基底42的一侧,将第一覆盖层53设置在聚光透镜52a与第二基底51之间,此时,聚光透镜52a的平面朝向第一基底42,凸面朝向第二基底51,彩膜层可以与聚光透镜52a的平面接触。
如图2所示,反射层41g远离第一基底42的一侧还设置有第一取向层43,彩膜层远离第二基底51的一侧设置有第二取向层58,反射式显示面板还包括第一取向层43和第二取向层58之间的液晶层60,第一取向层43和第二取向层58用于对液晶层60中的液晶分子取向。
另外,对盒基板50还可以包括设置在第二基底51上的第三覆盖层56和公共电极57,第三覆盖层56设置在第二取向层58与彩膜层之间,可以 起到平坦化的作用。公共电极57设置在第三覆盖层56与第二取向层58之间,通过向公共电极57和反射电极41上施加不同的电压,使得公共电极57与反射电极41之间形成电场,从而驱动相应子像素区Sp中的液晶分子偏转。
如图2所示,显示装置还包括:第二覆盖层14、偏振片20、二分之一波片21和四分之一波片22。其中,第二覆盖层14位于多个发光件12远离衬底基板11的一侧,偏振片20设置在第二覆盖层14与显示面板之间,偏振片20为线偏振片20。二分之一波片21设置在偏振片20与显示面板之间;四分之一波片22设置在二分之一波片21与反射式显示面板之间。
通过偏振片20、二分之一波片21、四分之一波片22和液晶层60对光线偏振方向的调制作用,以及反射电极41对光线的反射作用,可以使子像素区Sp呈现所需要的亮度。具体原理参见上文对图1的描述,这里不再赘述。
图5A为本公开的一些实施例中提供的发光件的光路原理图,图5B为本公开的一些实施例中提供的发光件的等效光路的示意图,如图5A和图5B所示,发光件12所发射的光线被聚光透镜52a调制后,照射至反射层41g,并被反射层41g反射至聚光透镜52a,再次经聚光透镜52a的调制后,形成准直光。光线两次被聚光透镜52a,也就等效为经过了两个聚光透镜52a(即,透镜组)。
其中,透镜组的焦距f、聚光透镜52a的焦距f 1满足以下公式(1):
Figure PCTCN2022107093-appb-000003
其中,d为透镜组中两个聚光透镜52a之间的光路距离,也即,聚光透镜52a靠近反射层41g的表面到反射层41g的反射面的最近距离的两倍,具体地,在图2所示的反射式显示面板中,d=(彩膜层的厚度+公共电极57的厚度+第一取向层43的厚度+液晶层60的厚度+第二取向层58的厚度) ×2。其中,反射面为反射层41g用于反射光线的表面。
透镜组的焦距f为发光件12靠近反射层41g的表面到反射层41g的反射面的距离。例如,反射层41g朝向第二基底51的表面为反射面,此时,f等于第二覆盖层、偏振片20、第二基底51、聚光透镜52a、第一覆盖层53、彩膜层、公共电极57、第一取向层43、第二取向层58和液晶层60的厚度之和。在一个示例中,第二覆盖层、偏振片20、第二基底51、第一覆盖层53、彩膜层、公共电极57、第一取向层43、第二取向层58和液晶层60的厚度之和约为0.755mm,即,f约为0.755mm与聚光透镜52a的厚度之和。
其中,聚光透镜52a的凸面的曲率半径r、聚光透镜52a的折射率n 2、聚光透镜52a的焦距f 1满足以下公式(2):
Figure PCTCN2022107093-appb-000004
其中,n 1为第一覆盖层53的折射率。其中,n 1可以尽量小的值,从而在焦距f 1确定时,使曲率半径r尽量大,从而有利于减小聚光透镜52a的厚度。在一些实施例中,n 1在1.3~1.6之间,例如,n 1为1.4,n 2为1.7。
在实际应用中,对聚光透镜52a的具体形状进行设置时,可以先设置好聚光透镜52a的厚度,从而可以确定出上述f值,再根据公式(1)确定出聚光透镜52a的焦距f 1,之后根据聚光透镜52a的折射率,确定出聚光透镜52a的曲率半径。
其中,考虑到当聚光透镜52a厚度越大时,聚光透镜52a的口径越大,由发光件12照射至聚光透镜52a的光线的角度范围越大。发光件12所发射的光线能量与发光角度满足与余弦分布,发射角度较小的光线的能量较高,发射角度较大的光线的能量较低,如果照射至聚光透镜52a的光线的角度范围较大,则容易导致聚光透镜52a所覆盖的多个子像素的亮度均一性较差。为了提高显示均匀性,在本公开实施例中,当发光件12到聚光透 镜52a的距离确定时,可以通过聚光透镜52a的厚度的设置,使得从发光件12照射至聚光透镜52a的光线的发射角度小于25°,从而可以使各子像素的出光能量的均一性大于90%。其中,光线的发射角度是指,光线的发射方向与聚光透镜52a的光轴方向之间的夹角。
其中,发光件12照射至聚光透镜52a的光线的最大发射角度为θ,则θ与聚光透镜52a的口径D之间满足公式(3):
Figure PCTCN2022107093-appb-000005
其中,H为发光件12到聚光透镜52a的距离。
