WO2023004660A1 - 电池、用电装置、制备电池的方法和装置 - Google Patents

电池、用电装置、制备电池的方法和装置 Download PDF

Info

Publication number
WO2023004660A1
WO2023004660A1 PCT/CN2021/109128 CN2021109128W WO2023004660A1 WO 2023004660 A1 WO2023004660 A1 WO 2023004660A1 CN 2021109128 W CN2021109128 W CN 2021109128W WO 2023004660 A1 WO2023004660 A1 WO 2023004660A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
pressure relief
management component
relief mechanism
auxiliary substance
Prior art date
Application number
PCT/CN2021/109128
Other languages
English (en)
French (fr)
Inventor
杨飘飘
李耀
陈小波
顾明光
黎贤达
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to JP2023506041A priority Critical patent/JP2023541780A/ja
Priority to CN202180006698.6A priority patent/CN115885410A/zh
Priority to PCT/CN2021/109128 priority patent/WO2023004660A1/zh
Priority to KR1020237002874A priority patent/KR20230028505A/ko
Priority to EP21951113.6A priority patent/EP4178021A4/en
Publication of WO2023004660A1 publication Critical patent/WO2023004660A1/zh
Priority to US18/344,870 priority patent/US20230344033A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/6595Means for temperature control structurally associated with the cells by chemical reactions other than electrochemical reactions of the cells, e.g. catalytic heaters or burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/375Vent means sensitive to or responsive to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of batteries, in particular to a battery, an electrical device, a method and a device for preparing the battery.
  • Energy saving and emission reduction is the key to the sustainable development of the automobile industry.
  • electric vehicles have become an important part of the sustainable development of the automobile industry due to their advantages in energy saving and environmental protection.
  • battery technology is an important factor related to its development.
  • the present application provides a battery, an electrical device, a method and a device for preparing the battery, which can enhance the safety of the battery.
  • a battery including: a plurality of battery cells, the first wall of the battery cells is provided with a pressure relief mechanism, and the pressure relief mechanism is used for internal pressure of the battery cells or actuated when the temperature reaches a threshold value to release the internal pressure; a thermal management component is used to contain fluid to regulate the temperature of the battery cell; wherein the first surface of the thermal management component is attached to the first A wall, the first surface is provided with an escape area corresponding to the pressure relief mechanism, and the escape area is used to provide a deformation space for the pressure relief mechanism when the pressure relief mechanism is actuated, the A destroying auxiliary substance is provided in the avoidance area, and the destroying assisting substance is used for assisting in destroying the thermal management component when the pressure relief mechanism is actuated, so that the fluid is discharged from the interior of the thermal management component.
  • a thermal management component is provided under the plurality of battery cells, and an avoidance area corresponding to the pressure relief mechanism is provided on the first surface of the thermal management member, and a destruction auxiliary device is provided in the avoidance area.
  • the pressure relief mechanism is actuated, and the destruction auxiliary substance can assist the discharge discharged from the battery cell to destroy the thermal management component, so that the thermal management component can be destroyed more easily, thereby making the
  • the internal fluid is discharged from the thermal management components in time, and the temperature is lowered in time, especially the temperature of the thermal runaway battery cell, thereby reducing the risk of thermal diffusion inside the battery, which can not only reduce economic losses, but also protect people's lives.
  • the destruction assisting substance is used to release oxygen under the action of exhaust from the battery cell upon actuation of the pressure relief mechanism.
  • the destruction auxiliary substance can release oxygen under the action of the exhaust, it can intensify the combustion of the thermally runaway battery cells, quickly reach the melting temperature of the thermal management component and break through the thermal management component to the greatest extent, thereby cooling down in time.
  • the destruction aid substance includes at least one of the following: zinc sulfate, potassium permanganate, and potassium chlorate.
  • the destruction assisting substance is used to release heat under the action of exhaust from the battery cells upon actuation of the pressure relief mechanism.
  • the destruction auxiliary substance When the destruction auxiliary substance releases heat under the action of the discharge, it can accelerate the melting of the thermal management component, and then destroy the thermal management component in a larger area, thereby achieving a cooling effect.
  • the destruction assisting substance includes at least one of the following: iron oxide, ferric oxide, manganese dioxide, vanadium pentoxide and chromium oxide.
  • the destruction auxiliary substance can be set based on the aluminothermic reaction.
  • the avoidance area is a through hole on the thermal management component.
  • the discharge discharged through the pressure relief mechanism can be quickly discharged through the through hole, and the internal pressure of the thermally runaway battery cell can be released more quickly.
  • the destruction auxiliary substance is disposed on a sidewall of the through hole.
  • the avoidance area is a first groove on the thermal management component.
  • the destruction aid substance is disposed on a sidewall of the first groove.
  • the thickness of the destruction auxiliary substance ranges from 3 mm to 10 mm.
  • the destruction aid substance is disposed on the bottom wall of the first groove.
  • the thickness of the destruction aid substance is less than or equal to 2mm.
  • a second groove is disposed on the bottom wall of the first groove, and the destruction auxiliary substance is disposed on the bottom wall of the second groove.
  • the thickness of the destroying auxiliary substance is less than or equal to the depth of the second groove.
  • the destruction aid substance is wrapped in an encapsulation film.
  • the packaging film is glued and fixed in the avoidance area.
  • the destruction aid substance is in powder form.
  • the packaging film is aluminum-plastic film, PP film or PC film.
  • the material of the thermal management component is aluminum.
  • the thermal management component includes a first heat conduction plate and a second heat conduction plate, the first heat conduction plate is located between the first wall and the second heat conduction plate and is attached to the first heat conduction plate A wall, the first area of the first heat conduction plate has a through hole, the second area of the second heat conduction plate corresponds to the first area, and the second area protrudes away from the first heat conduction plate out to form the avoidance area.
  • the thermal management component includes a first heat conduction plate and a second heat conduction plate, the first heat conduction plate is located between the first wall and the second heat conduction plate and is attached to the first heat conduction plate A wall, the first area of the first heat conduction plate is provided with a third groove, the third groove is the avoidance area, and the second area of the second heat conduction plate corresponds to the first area, so The second area is provided with a fourth groove, the third groove is located in the fourth groove, and a flow channel is formed between the side wall of the third groove and the side wall of the fourth groove , to contain the fluid.
  • an electrical device including: the battery in the first aspect, configured to provide electrical energy.
  • the electrical device is a vehicle, ship or spacecraft.
  • a method for preparing a battery comprising: providing a plurality of battery cells, the first wall of the battery cells is provided with a pressure relief mechanism, and the pressure relief mechanism is used for Activated when the internal pressure or temperature of the battery reaches a threshold value to release the internal pressure; providing a thermal management component for containing fluid to regulate the temperature of the battery cell; wherein the thermal management component The first surface of the first surface is attached to the first wall, and the first surface is provided with an avoidance area corresponding to the pressure relief mechanism, and the avoidance area is used for the pressure relief mechanism when the pressure relief mechanism is actuated.
  • the pressure relief mechanism provides a deformation space, and a destruction auxiliary substance is provided in the avoidance area, and the destruction auxiliary substance is used to assist in destroying the heat management component when the pressure relief mechanism is activated, so that the fluid is released from internal exhaust of the thermal management components.
  • a device for preparing a battery including a module for performing the method of the third aspect above.
  • Fig. 1 is a schematic structural view of a vehicle disclosed in an embodiment of the present application
  • Fig. 2 is a schematic diagram of an exploded structure of a battery disclosed in an embodiment of the present application
  • Fig. 3 is a schematic diagram of a partial structure of a battery module disclosed in an embodiment of the present application.
  • Fig. 4 is an exploded view of a battery cell disclosed in an embodiment of the present application.
  • Fig. 5 is a schematic diagram of an exploded structure of another battery disclosed in an embodiment of the present application.
  • Fig. 6 is a side view of a battery cell and a heat management component disclosed in an embodiment of the present application
  • Fig. 7 is an exploded view of a thermal management component disclosed in an embodiment of the present application.
  • Fig. 8 is an exploded view of another thermal management component disclosed in an embodiment of the present application.
  • Fig. 9 is a cross-sectional view of a thermal management component disclosed in an embodiment of the present application.
  • Fig. 10 is an exploded view of another thermal management component disclosed in an embodiment of the present application.
  • Fig. 11 is a cross-sectional view of a battery cell and a thermal management component disclosed in an embodiment of the present application;
  • Figure 12 is a partially enlarged view of Figure 11;
  • Fig. 13 is a cross-sectional view of another battery cell and thermal management components disclosed in an embodiment of the present application.
  • Figure 14 is a partially enlarged view of Figure 13;
  • Fig. 15 is a cross-sectional view of another battery cell and thermal management components disclosed in an embodiment of the present application.
  • Figure 16 is a partially enlarged view of Figure 15;
  • Fig. 17 is a schematic flow chart of a method for preparing a battery disclosed in an embodiment of the present application.
  • Fig. 18 is a schematic block diagram of a device for preparing a battery disclosed in an embodiment of the present application.
  • a battery cell may include a primary battery or a secondary battery, such as a lithium-ion battery, a lithium-sulfur battery, a sodium-lithium-ion battery, a sodium-ion battery, or a magnesium-ion battery, which is not limited in this embodiment of the application.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the batteries mentioned in this application may include battery modules or battery packs.
  • a battery pack generally includes a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly includes a positive electrode sheet, a negative electrode sheet, and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative plates.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the current collector without the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the current collector coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of negative electrode current collector can be copper, and negative electrode active material can be carbon or silicon etc.
  • the material of the isolation film can be PP or PE.
  • the electrode assembly may be a wound structure or a laminated structure, which is not limited in the embodiment of the present application.
  • a pressure relief mechanism is generally installed on the battery cell.
  • the pressure relief mechanism refers to an element or part that is activated to release the internal pressure or temperature when the internal pressure or temperature of the battery cell reaches a predetermined threshold.
  • the predetermined threshold can be adjusted according to different design requirements.
  • the predetermined threshold may depend on the materials of one or more of the positive electrode sheet, the negative electrode sheet, the electrolyte and the separator in the battery cell.
  • the pressure relief mechanism can adopt elements or components that are sensitive to pressure or temperature, that is, when the internal pressure or temperature of the battery cell reaches a predetermined threshold, the pressure relief mechanism is actuated, thereby forming a pressure-sensitive or temperature-sensitive pressure relief mechanism. aisle.
  • the "actuation" mentioned in this application refers to the action of the pressure relief mechanism, so that the internal pressure and temperature of the battery cells can be released. Actions by the pressure relief mechanism may include, but are not limited to, at least a portion of the pressure relief mechanism rupture, be torn, or melt, among others. After the pressure relief mechanism is actuated, the high temperature and high pressure material inside the battery cell will be discharged from the pressure relief mechanism as discharge. In this way, the battery cells can be depressurized under controllable pressure or temperature, thereby avoiding potential more serious accidents.
  • the emissions from battery cells mentioned in this application include, but are not limited to: electrolytes, dissolved or split positive and negative electrodes, fragments of separators, high-temperature and high-pressure gases generated by reactions, flames, etc.
  • the pressure relief mechanism on the battery cell has an important impact on the safety of the battery. For example, when a battery cell is short-circuited or overcharged, it may cause thermal runaway inside the battery cell, resulting in a sudden increase in pressure or temperature. In this case, the internal pressure and temperature can be released to the outside through the actuation of the pressure relief mechanism, so as to prevent the battery cells from exploding and igniting.
  • the current flow component is used to realize the electrical connection between a plurality of battery cells, such as parallel connection, series connection or mixed connection.
  • the bus component can realize the electrical connection between the battery cells by connecting the electrode terminals of the battery cells.
  • the bus member may be fixed to the electrode terminal of the battery cell by welding.
  • the electrical connection formed by the flow-combining component may also be referred to as a "high-voltage connection”.
  • Emissions from the interior of a battery cell have the potential to short-circuit the rest of the battery cells, for example, when discharged metal shavings electrically connect two bus components, causing a short-circuit in the battery, posing a safety hazard.
  • high-temperature and high-pressure discharges are discharged toward the direction in which the battery cell is provided with a pressure relief mechanism, and more specifically, toward the area where the pressure relief mechanism is actuated. Such discharges may be very powerful and destructive, It may even be enough to breach one or more structures in that direction, causing further safety concerns.
  • a thermal management component can be provided in the battery, the surface of the thermal management component is attached to the surface of the battery cell provided with the pressure relief mechanism, and the thermal management component can also be provided with an escape area, the escape area A deformation space may be provided for the pressure relief mechanism when the pressure relief mechanism is actuated.
  • the thermal management component is used to contain a fluid to regulate the temperature of the plurality of battery cells.
