WO2024007625A1 - 一种节能环保型高抗冲击性能的免蒸压管桩混凝土材料及其制备方法 - Google Patents

一种节能环保型高抗冲击性能的免蒸压管桩混凝土材料及其制备方法 Download PDF

Info

Publication number
WO2024007625A1
WO2024007625A1 PCT/CN2023/082844 CN2023082844W WO2024007625A1 WO 2024007625 A1 WO2024007625 A1 WO 2024007625A1 CN 2023082844 W CN2023082844 W CN 2023082844W WO 2024007625 A1 WO2024007625 A1 WO 2024007625A1
Authority
WO
WIPO (PCT)
Prior art keywords
concrete
rubber
rubber fiber
water
pipe pile
Prior art date
Application number
PCT/CN2023/082844
Other languages
English (en)
French (fr)
Inventor
熊哲
蓝盛
方震
刘锋
李丽娟
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2024007625A1 publication Critical patent/WO2024007625A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0675Macromolecular compounds fibrous from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/023Chemical treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00017Aspects relating to the protection of the environment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention belongs to the field of environmentally friendly and energy-saving building materials, and particularly relates to an energy-saving, environmentally friendly and high impact-resistant autoclaved pipe pile concrete material and a preparation method thereof.
  • the cementing material is cement and admixtures.
  • the dosage of cementing material in concrete is 400-500kg/m 3 , preferably 470kg/m 3 , and the water-cement ratio is 0.19-0.22; the admixture is slag. powder and silicon powder, preferably S95 grade slag powder and imported 98 silicon powder.
  • the specific surface area of the slag powder is 400-450m 2 /kg, preferably 412m 2 /kg, and the dosage is 25-40% of the total mass of the cementitious material, preferably is 30%, silica powder specific surface
  • the volume is 15-30m 2 /kg, preferably 21m 2 /kg, and the dosage is 5-10%, preferably 10%, of the total mass of the cementitious material;
  • the amount of water reducing agent is 1.0-1.5% of the total mass of the cementitious material, preferably 1.2%;
  • the cement is P.II 42.5R Portland cement produced by China Resources Cement Co., Ltd.
  • the water-reducing agent is the QL-PC5 polycarboxylic acid high-efficiency water-reducing agent produced by Jiangmen Qiangli Building Materials Technology Co., Ltd., with solid content 40%
  • the sand and gravel are zone 2 medium sand with a fineness modulus of 2.8.
  • the rubber fiber is obtained by mechanical cutting of waste rubber tires.
  • the aspect ratio of the rubber fiber is 2-10, the diameter is 2mm-10mm, and the tensile strength is 20-25MPa.
  • the preferred aspect ratio is 5, and the volume is equal to the internal mixing method.
  • Replace the sand and gravel in the aggregate with a replacement rate of 5-20%, preferably 15%.
  • the shallow carbonization refers to the depth of carbonization being 1/6-1/5 of the radius from the rubber fiber surface to the center.
  • the modifier is selected from one or more of NaOH, methanol, silane coupling agent, styrene-butadiene latex, and emulsified asphalt; the soaking time is preferably 24 hours.
  • the invention also provides a method for preparing energy-saving, environmentally friendly and high impact-resistant autoclaved pipe pile concrete, which includes the following steps:
  • step (6) Place the concrete in step (5) into a steam pool with an initial temperature of about 50°C, then raise the temperature and maintain a constant temperature environment for 12 hours;
  • the pool can be opened to take out the autoclaved concrete.
  • the curing time of the autoclaved pipe pile concrete with formwork is 12 to 13 hours; the curing of the concrete with formwork includes a static stop section, a heating section and a constant temperature section, wherein the time of the static stop section is not less than 5 hours. ;
  • the heating period is not less than 2h;
  • the constant temperature of the constant temperature section is 85°C ⁇ 90°C, and the time is not less than 10h.
  • the present invention has the following advantages:
  • the hydrophobicity of the rubber material leads to poor bonding performance with cement mortar, resulting in a reduction in the strength of the concrete and damage to the rubber fibers.
  • Shallow carbonization treatment changes the molecular structure of the rubber surface, breaks CC bonds and CH bonds, and improves hydrophobicity.
  • some organic matter in the rubber fiber undergoes thermochemical decomposition during carbonization, forming pores in the shallow layer. Structure, the carbonized shell with a certain pore structure increases the bonding area between rubber fiber and cement mortar.
  • the physical structure and chemical properties of the carbonized layer can be modified to make it have stronger bonding performance with cement mortar.
  • the rubber-modified autoclaved-free pipe pile concrete The strength can be increased to the greatest extent, and rubber fibers can be added to the concrete to further improve the crack resistance and impact resistance of autoclaved concrete.
  • Figure 1 shows the failure modes of the quasi-static splitting specimens of Comparative Example 1, Example 1, Example 4, Example 5, Example 6, and Example 7 respectively;
  • Figure 2 shows the failure modes of the dynamic splitting samples of Comparative Example 1, Example 1, Example 4, Example 5, Example 6, and Example 7 respectively.
  • a non-autoclaved pipe pile concrete with impact resistance containing the following weight of raw materials per cubic meter:
  • the cementing material is composed of Portland cement, slag powder and silica fume.
  • the Portland cement is China Resources P II 42.5R Portland cement, accounting for 60% of the total mass of the cementing material; so
  • the slag powder is S95 grade slag powder with a specific surface area of 412m 2 /kg.
  • the slag powder can improve the later strength of autoclaved concrete, and its mass accounts for 30% of the total mass of the cementitious material; the silicon powder has a specific surface area of 21m 2 /kg of imported 98 silica powder, its mass accounts for 10% of the total mass of cementitious materials.
  • Rubber fiber The fiber length is 50mm, the diameter is 10mm, the volume is 15% of the aggregate volume, and the mass is 27.12kg.
  • the aggregate is composed of sand and rubber fiber.
  • the preparation method includes the following steps:
  • the demoulding strength of rubber-modified autoclaved concrete at this dosage is 73MPa, which does not meet the strength requirements of prestressed high-strength pipe pile concrete, see Table 1.
  • a KH550 silane coupling agent-modified rubber fiber-modified autoclave-free pipe pile concrete contains the following weight of raw materials per cubic meter:
  • the modification method of rubber fiber includes the following steps:
  • a styrene-butadiene latex-modified rubber fiber-modified autoclave-free pipe pile concrete contains the following weight of raw materials per cubic meter:
  • the modification method of rubber fiber includes the following steps:
  • the concrete preparation method is the same as Comparative Example 1, in which the slump is measured after stirring in step (5) and is 42 mm.
  • the demoulding strength is 78.1MPa, which is 7.0% higher than the strength without modification.
  • styrene-butadiene latex has good compatibility with tire rubber.
  • the carboxyl groups in the molecular chain can form ionic bonds with calcium ions in cement mortar for chemical adsorption.
  • styrene-butadiene latex is used as a An auxiliary cementitious material that functions like a water-reducing agent when mixing concrete. It can improve the fluidity of cement mortar to a certain extent and help improve the strength of rubber concrete. Other parameters are shown in Table 1.
  • a shallow carbonization-modified rubber fiber-modified autoclave-free pipe pile concrete contains the following weight of raw materials per cubic meter:
  • the method of shallowly carbonizing modified rubber fibers includes the following steps:
  • the concrete preparation method is the same as Comparative Example 1, in which the slump is measured after stirring in step (5) and is 13 mm.
  • the demoulding strength reaches 80.3MPa.
  • the modification effect of shallow carbonization on rubber fibers is more obvious than that of a single silane coupling agent and styrene-butadiene latex.
  • the concrete strength is increased by about 10% compared with that without carbonization.
  • a secondary modified rubber fiber modified autoclave-free pipe pile concrete contains the following weight of raw materials per cubic meter:
  • the shallow carbonization modification method includes the following steps:
  • the concrete preparation method is the same as in Example 1, wherein the slump is measured after stirring in step (5) and is 22 mm.
  • the demoulding strength is 82.7MPa, which is 13.3% higher than that without modification.
  • the modification effect of shallow carbonization + NaOH solution is stronger than the modification effect of shallow carbonization alone. This is because NaOH can remove residual additives such as zinc stearate in the carbonization layer and convert the polymer additives into soluble sodium salts. , thereby improving the bonding performance between rubber fiber and cement mortar. See Table 1 for other parameters.
  • a secondary modified rubber fiber modified autoclave-free pipe pile concrete contains the following weight of raw materials per cubic meter:
  • the shallow carbonization modification method includes the following steps:
  • the concrete preparation method is the same as Comparative Example 1, in which the slump is measured after stirring in step (5) and is 28 mm.
  • the demoulding strength is 83.1MPa, which is 13.8% higher than the strength without modification.
