WO2024016212A1 - 电池及用电设备 - Google Patents

电池及用电设备 Download PDF

Info

Publication number
WO2024016212A1
WO2024016212A1 PCT/CN2022/106729 CN2022106729W WO2024016212A1 WO 2024016212 A1 WO2024016212 A1 WO 2024016212A1 CN 2022106729 W CN2022106729 W CN 2022106729W WO 2024016212 A1 WO2024016212 A1 WO 2024016212A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
battery
pressure relief
exhaust gas
gas
Prior art date
Application number
PCT/CN2022/106729
Other languages
English (en)
French (fr)
Inventor
陈小波
胡璐
柴京
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/106729 priority Critical patent/WO2024016212A1/zh
Publication of WO2024016212A1 publication Critical patent/WO2024016212A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/358External gas exhaust passages located on the battery cover or case
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, specifically, to a battery and electrical equipment.
  • batteries are used more and more widely, such as in mobile phones, laptops, battery cars, electric cars, electric airplanes, electric ships, electric toy cars, electric toy ships, electric toy airplanes and electric tools, etc. superior.
  • Embodiments of the present application provide a battery and electrical equipment, which can effectively improve the safety of the battery.
  • embodiments of the present application provide a battery, which includes a box, a battery cell and a processing device, which are housed in the box.
  • the processing device is used to process the exhaust gas discharged from the battery cell into the box, so as to remove the exhaust gas from the exhaust gas.
  • the concentration of the preset gas is adjusted below the corresponding preset value, and the preset gas is one or more mixed flammable gases.
  • a processing device is provided in the box.
  • the processing device can process the exhaust gas discharged into the box when the battery cell is thermally out of control, thereby reducing the concentration of one or more mixed combustible gases in the exhaust gas. Lowering it below the preset value reduces the flammability level of combustible gases, reduces the risk of battery combustion and explosion, and effectively improves battery safety.
  • the preset gas is electrolyte vapor, and the preset value is 3.6%.
  • the concentration of electrolyte vapor is adjusted to less than 3.6% through the processing device, so that the concentration of electrolyte vapor is below the lower combustion limit, reducing the risk of electrolyte vapor combustion and improving battery safety.
  • the preset gas is a combustible gas mixed with H 2 , CO and alkanes, and the preset value is 7.6%.
  • the concentration of the combustible gas mixed with H2, CO and alkanes is adjusted to below 7.6% through the treatment device, so that the concentration of the combustible gas mixed with H2 , CO and alkanes is below the lower combustion limit, and the concentration of the combustible gas mixed with H2 , CO and alkanes is reduced. The risk of burning increases the safety of the battery.
  • the preset gas is all combustible gases in the exhaust gas, and the preset value is 8.3%.
  • the processing device adjusts the concentration of the mixed combustible gases in the exhaust gas to less than 8.3%, reducing the risk of combustion of the exhaust gas and improving the safety of the battery.
  • the battery further includes a detection unit and a control unit; the detection unit is arranged in the box, and the detection unit is used to detect the concentration of the preset gas; the control unit is electrically connected to the detection unit and the processing device, and the control unit is used to discharge When the concentration of the preset gas in the gas is higher than the corresponding preset value, the processing device is controlled to release the processing medium.
  • the control unit controls the processing device to release the processing system to adjust the concentration of the preset gas below the corresponding preset value to realize automatic control of the processing device.
  • the processing device includes a receiving part and a switch unit; a holding space is formed inside the holding part, and the holding space is used to hold the processing medium; the switch unit is electrically connected to the control unit, and the control unit is used to operate when the concentration of the preset gas is high. At the corresponding preset value, the control switch unit is opened to release the processing medium. The control unit controls the opening of the switch unit to release the processing medium contained inside the storage component to process the exhaust gas in the box.
  • the overall structure of the processing device is simple.
  • the battery further includes a pressure relief mechanism.
  • the pressure relief mechanism is provided in the box.
  • the pressure relief mechanism is electrically connected to the control unit.
  • the control unit is used to control the pressure relief when the concentration of the preset gas is lower than the corresponding preset value.
  • the pressure mechanism is activated to relieve the pressure inside the box.
  • the control unit can realize automatic control of the pressure relief mechanism provided on the box. When the treatment device releases the treatment medium to adjust the concentration of the preset gas to be lower than the corresponding preset value, the control unit will control the activation of the pressure relief mechanism to discharge the exhaust gas that meets the emission requirements inside the box to the outside of the box. to reduce the pressure inside the box.
  • the battery further includes a pressure relief mechanism, which is used to release the pressure inside the box after being actuated;
  • the box includes a first space and a second space separated, and the first space is used to accommodate the battery cells. body, the second space is used to accommodate the exhaust gas, and the pressure relief mechanism is configured to communicate with the outside of the box and the second space after being actuated.
  • the first space and the second space separated from each other by the box are used to accommodate the battery cells and the exhaust gas respectively, so that the battery cells and the exhaust gas are isolated from each other, reducing the impact of the exhaust gas on the battery cells, and further improving safety.
  • the battery cell has a pressure relief portion, and the pressure relief portion is disposed toward the second space. In this way, the exhaust gas discharged when the battery cell undergoes thermal runaway can more easily enter the second space.
  • the first space and the second space are separated by a partition, the partition is provided with a channel, and the channel communicates the first space and the second space. In this way, the first space and the second space are in a connected state, and the exhaust gas discharged when the battery cell is thermally runaway can enter the second space through the channel.
  • the battery cell has a pressure relief portion, and the pressure relief portion is located at one end of the channel along the through direction and is disposed toward the channel. In this way, the exhaust gas discharged when the battery cell is thermally runaway can directly enter the channel, allowing the exhaust gas to enter the second space more quickly.
  • the processing device includes a partition, the partition is provided with an inner cavity, the inner cavity is used to accommodate the processing medium, and the side wall of the channel is provided with a switch portion, and the switch portion is configured to allow the processing medium in the inner cavity when opened. It flows out through the switch part.
  • the partition serves both as a partition member that separates the first space and the second space, and as a processing member for supplying a processing medium. In the process of the exhaust gas entering the second space through the channel, the processing medium in the inner cavity can be released through the switch part, thereby reducing the concentration of the preset gas in the exhaust gas more quickly.
  • the switch part is a nozzle, and the injection direction of the nozzle intersects with the penetration direction of the channel. In this way, the treatment medium sprayed from the nozzle can be more fully mixed with the exhaust gas, and the exhaust gas treatment effect is better, and the concentration of the preset gas in the exhaust gas can be reduced faster.
  • the first space and the second space are separated by a partition
  • the partition is provided with a switch mechanism
  • the switch mechanism is configured to connect or disconnect the first space and the second space.
  • the switch mechanism is a weak portion, and the weak portion is configured to connect the first space and the second space after being destroyed by the exhaust gas.
  • the switch mechanism of this structure can be passively opened under the action of exhaust gas, has a simple structure and is very economical.
  • the processing device is disposed in the second space. After the exhaust gas enters the second space, the processing device can process the exhaust gas in the second space, thereby reducing the concentration of the preset gas in the exhaust gas.
  • the battery cell has a pressure relief part;
  • the processing device includes a support member, the support member is used to support the battery cell, and an escape cavity is provided on a side of the support member facing the battery cell, and the escape cavity is used to avoid pressure relief.
  • the avoidance cavity contains the processing medium.
  • the battery cell has a pressure relief part;
  • the processing device includes a support member, the support member is used to support the battery cell, and an escape cavity is provided on a side of the support member facing the battery cell, and the escape cavity is used to avoid pressure relief.
  • the avoidance cavity is provided with a trigger mechanism, and the support member is provided with an accommodation cavity inside, the accommodation cavity is used to accommodate the processing medium, and the trigger mechanism is configured to allow the processing medium in the accommodation cavity to be discharged through the trigger mechanism after being triggered.
  • the exhaust gas inside the battery cell will be discharged into the escape chamber through the pressure relief part.
  • the trigger mechanism is equipped with an escape chamber, after the trigger mechanism is triggered, the processing medium discharged by the trigger mechanism can interact with the escape chamber located in the escape chamber.
  • the exhaust gas inside is fully mixed, thereby quickly reducing the concentration of the preset gas in the exhaust gas.
  • the triggering mechanism is configured to be triggered by exhaust gases.
  • the triggering mechanism In a normal working environment, the triggering mechanism is in an untriggered state, and the processing medium contained in the chamber will not be discharged; when the battery cell thermally runs out of control, the triggering mechanism can be triggered by the exhaust gas emitted by the battery cell, thereby The processing medium is discharged in time to reduce the concentration of the preset gas in the exhaust gas.
  • the support is configured as a thermal management component.
  • the support has the ability to both manage the temperature of the battery cells and reduce the concentration of a predetermined gas in the exhaust gas.
  • embodiments of the present application further provide an electrical device, including the battery provided in any embodiment of the first aspect.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Figure 2 is an exploded view of a battery provided by some embodiments of the present application.
  • FIG. 3 is a schematic structural diagram of the battery shown in Figure 2;
  • FIG. 4 is a control principle diagram of the processing device provided by the embodiment of the present application.
  • Figure 5 is a schematic structural diagram of the box shown in Figure 4.
  • Figure 6 is a schematic structural diagram of a battery provided by other embodiments of the present application.
  • Figure 7 is a partial enlarged view of position A of the battery shown in Figure 6;
  • Figure 8 is a schematic structural diagram of a battery provided by some embodiments of the present application.
  • Figure 9 is a schematic structural diagram of a battery provided by some embodiments of the present application.
  • Figure 10 is an exploded view of a battery cell and a support provided by some embodiments of the present application.
  • FIG. 11 is a schematic structural diagram of the support member shown in FIG. 10 .
  • Icon 10-box; 11-first part; 12-second part; 13-first space; 14-second space; 15-divider; 151-channel; 152-inner cavity; 153-switch part; 154 -Switch mechanism; 20-battery cell; 21-pressure relief part; 30-processing device; 31-accommodating component; 311-accommodating space; 32-switch unit; 33-support member; 331-avoidance cavity; 332-trigger mechanism ; 40-converging component; 50-detection unit; 60-control unit; 70-pressure relief mechanism; 100-battery; 200-controller; 300-motor; 1000-vehicle; X-injection direction; Y-through direction.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • “Plural” appearing in this application means two or more (including two).
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium-sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of this application.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly consists of a positive electrode sheet, a negative electrode sheet and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the positive electrode current collector that is not coated with the positive electrode active material layer protrudes from the positive electrode current collector that is coated with the positive electrode active material layer.
  • the cathode current collector without coating the cathode active material layer serves as the cathode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector that is not coated with the negative electrode active material layer protrudes from the negative electrode current collector that is coated with the negative electrode active material layer.
  • the negative electrode current collector that is not coated with the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive electrode lugs is multiple and stacked together, and the number of negative electrode lugs is multiple and stacked together.
  • the material of the isolation film can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc.
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • a pressure relief mechanism is generally installed on the box.
  • the pressure relief mechanism is used to release the pressure inside the box, thereby improving the safety of the battery.
  • flammable gases such as H 2 , CO, alkanes or electrolyte vapor, etc. These flammable gases require very little ignition ability.
  • combustion aids such as oxygen
  • the inventor designed a battery after in-depth research.
  • the processing device processes the exhaust gas discharged from the battery cells into the box to reduce the emissions.
  • the concentration of the preset gas in the gas is adjusted below the corresponding preset value, and the preset gas is one or more mixed flammable gases.
  • the exhaust gas discharged into the case when the battery cell is thermally runaway can be processed by a processing device, thereby reducing the concentration of one or more mixed combustible gases in the exhaust gas to below a preset value. , reduce the flammability level of flammable gases, reduce the risk of battery combustion and explosion, and effectively improve the safety of batteries.
  • the battery described in the embodiment of this application is suitable for electrical equipment using the battery.
  • Power-consuming equipment can be vehicles, mobile phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include aircraft, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • Electric drills Electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • the following embodiments take the electrical equipment as a vehicle as an example.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the battery 100 is disposed inside the vehicle 1000 , and the battery 100 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 100 may be used to power the vehicle 1000 , for example, the battery 100 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 300 , for example, for starting, navigating and driving the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but can also be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • Figure 2 is an exploded view of the battery 100 provided by some embodiments of the present application