  • the fluid here can be liquid or gas, and regulating temperature refers to heating or cooling multiple battery cells.
  • the thermal management component is used to contain cooling fluid to lower the temperature of multiple battery cells.
  • the thermal management component can also be called a cooling component, a cooling system or a cooling plate, etc.
  • the fluid it contains can also be called cooling medium or cooling fluid, more specifically, it can be called cooling liquid or cooling gas.
  • the thermal management component can also be used for heating to raise the temperature of multiple battery cells, which is not limited in this embodiment of the present application.
  • the fluid may circulate in order to achieve a better effect of temperature regulation.
  • the fluid may be water, a mixture of water and glycol, or air.
  • the avoidance area provides a deformation space for the pressure relief mechanism, which can make the pressure relief mechanism open smoothly to release the discharge in the battery cell; and, since the heat management component contains fluid , the fluid can also cool the battery cell to prevent the battery cell from exploding, for example, discharges within the battery cell may damage thermal management components, allowing the fluid inside to flow out to cool the battery cell.
  • the discharge discharged from the battery cell can damage the thermal management component, so that the fluid in the thermal management component can flow out to achieve the effect of extinguishing the fire and cooling down.
  • the avoidance area of the heat management component in the example is provided with an auxiliary destroying substance, and the auxiliary destroying substance can assist in destroying the heat management component when the pressure relief mechanism is actuated.
  • batteries such as mobile phones, portable devices, notebook computers, battery cars, electric toys, electric tools, electric vehicles, ships and spacecraft, etc.
  • spacecraft include Airplanes, rockets, space shuttles and spaceships, etc.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or Extended range cars, etc.
  • a motor 40 , a controller 30 and a battery 10 can be arranged inside the vehicle 1 , and the controller 30 is used to control the battery 10 to supply power to the motor 40 .
  • the battery 10 may be provided at the bottom or the front or the rear of the vehicle 1 .
  • the battery 10 can be used for power supply of the vehicle 1 , for example, the battery 10 can be used as an operating power source of the vehicle 1 , for a circuit system of the vehicle 1 , for example, for starting, navigating and running power requirements of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source for the vehicle 1 , but can also be used as a driving power source for the vehicle 1 , replacing or partially replacing fuel oil or natural gas to provide driving power for the vehicle 1 .
  • the battery may include multiple battery cells, wherein the multiple battery cells may be connected in series, in parallel or in parallel, and the hybrid connection refers to a mixture of series and parallel connections. Batteries can also be called battery packs.
  • multiple battery cells can be connected in series, parallel or mixed to form a battery module, and then multiple battery modules can be connected in series, parallel or mixed to form a battery. That is to say, multiple battery cells can directly form a battery, or form a battery module first, and then form a battery from the battery module.
  • the battery 10 may include at least one battery module 200 .
  • the battery module 200 includes a plurality of battery cells 20 .
  • the battery 10 can also include a box body, the inside of which is a hollow structure, and a plurality of battery cells 20 are accommodated in the box body.
  • the box body may include two parts, referred to here as a first part 111 and a second part 112 respectively, and the first part 111 and the second part 112 are fastened together.
  • the shapes of the first part 111 and the second part 112 can be determined according to the combined shape of the battery module 200 , and at least one of the first part 111 and the second part 112 has an opening.
  • the first part 111 and the second part 112 can be hollow cuboids and only one face is an open face, the opening of the first part 111 and the opening of the second part 112 are arranged oppositely, and the first part 111 Interlock with the second part 112 to form a box with a closed chamber.
  • only one of the first part 111 and the second part 112 may be a hollow cuboid with an opening, while the other may be a plate to cover the opening.
  • the second part 112 is a hollow cuboid with only one face as an open face
  • the first part 111 is a plate-shaped example, so the first part 111 is covered at the opening of the second part 112 to form a box with a closed chamber , the cavity can be used to accommodate a plurality of battery cells 20 .
  • a plurality of battery cells 20 are combined in parallel, in series or in parallel and placed in the box formed by fastening the first part 111 and the second part 112 .
  • the battery 10 may also include other structures, which will not be repeated here.
  • the battery 10 may also include a confluence part, which is used to realize electrical connection between a plurality of battery cells 20 , such as parallel connection, series connection or mixed connection.
  • the current-combining component can realize the electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20 .
  • the bus member may be fixed to the electrode terminal of the battery cell 20 by welding. The electric energy of the plurality of battery cells 20 can be further drawn out through the box through the conductive mechanism.
  • the number of battery cells 20 in the battery module 200 can be set to any value.
  • a plurality of battery cells 20 can be connected in series, in parallel or in parallel to achieve greater capacity or power. Since the number of battery cells 20 included in each battery 10 may be large, the battery cells 20 are arranged in groups for ease of installation, and each group of battery cells 20 constitutes a battery module 200 .
  • the number of battery cells 20 included in the battery module 200 is not limited, and can be set according to requirements.
  • FIG. 3 is an example of a battery module 200 .
  • the battery may include multiple battery modules 200, and these battery modules 200 may be connected in series, in parallel or in parallel.
  • FIG. 4 is a schematic structural diagram of a battery cell 20 according to an embodiment of the present application.
  • the battery cell 20 includes one or more electrode assemblies 22 , a casing 211 and a cover plate 212 .
  • the housing 211 and the cover plate 212 form the housing 21 .
  • the walls of the casing 211 and the cover plate 212 are both referred to as walls of the battery cell 20 .
  • the housing 211 depends on the combined shape of one or more electrode assemblies 22.
  • the housing 211 can be a hollow cuboid or cube or cylinder, and one of the surfaces of the housing 211 has an opening so that one or more electrodes Assembly 22 may be placed within housing 211 .
  • the housing 211 when the housing 211 is a hollow cuboid or cube, one of the planes of the housing 211 is an open surface, that is, the plane does not have a wall so that the inside and outside of the housing 211 communicate.
  • the casing 211 can be a hollow cylinder, the end surface of the casing 211 is an open surface, that is, the end surface does not have a wall so that the inside and outside of the casing 211 communicate.
  • the cover plate 212 covers the opening and is connected with the casing 211 to form a closed cavity for placing the electrode assembly 22 .
  • the casing 211 is filled with electrolyte, such as electrolytic solution.
  • the battery cell 20 may further include two electrode terminals 214 , and the two electrode terminals 214 may be disposed on the cover plate 212 .
  • the cover plate 212 is usually in the shape of a flat plate, and two electrode terminals 214 are fixed on the flat surface of the cover plate 212, and the two electrode terminals 214 are respectively a first electrode terminal 214a and a second electrode terminal 214b.
  • the polarities of the two electrode terminals 214 are opposite. For example, when the first electrode terminal 214a is a positive electrode terminal, the second electrode terminal 214b is a negative electrode terminal.
  • Each electrode terminal 214 is correspondingly provided with a connecting member 23, which is located between the cover plate 212 and the electrode assembly 22, and is used for electrically connecting the electrode assembly 22 and the electrode terminal 214.
  • each electrode assembly 22 has a first tab 221a and a second tab 222a.
  • the polarities of the first tab 221a and the second tab 222a are opposite.
  • the first tab 221a is a positive tab
  • the second tab 222a is a negative tab.
  • the first tabs 221a of one or more electrode assemblies 22 are connected to one electrode terminal through one connection member 23
  • the second tabs 222a of one or more electrode assemblies 22 are connected to another electrode terminal through another connection member 23 .
  • the positive electrode terminal 214 a is connected to the positive electrode tab through one connection member 23
  • the negative electrode terminal 214 b is connected to the negative electrode tab through the other connection member 23 .
  • the electrode assembly 22 can be set as single or multiple, as shown in FIG. 4 , four independent electrode assemblies 22 are arranged in the battery cell 20 .
  • a pressure relief mechanism 213 may also be provided on a wall of the battery cell 20 , for example, a pressure relief mechanism 213 may be provided on the first wall 21 a of the battery cell 20 .
  • the first wall 21a in FIG. 4 is separated from the housing 211, that is, the bottom side of the housing 211 has an opening, and the first wall 21a covers the bottom opening and is connected to the housing 211 by welding or gluing.
  • the first wall 21a and the housing 211 may also be an integral structure.
  • the pressure relief mechanism 213 is activated to release the internal pressure or temperature when the internal pressure or temperature of the battery cell 20 reaches a threshold.
  • the pressure relief mechanism 213 may be a part of the first wall 21a, or may be a separate structure from the first wall 21a, and be fixed on the first wall 21a by, for example, welding.
  • the pressure relief mechanism 213 can be formed by setting a notch on the first wall 21a, and the thickness of the first wall 21a corresponding to the notch is smaller than that of the pressure relief mechanism.
  • Mechanism 213 The thickness of other areas except the score.
  • the notch is the weakest position of the pressure relief mechanism 213 .
  • the pressure relief mechanism 213 can A crack occurs at the notch, which leads to communication between the inside and outside of the shell 211 , and the gas pressure and temperature are released outward through the crack of the pressure relief mechanism 213 , thereby preventing the battery cell 20 from exploding.
  • the second wall of the battery cell 20 is provided with electrode terminals. 214.
  • the second wall is different from the first wall 21a.
  • the second wall is disposed opposite to the first wall 21a.
  • the first wall 21 a may be the bottom wall of the battery cell 20
  • the second wall may be the cover plate 212 of the battery cell 20 .
  • Arranging the pressure relief mechanism 213 and the electrode terminal 214 on different walls of the battery cell 20 can make the discharge of the battery cell 20 farther away from the electrode terminal 214 when the pressure relief mechanism 213 is actuated, thereby reducing the impact of the discharge on the electrode.
  • the influence of the terminal 214 and the bus part, therefore, the safety of the battery can be enhanced.
  • the pressure relief mechanism 213 is arranged on the bottom wall of the battery cell 20, so that when the pressure relief mechanism 213 is actuated, the pressure of the battery cell 20 The discharge is discharged to the bottom of the cell 10 .
  • the heat management components at the bottom of the battery 10 can be used to reduce the risk of emissions; on the other hand, when the battery 10 is installed in the vehicle, the bottom of the battery 10 is usually far away from passengers, thereby reducing the hazard to passengers.
  • the pressure relief mechanism 213 may be various possible pressure relief structures, which are not limited in this embodiment of the present application.
  • the pressure relief mechanism 213 may be a temperature-sensitive pressure relief mechanism configured to melt when the internal temperature of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold; and/or, the pressure relief mechanism 213 may be a pressure-sensitive pressure relief mechanism configured to rupture when the internal air pressure of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold value.
  • a thermal management component may be arranged under the battery cells 20 .
  • the thermal management component can be used to contain fluid to regulate the temperature of the battery cell 20, and when the pressure relief mechanism 213 is actuated, the thermal management component can be used for the discharge from the battery cell 20 provided with the pressure relief mechanism 213. Things cool down.
  • FIG. 5 shows another exploded view of the battery 10 according to the embodiment of the present application.
  • the battery 10 includes: a plurality of battery cells 20, wherein any battery cell Body, the first wall 21a of the battery cell 20 is provided with a pressure relief mechanism 213, the pressure relief mechanism 213 is used to activate when the internal pressure or temperature of the battery cell 20 reaches a threshold value, so as to release the internal pressure.
  • any battery cell among the plurality of battery cells 20 may be a battery cell as shown in FIG. The bottom wall of the body 211, but the embodiment of the present application is not limited thereto.
  • the battery 10 further includes: a thermal management component 13 for containing fluid to regulate the temperature of the battery cells 20 .
  • the first surface of the thermal management component 13 is attached to the first wall 21a, and the first surface is provided with an avoidance area 131 corresponding to the pressure relief mechanism 213, and the escape area 131 is used for when the pressure relief mechanism 213 is actuated, A deformation space is provided for the pressure relief mechanism 213 .
  • a destroying auxiliary substance 1311 is also provided in the avoidance area 131 , and the destroying auxiliary substance 1311 is used for assisting in destroying the heat management component 13 when the pressure relief mechanism 213 is actuated, so that the fluid is discharged from the inside of the heat management component 13 .
  • the heat management component 13 is provided under the plurality of battery cells 20 .
  • the first surface of the thermal management component 13 is provided with an avoidance area 131 corresponding to the pressure relief mechanism 213 , and a destruction auxiliary substance 1311 is arranged in the escape area 131 .
  • the pressure relief mechanism 213 is actuated, and the destruction auxiliary substance 1311 can assist the discharge discharged from the battery cell 20 to destroy the thermal management component 13, so that the thermal management component 13 can be more easily is destroyed, and then the internal fluid is discharged from the heat management component 13 in time, and the temperature is lowered in time.
  • reducing the temperature of the thermal runaway battery cells 20 in a timely manner, thereby reducing the risk of thermal diffusion inside the battery 10 can not only reduce economic losses, but also protect people's lives.
  • the destruction auxiliary substance 1311 in the embodiment of the present application can be selected according to the actual application.
  • the destroying auxiliary substance 1311 can be selected to be a substance capable of releasing oxygen under the action of the discharge of the battery cell 20 when the pressure relief mechanism 213 is actuated.
  • the pressure relief mechanism 213 is actuated to release a large amount of heat, and at the same time, combustion may also occur. Therefore, a substance that can react and release oxygen at a high temperature can be selected. , so that the released oxygen promotes the combustion of the thermal runaway battery cells 20 , thereby increasing the temperature of the thermal management component 13 .
