WO2023241149A1 - 一种绿色环保型隔音橡胶砂浆及其制备方法 - Google Patents

一种绿色环保型隔音橡胶砂浆及其制备方法 Download PDF

Info

Publication number
WO2023241149A1
WO2023241149A1 PCT/CN2023/082634 CN2023082634W WO2023241149A1 WO 2023241149 A1 WO2023241149 A1 WO 2023241149A1 CN 2023082634 W CN2023082634 W CN 2023082634W WO 2023241149 A1 WO2023241149 A1 WO 2023241149A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
mortar
particles
parts
green
Prior art date
Application number
PCT/CN2023/082634
Other languages
English (en)
French (fr)
Inventor
熊哲
王娟
李采虹
唐振兴
方震
刘锋
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2023241149A1 publication Critical patent/WO2023241149A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/18Waste materials; Refuse organic
    • C04B18/20Waste materials; Refuse organic from macromolecular compounds
    • C04B18/22Rubber, e.g. ground waste tires
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00017Aspects relating to the protection of the environment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/34Non-shrinking or non-cracking materials
    • C04B2111/343Crack resistant materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/52Sound-insulating materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention belongs to the technical field of building materials, and specifically relates to a green and environmentally friendly sound-insulating rubber mortar and a preparation method thereof.
  • waste rubber is a polymer material that is difficult to degrade under normal natural conditions. If rubber is directly landfilled, it will have an impact on groundwater resources. If direct incineration is used, it will lead to the release of a large amount of toxic gases, making environmental problems such as "black pollution” more prominent. At present, the recycling of waste rubber is an urgent problem to be solved in the sustainable development strategy, and it is also a worldwide research hotspot.
  • CN202010464326.5 discloses a sound-insulating mortar with excellent tensile and compressive properties and a preparation method thereof, which mainly achieves the above purpose by distributing rubber powder on the fiber surface
  • CN201810827558.5 discloses a Thermal insulation and soundproofing mortar is modified with waste rubber powder to improve the soundproofing performance of the rubber.
  • CN201310696284.8 discloses the use of waste rubber to improve the sound insulation performance of mortar; and CN202110372498.4 also discloses the use of waste rubber to solve the problem of rubber sound insulation;
  • rubber cement-based materials lack a comprehensive and systematic knowledge system, which prevents civil engineering practitioners from fully understanding their advantages.
  • the existing applications are mainly to use rubber cement-based materials in applications with low compressive and flexural strength requirements.
  • Civil engineering materials such as sound-insulating rubber mortar used in building floors or used in wall painting.
  • waste rubber reduces the compressive and flexural properties of rubber cement-based materials, limiting the development of rubber cement-based materials.
  • This application is mainly aimed at improving the sound insulation problems and mechanical properties of sound-insulating rubber mortar in the prior art, in order to meet the good requirements for sound insulation without affecting the mechanical properties of the mortar.
  • the purpose of the present invention is to provide a green and environmentally friendly sound-insulating rubber mortar, which is characterized in that: the mortar per cubic meter contains the following materials: the materials per cubic meter of the mortar are formulated in the following manner (quality Ratio) design: 200-300 parts of cement, 100-150 parts of water, 500-600 parts of river sand, 180-220 parts of rubber, 0.1-90 parts of special glue, 1-10 parts of redispersible latex powder, 1 part of cellulose ether -10 parts for proportioning materials.
  • the cement is ordinary Portland cement labeled P.O42.5R or PSA32.5, and the density of the cement is about 3200kg/ m3 .
  • the water is ordinary tap water, and its density is 995kg/m 3 .
  • the river sand is medium sand, with a fineness modulus of 2.41, a water absorption rate of 0.38%, and a moisture content of 0.34%.
  • the rubber is waste rubber particles, and the waste rubber particles are granular, with a particle size of 2 to 4 mm, and an apparent density of 985 kg/m 3 , or the waste rubber particles are columnar particles, and the columnar particles are The average diameter of rubber particles is 1-2mm, and the aspect ratio is 3-5; or the waste rubber particles are mixed particles of granular rubber particles and columnar rubber particles, and the mass ratio of the granular rubber particles and columnar rubber particles is ( 2-3): 1, the particle size of granular rubber particles is 2-4mm, the diameter of columnar rubber particles is 1-2mm, and the aspect ratio is 3-5.
  • the types of rubber are: natural rubber, synthetic rubber, styrene-butadiene rubber, butadiene rubber, chloroprene rubber, nitrile rubber, ethylene-propylene rubber, polyurethane rubber, polysulfide rubber, acrylate rubber, chloroether rubber of one or more.
  • the special glue for sound insulation is one or more types including rubber latex, polyvinyl acetate, urea-formaldehyde, lignin, sodium alkyl sulfonate, and guar gum, wherein polyvinyl acetate is milky white water. Based polyvinyl acetate adhesive.
  • the redispersible latex powder is specifically one or more of an ethylene/vinyl acetate copolymer, a vinyl acetate/ethylene tertiary carbonate copolymer, and an acrylic acid copolymer, with a bulk density of 464kg/m 3 and a density of It is 1049kg/m 3 , the specific surface area is 346.7m 2 /kg, the PH value is 8.2, and the ash content is 9%.
  • the cellulose ether is hydroxypropyl methylcellulose ether (HPMC), or alternatively one of methyl cellulose ether, methyl hydroxyethyl cellulose ether, and hydroxyethyl cellulose ether.
  • HPMC hydroxypropyl methylcellulose ether
  • methyl cellulose ether methyl hydroxyethyl cellulose ether
  • hydroxyethyl cellulose ether hydroxyethyl cellulose ether
  • This application also requests protection for a preparation method of green and environmentally friendly sound-insulating rubber mortar, which includes the following steps:
  • each cubic meter of the mortar It is prepared according to the following materials contained in each cubic meter of the mortar:
  • the formula (mass ratio) of the materials in each cubic meter of the mortar is designed in the following way: 200-300 parts of cement, 100-150 parts of water , 500-600 parts of river sand, 180-220 parts of rubber, 0.1-90 parts of special glue, 1-10 parts of redispersible latex powder, 1-10 parts of cellulose ether, and proportion the materials;
  • the water-cement ratio of the mortar is 0.2-0.8;
  • the volume ratio of cement and fine aggregate (river sand and rubber) is 1:2-1:4, preferably 1:3;
  • Rubber is mixed into the mortar by replacing river sand with equal volume.
  • the replacement rate is 20-60%.
  • Others can be preferably 30%, 35%, 40%, 45%, 50%, 55%; the amount of special sound insulation glue is according to the mortar.
  • the mass percentage is calculated, and the dosage ratio is 0.1-10%; the redispersible latex powder and cellulose ether are calculated according to the percentage of cement mass, and the dosage ratio is 0.1-0.8%, preferably 0.2%. , 0.3%, 0.4%, 0.5%, 0.6%, 0.7%.
  • the cement is ordinary Portland cement with a code number of P.O42.5R, or alternatively, the cement is a slag Portland cement with a code number of PSA32.5, with a density of 3200kg/m 3 .
  • the water is ordinary tap water, and its density is 995kg/m 3 .
  • the river sand is medium sand, with a fineness modulus of 2.41, a water absorption rate of 0.38%, and a moisture content of 0.34%.
  • the rubber is waste rubber particles, the waste rubber particles are granular, and the particle size is 2 to 4 mm, or the waste rubber particles are columnar particles, and the average diameter of the columnar rubber particles is 1 to 2 mm.
  • the aspect ratio is 3-5; or the waste rubber particles are mixed particles of granular rubber particles and columnar rubber particles, and the mass ratio of the granular rubber particles and columnar rubber particles is (2-3):1, the The apparent density of waste rubber particles is 920-985kg/m3.
  • the types of rubber are: natural rubber, synthetic rubber, styrene-butadiene rubber, butadiene rubber, chloroprene rubber, nitrile rubber, ethylene-propylene rubber, polyurethane rubber, polysulfide rubber, acrylate rubber, chloroether rubber of one or more.