在一些实施例中,聚光透镜52a在第一基底上的正投影大致为正方形,此时,聚光透镜52a的口径即为正方向的边长。在确定出聚光透镜52a的口径之后,则可以根据聚光透镜52a的口径大小和像素区的排布周期,确定出聚光透镜52a与像素区的对应关系。图6为聚光透镜和像素区的平面示意图,如图6所示,聚光透镜52a在第一基底上的正投影包括沿第一方向延伸的第一侧边E1和沿第二方向延伸的第二侧边,例如第一方向与第二方向垂直。第一侧边E1的长度记作L1,第二侧边E2的长度记作L2。像素区P在第一方向上的排布周期为P1,像素区在第二方向上的排布周期为P2,则聚光透镜52a在第一基底上的正投影覆盖m*n个像素区P在第一基底42上的正投影;其中,m为最接近L1/P1的整数,n为最接近L2/P2的整数。
其中,像素区P在第一方向上的排布周期是指,在第一方向上相邻的两个像素区P的中心间距;像素区P在第二方向上的排布周期是指,在第二方向上相邻的两个像素区P的中心间距。
在一些实施例中,H为0.75mm,f为10μm,第二覆盖层、偏振片20、第二基底51、第一覆盖层53、彩膜层、公共电极57、第一取向层43、第二取向层58和液晶层60的厚度之和约为0.755mm。表1中示出了几个示例中的聚光透镜52a的参数和发光件12照射至聚光透镜52a的光线的最大 发射角度θ。
表1
Figure PCTCN2022107093-appb-000006
在实际应用中,可以根据不同像素密度的需求,在根据上述可选的口径值,设计像素排布的个数,例如,像素密度为500PPI,像素区的尺寸为51μm*51μm,若聚光透镜52a的厚度为0.07mm,聚光透镜52a的口径为0.52mm,则一个聚光透镜52a对应10*10个像素区,即,一个聚光透镜52a在第一基底42上的正投影覆盖10*10个像素区在第一基底42上的正投影。
图7为本公开的一些实施例中提供的显示装置的出射光线的角度分布示意图,如图7所示,本公开实施例提供的显示装置中,通过光学结构单元52和反射层41g的配合,可以使显示装置出射角度在[-3.5°,3.5°]范围内。应当理解的是,出射角度为正值,表示出射光线在法线的一侧;出射角度为负值,表示出射光线在法线的另一侧。
另外,与透射式显示面板相比,透射式显示面板的两侧设置有偏振方向正交的两个偏光片,液晶层相当于起到二分之一波片的作用;而对于反射式显示面板而言,发光件12的光线会经过液晶层60的两次调制,液晶层60相当于起到四分之一波片的作用,因此,反射式显示面板中的液晶层60可以设置为较小的厚度。而在向液晶层60施加电场和去除电场时,液晶的响应时间与液晶层60的厚度有关,其中,施加电场时液晶的响应速度t on、 去除电场时液晶的响应速度t off满足以下公式:
Figure PCTCN2022107093-appb-000007
Figure PCTCN2022107093-appb-000008
Figure PCTCN2022107093-appb-000009
其中,d为液晶层60厚度,γ为液晶分子的旋转黏度,K eff为液晶分子的等效弹性系数,ε 0为真空中的介电常数,△ε为液晶层60的平行与垂直的介电常数之差。V th为阈值电压(即驱动液晶层60达到最大透过状态时的电压),K 11、K 22、K 33为展曲、弯曲、扭曲的弹性系数。
可见,液晶的响应时间正比于液晶层60的厚度的平方,因此,相较于透射式显示面板而言,本公开实施例中采用的反射式显示面板可以降低响应时间,从而提高显示画面的刷新频率。
在反射式显示面板中,阵列基板40和对盒基板50之间还可以设置材质较软的隔垫柱、微球等支撑结构,以对显示面板进行支撑。
本公开实施例提供的显示装置的制作过程如下:
S1、分别制作前置光源10和反射式显示面板。
其中,前置光源10的制作过程包括:在衬底基板11上形成第一黑矩阵13;之后形成上文所述的第一连接线L1、第二连接线L2、第一信号线V1和第二信号线V2;再通过转印的方式在衬底基板11上形成多个发光件12,每个发光件12的第一极连接一条第一连接线L1,每个发光件12的第二极连接一条第二连接线L2。最后,形成覆盖多个发光件12的第二覆盖层。
反射式显示面板的制作过程包括:在第一基底42上形成薄膜晶体管T1、反射层41g、第一取向层43,从而得到阵列基板40;在第二基底51上依次形成光学结构单元52、第一覆盖层53、彩膜层、第三覆盖层56、公共电极 57和第二取向层58,从而得到对盒基板50。在对盒基板50和阵列基板40的一者形成封框胶,并在封框胶所环绕的范围内滴注液晶,之后将阵列基板40和对盒基板50对盒,得到反射式显示面板。
S2、在第二基底51上依次形成四分之一波片22、二分之一波片21和偏振片20,之后与前置光源10固定连接。
本公开实施例还提供一种虚拟现实设备,其包括上述实施例中的显示装置。图8为本公开的一些实施例中提供的虚拟现实设备的示意图,如图8所示,虚拟现实设备包括显示装置100、光波导件200、耦入光栅300和耦出光栅400。其中,耦入光栅300设置在光波导件200的表面,并与显示装置100相对设置,耦入光栅300用于将显示装置100出射的光线耦入光波导件200内进行全反射传播;耦出光栅400设置在光波导件200表面,用于将光波导件200内全反射传播的光线取出,形成朝向人眼发射的出射光。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (17)