  • the shallow carbonization modification method includes the following steps:
  • the concrete preparation method is the same as Comparative Example 1, in which the slump is measured after stirring in step (5) and is 25 mm.
  • the demoulding strength is 85.5MPa, which is 17.1% higher than the strength without modification.
  • the modification effect of shallow carbonization + silane coupling agent is stronger than the sum of the modification effects of single shallow carbonization and single silane coupling agent, indicating that shallow carbonization + silane coupling agent is not a simple superposition of modification effects.
  • the two have a synergistic effect. This is because the K550 silane coupling agent contains aminopropyl and ethoxy groups. When the rubber fiber is stirred with the silane coupling agent, the ethoxy group acts as a hydrolyzable group and decomposes when exposed to water, which can interact with the carbonized layer of the rubber fiber. It has good reactivity.
  • a secondary modified rubber fiber modified autoclave-free pipe pile concrete contains the following weight of raw materials per cubic meter:
  • the shallow carbonization modification method includes the following steps:
  • the concrete preparation method is the same as Comparative Example 1, in which the slump is measured after stirring in step (5) and is 22 mm.
  • the demoulding strength is 86.1MPa, which is 17.9% higher than the strength without modification.
  • silane coupling agent can improve the bonding performance between the rubber carbonized layer and the cement mortar. See Table 1 for other parameters.
  • a secondary modified rubber fiber modified autoclave-free pipe pile concrete contains the following weight of raw materials per cubic meter:
  • the shallow carbonization modification method includes the following steps:
  • the concrete preparation method is the same as Comparative Example 1, in which the slump is measured after stirring in step (5) and is 17 mm.
  • the demoulding strength is 82.3MPa, which is 12.7% higher than the strength without modification.
  • Too much silane coupling agent will cause the monomolecular layer between the coupling agent and the cement interface to be too thick, thereby increasing the volume of the rubber fiber and increasing the strength attenuation effect caused by the increase in volume, thus affecting the bonding performance. . See Table 1 for other parameters.
  • a secondary modified rubber fiber modified autoclave-free pipe pile concrete contains the following weight of raw materials per cubic meter:
  • the shallow carbonization modification method includes the following steps:
  • the concrete preparation method is the same as Comparative Example 1, in which the slump is measured after stirring in step (5) and is 45 mm.
  • the demoulding strength is 83.7MPa, which is 14.6% higher than the strength without modification.
  • the modification effect of shallow carbonization + styrene-butadiene latex is stronger than the modification effect of shallow carbonization and styrene-butadiene latex alone. This is because the carboxyl groups in styrene-butadiene latex improve the hydrophilicity of the rubber fiber and carbonized layer, and at the same time fill the rubber The tiny pore structure in the fiber carbonized layer strengthens the compatibility between the two. At the same time, the carboxyl groups in the molecular chain can form ionic bonds with calcium ions in the cement mortar for chemical adsorption.
  • the special structure of the carbonized layer and the synergistic effect of the carboxyl styrene-butadiene latex give the rubber cement mortar stronger bonding properties; in addition, the styrene-butadiene latex As an auxiliary cementitious material, it acts as a water-reducing agent when mixing concrete.
  • the excess styrene-butadiene latex improves the fluidity of cement mortar to a certain extent, which is beneficial to improving the strength of rubber concrete.
  • Other parameters are shown in Table 1.
  • a secondary modified rubber fiber modified autoclave-free pipe pile concrete contains the following weight of raw materials per cubic meter:
  • the shallow carbonization modification method includes the following steps:
  • the concrete preparation method is the same as Comparative Example 1, in which the slump is measured after stirring in step (5) and is 55 mm.
  • the demoulding strength is 84.3MPa, which is 15.5% higher than the strength without modification.
  • Styrene-butadiene latex serves as an auxiliary cementing material. Increasing the content of styrene-butadiene latex further improves the fluidity of cement mortar, resulting in an increase in the strength of rubber concrete. See Table 1 for other parameters.
  • a secondary modified rubber-modified autoclave-free pipe pile concrete contains the following weight of raw materials per cubic meter:
  • the concrete preparation method is the same as Comparative Example 1, in which the cement mass in step (3) is reduced by 5% and replaced with emulsified asphalt. After mixing in step (5), the slump is measured and is 43 mm. The demoulding strength is 78.0MPa, which is 6.8% higher than that without modification.
  • the energy consumption ratio is the ratio of dissipated energy to total input energy.
  • shallow carbonization can change the surface structure of the rubber fiber, effectively improving the hydrophilicity of the rubber material.
  • the pore structure of the carbonized layer increases the contact area, improves the bonding strength between the rubber fiber and the cement mortar, and thereby improves the Strength of rubber concrete.
  • the silane coupling agent contains aminopropyl and ethoxy groups.
  • the aminopropyl group forms a chemical bond with the rubber, and the ethoxy group dehydrates with the carboxyl group in the cement mortar to form a Si-O-Si bond.
  • the coupling agent acts as To the bridging effect, the rubber organic material and the cement inorganic gelling material are bonded together.
  • the carboxyl group of styrene-butadiene latex not only improves the hydrophilicity of the rubber fiber, but also forms ionic bonds with calcium ions in cement mortar for chemical adsorption; in addition, styrene-butadiene latex has a water-reducing agent effect and improves the fluidity of concrete. It can further improve the strength of rubber-free autoclaved concrete.
  • the present invention proposes a secondary modification method.
  • shallow carbonization is used to change the rubber fiber.
  • Dimensional surface structure improve the hydrophilicity of the fiber, and then use various modifiers for secondary modification. From Table 1, it can be found that the effects of secondary modification are mostly better than single modification.
  • the tension-to-compression ratio can be used as a measure of the brittleness index of concrete materials. The greater the tension-to-compression ratio, the smaller the brittleness. From Table 1, it can be seen that after the rubber fiber undergoes the secondary modification process of "shallow carbonization + styrene-butadiene latex", the rubber modification does not require evaporation.
  • the brittleness of the pressure pipe pile concrete is the least because the styrene-butadiene latex can enhance fluidity and has a certain elasticity.
  • the energy consumption ratio can characterize the energy consumption capacity of the rubber-modified autoclaved pipe pile concrete after being subjected to impact load. The stronger the energy consumption, the better the impact toughness of the concrete. Table 1 shows that the rubber fiber passes through "shallow carbonization + silane coupling" The energy consumption ratio is the highest after modification by "silane coupling agent". This is because the silane coupling agent has good compatibility with rubber, rubber carbonized layer, and cement, and can form chemical bonds with rubber fiber and cement matrix to improve the adhesion between the two. strength and improves the impact toughness of concrete.
  • the demoulding strength of autoclaved concrete can intuitively reflect the strength modification effect of each modification method.
  • Table 1 shows that the effect of rubber fiber modified by "shallow carbonization + silane coupling agent" is stronger than that of single shallow carbonization and single The sum of the modification effects of the silane coupling agent has a synergistic effect. After modification, the strength is greatly improved, and when the mass of the silane coupling agent is 3% of the rubber fiber mass, the strength modification effect is the best.
  • Dynamic splitting tensile failure strain is used as an index to measure its crack resistance.
  • Table 1 shows that the rubber fiber has been modified by "shallow carbonization + silane coupling agent" , the rubber-modified autoclaved pipe pile concrete has the largest tensile failure strain, that is, it has the best crack resistance.
  • Figures 1 and 2 show the failure mode diagrams of concrete specimens with various modification methods after quasi-static and dynamic splitting tensile tests. Different modification methods show different failure modes.
  • the quasi-static splitting has two large cracks. After shallow carbonization, the splitting cracks are reduced to one. After the carbonized layer is continuously modified for the second time, The opening of the splitting cracks gradually decreases, and the degree of damage is improved.
  • the "shallow layer carbonization + silane coupling agent" modification method has excellent crack resistance, and the comparison of 2%, 3%, and 5% of the rubber quality % of three contents of silane coupling agent, it was found that 3% has the best crack resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Abstract