  • Figure 3 is a schematic structural diagram of the battery 100 shown in Figure 2.
  • the battery 100 includes a box 10, a battery cell 20 and a
  • the processing device 30, the battery cell 20 and the processing device 30 are all accommodated in the box 10.
  • the processing device 30 is used to process the exhaust gas discharged from the battery cell 20 into the box 10, so as to remove the predetermined gas in the exhaust gas.
  • the concentration is adjusted below the corresponding preset value, and the preset gas is one or more mixed flammable gases.
  • the box 10 is a component for storing the battery cells 20.
  • the box 10 provides a storage space for the battery cells 20.
  • the box 10 can adopt a variety of structures.
  • the box 10 may include a first part 11 and a second part 12 , and the first part 11 and the second part 12 cover each other to define a storage space for accommodating the battery cells 20 .
  • the first part 11 and the second part 12 can be in various shapes, such as cuboid, cylinder, etc.
  • the first part 11 can be a hollow structure open on one side, and the second part 12 can also be a hollow structure open on one side.
  • the open side of the second part 12 is covered with the open side of the first part 11 to form a box with a storage space.
  • Body 10 is a component for storing the battery cells 20.
  • the box 10 provides a storage space for the battery cells 20.
  • the box 10 can adopt a variety of structures.
  • the box 10 may include a first part 11 and a second part 12 , and the
  • the first part 11 may be a hollow structure with one side open
  • the second part 12 may be a plate-like structure
  • the second part 12 covers the open side of the first part 11 to form a box 10 with a storage space.
  • the first part 11 and the second part 12 can be sealed by sealing elements, which can be sealing rings, sealants, etc.
  • the battery cell 20 is an energy storage unit, which generates electrochemical reaction through the electrode assembly and the electrolyte, thereby outputting electric energy.
  • the multiple battery cells 20 there may be one or multiple battery cells 20 in the box 10 . If there are multiple battery cells 20 , the multiple battery cells 20 can be connected in series, in parallel, or in mixed connection. Mixed connection means that the multiple battery cells 20 are both connected in series and in parallel. Multiple battery cells 20 may be first connected in series, parallel, or mixed to form a battery module, and then multiple battery modules may be connected in series, parallel, or mixed to form a whole, and be accommodated in the box 10 . It is also possible that all the battery cells 20 are directly connected in series or in parallel or mixed together, and then the entire battery cell 20 is accommodated in the box 10 .
  • the battery 100 may also include a bus component 40 , through which the plurality of battery cells 20 may be electrically connected to achieve series, parallel, or mixed connection of the multiple battery cells 20 .
  • the bus component 40 may be a metal conductor, such as copper, iron, aluminum, stainless steel, aluminum alloy, etc.
  • the processing device 30 is a component used to reduce the concentration of the preset gas in the exhaust gas.
  • the processing device 30 can process the exhaust gas in a variety of ways to reduce the concentration of the preset gas.
  • the processing device 30 provides treatment medium to reduce the concentration of the preset gas.
  • the processing medium can be a solid medium, a liquid medium, or a gaseous medium.
  • the treatment medium may be at least one of phase change materials, oxidants, oxidant and catalyst mixtures, ultrapure water, fluorinated liquids, and water-cooled liquids.
  • the oxidizing agent may be at least one of copper oxide, sodium peroxide or potassium permanganate, and the catalyst may be at least one of a precious metal catalyst, such as palladium, platinum or rhodium.
  • the processing medium is a solid phase change material.
  • the phase change material changes from solid to non-flammable liquid or gaseous medium to reduce the concentration of the preset gas. concentration.
  • the processing medium is an oxidizing agent, and the oxidizing agent reacts chemically with the predetermined gas, thereby reducing the concentration of the predetermined gas.
  • the exhaust gas is the gas discharged from the inside of the battery cell 20 when the battery cell 20 is thermally runaway.
  • the exhaust gas includes flammable gases and non-flammable gases.
  • the combustible gases include at least one of H 2 , CO, alkanes, electrolyte vapor, etc.
  • the non-flammable gas includes at least one of CO 2 , N 2 , etc.
  • Alkanes include at least one of CH 4 , C 2 H 4 , C 3 H 8 and the like.
  • the preset gas is one or more mixed flammable gases in the exhaust gas.
  • the concentration of any one of the combustible gases among H 2 , CO, alkane and electrolyte vapor can be adjusted to the corresponding
  • the concentration of hydrogen can be adjusted to less than 4%, which can greatly reduce the risk of combustion after the flammable gas is discharged, or it can be a mixture of H 2 , CO, alkanes, and electrolyte vapor. Adjusting the concentration to the corresponding preset value can also reduce the probability of battery fire.
  • the preset value may be the lower combustion limit of the preset gas, and the lowest concentration that enables flame propagation is called the lower combustion limit of the preset gas.
  • the preset gas is electrolyte vapor, and the concentration of the electrolyte vapor can be reduced to below the lower combustion limit through the processing device 30 .
  • the preset gas is a mixed gas of H 2 , CO and alkane, and the concentration of the mixed gas of H 2 , CO and alkane can be reduced to below the lower combustion limit through the processing device 30 .
  • a processing device 30 is provided in the box 10.
  • the processing device 30 can process the exhaust gas discharged into the box 10 when the battery cell 20 is thermally out of control, thereby converting one of the exhaust gases into The concentration of the mixed combustible gases or multiple types of combustible gases is reduced below the preset value, thereby reducing the flammability level of the combustible gases, reducing the risk of combustion and explosion of the battery 100 , and effectively improving the safety of the battery cells 20 .
  • the preset gas is electrolyte vapor, and the preset value is 3.6%.
  • the processing device 30 can process the electrolyte vapor in the exhaust gas to reduce the concentration of the electrolyte vapor. For example, the concentration of electrolyte vapor in the exhaust gas is reduced to 1.2% to 3.6% through the processing device 30 .
  • the concentration of the electrolyte vapor is adjusted to below 3.6% (including 3.6%) through the processing device 30, so that the concentration of the electrolyte vapor is below the lower combustion limit, reducing the risk of electrolyte vapor combustion and improving battery cell efficiency.
  • the preset gas is a combustible gas mixed with H 2 , CO and alkanes, and the preset value is 7.6%.
  • the processing device 30 can process the combustible gas mixed with H 2 , CO, and alkanes in the exhaust gas to reduce the concentration of the combustible gas mixed with H 2 , CO, and alkanes. For example, the concentration of combustible gas mixed with H 2 , CO and alkanes in the exhaust gas is reduced to 4.4% to 7.6% through the treatment device 30 .
  • the concentration of the combustible gas mixed with H2, CO and alkanes is adjusted to below 7.6% (including 7.6%) through the processing device 30, so that the concentration of the combustible gas mixed with H2 , CO and alkanes is below the lower combustion limit, reducing H2 , CO and the risk of combustion of flammable gas mixed with alkanes, thereby improving the safety of the battery cell 20 .
  • the preset gas is all combustible gases in the exhaust gas, and the preset value is 8.3%.
  • the processing device 30 can process the combustible gas mixed with H 2 , CO, alkanes and electrolyte vapor in the exhaust gas to reduce H 2.
  • the concentration of the combustible gas mixed with all the combustible gases in the exhaust gas is reduced to 2% to 8.3% through the processing device 30 .
  • the processing device 30 adjusts the concentration of the mixed combustible gases in the exhaust gas to below 8.3% (inclusive), thereby reducing the risk of exhaust gas combustion and improving the safety of the battery cells 20 .
  • Figure 4 is a control principle diagram of the processing device 30 provided in an embodiment of the present application.
  • the battery 100 also includes a detection unit 50 and a control unit 60 .
  • the detection unit 50 is disposed in the box 10 , and is used to detect the concentration of the preset gas.
  • the control unit 60 is electrically connected to the detection unit 50 and the processing device 30 .
  • the control unit 60 is used to control the processing device 30 to release the processing medium when the concentration of the preset gas in the exhaust gas is higher than the corresponding preset value.
  • the detection unit 50 is a component that detects the concentration of a preset gas.
  • the detection unit 50 may be a device with a concentration sensor or a device with photoelectric sensing, such as a Raman analyzer.
  • the detection unit 50 is used to detect the concentration of the preset gas.
  • the preset gas is a mixed combustible gas of multiple combustible gases
  • the detection unit 50 can detect the concentration of various combustible gases, and obtain the concentrations of the multiple combustible gases through calculation and analysis. The concentration of mixed combustible gases.
  • the detection unit 50 is used to control the action of the processing device 30 according to the detection result of the detection unit 50, so that when the concentration of the preset gas is higher than the corresponding preset value, the processing device 30 releases the processing medium to reduce the concentration of the preset gas.
  • the preset gas as all combustible gases in the exhaust gas and the preset value as 8.3% as an example
  • the control unit 60 will control the process The device 30 releases the processing medium.
  • the control unit 60 can be installed inside the box 10 or outside the box 10 .
  • the control unit 60 may be a single chip microcomputer or a PLC (Programmable Logic Controller).
  • the control unit 60 controls the processing device 30 to release the processing system to adjust the concentration of the preset gas below the corresponding preset value. , realizing automatic control of the processing device 30.
  • the processing device 30 may include a receiving component 31 and a switch unit 32 .
  • An accommodating space 311 is formed inside the accommodating part 31, and the accommodating space 311 is used to accommodate processing media.
  • the switch unit 32 is electrically connected to the control unit 60, and the control unit 60 is used to control the switch unit 32 to open to release the treatment medium when the concentration of the preset gas in the exhaust gas is higher than the corresponding preset value.
  • the storage component 31 is a component that provides processing media, and a storage space 311 is formed inside the storage component 31 , and the processing medium is stored in the storage space 311 .
  • the receiving component 31 can be placed in the box 10 or fixed in the box 10 .
  • the switch unit 32 is a component that connects or disconnects the inside of the box 10 and the accommodating space 311.
  • the control unit 60 can control the switch unit 32 to open or close. When the switch unit 32 is opened, the inside of the box 10 and the accommodating space 311 are connected; when the switch When the unit 32 is closed, the inside of the box 10 is disconnected from the accommodation space 311 .
  • the switch unit 32 may be an electronically controlled switch valve.
  • control unit 60 controls the opening of the switch unit 32 to release the processing medium contained inside the containing part 31 to process the exhaust gas in the box 10 .
  • the overall structure of the processing device 30 is simple.
  • the battery 100 further includes a pressure relief mechanism 70 , the pressure relief mechanism 70 is provided in the box 10 , and the pressure relief mechanism 70 is electrically connected to the control unit 60 .
  • the control unit 60 is used to control the activation of the pressure relief mechanism 70 to relieve the pressure inside the box 10 when the concentration of the preset gas in the exhaust gas is lower than the corresponding preset value.
  • the control unit 60 can realize automatic control of the pressure relief mechanism 70 provided on the box 10 .
  • the pressure release mechanism 70 is a component for releasing the pressure inside the battery cell 20 .
  • the pressure relief mechanism 70 can be actuated under the control of the control unit 60 so that the exhaust gas inside the box 10 can be discharged to the outside of the box 10 through the pressure relief mechanism 70 to release the pressure inside the battery cell 20 .
  • the pressure relief mechanism 70 may take the form of an explosion-proof valve, an explosion-proof disc, an air valve, a pressure relief valve or a switch valve, etc.
  • the “activation” mentioned in this application means that the pressure relief mechanism 70 acts or is activated to a certain state, so that the internal pressure and temperature of the battery cell 20 can be released.
  • the actions generated by the pressure relief mechanism 70 may include, but are not limited to: at least a part of the pressure relief mechanism 70 ruptures, shatters, is torn, etc.
  • the control unit 60 can control the pressure relief mechanism 70 to open or close, thereby connecting or disconnecting the inside and outside of the box 10 .
  • control unit 60 controls the pressure relief mechanism 70 to be activated, the control unit 60 can control the pressure relief mechanism 70 to be in a closed state, and the processing device 30 no longer releases the processing medium into the box 10 .
  • the control unit 60 will control the pressure relief mechanism 70 to be activated, thereby discharging the exhaust gas that meets the emission requirements inside the box 10 to outside the box 10 to reduce the pressure inside the box 10 .
  • the concentration of the preset gas discharged to the outside of the box 10 is lower than the preset value, it is not easy to burn, thus ensuring the safety of the battery 100 .
  • FIG. 5 is a schematic structural diagram of the box 10 shown in FIG. 4 .
  • the battery 100 also includes a pressure relief mechanism 70 , which is used to release the pressure inside the box 10 after being actuated.
  • the box 10 includes a separated first space 13 and a second space 14.
  • the first space 13 is used to accommodate the battery cells 20.
  • the second space 14 is used to accommodate the exhaust gas.
  • the pressure relief mechanism 70 is configured to actuate the rear communication box. outside the body 10 and the second space 14.
  • the detection unit 50 and the control unit 60 may be provided in the battery 100, or the detection unit 50 and the control unit 60 may not be provided. If the detection unit 50 and the control unit 60 are provided in the battery 100, the pressure relief mechanism 70 is actively actuated. If the detection unit 50 and the control unit 60 are not provided in the battery 100 , the pressure relief mechanism 70 is passively actuated. For example, when the internal pressure of the box 10 reaches a threshold, the pressure relief mechanism 70 is passively activated to release the box. 10. Internal pressure purposes.
  • the arrangement direction of the first space 13 and the second space 14 may be consistent with the arrangement direction of the first part 11 and the second part 12.
  • the first space The arrangement direction of 13 and the second space 14 may also be perpendicular to the arrangement of the first part 11 and the second part 12 .
  • the arrangement direction of the first space 13 and the second space 14 may be consistent with the arrangement direction of the first part 11 and the second part 12 .