  1. 一种显示装置,包括:
    前置光源,所述前置光源包括:衬底基板和设置在所述衬底基板上的多个发光件;
    反射式显示面板,设置在所述前置光源远离显示侧的一侧;所述反射式显示面板包括:第一基底、第二基底、反射层和多个光学结构单元,其中,所述第一基底与所述第二基底相对设置,所述反射层设置在所述第一基底朝向所述第二基底的一侧,所述多个光学结构单元设置在所述反射层远离所述第一基底的一侧;所述光学结构单元在所述第一基底上的正投影覆盖至少一个所述发光件在所述第一基底上的正投影,所述光学结构单元用于将所述发光件所发射的第一光线进行处理,生成第二光线;所述第二光线被反射层反射回所述光学结构单元,并被所述光学结构单元处理为背离所述第一基底发射的准直光。
  2. 根据权利要求1所述的显示装置,其中,所述光学结构单元设置在所述第二基底朝向所述第一基底的一侧。
  3. 根据权利要求1或2所述的显示装置,其中,每个所述发光件对应一个所述光学结构单元,不同的发光件对应不同的光学结构单元;
    所述光学结构单元包括聚光透镜,所述发光件位于相应的所述聚光透镜的光轴上,且位于所述聚光透镜远离所述第一基底的焦平面上。
  4. 根据权利要求3所述的显示装置,其中,所述聚光透镜包括相对设置的平面和凸面,所述反射式显示面板还包括覆盖层,所述覆盖层位于所述聚光透镜的凸面远离所述平面的一侧,所述覆盖层包括相对设置的凹面和平坦面,所述凹面与所述凸面接触,所述覆盖层的折射率小于所述聚光 透镜的折射率。
  5. 根据权利要求4所述的显示装置,其中,所述聚光透镜的平面朝向所述第二基底,所述覆盖层位于所述聚光透镜朝向所述第一基底的一侧;
    或者,所述聚光透镜的平面朝向所述第一基底,所述覆盖层位于所述聚光透镜与所述第二基底之间。
  6. 根据权利要求3所述的显示装置,其中,所述聚光透镜的焦距f 1满足以下公式(1):
    Figure PCTCN2022107093-appb-100001
    其中,d为所述聚光透镜靠近所述反射层的表面到所述反射层的反射面的最近距离的两倍;
    f为所述发光件靠近所述反射层的表面到所述反射层的反射面的距离;
    所述凸面的曲率半径r、所述聚光透镜的折射率n 2、所述聚光透镜的焦距f 1满足以下公式(2):
    Figure PCTCN2022107093-appb-100002
    其中,n 1为所述覆盖层的折射率。
  7. 根据权利要求6所述的显示装置,其中,所述聚光透镜的厚度在0.01mm~0.15mm之间。
  8. 根据权利要求1至7中任一项所述的显示装置,其中,所述反射式显示面板具有多个像素区,每个所述像素区包括多个子像素区,
    所述反射式显示面板还包括:彩膜层,所述彩膜层设置在所述光学结构单元朝向所述第一基底的一侧,且包括位于每个所述子像素区中的彩色 滤光部,每个所述像素区中的多个彩色滤光部的颜色包括多种。
  9. 根据权利要求8所述的显示装置,其中,所述光学结构单元在所述第一基底上的正投影覆盖至少一个所述像素区中的多个彩色滤光部在所述第一基底上的正投影。
  10. 根据权利要求8所述的显示装置,其中,所述光学结构单元在所述第一基底上的正投影具有沿第一方向延伸的第一侧边,以及沿第二方向延伸的第二侧边;所述光学结构单元在所述第一基底上的正投影覆盖m*n个所述像素区在所述第一基底上的正投影;