本发明公开了一种节能环保型高抗冲击性能的免蒸压管桩混凝土材料及其制备方法。所述混凝土的原材料包括胶凝材料、砂石、改性橡胶纤维、减水剂和水。免蒸压管桩混凝土具有显著节能效果,但其抗冲击性能弱,橡胶纤维是来自废旧轮胎,将改性橡胶纤维加入该混凝土中,可以提高混凝土韧性,也同时使得废旧橡胶回收利用和降低混凝土造价成本。本发明的橡胶纤维的改性方法使得加入该改性橡胶纤维的免蒸压管桩混凝土的强度可最大程度提升,并进一步提高免蒸压混凝土的抗裂与抗冲击性能。

Description

一种节能环保型高抗冲击性能的免蒸压管桩混凝土材料及其制备方法 技术领域
本发明属于环保节能建筑材料领域,特别涉及一种节能环保型高抗冲击性能的免蒸压管桩混凝土材料及其制备方法。
背景技术
随着我们国家建筑行业现代化进程的不断推进,对于预应力高强混凝土(PHC)管桩的需求不断增加,绿色节能的免蒸压混凝土管桩得到广泛的关注。PHC管桩生产过程中主要消耗天然气和煤炭,根据《预拌混凝土低碳产品评价方法和要求》(T/CBMF 27-2018)标准计算,生产免蒸压混凝土管桩的总碳排放量为339.5kg/m3,比生产蒸压混凝土管桩时的总碳排放量降低了约20%,具有极为显著的节能减排效果。
但受到高强混凝土脆性大的影响,免蒸压混凝土管桩的抗冲击性能较弱,无法适应诸如机场跑道、公路桥墩等可能承受冲击荷载的工程。为了提高免蒸压混凝土管桩的抗冲击性能,本课题组基于已获得的橡胶混凝土相关研究成果,尝试往免蒸压混凝土中掺入橡胶颗粒、橡胶纤维,此方法可提高混凝土的抗裂、抗冲击性能。
此外,这些橡胶颗粒皆来自废旧轮胎,废旧轮胎里面含有的橡胶自然条件下难以降解,随着废旧轮胎数量逐年增加,其导致的环境也日益凸显。将废旧轮胎橡胶粉碎成橡胶颗粒、橡胶纤维后加入管桩混凝土中不仅可以提高免蒸压管桩的抗冲击性能,还能缓解废旧轮胎对环境造成的压力,真正做到绿色环保。
然而通过大量的研究发现加入橡胶固然可以提高混凝土的韧性,但也会降低混凝土的强度,预应力高强混凝土管桩对混凝土材料的强度要求较高,规定强度等级必须大于80MPa,一味追求抗冲击性能,将无法满足强度要求。橡胶与水泥的表面结合性差是导致橡胶混凝土强度降低的一个重要原因,为了改善两者的结合性能,大量学者在掺入水泥前对橡胶颗粒进行了改性预处理,包括水洗、NaOH溶液浸泡、丁苯胶乳浸泡等等,这些手段都对减缓橡胶混凝土强度损失有积极作用,但它们大部分的研究对象是普通混凝土,缺少对于高强混凝土的相关研究,且大多采用单一方法,改进效果有限;同时有些预处理方法会引入其他化学物质,改变混凝土酸碱性、水胶比等,影响了混凝土的工作性能,并不能满足橡胶改性免蒸压管桩混凝土的需求。
针对现有技术不足,提供一种节能环保型高抗冲击性能的免蒸压管桩混凝土材料及其制备方法以克服现有技术不足甚为必要。
发明内容
为解决上述问题,本发明的目的在于提供一种节能环保型高抗冲击性能的免蒸压管桩混凝土材料及其制备方法。
本发明的目的通过以下技术方案实现。
一种节能环保型高抗冲击性能的免蒸压管桩混凝土,所述混凝土的原材料包括胶凝材料、砂石、改性橡胶纤维、减水剂和水。
所述胶凝材料为水泥和掺合料,胶凝材料在混凝土中的用量为400-500kg/m3,优选为470kg/m3,水胶比为0.19~0.22;所述掺合料为矿渣粉和硅粉,优选为S95级矿渣粉和进口98硅粉,矿渣粉比表面积为400-450m2/kg,优选为412m2/kg,用量为胶凝材料总质量的25-40%,优选为30%,硅粉比表面 积为15-30m2/kg,优选为21m2/kg,用量为胶凝材料总质量的5-10%,优选为10%;
所述砂石在混凝土中的用量为1784kg/m3~1925kg/m3,其中砂石的含砂率为31.6%~36.6%;
所述减水剂用量为胶凝材料总质量的1.0-1.5%,优选为1.2%;
上述胶凝材料中,水泥为华润水泥有限公司生产的P.II 42.5R硅酸盐水泥;减水剂为江门强力建材科技有限公司生产的QL-PC5型聚羧酸高效减水剂,固含量40%;砂石为细度模数2.8的二区中砂。
所述橡胶纤维来自废旧橡胶轮胎的机械切割得到,橡胶纤维的长径比为2-10,直径为2mm-10mm,抗拉强度为20-25MPa,优选长径比为5,以内掺法等体积替换骨料中的砂石,替换率为5-20%,优选为15%。
优选的,对橡胶纤维进行改性,进一步的,改性橡胶纤维的制备方法,包括以下步骤:
(1)称取一定量的橡胶纤维,利用清水浸泡洗去表面的杂质、添加剂,过滤烘干;
(2)将烘干的橡胶纤维放置于真空管式气氛炉中,通入氮气置换空气,快速升温至300-400℃,保温10-30min,冷却,收集获取浅层碳化后的橡胶纤维。
(3)将浅层碳化后的橡胶纤维置入准备好的改性剂物料中进行浸泡一定时间,洗涤干燥,收集二次改性后的橡胶纤维。
所述浅层碳化,是指碳化深度以橡胶纤维表面向中心半径的1/6-1/5。
所述改性剂选自NaOH、甲醇、硅烷偶联剂、丁苯胶乳、乳化沥青中一种或多种;所述浸泡的时间优选为24h。
优选的,所述NaOH的溶液质量浓度2-8%;所述甲醇的溶液的质量浓度为65-80%;所述硅烷偶联剂(KH550)为南京曙光化工厂生产,加入质量为橡胶纤维质量的2-5%,优选为橡胶纤维质量的3%;所述丁苯胶乳为美国TRINSEO公司生产的羟基丁苯胶乳,质量为橡胶纤维质量的50%-150%,优选为橡胶纤维质量的80%;所述乳化沥青为广东茂名市鑫大公路材料有限公司生产的阳离子慢裂型乳化沥青,质量为橡胶纤维质量的50%-150%。
本发明还提供一种节能环保型高抗冲击性能的免蒸压管桩混凝土的制备方法,包括以下步骤:
(1)对砂石进行晾晒,使砂石的含水率低于2%
(2)按照原料的份数分别对砂石、硅酸盐水泥、矿渣粉、硅粉、改性橡胶纤维、减水剂和水进行重量的称重;
(3)将骨料混合物即砂石、水泥、矿渣粉、硅粉、改性橡胶纤维放入搅拌机中进行搅拌均匀,搅拌时间为60~90s,这一步主要将橡胶纤维搅拌均匀,避免遇水成团的情况出现;
(4)骨料搅拌均匀后加入称好的减水剂与水,继续搅拌,搅拌时间为120~150s;
(5)获得混凝土装入铁制模具中,并在阴凉处静置5~8小时;
(6)将步骤(5)的混凝土放入初始温度约50℃的蒸汽池中,随后升温并保持12小时的恒温环境;
(7)待蒸汽池温度降下来后即可开池取出免蒸压混凝土。
上述制备方法中,所述免蒸压管桩混凝土带模养护时间为12~13小时;所述混凝土带模养护包括静停段、升温段和恒温段,其中静停段的时间不低于5h;升温段时间不低于2h;恒温段的恒温温度为85℃~90℃,时间不低于10h。
与现有技术相比,本发明具有如下优点:
(1)橡胶材料的疏水性导致它与水泥砂浆的粘结性能差,导致混凝土的强度降低,对橡胶纤维进 行浅层炭化处理,一方面改变了橡胶表面的分子结构,C-C键与C-H键断裂,疏水性得到改善,另一方面碳化时橡胶纤维中的一些有机物发生热化学分解,在浅层形成了孔隙结构,具有一定孔隙结构的碳化壳提高了橡胶纤维与水泥砂浆的粘结面积。而利用改性剂对橡胶纤维炭化层进行二次改性后,可改造碳化层的物理结构与化学性质,使之与水泥砂浆的粘结性能更强,橡胶改性免蒸压管桩混凝土的强度可最大程度提升,可继续往混凝土中掺加橡胶纤维,进一步提高免蒸压混凝土的抗裂与抗冲击性能。
(2)橡胶纤维的炭化只在浅层,提高与水泥砂浆粘结性能的同时还保留了橡胶纤维的抗冲击性能;二次改性的改性剂成本低,操作简单,缩减改性时间,节省能源消耗。
(3)橡胶纤维等体积替换混凝土中一部分砂子,不仅可以增加废旧橡胶的回收利用率,减缓废旧轮胎引起的污染,同时减少砂子的用量,保护环境的同时降低了管桩的制造成本。
附图说明
图1分别为对比例1、实施例1、实施例4、实施例5、实施例6、实施例7的准静态劈裂试样破坏模态;
图2分别为对比例1、实施例1、实施例4、实施例5、实施例6、实施例7的动态劈裂试样破坏模态。
具体实施方式
下面结合具体实施例对本发明作进一步地具体详细描述,但本发明的实施方式不限于此,对于未特别注明的工艺参数,可参照常规技术进行。
对比例1
一种具备抗冲击性能的免蒸压管桩混凝土,以每立方米计,含有如下重量的原料:
胶凝材料:470kg,胶凝材料由硅酸盐水泥、矿渣粉和硅粉组成,所述硅酸盐水泥为华润P II 42.5R硅酸盐水泥,占胶凝材料总质量的60%;所述矿渣粉为比表面积412m2/kg的S95级矿渣微粉,所述矿渣粉可改进免蒸压混凝土的后期强度,质量占胶凝材料总质量的30%;所述硅粉为比表面积21m2/kg的进口98硅粉,质量占胶凝材料总质量的10%。
砂石:1819.25kg,含砂率为32.9%,
橡胶纤维:纤维长50mm,直径为10mm,体积为骨料体积的15%,质量27.12kg,骨料由砂石和橡胶纤维组成。
减水剂:5.64kg,所述减水剂为QL-PC5型聚羧酸高效减水剂,固含量40%,减水剂重量为胶凝材料总质量的1.2%。
水:100kg。
制备方法包括以下步骤:
(1)对砂石进行晾晒,使砂石的含水率低于2%。
(2)按照原料的份数分别对砂石、硅酸盐水泥、矿渣粉、硅粉、橡胶纤维、减水剂和水进行重量的称量。
(3)将步骤(2)称得的砂石、硅酸盐水泥、矿渣粉、硅粉、橡胶纤维依次倒入搅拌机内搅拌,搅拌时间为90s,此步骤将橡胶纤维提前搅拌均匀,改善橡胶纤维遇水后的成团现象。
(4)倒入减水剂和水,继续搅拌,搅拌时间为150s。
(5)搅拌后测量其塌落度,为38mm。
(6)将获得的免蒸压管桩混凝土拌合物倒入准备好的铁质磨具中并在阴凉处静置5小时。
(7)将步骤(6)的混凝土放入蒸汽池内,蒸汽池初始温度约为50℃。
(8)盖上池盖,通入蒸汽,经过2小时升温后,池内温度达到85℃~90℃,保持此温度12小时。
(9)待池内温度降回50℃,开盖取出混凝土。
此掺量下橡胶改性免蒸压混凝土脱模强度73MPa,未满足预应力高强管桩混凝土强度要求,见表1。
对比例2
一种KH550硅烷偶联剂改性的橡胶纤维改性免蒸压管桩混凝土,以每立方米计,含有如下重量的原料:
胶凝材料、减水剂、砂石、橡胶纤维和水:与对比例1相同。
其中橡胶纤维的改性方法包括以下步骤:
(1)称取橡胶纤维,利用清水浸泡洗去表面的杂质、添加剂,过滤烘干;
(2)称取橡胶纤维质量2%的KH550硅烷偶联剂,即0.54kg,用70~80℃的水溶解,将橡胶纤维放入硅烷偶联剂水溶液中搅拌均匀并浸泡12h,最后置入干燥通风环境中24h,直到橡胶纤维表面完全干燥备用。
混凝土制备方法与对比例1相同,其中步骤(5)搅拌后测量其塌落度,为22mm。脱模强度76MPa,相较未改性处理时强度提高了4.2%
单独使用硅烷偶联剂对橡胶纤维进行改性,具有良好的改性效果,这是因为K550硅烷偶联剂中含有氨丙基和乙氧基,氨丙基与橡胶形成化学键合,乙氧基与水泥砂浆中的羧基脱水合成Si-O-Si键,偶联剂起到桥接作用,使橡胶有机材料与水泥水泥无机胶凝材料很好地粘结在一起。其他参数见表1。
对比例3
一种丁苯胶乳改性的橡胶纤维改性免蒸压管桩混凝土,以每立方米计,含有如下重量的原料:
胶凝材料、减水剂、砂石、橡胶纤维和水:与对比例1相同。
其中橡胶纤维的改性方法包括以下步骤:
(1)称取橡胶纤维,利用清水浸泡洗去表面的杂质、添加剂,过滤烘干;
(2)称取橡胶纤维质量80%的丁苯胶乳,即21.6kg,将橡胶纤维放入丁苯胶乳中搅拌均匀并浸泡24h,随后以100℃烘1.5h,保证乳液失去流动性即可,收集备用。
混凝土制备方法与对比例1相同,其中步骤(5)搅拌后测量其塌落度,为42mm。脱模强度78.1MPa,相较未改性处理时强度提高了7.0%
丁苯胶乳的改性效果良好,这是因为丁苯胶乳与轮胎橡胶具有较好的相容性,分子链中的羧基可与水泥砂浆钙离子形成离子键发生化学吸附;此外,丁苯胶乳作为一种辅助胶凝材料,混凝土搅拌时功能类似减水剂,可一定程度提高水泥砂浆流动性,利于提高橡胶混凝土的强度,其他参数见表1。
实施例1
一种浅层碳化改性的橡胶纤维改性免蒸压管桩混凝土,以每立方米计,含有如下重量的原料:
胶凝材料、减水剂、砂石、橡胶纤维和水:与对比例1相同。
其中浅层碳化改性橡胶纤维的方法包括以下步骤:
(1)称取橡胶纤维,利用清水浸泡洗去表面的杂质、添加剂,过滤烘干;
(2)将烘干的橡胶纤维放置于真空管式气氛炉中,通入氮气置换空气,快速升温至350℃,保温 30min,冷却,收集获得,经检测,碳化层仅在距离表面向中心的半径1/6-1/5之处。
混凝土制备方法与对比例1相同,其中步骤(5)搅拌后测量其塌落度,为13mm。脱模强度达到80.3MPa,浅层碳化对橡胶纤维改性效果比单一硅烷偶联剂、丁苯乳胶的改性效果要更加明显,混凝土强度相较未碳化处理时提高了约10%。
这是因为浅层碳化后改变了橡胶的疏水性,极大降低了橡胶纤维表面的酸性,同时形成了孔隙结构,增加了与水泥砂浆的接触面积,从而极大提高了粘结性能,其它参数见表1。
实施例2
一种二次改性的橡胶纤维改性免蒸压管桩混凝土,以每立方米计,含有如下重量的原料:
胶凝材料、减水剂、砂石、橡胶纤维和水:与对比例1相同。
其中浅层碳化改性方法包括以下步骤:
(1)称取橡胶纤维,利用清水浸泡洗去表面的杂质、添加剂,过滤烘干;
(2)将烘干的橡胶纤维放置于真空管式气氛炉中,通入氮气置换空气,快速升温至350℃,保温30min,冷却,收集获得,经检测,碳化层仅在距离表面向中心的半径1/6-1/5之处。
(3)将浅层碳化后的橡胶纤维置入准备好的质量浓度为2%的NaOH溶液中浸泡24h,后取出清洗残留溶液,烘干后备用。
混凝土制备方法与实施例1相同,其中步骤(5)搅拌后测量其塌落度,为22mm。脱模强度82.7MPa,相较未改性处理时强度提高了13.3%。
浅层碳化+NaOH溶液的改性效果强于单一浅层碳化的改性效果,这是因为NaOH可以除去碳化层中残留的诸如硬脂酸锌的添加剂,使高分子添加剂转换成可溶性的钠盐,从而提高橡胶纤维与水泥砂浆的粘结性能,其他参数见表1。
实施例3
一种二次改性的橡胶纤维改性免蒸压管桩混凝土,以每立方米计,含有如下重量的原料:
胶凝材料、减水剂、砂石、橡胶纤维和水:与对比例1相同。
其中浅层碳化改性方法包括以下步骤:
(1)称取橡胶纤维,利用清水浸泡洗去表面的杂质、添加剂,过滤烘干;
(2)将烘干的橡胶纤维放置于真空管式气氛炉中,通入氮气置换空气,快速升温至350℃,保温30min,冷却,收集获得,经检测,碳化层仅在距离表面向中心的半径1/6-1/5之处。
(3)将浅层碳化后的橡胶纤维置入准备好的质量浓度为80%的甲醇溶液中浸泡24h,后取出清洗残留溶液,烘干后备用。
混凝土制备方法与对比例1相同,其中步骤(5)搅拌后测量其塌落度,为28mm。脱模强度83.1MPa,相较未改性处理时强度提高了13.8%
浅层碳化+甲醇溶液的改性效果强于单一浅层碳化的改性效果,这是因为甲醇与橡胶纤维及碳化层都属于有机物,甲醇可以释放溶胀侵蚀碳化层及暴露出的部分橡胶,使得碳化后的橡胶纤维表面更加粗糙,增强了橡胶纤维与水泥砂浆的附着力与相容性,其他参数见表1。
实施例4
一种二次改性的橡胶纤维改性免蒸压管桩混凝土,以每立方米计,含有如下重量的原料:
胶凝材料、减水剂、砂石、橡胶纤维和水:与对比例1相同。
其中浅层碳化改性方法包括以下步骤:
(1)称取橡胶纤维,利用清水浸泡洗去表面的杂质、添加剂,过滤烘干;
(2)将烘干的橡胶纤维放置于真空管式气氛炉中,通入氮气置换空气,快速升温至350℃,保温30min,冷却,收集获得,经检测,碳化层仅在距离表面向中心的半径1/6-1/5之处。
(3)称取橡胶纤维质量2%的KH550硅烷偶联剂,即0.54kg,用70~80℃的水溶解,将浅层碳化后的橡胶纤维放入硅烷偶联剂水溶液中搅拌均匀并浸泡12h,最后置入干燥通风环境中24h,直到橡胶纤维表面完全干燥备用。
混凝土制备方法与对比例1相同,其中步骤(5)搅拌后测量其塌落度,为25mm。脱模强度85.5MPa,相较未改性处理时强度提高了17.1%
浅层碳化+硅烷偶联剂的改性效果强于单一浅层碳化与单一硅烷偶联剂的改性效果之和,表明浅层碳化+硅烷偶联剂并不是单纯的改性效果的叠加,两者具有协同效果。这是因为K550硅烷偶联剂中含有氨丙基和乙氧基,橡胶纤维与硅烷偶联剂搅拌时,乙氧基作为可水解基团,遇水后引起分解,可与橡胶纤维的碳化层具有较好的反应性,同时乙氧基与水泥砂浆中的羧基脱水合成Si-O-Si键,使水泥与浅层碳化橡胶纤维界面形成单分子层,改善两者粘结性能。此外一部分硅烷偶联剂通过碳化层的孔隙结构与橡胶接触,K550硅烷偶联剂中的氨丙基与橡胶形成化学键合,进一步强化界面的性能。碳化层与界面单分子层的协同作用下,可以使橡胶纤维与水泥砂浆很好的粘结在一起,其他参数见表1。
实施例5
一种二次改性的橡胶纤维改性免蒸压管桩混凝土,以每立方米计,含有如下重量的原料:
胶凝材料、减水剂、砂石、橡胶纤维和水:与对比例1相同。
其中浅层碳化改性方法包括以下步骤:
(1)称取橡胶纤维,利用清水浸泡洗去表面的杂质、添加剂,过滤烘干;
(2)将烘干的橡胶纤维放置于真空管式气氛炉中,通入氮气置换空气,快速升温至350℃,保温30min,冷却,收集获得,经检测,碳化层仅在距离表面向中心的半径1/6-1/5之处。
(3)称取橡胶纤维质量3%的KH550硅烷偶联剂,即0.81kg,用70~80℃的水溶解,将浅层碳化后的橡胶纤维放入硅烷偶联剂水溶液中搅拌均匀并浸泡12h,最后置入干燥通风环境中24h,直到橡胶纤维表面完全干燥备用。
混凝土制备方法与对比例1相同,其中步骤(5)搅拌后测量其塌落度,为22mm。脱模强度86.1MPa,相较未改性处理时强度提高了17.9%
适当提高硅烷偶联剂的含量可提高橡胶碳化层与水泥砂浆的粘结性能,其他参数见表1。
实施例6
一种二次改性的橡胶纤维改性免蒸压管桩混凝土,以每立方米计,含有如下重量的原料:
胶凝材料、减水剂、砂石、橡胶纤维和水:与对比例1相同。
其中浅层碳化改性方法包括以下步骤:
(1)称取橡胶纤维,利用清水浸泡洗去表面的杂质、添加剂,过滤烘干;
(2)将烘干的橡胶纤维放置于真空管式气氛炉中,通入氮气置换空气,快速升温至350℃,保温30min,冷却,收集获得,经检测,碳化层仅在距离表面向中心的半径1/6-1/5之处。
(3)称取橡胶纤维质量5%的KH550硅烷偶联剂,即1.35kg,用70~80℃的水溶解,将浅层碳化后 的橡胶纤维放入硅烷偶联剂水溶液中搅拌均匀并浸泡12h,最后置入干燥通风环境中24h,直到橡胶纤维表面完全干燥备用。
混凝土制备方法与对比例1相同,其中步骤(5)搅拌后测量其塌落度,为17mm。脱模强度82.3MPa,相较未改性处理时强度提高了12.7%
过多的硅烷偶联剂会导致偶联剂与水泥界面之间的单分子层过厚,从而提高橡胶纤维的体积,增加了因体积增大而造成的强度衰减效果,从而影响了粘结性能。其他参数见表1。
实施例7
一种二次改性的橡胶纤维改性免蒸压管桩混凝土,以每立方米计,含有如下重量的原料:
胶凝材料、减水剂、砂石、橡胶纤维和水:与对比例1相同。
其中浅层碳化改性方法包括以下步骤:
(1)称取橡胶纤维,利用清水浸泡洗去表面的杂质、添加剂,过滤烘干;
(2)将烘干的橡胶纤维放置于真空管式气氛炉中,通入氮气置换空气,快速升温至350℃,保温30min,冷却,收集获得,经检测,碳化层仅在距离表面向中心的半径1/6-1/5之处。
(3)称取橡胶纤维质量80%的丁苯胶乳,即21.6kg,将浅层碳化后橡胶纤维放入丁苯胶乳中搅拌均匀并浸泡24h,随后以i00℃烘1.5h,保证乳液失去流动性即可,收集备用。
混凝土制备方法与对比例1相同,其中步骤(5)搅拌后测量其塌落度,为45mm。脱模强度83.7MPa,相较未改性处理时强度提高了14.6%
浅层碳化+丁苯胶乳的改性效果强于单一浅层碳化、单一丁苯胶乳的改性效果,这是因为丁苯胶乳中羧基提高了橡胶纤维及碳化层的亲水性,同时充填橡胶纤维碳化层中的微小孔隙结构,强化两者相容性。同时分子链中的羧基可与水泥砂浆钙离子形成离子键发生化学吸附,碳化层的特殊结构及羧基丁苯胶乳的协同作用下赋予了橡胶水泥砂浆更强的粘结性能;此外,丁苯胶乳作为一种辅助胶凝材料,混凝土搅拌时起到了减水剂的作用,多余的丁苯胶乳一定程度提高了水泥砂浆流动性,有利于提高橡胶混凝土的强度,其他参数见表1。
实施例8
一种二次改性的橡胶纤维改性免蒸压管桩混凝土,以每立方米计,含有如下重量的原料:
胶凝材料、减水剂、砂石、橡胶纤维和水:与对比例1相同。
其中浅层碳化改性方法包括以下步骤:
(1)称取橡胶纤维,利用清水浸泡洗去表面的杂质、添加剂,过滤烘干;
(2)将烘干的橡胶纤维放置于真空管式气氛炉中,通入氮气置换空气,快速升温至350℃,保温30min,冷却,收集获得,经检测,碳化层仅在距离表面向中心的半径1/6-1/5之处。
(3)称取橡胶纤维质量120%的丁苯胶乳,即32.4kg,将浅层碳化后橡胶纤维放入丁苯胶乳中搅拌均匀并浸泡24h,随后以100℃烘1.5h,保证乳液失去流动性即可,收集备用。
混凝土制备方法与对比例1相同,其中步骤(5)搅拌后测量其塌落度,为55mm。脱模强度84.3MPa,相较未改性处理时强度提高了15.5%
丁苯胶乳作为一种辅助胶凝材料,提高丁苯乳胶含量后进一步提高了水泥砂浆的流动性,导致橡胶混凝土的强度得到提升。其他参数见表1。
实施例9
一种二次改性的橡胶改性免蒸压管桩混凝土,以每立方米计,含有如下重量的原料:
胶凝材料、减水剂、砂石、橡胶纤维和水:与对比例1相同。
其中浅层碳化改性方法包括以下步骤:
(1)称取橡胶纤维,利用清水浸泡洗去表面的杂质、添加剂,过滤烘干;
(2)将烘干的橡胶纤维放置于真空管式气氛炉中,通入氮气置换空气,快速升温至350℃,保温30min,冷却,收集获得,经检测,碳化层仅在距离表面向中心的半径1/6-1/5之处。
(3)称取橡胶纤维质量80%的乳化沥青,即21.6kg,将浅层碳化后橡胶纤维放入乳化沥青中搅拌均匀并浸泡24h,随后后以i00℃烘0.5h,保证乳化沥青失去流动性即可,收集橡胶纤维备用。
混凝土制备方法与对比例1相同,其中步骤(3)中水泥质量减少5%,利用乳化沥青替换,步骤(5)搅拌后测量其塌落度,为43mm。脱模强度78.0MPa,相较未改性处理时强度提高了6.8%。
浅层碳化+乳化沥青的改性效果弱于单一浅层碳化的改性效果,这是因为乳化沥青,含有大量极性物质,而碳化层中的碳属于非极性材料,这会一定程度降低粘结性能,其他参数见表1
表1
注:耗能比为耗散能比上输入总能。
单一改性方法中,浅层碳化可以改变橡胶纤维的表面结构,有效提高橡胶材料的亲水性,碳化层的孔隙结构增大了接触面积,提高橡胶纤维与水泥砂浆的粘结强度,进而提高橡胶混凝土的强度。
单一改性方法中,硅烷偶联剂含有氨丙基和乙氧基,氨丙基与橡胶形成化学键合,乙氧基与水泥砂浆中的羧基脱水合成Si-O-Si键,偶联剂起到桥接作用,使橡胶有机材料与水泥无机胶凝材料粘结在一起。
单一改性方法中,丁苯胶乳的羧基不仅提高了橡胶纤维的亲水性,还可与水泥砂浆钙离子形成离子键发生化学吸附;此外丁苯胶乳具有减水剂效果,提高混凝土流动性,可进一步提高橡胶免蒸压混凝土的强度。
这些单一改性方法皆有很大的提升空间,本发明提出二次改性方法,首先使用浅层碳化改变橡胶纤 维表面结构,改善纤维的亲水性,之后利用各种改性剂进行二次改性,通过表1可发现二次改性效果大都比单一改性更好。
拉压比可作为衡量混凝土材料的脆性指数,拉压比越大,脆性越小,通过表1可知橡胶纤维经过“浅层碳化+丁苯胶乳”二次改性处理后,橡胶改性免蒸压管桩混凝土的脆性最小,这是因为丁苯胶乳可以增强流动性的同时自身具备一定弹性。
耗能比可表征橡胶改性免蒸压管桩混凝土受到冲击荷载后的耗能能力,耗能越强,表明混凝土冲击韧性越好,通过表1可知橡胶纤维通过“浅层碳化+硅烷偶联剂”改性后耗能比最高,这是因为硅烷偶联剂与橡胶、橡胶碳化层、水泥皆有良好的相容性,且可以与橡胶纤维、水泥基体形成化学键,提高两者的粘结强度,改善了混凝土的冲击韧性。
免蒸压混凝土的脱模强度可直观体现各改性手段的强度改性效果,通过表1可知橡胶纤维通过“浅层碳化+硅烷偶联剂”改性后效果要强于单一浅层碳化与单一硅烷偶联剂的改性效果之和,两者具有协同作用,改性后强度得到大幅提升,且当硅烷偶联剂质量为橡胶纤维质量的3%时,强度改性效果最佳。
管桩受到冲击荷载时往往先出现拉伸破坏,以动态劈裂拉伸失效应变作为衡量其抗裂性能的指标,通过表1可知橡胶纤维通过“浅层碳化+硅烷偶联剂”改性后,橡胶改性免蒸压管桩混凝土的拉伸失效应变最大,即其抗裂性能最好。
图1、图2为准静态、动态劈裂拉伸试验后各改性方法混凝土试样的破坏模态图,不同的改性方法表现出了不同的破坏形态。
从图1中可以看出,橡胶纤维未进行改性时,准静态劈裂拥有两条大裂缝,经过浅层碳化后,劈裂裂缝减少为一条,对碳化层继续进行二次改性后,劈裂裂缝的开度逐渐减小,破坏程度皆有所改善,其中“浅层碳化+硅烷偶联剂”改性手段的抗裂性能极佳,而比较橡胶质量的2%、3%、5%三种含量的硅烷偶联剂,发现3%时抗裂性能最好。
从图2中可以看出,橡胶纤维未改性时,受到冲击荷载,圆盘试件两加载端出现了三角形的破碎区,这是因为冲击能量超过混凝土自身的吸能能力,故需要产生更多的损伤以消耗多余的冲击能。橡胶纤维进行浅层碳化后,提高了橡胶纤维的亲水性,橡胶纤维与水泥砂浆的粘结界面得到改善,水泥砂浆与橡胶纤维之间的力传递性能提高,可以更加充分发挥出橡胶纤维的吸能效果,因而三角形破碎区减小。对碳化层继续进行二次改性后,三角形破碎区消失,开度有所减小,其中“浅层碳化”、“浅层碳化+3%硅烷偶联剂”、“浅层碳化+丁苯乳胶”三种改性手段的贯穿裂缝开度最小,耗能能力较强。
综合各改性手段的混凝土的脱模强度、拉压比、耗能比、失效应变和破坏模态,可发现二次改性方法的效果强于单一改性方法,二次改性方法中“浅层碳化+3%硅烷偶联剂”和“浅层碳化+丁苯胶乳”的改性效果极佳,其中又以“浅层碳化+3%硅烷偶联剂”最佳,增强橡胶改性免蒸压管桩混凝土抗压强度的同时,也增强了混凝土的冲击韧性,提高了混凝土的抗裂、抗冲击性能。
免蒸压养护工艺比传统蒸压养护工艺消耗更少的能源,减少更多的碳排放量;再生橡胶纤维等体积替换混凝土中部分细砂,提高废旧轮胎回收利用率的同时减少了细砂的用量;两者结合不仅改善了免蒸压混凝土脆性大的特点,还具有绿色节能的作用。本发明提出的二次改性方法缓解了橡胶-水泥砂浆界面粘结性差的问题,为再生橡胶改性免蒸压混凝土管桩的应有、新型绿色环保建筑材料的普及提供了重要帮助。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,橡胶 纤维具备较好的抗裂性能,故以此作为主要实施例,但尽管参照较佳实施例对本发明做了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方法进行修改或者等同替换(如将橡胶纤维改为橡胶颗粒),而不脱离本发明技术方法的实质和范围。

Claims (8)

  1. 一种节能环保型高抗冲击性能的免蒸压管桩混凝土,其特征在于:所述混凝土的原材料包括胶凝材料、砂石、改性橡胶纤维、减水剂和水;
    所述胶凝材料为硅酸盐水泥和掺合料,胶凝材料在混凝土中的用量为400-500kg/m3,所述掺合料为矿渣粉和硅粉,矿渣粉比表面积为400-450m2/kg,硅粉比表面积为15-30m2/kg,矿渣粉用量为胶凝材料总质量的25-40%,硅粉用量为胶凝材料总质量的5-10%;
    所述砂石在混凝土中的用量为1784kg/m3~1925kg/m3,其中砂石的含砂率为31.6%~36.6%;
    所述减水剂用量为胶凝材料总质量的1.0-1.5%;
    橡胶纤维来自废旧橡胶轮胎的机械切割得到,橡胶纤维的长径比为2-10,直径为2mm-10mm,抗拉强度为20-25Mpa;所述改性橡胶纤维以内掺法等体积替换骨料中的砂石,替换率为5-20%;所述改性橡胶纤维为橡胶纤维经过浅层碳化和改性剂浸泡改性获得;
    水胶比为0.19~0.22;
    改性橡胶纤维的制备方法包括以下步骤:(1)称取一定量的橡胶纤维,利用清水浸泡洗去表面的杂质、添加剂,过滤烘干;
    (2)将烘干的橡胶纤维放置于真空管式气氛炉中,通入氮气置换空气,快速升温至300-400℃,保温10-30min,冷却,收集获取浅层碳化后的橡胶纤维;
    (3)将浅层碳化后的橡胶纤维置入准备好的改性剂物料中混合,并进行浸泡一定时间,后处理,收集二次改性后的橡胶纤维,即为改性橡胶纤维;
    所述浅层碳化,是指碳化深度以橡胶纤维表面向中心半径的1/6-1/5计;
    所述改性剂选自NaOH、甲醇、硅烷偶联剂、丁苯胶乳中一种或多种;所述浸泡的时间为12-24h。
  2. 根据权利要求1所述一种节能环保型高抗冲击性能的免蒸压管桩混凝土,其特征在于:所述减水剂为聚羧酸缓释型减水剂,用量为胶凝材料总质量的1.2%;
    矿渣粉为S95级,矿渣粉的比表面积为412m2/kg,用量为胶凝材料总质量30%;硅粉为98硅粉,硅粉比表面积为21m2/kg,用量为胶凝材料总质量的10%。
  3. 根据权利要求1所述一种节能环保型高抗冲击性能的免蒸压管桩混凝土,其特征在于:所述橡胶纤维的长径比为5,改性橡胶纤维以内掺法等体积替换骨料中的砂石,替换率为15%。
  4. 根据权利要求1所述一种节能环保型高抗冲击性能的免蒸压管桩混凝土,其特征在于:所述NaOH的溶液质量浓度28%;所述甲醇的溶液的质量浓度为65-80%;所述硅烷偶联剂为KH550,加入质量为橡胶纤维质量的2-5%;所述丁苯胶乳为羟基丁苯胶乳,加入质量为橡胶纤维质量的50%-150%。
  5. 根据权利要求4所述一种节能环保型高抗冲击性能的免蒸压管桩混凝土,其特征在于:所述硅烷偶联剂为KH550,加入质量为橡胶纤维质量的3%。
  6. 根据权利要求4所述一种节能环保型高抗冲击性能的免蒸压管桩混凝土,其特征在于:所述丁苯胶乳为羟基丁苯胶乳,加入质量为橡胶纤维质量的80%。
  7. 根据权利要求1所述一种节能环保型高抗冲击性能的免蒸压管桩混凝土,其特征在于:所述后处理包括洗涤和/或干燥。
  8. 一种如权利要求1-7任一项所述的节能环保型高抗冲击性能的免蒸压管桩混凝土的制备方法,其特征在于:
    (1)对砂石进行晾晒,使砂石的含水率低于2%;
    (2)按照原料的用量分别对砂石、硅酸盐水泥、矿渣粉、硅粉、改性橡胶纤维、减水剂和水进行重量的称重;
    (3)将步骤(2)称量的砂石、硅酸盐水泥、矿渣粉、硅粉、改性橡胶纤维放入搅拌机中进行搅拌均匀,搅拌时间为60~90s;
    (4)加入称好的减水剂与水,继续搅拌,搅拌时间为120~150s;
    (5)获得混凝土装入铁制模具中,并在阴凉处静置5~8小时;
    (6)将步骤(5)的混凝土放入初始温度50℃的蒸汽池中,随后升温并保持12小时的恒温环境;
    (7)待蒸汽池温度降下来后即可开池取出免蒸压混凝土;
    上述制备方法中,所述免蒸压管桩混凝土带模养护时间为12小时;所述混凝土带模养护包括静停段、升温段和恒温段,其中静停段的时间不低于5h;升温段时间不低于2h;恒温段的恒温温度为85℃~90℃,时间不低于10h。
PCT/CN2023/082844 2022-07-04 2023-03-21 一种节能环保型高抗冲击性能的免蒸压管桩混凝土材料及其制备方法 WO2024007625A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210765128.1 2022-07-04
CN202210765128.1A CN115108780B (zh) 2022-07-04 2022-07-04 一种节能环保型高抗冲击性能的免蒸压管桩混凝土材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2024007625A1 true WO2024007625A1 (zh) 2024-01-11

Family

ID=83330677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082844 WO2024007625A1 (zh) 2022-07-04 2023-03-21 一种节能环保型高抗冲击性能的免蒸压管桩混凝土材料及其制备方法

Country Status (2)

Country Link
CN (1) CN115108780B (zh)
WO (1) WO2024007625A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115108780B (zh) * 2022-07-04 2023-04-11 广东工业大学 一种节能环保型高抗冲击性能的免蒸压管桩混凝土材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110144880A (zh) * 2019-05-28 2019-08-20 连云港晟宇新型建材有限公司 一种免蒸压的预应力高强混凝土管桩及其制备方法
CN110981327A (zh) * 2019-10-08 2020-04-10 徐思钰 一种改性橡胶颗粒抗冲磨超高韧性混凝土及其制备方法
CN113248208A (zh) * 2021-06-07 2021-08-13 天津建城基业管桩有限公司 一种免蒸养高强度防腐管桩及其制备方法
CN114773002A (zh) * 2022-04-27 2022-07-22 佛山市南海通达混凝土有限公司 一种具备抗冲击性能的免蒸压改性橡胶混凝土制备方法
CN115108780A (zh) * 2022-07-04 2022-09-27 广东工业大学 一种节能环保型高抗冲击性能的免蒸压管桩混凝土材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106045397A (zh) * 2014-02-14 2016-10-26 四川金摩尔环保新材料有限责任公司 抗压抗折橡胶混凝土制品
CN106116371A (zh) * 2016-07-01 2016-11-16 安徽鑫润新型材料有限公司 一种碳硅增强混凝土管桩及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110144880A (zh) * 2019-05-28 2019-08-20 连云港晟宇新型建材有限公司 一种免蒸压的预应力高强混凝土管桩及其制备方法
CN110981327A (zh) * 2019-10-08 2020-04-10 徐思钰 一种改性橡胶颗粒抗冲磨超高韧性混凝土及其制备方法
CN113248208A (zh) * 2021-06-07 2021-08-13 天津建城基业管桩有限公司 一种免蒸养高强度防腐管桩及其制备方法
CN114773002A (zh) * 2022-04-27 2022-07-22 佛山市南海通达混凝土有限公司 一种具备抗冲击性能的免蒸压改性橡胶混凝土制备方法
CN115108780A (zh) * 2022-07-04 2022-09-27 广东工业大学 一种节能环保型高抗冲击性能的免蒸压管桩混凝土材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHUO-MIMG CHEN, LI LI-JUAN; XIONG ZHE: "Experimental Study for Improved Cementing Materials of Rubberized Concrete", CHINA CONCRETE AND CEMENT PRODUCTS, vol. 2019, no. 9, 2 September 2019 (2019-09-02), pages 90 - 94, XP093125854, ISSN: 1000-4637, DOI: 10.19761/j.1000-4637.2019.09.090.05 *

Also Published As

Publication number Publication date
CN115108780A (zh) 2022-09-27
CN115108780B (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
CN111377687A (zh) 氧化石墨烯低水泥用量超高性能混凝土及其制备方法
Chen et al. Development of high performance geopolymer concrete with waste rubber and recycle steel fiber: A study on compressive behavior, carbon emissions and economical performance
CN113105170B (zh) 一种掺加红麻韧皮纤维作物秸秆的3d打印碱激发地聚物复合材料及其制备方法
WO2024007625A1 (zh) 一种节能环保型高抗冲击性能的免蒸压管桩混凝土材料及其制备方法
Zhao et al. Workability, compressive strength, and microstructures of one-part rubberized geopolymer mortar
CN114591049A (zh) 利用建筑垃圾制备绿色砂浆的方法
CN112521115A (zh) 一种修补防护用绿色碱激发材料及其制备方法
Zhang et al. Effect of nano-particle on durability of polyvinyl alcohol fiber reinforced cementitious composite
WO2023241149A1 (zh) 一种绿色环保型隔音橡胶砂浆及其制备方法
CN111253127A (zh) 一种c30碳纤维碎砖再生混凝土及其制备方法
CN115073097B (zh) 一种高强度再生骨料混凝土及其制备方法
CN114804740A (zh) 一种混杂纤维和纳米材料增强地聚合物混凝土的制备方法
CN112159169A (zh) 一种防水砂浆及其制备方法
CN111320436A (zh) 一种碳纳米管面板混凝土配合比设计及其制备方法
CN113185169B (zh) 一种基于偏高岭土浆体浸泡的再生骨料及其改性方法
CN113754384A (zh) 一种抗强酸腐蚀的水泥砂浆及其制备方法
CN105985079A (zh) 一种制备废旧橡胶颗粒混凝土的方法
CN116217193B (zh) 用于岛礁的碱激发全固废海水海砂珊瑚混凝土及制备工艺
CN114773002B (zh) 一种具备抗冲击性能的免蒸压改性橡胶混凝土制备方法
CN111362628A (zh) 一种改性碳纳米管增强增韧地聚合物及制备方法
CN115959865B (zh) 一种橡胶粉、塑料粉、耐磨超大应变新型绿色工程水泥基复合材料及其制备方法
CN113277770B (zh) 一种具有增强效果的改性亚麻纤维的制备方法及应用
Xu et al. Enhancing the mechanical and durability properties of fly ash-based geopolymer mortar modified by polyvinyl alcohol fibers and styrene butadiene rubber latex
CN115785760A (zh) 一种提升混凝土抗碳化性能的涂料及其制备方法和应用
CN117819926B (zh) 钛酸钾晶须增强超高性能再生混凝土及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834409

Country of ref document: EP

Kind code of ref document: A1