  • the volume of the first space 13 is greater than the volume of the second space 14 .
  • the first space 13 and the second space 14 separated from each other in the box 10 are used to accommodate the battery cells 20 and the exhaust gas respectively, so that the battery cells 20 and the exhaust gases are isolated from each other, reducing the impact of the exhaust gas on the battery cells 20, and further Improve security.
  • the battery cell 20 has a pressure relief portion 21 , and the pressure relief portion 21 is disposed toward the second space 14 .
  • the pressure relief part 21 is a component for releasing the pressure inside the battery cell 20 .
  • the pressure relief part 21 may be a weak area on the casing of the battery cell 20 , or may be a pressure relief component provided on the casing.
  • the pressure relief component may be an explosion-proof valve, an explosion-proof disc, an air valve, a pressure relief valve or a switch valve. etc. form.
  • the outer casing is a component of the battery cell 20 used to accommodate the electrode assembly.
  • the pressure relief portion 21 of the battery cell 20 is disposed toward the second space 14 so that the exhaust gas discharged when the battery cell 20 undergoes thermal runaway can more easily enter the second space 14 .
  • the first space 13 and the second space 14 are separated by a partition 15.
  • the partition 15 is provided with a channel 151.
  • the channel 151 connects the first space 13 and the second space 14. .
  • the partition 15 is a component that separates the first space 13 and the second space 14 .
  • the partition 15 may be a flat plate structure fixed inside the box 10 .
  • the first part 11 may be disposed at the bottom of the second part 12
  • the partition 15 may be fixed in the first part 11
  • the pressure relief mechanism 70 may be disposed at the bottom of the second part 12 .
  • Part 11
  • the channels 151 may correspond to the battery cells 20 one-to-one.
  • the channel 151 may extend along a straight line or a non-straight line.
  • the channel 151 may extend along a bending line.
  • the channel 151 is a straight channel 151 extending along the thickness of the partition 15. The channel 151 penetrates both surfaces of the partition 15 along the thickness direction, thereby connecting the first space 13 and the second space. 14.
  • the separator 15 is used to support the battery cell 20 , and the separator 15 is configured as a thermal management component to manage the temperature of the battery cell 20 .
  • the first space 13 and the second space 14 are in a connected state, and the exhaust gas discharged when the battery cell 20 is thermally runaway can enter the second space 14 through the channel 151 .
  • the battery cell 20 has a pressure relief portion 21 .
  • the pressure relief portion 21 is located at one end of the channel 151 along the through direction Y and is disposed toward the channel 151 .
  • the penetration direction Y of the channel 151 is the extension direction of the channel 151 , which can also be understood as the thickness direction of the partition 15 .
  • the pressure relief part 21 is located at one end of the channel 151 along the through direction Y and is disposed toward the channel 151 .
  • the exhaust gas discharged when the battery cell 20 is thermally runaway can directly enter the channel 151 , making the exhaust gas faster. into the second space 14.
  • FIG. 6 is a schematic structural diagram of a battery 100 provided in other embodiments of the present application.
  • FIG. 7 is a partial enlarged view of position A of the battery 100 shown in FIG. 6 .
  • the processing device 30 includes a partition 15.
  • the partition 15 is provided with an inner cavity 152.
  • the inner cavity 152 is used to accommodate the processing medium.
  • the side wall of the channel 151 is provided with a switch part 153.
  • the switch part 153 is configured to allow the inner cavity 152 to be opened.
  • the processing medium flows out through the switch part 153.
  • the partition 15 can be used as a part of the processing device 30, and the partition 15 serves both as a partition component that separates the first space 13 and the second space 14, and as a processing component for supplying the processing medium.
  • the inner cavity 152 is the internal space of the partition 15 and is used to accommodate the processing medium. There may be one or multiple inner cavities 152 inside the partition 15 .
  • the inner chamber 152 and the channel 151 can be arranged in one-to-one correspondence, that is, the processing medium in one inner cavity 152 flows into one channel 151; one inner cavity 152 can also be arranged corresponding to multiple channels 151, that is, the processing medium in one inner cavity 152 flows The corresponding flow flows into multiple channels 151.
  • the switch part 153 is a component used to connect or disconnect the inner cavity 152 and the channel 151. After the switch part 153 is opened, the processing medium in the inner cavity 152 flows out into the channel 151 through the switch part 153.
  • control unit 60 may be electrically connected to the switch part 153 and control the switch part 153 to open or close through the control unit 60 .
  • the processing medium in the inner cavity 152 can be released through the switch part 153, thereby reducing the concentration of the preset gas in the exhaust gas more quickly.
  • the switch part 153 is a nozzle, and the injection direction X of the nozzle intersects the penetration direction Y of the channel 151 .
  • the injection direction X of the nozzle and the penetration direction Y of the channel 151 are not parallel to each other, and they may be arranged at an included angle.
  • the penetration direction Y of the channel 151 is consistent with the flow direction of the exhaust gas discharged from the battery cell 20 in the channel 151 .
  • the injection direction X of the nozzle is perpendicular to the penetration direction Y of the channel 151 .
  • the nozzle is equipped with a switch valve, and the control unit 60 controls the switch valve to open or close the nozzle, so that the processing medium in the inner cavity 152 is ejected through the nozzle.
  • the injection direction X of the nozzle intersects the penetration direction Y of the channel 151.
  • the processing medium sprayed from the nozzle can be more fully mixed with the exhaust gas, and the exhaust gas treatment effect is better, and the exhaust gas is reduced more quickly.
  • Preset gas concentration in the exhaust gas Preset gas concentration in the exhaust gas.
  • the injection direction X of the nozzle is perpendicular to the penetration direction Y of the channel 151, the treatment effect of the treatment medium injected from the nozzle on the exhaust gas can be further improved.
  • the switch part 153 may also have other structures.
  • the partition 15 is provided with a first connection channel connecting the inner cavity 152 and the channel 151.
  • the switch part 153 closes the first connection channel.
  • the switch part 153 is thermally sensitive. Material. When the temperature reaches the melting point of the switch part 153, the switch part 153 partially or completely melts, thereby opening the first connection channel, thereby connecting the inner cavity 152 and the channel 151.
  • FIG. 8 is a schematic structural diagram of a battery 100 provided in some embodiments of the present application.
  • the first space 13 and the second space 14 are separated by a partition 15 , and the partition 15 is provided with a switch mechanism 154 configured to connect or disconnect the first space 13 and the second space 14 .
  • the switch mechanism 154 is a component that connects or disconnects the first space 13 and the second space 14 . After the switch mechanism 154 is opened, the first space 13 and the second space 14 are in a connected state, and the exhaust gas discharged by the battery cells 20 into the first space 13 can enter the second space 14 through the switch mechanism 154 .
  • switch mechanism 154 there may be one switch mechanism 154 on the partition 15 or multiple switch mechanisms 154 .
  • a plurality of switch mechanisms 154 are provided on the partition 15 , and the switch mechanisms 154 correspond to the battery cells 20 one-to-one.
  • the switch mechanism 154 By providing the switch mechanism 154 on the partition 15, the first space 13 and the second space 14 can be connected or disconnected. In a normal working environment, the switch mechanism 154 can be in a closed state, so that the first space 13 and the second space 14 are independent of each other; when the battery cell 20 is thermally out of control, the switch mechanism 154 can be in an open state, so that the first space 13 and the second space 14 are independent of each other. 13 and the second space 14 are connected with each other, and the exhaust gas can enter the second space 14 from the first space 13 .
  • the switch mechanism 154 is a weak portion, and the weak portion is configured to connect the first space 13 and the second space 14 after being destroyed by the exhaust gas.
  • the weak portion is a portion of the partition 15 that is thinner than other areas.
  • the weak part can communicate with the first space 13 and the second space 14 by cracking, falling off, melting, etc. under the action of the exhaust gas.
  • the switch mechanism 154 can be passively opened under the action of exhaust gas, has a simple structure and is very economical.
  • the switch mechanism 154 may also have other structures.
  • the switch mechanism 154 may be a switch valve disposed on the partition 15 .
  • the switch mechanism 154 may be electrically connected to the control unit 60 , and the switch mechanism 154 may be turned on or off through the control unit 60 .
  • the processing device 30 is disposed in the second space 14 .
  • the control unit 60 , the detection unit 50 , the receiving part 31 and the switch unit 32 may all be disposed in the second space 14 .
  • the processing device 30 is disposed in the second space 14. After the exhaust gas enters the second space 14, the processing device 30 can process the exhaust gas in the second space 14, thereby reducing the pre-heated gas in the exhaust gas. Let the gas concentration be.
  • FIG. 9 is a schematic structural diagram of a battery 100 provided in some embodiments of the present application.
  • the battery cell 20 has a pressure relief portion 21 .
  • the processing device 30 includes a support 33 , which is used to support the battery cell 20 .
  • the support 33 is provided with an escape cavity 331 on a side facing the battery cell 20 .
  • the escape cavity 331 is used to avoid the pressure relief part 21 .
  • the escape cavity 331 Contains processing media.
  • the support member 33 is a component located at the bottom of the battery cell 20 and plays a supporting role for the battery cell 20 .
  • the partition 15 may serve as a support 33 for supporting the battery cells 20 .
  • the support member 33 may be a plate-like structure, and the escape cavity 331 may be a groove provided on the surface of the support member 33 facing the battery cell 20 .
  • multiple battery cells 20 may share one escape cavity 331 , or one battery cell 20 may be provided with one escape cavity 331 corresponding to it.
  • multiple battery cells 20 share an escape cavity 331 .
  • the processing medium contained in the escape chamber 331 may be a solid phase change material, an oxidant, an oxidant and a catalyst mixture, etc.
  • a processing medium is provided in the avoidance cavity 331 of the support 33 for avoiding the pressure relief portion 21 of the battery cell 20 .
  • the exhaust gas discharged from the pressure relief portion 21 can directly flow to the treatment medium, and then pass through the treatment medium.
  • the medium quickly reduces the concentration of the preset gas in the exhaust gas.
  • Figure 10 is an exploded view of the battery cell 20 and the support 33 provided in some embodiments of the present application;
  • Figure 11 is a schematic structural diagram of the support 33 shown in Figure 10 .
  • the battery cell 20 has a pressure relief portion 21 .
  • the processing device 30 includes a support 33 , which is used to support the battery cell 20 .
  • the support 33 is provided with an escape cavity 331 on a side facing the battery cell 20 .
  • the escape cavity 331 is used to avoid the pressure relief part 21 .
  • the escape cavity 331 A trigger mechanism 332 is provided, and a receiving cavity is provided inside the support 33 .
  • the receiving cavity is used to accommodate a processing medium.
  • the triggering mechanism 332 is configured to allow the processing medium in the receiving cavity to be discharged through the triggering mechanism 332 after being triggered.
  • the triggering mechanism 332 has multiple triggering methods. For example, the triggering mechanism 332 is triggered by the exhaust gas emitted when the battery cell 20 is thermally runaway; for another example, the triggering mechanism 332 is triggered by the voltage or current of the battery cell 20. When the voltage or current of the battery cell 20 reaches a threshold, the triggering mechanism 332 is triggered. Mechanism 332 is triggered.
  • the exhaust gas inside the battery cell 20 will be discharged into the escape cavity 331 through the pressure relief part 21. Since the trigger mechanism 332 is provided with the escape cavity 331, after the trigger mechanism 332 is triggered, it will be discharged through the trigger mechanism 332.
  • the processing medium can be fully mixed with the exhaust gas located in the avoidance chamber 331, thereby quickly reducing the concentration of the preset gas in the exhaust gas.
  • triggering mechanism 332 is configured to be triggered by exhaust gases.
  • Trigger mechanism 332 may be of a variety of structures.
  • the support member 33 serves as the receiving component 31
  • the trigger mechanism 332 serves as the switch unit 32
  • the control unit 60 controls the trigger mechanism 332
  • the detection unit 50 detects the concentration of the preset gas to trigger the trigger mechanism 332 .
  • the support member 33 is provided with a second connection channel that connects the avoidance cavity 331 and the accommodation cavity.
  • the trigger mechanism 332 closes the second connection channel.
  • the trigger mechanism 332 is made of heat-sensitive material.
  • the triggering mechanism 332 of the above structure is triggered by exhaust gas.
  • the trigger mechanism 332 In a normal working environment, the trigger mechanism 332 is in an untriggered state, and the processing medium contained in the accommodation cavity will not be discharged; when the battery cell 20 is thermally out of control, the trigger mechanism 332 can be discharged by the battery cell 20 The gas is triggered, so that the processing medium is discharged in time to reduce the concentration of the preset gas in the discharge gas.
  • support 33 is configured as a thermal management component.
  • the thermal management component is used to contain fluid to adjust the temperature of the battery cell 20.
  • the fluid may be ultrapure water, fluorinated liquid, water cooling liquid, etc.
  • the thermal management component may be a cooling component that cools the battery cells 20 , or a heating component that heats the battery cells 20 .
  • a flow channel for fluid flow is provided inside the thermal management component. In the embodiment where a receiving cavity for accommodating the processing medium is provided inside the support member 33 , the flow channel and the accommodating cavity are independent of each other and not connected with each other.
  • the support member 33 has the ability to both manage the temperature of the battery cells 20 and reduce the concentration of the preset gas in the exhaust gas.
  • An embodiment of the present application also provides an electrical device, including the battery 100 provided in any of the above embodiments. It should be noted that, as long as there is no conflict, the embodiments and features in the embodiments of this application can be combined with each other.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请实施例提供了一种电池及用电设备,属于电池技术领域。其中,电池包括箱体、电池单体及处理装置,容纳于箱体内,处理装置用于处理电池单体排放至箱体内的排放气体,以将排放气体中的预设气体的浓度调整至对应的预设值以下,预设气体为一种或多种混合的可燃气体。通过处理装置能够对电池单体热失控时排放至箱体内的排放气体进行处理,从而将排放气体中的一种或多种混合的可燃气体的浓度降低至预设值以下,降低了可燃气体的可燃性等级,降低电池燃烧***的风险,有效提高了电池的安全性。