    其中,m为最接近L1/P1的整数,n为最接近L2/P2的整数,L1为所述第一侧边的长度,L2为所述第二侧边的长度,P1为所述像素区在第一方向上的排布周期,P2为所述像素区在所述第二方向上的排布周期。
  11. 根据权利要求1至10中任一项所述的显示装置,其中,所述反射式显示面板还包括:
    液晶层,设置在所述第一基底与所述第二基底之间;
    第一取向层,设置在所述反射层与所述液晶层之间;
    第二取向层,设置在所述第二基底与所述液晶层之间;
    多个薄膜晶体管,设置在所述第一基底与所述反射层之间,每个所述子像素区中均设置有所述薄膜晶体管;
    其中,所述反射层包括位于每个所述子像素区中的反射电极,所述反射电极与相应子像素区中的薄膜晶体管电连接。
  12. 根据权利要求1至11中任一项所述的显示装置,其中,所述前置光源中的多个发光件分为多个发光组,所述多个发光组沿第一方向并排设 置,每个所述发光组包括沿第二方向排列的多个所述发光件,所述第一方向与所述第二方向交叉;
    所述衬底基底上还设置有第一信号线、第二信号线以及多条第一连接线和第二连接线,每个所述发光组对应一条所述第一连接线和一条所述第二连接线,所述发光组中的每个发光件的第一极通过相应的第一连接线与所述第一信号线连接,所述发光组中的每个发光件的第二极通过相应的第二连接线与所述第二信号线连接。
  13. 根据权利要求1至12中任一项所述的显示装置,其中,所述发光件在平行于所述第二基底的任意方向上的长度均小于15μm。
  14. 根据权利要求1至13中任一项所述的显示装置,其中,所述发光件的发光角度小于25°。
  15. 根据权利要求1至14中任一项所述的显示装置,其中,所述前置光源还包括黑矩阵,所述黑矩阵位于所述发光件与所述衬底基板之间,且所述发光件在所述衬底基板上的正投影位于所述黑矩阵在所述衬底基板上的正投影范围内。
  16. 根据权利要求1至15中任一项所述的显示装置,其中,所述显示装置还包括:
    偏振片,设置在所述前置光源所述显示面板之间;
    二分之一波片,设置在所述偏振片与所述显示面板之间;
    四分之一波片,设置在所述二分之一波片与所述显示面板之间。
  17. 一种虚拟现实设备,包括权利要求1至16中任一项所述的显示装 置。
PCT/CN2022/107093 2022-07-21 2022-07-21 显示装置和虚拟现实设备 WO2024016271A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/107093 WO2024016271A1 (zh) 2022-07-21 2022-07-21 显示装置和虚拟现实设备
CN202280002308.2A CN117957487A (zh) 2022-07-21 2022-07-21 显示装置和虚拟现实设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/107093 WO2024016271A1 (zh) 2022-07-21 2022-07-21 显示装置和虚拟现实设备