  • the local temperature of the avoidance area 131 where the destruction auxiliary substance 1311 is located can be increased, thereby increasing the area of the broken and melted area on the heat management component 13, so that the internal fluid can flow out in time, thereby achieving the cooling effect.
  • the destruction auxiliary substance 1311 may include at least one of the following: zinc sulfate, potassium permanganate and potassium chlorate.
  • the destroying auxiliary substance 1311 can also be a substance that can release heat under the action of the discharge of the battery cell 20 when the pressure relief mechanism 213 is actuated.
  • the destruction auxiliary substance 1311 can be selected based on thermothermic reaction.
  • the destruction auxiliary substance 1311 may include at least one of the following: iron oxide, ferric oxide, manganese dioxide, vanadium pentoxide and chromium oxide, so that aluminum is oxidized into Aluminum oxide can release a large amount of heat, so that the large-area heat management component 13 can be instantly melted at high temperature, so that the internal fluid flowing out can achieve the purpose of local rapid cooling of the battery 10 .
  • the destruction auxiliary substance 1311 in the embodiment of the present application may be in powder form. It should be understood that when the destruction auxiliary substance 1311 is a powdery substance, the destruction auxiliary substance 1311 can be wrapped in a packaging film in order to conveniently arrange it in the avoidance area and to avoid its influence on other components.
  • the packaging film can be selected as aluminum-plastic film, PP film or PC film, or other low-melting point materials can also be selected, and the packaged destruction auxiliary substance 1311 can be pasted and fixed in the avoidance area 131 through the external packaging film, so that The destruction auxiliary substance 1311 is immobilized.
  • Fig. 6 shows a side view of a plurality of battery cells 20 and thermal management components 13 installed in the battery 10 of the embodiment of the present application. Breakdown diagram.
  • the thermal management component 13 of the embodiment of the present application may include a first heat conduction plate 133 and a second heat conduction plate 134 , wherein the first heat conduction plate 133 is located on the first wall 21a and the second wall 21a.
  • the heat conducting plates 134 are between and attached to the first wall 21a.
  • the thermal management component 13 of the embodiment of the present application may be provided with a flow channel 132 for containing fluid.
  • the setting position of the flow channel 132 can be set according to actual application.
  • the flow channel 132 can be arranged around the avoidance area 131 , such as on both sides of the avoidance area 131 , and the flow channel 132 can also be arranged along a plurality of battery cells 20 The arrangement direction extends.
  • the flow channel 132 may be formed by providing a groove on the second heat conducting plate 134 , that is, the second heat conducting plate 134 is provided with a groove opening toward the first heat conducting plate 133 to form the flow channel 132 .
  • the size of the flow channel 132 can be set according to the size of the thermal management component 13 , the battery 10 and the battery cell 20 , but the embodiment of the present application is not limited thereto.
  • the number of avoidance areas 131 of the thermal management component 13 in the embodiment of the present application may be set according to actual applications.
  • any escape area 131 of the thermal management component 13 it may correspond to one or more pressure relief mechanisms 213, and the embodiment of the present application is not limited thereto.
  • the avoidance area 131 in the embodiment of the present application may correspond to the pressure relief mechanism 213 one-to-one, that is, each avoidance area 131 corresponds to one pressure relief mechanism 213 .
  • the size and shape of the avoidance area 131 can be set according to the size and shape of the pressure relief mechanism 213 .
  • the shape of the avoidance area 131 may be consistent with the shape of the pressure relief mechanism 213 , and the area of the avoidance area 131 is generally larger than the area of the pressure relief mechanism 213 .
  • the avoidance area 131 can also be consistent with the pressure relief mechanism 213, which is also set in a racetrack shape as shown in Fig. 7 , but the present application Embodiments are not limited thereto.
  • the avoidance area 131 in the embodiment of the present application may also correspond to a plurality of pressure relief mechanisms 213 .
  • each avoidance area 131 may correspond to a plurality of pressure relief mechanisms 213 located in the same row.
  • the avoidance area 131 may be in the shape of a strip.
  • the extension direction of the escape area 131 may be consistent with the extension direction of the flow channel 132 .
  • the width of the escape area 131 is greater than or equal to the width of the pressure relief mechanism 213 , but the embodiment of the present application is not limited thereto.
  • the escape area 131 in the embodiment of the present application may be a through hole or a groove.
  • the avoidance area 131 is a through hole
  • the first area on the first heat conducting plate 133 corresponding to the pressure relief mechanism 213 and the second area corresponding to the first area on the second heat conducting plate 134 both include through holes, To form an avoidance area 131 .
  • the groove as the avoidance area 131 can be formed in various ways.
  • the first area of the first heat conducting plate 133 corresponding to the pressure relief mechanism 213 may include a through hole 1331
  • the second area of the second heat conducting plate 134 corresponds to the first area
  • the first area of the second heat conducting plate 134 corresponds to the first area.
  • the second area protrudes away from the first heat conducting plate 133 to form a groove, which is referred to as the fourth groove 1341
  • the fourth groove 1341 is the escape area 131 .
  • FIG. 9 shows a cross-sectional view of the heat management component 13 according to the embodiment of the present application, and an avoidance area 131 may also be formed by overlapping two grooves.
  • the first area of the first heat conducting plate 133 is provided with a third groove 1332
  • the third groove 1332 is the avoidance area 131
  • the second area of the second heat conducting plate 134 corresponds to the first area
  • the second area is provided with a fourth groove 1341
  • the third groove 1332 is located in the fourth groove 1341 , that is, the size of the fourth groove is larger than the size of the third groove 1332
  • the bottom wall of the third groove 1332 may also be provided with a through hole, so as to reduce the area of the bottom wall of the avoidance area 131 , so that the avoidance area 131 is more easily damaged.
  • a flow channel 132 may be formed between the sidewall of the third groove 1332 and the sidewall of the fourth groove 1341 for containing fluid. In this way, when the pressure relief mechanism 213 is actuated, the sidewall of the third groove 1332 can be destroyed to more directly destroy the flow channel 132 so that the fluid in the flow channel 132 can flow out to achieve the cooling effect.
  • the destruction auxiliary substance 1311 may be disposed on the sidewall of the through hole. If the escape area 131 is a groove, the destruction auxiliary substance 1311 can be disposed on the bottom wall or the side wall of the groove.
  • the avoidance area 131 is taken as an example for description below, that is, the heat management component 13 is provided with a first groove, and the first groove is the avoidance area 131 . Then, when the avoidance area 131 is a through hole, the method of disposing the destroying auxiliary substance 1311 on the side wall of the through hole may be the same as that on the side wall of the groove, which will not be repeated here.
  • the avoidance area 131 shown in FIG. 8 is mainly used as an example for description below.
  • the first area of the first heat conduction plate 133 of the thermal management component 13 corresponding to the pressure relief mechanism 213 may include a through hole 1331
  • the second area of the second heat conduction plate 134 corresponds to the first area
  • the second area faces away from The direction of the first heat conduction plate 133 protrudes to form a groove
  • the first groove forming the escape area 131 is the fourth groove 1341 on the second heat conduction plate 134 .
  • the destruction auxiliary substance 1311 may be disposed on the sidewall of the first groove 1341 .
  • the destruction auxiliary substance 1311 can be directly arranged on the surface of the side wall of the first groove 1341, or a groove can be arranged on the side wall of the first groove 1341, so that the destruction auxiliary substance 1311 is arranged on the surface of the first groove 1341. in the slot.
  • FIG. 10 shows an exploded view of the heat management component 13, and FIG.
  • the cross-sectional view of the thermal management component 13, for example, may be a cross-sectional view along the AA' direction indicated in FIG. 6
  • FIG. 12 is a partial enlarged view of area A in FIG. 11 .
  • a groove may be provided on the side wall of the first groove 1341 as the avoidance area 131, which is referred to as the fifth groove here, and the opening of the fifth groove faces the first groove.
  • the inside of the groove 1341 is used to accommodate the destruction auxiliary substance 1311 .
  • one or more fifth grooves may be provided for accommodating the destroying auxiliary substance 1311 .
  • the width of the avoidance area 131 can be set to be larger than the width of the pressure relief mechanism 213 , so that the opening of the pressure relief mechanism 213 will not be affected even if more destruction auxiliary substances 1311 are provided.
  • the thickness range of the destruction auxiliary substance 1311 can generally be set to 3 mm to 10 mm, and when the side wall of the first groove 1341 is provided with a fifth groove, the depth of the fifth groove can be determined according to the destruction auxiliary substance.
  • the thickness of 1311 is set, for example, the depth of the fifth groove can be set to be greater than the thickness of the destruction auxiliary substance 1311 .
  • the destruction auxiliary substance 1311 may also be disposed on the bottom wall of the first groove 1341 .
  • the destroying auxiliary substance 1311 may be disposed on the surface of the bottom wall of the first groove 1341, or may also be disposed on the bottom wall of the first groove 1341 The groove is used to accommodate the destruction auxiliary substance 1311 .
  • FIG. 14 shows a partial enlarged view of area B in FIG. 13 .
  • the destruction auxiliary substance 1311 may be disposed on the surface of the bottom wall of the first groove 1341 .
  • FIG. 16 shows a partial enlarged view of area C in FIG. 15 .
  • one or more second grooves 1342 may be provided on the bottom wall of the first groove 1341, so that the destroying auxiliary substance 1311 is disposed in the second grooves 1342, for example, It may be provided on the bottom wall of the second groove 1342 .
  • the destruction auxiliary substance 1311 may be in powder form, as shown in FIGS.
  • Substance 1311 enters other areas and affects other components.
  • the packaging film can be selected as an aluminum-plastic film, a PP film or a PC film, or other low-melting point materials can also be selected.
  • the thickness of the destruction auxiliary substance 1311 should be reasonably set.
  • the thickness of the destruction auxiliary substance 1311 may be set to be less than or equal to the depth of the second groove 1342 .
  • the thickness of the destruction auxiliary substance 1311 can be set to be less than or equal to 2 mm.
  • the thickness of the destruction auxiliary substance 1311 can be set to be less than or equal to 2mm.
  • a thermal management component 13 is provided under the plurality of battery cells 20 .
  • the first surface of the thermal management component 13 is provided with an escape area 131 corresponding to the pressure relief mechanism 213 .
  • a destroying auxiliary substance 1311 is provided in the avoidance area 131 . In this way, when the thermal runaway of the battery cell 20 occurs, the pressure relief mechanism 213 is actuated, and the destruction auxiliary substance 1311 can be excited by the discharge discharged from the battery cell 20 to release gas that is conducive to combustion or release more heat.
  • the destruction auxiliary substance 1311 can assist in destroying the thermal management component 13, so that the thermal management component 13 can be destroyed more easily and in a larger area, and then the internal fluid can be discharged from the thermal management component 13 in time, and the temperature can be lowered in time, especially The temperature of the thermal runaway battery cell 20 is lowered in time to avoid the explosion of the entire battery 10 caused by the spread of the fire.
  • the battery cell 20 catches fire, the fire weakens and is extinguished, the battery 10 will not further burn to release heat, which is beneficial to the cooling of the battery 10, and finally reduces the risk of thermal expansion in the battery 10, which can not only reduce economic losses, And protect people's lives.
  • the battery 10 of the embodiment of the present application is described above, and the method and device for preparing the battery 10 of the embodiment of the present application will be described below, and the parts not described in detail can be referred to the foregoing embodiments.
  • FIG. 17 shows a schematic flowchart of a method 300 for preparing a battery according to an embodiment of the present application.
  • the method 300 may include: S310, providing a plurality of battery cells, the first wall of the battery cells is provided with a pressure relief mechanism, and the pressure relief mechanism is used for internal pressure of the battery cells or Activate when the temperature reaches a threshold to release the internal pressure; S320, provide a thermal management component for containing fluid to adjust the temperature of the battery cell; wherein, the first surface of the thermal management component is attached to On the first wall, an escape area corresponding to the pressure relief mechanism is provided on the first surface, and the escape area is used to provide a deformation space for the pressure release mechanism when the pressure relief mechanism is actuated.
  • a destruction auxiliary substance is provided, and the destruction auxiliary substance is used for assisting destruction of the heat management component when the pressure relief mechanism is actuated, so that the fluid is discharged from the interior of the heat management component.
  • Fig. 18 shows a schematic block diagram of an apparatus 400 for preparing a battery according to an embodiment of the present application.
  • the apparatus 400 may include: a providing module 410 .
  • the providing module 410 is used for: providing a plurality of battery cells, the first wall of the battery cells is provided with a pressure relief mechanism, and the pressure relief mechanism is used to activate when the internal pressure or temperature of the battery cells reaches a threshold value, To release the internal pressure; providing a thermal management component for containing fluid to regulate the temperature of the battery cell; wherein the first surface of the thermal management component is attached to the first wall, the first There is an avoidance area corresponding to the pressure relief mechanism on the surface, and the avoidance area is used to provide a deformation space for the pressure relief mechanism when the pressure relief mechanism is actuated, and a destruction auxiliary substance is arranged in the avoidance area, and the destruction auxiliary A substance is used to assist in breaking down the thermal management component when the pressure relief mechanism is actuated so that the fluid is expelled from the interior of
  • the battery manufacturing method 300 and device 400 of the embodiment of the present application can be used to prepare the battery 10 of the embodiment of the present application, and for the sake of brevity, details are not repeated here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供一种电池、用电装置、制备电池的方法和装置。该电池包括:多个电池单体,该电池单体的第一壁设置有泄压机构,该泄压机构用于在该电池单体的内部压力或温度达到阈值时致动,以泄放该内部压力;热管理部件,用于容纳流体以给该电池单体调节温度;其中,该热管理部件的第一表面附接于该第一壁,该第一表面上设置有与该泄压机构对应的避让区域,该避让区域用于在该泄压机构致动时,为该泄压机构提供变形空间,该避让区域内设置有破坏辅助物质,该破坏辅助物质用于在该泄压机构致动时,辅助破坏该热管理部件,以使该流体从该热管理部件的内部排出。本申请实施例的电池、用电装置、制备电池的方法和装置,能够增强电池的安全性。