Description

电池及用电设备 技术领域
本申请涉及电池技术领域,具体而言,涉及一种电池及用电设备。
背景技术
随着新能源技术的发展,电池的应用越来越广泛,例如应用在手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等上。
在电池技术中,既需要考虑电池性能,也需要考虑电池的安全性问题,因此,如何提高电池的安全性是电池技术中亟需解决的问题。
发明内容
本申请实施例提供一种电池及用电设备,能够有效提高电池的安全性。
第一方面,本申请实施例提供一种电池,包括箱体、电池单体及处理装置,容纳于箱体内,处理装置用于处理电池单体排放至箱体内的排放气体,以将排放气体中的预设气体的浓度调整至对应的预设值以下,预设气体为一种或多种混合的可燃气体。
上述技术方案中,箱体内设置有处理装置,通过处理装置能够对电池单体热失控时排放至箱体内的排放气体进行处理,从而将排放气体中的一种或多种混合的可燃气体的浓度降低至预设值以下,降低可燃气体的可燃性等级,降低电池燃烧***的风险,有效提高了电池的安全性。
在一些实施例中,预设气体为电解液蒸汽,预设值为3.6%。通过处理装置将电解液蒸汽的浓度调整至3.6%以下,使得电解液蒸汽的浓度处于燃烧下限以下,降低电解液蒸汽燃烧的风险,提高了电池的安全性。
在一些实施例中,预设气体为H 2、CO及烷烃混合的可燃气体,预设值为7.6%。通过处理装置将H2、CO及烷烃混合的可燃气体的浓度调整至7.6%以下,使得H 2、CO及烷烃混合的可燃气体的浓度处于燃烧下限以下,降低H 2、CO及烷烃混合的可燃气体燃烧的风险,提高了电池的安全性。
在一些实施例中,预设气体为排放气体中所有的可燃气体,预设值为8.3%。通过处理装置将排放气体中所有的可燃气体混合的可燃气体的浓度调整至8.3%以下,降低排放气体燃烧的风险,提高了电池的安全性。
在一些实施例中,电池还包括检测单元和控制单元;检测单元设置于箱体内,检测单元用于检测预设气体的浓度;控制单元与检测单元以及处理装置电连接,控制单元用于在排放气体中的预设气体的浓度高于对应的预设值时控制处理装置释放处理介质。检测单元检测到预设气体高于对应的预设值时,控制单元件控制处理装置释放处理***,以将预设气体的浓度调整至对应的预设值以下,实现对处理装置的自动化控制。
在一些实施例中,处理装置包括收容部件和开关单元;收容部件内部形成有容纳空间,容纳空间用于容纳处理介质;开关单元与控制单元电连接,控制单元用于在预设气体的浓度高于对应的预设值时控制开关单元打开,以释放处理介质。通过控制单元控制开关单元打开来释放容纳于收容部件内部的处理介质,以对箱体内的排放气体进行处理,处理装置整体结构简单。
在一些实施例中,电池还包括泄压机构,泄压机构设置于箱体,泄压机构与控制单元电连接;控制单元用于在预设气体的浓度低于对应的预设值时控制泄压机构致动,以泄放箱体内部的压力。通过控制单元可以实现对设置于箱体上的泄压机构的自动控制。当处理装置释放处理介质将预设气体的浓度调整至低于对应的预设值时,控制单元将控制泄压机构致动,从而将箱体内部达到排放要求的排放气体排放至箱体外,以降低箱体内部的压力。
在一些实施例中,电池还包括泄压机构,泄压机构用于致动后泄放箱体内部的压力;箱体包括分隔的第一空间和第二空间,第一空间用于容纳电池单体,第二空间用于容纳排放气体,泄压机构被配置为致动后连通箱体外部和第二空间。箱体彼此分隔的第一空间和第二空间分别用于容纳电池单体和排放气体,使得电池单体和排放气体彼此隔离,降低排放气体对电池单体的影响,进一步提高安全性。
在一些实施例中,电池单体具有泄压部,泄压部朝向第二空间设置。这样,使得电池单体热失控时排出的排放气体能够更容易进入到第二空间。
在一些实施例中,第一空间和第二空间通过分隔件分隔,分隔件设置有通道,通道连通第一空间和第二空间。这样,第一空间和第二空间处于连通状态,电池单体热失控时排出的排放气体能够通过通道进入到第二空间内。
在一些实施例中,电池单体具有泄压部,泄压部位于通道沿贯通方向的一端并朝向通道设置。这样,电池单体热失控时排出的排放气体能够直接进入到通道内,使得排放气体更为快速地进入到第二空间内。
在一些实施例中,处理装置包括分隔件,分隔件设置有内腔,内腔用于容纳处理介质,通道的侧壁设置有开关部,开关部被配置为打开时允许内腔中的处理介质经由开关部流出。分隔件既作为分隔第一空间和第二空间的分隔部件,又作为用于提供处理介质的处理部件。在排放气体通过通道进入到第二空间内的过程中,可以通过开关部释放内腔中的处理介质,更快地降低排放气体中的预设气体的浓度。
在一些实施例中,开关部为喷嘴,喷嘴的喷射方向与通道的贯通方向相交。这样,从喷嘴喷射出的处理介质能够更为充分地与排放气体混合,对排放气体的处理效果更佳,更快地降低排放气体中的预设气体的浓度。
在一些实施例中,第一空间和第二空间通过分隔件分隔,分隔件设置有开关机构,开关机构被配置为连通或断开第一空间和第二空间。通过在分隔件上设置开关机构能够实现第一空间和第二空间连通或断开。在正常工作环境中,可使开关机构处于关闭状态,使得第一空间和第二空间彼此独立;当电池单体热失控时,可使开关机构处于打开状态,使得第一空间和第二空间彼此连通,排放气体能够从第一空间进入到第二空间内。
在一些实施例中,开关机构为薄弱部,薄弱部被配置为被排放气体破坏后连通第一空间和第二空间。这种结构的开关机构能够在排放气体的作用下被动打开,结构简单,具有很好的经济性。
在一些实施例中,处理装置设置于第二空间内。排放气体进入到第二空间后,处理装置能够对第二空间内的排放气体进行处理,从而降低排放气体中的预设气体的浓度。
在一些实施例中,电池单体具有泄压部;处理装置包括支撑件,支撑件用于支撑电池单体,支撑件面向电池单体的一侧设置有避让腔,避让腔用于避让泄压部,避让腔容纳有处理介质。这样,从泄压部排放出的排放气体能够直接流向处理介质,进而通过处理介质快速地降低排放气体中的预设气体的浓度。
在一些实施例中,电池单体具有泄压部;处理装置包括支撑件,支撑件用于支撑电池单体,支撑件面向电池单体的一侧设置有避让腔,避让腔用于避让泄压部,避让腔设置有触发机构,支撑件的内部设置有容纳腔,容纳腔用于容纳处理介质,触发机构被配置为触发后能够允许容纳腔内的处理介质经由触发机构排出。电池单体热失控时,电池单体内部的排放气体将通过泄压部排至避让腔内,由于触发机构设置避让腔,触发机构被触发后,经触发机构排出的处理介质能够与位于避让腔内的排放气体充分混合,从而快速地降低排放气体中的预设气体的浓度。
在一些实施例中,触发机构被配置为能够由排放气体触发。在正常工作环境中,触发机构处于未被触发的状态,容纳于容纳腔内的处理介质并不会排出;当电池单体热失控时,触发机构能够被电池单体排放的排放气体触发,从而使处理介质及时排出,以降低排放气体中的预设气体的浓度。
在一些实施例中,支撑件被配置为热管理部件。支撑件既具有管理电池单体的温度的能力,又具有降低排放气体中的预设气体的浓度的能力。
第二方面,本申请实施例还提供一种用电设备,包括第一方面任意一个实施例提供的电池。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的***图;
图3为图2所示的电池的结构示意图;
图4为本申请实施例提供的处理装置的控制原理图;
图5为图4所示的箱体的结构示意图;
图6为本申请另一些实施例提供的电池的结构示意图;
图7为图6所示的电池的A处的局部放大图;
图8为本申请又一些实施例提供的电池的结构示意图;
图9为本申请再一些实施例提供的电池的结构示意图;
图10为本申请一些实施例提供的电池单体与支撑件的***图;
图11为图10所示的支撑件的结构示意图。
图标:10-箱体;11-第一部分;12-第二部分;13-第一空间;14-第二空间;15-分隔件;151-通道;152-内腔;153-开关部;154-开关机构;20-电池单体;21-泄压部;30-处理装置;31-收容部件;311-容纳空间;32-开关单元;33-支撑件;331-避让腔;332-触发机构;40-汇流部件;50-检测单元;60-控制单元;70-泄压机构;100-电池;200-控制器;300-马达;1000-车辆;X-喷射方向;Y-贯通方向。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相 连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极耳的数量为多个且层叠在一起,负极耳的数量为多个且层叠在一起。隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
为提高电池的安全性,一般会在箱体上设置泄压机构,在箱体内的电池单体热失控时通过泄压机构泄放箱体内部的压力,进而提高电池的安全性。
发明人注意到,在电池中,电池单体热失控后,电池单体会排放出排放气体,箱体内的排放气体最终通过泄压机构排放至箱体外部,排放至箱体外部的排放气体中包含大量可燃气体,比如,H 2、CO、烷烃或电解液蒸汽等,这些可燃气体所需点火能力很小,在助燃物(如氧气)的参与下,极易被细微点火源点着,引发剧烈的燃烧,甚至出现电池体***,发生安全事故。
基于上述考虑,为了提高电池的安全性,发明人经过深入研究,设计了一种电池,通过在箱体内设置处理装置,通过处理装置来处理电池单体排放至箱体内的排放气体,以将排放气体中的预设气体的浓度调整至对应的预设值以下,预设气体为一种或多种混合的可燃气体。
在这样的电池中,通过处理装置能够对电池单体热失控时排放至箱体内的排放气体进行处理,从而将排放气体中的一种或多种混合的可燃气体的浓度降低至预设值以下,降低可燃气体的可燃性等级,降低电池燃烧***的风险,有效提高了电池的安全性。
本申请实施例描述的电池适用于使用电池的用电设备。
用电设备可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动 工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电设备不做特殊限制。
以下实施例为了方便说明,以用电设备为车辆为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。
车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2和图3,图2为本申请一些实施例提供的电池100的***图;图3为图2所示的电池100的结构示意图,电池100包括箱体10、电池单体20和处理装置30,电池单体20及处理装置30均容纳于箱体10内,处理装置30用于处理电池单体20排放至箱体10内的排放气体,以将排放气体中的预设气体的浓度调整至对应的预设值以下,预设气体为一种或多种混合的可燃气体。