  • the special glue for sound insulation is one or more types including rubber latex, polyvinyl acetate, urea-formaldehyde, lignin, sodium alkyl sulfonate, and guar gum, wherein polyvinyl acetate is milky white water. Based polyvinyl acetate adhesive.
  • the redispersible latex powder is specifically one or more of an ethylene/vinyl acetate copolymer, a vinyl acetate/ethylene tertiary carbonate copolymer, and an acrylic acid copolymer, with a bulk density of 464kg/m 3 and a density of It is 1049kg/m 3 , the specific surface area is 346.7m 2 /kg, the PH value is 8.2, and the ash content is 9%.
  • the cellulose ether is hydroxypropyl methylcellulose ether (HPMC), or alternatively one of methyl cellulose ether, methyl hydroxyethyl cellulose ether, and hydroxyethyl cellulose ether.
  • HPMC hydroxypropyl methylcellulose ether
  • methyl cellulose ether methyl hydroxyethyl cellulose ether
  • hydroxyethyl cellulose ether hydroxyethyl cellulose ether
  • the accuracy of the material weighing balance is ⁇ 0.01g.
  • Cement is used to ensure the overall strength of the sound-insulating rubber mortar.
  • River sand is used to fill the sound-insulating rubber mortar and act as a skeleton.
  • the green and environmentally friendly sound-insulating rubber mortar has good fluidity and is easy to construct.
  • Green environmentally friendly sound-insulating rubber mortar can further improve the impact strength of rubber mortar, and with the addition of special glue
  • the impact strength of sound-insulating rubber mortar is getting higher and higher, which is helpful to prevent the damage of the mortar caused by impacts caused by people during building activities, thus improving the durability of the mortar.
  • the rubber can improve the elastic deformation ability of the mortar.
  • the dynamic elastic modulus is reduced, which weakens the vibration amplitude generated when sound waves are transmitted in the mortar; at the same time, the sound waves passing through the mortar can be reflected in all directions, and after the sound waves reflected in all directions interfere with each other and cancel each other, the sound waves
  • the strength has been greatly reduced; in addition, the crack resistance effect of rubber can also effectively improve the ductility, impact resistance and durability of the mortar.
  • the special glue is also an elastomer after solidification, which can be used to further improve the sound insulation performance, impact strength and fluidity of sound-insulating rubber mortar.
  • Redispersible latex powder is used to improve the fluidity of sound-insulating rubber mortar and ensure later strength.
  • Fiber Ether is used to improve the fluidity of soundproof rubber mortar.
  • Figure 1 Flow chart of the preparation method of soundproof rubber mortar
  • Figure 7 Combination weights of various embodiments of soundproof rubber mortar
  • Figure 8 is the sound insulation test result of the R50Z8F0.4 specimen.
  • the source of raw materials for the test in this example P.O42.5R ordinary Portland cement or P.S.A32.5 slag Portland cement from Shijing Cement Plant.
  • the selected cement complies with GB175-2007 "General Portland Cement” and GB1344- 1999 "Slag Portland Cement, Pozzolanic Portland Cement, Fly Ash Portland Cement” requirements.
  • Recycled rubber particles, special glue, redispersible latex powder, and hydroxypropyl methylcellulose ether are provided by Zhuhai Rongshuo Green Building Energy Saving Technology Co., Ltd.
  • the sand is ordinary river sand, medium sand, and the fineness modulus is 2.41. Water absorption rate 0.38%, moisture content 0.34%, apparent density is 2610kg/m 3 .
  • the fluidity test of rubber cement mortar was conducted using the cement mortar jumping table instrument of the Materials Laboratory of Guangdong University of Technology, the YAW-300C flexural testing machine and the YAW-300C compression testing machine of the Materials Laboratory of Guangdong University of Technology, and the impact resistance test was conducted using the Guangdong University of Technology Materials Laboratory. Cantilever beam testing machine at the School of Materials and Energy.
  • Example 1 This example relates to green environmentally friendly sound-insulating rubber mortar and its preparation method, including the following steps:
  • the material formula (mass ratio) is designed in the following way: 250 parts of cement, 125 parts of water, 544 parts of river sand, 206 parts of rubber, 0 parts of special glue, 1 part of redispersible latex powder, and 1 part of cellulose ether.
  • the cement is slag Portland cement labeled PSA32.5, and its density is 3200kg/m 3 .
  • the water is ordinary tap water, and its density is 995kg/m 3 .
  • the river sand is medium sand, with a fineness modulus of 2.41, a water absorption rate of 0.38%, and a moisture content of 0.34%.
  • the rubber is waste rubber particles, with a particle size of 2 to 4 mm and an apparent density of 985 kg/m 3 .
  • the special glue is a milky white water-based polyvinyl acetate adhesive.
  • the redispersible latex powder has a bulk density of 464kg/m 3 , a density of 1049kg/m 3 , a specific surface area of 346.7m 2 /kg, a pH value of 8.2, and an ash content of 9%.
  • the cellulose ether is hydroxypropyl methylcellulose ether (HPMC).
  • Example 1 Since the rubber in Example 1 replaces sand in equal volume, its replacement rate is 50%; the quality of the special glue is 0% of the mortar; the amount of redispersible latex powder and cellulose ether is 0.4% of cement, so Named R50Z0F0.4.
  • Embodiment 2 This embodiment relates to green and environmentally friendly sound-insulating rubber mortar and its preparation method, which includes the following steps:
  • the material formula (mass ratio) is designed in the following way: 250 parts of cement, 125 parts of water, 544 parts of river sand, rubber 206 parts of glue, 22.5 parts of special glue, 1 part of redispersible latex powder, and 1 part of cellulose ether.
  • the cement is slag Portland cement labeled PSA32.5, and its density is 3200kg/m 3 .
  • the water is ordinary tap water, and its density is 995kg/m 3 .
  • the river sand is medium sand, with a fineness modulus of 2.41, a water absorption rate of 0.38%, and a moisture content of 0.34%.
  • the rubber is waste rubber particles, with a particle size of 2 to 4 mm and an apparent density of 985 kg/m 3 .
  • the special glue is a milky white water-based polyvinyl acetate adhesive.
  • the redispersible latex powder has a bulk density of 464kg/m 3 , a density of 1049kg/m 3 , a specific surface area of 346.7m 2 /kg, a pH value of 8.2, and an ash content of 9%.
  • the cellulose ether is hydroxypropyl methylcellulose ether (HPMC).
  • Example 2 Since the rubber in Example 2 replaces sand in equal volume, its replacement rate is 50%; the mass of the special glue is 2% of the mortar; the amount of redispersible latex powder and cellulose ether is 0.4% of cement, so Named R50Z2F0.4.
  • Example 3 This example involves the components and material proportions of the green and environmentally friendly sound-insulating rubber mortar.
  • the preparation method of the green and environmentally friendly sound-insulating rubber mortar is the same as that in Example 2. The difference is that the mass parts of the special glue are replaced by 45 parts.
  • Example 3 Since the rubber in Example 3 replaces sand in equal volume, its replacement rate is 50%; the quality of the special glue is 4% of the mortar; the amount of redispersible latex powder and cellulose ether is 0.4% of cement, so Named R50Z4F0.4.
  • Example 4 This example involves the components and material proportions of the green and environmentally friendly sound-insulating rubber mortar.
  • the preparation method of the green and environmentally friendly sound-insulating rubber mortar is the same as that in Example 2. The difference is that the mass parts of the special glue are replaced by 67.5 parts.
  • Example 4 Since the rubber in Example 4 replaces sand in equal volume, its replacement rate is 50%; the quality of the special glue is that of mortar. 6%; the content of redispersible latex powder and cellulose ether is 0.4% of cement, so it is named R50Z6F0.4.
  • Example 5 This example involves the components and material proportions of the green and environmentally friendly sound-insulating rubber mortar.
  • the preparation method of the green and environmentally friendly sound-insulating rubber mortar is the same as in Example 2, except that the mass parts of the special glue are replaced by 90 parts.