Description

电池、用电装置、制备电池的方法和装置 技术领域
本申请涉及电池技术领域,特别是涉及一种电池、用电装置、制备电池的方法和装置。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,除了提高电池的性能外,安全问题也是一个不可忽视的问题。如果电池的安全问题不能保证,那该电池就无法使用。因此,如何增强电池的安全性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请提供了一种电池、用电装置、制备电池的方法和装置,能够增强电池的安全性。
第一方面,提供了一种电池,包括:多个电池单体,所述电池单体的第一壁设置有泄压机构,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动,以泄放所述内部压力;热管理部件,用于容纳流体以给所述电池单体调节温度;其中,所述热管理部件的第一表面附接于所述第一壁,所述第一表面上设置有与所述泄压机构对应的避让区域,所述避让区域用于在所述泄压机构致动时,为所述泄压机构提供变形空间,所述避让区域内设置有破坏辅助物质,所述破坏辅助物质用于在所述泄压机构致动时,辅助破坏所述热管理部件,以使所述流体从所述热管理部件的内部排出。
因此,本申请实施例的电池,在多个电池单体的下方设置热管理部件,该热管理部件的第一表面上设置有与泄压机构对应的避让区域,该避让区域内设置有破坏辅助物质,这样,在电池单体发生热失控时,泄压机构致动,破坏辅助物质能够辅助从电池单体内排出的排放物破坏热管理部件,从而使得热管理部件能够更加易于被破坏,进而使得内部流体从热管理部件内及时排出,及时降温,尤其及时降低热失控电池单体的温度,进而降低电池内部的热扩散风险,这不仅能减小了经济损失,而且保障人们的生命安全。
在一些实施例中,所述破坏辅助物质用于在所述泄压机构致动时,在所述电池单体的排放物的作用下释放氧气。
由于破坏辅助物质能够在排放物的作用下释放氧气,进而可以加剧热失控的电池单体的燃烧,快速达到热管理部件被熔破温度并最大程度冲破该热管理部件,从而及时降温。
在一些实施例中,所述破坏辅助物质包括以下至少一种:硫酸锌、高锰酸钾和氯酸钾。
在一些实施例中,所述破坏辅助物质用于在所述泄压机构致动时,在所述电池单体的排放物的作用下释放热量。
当破坏辅助物质在排放物的作用下释放热量时,可以加速热管理部件被熔破,进而更大面积的破坏热管理部件,从而起到降温的效果。
在一些实施例中,所述破坏辅助物质包括以下至少一种:氧化铁、四氧化三铁、二氧化锰、五氧化二钒和氧化铬。
考虑到热管理部件的材料可以采用铝,因此可以基于铝热反应设置该破坏辅助物质。
在一些实施例中,所述避让区域为所述热管理部件上的通孔。
当避让区域为通孔时,可以使得通过泄压机构排出的排放物迅速通过该通孔排出,更加快速的释放热失控的电池单体的内部压力。
在一些实施例中,所述破坏辅助物质设置于所述通孔的侧壁。
在一些实施例中,所述避让区域为所述热管理部件上的第一凹槽。
在一些实施例中,所述破坏辅助物质设置于所述第一凹槽的侧壁。
在一些实施例中,所述破坏辅助物质的厚度的取值范围为3mm至10mm。
在一些实施例中,所述破坏辅助物质设置于所述第一凹槽的底壁。
在一些实施例中,所述破坏辅助物质的厚度小于或者等于2mm。
在一些实施例中,所述第一凹槽的底壁上设置有第二凹槽,所述破坏辅助物质设置于所述第二凹槽的底壁。
在一些实施例中,所述破坏辅助物质的厚度小于或者等于所述第二凹槽的深度。
在一些实施例中,所述破坏辅助物质包裹在封装膜中。
在一些实施例中,所述封装膜粘贴固定于所述避让区域内。
在一些实施例中,所述破坏辅助物质为粉末状。
在一些实施例中,所述封装膜为铝塑膜、PP膜或者PC膜。
在一些实施例中,所述热管理部件的材料为铝。
在一些实施例中,所述热管理部件包括第一导热板和第二导热板,所述第一导热板位于所述第一壁和所述第二导热板之间且附接于所述第一壁,所述第一导热板的第一区域具有通孔,所述第二导热板的第二区域对应所述第一区域,所述第二区域向远离所述第一导热板的方向凸出以形成所述避让区域。
在一些实施例中,所述热管理部件包括第一导热板和第二导热板,所述第一导热板位于所述第一壁和所述第二导热板之间且附接于所述第一壁,所述第一导热板的第一区域设置有第三凹槽,所述第三凹槽为所述避让区域,所述第二导热板的第二区域对应所述第一区域,所述第二区域设置有第四凹槽,所述第三凹槽位于所述第四凹 槽内,所述第三凹槽的侧壁和所述第四凹槽的侧壁之间形成流道,以用于容纳所述流体。
第二方面,提供了一种用电装置,包括:第一方面中的电池,用于提供电能。
在一些实施例中,所述用电装置为车辆、船舶或航天器。
第三方面,提供了一种制备电池的方法,包括:提供多个电池单体,所述电池单体的第一壁设置有泄压机构,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动,以泄放所述内部压力;提供热管理部件,所述热管理部件用于容纳流体以给所述电池单体调节温度;其中,所述热管理部件的第一表面附接于所述第一壁,所述第一表面上设置有与所述泄压机构对应的避让区域,所述避让区域用于在所述泄压机构致动时,为所述泄压机构提供变形空间,所述避让区域内设置有破坏辅助物质,所述破坏辅助物质用于在所述泄压机构致动时,辅助破坏所述热管理部件,以使所述流体从所述热管理部件的内部排出。
第四方面,提供了一种制备电池的装置,包括执行上述第三方面的方法的模块。
附图说明
图1是本申请一实施例公开的一种车辆的结构示意图;
图2是本申请一实施例公开的一种电池的分解结构示意图;
图3是本申请一实施例公开的一种电池模组的局部结构示意图;
图4为本申请一实施例公开的一种电池单体的分解图;
图5为本申请一实施例公开的另一种电池的分解结构示意图;
图6为本申请一实施例公开的一种电池单体和热管理部件的侧视图;
图7为本申请一实施例公开的一种热管理部件的分解图;
图8为本申请一实施例公开的另一种热管理部件的分解图;
图9为本申请一实施例公开的一种热管理部件的截面图;
图10为本申请一实施例公开的再一种热管理部件的分解图;
图11为本申请一实施例公开的一种电池单体和热管理部件的截面图;
图12为图11的局部放大图;
图13为本申请一实施例公开的另一种电池单体和热管理部件的截面图;
图14为图13的局部放大图;
图15为本申请一实施例公开的再一种电池单体和热管理部件的截面图;
图16为图15的局部放大图;
图17为本申请一实施例公开的一种制备电池的方法的示意性流程图;
图18为本申请一实施例公开的一种制备电池的装置的示意性框图;
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请中,电池单体可以包括一次电池、二次电池,例如可以是锂离子电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模组或电池包等。电池包一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解质,电极组件包括正极片、负极片和隔离膜。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极 集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为PP或PE等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
对于电池来说,主要的安全危险来自于充电和放电过程,为了提高电池的安全性能,对电池单体一般会设置泄压机构。泄压机构是指电池单体的内部压力或温度达到预定阈值时致动以泄放内部压力或温度的元件或部件。该预定阈值可以根据设计需求不同而进行调整。所述预定阈值可取决于电池单体中的正极极片、负极极片、电解质和隔离膜中一种或几种的材料。泄压机构可以采用诸如对压力敏感或温度敏感的元件或部件,即,当电池单体的内部压力或温度达到预定阈值时,泄压机构致动,从而形成可供内部压力或温度泄放的通道。
本申请中所提到的“致动”是指泄压机构产生动作,从而使得电池单体的内部压力及温度得以被泄放。泄压机构产生的动作可以包括但不限于:泄压机构中的至少一部分破裂、被撕裂或者熔化,等等。泄压机构在致动后,电池单体内部的高温高压物质作为排放物会从泄压机构向外排出。以此方式能够在可控压力或温度的情况下使电池单体发生泄压,从而避免潜在的更严重的事故发生。
本申请中所提到的来自电池单体的排放物包括但不限于:电解质、被溶解或***的正负极极片、隔离膜的碎片、反应产生的高温高压气体、火焰,等等。
电池单体上的泄压机构对电池的安全性有着重要影响。例如,当电池单体发生短路、过充等现象时,可能会导致电池单体内部发生热失控从而压力或温度骤升。这种情况下通过泄压机构致动可以将内部压力及温度向外释放,以防止电池单体***、起火。
目前的泄压机构设计方案中,主要关注将电池单体内部的高压和高热释放,即将所述排放物排出到电池单体外部。然而,为了保证电池的输出电压或电流,往往需要多个电池单体且多个电池单体之间通过汇流部件进行电连接。具体地,该汇流部件用于实现多个电池单体之间的电连接,例如并联或串联或混联。汇流部件可通过连接电池单体的电极端子实现电池单体之间的电连接。在一些实施例中,汇流部件可通过焊接固定于电池单体的电极端子。对应于“高压腔”,汇流部件形成的电连接也可称为“高压连接”。
从电池单体内部排出的排放物有可能导致其余电池单体发生短路现象,例如,当排出的金属屑电连接两个汇流部件时会引起电池发生短路,因而存在安全隐患。并且,高温高压的排放物朝向电池单体设置泄压机构的方向排放,并且可更具体地沿朝向泄压机构致动的区域的方向排放,这种排放物的威力和破坏力可能很大,甚至可能足以冲破在该方向上的一个或多个结构,造成进一步的安全问题。
鉴于此,在电池内可以设置热管理部件,该热管理部件的表面与电池单体的设置有泄压机构的表面附接,并且,该热管理部件上还可以设置有避让区域,该避让区 域可以在泄压机构致动时,为泄压机构提供变形空间。
一方面,该热管理部件用于容纳流体以给多个电池单体调节温度。这里的流体可以是液体或气体,调节温度是指给多个电池单体加热或者冷却。在给电池单体冷却或降温的情况下,该热管理部件用于容纳冷却流体以给多个电池单体降低温度,此时,热管理部件也可以称为冷却部件、冷却***或冷却板等,其容纳的流体也可以称为冷却介质或冷却流体,更具体的,可以称为冷却液或冷却气体。另外,热管理部件也可以用于加热以给多个电池单体升温,本申请实施例对此并不限定。可选的,所述流体可以是循环流动的,以达到更好的温度调节的效果。可选的,流体可以为水、水和乙二醇的混合液或者空气等。
另一方面,在泄压机构致动时,避让区域为泄压机构提供变形空间,可以使得泄压机构顺利打开,以释放电池单体内的排放物;并且,由于该热管理部件中容纳有流体,该流体还可以为电池单体降温,以避免电池单体发生***,例如,电池单体内的排放物可能会破坏热管理部件,以使其内部的流体流出,为电池单体降温。
因此,为了确保热失控的电池单体的泄压机构致动后,电池单体内排出的排放物能够破坏热管理部件,以使热管理部件内的流体流出,达到灭火降温的效果,本申请实施例中的热管理部件的避让区域内设置有辅助破坏物质,该辅助破坏物质能够在泄压机构致动时,辅助破坏热管理部件。