其中,箱体10是收纳电池单体20的部件,箱体10为电池单体20提供收纳空间,箱体10可以采用多种结构。比如,箱体10可以包括第一部分11和第二部分12,第一部分11与第二部分12相互盖合,以限定出用于容纳电池单体20的收纳空间。第一部分11和第二部分12可以是多种形状,比如,长方体、圆柱体等。第一部分11可以是一侧开放的空心结构,第二部分12也可以是一侧开放的空心结构,第二部分12的开放侧盖合于第一部分11的开放侧,则形成具有收纳空间的箱体10。也可以是第一部分11为一侧开放的空心结构,第二部分12为板状结构,第二部分12盖合于第一部分11的开放侧,则形成具有收纳空间的箱体10。第一部分11与第二部分12可以通过密封元件来实现密封,密封元件可以是密封圈、密封胶等。
其中,电池单体20为储能单元,其通过电极组件和电解液发生电化学反应,从而输出电能。
箱体10中的电池单体20可以是一个、也可以是多个。若电池单体20为多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。可以是多个电池单体20先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。也可以是所有电池单体20之间直接串联或并联或混联在一起,再将所有电池单体20构成的整体容纳于箱体10内。
电池100还可以包括汇流部件40,多个电池单体20之间可通过汇流部件40实现电连接,以实现多个电池单体20的串联或并联或混联。汇流部件40可以是金属导体,比如,铜、铁、铝、不锈钢、铝合金等。
处理装置30是用于降低排放气体中的预设气体的浓度的部件,处理装置30可以通过多种方式来对排放气体进行处理,以降低预设气体的浓度,比如,通过处理装置30提供处理介质来降低预设气体的浓度。处理介质可以是固态介质,也可以是液态介质,也可以是气态介质。处理介质可以是相变材料、氧化剂、氧化剂和催化剂混合物、超纯水、氟化液、水冷液中的至少一种。氧化剂可以是氧化铜、过氧化钠或高锰酸钾等中的至少一种,催化剂可以是贵金属催化剂,比如,钯、铂或铑等中的至少一种。比如,处理介质为固态相变材料,在电池单体20热失控而导致箱体10内部的温度升高时,相变材料从固态变为不可燃的液态或气体介质,以降低预设气体的浓度。再如,处理介质为氧化剂,氧化剂与预设气体发生化学反应,从而降低预设气体的浓度。
排放气体为电池单体20热失控时从电池单体20内部排出的气体,排放气体中包括可燃气体和不可燃气体,可燃气体包括H 2、CO、烷烃、电解液蒸汽等中的至少一者,不可燃气体包括CO 2、N 2等中的至少一者。烷烃包括CH 4、C 2H 4、C 3H 8等中的至少一者。预设气体为排放气体中的一种或多种混合的可燃气体。以排放气体中的可燃气体为H 2、CO、烷烃和电解液蒸汽为例,可以是通过处理装置30将H 2、CO、烷烃、电解液蒸汽中的任意一种可燃气体的浓度调整至对应的预设值,例如,可以将氢气的浓度调整至4%以下,能够大大降低可燃气体排出后燃烧的风险,也可以是将H 2、CO、烷烃、电解液蒸汽中多种混合的可燃气体的浓度调整至对应的预设值,同样可以降低电池起火的概率。
预设值可以是预设气体的燃烧下限,能够使火焰传播的最低浓度称之为预设气体的燃烧下限。比如,预设气体为电解液蒸汽,通过处理装置30则可将电解液蒸汽的浓度降低至燃烧下限以下。再如,预设气体为H 2、CO和烷烃的混合气体,通过处理装置30则可将H 2、CO和烷烃混合气体的浓度降低至燃烧下限以下。
在本申请实施例中,箱体10内设置有处理装置30,通过处理装置30能够对电池单体20热失控时排放至箱体10内的排放气体进行处理,从而将排放气体中的一种或多种混合的可燃气体的浓度降低至预设值以下,降低可燃气体的可燃性等级,降低电池100燃烧***的风险,有效提高了电池单体20的安全性。
在一些实施例中,预设气体为电解液蒸汽,预设值为3.6%。
处理装置30能够对排放气体中的电解液蒸汽进行处理,以降低电解液蒸汽的浓度。示例性的,通过处理装置30将排放气体中的电解液蒸汽的浓度降低至1.2%~3.6%。
在本实施例中,通过处理装置30将电解液蒸汽的浓度调整至3.6%以下(包含3.6%),使得电解液蒸汽的浓度处于燃烧下限以下,降低电解液蒸汽燃烧的风险,提高了电池单体20的安全性。
在一些实施例中,预设气体为H 2、CO及烷烃混合的可燃气体,预设值为7.6%。
处理装置30能够对排放气体中的H 2、CO及烷烃混合的可燃气体进行处理,以降低H 2、CO及烷烃混合的可燃气体的浓度。示例性的,通过处理装置30将排放气体中的H 2、CO及烷烃混合的可燃气体的浓度降低至4.4%~7.6%。
通过处理装置30将H2、CO及烷烃混合的可燃气体的浓度调整至7.6%以下(包含7.6%),使得H 2、CO及烷烃混合的可燃气体的浓度处于燃烧下限以下,降低H 2、CO及烷烃混合的可燃气体燃烧的风险,提高了电池单体20的安全性。
在一些实施例中,预设气体为排放气体中所有的可燃气体,预设值为8.3%。
以排放气体中的可燃气体为H 2、CO、烷烃和电解液蒸汽为例,处理装置30能够对排放气体中的H 2、CO、烷烃和电解液蒸汽混合的可燃气体进行处理,以降低H 2、CO、烷烃和电解液蒸汽混合的可燃气体的浓度。
示例性的,通过处理装置30将排放气体中所有的可燃气体混合的可燃气体的浓度降低至2%~8.3%。
通过处理装置30将排放气体中所有的可燃气体混合的可燃气体的浓度调整至8.3%(包含8.3%)以下,降低排放气体燃烧的风险,提高了电池单体20的安全性。
在一些实施例中,请参照图3和图4,图4为本申请实施例提供的处理装置30的控制原理图。电池100还包括检测单元50和控制单元60。检测单元50设置于箱体10内,检测单元50用于检测预设气体的浓度。控制单元60与检测单元50以及处理装置30电连接,控制单元60用于在排放气体中的预设气体的浓度高于对应的预设值时控制处理装置30释放处理介质。
检测单元50为检测预设气体的浓度的部件,检测单元50可以是具有浓度传感器的装置,也可以是具有光电传感的装置,比如,拉曼分析仪。检测单元50用于检测预设气体的浓度,当然,若预设气体为多种可燃气体的混合可燃气体,检测单元50可以检测各种可燃气体的浓度,在 通过计算分析得到多种可燃气体的混合可燃气的浓度。
检测单元50用于根据检测单元50的检测结果控制处理装置30动作,以使处理装置30在预设气体的浓度高于对应的预设值时释放处理介质,来降低预设气体的浓度。以预设气体为排放气体中所有的可燃气体,且预设值为8.3%为例,当检测单元50检测到所有可燃气体的混合可燃气的浓度高于8.3%时,控制单元60将控制处理装置30释放处理介质。
控制单元60可以设置于箱体10内,也可以设置在箱体10外。控制单元60可以是单片机、PLC(Programmable Logic Controller,可编程逻辑控制器)。
在本实施例中,检测单元50检测到预设气体高于对应的预设值时,控制单元60件控制处理装置30释放处理***,以将预设气体的浓度调整至对应的预设值以下,实现对处理装置30的自动化控制。
在一些实施例中,请继续参照图3,处理装置30可以包括收容部件31和开关单元32。收容部件31内部形成有容纳空间311,容纳空间311用于容纳处理介质。开关单元32与控制单元60电连接,控制单元60用于在排放气体中的预设气体的浓度高于对应的预设值时控制开关单元32打开,以释放处理介质。
收容部件31为提供处理介质的部件,其内部形成有容纳空间311,处理介质容纳于容纳空间311内。收容部件31可以放置于箱体10内,也可以固定于箱体10内。
开关单元32为连通或断开箱体10内部和容纳空间311的部件,控制单元60能够控制开关单元32打开或关闭,当开关单元32打开时,箱体10内部和容纳空间311连通;当开关单元32关闭时,箱体10内部与容纳空间311断开。开关单元32可以是电控开关阀。
在本实施例中,通过控制单元60控制开关单元32打开来释放容纳于收容部件31内部的处理介质,以对箱体10内的排放气体进行处理,处理装置30整体结构简单。
在一些实施例中,电池100还包括泄压机构70,泄压机构70设置于箱体10,泄压机构70与控制单元60电连接。控制单元60用于在排放气体中的预设气体的浓度低于对应的预设值时控制泄压机构70致动,以泄放箱体10内部的压力。通过控制单元60可以实现对设置于箱体10上的泄压机构70的自动控制。
泄压机构70是用于泄放电池单体20内部的压力的部件。泄压机构70能够在控制单元60的控制作用下致动,使得箱体10内部的排放气体能够通过泄压机构70排放至箱体10的外部,以达到泄放电池单体20内部的压力的目的。泄压机构70可以采用诸如防爆阀、防爆片、气阀、泄压阀或开关阀等的形式。本申请中所提到的“致动”是指泄压机构70产生动作或被激活至一定的状态,从而使得电池单体20的内部压力及温度得以被泄放。泄压机构70产生的动作可以包括但不限于:泄压机构70中的至少一部分破裂、破碎、被撕裂等等。以泄压机构70为开关阀为例,控制单元60能够控制泄压机构70打开或关闭,从而使箱体10的内部和外部连通或断开。
在控制单元60控制泄压机构70致动时,控制单元60可以控制泄压机构70处于关闭状态,处理装置30不再向箱体10内释放处理介质。
当处理装置30释放处理介质将预设气体的浓度调整至低于对应的预设值时,控制单元60将控制泄压机构70致动,从而将箱体10内部达到排放要求的排放气体排放至箱体10外,以降低箱体10内部的压力。当然,由于排放至箱体10外部的预设气体的浓度低于预设值以下,不易燃烧,保证了电池100的安全性。
在一些实施例中,请参照图5,图5为图4所示的箱体10的结构示意图。电池100还包括泄压机构70,泄压机构70用于致动后泄放箱体10内部的压力。箱体10包括分隔的第一空间13和第二空间14,第一空间13用于容纳电池单体20,第二空间14用于容纳排放气体,泄压机构70被配置为致动后连通箱体10外部和第二空间14。
在本实施例中,电池100中可以设置检测单元50和控制单元60,也可以不设置检测单元50和控制单元60。若电池100中设置有检测单元50和控制单元60,泄压机构70为主动致动。若 电池100中未设置检测单元50和控制单元60,泄压机构70为被动致动,比如,在箱体10的内部压力达到阈值时,泄压机构70被动致动,以达到泄放箱体10内部的压力的目的。
在箱体10包括第一部分11和第二部分12的实施例中,第一空间13和第二空间14的排布方向可以与第一部分11和第二部分12的排布方向一致,第一空间13和第二空间14的排布方向也可以与第一部分11和第二部分12的排布垂直。示例性的,在图5中,第一空间13和第二空间14的排布方向可以与第一部分11和第二部分12的排布方向一致。
示例性的,第一空间13的容积大于第二空间14的容积。
箱体10彼此分隔的第一空间13和第二空间14分别用于容纳电池单体20和排放气体,使得电池单体20和排放气体彼此隔离,降低排放气体对电池单体20的影响,进一步提高安全性。
在一些实施例中,请继续参照图3,电池单体20具有泄压部21,泄压部21朝向第二空间14设置。