Publications (1)

Publication Number Publication Date
WO2024016271A1 true WO2024016271A1 (zh) 2024-01-25

Family

ID=89616733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107093 WO2024016271A1 (zh) 2022-07-21 2022-07-21 显示装置和虚拟现实设备

Country Status (2)

Country Link
CN (1) CN117957487A (zh)
WO (1) WO2024016271A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10104618A (ja) * 1996-09-26 1998-04-24 Toshiba Corp 液晶表示素子および投影型液晶表示装置
JPH10301109A (ja) * 1997-04-30 1998-11-13 Casio Comput Co Ltd 液晶表示装置
JP2011007832A (ja) * 2009-06-23 2011-01-13 Seiko Epson Corp 照明装置、画像表示装置および電子機器
CN103348278A (zh) * 2010-12-16 2013-10-09 洛克希德马丁公司 具有像素透镜的准直的显示器
US8582209B1 (en) * 2010-11-03 2013-11-12 Google Inc. Curved near-to-eye display
CN106526864A (zh) * 2017-01-05 2017-03-22 京东方科技集团股份有限公司 显示装置和显示方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10104618A (ja) * 1996-09-26 1998-04-24 Toshiba Corp 液晶表示素子および投影型液晶表示装置
JPH10301109A (ja) * 1997-04-30 1998-11-13 Casio Comput Co Ltd 液晶表示装置
JP2011007832A (ja) * 2009-06-23 2011-01-13 Seiko Epson Corp 照明装置、画像表示装置および電子機器
US8582209B1 (en) * 2010-11-03 2013-11-12 Google Inc. Curved near-to-eye display
CN103348278A (zh) * 2010-12-16 2013-10-09 洛克希德马丁公司 具有像素透镜的准直的显示器
CN106526864A (zh) * 2017-01-05 2017-03-22 京东方科技集团股份有限公司 显示装置和显示方法

Also Published As

Publication number Publication date
CN117957487A (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
WO2021008574A1 (zh) 显示面板、显示装置及其驱动方法
US10281637B2 (en) Pixel structure comprising a wavelength conversion layer and a light collimating layer having a reflection part and a transmission part and display panel having the same
KR101256545B1 (ko) 횡전계 모드 반사투과형 액정표시장치
TWI438529B (zh) 顯示裝置
US11016320B2 (en) Display device with viewing angle switching, display method and fabrication method thereof
US10247991B2 (en) Electro-optical device and electronic apparatus with a pixel that includes three transparent electrodes
US20090153781A1 (en) Liquid Crystal Display Device and Method of Manufacturing the Same
US9280024B2 (en) Pixel structure
WO2017016014A1 (zh) Coa阵列基板及液晶面板
US10634942B2 (en) Electro-optical device and electronic device having base member, lens member and first and second insulators
US10705390B2 (en) Color conversion substrate and liquid-crystal display device including the same
CN107621734B (zh) 画素结构
WO2015096221A1 (zh) 阵列基板及用该阵列基板的液晶显示面板
US10969634B2 (en) Liquid crystal display panel, liquid crystal display device and method of controlling gray scale of liquid crystal display device
KR100459647B1 (ko) 디스플레이장치
CN110221499A (zh) 低边缘场串扰的LCoS微显示器
CN109031771A (zh) 液晶显示模组、液晶显示器及显示设备
WO2024016271A1 (zh) 显示装置和虚拟现实设备
WO2015096220A1 (zh) 阵列基板及用该阵列基板的液晶显示面板
KR101757241B1 (ko) 나노 와이어 그리드 편광판 및 그 제조방법과 이를 포함하는 액정표시장치
US8223302B2 (en) Display panel, electro-optical apparatus, and methods for manufacturing the same
CN113406818B (zh) 液晶显示装置
US20170212378A1 (en) Liquid crystal apparatus and electronic equipment
CN114815411B (zh) 显示面板及移动终端
JP6364912B2 (ja) マイクロレンズアレイ基板、電気光学装置、及び電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002308.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951546

Country of ref document: EP

Kind code of ref document: A1