本申请实施例描述的技术方案均适用于各种使用电池的装置,例如,手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的设备,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路***,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。电池也可以称为电池包。可选地,多个电池单体可以先串联或并联或混联组成电池模组,多个电池模组再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模组,电池模组再组成电池。
例如,如图2所示,为本申请一个实施例的一种电池10的结构示意图,电池10可以包括至少一个电池模组200。电池模组200包括多个电池单体20。电池10还可 以包括箱体,箱体内部为中空结构,多个电池单体20容纳于箱体内。如图2所示,箱体可以包括两部分,这里分别称为第一部分111和第二部分112,第一部分111和第二部分112扣合在一起。第一部分111和第二部分112的形状可以根据电池模组200组合的形状而定,第一部分111和第二部分112中至少一个具有一个开口。例如,如图2所示,该第一部分111和第二部分112均可以为中空长方体且各自只有一个面为开口面,第一部分111的开口和第二部分112的开口相对设置,并且第一部分111和第二部分112相互扣合形成具有封闭腔室的箱体。再例如,不同于图2所示,第一部分111和第二部分112中可以仅有一个为具有开口的中空长方体,而另一个为板状,以盖合开口。例如,这里以第二部分112为中空长方体且只有一个面为开口面,第一部分111为板状为例,那么第一部分111盖合在第二部分112的开口处以形成具有封闭腔室的箱体,该腔室可以用于容纳多个电池单体20。多个电池单体20相互并联或串联或混联组合后置于第一部分111和第二部分112扣合后形成的箱体内。
可选地,电池10还可以包括其他结构,在此不再一一赘述。例如,该电池10还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过箱体而引出。
根据不同的电力需求,电池模组200中的电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。由于每个电池10中包括的电池单体20的数量可能较多,为了便于安装,将电池单体20分组设置,每组电池单体20组成电池模组200。电池模组200中包括的电池单体20的数量不限,可以根据需求设置。例如,图3为电池模组200的一个示例。电池可以包括多个电池模组200,这些电池模组200可通过串联、并联或混联的方式进行连接。
图4为本申请一个实施例的一种电池单体20的结构示意图,电池单体20包括一个或多个电极组件22、壳体211和盖板212。壳体211和盖板212形成外壳21。壳体211的壁以及盖板212均称为电池单体20的壁。壳体211根据一个或多个电极组件22组合后的形状而定,例如,壳体211可以为中空的长方体或正方体或圆柱体,且壳体211的其中一个面具有开口以便一个或多个电极组件22可以放置于壳体211内。例如,当壳体211为中空的长方体或正方体时,壳体211的其中一个平面为开口面,即该平面不具有壁体而使得壳体211内外相通。当壳体211可以为中空的圆柱体时,壳体211的端面为开口面,即该端面不具有壁体而使得壳体211内外相通。盖板212覆盖开口并且与壳体211连接,以形成放置电极组件22的封闭的腔体。壳体211内填充有电解质,例如电解液。
该电池单体20还可以包括两个电极端子214,两个电极端子214可以设置在盖板212上。盖板212通常是平板形状,两个电极端子214固定在盖板212的平板面上,两个电极端子214分别为第一电极端子214a和第二电极端子214b。两个电极端子214的极性相反。例如,当第一电极端子214a为正电极端子时,第二电极端子214b为负电极端子。每个电极端子214各对应设置一个连接构件23,其位于盖板212与电极组件 22之间,用于将电极组件22和电极端子214实现电连接。
如图4所示,每个电极组件22具有第一极耳221a和第二极耳222a。第一极耳221a和第二极耳222a的极性相反。例如,当第一极耳221a为正极极耳时,第二极耳222a为负极极耳。一个或多个电极组件22的第一极耳221a通过一个连接构件23与一个电极端子连接,一个或多个电极组件22的第二极耳222a通过另一个连接构件23与另一个电极端子连接。例如,正电极端子214a通过一个连接构件23与正极极耳连接,负电极端子214b通过另一个连接构件23与负极极耳连接。
在该电池单体20中,根据实际使用需求,电极组件22可设置为单个,或多个,如图4所示,电池单体20内设置有4个独立的电极组件22。
如图4所示,在电池单体20的一个壁上还可以设置泄压机构213,例如,可以在电池单体20的第一壁21a上设置泄压机构213。图4中的第一壁21a与壳体211分离,即壳体211的底侧具有开口,第一壁21a覆盖底侧开口并且与壳体211连接,连接方式可以是焊接或胶接等。可替换地,第一壁21a与壳体211也可以是一体式结构。泄压机构213用于电池单体20的内部压力或温度达到阈值时致动以泄放内部压力或温度。
该泄压机构213可以为第一壁21a的一部分,也可以与第一壁21a为分体式结构,通过例如焊接的方式固定在第一壁21a上。当泄压机构213为第一壁21a的一部分时,例如,泄压机构213可以通过在第一壁21a上设置刻痕的方式形成,与该刻痕的对应的第一壁21a厚度小于泄压机构213除刻痕处其他区域的厚度。刻痕处是泄压机构213最薄弱的位置。当电池单体20产生的气体太多使得壳体211内部压力升高并达到阈值或电池单体20内部反应产生热量造成电池单体20内部温度升高并达到阈值时,泄压机构213可以在刻痕处发生破裂而导致壳体211内外相通,气体压力及温度通过泄压机构213的裂开向外释放,进而避免电池单体20发生***。
可选地,在本申请一个实施例中,如图4所示,在泄压机构213设置于电池单体20的第一壁21a的情况下,电池单体20的第二壁设置有电极端子214,第二壁不同于第一壁21a。
可选地,第二壁与第一壁21a相对设置。例如,第一壁21a可以为电池单体20的底壁,第二壁可以为电池单体20的盖板212。
将泄压机构213和电极端子214设置于电池单体20的不同壁上,可以使得泄压机构213致动时,电池单体20的排放物更加远离电极端子214,从而减小排放物对电极端子214和汇流部件的影响,因此能够增强电池的安全性。
进一步地,在电极端子214设置于电池单体20的盖板212上时,将泄压机构213设置于电池单体20的底壁,可以使得泄压机构213致动时,电池单体20的排放物向电池10底部排放。这样,一方面可以利用电池10底部的热管理部件降低排放物的危险性,另一方面,当电池10设置于车辆内时,电池10底部通常会远离乘客,从而能够降低对乘客的危害。
泄压机构213可以为各种可能的泄压结构,本申请实施例对此并不限定。例如,泄压机构213可以为温敏泄压机构,温敏泄压机构被配置为在设有泄压机构213的电池单体20的内部温度达到阈值时能够熔化;和/或,泄压机构213可以为压敏泄压机构, 压敏泄压机构被配置为在设有泄压机构213的电池单体20的内部气压达到阈值时能够破裂。
为了给电池单体20调节温度,可以在电池单体20下方设置热管理部件。具体地,该热管理部件可以用于容纳流体以给电池单体20调节温度,在泄压机构213致动时,该热管理部件能够为来自设有泄压机构213的电池单体20的排放物降温。
图5示出了本申请实施例的电池10的另一***图,如图5所示,该电池10包括:多个电池单体20,其中,对于该多个电池单体20中任意电池单体,该电池单体20的第一壁21a设置有泄压机构213,泄压机构213用于在电池单体20的内部压力或温度达到阈值时致动,以泄放内部压力。可选地,该多个电池单体20中任意电池单体可以为如图4所示的电池单体,对应的,该电池单体20的第一壁21a即为泄压机构213所在的壳体211的底壁,但本申请实施例并不限于此。
如图5所示,该电池10还包括:热管理部件13,用于容纳流体以给电池单体20调节温度。具体地,热管理部件13的第一表面附接于第一壁21a,第一表面上设置有与泄压机构213对应的避让区域131,避让区域131用于在泄压机构213致动时,为泄压机构213提供变形空间。另外,该避让区域131内还设置有破坏辅助物质1311,破坏辅助物质1311用于在泄压机构213致动时,辅助破坏热管理部件13,以使流体从热管理部件13的内部排出。
因此,本申请实施例的电池10,在多个电池单体20的下方设置热管理部件13。该热管理部件13的第一表面上设置有与泄压机构213对应的避让区域131,该避让区域131内设置有破坏辅助物质1311。这样,在电池单体20发生热失控时,泄压机构213致动,破坏辅助物质1311能够辅助从电池单体20内排出的排放物破坏热管理部件13,从而使得热管理部件13能够更加易于被破坏,进而使得内部流体从热管理部件13内及时排出,及时降温。尤其及时降低热失控电池单体20的温度,进而降低电池10内部的热扩散风险,这不仅能减小了经济损失,而且保障人们的生命安全。
本申请实施例的破坏辅助物质1311可以根据实际应用进行选择。可选地,该破坏辅助物质1311可以选择能够在泄压机构213致动时,在电池单体20的排放物的作用下释放氧气的物质。具体地,考虑到在电池单体20发生热失控时,泄压机构213致动,释放大量的热量,同时,还可以发生燃烧,因此,可以选择能够在高温情况下发生反应并释放氧气的物质,以使得该释放的氧气促进热失控电池单体20的燃烧,进而提高热管理部件13的温度。尤其是可以提高破坏辅助物质1311所在的避让区域131的局部温度,进而增大热管理部件13上被冲破融化的区域的面积,以使得其内部流体及时流出,从而达到降温的效果。
例如,该破坏辅助物质1311可以包括以下至少一种:硫酸锌、高锰酸钾和氯酸钾。其中,对于硫酸锌,在高温情况下,硫酸锌会发生反应:2ZnSO 4=2ZnO+2SO 2+O 2,从而释放氧气。对于高锰酸钾,在高温情况下,高锰酸钾会发生反应:2KMnO 4=K 2MnO 4+MnO 2+O 2。对于氯酸钾,在高温情况下,氯酸钾会发生反应:2KClO 3=2KCl+3O 2
可选地,该破坏辅助物质1311还可以选择在泄压机构213致动时,能够在电池 单体20的排放物的作用下释放热量的物质。例如,考虑到热管理部件13的材料通常可以选择铝,因此,可以基于铝热反应,选择该破坏辅助物质1311。例如,该破坏辅助物质1311可以包括以下至少一种:氧化铁、四氧化三铁、二氧化锰、五氧化二钒和氧化铬,这样,通过铝热反应(氧化还原反应),铝被氧化成氧化铝并能够释放大量的热量,从而可以利用高温瞬间融化大面积的热管理部件13,从而使得流出的内部流体达到对电池10进行局部快速降温的目的。
可选地,本申请实施例中的破坏辅助物质1311可以为粉末状。应理解,当破坏辅助物质1311选择粉末状物质时,为了方便将其设置在避让区域内,也为了避免其对其他部件的影响,可以将该破坏辅助物质1311包裹在封装膜中。具体地,封装膜可以选择为铝塑膜、PP膜或者PC膜,或者也可以选择其他低熔点材料,而封装后的破坏辅助物质1311可以通过外部的封装膜粘贴固定于避让区域131内,从而固定该破坏辅助物质1311。