泄压部21是用于泄放电池单体20内部的压力的部件。当电池单体20热失控时,电池单体20将通过泄压部21向外排放排放气体。泄压部21可以是电池单体20的外壳上的薄弱区域,也可以是设置在外壳上的泄压元件,泄压元件可以采用诸如防爆阀、防爆片、气阀、泄压阀或开关阀等的形式。其中,外壳为电池单体20用于容纳电极组件的部件。
在本实施例中,电池单体20的泄压部21朝向第二空间14设置,使得电池单体20热失控时排出的排放气体能够更容易进入到第二空间14。
在一些实施例中,请继续参照图3和图5,第一空间13和第二空间14通过分隔件15分隔,分隔件15设置有通道151,通道151连通第一空间13和第二空间14。
分隔件15为将第一空间13和第二空间14分隔的部件,分隔件15可以是固定于箱体10内部的平板结构。在箱体10包括第一部分11和第二部分12的实施例中,第一部分11可以设置于第二部分12的底部,分隔件15可以固定于第一部分11内,泄压机构70可以设置于第一部分11。
通道151可以与电池单体20一一对应。通道151可以沿直线延伸,也可以沿非直线延伸,比如,通道151沿弯折线延伸。示例性的,在图3和图5中,通道151为沿分隔件15的厚度延伸的直线通道151,通道151贯穿分隔件15沿厚度方向的两表面,从而连通第一空间13和第二空间14。
示例性的,分隔件15用于支撑电池单体20,分隔件15被配置为管理电池单体20的温度的热管理部件。
在本实施例中,第一空间13和第二空间14处于连通状态,电池单体20热失控时排出的排放气体能够通过通道151进入到第二空间14内。
在一些实施例中,请继续参照图3,电池单体20具有泄压部21,泄压部21位于通道151沿贯通方向Y的一端并朝向通道151设置。
以通道151为沿分隔件15的厚度方向延伸的直线通道151为例,通道151的贯通方向Y即为通道151的延伸方向,也可以理解为分隔件15的厚度方向。
在本实施例中,泄压部21位于通道151沿贯通方向Y的一端并朝向通道151设置,电池单体20热失控时排出的排放气体能够直接进入到通道151内,使得排放气体更为快速地进入到第二空间14内。
在一些实施例中,请参照图6和图7,图6为本申请另一些实施例提供的电池100的结构示意图,图7为图6所示的电池100的A处的局部放大图。处理装置30包括分隔件15,分隔件15设置有内腔152,内腔152用于容纳处理介质,通道151的侧壁设置有开关部153,开关部153被配置为打开时允许内腔152中的处理介质经由开关部153流出。
分隔件15可以作为处理装置30的一部分,分隔件15既作为分隔第一空间13和第二空间 14的分隔部件,又作为用于提供处理介质的处理部件。
内腔152为分隔件15的内部空间,用于容纳处理介质。分隔件15内部的内腔152可以是一个也可以是多个。内腔152与通道151可以一一对应设置,即一个内腔152内的处理介质对应流向一个通道151内;一个内腔152也可以对应多个通道151设置,即一个内腔152内的处理介质对应流向多个通道151内。
开关部153是用于连通或断开内腔152和通道151的部件,开关部153打开后,内腔152中的处理介质经由开关部153流出至通道151内。
在处理装置30受控制单元60控制而释放处理介质的实施例中,控制单元60可以与开关部153电连接,通过控制单元60控制开关部153打开或关闭。
在排放气体通过通道151进入到第二空间14内的过程中,可以通过开关部153释放内腔152中的处理介质,更快地降低排放气体中的预设气体的浓度。
在一些实施例中,如图7所示,开关部153为喷嘴,喷嘴的喷射方向X与通道151的贯通方向Y相交。
喷嘴的喷射方向X和通道151的贯通方向Y互不平行,两者可以呈夹角设置。通道151的贯通方向Y与电池单体20排放的排放气体在通道151内的流动方向一致。在图7中喷嘴的喷射方向X与通道151的贯通方向Y垂直。
示例性的,喷嘴带有开关阀,控制单元60控制开关阀则可以实现喷嘴打开或关闭,以使内腔152内的处理介质通过喷嘴喷出。
在本实施例中,喷嘴的喷射方向X与通道151的贯通方向Y相交,从喷嘴喷射出的处理介质能够更为充分地与排放气体混合,对排放气体的处理效果更佳,更快地降低排放气体中的预设气体的浓度。当然,若喷嘴的喷射方向X与通道151的贯通方向Y垂直,能够进一步提升喷嘴喷射出的处理介质对排放气体的处理效果。
在其他实施例中,开关部153还可以是其他结构,比如,分隔件15设置有连接内腔152和通道151的第一连接通道,开关部153封闭第一连接通道,开关部153为热敏材料。当温度达到开关部153的熔点时,开关部153部分或全部熔化,从而打开第一连接通道,进而连通内腔152和通道151。
在一些实施例中,请参照图8,图8为本申请又一些实施例提供的电池100的结构示意图。第一空间13和第二空间14通过分隔件15分隔,分隔件15设置有开关机构154,开关机构154被配置为连通或断开第一空间13和第二空间14。
开关机构154是连通或断开第一空间13和第二空间14的部件。开关机构154打开后,第一空间13和第二空间14处于连通状态,电池单体20排放至第一空间13内的排放气体可以通过开关机构154进入到第二空间14内。
分隔件15上的开关机构154可以是一个,也可以是多个。示例性的,分隔件15上设置有多个开关机构154,开关机构154与电池单体20一一对应。
通过在分隔件15上设置开关机构154能够实现第一空间13和第二空间14连通或断开。在正常工作环境中,可使开关机构154处于关闭状态,使得第一空间13和第二空间14彼此独立;当电池单体20热失控时,可使开关机构154处于打开状态,使得第一空间13和第二空间14彼此连通,排放气体能够从第一空间13进入到第二空间14内。
在一些实施例中,请参照图8,开关机构154为薄弱部,薄弱部被配置为被排放气体破坏后连通第一空间13和第二空间14。
薄弱部为分隔件15上厚度较其他区域更薄的部分。薄弱部在排放气体的作用下可以以破裂、脱落、熔化等方式连通第一空间13和第二空间14。
在本实施例中,开关机构154能够在排放气体的作用下被动打开,结构简单,具有很好的 经济性。
在其他实施中,开关机构154也可以是其他结构,比如,开关机构154为设置于分隔件15上的开关阀。在电池100中设置有用于控制处理装置30的控制单元60的实施例中,开关机构154可以与控制单元60电连接,通过控制单元60打开或关闭开关机构154。
在一些实施例中,请参照图8,处理装置30设置于第二空间14内。
在处理装置30包括收容部件31和开关单元32的实施例中,控制单元60、检测单元50、收容部件31和开关单元32均可以设置于第二空间14内。
在本实施例中,处理装置30设置于第二空间14内,排放气体进入到第二空间14后,处理装置30能够对第二空间14内的排放气体进行处理,从而降低排放气体中的预设气体的浓度。
在一些实施例中,请参照图9,图9为本申请再一些实施例提供的电池100的结构示意图。电池单体20具有泄压部21。处理装置30包括支撑件33,支撑件33用于支撑电池单体20,支撑件33面向电池单体20的一侧设置有避让腔331,避让腔331用于避让泄压部21,避让腔331容纳有处理介质。
支撑件33为位于电池单体20的底部,对电池单体20起到支撑作用的部件。在箱体10内设置有分隔件15,以将箱体10内部空间分隔为第一空间13和第二空间14的实施例中,分隔件15可以作为支撑电池单体20的支撑件33。
支撑件33可以是板状结构,避让腔331可以是设置于支撑件33面向电池单体20的表面的凹槽。在箱体10内的电池单体20为多个的实施例中,可以是多个电池单体20共同一个避让腔331,也可以是一个电池单体20对应设置一个避让腔331。示例性的,在图9中,多个电池单体20共用一个避让腔331。
示例性的,容纳于避让腔331内的处理介质可以是固态相变材料、氧化剂、氧化剂和催化剂混合物等。
在本实施例中,支撑件33用于避让电池单体20的泄压部21的避让腔331内设置有处理介质,从泄压部21排放出的排放气体能够直接流向处理介质,进而通过处理介质快速地降低排放气体中的预设气体的浓度。
在一些实施例中,请参照图10和图11,图10为本申请一些实施例提供的电池单体20与支撑件33的***图;图11为图10所示的支撑件33的结构示意图。电池单体20具有泄压部21。处理装置30包括支撑件33,支撑件33用于支撑电池单体20,支撑件33面向电池单体20的一侧设置有避让腔331,避让腔331用于避让泄压部21,避让腔331设置有触发机构332,支撑件33的内部设置有容纳腔,容纳腔用于容纳处理介质,触发机构332被配置为触发后能够允许容纳腔内的处理介质经由触发机构332排出。
触发机构332有多种触发方式。比如,触发机构332由电池单体20热失控时排放的排放气体触发;再如,触发机构332由电池单体20的电压或电流触发,当电池单体20的电压或电流达到阈值时,触发机构332被触发。
电池单体20热失控时,电池单体20内部的排放气体将通过泄压部21排至避让腔331内,由于触发机构332设置避让腔331,触发机构332被触发后,经触发机构332排出的处理介质能够与位于避让腔331内的排放气体充分混合,从而快速地降低排放气体中的预设气体的浓度。
在一些实施例中,触发机构332被配置为能够由排放气体触发。
触发机构332可以是多种结构。比如,支撑件33作为收容部件31,触发机构332作为开关单元32,控制单元60控制触发机构332,通过检测单元50检测预设气体的浓度来触发触发机构332。再如,支撑件33上设置有连接避让腔331和容纳腔的第二连接通道,触发机构332封闭第二连接通道,触发机构332为热敏材料,当排放气体使箱体10内部温度达到触发机构332的熔点时,触发机构332部分或全部熔化,使得处理介质能够由触发机构332排出至避让腔331内。上述结构的触发机构332均由排放气体触发。
在正常工作环境中,触发机构332处于未被触发的状态,容纳于容纳腔内的处理介质并不会排出;当电池单体20热失控时,触发机构332能够被电池单体20排放的排放气体触发,从而使处理介质及时排出,以降低排放气体中的预设气体的浓度。
在一些实施例中,支撑件33被配置为热管理部件。
热管理部件用于容纳流体,以给电池单体20调节温度,流体可以是超纯水、氟化液、水冷液等。热管理部件可以是冷却电池单体20的冷却部件,也可以是给电池单体20加热的加热部件。热管理部件内部设置有用于供流体流动的流道。在支撑件33内部设置有用于容纳处理介质的容纳腔的实施例中,流道与容纳彼此独立互不连通。
在本实施例中,支撑件33既具有管理电池单体20的温度的能力,又具有降低排放气体中的预设气体的浓度的能力。
本申请实施例还提供一种用电设备,包括上述任意一个实施例提供的电池100。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
以上实施例仅用以说明本申请的技术方案,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (21)