  • Example 5 Since the rubber in Example 5 replaces sand in equal volume, its replacement rate is 50%; the quality of the special glue is 8% of the mortar; the amount of redispersible latex powder and cellulose ether is 0.4% of cement, so Named R50Z8F0.4.
  • the form of rubber in the above embodiments 1-5 is granular rubber, and the particle size is 2-4mm.
  • Example 6 This example involves the components and material proportions of the green and environmentally friendly sound-insulating rubber mortar.
  • the preparation method of the green and environmentally friendly sound-insulating rubber mortar is the same as in Example 2. The difference is that the mass parts of the special glue are replaced by 90 parts.
  • Example 5 Since the rubber in Example 5 replaces sand in equal volume, its replacement rate is 50%; the quality of the special glue is 8% of the mortar; the amount of redispersible latex powder and cellulose ether is 0.4% of cement, so Named R50Z8F0.4A.
  • the rubber is replaced by columnar rubber particles, with an average diameter of 1-2 mm and an aspect ratio of 3-5;
  • Example 7 This example involves the components and material proportions of the green and environmentally friendly sound-insulating rubber mortar.
  • the preparation method of the green and environmentally friendly sound-insulating rubber mortar is the same as that in Example 2, except that the mass parts of the special glue are replaced by 90 parts.
  • Example 5 Since the rubber in Example 5 replaces sand in equal volume, its replacement rate is 50%; the quality of the special glue is 8% of the mortar; the amount of redispersible latex powder and cellulose ether is 0.4% of cement, so Named R50Z8F0.4B.
  • the rubber is replaced by a mixture of granular rubber particles and columnar rubber particles, in which the average diameter of the columnar particles is 1-2mm, the aspect ratio is 3-5, and the average diameter of the granular rubber is 2-4mm; waste
  • the rubber particles are mixed particles of granular rubber particles and columnar rubber particles, and the mass ratio of the granular rubber particles and columnar rubber particles is 2:1.
  • the present invention refers to the "Measurement Method for the Fluidity of Cement Mortar” (GB/T 2419-2005) to conduct a table-hopping test to measure the fluidity of the sound-insulating rubber mortar; refer to the "Method for Testing the Strength of Cement Mortar (ISO)" (GB/T 17671-1999), in accordance with the specification, a prism with a specimen size of 40mm ⁇ 40mm ⁇ 160mm was selected for compression and flexural testing, and the compressive and flexural strength values of the sound-insulating rubber mortar were measured; borrowed from the cantilever beam test of plastic materials , select a prism with a specimen size of 15mm ⁇ 20mm ⁇ 160mm to conduct the cement mortar impact test, and measure the impact strength value of the sound insulation rubber mortar; refer to JGJ/T70-2009 "Standard for Basic Performance Test Methods of Building Mortars" and select according to the specifications
  • the specimen size is 40mm ⁇ 40mm ⁇ 160mm.
  • the triple mold is formed.
  • the initial length of the test specimen is measured.
  • the length of the specimen is measured at 7d, 14d, 21d, 28d, 35d, 42d, 49d, 56d, and 91d respectively; based on the hierarchy
  • the analysis method and the above performance research results are used to select the best mix ratio.
  • the measurement methods for the technical indicators of the present invention are all standard measurement methods in the field. For details, please refer to the latest national standards, unless otherwise stated.
  • Figure 2 is a graph showing the fluidity results of sound-insulating rubber mortar. It can be found from Figure 2 that as the amount of special glue increases, the fluidity of the sound insulation rubber mortar increases. This shows that the incorporation of special glue has a positive effect on the fluidity of sound insulation rubber mortar.
  • Figure 3 is a graph showing the flexural strength results of sound-insulating rubber mortar. It can be found from Figure 3 that as the amount of special glue increases, the flexural strength of the sound insulation rubber mortar decreases. This shows that the incorporation of special glue has a negative effect on the flexural performance of sound-insulating rubber mortar.
  • Figure 4 is a graph showing the compressive strength results of sound-insulating rubber mortar. Similarly, as the amount of special glue increases, the compressive strength of the sound insulation rubber mortar decreases. This shows that the incorporation of special glue has a negative effect on the compression resistance of sound-insulating rubber mortar.
  • the compressive strength is at the minimum value, that is, when the special glue content is 8%, the compressive strength of the rubber mortar is 2.7MPa, which meets the group standard T/GDJSKB008-2022 "Building Floor Sound Insulation Mortar" which has stipulated that the building floor sound insulation
  • the compressive strength of mortar is ⁇ 2MPa, it can meet the requirements of actual construction projects.
  • Figure 5 is a graph showing the impact strength results of sound-insulating rubber mortar. It can be found from Figure 5 that as the amount of special glue increases, the impact strength of sound-insulating rubber mortar shows an upward trend. It can be seen that the special glue has a positive effect on the impact resistance of the sound-insulating rubber mortar with a rubber replacement rate of 50%.
  • Figure 6 is a diagram of the drying shrinkage results of the sound-insulating rubber mortar specimen on the 91st day. From Figure 6, it can be found that on the 91st day of the specimen, as the amount of special glue increases, the drying shrinkage of the sound-insulating rubber mortar shows varying degrees. Increase, it can be seen that special glue has a negative effect on the drying shrinkage of sound insulation rubber mortar.
  • Figure 7 is based on the test results of the fluidity, flexural strength, compressive strength, impact strength, and drying shrinkage of the sound-insulating rubber mortar. Based on the analytic hierarchy process, a comprehensive analysis of the various properties of the sound-insulating rubber mortar is calculated. Combined weights of various embodiments of mortar. It can be seen that the comprehensive evaluation of the R50Z8F0.4 specimen is better.
  • Figure 8 is the sound insulation test result diagram of the R50Z8F0.4 specimen.
  • the floor slab paved with R50Z8F0.4 rubber mortar was determined The single value evaluation of rear impact sound insulation is 67dB, which is 11dB lower than the single value evaluation of sound insulation of the benchmark floor slab of 78dB. It also meets the weighting standardization of floor slabs stipulated in the national standard GB50118-2010 "Code for Design of Sound Insulation for Civil Buildings" Impact sound pressure level ⁇ 75dB requirements.
  • the single value evaluation amount of impact sound insulation after laying floor slabs with R50Z8F0.4A and R50Z8F0.4B rubber mortar was determined They are 65dB and 59dB respectively.
  • Table 1 Specific performance data results of various examples of sound-insulating rubber mortar.
  • Table 2 Sound insulation performance data structure of R50Z8F0.4 sound insulation rubber mortar.
  • Table 3 Sound insulation performance data structure of R50Z8F0.4A sound insulation rubber mortar.
  • Table 4 Sound insulation performance data structure of R50Z8F0.4B sound insulation rubber mortar.
  • the sound insulation performance of the sound-insulating rubber can be further promoted.
  • granular rubber particles are replaced with columnar rubber particles or granular rubber particles are replaced with granular rubber particles.
  • the combined particle form of rubber particles and columnar rubber particles can improve the sound insulation performance.
  • irregular rubber particles can form special-shaped spaces in the mortar concrete, and this space can improve the sound insulation performance of the workpiece.
  • the green and environmentally friendly sound-insulating rubber mortar used in the present invention can meet certain compressive strength requirements, further improve the impact strength of cement mortar, and improve the sound insulation performance of building floors.
  • the application of sound-insulating rubber mortar can further alleviate the problem of recycling and processing of waste tire rubber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

一种绿色环保型隔音橡胶砂浆及其制备方法,属于建筑材料技术领域,其特征在于,每立方米所述绿色环保型隔音橡胶砂浆中,由以下材料制备而成:水泥349.6~480.2kg,水175.1~240.5kg,河砂634.3~1033.0kg,橡胶121.7~328.9kg,隔音专用胶0.1~121.8kg,可再分散乳胶粉1.4~1.9kg,纤维素醚1.4~1.9kg,其中隔音专用胶为水基型聚乙酸乙烯酯胶粘剂,所述绿色环保型隔音橡胶砂浆具有良好的隔音性能,和满足建筑工程要求的抗压强度。

Description

一种绿色环保型隔音橡胶砂浆及其制备方法 技术领域
本发明属于建筑材料技术领域,具体涉及一种绿色环保型隔音橡胶砂浆及其制备方法。
背景技术
水泥砂浆作为重要的建筑材料在建筑工程中有着广泛的应用,但随着科学进步和人们生活水平的不断提高,噪音作为一种影响生活的不良因素越来越被重视,随着经济的快速发展推动了汽车产业与交通运输业的发展,轮胎与橡胶工业的发展也被带动起来,但这也导致每年产生的废弃橡胶越来越多。废旧橡胶是一种高分子材料,它在一般自然条件下是很难降解的。如果直接对橡胶进行填埋处理,则会对地下水资源产生影响。如果采用直接焚烧的方式,又会导致大量有毒气体释放,使得“黑色污染”等环境问题更加凸显。目前,废弃橡胶的回收利用是可持续发展战略中亟待解决的问题,更是一个世界性的研究热点。
目前研究表明,相较于传统水泥基材料,将废旧橡胶加入水泥基材料制成的橡胶水泥基材料具有更好的延性、隔音性、保温性、抗冲击性及耐久性。如现有技术中:CN202010464326.5中公开了一种抗伸抗压性能优良的隔音砂浆及其制备方法,其主要是通过橡胶粉末分布在纤维表面实现上述目的;以及CN201810827558.5公开了一种保温隔音砂浆,采用了废旧橡胶粉进行改性以改善橡胶的隔音性能。以及CN201310696284.8中公开了通过废橡胶等改善砂浆的隔声性能;以及CN202110372498.4也公开了利用废橡胶以解决橡胶隔音问题;
然而实际生产中,橡胶水泥基材料在土木工程中的应用实例仍然很少。造成这种情况的主要原因在于两个方面。一方面,橡胶水泥基材料缺乏全面和***的知识体系,使得土木工程从业人员不能充分认识其优势,现有的应用主要是在于将橡胶水泥基材料用于抗压和抗折强度要求较低的土木工程材料,如制成隔音橡胶砂浆用于建筑楼板中,或者应用于墙体粉刷方面。另一方面,由于废弃橡胶的加入降低了橡胶水泥基材料的抗压和抗折性能,限制了橡胶水泥基材料的发展。
本申请主要是针对现有技术中的隔音橡胶砂浆的隔音问题和力学性质做出改进,以期得到即满足隔音的良好需求又不影响砂浆的力学性能。
发明内容
本发明的目的是提供一种绿色环保型隔音橡胶砂浆,其特征在于:每立方米所述砂浆中,含有以下材料制备而成:所述每立方米砂浆中,材料按照以下方式进行配方(质量比)设计:水泥200-300份,水100-150份,河砂500-600份,橡胶180-220份,专用胶0.1~90份,可再分散乳胶粉1-10份,纤维素醚1-10份,进行配比材料。
进一步地,所述水泥为标号P.O42.5R或者P.S.A32.5的普通硅酸盐水泥,所述水泥的密度为3200kg/m3左右。
进一步地,所述水为普通自来水,其密度为995kg/m3
进一步地,所述河砂为中砂,其细度模数为2.41,吸水率为0.38%,含水率为0.34%。
进一步地,所述橡胶为废旧橡胶颗粒,所述废旧橡胶颗粒为颗粒状,其颗粒粒径大小为2~4mm,表观密度为985kg/m3,或者废旧橡胶颗粒为柱状颗粒,所述柱状橡胶颗粒的平均直径为1-2mm,长径比为3-5;或者废旧橡胶颗粒为颗粒状橡胶颗粒和柱状橡胶颗粒的混合颗粒,所述颗粒状橡胶颗粒和柱状橡胶颗粒的质量比为(2-3)∶1,颗粒状橡胶颗粒的粒径大小为2-4mm,柱状橡胶颗粒的直径为1-2mm,长径比为3-5。
进一步地,所述橡胶的种类为:天然橡胶、合成橡胶、丁苯橡胶、顺丁橡胶、氯丁橡胶、丁腈橡胶、乙丙橡胶、聚氨酯橡胶、聚硫橡胶、丙烯酸酯橡胶、氯醚橡胶的一种或多种。
进一步地,所述隔音专用胶为包括橡胶胶乳,聚乙酸乙烯酯,脲-甲醛,木质素,烷基磺酸钠,瓜尔胶的一种或者多种,其中聚乙酸乙烯酯为乳白色的水基型聚乙酸乙烯酯胶粘剂。
进一步地,所述可再分散乳胶粉具体为乙烯/醋酸乙烯酯的共聚物、醋酸乙烯/叔碳酸乙烯共聚物、丙烯酸共聚物的一种或者多种,其堆积密度为464kg/m3,密度为1049kg/m3,比表面积为346.7m2/kg,PH值为8.2,灰分为9%。
进一步地,所述纤维素醚为羟丙基甲基纤维素醚(HPMC),或者可选地为甲基纤维素醚、甲基羟乙基纤维素醚、羟乙基纤维素醚中的一种或多种。
本申请还请求保护一种绿色环保型隔音橡胶砂浆的制备方法,包括以下步骤:
(1)按照所述砂浆每立方米中,含有以下材料制备而成:所述每立方米砂浆中,材料按照以下方式进行配方(质量比)设计:水泥200-300份,水100-150份,河砂500-600份,橡胶180-220份,专用胶0.1~90份,可再分散乳胶粉1-10份,纤维素醚1-10份,进行配比材料;
(2)湿润搅拌机和搅拌叶片,防止搅拌机内壁和叶片过分干燥,影响橡胶砂浆的流动性;
(3)将橡胶和专用胶倒入搅拌机中,搅拌叶片以速率为62±5r/min搅拌30-50s;
(4)将1/3水倒入搅拌机中,搅拌叶片以速率为62±5r/min搅拌30s;
(5)将水泥、纤维素醚、可再分散乳胶粉以及剩余水倒入搅拌机中,搅拌叶片以速率为62±5r/min搅拌30s;
(6)将河砂倒入搅拌机中,搅拌叶片以速率为62±5r/min搅拌30s;
(7)停止搅拌机,将搅拌叶片和搅拌机壁上的砂浆刮入搅拌机中,搅拌叶片以速率为125±10r/min搅拌60s后得到新拌砂浆。
进一步地,所述步骤(1)中砂浆水灰比为0.2-0.8;水泥与细骨料(河砂和橡胶)的体积比为1∶2~1∶4,优选为1∶3;
橡胶采用等体积替代河砂的方式掺入砂浆,取代率为20-60%,其他可以优选为30%,35%,40%,45%,50%,55%;隔音专用胶掺量按砂浆质量的百分比进行计算,掺量比例为0.1-10%;可再分散乳胶粉和纤维素醚按水泥质量的百分比数计算,掺量比例均为0.1-0.8%,优选为可以取点值0.2%,0.3%,0.4%,0.5%,0.6%,0.7%。
进一步地,所述水泥为标号P.O42.5R的普通硅酸盐水泥,或者可选地,所述水泥为标号P.S.A32.5的矿渣硅酸盐水泥,其密度为3200kg/m3
进一步地,所述水为普通自来水,其密度为995kg/m3
进一步地,所述河砂为中砂,其细度模数为2.41,吸水率为0.38%,含水率为0.34%。
进一步地,所述橡胶为废旧橡胶颗粒,所述废旧橡胶颗粒为颗粒状,其颗粒粒径大小为2~4mm,或者废旧橡胶颗粒为柱状颗粒,所述柱状橡胶颗粒的平均直径为1-2mm,长径比为3-5;或者废旧橡胶颗粒为颗粒状橡胶颗粒和柱状橡胶颗粒的混合颗粒,所述颗粒状橡胶颗粒和柱状橡胶颗粒的质量比为(2-3)∶1,所述废旧橡胶颗粒表观密度为920-985kg/m3。
进一步地,所述橡胶的种类为:天然橡胶、合成橡胶、丁苯橡胶、顺丁橡胶、氯丁橡胶、丁腈橡胶、乙丙橡胶、聚氨酯橡胶、聚硫橡胶、丙烯酸酯橡胶、氯醚橡胶的一种或多种。