下面将结合附图,对本申请实施例的热管理部件13的避让腔131和破坏辅助物质1311进行详细描述。
图6示出了本申请实施例的电池10中多个电池单体20与热管理部件13安装后的侧视图,图7和图8为本申请实施例的热管理部件13的多种可能的分解示意图。具体地,如图6至图8所示,本申请实施例的热管理部件13可以包括第一导热板133和第二导热板134,其中,第一导热板133位于第一壁21a和第二导热板134之间且附接于第一壁21a。
应理解,本申请实施例的热管理部件13可以设置流道132,以用于容纳流体。可选地,该流道132的设置位置可以根据实际应用进行设置。例如,如图5至图8所示,流道132可以设置在避让区域131的周围,比如可以设置在避让区域131的两侧,并且,该流道132还可以沿着多个电池单体20的排列方向延伸。再例如,该流道132可以通过在第二导热板134上设置凹槽形成,即该第二导热板134上设置有开口朝向第一导热板133的凹槽,以形成流道132。再例如,该流道132的尺寸可以根据热管理部件13、电池10以及电池单体20的尺寸进行设置,但本申请实施例并不限于此。
可选地,本申请实施例的热管理部件13的避让区域131的个数可以根据实际应用进行设置。例如,对于该热管理部件13的任意一个避让区域131而言,其可以对应一个或者多个泄压机构213,本申请实施例并不限于此。
可选地,以图7为例,本申请实施例的避让区域131可以与泄压机构213一一对应,即每个避让区域131对应一个泄压机构213。具体地,避让区域131的尺寸和形状可以根据泄压机构213的尺寸和形状进行设置。例如,避让区域131的形状可以与泄压机构213的形状一致,而避让区域131的面积通常大于泄压机构213的面积。以图7为例,考虑到泄压机构213通常可以设置为类似椭圆形的跑道形,该避让区域131也可以与泄压机构213一致,同样设置为图7所示的跑道形,但本申请实施例并不限于此。
可选地,以图5或者图8为例,本申请实施例的避让区域131还可以与多个泄压机构213对应。例如,每个避让区域131可以对应于位于同一列的多个泄压机构213。具体地,如图8所示,考虑到电池10中包括的多个电池单体20可以排列为多列电池单 体20,同一列的多个电池单体20可以对应于同一个避让区域131,该避让区域131可以为长条形。例如,该避让区域131的延伸方向可以与流道132的延伸方向一致。并且,避让区域131的宽度大于或者等于泄压机构213的宽度,但本申请实施例并不限于此。
应理解,本申请实施例的避让区域131可以为通孔或者凹槽。具体地,若该避让区域131为通孔,那么第一导热板133上与泄压机构213对应的第一区域以及第二导热板134上与第一区域对应的第二区域均包括通孔,以形成避让区域131。
可选择,若该避让区域131为凹槽,那么可以通过多种方式形成作为避让区域131的凹槽。例如,如图7或者图8所示,该第一导热板133上与泄压机构213对应的第一区域可以包括通孔1331,第二导热板134的第二区域对应第一区域,该第二区域向远离第一导热板133的方向凸出以形成凹槽,这里称为第四凹槽1341,则该第四凹槽1341即为避让区域131。
再例如,还可以通过其他方式形成凹槽式的避让区域131。图9示出了本申请实施例的热管理部件13的截面图,还可以通过两个凹槽叠加的方式形成避让区域131。具体地,如图9所示,第一导热板133的第一区域设置有第三凹槽1332,第三凹槽1332即为避让区域131,而第二导热板134的第二区域对应第一区域,第二区域设置有第四凹槽1341,第三凹槽1332位于第四凹槽1341内,即第四凹槽的尺寸大于第三凹槽1332的尺寸。可选地,该第三凹槽1332的底壁还可以设置有通孔,以减小避让区域131的底壁的面积,进而使得该避让区域131更容易被破坏。
另外,第三凹槽1332的侧壁和第四凹槽1341的侧壁之间还可以形成流道132,以用于容纳流体。这样,在泄压机构213致动时,能够通过破坏第三凹槽1332的侧壁的方式,更加直接的破坏流道132,以使得该流道132内的流体流出,达到降温的效果。
在本申请实施例中,若避让区域131为通孔,则破坏辅助物质1311可以设置于通孔的侧壁。若避让区域131为凹槽,则破坏辅助物质1311可以设置于该凹槽的底壁或者侧壁。为了便于说明,下面以避让区域131为凹槽为例进行说明,即该热管理部件13上设置有第一凹槽,该第一凹槽即为避让区域131。那么当避让区域131为通孔时,破坏辅助物质1311设置于通孔侧壁的方式可以与设置于凹槽的侧壁的方式相同,在此不再赘述。
另外,为了便于说明,下面主要以图8所示的避让区域131为例进行说明。此时,热管理部件13的第一导热板133上与泄压机构213对应的第一区域可以包括通孔1331,第二导热板134的第二区域对应第一区域,该第二区域向远离第一导热板133的方向凸出以形成凹槽,由此形成避让区域131的第一凹槽即为第二导热板134上的第四凹槽1341。
可选地,作为一个实施例,该破坏辅助物质1311可以设置于第一凹槽1341的侧壁。具体地,可以将该破坏辅助物质1311直接设置于该第一凹槽1341的侧壁的表面,或者可以在第一凹槽1341的侧壁设置凹槽,以将破坏辅助物质1311设置于该凹槽内。
可选地,对于将破坏辅助物质1311设置于第一凹槽1341的侧壁上的凹槽内的 情况,图10示出了热管理部件13的分解图,图11示出了电池单体20和热管理部件13的截面图,例如,可以为图6中所指的A-A’方向的截面图,图12为图11中区域A的局部放大图。如图10至图12所示,作为避让区域131的第一凹槽1341的侧壁上可以设置有凹槽,这里将其称为第五凹槽,该第五凹槽的开口朝向第一凹槽1341的内部,以用于容纳破坏辅助物质1311。可选地,对于任意一个第一凹槽1341内,可以设置一个或者多个第五凹槽,以用于容纳破坏辅助物质1311。
应理解,可以通过设置避让区域131的宽度大于泄压机构213的宽度,而使得在设置较多破坏辅助物质1311的情况下,也不会影响泄压机构213打开。例如,该破坏辅助物质1311的厚度的取值范围通常可以设置为3mm至10mm,而第一凹槽1341的侧壁设置有第五凹槽时,该第五凹槽的深度可以根据破坏辅助物质1311的厚度设置,例如,可以设置该第五凹槽的深度大于破坏辅助物质1311的厚度。
可选地,作为另一个实施例,该破坏辅助物质1311还可以设置于第一凹槽1341的底壁。具体地,与设置于第一凹槽1341的侧壁类似,该破坏辅助物质1311可以设置于第一凹槽1341的底壁的表面,或者,还可以在该第一凹槽1341的底壁设置凹槽,以用于容纳破坏辅助物质1311。
应理解,对于将破坏辅助物质1311设置于第一凹槽1341的底壁的表面的情况,图13示出了电池单体20和热管理部件13的截面图,例如,可以为图6中所指的A-A’方向的截面图,图14示出了图13中区域B的局部放大图。如图13和图14所示,可以将破坏辅助物质1311设置于第一凹槽1341的底壁的表面。
对于将破坏辅助物质1311设置于第一凹槽1341的底壁的凹槽内的情况,图15示出了电池单体20和热管理部件13的截面图,例如,可以为图6中所指的A-A’方向的截面图,图16示出了图15中区域C的局部放大图。如图15和图16所示,在第一凹槽1341的底壁可以设置有一个或者多个第二凹槽1342,从而将该破坏辅助物质1311设置于该第二凹槽1342内,例如,可以设置在第二凹槽1342的底壁。
可选地,考虑到破坏辅助物质1311可以为粉末状,如图13至图16所示,可以在破坏辅助物质1311的表面设置封装膜1312,以将破坏辅助物质1311进行密封,避免该破坏辅助物质1311进入其他区域,对其他部件造成影响。可选地,该封装膜可以选择为铝塑膜、PP膜或者PC膜,或者也可以选择其他低熔点材料。
可选地,考虑到第一凹槽1341的深度有限,而破坏辅助物质1311设置于第一凹槽1341的底壁时,会占用深度方向的空间,为了不影响泄压机构213致动时所需的变形空间,应合理设置该破坏辅助物质1311的厚度。例如,如图15至图16所示,该破坏辅助物质1311的厚度可以设置小于或者等于第二凹槽1342的深度。比如考虑到第一凹槽1341的底壁的厚度通常小于或者等于3mm,那么,可以将破坏辅助物质1311的厚度设置为小于或者等于2mm。或者,如图13至图14,考虑到泄压机构213致动时所需要的变形空间,该破坏辅助物质1311的厚度可以设置为小于或者等于2mm。
本申请实施例的电池10,在多个电池单体20的下方设置热管理部件13。该热管理部件13的第一表面上设置有与泄压机构213对应的避让区域131。该避让区域131内设置有破坏辅助物质1311。这样,在电池单体20发生热失控时,泄压机构213致动, 破坏辅助物质1311能够被从电池单体20内排出的排放物激发以释放出利于燃烧的气体或者可以释放更多的热量,以使得破坏辅助物质1311能够辅助破坏热管理部件13,从而使得热管理部件13能够更易于且更大面积的被破坏,进而使得其内部流体从热管理部件13内及时排出,及时降温,尤其及时降低热失控电池单体20的温度,避免火势蔓延造成整个电池10的***。此外,当电池单体20起火后,火势减弱且被熄灭后,电池10不会进一步燃烧释放热量,利于电池10降温,最终降低电池10内的热扩展风险,这些不仅能减小了经济损失,而且保障人们的生命安全。
上文描述了本申请实施例的电池10,下面将描述本申请实施例的制备电池10的方法和装置,其中未详细描述的部分可参见前述各实施例。
图17示出了本申请一个实施例的制备电池的方法300的示意性流程图。如图17所示,该方法300可以包括:S310,提供多个电池单体,该电池单体的第一壁设置有泄压机构,该泄压机构用于在该电池单体的内部压力或温度达到阈值时致动,以泄放该内部压力;S320,提供热管理部件,该热管理部件用于容纳流体以给该电池单体调节温度;其中,该热管理部件的第一表面附接于该第一壁,该第一表面上设置有与该泄压机构对应的避让区域,该避让区域用于在该泄压机构致动时,为该泄压机构提供变形空间,该避让区域内设置有破坏辅助物质,该破坏辅助物质用于在该泄压机构致动时,辅助破坏该热管理部件,以使该流体从该热管理部件的内部排出。
图18示出了本申请一个实施例的制备电池的装置400的示意性框图。如图18所示,该装置400可以包括:提供模块410。该提供模块410用于:提供多个电池单体,该电池单体的第一壁设置有泄压机构,该泄压机构用于在该电池单体的内部压力或温度达到阈值时致动,以泄放该内部压力;提供热管理部件,该热管理部件用于容纳流体以给该电池单体调节温度;其中,该热管理部件的第一表面附接于该第一壁,该第一表面上设置有与该泄压机构对应的避让区域,该避让区域用于在该泄压机构致动时,为该泄压机构提供变形空间,该避让区域内设置有破坏辅助物质,该破坏辅助物质用于在该泄压机构致动时,辅助破坏该热管理部件,以使该流体从该热管理部件的内部排出。
应理解,本申请实施例的制备电池的方法300和装置400可以用于制备本申请实施例的电池10,为了简洁,在此不再赘述。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (24)