  1. 一种电池,包括:
    箱体;
    电池单体及处理装置,容纳于所述箱体内,所述处理装置用于处理所述电池单体排放至箱体内的排放气体,以将所述排放气体中的预设气体的浓度调整至对应的预设值以下,所述预设气体为一种或多种混合的可燃气体。
  2. 根据权利要求1所述的电池,其中,所述预设气体为电解液蒸汽,所述预设值为3.6%。
  3. 根据权利要求1所述的电池,其中,所述预设气体为H 2、CO及烷烃混合的可燃气体,所述预设值为7.6%。
  4. 根据权利要求1所述的电池,其中,所述预设气体为所述排放气体中所有的可燃气体,所述预设值为8.3%。
  5. 根据权利要求1-4中任一项所述的电池,其中,所述电池还包括:
    检测单元,设置于所述箱体内,所述检测单元用于检测所述预设气体的浓度;
    控制单元,与所述检测单元以及处理装置电连接,所述控制单元用于在所述预设气体的浓度高于对应的预设值时控制所述处理装置释放处理介质。
  6. 根据权利要求5所述的电池,其中,所述处理装置包括:
    收容部件,内部形成有容纳空间,所述容纳空间用于容纳所述处理介质;
    开关单元,与所述控制单元电连接,所述控制单元用于在所述预设气体的浓度高于对应的预设值时控制所述开关单元打开,以释放所述处理介质。
  7. 根据权利要求5或6所述的电池,其中,所述电池还包括:
    泄压机构,设置于所述箱体,所述泄压机构与所述控制单元电连接;
    所述控制单元用于在所述预设气体的浓度低于对应的预设值时控制所述泄压机构致动,以泄放所述箱体内部的压力。
  8. 根据权利要求1-7任一项所述的电池,其中,所述电池还包括泄压机构,所述泄压机构用于致动后泄放所述箱体内部的压力;
    所述箱体包括分隔的第一空间和第二空间,所述第一空间用于容纳所述电池单体,所述第二空间用于容纳所述排放气体,所述泄压机构被配置为致动后连通所述箱体外部和所述第二空间。
  9. 根据权利要求8所述的电池,其中,所述电池单体具有泄压部,所述泄压部朝向所述第二空间设置。
  10. 根据权利要求8或9所述的电池,其中,所述第一空间和所述第二空间通过分隔件分隔,所述分隔件设置有通道,所述通道连通所述第一空间和所述第二空间。
  11. 根据权利要求10所述的电池,其中,所述电池单体具有泄压部,所述泄压部位于所述通道沿贯通方向的一端并朝向所述通道设置。
  12. 根据权利要求11所述的电池,其中,所述处理装置包括所述分隔件,所述分隔件设置有内腔,所述内腔用于容纳处理介质,所述通道的侧壁设置有开关部,所述开关部被配置为打开时允许所述内腔中的所述处理介质经由所述开关部排出。
  13. 根据权利要求12所述的电池,其中,所述开关部为喷嘴,所述喷嘴的喷射方向与所述通道的贯通方向相交。
  14. 根据权利要求8或9所述的电池,其中,所述第一空间和所述第二空间通过分隔件分隔,所述分隔件设置有开关机构,所述开关机构被配置为连通或断开所述第一空间和所述第二空间。
  15. 根据权利要求14所述的电池,其中,所述开关机构为薄弱部,所述薄弱部被配置为被所述排放气体破坏后连通所述第一空间和所述第二空间。
  16. 根据权利要求8或9所述的电池,其中,所述处理装置设置于所述第二空间内。
  17. 根据权利要求1-16任一项所述的电池,其中,所述电池单体具有泄压部;
    所述处理装置包括支撑件,所述支撑件用于支撑所述电池单体,所述支撑件面向所述电池单体的一侧设置有避让腔,所述避让腔用于避让所述泄压部,所述避让腔容纳有处理介质。
  18. 根据权利要求1-16任一项所述的电池,其中,所述电池单体具有泄压部;
    所述处理装置包括支撑件,所述支撑件用于支撑所述电池单体,所述支撑件面向所述电池单体 的一侧设置有避让腔,所述避让腔用于避让所述泄压部;
    所述避让腔设置有触发机构,所述支撑件的内部设置有容纳腔,所述容纳腔用于容纳处理介质,所述触发机构被配置为触发后能够允许所述容纳腔内的处理介质经由所述触发机构排出。
  19. 根据权利要求18所述的电池,其中,所述触发机构被配置为能够由所述排放气体触发。
  20. 根据权利要求17-19任一项所述的电池,其中,所述支撑件被配置为热管理部件。
  21. 一种用电设备,包括根据权利要求1-20任一项所述的电池。
PCT/CN2022/106729 2022-07-20 2022-07-20 电池及用电设备 WO2024016212A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/106729 WO2024016212A1 (zh) 2022-07-20 2022-07-20 电池及用电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/106729 WO2024016212A1 (zh) 2022-07-20 2022-07-20 电池及用电设备