进一步地,所述隔音专用胶为包括橡胶胶乳,聚乙酸乙烯酯,脲-甲醛,木质素,烷基磺酸钠,瓜尔胶的一种或者多种,其中聚乙酸乙烯酯为乳白色的水基型聚乙酸乙烯酯胶粘剂。
进一步地,所述可再分散乳胶粉具体为乙烯/醋酸乙烯酯的共聚物、醋酸乙烯/叔碳酸乙烯共聚物、丙烯酸共聚物的一种或者多种,其堆积密度为464kg/m3,密度为1049kg/m3,比表面积为346.7m2/kg,PH值为8.2,灰分为9%。
进一步地,所述纤维素醚为羟丙基甲基纤维素醚(HPMC),或者可选地为甲基纤维素醚、甲基羟乙基纤维素醚、羟乙基纤维素醚中的一种或多种。
进一步地,材料的称量天平精度为±0.01g。
本发明具有以下有益效果:
(1)水泥用于保证隔音橡胶砂浆的整体强度,河砂用于填充隔音橡胶砂浆并起到骨架作用,绿色环保型隔音橡胶砂浆具备良好流动性,便于施工。
(2)绿色环保型隔音橡胶砂浆能进一步提供橡胶砂浆的抗冲击强度,而且随着专用胶 的增加,隔音橡胶砂浆的抗冲击强度越来越高,这有利于防止人们在建筑物活动时产生的撞击导致砂浆的破损现象,从而提高了砂浆的耐久性,橡胶可使砂浆弹性变形能力提高、动弹性模量降低,减弱了声波在砂浆中传递时所产生的振动幅度;同时,可将经过砂浆的声波向各个方向进行反射,而向各个方向反射的声波经过互相干涉、抵消以后,声波强度已经大大衰减;此外,橡胶具备的阻裂效果也能有效提高砂浆的延性、抗冲击性及耐久性。
(3)专用胶凝固后也是一种弹性体,可用于进一步提高隔音橡胶砂浆的隔音性能、抗冲击强度和流动性,可再分散乳胶粉用于提高隔音橡胶砂浆流动性并保证后期强度,纤维素醚用于提高隔音橡胶砂浆的流动性。
(4)采用颗粒状橡胶颗粒和柱状橡胶颗粒的混合颗粒的方式,在水泥内部形成声音震动腔体,减弱声音在隔音橡胶中的传声幅度,杂乱的橡胶腔体内部发生声音干涉,抵消,提高隔音橡胶的隔音强度。
(5)本发明采用的隔音橡胶砂浆力学性能符合规范要求的基础上对废旧轮胎橡胶颗粒最大限度地回收利用。
附图说明
图1:隔音橡胶砂浆制备方法流程图;
图2:隔音橡胶砂浆的流动度结果图;
图3:隔音橡胶砂浆的抗折强度结果图;
图4:隔音橡胶砂浆的抗压强度结果图;
图5:隔音橡胶砂浆的冲击强度结果图;
图6:隔音橡胶砂浆试件在第91天时的干燥收缩结果图;
图7:隔音橡胶砂浆各实施例的组合权重;
图8:是R50Z8F0.4试件的隔音测试结果图。
具体实施方式
为了更好地理解本发明,现采用以下实施例加以说明,以下实施例属于本发明的保护范围,但不限制本发明的保护范围。
本实施例试验原料来源:石井水泥厂的P.O42.5R普通硅酸盐水泥或者P.S.A32.5矿渣硅酸盐水泥,所选用的水泥符合GB175-2007《通用硅酸盐水泥》和GB1344-1999《矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥》的要求。
再生橡胶颗粒,专用胶,可再分散乳胶粉,羟丙基甲基纤维素醚是由珠海市荣烁绿色建筑节能科技有限公司提供,砂子为普通河砂,中砂,细度模数2.41,吸水率0.38%,含水率 0.34%,表观密度为2610kg/m3
橡胶水泥砂浆流动度测试采用广东工业大学材料实验室水泥胶砂跳桌仪,广东工业大学材料实验室的YAW-300C抗折试验机,YAW-300C抗压试验机,抗冲击试验采用广东工业大学材料与能源学院的悬臂梁试验机。
实施例1:本实施例涉及绿色环保型隔音橡胶砂浆及其制备方法,包括以下步骤:
材料按照以下方式进行配方(质量比)设计:水泥250份,水125份,河砂544份,橡胶206份,专用胶0份,可再分散乳胶粉1份,纤维素醚1份。
其中,所述水泥为标号P.S.A32.5的矿渣硅酸盐水泥,其密度为3200kg/m3
其中,所述水为普通自来水,其密度为995kg/m3
其中,所述河砂为中砂,其细度模数为2.41,吸水率为0.38%,含水率为0.34%。
其中,所述橡胶为废旧橡胶颗粒,其粒径大小为2~4mm,表观密度为985kg/m3
其中,所述专用胶为乳白色的水基型聚乙酸乙烯酯胶粘剂。
其中,所述可再分散乳胶粉,其堆积密度为464kg/m3,密度为1049kg/m3,比表面积为346.7m2/kg,PH值为8.2,灰分为9%。
其中,所述纤维素醚为羟丙基甲基纤维素醚(HPMC)。
将上述材料按照以下步骤制备一种绿色环保型隔音橡胶砂浆,如图1所示,包括以下步骤:
(1)使用电子天平进行称量材料,材料的称量天平精度为±0.01g;
(2)使用湿布擦拭搅拌机和搅拌叶片,防止搅拌机内壁和叶片过分干燥,影响橡胶砂浆的流动性;
(3)将水泥、纤维素醚、可再分散乳胶粉和水倒入搅拌机中,搅拌叶片以速率为62±5r/min搅拌30s;
(4)提前将橡胶与砂浆混合均匀后,逐次将砂和橡胶的混合料加入搅拌机中(砂和橡胶混合料需要在30s内完成),并保持搅拌叶片以速率为62±5r/min搅拌30s;
(7)停止搅拌机,将搅拌叶片和搅拌机壁上的砂浆刮入搅拌机中,搅拌叶片以速率为125±10r/min搅拌60s后得到新拌隔音橡胶砂浆。
由于在实施例1中的橡胶是等体积替代砂子,其取代率为50%;专用胶的质量为砂浆的0%;可再分散乳胶粉和纤维素醚的掺量为水泥为0.4%,因此命名为R50Z0F0.4。
实施例2:本实施例涉及绿色环保型隔音橡胶砂浆及其制备方法,包括以下步骤:
材料按照以下方式进行配方(质量比)设计:水泥250份,水125份,河砂544份,橡 胶206份,专用胶22.5份,可再分散乳胶粉1份,纤维素醚1份。
其中,所述水泥为标号P.S.A32.5的矿渣硅酸盐水泥,其密度为3200kg/m3
其中,所述水为普通自来水,其密度为995kg/m3
其中,所述河砂为中砂,其细度模数为2.41,吸水率为0.38%,含水率为0.34%。
其中,所述橡胶为废旧橡胶颗粒,其粒径大小为2~4mm,表观密度为985kg/m3
其中,所述专用胶为乳白色的水基型聚乙酸乙烯酯胶粘剂。
其中,所述可再分散乳胶粉,其堆积密度为464kg/m3,密度为1049kg/m3,比表面积为346.7m2/kg,PH值为8.2,灰分为9%。
其中,所述纤维素醚为羟丙基甲基纤维素醚(HPMC)。
将上述材料按照以下步骤制备一种绿色环保型隔音橡胶砂浆,如图2所示,包括以下步骤:
(1)使用电子天平进行称量材料,材料的称量天平精度为±0.01g;
(2)使用湿布擦拭搅拌机和搅拌叶片,防止搅拌机内壁和叶片过分干燥,影响橡胶砂浆的流动性;
(3)将橡胶和专用胶倒入搅拌机中,搅拌叶片以速率为62±5r/min搅拌30s;
(4)将1/3水倒入搅拌机中,搅拌叶片以速率为62±5r/min搅拌30s;
(5)将水泥、纤维素醚、可再分散乳胶粉以及剩余水倒入搅拌机中,搅拌叶片以速率为62±5r/min搅拌30s;
(6)将河砂倒入搅拌机中,搅拌叶片以速率为62±5r/min搅拌30s;
(7)停止搅拌机,将搅拌叶片和搅拌机壁上的砂浆刮入搅拌机中,搅拌叶片以速率为125±10r/min搅拌60s后得到新拌隔音橡胶砂浆。
由于在实施例2中的橡胶是等体积替代砂子,其取代率为50%;专用胶的质量为砂浆的2%;可再分散乳胶粉和纤维素醚的掺量为水泥为0.4%,因此命名为R50Z2F0.4。
实施例3:本实施例涉及绿色环保型隔音橡胶砂浆的组分及其材料比例,绿色环保型隔音橡胶砂浆的制备方法与实施例2相同,区别在于,专用胶的质量份替换成45份。
由于在实施例3中的橡胶是等体积替代砂子,其取代率为50%;专用胶的质量为砂浆的4%;可再分散乳胶粉和纤维素醚的掺量为水泥为0.4%,因此命名为R50Z4F0.4。
实施例4:本实施例涉及绿色环保型隔音橡胶砂浆的组分及其材料比例,绿色环保型隔音橡胶砂浆的制备方法与实施例2相同,区别在于,专用胶的质量份替换成67.5份。
由于在实施例4中的橡胶是等体积替代砂子,其取代率为50%;专用胶的质量为砂浆的 6%;可再分散乳胶粉和纤维素醚的掺量为水泥为0.4%,因此命名为R50Z6F0.4。
实施例5:本实施例涉及绿色环保型隔音橡胶砂浆的组分及其材料比例,绿色环保型隔音橡胶砂浆的制备方法与实施例2相同,区别在于,专用胶的质量份替换成90份。
由于在实施例5中的橡胶是等体积替代砂子,其取代率为50%;专用胶的质量为砂浆的8%;可再分散乳胶粉和纤维素醚的掺量为水泥为0.4%,因此命名为R50Z8F0.4。
以上实施例1-5中橡胶的形态为颗粒状橡胶,粒径为2-4mm。
实施例6:本实施例涉及绿色环保型隔音橡胶砂浆的组分及其材料比例,绿色环保型隔音橡胶砂浆的制备方法与实施例2相同,区别在于,专用胶的质量份替换成90份。
由于在实施例5中的橡胶是等体积替代砂子,其取代率为50%;专用胶的质量为砂浆的8%;可再分散乳胶粉和纤维素醚的掺量为水泥为0.4%,因此命名为R50Z8F0.4A。
本实施例中橡胶替换为柱状橡胶颗粒,平均直径为1-2mm,长径比为3-5;
实施例7:本实施例涉及绿色环保型隔音橡胶砂浆的组分及其材料比例,绿色环保型隔音橡胶砂浆的制备方法与实施例2相同,区别在于,专用胶的质量份替换成90份。
由于在实施例5中的橡胶是等体积替代砂子,其取代率为50%;专用胶的质量为砂浆的8%;可再分散乳胶粉和纤维素醚的掺量为水泥为0.4%,因此命名为R50Z8F0.4B。
本实施例中橡胶替换为颗粒状橡胶颗粒和柱状橡胶颗粒的混合颗粒,其中柱状颗粒的平均直径为1-2mm,长径比为3-5,颗粒状橡胶的平均直径为2-4mm;废旧橡胶颗粒为颗粒状橡胶颗粒和柱状橡胶颗粒的混合颗粒,所述颗粒状橡胶颗粒和柱状橡胶颗粒的质量比为2∶1。
本发明参考《水泥胶砂流动度测定方法》(GB/T 2419-2005)进行跳桌试验,测得隔音橡胶砂浆的流动度;参考《水泥胶砂强度检验方法(ISO)》(GB/T 17671-1999),依照规范选用试件尺寸为40mm×40mm×160mm的棱柱体进行抗压、抗折测试,测得隔音橡胶砂浆的抗压、抗折强度值;借鉴于塑料材料的悬臂梁试验,选用试件尺寸为15mm×20mm×160mm的棱柱体进行水泥砂浆抗冲击试验,测得隔音橡胶砂浆的冲击强度值;参照JGJ/T70-2009《建筑砂浆基本性能试验方法标准》,依照规范选用试件尺寸为40mm×40mm×160mm的三联模具成型,测试试件的初始长度,随第7d、14d、21d、28d、35d、42d、49d,56d、91d分别测定其试件的长度;基于层次分析方法和上述的各项性能研究结果,优选出最佳配合比,根据GB/T 19889.7-2005《声学建筑和建筑构件隔声测量第七部分:楼板撞击声隔声的现场测量》和GB/T50121-2005《建筑隔声评价标准》,测得其隔音性能,参考国家规范GB50118-2010《民用建筑隔声设计规范》所规定楼板的计权标准化撞击声压级≤75dB进行评判隔音性能。
关于本发明的技术指标的测定方法均为本领域内标准测定方法,具体可参见最新的国家标准,除非另外说明。
图2是隔音橡胶砂浆的流动度结果图。从图2可以发现,随着专用胶掺量的增加,隔音橡胶砂浆的流动度随之提高。这表明专用胶的掺入对隔音橡胶砂浆的流动性有积极作用。
图3是隔音橡胶砂浆的抗折强度结果图。从图3可以发现,随着专用胶掺量的增加,隔音橡胶砂浆的抗折强度随之降低。这表明专用胶的掺入对隔音橡胶砂浆的抗折性能有消极作用。
图4是隔音橡胶砂浆的抗压强度结果图。同样,随着专用胶掺量的增加,隔音橡胶砂浆的抗压强度随之降低。这表明专用胶的掺入对隔音橡胶砂浆的抗压性能有消极作用。当抗压强度为最小值时,即当专用胶掺量为8%时,橡胶砂浆的抗压强度为2.7MPa,满足了团体标准T/GDJSKB008-2022《建筑楼板隔音砂浆》已规定建筑楼板隔音砂浆的抗压强度≥2MPa时,可满足实际建筑工程要求。
图5是隔音橡胶砂浆的冲击强度结果图。从图5可以发现,随着专用胶掺量的增加,隔音橡胶砂浆冲击强度呈现上升趋势。由此可见,专用胶对橡胶取代率为50%的隔音橡胶砂浆抗冲击性能有积极作用。
图6是隔音橡胶砂浆试件在第91天时的干燥收缩结果图,从图6可以发现,在试件第91天时,随着专用胶掺量的增多,隔音橡胶砂浆的干燥收缩呈现不同程度的增加,由此可见,专用胶对隔音橡胶砂浆的干燥收缩有着消极作用。
图7是根据隔音橡胶砂浆的流动度、抗折强度、抗压强度、抗冲击强度以及干燥收缩等试验结果,基于层次分析法进行对隔音橡胶砂浆的各项性能综合分析,计算得出隔音橡胶砂浆各实施例的组合权重。由此可知,R50Z8F0.4试件的综合评价较好。
图8是R50Z8F0.4试件的隔音测试结果图,根据GB/T50121-2005《建筑隔声评价标准》的楼板撞击声隔声单值评价量的确定方法,确定了R50Z8F0.4橡胶砂浆铺设楼板后撞击声隔声的单值评价量为67dB,比基准楼板的隔声单值评价量78dB低了11dB,同时满足国家规范GB50118-2010《民用建筑隔声设计规范》所规定楼板的计权标准化撞击声压级≤75dB的要求。
根据GB/T50121-2005《建筑隔声评价标准》的楼板撞击声隔声单值评价量的确定方法,确定了R50Z8F0.4A和R50Z8F0.4B橡胶砂浆铺设楼板后撞击声隔声的单值评价量分别为65dB和59dB。
表1:隔音橡胶砂浆的各实施例的各项性能具体数据结果。
表2:R50Z8F0.4隔音橡胶砂浆的隔音性能数据结构。
表3:R50Z8F0.4A隔音橡胶砂浆的隔音性能数据结构。
表4:R50Z8F0.4B隔音橡胶砂浆的隔音性能数据结构。
可以发现,专用胶的掺入对隔音橡胶砂浆的流动性和抗冲击强度有积极作用,对隔音橡胶砂浆的抗压抗折强度和干燥收缩性能有消极作用。但是在最小值的隔音橡胶砂浆抗压强度仍然满足标准要求。而且通过层次分析方法,建立隔音橡胶的数学模型,进行综合评价后选择基础实施例R50Z8F0.4作为优选的实施例,测试其隔音性能发现能大幅度改善建筑楼板的 隔音性能。
而通过改变橡胶形态和添加量,可以进一步促进隔音橡胶的隔音性能,例如实施例6和实施例7中的将颗粒状的橡胶颗粒替换为柱状橡胶颗粒或者将颗粒状的橡胶颗粒替换为颗粒状橡胶颗粒和柱状橡胶颗粒的组合颗粒形式,可以提高隔音性能,可能的原因是不规则的橡胶颗粒可以在砂浆混凝土中形成异形空间,这种空间可以提高工件的隔音性能。
由此可见,本发明采用的绿色环保型隔音橡胶砂浆能满足一定抗压强度要求,而且能进一步地改善了水泥砂浆的抗冲击强度,并且能改善建筑楼板的隔音性能。此外,隔音橡胶砂浆的应用能进一步地缓解废旧轮胎橡胶的回收处理难题。
以上内容不能认定本发明具体实施只局限于这些说明,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思前提下,还可以做出若干简单推演或替换,都应当视为属于本发明由所提交的权利要求书确定的专利保护范围。

Claims (10)

  1. 一种绿色环保型隔音橡胶砂浆,其特征在于:每立方米所述砂浆中,由以下材料制备而成:所述每立方米砂浆中,材料按照质量比的下方式进行配方:水泥200-300份,水100-150份,河砂500-600份,橡胶180-220份,专用胶0.1~90份,可再分散乳胶粉1-10份,纤维素醚1-10份,所述隔音专用胶为水基型聚乙酸乙烯酯胶粘剂。
  2. 根据权利要求1所述的绿色环保型隔音橡胶砂浆,其特征在于,所述橡胶为废旧橡胶颗粒,所述废旧橡胶颗粒为颗粒状,其颗粒粒径大小为2~4mm,或者废旧橡胶颗粒为柱状颗粒,所述柱状橡胶颗粒的平均直径为1-2mm,长径比为3-5;或者废旧橡胶颗粒为颗粒状橡胶颗粒和柱状橡胶颗粒的混合颗粒,所述颗粒状橡胶颗粒和柱状橡胶颗粒的质量比为(2-3)∶1,所述废旧橡胶颗粒表观密度为920-985kg/m3
  3. 根据权利要求1所述的绿色环保型隔音橡胶砂浆,其特征在于,所述橡胶的种类为:天然橡胶、合成橡胶、丁苯橡胶、顺丁橡胶、氯丁橡胶、丁腈橡胶、乙丙橡胶、聚氨酯橡胶、聚硫橡胶、丙烯酸酯橡胶、氯醚橡胶的一种或多种。
  4. 根据权利要求1所述的绿色环保型隔音橡胶砂浆,其特征在于,所述隔音专用胶还可以为橡胶胶乳,聚乙酸乙烯酯,脲-甲醛,瓜尔胶的一种或者多种。
  5. 根据权利要求1所述的绿色环保型隔音橡胶砂浆,其特征在于,所述可再分散乳胶粉具体为乙烯/醋酸乙烯酯的共聚物、醋酸乙烯/叔碳酸乙烯共聚物、丙烯酸共聚物的一种或者多种,其堆积密度为464kg/m3,密度为1049kg/m3,比表面积为346.7m2/kg,PH值为8.2,灰分为9%。
  6. 根据权利要求1所述的绿色环保型隔音橡胶砂浆,其特征在于,所述纤维素醚为羟丙基甲基纤维素醚(HPMC),或者甲基纤维素醚、甲基羟乙基纤维素醚、羟乙基纤维素醚中的一种或多种。
  7. 根据权利要求1所述的绿色环保型隔音橡胶砂浆,其特征在于,所述河砂为中砂,其细度模数为2.41,吸水率为0.38%,含水率为0.34%。
  8. 根据权利要求1-7任一项所述的绿色环保型隔音橡胶砂浆的制备方法,其特征在于:包括以下步骤:
    (1)按照所述砂浆每立方米中,含有以下材料制备而成:所述每立方米砂浆中,材料按照质量比的方式进行配方:水泥200-300份,水100-150份,河砂500-600份,橡胶180-220份,专用胶0.1~90份,可再分散乳胶粉1-10份,纤维素醚1-10份,进行配比材料;
    (2)湿润搅拌机和搅拌叶片,防止搅拌机内壁和叶片过分干燥,影响橡胶砂浆的流动性;
    (3)将橡胶和专用胶倒入搅拌机中,搅拌叶片以速率为62±5r/min搅拌30-50s;
    (4)将1/3水倒入搅拌机中,搅拌叶片以速率为62±5r/min搅拌30s;
    (5)将水泥、纤维素醚、可再分散乳胶粉以及剩余水倒入搅拌机中,搅拌叶片以速率为62±5r/min搅拌30s;
    (6)将河砂倒入搅拌机中,搅拌叶片以速率为62±5r/min搅拌30s;
    (7)停止搅拌机,将搅拌叶片和搅拌机壁上的砂浆刮入搅拌机中,搅拌叶片以速率为125±10r/min搅拌60s后得到新拌砂浆。
  9. 根据权利要求8所述的绿色环保型隔音橡胶砂浆的制备方法,其特征在于:所述步骤(1)中砂浆水灰比为0.2-0.8;水泥与细骨料的体积比值为1∶2~1∶4;橡胶采用等体积替代河砂的方式掺入砂浆,取代率为20-60%;隔音专用胶掺量按砂浆质量的百分比进行计算,掺量比例为0.1-10%;可再分散乳胶粉和纤维素醚按水泥质量的百分比数计算,掺量比例均为0.1-0.8%。
  10. 根据权利要求8-9任一项所述的绿色环保型隔音橡胶砂浆的制备方法,其特征在于,所述橡胶为废旧橡胶颗粒,所述废旧橡胶颗粒为颗粒状,其颗粒粒径大小为2~4mm,或者废旧橡胶颗粒为柱状颗粒,所述柱状橡胶颗粒的平均直径为1-2mm,长径比为3-5;或者废旧橡胶颗粒为颗粒状橡胶颗粒和柱状橡胶颗粒的混合颗粒,所述颗粒状橡胶颗粒和柱状橡胶颗粒的质量比为(2-3)∶1,所述废旧橡胶颗粒表观密度为920-985kg/m3
PCT/CN2023/082634 2022-06-12 2023-03-21 一种绿色环保型隔音橡胶砂浆及其制备方法 WO2023241149A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210660524.8 2022-06-12
CN202210660524.8A CN115028410B (zh) 2022-06-12 2022-06-12 一种绿色环保型隔音橡胶砂浆及其制备方法

Publications (1)

Publication Number Publication Date
WO2023241149A1 true WO2023241149A1 (zh) 2023-12-21

Family

ID=83124691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082634 WO2023241149A1 (zh) 2022-06-12 2023-03-21 一种绿色环保型隔音橡胶砂浆及其制备方法

Country Status (2)

Country Link
CN (1) CN115028410B (zh)
WO (1) WO2023241149A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115028410B (zh) * 2022-06-12 2023-06-02 广东工业大学 一种绿色环保型隔音橡胶砂浆及其制备方法
CN116102296A (zh) * 2022-12-01 2023-05-12 河南嘉方实业有限公司 一种低碳隔音楼板砂浆

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400622A (zh) * 2006-03-22 2009-04-01 利昂·克鲁斯 建筑产品
US20090085253A1 (en) * 2006-03-22 2009-04-02 Leon Kruss Construction Product
CN102249614A (zh) * 2011-05-23 2011-11-23 上海曹杨建筑粘合剂厂 一种轻质保温隔音阻尼地坪砂浆
CN111423186A (zh) * 2020-05-07 2020-07-17 山东大学 一种添加聚丙烯纤维和废旧轮胎橡胶颗粒的防渗混凝土及其制备方法
CN112537933A (zh) * 2020-12-23 2021-03-23 深圳市亿东阳建材有限公司 一种隔声砂浆及隔声楼板结构***
CN113454044A (zh) * 2019-03-29 2021-09-28 Sika技术股份公司 流平和降噪砂浆组合物
CN113631527A (zh) * 2019-05-06 2021-11-09 Sika技术股份公司 降噪砂浆组合物
CN115028410A (zh) * 2022-06-12 2022-09-09 广东工业大学 一种绿色环保型隔音橡胶砂浆及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104649631A (zh) * 2014-12-31 2015-05-27 北京天维宝辰化学产品有限公司 一种水泥基粘结剂
CN106220059B (zh) * 2016-07-22 2018-02-16 深圳中技绿建科技有限公司 保温隔音干粉砂浆

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400622A (zh) * 2006-03-22 2009-04-01 利昂·克鲁斯 建筑产品
US20090085253A1 (en) * 2006-03-22 2009-04-02 Leon Kruss Construction Product
CN102249614A (zh) * 2011-05-23 2011-11-23 上海曹杨建筑粘合剂厂 一种轻质保温隔音阻尼地坪砂浆
CN113454044A (zh) * 2019-03-29 2021-09-28 Sika技术股份公司 流平和降噪砂浆组合物
CN113631527A (zh) * 2019-05-06 2021-11-09 Sika技术股份公司 降噪砂浆组合物
CN111423186A (zh) * 2020-05-07 2020-07-17 山东大学 一种添加聚丙烯纤维和废旧轮胎橡胶颗粒的防渗混凝土及其制备方法
CN112537933A (zh) * 2020-12-23 2021-03-23 深圳市亿东阳建材有限公司 一种隔声砂浆及隔声楼板结构***
CN115028410A (zh) * 2022-06-12 2022-09-09 广东工业大学 一种绿色环保型隔音橡胶砂浆及其制备方法

Also Published As

Publication number Publication date
CN115028410A (zh) 2022-09-09
CN115028410B (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
Khan et al. Effect of silica-fume content on performance of CaCO3 whisker and basalt fiber at matrix interface in cement-based composites
WO2023241149A1 (zh) 一种绿色环保型隔音橡胶砂浆及其制备方法
Wongkvanklom et al. Beneficial utilization of recycled asphaltic concrete aggregate in high calcium fly ash geopolymer concrete
CN107572936B (zh) 聚合物泡沫混凝土及其制备方法和用途
CN102584136B (zh) 低弹模改性粗纤维及活性矿物料复合增强再生混凝土制备
Yoo et al. Development of strain-hardening geopolymer mortar based on liquid-crystal display (LCD) glass and blast furnace slag
Silva et al. Fine ceramics replacing cement in mortars Partial replacement of cement with fine ceramics in rendering mortars
El-Seidy et al. Lightweight alkali-activated materials and ordinary Portland cement composites using recycled polyvinyl chloride and waste glass aggregates to fully replace natural sand
CN113831074A (zh) 含有聚氨酯颗粒的轻质隔音地坪浆料、制备方法及轻质隔音地坪
Etemadi et al. Investigating the effect of rubber powder and nano silica on the durability and strength characteristics of geopolymeric concretes
Saxena et al. Influence of granite waste on mechanical and durability properties of fly ash-based geopolymer concrete
Xu et al. Shrinkage and Mechanical Properties of Fibre‐Reinforced Blast Furnace Slag‐Steel Slag‐Based Geopolymer
Cong et al. Optimization of preparation of foamed concrete based on orthogonal experiment and range analysis
Tahwia et al. Using mixture design method for developing and optimizing eco-friendly ultra-high performance concrete characteristics
Pan et al. Mechanical properties of PVC concrete and mortar modified with silane coupling agents
Luan et al. Beneficial utilization of ultra-fine dredged sand from Yangtze River channel as a concrete material based on the minimum paste theory
Li et al. Optimization of the preparation process of Fair-Faced concrete incorporating recycled aggregates
Zhao et al. Polypropylene fiber reinforced alkali-activated ultra-light foam insulation material: Performance study and mechanism analysis
WO2024007625A1 (zh) 一种节能环保型高抗冲击性能的免蒸压管桩混凝土材料及其制备方法
CN107628790A (zh) 一种装饰水泥
Kaya et al. Rheological properties and thixotropic behavior of cementitious systems containing different fiber types
CN115124317B (zh) 一种基于裹浆工艺复合活化再生微粉混凝土及其制备方法
Shirkouh et al. Rubberized alkali-activated concrete—a review
Liu et al. Strengthening Mechanism of Geopolymer Lightweight Cellular Concrete Reinforced with Glass Fibers
Rao et al. Residual compressive strength of fly ash based glass fiber reinforced high performance concrete subjected to acid attack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23822721

Country of ref document: EP

Kind code of ref document: A1