  1. 一种电池,其特征在于,包括:
    多个电池单体(20),所述电池单体(20)的第一壁(21a)设置有泄压机构(213),所述泄压机构(213)用于在所述电池单体(20)的内部压力或温度达到阈值时致动,以泄放所述内部压力;
    热管理部件(13),用于容纳流体以给所述电池单体(20)调节温度;
    其中,所述热管理部件(13)的第一表面附接于所述第一壁(21a),所述第一表面上设置有与所述泄压机构(213)对应的避让区域(131),所述避让区域(131)用于在所述泄压机构(213)致动时,为所述泄压机构(213)提供变形空间,所述避让区域(131)内设置有破坏辅助物质(1311),所述破坏辅助物质(1311)用于在所述泄压机构(213)致动时,辅助破坏所述热管理部件(13),以使所述流体从所述热管理部件(13)的内部排出。
  2. 根据权利要求1所述的电池,其特征在于,所述破坏辅助物质(1311)用于在所述泄压机构(213)致动时,在所述电池单体(20)的排放物的作用下释放氧气。
  3. 根据权利要求2所述的电池,其特征在于,所述破坏辅助物质(1311)包括以下至少一种:硫酸锌、高锰酸钾和氯酸钾。
  4. 根据权利要求1至3中任一项所述的电池,其特征在于,所述破坏辅助物质(1311)用于在所述泄压机构(213)致动时,在所述电池单体(20)的排放物的作用下释放热量。
  5. 根据权利要求4所述的电池,其特征在于,所述破坏辅助物质(1311)包括以下至少一种:氧化铁、四氧化三铁、二氧化锰、五氧化二钒和氧化铬。
  6. 根据权利要求1至5中任一项所述的电池,其特征在于,所述避让区域(131)为所述热管理部件(13)上的通孔。
  7. 根据权利要求6所述的电池,其特征在于,所述破坏辅助物质(1311)设置于所述通孔的侧壁。
  8. 根据权利要求1至5中任一项所述的电池,其特征在于,所述避让区域(131)为所述热管理部件(13)上的第一凹槽(1341)。
  9. 根据权利要求8所述的电池,其特征在于,所述破坏辅助物质(1311)设置于所述第一凹槽(1341)的侧壁。
  10. 根据权利要求7或9所述的电池,其特征在于,所述破坏辅助物质(1311)的厚度的取值范围为3mm至10mm。
  11. 根据权利要求8所述的电池,其特征在于,所述破坏辅助物质(1311)设置于所述第一凹槽(1341)的底壁。
  12. 根据权利要求11所述的电池,其特征在于,所述破坏辅助物质(1311)的厚度小于或者等于2mm。
  13. 根据权利要求11或12所述的电池,其特征在于,所述第一凹槽(1341)的底壁上设置有第二凹槽(1342),所述破坏辅助物质(1311)设置于所述第二凹槽(1342)的底壁。
  14. 根据权利要求13所述的电池,其特征在于,所述破坏辅助物质(1311)的厚度小于或者等于所述第二凹槽(1342)的深度。
  15. 根据权利要求1至14中任一项所述的电池,其特征在于,所述破坏辅助物质(1311)包裹在封装膜中。
  16. 根据权利要求15所述的电池,其特征在于,所述封装膜粘贴固定于所述避让区域(131)内。
  17. 根据权利要求15或16所述的电池,其特征在于,所述破坏辅助物质(1311)为粉末状。
  18. 根据权利要求15至17中任一项所述的电池,其特征在于,所述封装膜为铝塑膜、PP膜或者PC膜。
  19. 根据权利要求1至18中任一项所述的电池,其特征在于,所述热管理部件(13)的材料为铝。
  20. 根据权利要求8至14中任一项所述的电池,其特征在于,所述热管理部件(13)包括第一导热板(133)和第二导热板(134),所述第一导热板(133)位于所述第一壁(21a)和所述第二导热板(134)之间且附接于所述第一壁(21a),所述第一导热板(133)的第一区域具有通孔(1331),所述第二导热板(134)的第二区域对应所述第一区域,所述第二区域向远离所述第一导热板(133)的方向凸出以形成所述避让区域(131)。
  21. 根据权利要求8至14中任一项所述的电池,其特征在于,所述热管理部件(13)包括第一导热板(133)和第二导热板(134),所述第一导热板(133)位于所述第一壁(21a)和所述第二导热板(134)之间且附接于所述第一壁(21a),所述第一导热板(133)的第一区域设置有第三凹槽,所述第三凹槽为所述避让区域(131),所述第二导热板(134)的第二区域对应所述第一区域,所述第二区域设置有第四凹槽,所述第三凹槽位于所述第四凹槽内,所述第三凹槽的侧壁和所述第四凹槽的侧壁之间形成流道(132),以用于容纳所述流体。
  22. 一种用电装置,其特征在于,包括:根据权利要求1至21中任一项所述的电池,所述电池用于为所述用电装置提供电能。
  23. 一种制备电池的方法,其特征在于,包括:
    提供多个电池单体,所述电池单体的第一壁设置有泄压机构,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动,以泄放所述内部压力;
    提供热管理部件,所述热管理部件用于容纳流体以给所述电池单体调节温度;
    其中,所述热管理部件的第一表面附接于所述第一壁,所述第一表面上设置有与所述泄压机构对应的避让区域,所述避让区域用于在所述泄压机构致动时,为所述泄压机构提供变形空间,所述避让区域内设置有破坏辅助物质,所述破坏辅助物质用于 在所述泄压机构致动时,辅助破坏所述热管理部件,以使所述流体从所述热管理部件的内部排出。
  24. 一种制备电池的装置,其特征在于,包括:提供模块,所述提供模块用于:
    提供多个电池单体,所述电池单体的第一壁设置有泄压机构,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动,以泄放所述内部压力;
    提供热管理部件,所述热管理部件用于容纳流体以给所述电池单体调节温度;
    其中,所述热管理部件的第一表面附接于所述第一壁,所述第一表面上设置有与所述泄压机构对应的避让区域,所述避让区域用于在所述泄压机构致动时,为所述泄压机构提供变形空间,所述避让区域内设置有破坏辅助物质,所述破坏辅助物质用于在所述泄压机构致动时,辅助破坏所述热管理部件,以使所述流体从所述热管理部件的内部排出。
PCT/CN2021/109128 2021-07-29 2021-07-29 电池、用电装置、制备电池的方法和装置 WO2023004660A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2023506041A JP2023541780A (ja) 2021-07-29 2021-07-29 電池、電力消費装置、電池を製造する方法と装置
CN202180006698.6A CN115885410A (zh) 2021-07-29 2021-07-29 电池、用电装置、制备电池的方法和装置
PCT/CN2021/109128 WO2023004660A1 (zh) 2021-07-29 2021-07-29 电池、用电装置、制备电池的方法和装置
KR1020237002874A KR20230028505A (ko) 2021-07-29 2021-07-29 배터리, 전기 장치, 배터리 제조 방법 및 장치
EP21951113.6A EP4178021A4 (en) 2021-07-29 2021-07-29 BATTERY, POWER CONSUMPTION DEVICE AND BATTERY MANUFACTURING METHOD AND DEVICE
US18/344,870 US20230344033A1 (en) 2021-07-29 2023-06-30 Battery, power consuming device, and method and device for manufacturing battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/109128 WO2023004660A1 (zh) 2021-07-29 2021-07-29 电池、用电装置、制备电池的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/344,870 Continuation US20230344033A1 (en) 2021-07-29 2023-06-30 Battery, power consuming device, and method and device for manufacturing battery