Publications (1)

Publication Number Publication Date
WO2024016212A1 true WO2024016212A1 (zh) 2024-01-25

Family

ID=89616785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106729 WO2024016212A1 (zh) 2022-07-20 2022-07-20 电池及用电设备

Country Status (1)

Country Link
WO (1) WO2024016212A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209401662U (zh) * 2019-03-28 2019-09-17 宁德时代新能源科技股份有限公司 电池包
CN110890602A (zh) * 2019-10-24 2020-03-17 清华大学 电池
CN214428736U (zh) * 2020-10-30 2021-10-19 华瑞矿业科技有限公司 防爆电池电源
CN113629349A (zh) * 2021-08-03 2021-11-09 陕西奥林波斯电力能源有限责任公司 一种大容量电池的安全结构
CN114175365A (zh) * 2020-07-10 2022-03-11 宁德时代新能源科技股份有限公司 电池及其相关装置、制备方法和制备设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209401662U (zh) * 2019-03-28 2019-09-17 宁德时代新能源科技股份有限公司 电池包
CN110890602A (zh) * 2019-10-24 2020-03-17 清华大学 电池
CN114175365A (zh) * 2020-07-10 2022-03-11 宁德时代新能源科技股份有限公司 电池及其相关装置、制备方法和制备设备
CN214428736U (zh) * 2020-10-30 2021-10-19 华瑞矿业科技有限公司 防爆电池电源
CN113629349A (zh) * 2021-08-03 2021-11-09 陕西奥林波斯电力能源有限责任公司 一种大容量电池的安全结构

Similar Documents

Publication Publication Date Title
CN112018299B (zh) 箱体、电池及装置
WO2012014348A1 (ja) 電池モジュール及び電池パック
WO2023004723A1 (zh) 电池单体及其制造方法和制造***、电池以及用电装置
WO2023098258A1 (zh) 电池单体、电池以及用电装置
WO2024077789A1 (zh) 电池及用电装置
US20230231260A1 (en) Battery housing, battery, electrical apparatus, method and device for manufacturing battery
US20240033549A1 (en) Fire-fighting apparatus, box assembly, battery, power consumption apparatus, and method for preparing battery
WO2023141774A1 (zh) 电池、用电设备、制造电池的方法和设备
JP2023522801A (ja) 電池の筐体、電池、電力消費機器、筐体の製造方法及び装置
KR20220104219A (ko) 배터리, 장치, 배터리 제조 방법 및 배터리 제조 장치
KR20220107025A (ko) 배터리, 장치, 배터리 제조 방법 및 배터리 제조 장치
US20230282918A1 (en) Box, battery, electrical device and method for manufacturing battery
JP2024505294A (ja) 電池、電力消費装置、電池の製造方法と装置
US20230268608A1 (en) Battery cell, battery, and electric apparatus
WO2024016212A1 (zh) 电池及用电设备
WO2023133722A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2023193334A1 (zh) 电池和用电设备
WO2023004660A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023004722A1 (zh) 电池单体及其制造方法和制造***、电池以及用电装置
JP2023534700A (ja) 電池、電力消費装置、電池の製造方法及びその装置
CN218793631U (zh) 消防构件、箱体、电池以及用电装置
WO2024045052A1 (zh) 电池以及用电装置
WO2023155147A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2024020948A1 (zh) 电池以及用电装置
CN219739171U (zh) 电池、用电装置及储能设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951490

Country of ref document: EP

Kind code of ref document: A1