Publications (1)

Publication Number Publication Date
WO2023004660A1 true WO2023004660A1 (zh) 2023-02-02

Family

ID=85086129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109128 WO2023004660A1 (zh) 2021-07-29 2021-07-29 电池、用电装置、制备电池的方法和装置

Country Status (6)

Country Link
US (1) US20230344033A1 (zh)
EP (1) EP4178021A4 (zh)
JP (1) JP2023541780A (zh)
KR (1) KR20230028505A (zh)
CN (1) CN115885410A (zh)
WO (1) WO2023004660A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115863901A (zh) * 2023-03-01 2023-03-28 宁德时代新能源科技股份有限公司 隔离部件、电池及用电设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012018060A1 (de) * 2012-09-13 2014-03-13 Daimler Ag Einzelzelle für eine elektrische Batterie und elektrische Batterie
CN213601965U (zh) * 2020-07-10 2021-07-02 宁德时代新能源科技股份有限公司 电池、用电装置和制备电池的装置
CN213782158U (zh) * 2020-07-10 2021-07-23 宁德时代新能源科技股份有限公司 电池、包括电池的装置和制备电池的设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11024901B2 (en) * 2018-01-19 2021-06-01 Hanon Systems Battery cooling plate with integrated air vents
CN213584016U (zh) * 2020-07-10 2021-06-29 宁德时代新能源科技股份有限公司 电池、用电装置和制备电池的装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012018060A1 (de) * 2012-09-13 2014-03-13 Daimler Ag Einzelzelle für eine elektrische Batterie und elektrische Batterie
CN213601965U (zh) * 2020-07-10 2021-07-02 宁德时代新能源科技股份有限公司 电池、用电装置和制备电池的装置
CN213782158U (zh) * 2020-07-10 2021-07-23 宁德时代新能源科技股份有限公司 电池、包括电池的装置和制备电池的设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4178021A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115863901A (zh) * 2023-03-01 2023-03-28 宁德时代新能源科技股份有限公司 隔离部件、电池及用电设备
CN115863901B (zh) * 2023-03-01 2023-11-28 宁德时代新能源科技股份有限公司 隔离部件、电池及用电设备

Also Published As

Publication number Publication date
JP2023541780A (ja) 2023-10-04
KR20230028505A (ko) 2023-02-28
EP4178021A1 (en) 2023-05-10
CN115885410A (zh) 2023-03-31
US20230344033A1 (en) 2023-10-26
EP4178021A4 (en) 2024-05-15

Similar Documents

Publication Publication Date Title
WO2022006890A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2022006891A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2022006903A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023137976A1 (zh) 电池单体、电池以及用电装置
WO2022006892A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023098258A1 (zh) 电池单体、电池以及用电装置
US11699829B2 (en) Box of battery, battery, power consumpiion apparatus, method for producing battery and apparatus for producing battery
EP4096004A1 (en) Case of battery, battery, electronic device, and method and device for preparing battery
EP4092818B1 (en) Battery box body, battery, electric device, and method for preparing box body
US20230231260A1 (en) Battery housing, battery, electrical apparatus, method and device for manufacturing battery
WO2023141774A1 (zh) 电池、用电设备、制造电池的方法和设备
WO2022205076A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023044634A1 (zh) 电池、用电装置、制备电池的方法和装置
US20230344033A1 (en) Battery, power consuming device, and method and device for manufacturing battery
WO2023133722A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
US20220311084A1 (en) Battery, power consumption apparatus, method and apparatus for producing battery
WO2022205080A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023133784A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023044619A1 (zh) 电池的箱体、电池、用电设备、制备电池的方法和设备
WO2023133755A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023070683A1 (zh) 电池单体、电池、制造电池单体的方法和装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023506041

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021951113

Country of ref document: EP

Effective date: 20230202

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE