WO2023286606A1 - Rotating electrical machine, electric wheel, and vehicle - Google Patents

Rotating electrical machine, electric wheel, and vehicle Download PDF

Info

Publication number
WO2023286606A1
WO2023286606A1 PCT/JP2022/025956 JP2022025956W WO2023286606A1 WO 2023286606 A1 WO2023286606 A1 WO 2023286606A1 JP 2022025956 W JP2022025956 W JP 2022025956W WO 2023286606 A1 WO2023286606 A1 WO 2023286606A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
magnet
electric machine
gap
rotating electric
Prior art date
Application number
PCT/JP2022/025956
Other languages
French (fr)
Japanese (ja)
Inventor
誠 伊藤
暁史 高橋
哲也 須藤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2023286606A1 publication Critical patent/WO2023286606A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]

Definitions

  • the present invention relates to a rotating electric machine capable of achieving high torque density and high efficiency, and an electric wheel and vehicle using the same.
  • the Halbach magnet arrangement which combines main pole magnets arranged on the d-axis of the rotor and spoke magnets arranged on the q-axis, is known as a magnet layout capable of increasing torque.
  • the rotor consists entirely of magnets, but often requires a rotor core to mechanically hold the magnets. For this reason, conventionally, a configuration has been proposed in which a plurality of magnet holes are provided in a rotor core, and main pole magnets and spoke magnets are inserted into the magnet holes to achieve a pseudo Halbach magnet arrangement.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a rotating electrical machine with high productivity and high torque density.
  • a rotating electric machine has a rotor including magnets and a rotor core formed with magnet holes into which the magnets are inserted, and faces the rotor with a predetermined gap therebetween.
  • a rotating electric machine comprising a stator, wherein the magnets are composed of main pole magnets whose main surfaces face each other in the radial direction of the rotating electric machine, and spoke magnets whose main surfaces face each other in the circumferential direction of the rotating electric machine.
  • the rotor core includes a d-axis core formed between the gap and the main pole magnet, an inter-magnet bridge formed between the main pole magnet and the spoke magnet, a gap surface facing the stator, and an anti-gap surface located radially opposite the gap surface, wherein the length between the gap surface and the end of the spoke magnet on the anti-gap surface side is the distance between the gap surface and the anti-gap surface of the main pole magnet. It is formed so as to be equal to or longer than the length between the side ends.
  • FIG. 1 is a cross-sectional view of a rotating electric machine according to a first embodiment of the present invention
  • FIG. It is a sectional view of the rotor concerning the 1st example of the present invention.
  • 1 is a partial cross-sectional view of a rotor according to a first embodiment of the invention
  • FIG. 5 is a partial cross-sectional view of a rotor according to a modification of the first embodiment of the present invention
  • FIG. 10 is a magnetic flux diagram at no load in the conventional structure.
  • FIG. 4 is a magnetic flux diagram of a main pole magnet when the rotor according to the first embodiment of the present invention is under no load;
  • FIG. 4 is a composite magnetic flux diagram of main pole magnets 16 and spoke magnets 17 when the rotor according to the first embodiment of the present invention is under no load;
  • FIG. 4 is a partial cross-sectional view of a rotor according to a second embodiment of the invention;
  • FIG. 5 is a diagram showing the relationship between the number of poles and bending load ratio;
  • FIG. 8 is a partial cross-sectional view of a rotor according to a third embodiment of the invention;
  • FIG. 11 is a cross-sectional view of a rotor according to a fourth embodiment of the present invention;
  • FIG. 11 is a partial cross-sectional view of a rotor according to a fourth embodiment of the invention;
  • FIG. 11 is an exploded view of an electric wheel using an outer rotor according to a fifth embodiment of the present invention
  • FIG. 11 is a perspective view of an electric wheel using an outer rotor according to a fifth embodiment of the invention
  • FIG. 11 is a development view of an electric wheel using an inner rotor according to a fifth embodiment of the present invention
  • FIG. 11 is a perspective view of an electric wheel using an inner rotor according to a fifth embodiment of the invention
  • FIG. 11 is a schematic diagram of a bogie of a railway vehicle according to a sixth embodiment of the present invention
  • FIG. 14 is a cross-sectional view of a rotor core of a rotary electric machine according to a seventh embodiment of the present invention and a partially enlarged partial cross-sectional view thereof;
  • FIG. 14 is a cross-sectional view of a rotor core of a rotary electric machine according to a seventh embodiment of the present invention and a partially enlarged partial cross-sectional view thereof;
  • FIG. 14 is
  • FIG. 4 is a cross-sectional view of a conventional rotor core and a partially enlarged partial cross-sectional view thereof; It is a figure which shows the equivalent stress analysis result in a conventional structure.
  • FIG. 11 is a diagram showing equivalent stress analysis results in a rotor core of a rotary electric machine according to a seventh embodiment of the present invention.
  • FIG. 11 is a diagram showing equivalent stress analysis results in a rotor core of a rotary electric machine according to a seventh embodiment of the present invention;
  • FIG. 5 is a diagram showing the relationship between the number of poles between the axial centers of the projections and the stress;
  • FIG. 1 is a cross-sectional view of a rotating electrical machine 1 according to a first embodiment of the invention. A cross section perpendicular to the rotation axis C of the rotor 11 is shown.
  • the rotating electric machine 1 includes a stator 20 and a rotor rotatably supported by the stator 20 .
  • a gap 2 having a predetermined distance is provided between the stator 20 and the rotor 11, and the stator 20 and the rotor 11 are arranged so as not to contact each other.
  • the rotating electric machine 1 includes an inner rotor type in which the rotor 11 is rotatably supported on the inner peripheral side of the stator 20, and an inner rotor type in which the rotor 11 is rotatably supported on the outer peripheral side of the stator 20. It is applicable to any outer rotor type.
  • the stator 20 has the same rotational axis C as the rotor 11, and is composed of a stator core 21 and a coil (not shown), which are formed by laminating a plurality of core sheets.
  • the stator core 21 includes an annular stator back yoke 22, teeth 24 connected to the stator back yoke 22 and provided in plurality on the radial gap 2 side, and slots 23 provided between the teeth 24.
  • the stator core 21 may be composed of an integrally molded solid member. Further, it may be configured by compression-molding a powder magnetic material such as a powder magnetic core, or may be configured by an amorphous metal or a nanocrystalline material.
  • a coil (not shown) is wound around the teeth 24 and the slots 23 .
  • the coil consists of an in-slot coil inserted into the slot 23, a coil end passing between the slots 23 at different positions, and a lead wire for connecting the coils at different positions by inputting current from an external circuit.
  • coils of three different phases eg, U-phase, V-phase, and W-phase, are arranged.
  • the phases of the current fundamental wave components inputted to the coils of each phase are different from each other by 120°. This makes it possible to generate a rotating magnetic field in the gap 2 and rotate the rotor 11 .
  • a shaft (not shown) is fixed to the rotor 11 at the center of rotation. Further, a configuration including a frame covering the stator 20 and the rotor 11 may be employed. As a result, the rotor 11 is connected to the load directly or through a structural member such as a shaft or frame, and the rotation of the rotor 11 transmits rotation and torque to the load.
  • FIG. 2 is a cross-sectional view of the rotor 11 according to the first embodiment of the invention.
  • the rotor 11 is composed of a rotor core 12 and magnets inserted into magnet holes 14 formed in the rotor core 12 .
  • the rotor core 12 is constructed by laminating a plurality of core sheets.
  • the rotor core 12 may be composed of an integrally molded solid member. Further, it may be configured by compression-molding a powder magnetic material such as a powder magnetic core, or may be configured by an amorphous metal or a nanocrystalline material.
  • FIG. 3(a) is a partial cross-sectional view of the rotor 11 according to the first embodiment of the present invention.
  • the axis passing through the magnetic pole center of the rotor 11 is called the d-axis
  • the axis passing through the magnetic pole boundaries of the rotor 11 is called the q-axis.
  • the magnet holes 14 are holes provided in the rotor core 12 and are holes for inserting permanent magnets.
  • the main pole magnet 16 is a magnet inserted into the magnet hole 14 on the d-axis of the rotor core 12, and its magnetization direction is radial.
  • the spoke magnets 17 are magnets inserted into the magnet holes 14 on the q-axis of the rotor core 12, and are magnetized in the circumferential direction.
  • a region of the rotor core 12 located on the opposite side of the gap in the radial direction is called a back yoke 15
  • a region of the rotor core 12 on the radial gap side of the main pole magnet 16 is called the d-axis core 13 .
  • the back yoke 15 has a role of forming a magnetic flux path from one pole of the rotor 11 to an adjacent pole and a role of improving the mechanical strength of the rotor core 12 .
  • the d-axis core 13 serves to increase the gap magnetic flux density by concentrating the magnetic fluxes of the main pole magnets 16 and the spoke magnets 17 . Thereby, the torque density of the rotary electric machine 1 can be increased.
  • an inter-magnet bridge 19 which is a narrow portion of the rotor core 12 is provided. is formed. Since the inter-magnet bridge 19 serves as a path for leakage magnetic flux that short-circuits the magnetic flux of the permanent magnets, it is desirable to form the bridge 19 with a small width in the circumferential direction. On the other hand, the magnet-to-magnet bridge 19 is also a portion where a large stress is generated by the load of the centrifugal force and the electromagnetic force acting on the rotor 11 . Therefore, the design of the width of the bridge 19 between magnets is determined by the balance between magnetic characteristics such as torque and mechanical strength.
  • Fig. 4 is a magnetic flux diagram at no load in the conventional structure.
  • the width from the gap to the radial direction (anti-gap side) end of the main pole magnet 16 is a
  • the gap to the radial direction (anti-gap side) end of the spoke magnet 17 is
  • the width of is b
  • the magnetic flux by the main pole magnet 16 and the magnetic flux by the spoke magnet 17 are formed so as to repel each other. Therefore, for example, when the main pole magnet 16 is inserted into the magnet hole 14 and the spoke magnet 17 is inserted into the magnet hole 14, the magnetic fluxes of the two magnets repel each other.
  • the main pole magnet 16 protrudes from the magnet hole 14, resulting in poor manufacturability. Note that the magnetic flux generated by each magnet does not depend on the order in which the magnets are inserted. There is a risk of jumping out of the hole 14.
  • FIG. 5(a) is a magnetic flux diagram of the main pole magnet 16 when the rotor 11 according to the first embodiment is under no load.
  • FIG. 5(b) is a composite magnetic flux diagram of the main pole magnet 16 and the spoke magnets 17 under no load in the structure of the present invention.
  • the width from the gap to the radial direction (anti-gap side) end of the main pole magnet 16 is a, and the radial direction (anti-gap side) of the spoke magnet 17 from the gap is Assuming that the width to the end of the spoke magnet 17 is b, the spoke magnet 17 satisfies the relationship of b ⁇ a.
  • the magnetic flux generated by the main pole magnet 16 is short-circuited via the inter-magnet bridges 19 located at both ends of the main pole magnet 16 in the circumferential direction.
  • the adjacent main pole magnets 16 are connected via the gap side bridge 18 and the back yoke 15 . Therefore, in either case, no repulsive force is generated between the adjacent main pole magnets 16 .
  • having the inter-magnet bridge 19 facilitates the work of inserting the main pole magnet 16 .
  • the spoke magnets 17 are inserted into the magnet holes 14 with the main pole magnets 16 inserted into the magnet holes 14 as shown in FIG. are connected, and an attractive force is generated on the opposite side of the gap.
  • the spoke magnets 17 are arranged at the same radial position as the main pole magnet 16 or on the opposite side of the gap from the main pole magnet 16 (satisfying the relationship b ⁇ a).
  • the length between the gap and the end of the spoke magnet 17 opposite to the gap is greater than or equal to the length between the gap surface and the end of the main pole magnet 16 opposite to the gap. be done.
  • the magnetic flux emitted from the spoke magnet 17 passes through the adjacent main pole magnet 16, passes through the gap side air region or the gap side bridge 18, passes through the other adjacent main pole magnet 16, and passes through the spoke magnet 17. forming a path back to Therefore, the spoke magnet 17 can be inserted without repulsion.
  • the magnetic flux produced by each magnet does not depend on the order in which the magnets are inserted. That is, even if the spoke magnets 17 are inserted into the magnet holes 14 first, the magnetic fluxes of the main pole magnets 16 and the spoke magnets 17 are connected, and an attractive force is generated on the opposite side of the gap. can be inserted. This eliminates the need for a special process or a jig for holding the magnet once inserted into the magnet hole, thereby improving the manufacturability and mass productivity of the rotor 11 and the rotary electric machine 1 using the rotor 11 .
  • the presence of the gap-side bridge 18 is desirable because the magnetic flux that generates the attractive force on the opposite side of the gap can be made stronger by the presence of the gap-side bridge 18 .
  • the gap-side bridge 18 is replaced by the d-axis core 13 to the q-axis A gap-side claw portion 31 projecting in the direction may be arranged.
  • the gap-side bridge 18 may be configured to face only a portion of the radially outer surface of the spoke magnet 17 . Also in this configuration, the magnetic flux that generates the attractive force on the opposite side of the gap can be closed by passing through the air region on the gap side, so that the once-inserted magnet can be suppressed from jumping out of the magnet hole 14. ⁇
  • FIG. 3(b) is a partial cross-sectional view of a rotor according to a modification of the first embodiment of the present invention.
  • a gap-side claw portion 31 projecting from the d-axis core 13 in the q-axis direction is arranged.
  • the gap-side claw portions 31 can support the spoke magnets 17 so as not to protrude in the radial direction.
  • the gap-side claw portion 31 becomes a path of leakage magnetic flux that short-circuits the magnetic flux of the permanent magnet, it is desirable to narrow it.
  • the gap-side bridge 18 is a narrow portion, it is also a portion where a large stress is generated by the load of centrifugal force and electromagnetic force acting on the rotor. Therefore, the design of the width of the gap-side bridge 18 is determined by the balance between magnetic properties such as torque and mechanical strength.
  • FIG. 6 Since the Halbach-like magnet arrangement has a larger proportion of the spoke magnets 17 than the conventional pseudo-Halbach magnet arrangement, the following problems become apparent when the torque is increased. That is, the d-axis core 13 is strongly pulled in the radial direction due to the magnetic attraction force due to the high torque in addition to the centrifugal force, and a large stress is generated in the inter-magnet bridge 19 . If the circumferential width of the inter-magnet bridge 19 is increased in order to increase the strength, the magnetic flux leakage will increase.
  • FIG. 6 is a partial cross-sectional view of the rotor according to the second embodiment of the invention.
  • FIG. 6 shows the radial magnetic attraction acting on the d-axis core 13 .
  • the d-axis core 13 generates a circumferential magnetic attraction force that contributes to torque and a radial magnetic attraction force that does not contribute to torque.
  • the radial magnetic attraction force is larger than the circumferential magnetic attraction force. Therefore, the radial magnetic attraction force is not a component that contributes to torque.
  • the radial magnetic attraction force is a component that contributes more to the deformation of the rotor core 12 than the circumferential magnetic attraction force.
  • the main component of the deformation of the rotor core 12 is the radial magnetic attraction force.
  • FIG. 19 In order to discuss the force acting on the magnet-to-magnet bridge 19 below, FIG.
  • the bending stress generated in the inter-magnet bridge 19 should be reduced.
  • the conditions for this are clarified by obtaining the ratio of the bending load to the electromagnetic force in the radial direction from the relationship between the number of poles and the tilt of the bridge.
  • the circumferential load component F that causes bending stress on the inter-magnet bridge 19 is proportional to the following term.
  • the number of pole pairs is a value obtained by dividing the number of poles of the rotary electric machine 1 by 2, and represents the number of pairs of N poles and S poles.
  • the value of 1/2 of the right side of Equation 1 is called the bending load ratio.
  • FIG. 7 is a diagram showing the relationship between the number of poles and the bending load ratio. As shown in FIG. 7, as the number of poles increases, the bending load ratio decreases nonlinearly. can be practically ignored. Therefore, by setting the number of poles to 18 or more, the bending stress of the inter-magnet bridge 19 can be reduced, and the torque of the rotary electric machine 1 can be increased.
  • FIG. 8 is a partial cross-sectional view of a rotor according to a third embodiment of the invention.
  • the rotor core 12 has a back yoke 15 connected to the d-axis core 13 via an inter-magnet bridge 19 on the opposite side of the gap, and the radial width of the d-axis core 13 is f , where g is the radial width of the main pole magnet 16, f ⁇ g.
  • the d-axis core 13 is formed so that the radial length thereof is greater than or equal to the radial length of the main pole magnet 16 .
  • an outer ring portion 32 composed of the d-axis core 13 and the gap-side bridge 18 and an inner ring portion 33 composed of the inner-circumferential back yoke 15 become independent. Since it behaves as a structure, the eigenvalue becomes low. If the eigenvalue decreases, there is a risk that resonance due to electromagnetic vibration will occur within the design rotational speed range.
  • the eigenvalue here is the eigenvalue of the rotor core 12 .
  • the rotor core 12 resonates when the frequency of the eigenvalue matches the frequency of vibration caused by an external action or the like. When the rotor core 12 resonates, the rotor core 12 vibrates greatly even with a small external force, which may lead to breakage of the rotor core 12 .
  • the eigenvalue of the rotor core 12 increases because the outer ring portion 32 and the inner ring portion 33 are integrated to form a thick ring.
  • resonance due to electromagnetic vibration can be prevented, and a robust rotor with mechanical strength can be provided even against the strong electromagnetic attractive force unique to high-torque motors. This makes it possible to provide a motor with high torque and high power density.
  • FIG. 9 is a sectional view of a rotor according to a fourth embodiment of the invention.
  • FIG. 10 is a partial cross-sectional view of a rotor according to a fourth embodiment of the invention.
  • the rotor core 12 has projections 41 projecting from the back yoke 15 to the side opposite to the gap.
  • a plurality of protrusions 41 are arranged along the circumferential direction of the rotor core 12 .
  • a hole portion 42 is formed in the center of the convex portion 41 .
  • a separate pin, bolt, or the like (not shown) is passed through the hole 42 to connect the housing (not shown) and the rotor core 12 .
  • the mechanical strength of the rotating electric machine increases.
  • the protrusions 41 of the rotor core 12 are arranged at equal intervals in the circumferential direction and that the protrusions 41 are arranged on the d-axis.
  • the electromagnetic attractive force applied to the rotor core 12 can be equally divided by the convex portions 41 .
  • the convex portion 41 is located on the d-axis where the electromagnetic attractive force is the largest, the electromagnetic attractive force acting in the radial direction can be directly supported by the convex portion 41 and a pin or bolt penetrating the convex portion 41.
  • the mechanical strength of rotor core 12 is improved. This makes it possible to reduce the thickness of the rotor core 12 even in a large-torque rotating electric machine in which the electromagnetic attractive force increases, and to provide a rotating electric machine with a high torque density.
  • FIG. 11(a) is a developed view of an electric wheel 100 using an outer rotor according to a fifth embodiment of the present invention.
  • FIG. 11(b) is a perspective view of an electric wheel 100 using an outer rotor according to a fifth embodiment of the invention.
  • FIG. 12(a) is a developed view of an electric wheel 100 using an inner rotor according to a fifth embodiment of the present invention.
  • FIG. 12(b) is a perspective view of an electric wheel 100 using an inner rotor according to a fifth embodiment of the invention.
  • the rotating electrical machine 1 is connected to the wheel 102 only by mechanical couplings without gears.
  • An outer rotor type or inner rotor type rotating electric machine 1 is used for the electric wheel 100 .
  • a rotor 11 of the rotating electric machine 1 is connected to a rotor frame 101 .
  • the rotor frame 101 is connected with wheels 102 by connecting members (not shown).
  • a tire (not shown) is fitted to the wheel 102 .
  • the wheel 102 or rotor frame 101 is bearing-connected to the shaft so that the wheel 102 and rotor 11 are rotatably supported on the shaft.
  • the stator 20 of the rotary electric machine 1 is fixedly supported by the shaft with a support member, and the support member is mounted with a driving device 106 (shown only in FIG. 11A) for driving the rotary electric machine 1.
  • Drive device 106 supplies power to stator 20 to rotate rotor 11 .
  • Rotation of the rotor 11 is transmitted to the wheel 102 via the rotor frame 101 and connecting member, causing the wheel 102 to rotate.
  • the electric wheel 100 using an outer rotor has a rotor cover 103, and the rotor 11, the stator 20, and the driving device 106 are arranged in an area surrounded by the rotor frame 101 and the rotor cover 103. .
  • An electric wheel 100 using an inner rotor has a stator cover 104, a rotor 11 is arranged in an area surrounded by the stator 20 and the stator cover 104, and a driving device 106 is fixed and supported by the stator cover 104. be done.
  • a suspension arm 105 that engages with the vehicle body is connected to the stator 20 or the stator cover 104. The suspension arm 105 enables steering of the wheel 102 and absorbs vibrations generated in the wheel 102 before they are transmitted to the vehicle body. .
  • the rotating electrical machine 1 since the torque density of the rotating electrical machine 1 is high, the rotating electrical machine 1 can not only be accommodated on the inner peripheral side of the wheel 102, but also can be gearless, that is, the wheel 102 can be directly driven. In other words, the wheel 102 is mechanically connected so as to rotate at the same number of revolutions as that of the rotating electric machine.
  • the conventional electric wheel 100 uses gears, and problems such as gear wear, noise, and the need to support the gears increase the number of bearings used.
  • the electric wheel 100 using the rotary electric machine 1 having a high torque density according to the present embodiment does not require gears, it is unnecessary to carry out maintenance in consideration of wear of the gears. Also, the noise generated from the gear is eliminated.
  • the amount of bearings used is minimized, reducing the risk of wear on the bearings and reducing the amount of maintenance work such as replacing grease on the bearings.
  • the driving device 106 can also be mounted as part of the electric wheel 100, and the synergistic effect with the gearless configuration makes it possible to make the electric wheel 100 smaller and lighter. .
  • FIG. 13 is a schematic diagram of a railway vehicle bogie 60 according to a sixth embodiment of the present invention.
  • the rotating electric machine 1 is directly connected to the wheels 64 only by mechanical couplings without using gears.
  • the vehicle according to this embodiment includes the rotating electrical machine 1 and the wheels 64 mechanically connected so as to rotate at the same number of rotations as the rotating electrical machine 1 .
  • An inner rotor type rotating electrical machine 1 is used in a railway vehicle.
  • the rotary electric machine 1 is fixedly supported on the carriage 60 by a support member 61 .
  • Rotor 11 of rotating electric machine 1 is directly connected to axle 63 , and rotating electric machine 1 drives wheels 64 via axle 63 . Since the torque density of the rotary electric machine 1 is high, it becomes possible for the railcar to adopt the form of the present embodiment, and gearless, that is, the wheels 64 can be directly driven.
  • the weight reduction of the bogie reduces the mechanical damage to the rails and wheels, which contributes to the longevity of the rails and wheels.
  • the rotary electric machine according to the present invention can reduce the weight of the rotary electric machine and improve the output density by increasing the number of poles and reducing the thickness in the radial direction.
  • the rotor In the case of a general rotating electric machine, the rotor is fixed to the shaft or housing by shrink fitting. In this case, the shrink-fitting stress acts as a force to tear the rotor core apart in the circumferential direction. Therefore, in the rotor fixing method using shrink fitting, it is necessary to increase the width of the rotor in the radial direction in order to withstand the shrink fitting stress, which restricts the increase in power density.
  • a protruding portion having a pin hole is formed integrally with the rotor core on the opposite side in the radial direction of the gap of the back yoke of the rotor core, and the pin is provided for each pole.
  • a method of fixing the rotor to the housing of the rotor by passing a separate member structure through the hole.
  • this rotor fixing method has been mainly proposed as a method of fixing split cores with each pole split to the housing.
  • this fixing method does not require shrink-fitting the rotor, no shrink-fitting stress is generated in the rotor core. Therefore, in the case of the conventional split core, the size of the protrusion and the diameter of the pin are adjusted so that the strength of the protrusion and the pin is sufficient against the load such as the centrifugal force acting on the protrusion and the pin per pole. I should have designed it.
  • FIG. 15 is a cross-sectional view of a rotor core 12 having a conventional structure and a partially enlarged cross-sectional view of a part thereof.
  • An inter-magnet bridge 19 is formed between the magnet hole 14 for the main pole magnet and the magnet hole 14 for the spoke magnet. A bending stress is generated at the base of the bridge 19 between magnets.
  • the rotor 11 which has multiple poles and is made thin in the radial direction for high power density, if a pin is inserted into the projections 41 formed on each pole as in the prior art to fix the rotor to a housing or the like, the rotor 11 and the hole 42 of the housing deforms the radially thin back yoke 15 . As a result, a significant bending stress is generated at the base of the inter-magnet bridge 19, which restricts the increase in output density. For example, it is necessary to widen the bridge width so that the strength of the inter-magnet bridge 19 becomes sufficient. becomes diluted.
  • the axes of the projections 41 provided on the rotor core 12 are circumferentially spaced apart by one pole pitch. In other words, one protrusion 41 exists for each pole.
  • the rotor core 12 and the housing are connected through a pin (not shown)
  • the position of the hole 42 of the rotor core 12 and the pin hole of the housing are misaligned. A large stress is generated.
  • the positional deviation between the hole portion 42 of the rotor core 12 and the pin hole of the housing is specifically caused by a manufacturing error or the like.
  • the rotor 11 which has multiple poles and is radially thin in order to increase the output density, is fixed to the shaft or the housing.
  • the protrusions 41 are separated from each other in the circumferential direction by at least twice the pole pitch.
  • FIG. 14 is a cross-sectional view of a rotor core of a rotating electric machine according to Embodiment 7 and a partially enlarged cross-sectional view of a part thereof.
  • the rotor core 12 has substantially rectangular magnet holes 14 for inserting main pole magnets having substantially rectangular cross sections, and substantially rectangular magnet holes 14 for inserting substantially rectangular spoke magnets having substantially rectangular cross sections. .
  • Inter-magnet bridges 19 partitioning the magnet holes 14 are formed between the magnet holes 14 .
  • the inter-magnet bridge 19 connects the radially outer core (gap-side core) and the radially inner core (back yoke 15) with respect to the magnet hole 14 for the main pole magnet.
  • a plurality of protrusions 41 are arranged on the back yoke 15 so as to protrude on the opposite side of the gap.
  • a hole 42 for fixing the housing and the rotor core 12 is formed in each projection 41 .
  • the rotor core 12 can be fixed to the housing by passing the pins through the holes 42 and the pin holes of the housing of the rotor 11 .
  • the axial centers of the protrusions 41 formed on the rotor core 12 are separated in the circumferential direction by at least twice the pole pitch.
  • the convex portion (convex portion 41B) arranged next to the convex portion 41A is located on the convex portion 41A.
  • they are placed on the d-axis of the poles at least two poles apart (twice the pole pitch).
  • FIG. 16 is a diagram showing the equivalent stress analysis results for the conventional structure.
  • This is the equivalent stress (von Mises stress) analysis result for the conventional structure shown in FIG.
  • the positional deviation amount force displacement amount
  • the positional deviation amount was set to 10 ⁇ m, which can be sufficiently caused by a manufacturing error.
  • only one pole is cut out as a model, and periodic boundary conditions are applied to the periodic boundary surface in the circumferential direction in which the direction of the boundary surface is free and the displacement in the direction perpendicular to the surface is 0. given as a constraint.
  • the pin insertion surface of one hole 42A was fixed, and the other hole 42 was subjected to forced displacement of 10 um in the radial direction (direction of the arrow in the figure).
  • the magnets in the magnet holes 14 are separate members from the rotor core 12 and cannot serve as strength members for the core, so they are not considered in this analysis.
  • the stress caused by the manufacturing error cannot be ignored. need to design. Therefore, the radial width of the back yoke 15 must be designed to be wide, and the rotor 11 is thickened in the radial direction, increasing the weight of the rotor 11 . Moreover, since the magnetic flux leaking from the inter-magnet bridge 19 increases due to the increase in the circumferential width of the inter-magnet bridge 19, the output of the rotary electric machine is reduced by the amount of magnetic flux leakage from the inter-magnet bridge 19. Therefore, in the conventional structure, increasing the strength of the rotor 11 becomes a problem, which restricts the increase in output density.
  • FIG. 17 and 18 are diagrams showing equivalent stress analysis results in the rotor core of the rotary electric machine according to the seventh embodiment.
  • FIG. 10 shows the result of equivalent stress analysis in which the displacement of the hole portion 42B caused by the manufacturing error is input as the forced displacement for the structure according to the present embodiment.
  • FIG. 17 is a two-pole model in a structure in which the axes of the projections 41 are separated by two pole pitches
  • FIG. 18 is a four-pole model in a structure in which the axes of the projections 41 are separated by a four-pole pitch.
  • the periodic boundary conditions, restraint conditions, and forced displacement were the same as those of the conventional structural model shown in FIG. 16 to 18 have different numbers of poles, but this is because one model has only two holes 42. In other words, the periodicity of each model is taken into consideration. , because the partial model of the minimum unit that holds the analysis is selected, and the difference in the number of poles does not affect the analysis result.
  • the maximum value of stress was 0.65 pu at the connecting portion of the bridge 19 between magnets and the back yoke 15 .
  • the back yoke 15 can be considered as a cantilever with one end fixed.
  • the magnitude of the stress generated when forced displacement is applied to the tip of the cantilever decreases as the length of the cantilever increases.
  • the length of the cantilever beam corresponds to the distance between the axes of the protrusions 41 . Therefore, the stress applied to the back yoke 15 can be reduced as compared with the conventional structure by forming the axes of the projections 41 apart from each other by two pole pitches or more.
  • the stress caused by manufacturing errors can be reduced.
  • the radial width of the back yoke 15 can be narrowed, and the rotor can be made thin in the radial direction, and the weight of the rotor can be reduced. Therefore, the output density can be higher than that of the conventional structure.
  • FIG. 19 is a diagram showing the relationship between the number of poles between the axial centers of the protrusions 41 and the stress.
  • the horizontal axis indicates the number of poles between the axial centers of the protrusions 41
  • the vertical axis indicates the stress. 14 or 17 when the number of poles between the axial centers of the projections 41 is 1, and the structure shown in FIG. 18 when the number of poles is 4. corresponds to
  • the black dots are the maximum equivalent stress near the convex portion 41
  • the white dots are the maximum equivalent stress near the base of the inter-magnet bridge 19 on the back yoke 15 side. In the analysis of any model, either the vicinity of the convex portion 41 or the vicinity of the inter-magnet bridge 19 was the maximum stress point in the entire analysis model.
  • the stress of the inter-magnet bridge 19 can be reduced to less than half. Therefore, in the structure in which the axes of the projections 41 provided on the rotor core 12 are spaced apart in the circumferential direction by at least four times the pole pitch, not only can the radial width of the back yoke 15 be reduced, but also the distance between the magnets can be reduced. The circumferential width of the bridge 19 can be narrowed.
  • the convex portion 41B is formed on the q-axis.
  • the convex portion 41B may be formed on the d-axis while the convex portion 41A is on the q-axis.
  • both the axial center of the convex portion 41A and the axial center of the convex portion 41B may be arranged on the d-axis, or both may be arranged on the q-axis.
  • both axes may be arranged at arbitrary circumferential positions between the d-axis and the q-axis.
  • the effect of this embodiment can be obtained if the axial centers of the convex portions are spaced apart in the circumferential direction by two pole pitches or more or by four pole pitches or more.
  • the magnetic flux produced by the rotor 11 flows toward the adjacent pole with the d-axis as a line of symmetry.
  • the amount of magnetic flux passing through is minimized.
  • the eddy current generated in the pin and the resulting eddy current loss can be reduced, so that the rotating electric machine can be made highly efficient.
  • the magnetic flux passing through the back yoke 15 on the q-axis of the rotor flows in the circumferential direction. magnetoresistance becomes small. This increases the amount of magnetic flux generated in the gap by the rotor, so that the output of the rotating electric machine can be increased.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.

Abstract

In a conventional pseudo-Halbach magnet arrangement, there is the issue of repelling force generated between magnets due to magnetic force during a magnet inserting operation, resulting in degradation of manufacturability. The present invention provides a rotating electrical machine comprising: a rotor having magnets and a rotor core formed with magnet holes into which the magnets are inserted; and a stator opposing the rotor with a predetermined gap therebetween. The magnets are composed of main-pole magnets with main surfaces opposing each other in the radial direction of the rotating electrical machine, and spoke magnets with main surfaces opposing each other in the circumferential direction of the rotating electrical machine. The rotor core includes: a d-axis core formed between the gap and the main-pole magnets; an inter-magnets bridge formed between the main-pole magnets and the spoke magnets; a gap surface opposing the stator; and an anti-gap surface positioned on the radially opposite side to the gap surface. The rotor core is formed such that the length between the gap surface and an end of the spoke magnets on the anti-gap surface side is greater than or equal to the length between the gap surface and an end of the main-pole magnets on the anti-gap surface side.

Description

回転電機、電動ホイール及び車両Rotating electric machine, electric wheel and vehicle
 本発明は、高トルク密度化、高効率化が可能な回転電機およびこれを用いた電動ホイール及び車両に関する。 The present invention relates to a rotating electric machine capable of achieving high torque density and high efficiency, and an electric wheel and vehicle using the same.
 従来より、電動化の進展に伴う小型・軽量ニーズに対応するため、回転電機のトルク密度向上が求められている。回転電機のトルク密度は、回転電機のトルクと回転電機の質量との商で表されることから、回転電機の高トルク化と回転電機の軽量化が重要である。回転電機の軽量化をする方法としては、回転電機の極数を増やし、固定子および回転子を径方向に薄肉化することで軽量化する方法が知られている。また、高トルク化可能な回転子の構成として、回転子コアに永久磁石を埋め込んだいわゆる埋込磁石型が知られている。  Conventionally, there has been a demand to improve the torque density of rotating electrical machines in order to meet the need for smaller and lighter products as electrification progresses. Since the torque density of a rotating electrical machine is represented by the quotient of the torque of the rotating electrical machine and the mass of the rotating electrical machine, it is important to increase the torque of the rotating electrical machine and reduce the weight of the rotating electrical machine. As a method for reducing the weight of a rotating electrical machine, a method is known in which the number of poles of the rotating electrical machine is increased and the thickness of the stator and rotor is reduced in the radial direction to reduce the weight. A so-called embedded magnet type in which permanent magnets are embedded in a rotor core is known as a configuration of a rotor capable of increasing torque.
 埋込磁石型の中でも、高トルク化が可能な磁石のレイアウトとして、回転子のd軸に配置した主極磁石とq軸に配置したスポーク磁石を組み合わせたHalbach磁石配置が知られている。基本的なHalbach磁石配置では、回転子は磁石だけで構成されるが、多くの場合、磁石を機械的に保持するための回転子コアを必要とする。このため、従来から回転子コアに複数の磁石孔を設け、この磁石孔に主極磁石とスポーク磁石を挿入して疑似的にHalbach磁石配置を実現する構成が提案されている。 Among the embedded magnet types, the Halbach magnet arrangement, which combines main pole magnets arranged on the d-axis of the rotor and spoke magnets arranged on the q-axis, is known as a magnet layout capable of increasing torque. In the basic Halbach magnet arrangement, the rotor consists entirely of magnets, but often requires a rotor core to mechanically hold the magnets. For this reason, conventionally, a configuration has been proposed in which a plurality of magnet holes are provided in a rotor core, and main pole magnets and spoke magnets are inserted into the magnet holes to achieve a pseudo Halbach magnet arrangement.
 例えば特許文献1に記載の技術では、d軸に直角に配置した磁石(前記の主極磁石に相当する)とq軸と一致する方向に埋め込まれた磁石(前記のスポーク磁石に相当する)で磁極部であるコアを凹形に取り囲み、q軸と一致する方向に磁石を埋め込んだスロットの鉄心中央側の端部に空洞を設けた疑似的Halbach磁石配置が提案されている。 For example, in the technique described in Patent Document 1, a magnet arranged perpendicular to the d-axis (corresponding to the above-mentioned main pole magnet) and a magnet (corresponding to the above-mentioned spoke magnet) embedded in the direction coinciding with the q-axis A quasi-Halbach magnet arrangement has been proposed in which a cavity is provided at the end of a slot that surrounds a core, which is a magnetic pole, in a concave shape and a magnet is embedded in the direction coinciding with the q-axis, on the center side of the iron core.
特開2010-4671号公報Japanese Unexamined Patent Application Publication No. 2010-4671
 しかしながら、従来の疑似的なHalbach磁石配置では、磁石挿入作業時に磁石間に磁力による反発力が生じ、製作性が悪化するという課題が存在していた。Halbach磁石配置は高密度に磁石を配置するため、従来からこの作業性の悪化は必然であると考えられてきた。 However, in the conventional pseudo-Halbach magnet arrangement, there was a problem that repulsive force due to magnetic force was generated between the magnets during the magnet insertion work, and the manufacturability deteriorated. Since the Halbach magnet arrangement arranges magnets at a high density, it has been conventionally considered that this deterioration in workability is inevitable.
 本発明は、上記問題点に鑑みてなされたもので、生産性の高い高トルク密度の回転電機を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a rotating electrical machine with high productivity and high torque density.
 本発明に係る回転電機は、その一例を挙げるならば、磁石と当該磁石が挿入される磁石孔が形成される回転子コアとを備える回転子と、回転子に所定のギャップを介して対向する固定子と、を備える回転電機であって、磁石は、主面が前記回転電機の径方向に対向する主極磁石と、主面が回転電機の周方向に対向するスポーク磁石と、により構成され、回転子コアは、ギャップと主極磁石との間に形成されるd軸コアと、主極磁石とスポーク磁石との間に形成される磁石間ブリッジと、固定子に対向するギャップ面と、ギャップ面の径方向反対側に位置する反ギャップ面と、を有し、ギャップ面とスポーク磁石の反ギャップ面側の端部との間の長さが、ギャップ面と主極磁石の反ギャップ面側の端部との間の長さ以上となるように形成される。 To give an example, a rotating electric machine according to the present invention has a rotor including magnets and a rotor core formed with magnet holes into which the magnets are inserted, and faces the rotor with a predetermined gap therebetween. A rotating electric machine comprising a stator, wherein the magnets are composed of main pole magnets whose main surfaces face each other in the radial direction of the rotating electric machine, and spoke magnets whose main surfaces face each other in the circumferential direction of the rotating electric machine. , the rotor core includes a d-axis core formed between the gap and the main pole magnet, an inter-magnet bridge formed between the main pole magnet and the spoke magnet, a gap surface facing the stator, and an anti-gap surface located radially opposite the gap surface, wherein the length between the gap surface and the end of the spoke magnet on the anti-gap surface side is the distance between the gap surface and the anti-gap surface of the main pole magnet. It is formed so as to be equal to or longer than the length between the side ends.
 本発明によれば、生産性の高い高トルク密度の回転電機を提供することができる。 According to the present invention, it is possible to provide a rotating electrical machine with high productivity and high torque density.
本発明の第1の実施例に係る回転電機の断面図である。1 is a cross-sectional view of a rotating electric machine according to a first embodiment of the present invention; FIG. 本発明の第1の実施例に係る回転子の断面図である。It is a sectional view of the rotor concerning the 1st example of the present invention. 本発明の第1の実施例に係る回転子の部分断面図である。1 is a partial cross-sectional view of a rotor according to a first embodiment of the invention; FIG. 本発明の第1の実施例の変形例に係る回転子の部分断面図である。FIG. 5 is a partial cross-sectional view of a rotor according to a modification of the first embodiment of the present invention; 従来構造における無負荷時での磁束線図である。FIG. 10 is a magnetic flux diagram at no load in the conventional structure. 本発明の第1の実施例に係る回転子の無負荷時での主極磁石による磁束線図である。FIG. 4 is a magnetic flux diagram of a main pole magnet when the rotor according to the first embodiment of the present invention is under no load; 本発明の第1の実施例に係る回転子の無負荷時での主極磁石16とスポーク磁石17の合成磁束線図である。FIG. 4 is a composite magnetic flux diagram of main pole magnets 16 and spoke magnets 17 when the rotor according to the first embodiment of the present invention is under no load; 本発明の第2の実施例に係る回転子の部分断面図である。FIG. 4 is a partial cross-sectional view of a rotor according to a second embodiment of the invention; 極数と曲げ荷重比率の関係を示す図である。FIG. 5 is a diagram showing the relationship between the number of poles and bending load ratio; 本発明の第3の実施例に係る回転子の部分断面図である。FIG. 8 is a partial cross-sectional view of a rotor according to a third embodiment of the invention; 本発明の第4の実施例に係る回転子の断面図である。FIG. 11 is a cross-sectional view of a rotor according to a fourth embodiment of the present invention; 本発明の第4の実施例に係る回転子の部分断面図である。FIG. 11 is a partial cross-sectional view of a rotor according to a fourth embodiment of the invention; 本発明の第5の実施例に係るアウターロータを用いた電動ホイールの展開図である。FIG. 11 is an exploded view of an electric wheel using an outer rotor according to a fifth embodiment of the present invention; 本発明の第5の実施例に係るアウターロータを用いた電動ホイールの斜視図である。FIG. 11 is a perspective view of an electric wheel using an outer rotor according to a fifth embodiment of the invention; 本発明の第5の実施例に係るインナーロータを用いた電動ホイールの展開図である。FIG. 11 is a development view of an electric wheel using an inner rotor according to a fifth embodiment of the present invention; 本発明の第5の実施例に係るインナーロータを用いた電動ホイールの斜視図である。FIG. 11 is a perspective view of an electric wheel using an inner rotor according to a fifth embodiment of the invention; 本発明の第6の実施例に係る鉄道車両の台車の概略図である。FIG. 11 is a schematic diagram of a bogie of a railway vehicle according to a sixth embodiment of the present invention; 本発明の第7の実施例に係る回転電機の回転子コアの断面図とその一部を拡大した部分断面図である。FIG. 14 is a cross-sectional view of a rotor core of a rotary electric machine according to a seventh embodiment of the present invention and a partially enlarged partial cross-sectional view thereof; 従来構造の回転子コアの断面図とその一部を拡大した部分断面図である。FIG. 4 is a cross-sectional view of a conventional rotor core and a partially enlarged partial cross-sectional view thereof; 従来構造における相当応力解析結果を示す図である。It is a figure which shows the equivalent stress analysis result in a conventional structure. 本発明の第7の実施例に係る回転電機の回転子コアにおける相当応力解析結果を示す図である。FIG. 11 is a diagram showing equivalent stress analysis results in a rotor core of a rotary electric machine according to a seventh embodiment of the present invention; 本発明の第7の実施例に係る回転電機の回転子コアにおける相当応力解析結果を示す図である。FIG. 11 is a diagram showing equivalent stress analysis results in a rotor core of a rotary electric machine according to a seventh embodiment of the present invention; 凸部の軸心間の極数と応力の関係を示す図である。FIG. 5 is a diagram showing the relationship between the number of poles between the axial centers of the projections and the stress;
 以下、本発明を実施するための例(以下においては「実施例」と表記する)を、図面を参照して説明する。なお、実施例を説明するための全図において、同一の部材には原則として同一の符号を付し、重複する説明は、適宜省略する。なお、本発明は、以下に説明する実施例に限定されるものではない。 Hereinafter, examples for carrying out the present invention (hereinafter referred to as "embodiments") will be described with reference to the drawings. In principle, the same reference numerals are given to the same members in all the drawings for explaining the embodiments, and redundant explanations will be omitted as appropriate. It should be noted that the present invention is not limited to the examples described below.
 本発明の第1の実施例に係る回転電機1を、図1から図5を用いて説明する。図1は、本発明の第1の実施例に係る回転電機1の断面図である。回転子11の回転軸心Cに対して垂直な断面を示している。図1に示されるように、回転電機1は、固定子20と固定子20に回転可能に支持された回転子とを備えている。固定子20と回転子11との間には所定の距離のギャップ2が設けられ、固定子20と回転子11が互いに接触しないように配置されている。なお、本発明に係る回転電機1は、回転子11が固定子20の内周側に回転可能に支持されるインナーロータ型、及び回転子11が固定子20の外周側に回転可能に支持されるアウターロータ型のいずれにも適用可能である。 A rotating electric machine 1 according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 5. FIG. FIG. 1 is a cross-sectional view of a rotating electrical machine 1 according to a first embodiment of the invention. A cross section perpendicular to the rotation axis C of the rotor 11 is shown. As shown in FIG. 1 , the rotating electric machine 1 includes a stator 20 and a rotor rotatably supported by the stator 20 . A gap 2 having a predetermined distance is provided between the stator 20 and the rotor 11, and the stator 20 and the rotor 11 are arranged so as not to contact each other. Note that the rotating electric machine 1 according to the present invention includes an inner rotor type in which the rotor 11 is rotatably supported on the inner peripheral side of the stator 20, and an inner rotor type in which the rotor 11 is rotatably supported on the outer peripheral side of the stator 20. It is applicable to any outer rotor type.
 固定子20は、回転子11と同一の回転軸心Cを有し、コアシートを複数枚積層して構成された固定子コア21とコイル(不図示)から構成される。固定子コア21は円環状の固定子バックヨーク22と、固定子バックヨーク22と接続され、かつ径方向のギャップ2側に複数設けられたティース24と、ティース24間に設けられたスロット23と、から構成される。ここで、固定子コア21は、一体成形されたソリッド部材で構成しても良い。また、圧粉磁心などの粉末磁性体を圧縮成型した構成でも良いし、アモルファス金属やナノ結晶材で構成しても良い。 The stator 20 has the same rotational axis C as the rotor 11, and is composed of a stator core 21 and a coil (not shown), which are formed by laminating a plurality of core sheets. The stator core 21 includes an annular stator back yoke 22, teeth 24 connected to the stator back yoke 22 and provided in plurality on the radial gap 2 side, and slots 23 provided between the teeth 24. , consists of Here, the stator core 21 may be composed of an integrally molded solid member. Further, it may be configured by compression-molding a powder magnetic material such as a powder magnetic core, or may be configured by an amorphous metal or a nanocrystalline material.
 コイル(不図示)は、ティース24とスロット23を取り巻くように巻装されている。コイルは、スロット23の中に挿入されたスロット内コイルと、位置が異なるスロット23間を渡るコイルエンドと、外部回路から電流を入力して、位置が異なるコイルどうしを接続するための引出線から成る。回転子11と固定子20の間のギャップ2に回転磁界を発生させるために、例えば、U相、V相、W相の3つの相の異なるコイルが配置されている。各相のコイル同士は、入力される電流基本波成分の位相が互いに120°ずつ異なっている。これにより、ギャップ2に回転磁界を発生させ、回転子11を回転させることを可能にしている。 A coil (not shown) is wound around the teeth 24 and the slots 23 . The coil consists of an in-slot coil inserted into the slot 23, a coil end passing between the slots 23 at different positions, and a lead wire for connecting the coils at different positions by inputting current from an external circuit. Become. In order to generate a rotating magnetic field in the gap 2 between the rotor 11 and the stator 20, coils of three different phases, eg, U-phase, V-phase, and W-phase, are arranged. The phases of the current fundamental wave components inputted to the coils of each phase are different from each other by 120°. This makes it possible to generate a rotating magnetic field in the gap 2 and rotate the rotor 11 .
 回転子11には、回転中心にシャフト(不図示)が固定されている。また、固定子20及び回転子11を覆うフレームを備える構成としてもよい。これにより、回転子11は直接、またはシャフトやフレーム等の構造部材を介して負荷と接続され、回転子11が回転することで負荷に回転とトルクを伝達する。 A shaft (not shown) is fixed to the rotor 11 at the center of rotation. Further, a configuration including a frame covering the stator 20 and the rotor 11 may be employed. As a result, the rotor 11 is connected to the load directly or through a structural member such as a shaft or frame, and the rotation of the rotor 11 transmits rotation and torque to the load.
 図2は、本発明の第1の実施例に係る回転子11の断面図である。回転子11は、回転子コア12と回転子コア12に形成された磁石孔14に挿入される磁石とから構成される。回転子コア12は、コアシートを複数枚積層して構成される。回転子コア12は、一体成形されたソリッド部材で構成しても良い。また、圧粉磁心などの粉末磁性体を圧縮成型した構成でも良いし、アモルファス金属やナノ結晶材で構成しても良い。 FIG. 2 is a cross-sectional view of the rotor 11 according to the first embodiment of the invention. The rotor 11 is composed of a rotor core 12 and magnets inserted into magnet holes 14 formed in the rotor core 12 . The rotor core 12 is constructed by laminating a plurality of core sheets. The rotor core 12 may be composed of an integrally molded solid member. Further, it may be configured by compression-molding a powder magnetic material such as a powder magnetic core, or may be configured by an amorphous metal or a nanocrystalline material.
 図3(a)は、本発明の第1の実施例に係る回転子11の部分断面図である。以下、複数の回転子の部分断面図が示されるが、特に断りのない限り紙面上方が固定子20との対抗面(ギャップ)である。ここで、回転子11の磁極中心を通る軸をd軸、回転子11の磁極境界を通る軸をq軸と呼称する。回転子11がスキューされる場合は、それぞれの磁極中心軸方向ごとにd軸及びq軸が定義される。また、磁石孔14とは、回転子コア12に設けられた空孔であり、永久磁石を挿入するための空孔である。 FIG. 3(a) is a partial cross-sectional view of the rotor 11 according to the first embodiment of the present invention. Below, partial cross-sectional views of a plurality of rotors are shown. Here, the axis passing through the magnetic pole center of the rotor 11 is called the d-axis, and the axis passing through the magnetic pole boundaries of the rotor 11 is called the q-axis. When the rotor 11 is skewed, a d-axis and a q-axis are defined for each magnetic pole center axis direction. The magnet holes 14 are holes provided in the rotor core 12 and are holes for inserting permanent magnets.
 図3(a)に示されるように、d軸上の主極磁石16が挿入される磁石孔14と、q軸上のスポーク磁石17が挿入される磁石孔14が周方向に沿って交互に並んだ配置となっている。主極磁石16は、回転子コア12のd軸上の磁石孔14に挿入される磁石であり、磁化方向は径方向である。スポーク磁石17は、回転子コア12のq軸上の磁石孔14に挿入される磁石であり、磁化方向は周方向である。 As shown in FIG. 3A, the magnet holes 14 into which the main pole magnets 16 on the d-axis are inserted and the magnet holes 14 into which the spoke magnets 17 on the q-axis are inserted alternately along the circumferential direction. They are arranged side by side. The main pole magnet 16 is a magnet inserted into the magnet hole 14 on the d-axis of the rotor core 12, and its magnetization direction is radial. The spoke magnets 17 are magnets inserted into the magnet holes 14 on the q-axis of the rotor core 12, and are magnetized in the circumferential direction.
 ここで、ギャップから主極磁石16の径方向(反ギャップ側)端部までの幅をa、ギャップからスポーク磁石17の径方向(反ギャップ側)端部までの幅をbとすると、bとaとの関係が、b≧aを満たしている。図3(a)では、b=aの例が示されている。
回転子コア12のうち、ギャップとは径方向逆側に位置している領域をバックヨーク15、主極磁石16よりも径方向ギャップ側の領域をd軸コア13と呼ぶ。バックヨーク15は、回転子11のある極から隣接する極へ磁束の経路を形成する役割と、回転子コア12の機械的強度を向上する役割を有する。d軸コア13は、主極磁石16とスポーク磁石17の磁束が集中することで、ギャップ磁束密度を高める働きをする。これにより、回転電機1のトルク密度を高めることができる。
Here, if the width from the gap to the radial direction (anti-gap side) end of the main pole magnet 16 is a, and the width from the gap to the radial direction (anti-gap side) end of the spoke magnet 17 is b, then b The relationship with a satisfies b≧a. FIG. 3A shows an example of b=a.
A region of the rotor core 12 located on the opposite side of the gap in the radial direction is called a back yoke 15 , and a region of the rotor core 12 on the radial gap side of the main pole magnet 16 is called the d-axis core 13 . The back yoke 15 has a role of forming a magnetic flux path from one pole of the rotor 11 to an adjacent pole and a role of improving the mechanical strength of the rotor core 12 . The d-axis core 13 serves to increase the gap magnetic flux density by concentrating the magnetic fluxes of the main pole magnets 16 and the spoke magnets 17 . Thereby, the torque density of the rotary electric machine 1 can be increased.
 d軸上の主極磁石16が挿入される磁石孔14と、q軸上のスポーク磁石17が挿入される磁石孔14との間には、回転子コア12の狭小部である磁石間ブリッジ19が形成される。磁石間ブリッジ19は、永久磁石の磁束を短絡させる漏洩磁束の経路になるため、周方向の幅が小さく形成されることが望ましい。一方で、磁石間ブリッジ19は、回転子11に働く遠心力や電磁力の荷重によって大きな応力が発生する部分でもある。このため、磁石間ブリッジ19の幅の設計は、トルクなどの磁気特性と、機械強度とのバランスで決定される。 Between the magnet hole 14 into which the main pole magnet 16 on the d-axis is inserted and the magnet hole 14 into which the spoke magnet 17 on the q-axis is inserted, an inter-magnet bridge 19 which is a narrow portion of the rotor core 12 is provided. is formed. Since the inter-magnet bridge 19 serves as a path for leakage magnetic flux that short-circuits the magnetic flux of the permanent magnets, it is desirable to form the bridge 19 with a small width in the circumferential direction. On the other hand, the magnet-to-magnet bridge 19 is also a portion where a large stress is generated by the load of the centrifugal force and the electromagnetic force acting on the rotor 11 . Therefore, the design of the width of the bridge 19 between magnets is determined by the balance between magnetic characteristics such as torque and mechanical strength.
 また、スポーク磁石17が挿入される磁石孔14と回転子コア12端部(径方向ギャップ側の表面)に挟まれた領域には、回転子コア12の狭小部であるギャップ側ブリッジ18が形成される。ギャップ側ブリッジ18は、永久磁石の磁束を短絡させる漏洩磁束の経路になるため、径方向の幅が小さく形成されることが望ましい。一方で、ギャップ側ブリッジ18は、回転子11にはたらく遠心力や電磁力の荷重によって大きな応力が発生する部分でもある。このため、ギャップ側ブリッジ18の幅の設計は、トルクなどの磁気特性と、機械強度とのバランスで決定される。 A gap-side bridge 18, which is a narrow portion of the rotor core 12, is formed in a region sandwiched between the magnet holes 14 into which the spoke magnets 17 are inserted and the end portion of the rotor core 12 (surface on the radial gap side). be done. Since the gap-side bridge 18 serves as a path for leakage magnetic flux that short-circuits the magnetic flux of the permanent magnets, it is desirable that the gap-side bridge 18 be formed with a small width in the radial direction. On the other hand, the gap-side bridge 18 is also a portion where a large stress is generated by the load of centrifugal force and electromagnetic force acting on the rotor 11 . Therefore, the design of the width of the gap-side bridge 18 is determined by the balance between magnetic properties such as torque and mechanical strength.
 図4は、従来構造における無負荷時での磁束線図である。図4に示されるように、従来構造では、ギャップから主極磁石16の径方向(反ギャップ側)端部までの幅をa、ギャップからスポーク磁石17の径方向(反ギャップ側)端部までの幅をbとしたときに、b<aの関係にある。この場合、主極磁石16による磁束とスポーク磁石17による磁束とが反発し合うように形成される。このため、例えば主極磁石16が磁石孔14に挿入された状態で、スポーク磁石17を磁石孔14に挿入する場合に、両磁石の磁束が互いに反発し合う。これにより、主極磁石16が磁石孔14から飛び出してしまい、製作性が悪くなる。なお、それぞれの磁石の作る磁束は磁石の挿入順によらず、スポーク磁石17を先に磁石孔14に挿入した場合は、主極磁石16を磁石孔14に挿入する際に、スポーク磁石17が磁石孔14から飛び出してしまうリスクがある。  Fig. 4 is a magnetic flux diagram at no load in the conventional structure. As shown in FIG. 4, in the conventional structure, the width from the gap to the radial direction (anti-gap side) end of the main pole magnet 16 is a, and the gap to the radial direction (anti-gap side) end of the spoke magnet 17 is When the width of is b, there is a relationship of b<a. In this case, the magnetic flux by the main pole magnet 16 and the magnetic flux by the spoke magnet 17 are formed so as to repel each other. Therefore, for example, when the main pole magnet 16 is inserted into the magnet hole 14 and the spoke magnet 17 is inserted into the magnet hole 14, the magnetic fluxes of the two magnets repel each other. As a result, the main pole magnet 16 protrudes from the magnet hole 14, resulting in poor manufacturability. Note that the magnetic flux generated by each magnet does not depend on the order in which the magnets are inserted. There is a risk of jumping out of the hole 14.
 つまり、従来構造では、磁石挿入時に隣接する磁石間で反発力が働くため、磁石が磁石孔14から飛び出そうとする。そのため、製作プロセスに関わらず、製作性が悪化する原因となっていた。また、磁石が飛び出さないようにするためには、個々の磁石形状に合わせた特別なジグを用いて、1つ1つの磁石を押させながら組み立てる必要があり、製作性が悪化する原因となっていた。 In other words, in the conventional structure, a repulsive force acts between adjacent magnets when magnets are inserted, so the magnets tend to pop out of the magnet holes 14 . Therefore, regardless of the manufacturing process, this has been a cause of deterioration in manufacturability. In addition, in order to prevent the magnets from popping out, it is necessary to assemble the magnets while pressing them one by one using a special jig that matches the shape of each magnet, which causes a deterioration in manufacturability. was
 図5(a)は、第1の実施例に係る回転子11の無負荷時での主極磁石16による磁束線図である。また、図5(b)は、本発明構造における無負荷時での主極磁石16とスポーク磁石17の合成磁束線図である。図5(a)及び図5(b)に示されるように、ギャップから主極磁石16の径方向(反ギャップ側)端部までの幅をa、ギャップからスポーク磁石17の径方向(反ギャップ側)端部までの幅をbとすると、スポーク磁石17はb≧aの関係を満たしている。 FIG. 5(a) is a magnetic flux diagram of the main pole magnet 16 when the rotor 11 according to the first embodiment is under no load. FIG. 5(b) is a composite magnetic flux diagram of the main pole magnet 16 and the spoke magnets 17 under no load in the structure of the present invention. As shown in FIGS. 5(a) and 5(b), the width from the gap to the radial direction (anti-gap side) end of the main pole magnet 16 is a, and the radial direction (anti-gap side) of the spoke magnet 17 from the gap is Assuming that the width to the end of the spoke magnet 17 is b, the spoke magnet 17 satisfies the relationship of b≧a.
 図5(a)に示されるように、主極磁石16のみを挿入した場合、主極磁石16の作る磁束は、主極磁石16の周方向両端に位置する磁石間ブリッジ19を介して短絡するか、またはギャップ側ブリッジ18とバックヨーク15を経由して隣接する主極磁石16同士をつなぐ。したがって、いずれの場合でも隣接極の主極磁石16同士で反発力が生じない。つまり、磁石間ブリッジ19を有することにより、主極磁石16の挿入作業が容易になる。 As shown in FIG. 5A, when only the main pole magnet 16 is inserted, the magnetic flux generated by the main pole magnet 16 is short-circuited via the inter-magnet bridges 19 located at both ends of the main pole magnet 16 in the circumferential direction. Alternatively, the adjacent main pole magnets 16 are connected via the gap side bridge 18 and the back yoke 15 . Therefore, in either case, no repulsive force is generated between the adjacent main pole magnets 16 . In other words, having the inter-magnet bridge 19 facilitates the work of inserting the main pole magnet 16 .
 さらに、図5(b)に示されるように、主極磁石16が磁石孔14に挿入された状態で、スポーク磁石17を磁石孔14に挿入する場合、主極磁石16とスポーク磁石17の磁束がつながり、反ギャップ側で吸引力が発生する。具体的には、スポーク磁石17が主極磁石16と径方向同位置、又は主極磁石16よりも反ギャップ側に配置される(b≧aの関係を満たす)。換言すると、ギャップと前記スポーク磁石17の反ギャップ側の端部との間の長さが、ギャップ面と主極磁石16の反ギャップ側の端部との間の長さ以上となるように形成される。これにより、スポーク磁石17から出た磁束が、隣接する主極磁石16を通り、ギャップ側の空気領域、またはギャップ側ブリッジ18を介して、他方の隣接する主極磁石16を通り、スポーク磁石17に戻るパスを形成する。したがって、スポーク磁石17が反発することなく挿入できる。 Furthermore, when the spoke magnets 17 are inserted into the magnet holes 14 with the main pole magnets 16 inserted into the magnet holes 14 as shown in FIG. are connected, and an attractive force is generated on the opposite side of the gap. Specifically, the spoke magnets 17 are arranged at the same radial position as the main pole magnet 16 or on the opposite side of the gap from the main pole magnet 16 (satisfying the relationship b≧a). In other words, the length between the gap and the end of the spoke magnet 17 opposite to the gap is greater than or equal to the length between the gap surface and the end of the main pole magnet 16 opposite to the gap. be done. As a result, the magnetic flux emitted from the spoke magnet 17 passes through the adjacent main pole magnet 16, passes through the gap side air region or the gap side bridge 18, passes through the other adjacent main pole magnet 16, and passes through the spoke magnet 17. forming a path back to Therefore, the spoke magnet 17 can be inserted without repulsion.
 ここでは、主極磁石16が先に挿入される例が示されたが、それぞれの磁石の作る磁束は磁石の挿入順によらない。つまり、スポーク磁石17を先に磁石孔14に挿入した場合でも、主極磁石16とスポーク磁石17の磁束がつながり、反ギャップ側で吸引力が発生するため、主極磁石16が反発することなく挿入することができる。これにより、一度磁石孔に挿入された磁石を保持するための特別な工程やジグが不要となり、回転子11およびこれを用いた回転電機1の製作性、量産性が向上する。 Here, an example is shown in which the main pole magnet 16 is inserted first, but the magnetic flux produced by each magnet does not depend on the order in which the magnets are inserted. That is, even if the spoke magnets 17 are inserted into the magnet holes 14 first, the magnetic fluxes of the main pole magnets 16 and the spoke magnets 17 are connected, and an attractive force is generated on the opposite side of the gap. can be inserted. This eliminates the need for a special process or a jig for holding the magnet once inserted into the magnet hole, thereby improving the manufacturability and mass productivity of the rotor 11 and the rotary electric machine 1 using the rotor 11 .
 この反ギャップ側で吸引力を発生させる磁束は、ギャップ側ブリッジ18が存在することでより強力にできるため、ギャップ側ブリッジ18が存在することが望ましい。しかし、スポーク磁石17が挿入される磁石孔14と回転子コア12端部(径方向ギャップ側の表面)に挟まれた領域には、ギャップ側ブリッジ18の代わりに、d軸コア13からq軸方向に張り出したギャップ側爪部31を配置してもよい。 The presence of the gap-side bridge 18 is desirable because the magnetic flux that generates the attractive force on the opposite side of the gap can be made stronger by the presence of the gap-side bridge 18 . However, instead of the gap-side bridge 18 , the gap-side bridge 18 is replaced by the d-axis core 13 to the q-axis A gap-side claw portion 31 projecting in the direction may be arranged.
 換言すると、ギャップ側ブリッジ18は、スポーク磁石17の径方向の外側の面の一部のみに対向する構成としてもよい。この構成でも、ギャップ側の空気領域を経由することで、反ギャップ側で吸引力を発生させる磁束を閉じることができるため、一度挿入した磁石が磁石孔14から飛び出すことを抑制することができる。 In other words, the gap-side bridge 18 may be configured to face only a portion of the radially outer surface of the spoke magnet 17 . Also in this configuration, the magnetic flux that generates the attractive force on the opposite side of the gap can be closed by passing through the air region on the gap side, so that the once-inserted magnet can be suppressed from jumping out of the magnet hole 14.例文帳に追加
 図3(b)は、本発明の第1の実施例の変形例に係る回転子の部分断面図である。図3(b)に示されるように、スポーク磁石17が挿入される磁石孔14と回転子コア12端部(径方向ギャップ側の表面)に挟まれた領域には、ギャップ側ブリッジ18の代わりに、d軸コア13からq軸方向に張り出したギャップ側爪部31が配置される。ギャップ側ブリッジ18だけでなくギャップ側爪部31でも、スポーク磁石17が径方向に飛び出さないように支持することが可能である。ギャップ側爪部31は、永久磁石の磁束を短絡させる漏洩磁束の経路になるため、狭めることが望ましい。一方で、ギャップ側ブリッジ18は狭小部のため、回転子にはたらく遠心力や電磁力の荷重によって大きな応力が発生する部分でもある。このため、ギャップ側ブリッジ18の幅の設計は、トルクなどの磁気特性と、機械強度とのバランスで決定される。 FIG. 3(b) is a partial cross-sectional view of a rotor according to a modification of the first embodiment of the present invention. As shown in FIG. 3(b), in the region sandwiched between the magnet hole 14 into which the spoke magnet 17 is inserted and the rotor core 12 end (surface on the radial gap side), instead of the gap side bridge 18, , a gap-side claw portion 31 projecting from the d-axis core 13 in the q-axis direction is arranged. Not only the gap-side bridge 18 but also the gap-side claw portions 31 can support the spoke magnets 17 so as not to protrude in the radial direction. Since the gap-side claw portion 31 becomes a path of leakage magnetic flux that short-circuits the magnetic flux of the permanent magnet, it is desirable to narrow it. On the other hand, since the gap-side bridge 18 is a narrow portion, it is also a portion where a large stress is generated by the load of centrifugal force and electromagnetic force acting on the rotor. Therefore, the design of the width of the gap-side bridge 18 is determined by the balance between magnetic properties such as torque and mechanical strength.
 本発明の第2の実施例に係る回転電機1を、図6及び図7を用いて説明する。Halbach-like磁石配置は、従来の疑似的Halbach磁石配置と比べて、スポーク磁石17の比率が大きいため、高トルク化する際に以下の問題が顕在化する。すなわち、遠心力に加えて高トルク化による磁気吸引力により、d軸コア13が径方向に強く引っ張られ、磁石間ブリッジ19に大きな応力が発生する問題である。高強度化のために磁石間ブリッジ19の周方向幅を拡大すると漏洩磁束が増加するため、磁石間ブリッジ19の幅は狭小にしたうえで、機械強度を高める必要がある。 A rotating electric machine 1 according to a second embodiment of the present invention will be described with reference to FIGS. 6 and 7. FIG. Since the Halbach-like magnet arrangement has a larger proportion of the spoke magnets 17 than the conventional pseudo-Halbach magnet arrangement, the following problems become apparent when the torque is increased. That is, the d-axis core 13 is strongly pulled in the radial direction due to the magnetic attraction force due to the high torque in addition to the centrifugal force, and a large stress is generated in the inter-magnet bridge 19 . If the circumferential width of the inter-magnet bridge 19 is increased in order to increase the strength, the magnetic flux leakage will increase.
 図6は、本発明の第2の実施例に係る回転子の部分断面図である。図6にはd軸コア13にはたらく径方向磁気吸引力が示されている。d軸コア13には、トルクに寄与する周方向磁気吸引力と、トルクには寄与しない径方向磁気吸引力が発生する。一般に、ギャップ2の磁束はほぼ径方向を向いているため、径方向磁気吸引力は周方向磁気吸引力よりも大きい。このため、径方向磁気吸引力は、トルクに寄与する成分ではない。しかし、径方向磁気吸引力は、回転子コア12の変形には周方向磁気吸引力よりも寄与する成分である。特に、高トルク化により磁気吸引力が増加すると、回転子コア12の変形の主成分は径方向磁気吸引力になる。以下では、磁石間ブリッジ19にはたらく力について議論するため、図6ではd軸コア13にはたらく径方向磁気吸引力ベクトルの始点を、磁石間ブリッジ19端部に移動させて描画している。 FIG. 6 is a partial cross-sectional view of the rotor according to the second embodiment of the invention. FIG. 6 shows the radial magnetic attraction acting on the d-axis core 13 . The d-axis core 13 generates a circumferential magnetic attraction force that contributes to torque and a radial magnetic attraction force that does not contribute to torque. In general, since the magnetic flux in the gap 2 is directed substantially radially, the radial magnetic attraction force is larger than the circumferential magnetic attraction force. Therefore, the radial magnetic attraction force is not a component that contributes to torque. However, the radial magnetic attraction force is a component that contributes more to the deformation of the rotor core 12 than the circumferential magnetic attraction force. In particular, when the magnetic attraction force increases due to the increase in torque, the main component of the deformation of the rotor core 12 is the radial magnetic attraction force. In order to discuss the force acting on the magnet-to-magnet bridge 19 below, FIG.
 磁石間ブリッジ19の高強度化のためには、磁石間ブリッジ19に発生する曲げ応力を低減すればよい。このための条件は、極数とブリッジの傾きの関係から、径方向の電磁力に対する曲げ荷重の比率を求めることで明らかとなる。具体的には、1極あたりにはたらく電磁吸引力(または遠心力)のうち、磁石間ブリッジ19に曲げ応力を発生させる周方向荷重成分Fは以下の項に比例する。 In order to increase the strength of the inter-magnet bridge 19, the bending stress generated in the inter-magnet bridge 19 should be reduced. The conditions for this are clarified by obtaining the ratio of the bending load to the electromagnetic force in the radial direction from the relationship between the number of poles and the tilt of the bridge. Specifically, of the electromagnetic attraction force (or centrifugal force) acting per pole, the circumferential load component F that causes bending stress on the inter-magnet bridge 19 is proportional to the following term.
Figure JPOXMLDOC01-appb-M000001
 ここで、pは極対数である。極対数は回転電機1の極数を2で割った値であり、N極とS極のペアの数をあらわす。回転子11のギャップ面に働く径方向電磁力の総和を1と規格化したときの数1の右辺の1/2の値を曲げ荷重比率と呼称する。
Figure JPOXMLDOC01-appb-M000001
where p is the number of pole pairs. The number of pole pairs is a value obtained by dividing the number of poles of the rotary electric machine 1 by 2, and represents the number of pairs of N poles and S poles. When the total sum of the radial electromagnetic forces acting on the gap surface of the rotor 11 is normalized to 1, the value of 1/2 of the right side of Equation 1 is called the bending load ratio.
 図7は、極数と曲げ荷重比率の関係を示す図である。図7に示されるように、極数が増加すると曲げ荷重比率が非線形的に減少し、18極で曲げ荷重比率が0.01以下となる変曲点を迎え、それ以上の極数では曲げ荷重の影響を実質的に無視できる。このため、極数を18極以上とすることで磁石間ブリッジ19の曲げ応力を低減することができ、回転電機1の高トルク化が可能となる。 FIG. 7 is a diagram showing the relationship between the number of poles and the bending load ratio. As shown in FIG. 7, as the number of poles increases, the bending load ratio decreases nonlinearly. can be practically ignored. Therefore, by setting the number of poles to 18 or more, the bending stress of the inter-magnet bridge 19 can be reduced, and the torque of the rotary electric machine 1 can be increased.
 本発明の第3の実施例に係る回転電機1を、図8を用いて説明する。図8は、本発明の第3の実施例に係る回転子の部分断面図である。図8に示されるように、回転子コア12は、反ギャップ側でd軸コア13と磁石間ブリッジ19を介して接続されるバックヨーク15を有し、d軸コア13の径方向幅をf、主極磁石16の径方向幅をgとすると、f≧gの関係にある。換言すると、d軸コア13の径方向長さが、主極磁石16の径方向の長さ以上となるように形成される。 A rotating electric machine 1 according to a third embodiment of the present invention will be described with reference to FIG. FIG. 8 is a partial cross-sectional view of a rotor according to a third embodiment of the invention. As shown in FIG. 8, the rotor core 12 has a back yoke 15 connected to the d-axis core 13 via an inter-magnet bridge 19 on the opposite side of the gap, and the radial width of the d-axis core 13 is f , where g is the radial width of the main pole magnet 16, f≧g. In other words, the d-axis core 13 is formed so that the radial length thereof is greater than or equal to the radial length of the main pole magnet 16 .
 磁石間ブリッジ19が径方向に長くなると、d軸コア13とギャップ側ブリッジ18より構成される外周リング部32と、内周側のバックヨーク15で構成される内周リング部33とが独立した構造物として振舞うため固有値が低くなる。固有値が低下すると、設計回転数範囲内において、電磁振動による共振が発生する虞がある。ここでいう固有値とは、回転子コア12の固有値である。固有値の周波数が外部作用等による振動の周波数と一致する場合、回転子コア12が共振する。回転子コア12が共振すると、小さな外力等でも回転子コア12が大きく振動するため、回転子コア12の破壊につながる虞がある。 As the magnet-to-magnet bridge 19 becomes longer in the radial direction, an outer ring portion 32 composed of the d-axis core 13 and the gap-side bridge 18 and an inner ring portion 33 composed of the inner-circumferential back yoke 15 become independent. Since it behaves as a structure, the eigenvalue becomes low. If the eigenvalue decreases, there is a risk that resonance due to electromagnetic vibration will occur within the design rotational speed range. The eigenvalue here is the eigenvalue of the rotor core 12 . The rotor core 12 resonates when the frequency of the eigenvalue matches the frequency of vibration caused by an external action or the like. When the rotor core 12 resonates, the rotor core 12 vibrates greatly even with a small external force, which may lead to breakage of the rotor core 12 .
 一方、f≧gを満たす場合は、外周リング部32と内周リング部33とが一体となった厚肉リングに近づくため、回転子コア12の固有値が高くなる。これにより、電磁振動による共振を防ぐことができ高トルクモータ固有の強い電磁吸引力に対しても、機械強度の堅牢なロータを提供することができる。これにより、高トルク及び高出力密度を有するモータを提供することができる。 On the other hand, when f≧g is satisfied, the eigenvalue of the rotor core 12 increases because the outer ring portion 32 and the inner ring portion 33 are integrated to form a thick ring. As a result, resonance due to electromagnetic vibration can be prevented, and a robust rotor with mechanical strength can be provided even against the strong electromagnetic attractive force unique to high-torque motors. This makes it possible to provide a motor with high torque and high power density.
 本発明の第4の実施例に係る回転電機1を、図9及び図10を用いて説明する。図9は、本発明の第4の実施例に係る回転子の断面図である。 図10は、本発明の第4の実施例に係る回転子の部分断面図である。図9及び図10に示されるように、回転子コア12は、バックヨーク15から反ギャップ側に突出する凸部41を有する。凸部41は、回転子コア12の周方向に渡って複数個配置される。また、凸部41の中央に穴部42が形成される。穴部42には別体のピンまたはボルト等(不図示)が通され、ハウジング(不図示)と回転子コア12とを接続する。凸部41の個数が多くなるほど、回転電機の機械的強度が増加する。 A rotating electrical machine 1 according to a fourth embodiment of the present invention will be described with reference to FIGS. 9 and 10. FIG. FIG. 9 is a sectional view of a rotor according to a fourth embodiment of the invention. FIG. 10 is a partial cross-sectional view of a rotor according to a fourth embodiment of the invention. As shown in FIGS. 9 and 10, the rotor core 12 has projections 41 projecting from the back yoke 15 to the side opposite to the gap. A plurality of protrusions 41 are arranged along the circumferential direction of the rotor core 12 . A hole portion 42 is formed in the center of the convex portion 41 . A separate pin, bolt, or the like (not shown) is passed through the hole 42 to connect the housing (not shown) and the rotor core 12 . As the number of protrusions 41 increases, the mechanical strength of the rotating electric machine increases.
 凸部41の穴部42にピンやボルト等の機械強度部材を通し、回転子11のハウジングに固定することで、回転子コア12をハウジングに焼き嵌めする必要がなくなる。これにより、バックヨーク15が薄い場合でも、回転子コア12をハウジングに固定できるため、回転子11の径方向薄肉化が可能となる。したがって、回転子11の軽量化ができ、高トルク、高出力密度モータを提供することができる。 By passing mechanical strength members such as pins and bolts through the holes 42 of the projections 41 and fixing them to the housing of the rotor 11, it is not necessary to shrink-fit the rotor core 12 to the housing. As a result, even if the back yoke 15 is thin, the rotor core 12 can be fixed to the housing, so the rotor 11 can be made thin in the radial direction. Therefore, the weight of the rotor 11 can be reduced, and a high torque, high power density motor can be provided.
 ここで、回転子コア12の凸部41は、周方向に等間隔に配置され、かつ前記凸部41はd軸上に配置されるのが望ましい。凸部41を周方向に等間隔に配置することで、回転子コア12に加わる電磁吸引力を各凸部41で等分できる。さらに、凸部41が最も電磁吸引力が大きくなるd軸上にあることで、径方向に働く電磁吸引力を凸部41及び凸部41を貫くピンまたはボルト等で直接支持することができ、回転子コア12の機械的強度が向上する。これにより、電磁吸引力が大きくなる大トルクの回転電機においても、回転子コア12を薄肉化でき、高トルク密度の回転電機を提供することができる。 Here, it is desirable that the protrusions 41 of the rotor core 12 are arranged at equal intervals in the circumferential direction and that the protrusions 41 are arranged on the d-axis. By arranging the convex portions 41 at regular intervals in the circumferential direction, the electromagnetic attractive force applied to the rotor core 12 can be equally divided by the convex portions 41 . Furthermore, since the convex portion 41 is located on the d-axis where the electromagnetic attractive force is the largest, the electromagnetic attractive force acting in the radial direction can be directly supported by the convex portion 41 and a pin or bolt penetrating the convex portion 41. The mechanical strength of rotor core 12 is improved. This makes it possible to reduce the thickness of the rotor core 12 even in a large-torque rotating electric machine in which the electromagnetic attractive force increases, and to provide a rotating electric machine with a high torque density.
 次に本発明の実施例5に係る電動ホイール100を図11から図12を用いて説明する。図11(a)は、本発明の第5の実施例に係るアウターロータを用いた電動ホイール100の展開図である。図11(b)は、本発明の第5の実施例に係るアウターロータを用いた電動ホイール100の斜視図である。図12(a)は、本発明の第5の実施例に係るインナーロータを用いた電動ホイール100の展開図である。図12(b)は、本発明の第5の実施例に係るインナーロータを用いた電動ホイール100の斜視図である。 Next, an electric wheel 100 according to Example 5 of the present invention will be described with reference to FIGS. 11 and 12. FIG. FIG. 11(a) is a developed view of an electric wheel 100 using an outer rotor according to a fifth embodiment of the present invention. FIG. 11(b) is a perspective view of an electric wheel 100 using an outer rotor according to a fifth embodiment of the invention. FIG. 12(a) is a developed view of an electric wheel 100 using an inner rotor according to a fifth embodiment of the present invention. FIG. 12(b) is a perspective view of an electric wheel 100 using an inner rotor according to a fifth embodiment of the invention.
 電動ホイール100において、回転電機1は、ギアを介さず機械的な結合部だけでホイール102と接続されている。電動ホイール100には、アウターロータタイプまたはインナーロータタイプの回転電機1が使用される。回転電機1の回転子11は、回転子フレーム101に接続されている。回転子フレーム101は、接続部材(不図示)によって、ホイール102と接続されている。ホイール102にはタイヤ(不図示)が嵌め合わされている。ホイール102および回転子11がシャフトに対して回転自在に支持されるようにするために、ホイール102もしくは回転子フレーム101はシャフトに軸受で接続されている。 In the electric wheel 100, the rotating electrical machine 1 is connected to the wheel 102 only by mechanical couplings without gears. An outer rotor type or inner rotor type rotating electric machine 1 is used for the electric wheel 100 . A rotor 11 of the rotating electric machine 1 is connected to a rotor frame 101 . The rotor frame 101 is connected with wheels 102 by connecting members (not shown). A tire (not shown) is fitted to the wheel 102 . The wheel 102 or rotor frame 101 is bearing-connected to the shaft so that the wheel 102 and rotor 11 are rotatably supported on the shaft.
 一方、回転電機1の固定子20は、支持部材でシャフトに固定支持されており、支持部材には回転電機1を駆動する駆動装置106(図11(a)にのみ図示)が搭載されている。駆動装置106は、電力を固定子20に供給し、回転子11を回転させる。回転子11の回転は回転子フレーム101、および接続部材を介してホイール102に伝達され、ホイール102を回転させる。なお、アウターロータを用いた電動ホイール100は、回転子カバー103を有し、回転子フレーム101と回転子カバー103で囲まれる領域に、回転子11、固定子20ならびに駆動装置106が配置される。インナーロータを用いた電動ホイール100は、固定子カバー104を有し、固定子20と固定子カバー104で囲まれる領域に回転子11が配置され、駆動装置106は固定子カバー104に固定、支持される。固定子20または固定子カバー104には車体と取り合うサスペンションアーム105が接続され、サスペンションアーム105により、ホイール102の操舵が可能になり、またホイール102で生じた振動が車体に伝わる前に吸収される。 On the other hand, the stator 20 of the rotary electric machine 1 is fixedly supported by the shaft with a support member, and the support member is mounted with a driving device 106 (shown only in FIG. 11A) for driving the rotary electric machine 1. . Drive device 106 supplies power to stator 20 to rotate rotor 11 . Rotation of the rotor 11 is transmitted to the wheel 102 via the rotor frame 101 and connecting member, causing the wheel 102 to rotate. The electric wheel 100 using an outer rotor has a rotor cover 103, and the rotor 11, the stator 20, and the driving device 106 are arranged in an area surrounded by the rotor frame 101 and the rotor cover 103. . An electric wheel 100 using an inner rotor has a stator cover 104, a rotor 11 is arranged in an area surrounded by the stator 20 and the stator cover 104, and a driving device 106 is fixed and supported by the stator cover 104. be done. A suspension arm 105 that engages with the vehicle body is connected to the stator 20 or the stator cover 104. The suspension arm 105 enables steering of the wheel 102 and absorbs vibrations generated in the wheel 102 before they are transmitted to the vehicle body. .
 本実施例に係る電動ホイール100では、回転電機1のトルク密度が高いため、回転電機1はホイール102の内周側に収容できるだけでなく、ギアレス化、すなわちホイール102のダイレクトドライブが可能となる。換言すると、ホイール102は、当該回転電機の回転数と同量の回転数で回転するように機械的に接続される。 In the electric wheel 100 according to the present embodiment, since the torque density of the rotating electrical machine 1 is high, the rotating electrical machine 1 can not only be accommodated on the inner peripheral side of the wheel 102, but also can be gearless, that is, the wheel 102 can be directly driven. In other words, the wheel 102 is mechanically connected so as to rotate at the same number of revolutions as that of the rotating electric machine.
 従来の電動ホイール100はギアを利用しており、ギアの摩耗、騒音や、ギアを支持する必要があるため軸受の使用数が増加するなど課題が発生していた。これに対して、本実施例のトルク密度が高い回転電機1を使用した電動ホイール100はギアを必要としないため、ギアの摩耗を配慮したメンテナンスが不要となる。また、ギアから発生する騒音が無くなる。さらに、軸受の使用量は最低限となり、軸受の摩耗リスクが低減する上に、軸受のグリス交換等でのメンテ作業量は削減できる。その上、回転電機1の体積が小さいため、駆動装置106も電動ホイール100の一部として搭載することができ、ギアレス化との相乗効果により、電動ホイール100を小型軽量にすることが可能となる。 The conventional electric wheel 100 uses gears, and problems such as gear wear, noise, and the need to support the gears increase the number of bearings used. On the other hand, since the electric wheel 100 using the rotary electric machine 1 having a high torque density according to the present embodiment does not require gears, it is unnecessary to carry out maintenance in consideration of wear of the gears. Also, the noise generated from the gear is eliminated. In addition, the amount of bearings used is minimized, reducing the risk of wear on the bearings and reducing the amount of maintenance work such as replacing grease on the bearings. In addition, since the volume of the rotating electric machine 1 is small, the driving device 106 can also be mounted as part of the electric wheel 100, and the synergistic effect with the gearless configuration makes it possible to make the electric wheel 100 smaller and lighter. .
 次に本発明の実施例6に係る車両を図13を用いて説明する。図13は、本発明の第6の実施例に係る鉄道車両の台車60の概略図である。図13に示されるように、本実施例に係る車両は、回転電機1がギアを介さず機械的な結合部だけで車輪64と直結している。換言すると、本実施例に係る車両は、回転電機1と、回転電機1の回転数と同量の回転数で回転するように機械的に接続される車輪64と、を備える。 Next, a vehicle according to Example 6 of the present invention will be described using FIG. FIG. 13 is a schematic diagram of a railway vehicle bogie 60 according to a sixth embodiment of the present invention. As shown in FIG. 13, in the vehicle according to the present embodiment, the rotating electric machine 1 is directly connected to the wheels 64 only by mechanical couplings without using gears. In other words, the vehicle according to this embodiment includes the rotating electrical machine 1 and the wheels 64 mechanically connected so as to rotate at the same number of rotations as the rotating electrical machine 1 .
 鉄道車両には、インナーロータタイプの回転電機1が使用される。回転電機1は支持部材61により台車60に固定支持されている。回転電機1の回転子11は車軸63と直結し、回転電機1は車軸63を介して車輪64を駆動する。回転電機1のトルク密度が高いため、鉄道車両は本実施例の形態を採用することが可能になり、ギアレス化、すなわち車輪64のダイレクトドライブが可能となる。 An inner rotor type rotating electrical machine 1 is used in a railway vehicle. The rotary electric machine 1 is fixedly supported on the carriage 60 by a support member 61 . Rotor 11 of rotating electric machine 1 is directly connected to axle 63 , and rotating electric machine 1 drives wheels 64 via axle 63 . Since the torque density of the rotary electric machine 1 is high, it becomes possible for the railcar to adopt the form of the present embodiment, and gearless, that is, the wheels 64 can be directly driven.
 従来の鉄道車両は、ギアを利用しており、ギアの摩耗、騒音や、ギアを支持する必要があるため軸受の使用数が増加するなど課題が発生していた。これに対して、本発明のトルク密度が高い回転電機1を使用した鉄道車両はギアを必要としないため、ギアの摩耗を配慮したメンテナンスが不要になる上に、ギアから発生する騒音が無くなる。また、軸受の使用量は最低限となり、軸受の摩耗リスクが低減する上に、軸受のグリス交換等でのメンテ作業量は削減できる。また回転電機1の体積が小さいため、ギアレス化との相乗効果により鉄道車両を小型軽量にすることが可能となる。 Conventional railcars use gears, and problems such as gear wear, noise, and the need to support the gears increase the number of bearings used. On the other hand, since the railway vehicle using the rotary electric machine 1 having a high torque density of the present invention does not require gears, it is not necessary to perform maintenance in consideration of wear of the gears, and noise generated from the gears is eliminated. In addition, the amount of bearings used is minimized, reducing the risk of wear on the bearings and reducing the amount of maintenance work such as replacing grease on the bearings. In addition, since the volume of the rotary electric machine 1 is small, it is possible to reduce the size and weight of the railway vehicle by a synergistic effect with the gearless configuration.
 さらに、台車の軽量化はレールや車輪の機械的な損傷を軽減するため、レールおよび車輪の長寿命化にも貢献する。 In addition, the weight reduction of the bogie reduces the mechanical damage to the rails and wheels, which contributes to the longevity of the rails and wheels.
 次に本発明の実施例7に係る回転電機を図14から図19を用いて説明する。上述した通り、本発明に係る回転電機は、極数を増やしかつ径方向に薄肉化することで、回転電機を軽量化し、出力密度を向上することが可能である。この場合、回転電機の出力密度をより高めるためには、回転子の極数をより増やす必要があり、回転子の径方向の肉厚は、回転子の内径もしくは外径の大きさ、または回転子と固定子間のギャップ径に比して小さくする必要がある。 Next, a rotating electrical machine according to Embodiment 7 of the present invention will be described with reference to FIGS. 14 to 19. FIG. As described above, the rotary electric machine according to the present invention can reduce the weight of the rotary electric machine and improve the output density by increasing the number of poles and reducing the thickness in the radial direction. In this case, in order to further increase the output density of the rotating electric machine, it is necessary to increase the number of poles of the rotor. It must be smaller than the gap diameter between the rotor and the stator.
 一般的な回転電機の場合、回転子は焼き嵌めによってシャフトやハウジングに固定される。この場合、焼き嵌めの応力は回転子コアに対して周方向に引き千切ろうとする力として働く。したがって、焼き嵌めを用いた回転子固定法では、焼き嵌め応力に耐えるために、回転子の径方向の幅を大きくする必要があるため、高出力密度化の制約となる。 In the case of a general rotating electric machine, the rotor is fixed to the shaft or housing by shrink fitting. In this case, the shrink-fitting stress acts as a force to tear the rotor core apart in the circumferential direction. Therefore, in the rotor fixing method using shrink fitting, it is necessary to increase the width of the rotor in the radial direction in order to withstand the shrink fitting stress, which restricts the increase in power density.
 回転子の固定に関する別の従来技術として、回転子コアのバックヨークのギャップの径方向逆側に回転子コアと一体成型され、かつピン穴の空いた凸部を極毎に設けて、このピン穴に別部材の構造物を通すことで、回転子のハウジングに回転子を固定する方法がある。 この回転子固定法は、従来は主に各極を分割した分割コアをハウジングに固定する方法として提案されている。 As another conventional technique for fixing the rotor, a protruding portion having a pin hole is formed integrally with the rotor core on the opposite side in the radial direction of the gap of the back yoke of the rotor core, and the pin is provided for each pole. There is a method of fixing the rotor to the housing of the rotor by passing a separate member structure through the hole. Conventionally, this rotor fixing method has been mainly proposed as a method of fixing split cores with each pole split to the housing.
 この固定法では回転子を焼き嵌めする必要がないため、回転子コアに焼き嵌め応力が発生することがない。したがって、従来の分割コアの場合は、1極あたりの凸部とピンに働く遠心力等の荷重に対して凸部とピンの強度が十分になるように、凸部のサイズやピンの径を設計すればよかった。 Because this fixing method does not require shrink-fitting the rotor, no shrink-fitting stress is generated in the rotor core. Therefore, in the case of the conventional split core, the size of the protrusion and the diameter of the pin are adjusted so that the strength of the protrusion and the pin is sufficient against the load such as the centrifugal force acting on the protrusion and the pin per pole. I should have designed it.
 ここで、このピンを用いる回転子固定法を、すべての極が一体となった一体コアや、数極を一体成型した部分分割コアなどに適用する場合、新たな課題が発生する。つまり、回転子の凸部のピン穴とハウジングのピン穴の位置には製作上の誤差があるため、回転子のピン穴とハウジングのピン穴にピンを通すことで、回転子とハウジングにはこの誤差に相当する強制変位が生じ、回転子とハウジングに応力が生じてしまう。 Here, when applying this rotor fixing method using pins to an integrated core in which all poles are integrated, or a partially divided core in which several poles are integrally molded, a new problem arises. In other words, since there is a manufacturing error in the positions of the pin holes in the protruding part of the rotor and the pin holes in the housing, by passing the pins through the pin holes in the rotor and the pin holes in the housing, Forced displacement corresponding to this error occurs, and stress is generated in the rotor and housing.
 同じ強制変位に対して発生する応力は、回転子が多極であればあるほど大きくなる。また、回転子が径方向に薄肉であるほど、ハウジングよりも回転子の方が変形しやすくなる。したがって、高出力密度化のために多極かつ径方向に薄肉にした回転子に対して、従来技術のように各極の凸部にピンを通してハウジング等に固定しようとすると、回転子とハウジングのピン穴の位置ずれに相当する強制変位が回転子に働き、これによる応力が顕著に発生し、これが高出力密度化の制約となる。 The greater the number of rotor poles, the greater the stress generated for the same forced displacement. Also, the thinner the rotor in the radial direction, the easier it is for the rotor to deform than the housing. Therefore, if a rotor with multiple poles and a thin wall in the radial direction for high power density is fixed to a housing or the like by inserting pins through the projections of each pole as in the prior art, the rotor and the housing cannot be fixed together. A forced displacement corresponding to the misalignment of the pin holes acts on the rotor, which causes significant stress, which restricts high power density.
 さらに、この固定法における公差の影響は、高トルク化のために回転子のスロットに主極磁石とスポーク磁石を挿入した疑似的HalBach磁石配置の回転子に対して、より悪影響を及ぼす。 Furthermore, the effect of tolerances in this fixation method has a more adverse effect on rotors with a pseudo-HalBach magnet arrangement in which the main pole magnets and spoke magnets are inserted into the slots of the rotor for higher torque.
 図15は、従来構造の回転子コア12の断面図とその一部を拡大した部分断面図である。主極磁石用の磁石孔14とスポーク磁石用の磁石孔14の間には磁石間ブリッジ19が形成されているが、先述の強制変位によって回転子コア12が変形した際に、バックヨーク15側の磁石間ブリッジ19の根元には曲げ応力が発生する。 FIG. 15 is a cross-sectional view of a rotor core 12 having a conventional structure and a partially enlarged cross-sectional view of a part thereof. An inter-magnet bridge 19 is formed between the magnet hole 14 for the main pole magnet and the magnet hole 14 for the spoke magnet. A bending stress is generated at the base of the bridge 19 between magnets.
 高出力密度化のために多極かつ径方向に薄肉にした回転子11では、従来技術のように各極のそれぞれに形成された凸部41にピンを通してハウジング等に固定しようとすると、回転子11とハウジングの穴部42の位置ずれに相当する強制変位が、径方向に肉薄なバックヨーク15を変形させる。これによって磁石間ブリッジ19の根元に曲げ応力が顕著に発生し、これが高出力密度化の制約となる。例えば、磁石間ブリッジ19の強度が十分になるようにブリッジ幅を広げる必要があるが、これによって磁石間ブリッジ19からの漏洩磁束が増加し、疑似的HalBach磁石配置にして磁束量を増やした効果が薄まってしまうという課題が生じる。 In the rotor 11, which has multiple poles and is made thin in the radial direction for high power density, if a pin is inserted into the projections 41 formed on each pole as in the prior art to fix the rotor to a housing or the like, the rotor 11 and the hole 42 of the housing deforms the radially thin back yoke 15 . As a result, a significant bending stress is generated at the base of the inter-magnet bridge 19, which restricts the increase in output density. For example, it is necessary to widen the bridge width so that the strength of the inter-magnet bridge 19 becomes sufficient. becomes diluted.
 図15に示されるように、従来構造では、回転子コア12に設けた凸部41の軸心どうしは、1極ピッチ分だけ周方向に離間している。言い換えると、凸部41は各極に対して1つずつ存在する。従来構造では、ピン(不図示)を通して回転子コア12とハウジング(不図示)を接続する場合に、回転子コア12の穴部42とハウジングのピン穴の位置のずれによって、回転子コア12に大きな応力が発生する。回転子コア12の穴部42とハウジングのピン穴の位置のずれは、具体的には製造誤差などによって生じる。 As shown in FIG. 15, in the conventional structure, the axes of the projections 41 provided on the rotor core 12 are circumferentially spaced apart by one pole pitch. In other words, one protrusion 41 exists for each pole. In the conventional structure, when the rotor core 12 and the housing (not shown) are connected through a pin (not shown), the position of the hole 42 of the rotor core 12 and the pin hole of the housing are misaligned. A large stress is generated. The positional deviation between the hole portion 42 of the rotor core 12 and the pin hole of the housing is specifically caused by a manufacturing error or the like.
 以上の課題を解消するため、本発明の実施例7に係る回転電機は、高出力密度化のために多極かつ径方向に薄肉にした回転子11に対して、シャフトまたはハウジングに固定する際に回転子11に生ずる応力を軽減する構造として、凸部41どうしを少なくとも極ピッチの2倍以上周方向に離間させる。 In order to solve the above problems, in the rotating electrical machine according to the seventh embodiment of the present invention, the rotor 11, which has multiple poles and is radially thin in order to increase the output density, is fixed to the shaft or the housing. As a structure for reducing the stress generated in the rotor 11, the protrusions 41 are separated from each other in the circumferential direction by at least twice the pole pitch.
 図14は、実施例7に係る回転電機の回転子コアの断面図とその一部を拡大した部分断面図である。回転子コア12は、略矩形断面を有する主極磁石を挿入するための略矩形の磁石孔14と、略矩形断面を有する略矩形のスポーク磁石を挿入するための略矩形の磁石孔14を有する。各磁石孔14の間には磁石孔14を仕切る磁石間ブリッジ19が形成されている。 FIG. 14 is a cross-sectional view of a rotor core of a rotating electric machine according to Embodiment 7 and a partially enlarged cross-sectional view of a part thereof. The rotor core 12 has substantially rectangular magnet holes 14 for inserting main pole magnets having substantially rectangular cross sections, and substantially rectangular magnet holes 14 for inserting substantially rectangular spoke magnets having substantially rectangular cross sections. . Inter-magnet bridges 19 partitioning the magnet holes 14 are formed between the magnet holes 14 .
 磁石間ブリッジ19は、主極磁石用の磁石孔14に対して径方向外周側のコア(ギャップ側コア)と径方向内周側のコア(バックヨーク15)とを接続する。バックヨーク15には、ギャップの反対側に突出する凸部41が複数配置される。各凸部41には、ハウジングと回転子コア12とを固定するための穴部42が形成される。穴部42と回転子11のハウジングのピン穴とにピンを通すことで、ハウジングに回転子コア12を固定することができる。 The inter-magnet bridge 19 connects the radially outer core (gap-side core) and the radially inner core (back yoke 15) with respect to the magnet hole 14 for the main pole magnet. A plurality of protrusions 41 are arranged on the back yoke 15 so as to protrude on the opposite side of the gap. A hole 42 for fixing the housing and the rotor core 12 is formed in each projection 41 . The rotor core 12 can be fixed to the housing by passing the pins through the holes 42 and the pin holes of the housing of the rotor 11 .
 ここで、回転子コア12に形成される凸部41の軸心どうしは、少なくとも極ピッチの2倍以上周方向に離間している。図14に示されるように、凸部41Aの軸心が回転子11のd軸上にある場合は、凸部41Aの隣に配置される凸部(凸部41B)は、この凸部41Aに対して、少なくとも2極分(極ピッチの2倍)離れた極のd軸上に配置される。 Here, the axial centers of the protrusions 41 formed on the rotor core 12 are separated in the circumferential direction by at least twice the pole pitch. As shown in FIG. 14, when the axial center of the convex portion 41A is on the d-axis of the rotor 11, the convex portion (convex portion 41B) arranged next to the convex portion 41A is located on the convex portion 41A. On the other hand, they are placed on the d-axis of the poles at least two poles apart (twice the pole pitch).
 図16は、従来構造における相当応力解析結果を示す図である。図15に示す従来構造に対して、この位置ずれ量を強制変位として入力した相当応力(von Mises stress)解析結果である。ここで、位置ずれ量(強制変位量)は製造誤差で十分生じうる10umとした。また、解析を簡単にするために、1極分のみをモデルとして切り出し、周方向の周期境界面には、境界面方向をフリーにし、面に垂直な方向の変位を0とする周期境界条件を拘束条件として付与した。 FIG. 16 is a diagram showing the equivalent stress analysis results for the conventional structure. This is the equivalent stress (von Mises stress) analysis result for the conventional structure shown in FIG. Here, the positional deviation amount (forced displacement amount) was set to 10 μm, which can be sufficiently caused by a manufacturing error. In order to simplify the analysis, only one pole is cut out as a model, and periodic boundary conditions are applied to the periodic boundary surface in the circumferential direction in which the direction of the boundary surface is free and the displacement in the direction perpendicular to the surface is 0. given as a constraint.
 モデルで2つある穴部42のうち、一方の穴部42Aのピンの挿入面を固定し、他方の穴部42に径方向(図中の矢印の方向)に10umの強制変位を与えた。磁石孔14内の磁石は回転子コア12とは別部材であり、コアに対して強度部材となり得ないため、本解析では考慮していない。 Of the two holes 42 in the model, the pin insertion surface of one hole 42A was fixed, and the other hole 42 was subjected to forced displacement of 10 um in the radial direction (direction of the arrow in the figure). The magnets in the magnet holes 14 are separate members from the rotor core 12 and cannot serve as strength members for the core, so they are not considered in this analysis.
 解析の結果、固定された穴部42Aの近傍で応力が最大(これを1.00puとして基準値とする)となった。また、強制変位を付与した穴部42Bに近い磁石間ブリッジ19のバックヨーク15側の根本付近でも0.69puと大きな応力が発生した。 As a result of the analysis, the stress was maximized in the vicinity of the fixed hole 42A (this was taken as 1.00 pu as a reference value). Also, a large stress of 0.69 pu was generated near the base of the inter-magnet bridge 19 on the back yoke 15 side near the hole 42B to which forced displacement was applied.
 従来構造では、製造誤差によって生じる応力を無視することができず、想定される最大誤差によって生じる応力に対して、回転子コア12のバックヨーク15や磁石間ブリッジ19が十分な強度を持つように設計する必要がある。このため、バックヨーク15の径方向幅が広く設計する必要があり、回転子11が径方向に肉厚になるため回転子11の重量が増大する。また、磁石間ブリッジ19の周方向幅が広くなることで、磁石間ブリッジ19からの漏洩磁束が増えるため、磁石間ブリッジ19から磁束が漏洩する分回転電機の出力が低下する。したがって、従来構造では回転子11の高強度化が課題となり、これが高出力密度化の制約となる。 In the conventional structure, the stress caused by the manufacturing error cannot be ignored. need to design. Therefore, the radial width of the back yoke 15 must be designed to be wide, and the rotor 11 is thickened in the radial direction, increasing the weight of the rotor 11 . Moreover, since the magnetic flux leaking from the inter-magnet bridge 19 increases due to the increase in the circumferential width of the inter-magnet bridge 19, the output of the rotary electric machine is reduced by the amount of magnetic flux leakage from the inter-magnet bridge 19. Therefore, in the conventional structure, increasing the strength of the rotor 11 becomes a problem, which restricts the increase in output density.
 図17及び図18は、実施例7に係る回転電機の回転子コアにおける相当応力解析結果を示す図である。本実施例に係る構造に対して、製造誤差起因の穴部42Bの位置ずれを強制変位として入力した相当応力解析結果を示す。図17は凸部41の軸心どうしが2極ピッチ離間した構造における2極分のモデルであり、図18は凸部41の軸心どうしが4極ピッチ離間した構造における4極分のモデルである。図17及び図18に示されるモデルの周期境界条件や拘束条件、また強制変位の付与は図16に示される従来構造モデルと同じとした。なお、図16から図18の各モデルで極数が異なるが、これは1つのモデルに穴部42が2個のみとなるように設定したため、言い換えると、それぞれのモデルの周期性を考慮して、解析が成立する最小単位の部分モデルを選定したためであり、極数の違いは解析結果に影響しない。 17 and 18 are diagrams showing equivalent stress analysis results in the rotor core of the rotary electric machine according to the seventh embodiment. FIG. 10 shows the result of equivalent stress analysis in which the displacement of the hole portion 42B caused by the manufacturing error is input as the forced displacement for the structure according to the present embodiment. FIG. 17 is a two-pole model in a structure in which the axes of the projections 41 are separated by two pole pitches, and FIG. 18 is a four-pole model in a structure in which the axes of the projections 41 are separated by a four-pole pitch. be. 17 and 18, the periodic boundary conditions, restraint conditions, and forced displacement were the same as those of the conventional structural model shown in FIG. 16 to 18 have different numbers of poles, but this is because one model has only two holes 42. In other words, the periodicity of each model is taken into consideration. , because the partial model of the minimum unit that holds the analysis is selected, and the difference in the number of poles does not affect the analysis result.
 解析の結果、図17の凸部41の軸心どうしを2極ピッチ離間した本実施例の構造では、ピン近傍の応力最大値は0.20puと従来構造と比較して1/5程度まで低減し、応力の最大値は磁石間ブリッジ19のバックヨーク15との接続部で0.65puであった。これは、バックヨーク15は言わば片端を固定した片持ち梁のような状態と考えられるためである。この片持ち梁の先端に強制変位を加えた時に発生する応力の大きさは片持ち梁の長さが長くなるにしたがって低下する。片持ち梁の長さは、凸部41の軸心間の距離に相当する。したがって、凸部41の軸心どうしが2極ピッチ以上離間して形成されることにより、従来構造よりもバックヨーク15にかかる応力を低減することができる。 As a result of the analysis, in the structure of this embodiment in which the axes of the projections 41 shown in FIG. However, the maximum value of stress was 0.65 pu at the connecting portion of the bridge 19 between magnets and the back yoke 15 . This is because the back yoke 15 can be considered as a cantilever with one end fixed. The magnitude of the stress generated when forced displacement is applied to the tip of the cantilever decreases as the length of the cantilever increases. The length of the cantilever beam corresponds to the distance between the axes of the protrusions 41 . Therefore, the stress applied to the back yoke 15 can be reduced as compared with the conventional structure by forming the axes of the projections 41 apart from each other by two pole pitches or more.
 したがって、本実施例に係る構造では、高出力密度化のために多極かつ径方向に薄肉にした回転子であっても、製造誤差によって生じる応力を軽減することができる。これにより、バックヨーク15の径方向幅を狭めることができ、回転子が径方向に肉薄になり回転子を軽量にできる。よって、従来構造よりも高出力密度にすることができる。 Therefore, in the structure according to this embodiment, even with a rotor having multiple poles and a thin wall in the radial direction for high power density, the stress caused by manufacturing errors can be reduced. As a result, the radial width of the back yoke 15 can be narrowed, and the rotor can be made thin in the radial direction, and the weight of the rotor can be reduced. Therefore, the output density can be higher than that of the conventional structure.
 また、図18の凸部41の軸心どうしを4極ピッチ離間した構造では、ピン近傍の応力最大値は0.09puとさらに小さくなり、応力が最大である磁石間ブリッジ19のバックヨーク15との接続部の応力も0.28puと、従来構造の40%程度小さくなっていた。 Further, in the structure in which the axes of the projections 41 of FIG. The stress at the connecting portion of the 1 was 0.28 pu, which was about 40% smaller than that of the conventional structure.
 図19は、凸部41の軸心間の極数と応力の関係を示す図である。横軸は凸部41の軸心間の極数を示し、縦軸は応力を示す。凸部41の軸心間の極数が1の場合が従来構造であり、極数が2の場合が図14または図17に示される構造、極数が4の場合は図18に示される構造に相当する。黒点が凸部41近傍の相当応力最大値で、白点が磁石間ブリッジ19のバックヨーク15側の根本付近の相当応力最大値である。いずれのモデルの解析でも、凸部41近傍か磁石間ブリッジ19近傍のいずれかが解析モデル全体の応力最大箇所であった。図19に示されるように、回転子コア12に設けた凸部41の軸心どうしを、少なくとも極ピッチの2倍以上周方向に離間することで、ピン近傍の応力、すなわちバックヨーク15に生じる応力を1/5以下に低減することが可能となる。 FIG. 19 is a diagram showing the relationship between the number of poles between the axial centers of the protrusions 41 and the stress. The horizontal axis indicates the number of poles between the axial centers of the protrusions 41, and the vertical axis indicates the stress. 14 or 17 when the number of poles between the axial centers of the projections 41 is 1, and the structure shown in FIG. 18 when the number of poles is 4. corresponds to The black dots are the maximum equivalent stress near the convex portion 41, and the white dots are the maximum equivalent stress near the base of the inter-magnet bridge 19 on the back yoke 15 side. In the analysis of any model, either the vicinity of the convex portion 41 or the vicinity of the inter-magnet bridge 19 was the maximum stress point in the entire analysis model. As shown in FIG. 19, by spacing the axial centers of the protrusions 41 provided on the rotor core 12 from each other in the circumferential direction at least twice the pole pitch, stress near the pins, that is, the back yoke 15 is generated. It becomes possible to reduce the stress to 1/5 or less.
 また、回転子コア12に設けた凸部41の軸心どうしを、少なくとも極ピッチの4倍以上周方向に離間することで、磁石間ブリッジ19の応力を半分以下に低減することができる。したがって、回転子コア12に設けた凸部41の軸心どうしを、少なくとも極ピッチの4倍以上周方向に離間した構造では、バックヨーク15の径方向幅を狭めることができるだけでなく、磁石間ブリッジ19の周方向幅を狭めることができる。すなわち、凸部41の軸心どうしを、図19のグラフの磁石間ブリッジ19の応力変曲点である極ピッチの4倍以上周方向に離間することで、凸部41近傍の応力だけでなく磁石間ブリッジ19を含めた回転子全体の応力の低減効果を最大にできる。これにより、磁石間ブリッジ19からの漏洩磁束を低減でき、磁石間ブリッジ19からの漏洩磁束を低減でき、磁石磁束や固定子コイルを流れる電流による磁束を有効にトルクに変換することができ、回転電機の出力を向上させることができる。 Also, by spacing the axes of the protrusions 41 provided on the rotor core 12 from each other in the circumferential direction by at least four times the pole pitch, the stress of the inter-magnet bridge 19 can be reduced to less than half. Therefore, in the structure in which the axes of the projections 41 provided on the rotor core 12 are spaced apart in the circumferential direction by at least four times the pole pitch, not only can the radial width of the back yoke 15 be reduced, but also the distance between the magnets can be reduced. The circumferential width of the bridge 19 can be narrowed. That is, by spacing the axes of the projections 41 from each other in the circumferential direction by at least four times the pole pitch, which is the stress inflection point of the inter-magnet bridge 19 in the graph of FIG. It is possible to maximize the effect of reducing the stress of the entire rotor including the inter-magnet bridge 19 . As a result, the leakage magnetic flux from the inter-magnet bridge 19 can be reduced, the leakage magnetic flux from the inter-magnet bridge 19 can be reduced, and the magnet magnetic flux and the magnetic flux due to the current flowing through the stator coil can be effectively converted into torque. The output of the electric machine can be improved.
 以上から、従来よりも回転電機の高出力密度化が可能となる。また、磁束が有効活用できる分を磁石量低減に利用すれば、回転電機のコスト低減が可能なうえ、重金属、希少金属の使用量を低減できるため、環境負荷低減や資源リスク回避ができる。 From the above, it is possible to increase the output density of rotating electric machines than before. In addition, if the amount of magnetic flux that can be effectively used can be used to reduce the amount of magnets, it is possible to reduce the cost of rotating electric machines and reduce the amount of heavy metals and rare metals used, so it is possible to reduce environmental impact and avoid resource risks.
 なお、凸部41Aの軸心と凸部41Bの軸心は2極ピッチ以上周方向に離れていれば、例えば凸部41Aがd軸上にある時に凸部41Bはq軸上に形成されていてもよいし、凸部41Aがq軸上にある時に凸部41Bはd軸上に形成されていてもよい。同様に、凸部41Aの軸心と凸部41Bの軸心がどちらもd軸上に配置してもよいし、どちらもq軸上に配置してもよい。または、いずれの軸心もd軸とq軸の間の任意の周方向位置に配置されていてもよい。つまり、両凸部の軸心が2極ピッチ以上又は4極ピッチ以上周方向に離間していれば本実施例の効果を得ることができる。 If the axial center of the convex portion 41A and the axial center of the convex portion 41B are separated in the circumferential direction by two pole pitches or more, for example, when the convex portion 41A is on the d-axis, the convex portion 41B is formed on the q-axis. Alternatively, the convex portion 41B may be formed on the d-axis while the convex portion 41A is on the q-axis. Similarly, both the axial center of the convex portion 41A and the axial center of the convex portion 41B may be arranged on the d-axis, or both may be arranged on the q-axis. Alternatively, both axes may be arranged at arbitrary circumferential positions between the d-axis and the q-axis. In other words, the effect of this embodiment can be obtained if the axial centers of the convex portions are spaced apart in the circumferential direction by two pole pitches or more or by four pole pitches or more.
 もっとも、凸部41がすべてd軸上に配置されている場合、回転子11の作る磁束はd軸を対称線として隣の極に向かって流れるため、回転子コア12とハウジングを固定するピンを通る磁束量が最小となる。これにより、ピンに生ずる渦電流、およびこれによる渦電流損失を低減できるため、回転電機を高効率にできる。 However, when all the protrusions 41 are arranged on the d-axis, the magnetic flux produced by the rotor 11 flows toward the adjacent pole with the d-axis as a line of symmetry. The amount of magnetic flux passing through is minimized. As a result, the eddy current generated in the pin and the resulting eddy current loss can be reduced, so that the rotating electric machine can be made highly efficient.
 また、凸部41がすべてq軸上に配置されている場合、回転子のq軸上のバックヨーク15を通る磁束は周方向に流れるため、凸部41のコア領域によってこの磁束に対するバックヨーク15の磁気抵抗は小さくなる。これにより、回転子がギャップに作る磁束量が増えるため、回転電機を高出力にできる。 Further, when all the projections 41 are arranged on the q-axis, the magnetic flux passing through the back yoke 15 on the q-axis of the rotor flows in the circumferential direction. magnetoresistance becomes small. This increases the amount of magnetic flux generated in the gap by the rotor, so that the output of the rotating electric machine can be increased.
 さらに、凸部41を回転軸に対して点対称に配置することにより、非周期的に凸部41を配置した場合と比較して、遠心力や電磁力に対して凸部41近傍の応力だけでなく磁石間ブリッジ19を含めた回転子全体の応力の偏りを最小にできる。以上より、バックヨーク15の径方向薄肉化や、磁石間ブリッジ19の周方向幅を狭めることができ、回転電機の出力を向上させることができる。 Furthermore, by arranging the convex portions 41 point-symmetrically with respect to the rotation axis, compared with the case where the convex portions 41 are arranged aperiodically, only the stress in the vicinity of the convex portions 41 is reduced against the centrifugal force and the electromagnetic force. Instead, it is possible to minimize the bias in the stress of the entire rotor including the inter-magnet bridge 19 . As described above, it is possible to reduce the thickness of the back yoke 15 in the radial direction and narrow the width of the inter-magnet bridge 19 in the circumferential direction, thereby improving the output of the rotating electric machine.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 It should be noted that the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. In addition, it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Moreover, it is possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
1…回転電機、11…回転子、12…回転子コア、13…d軸コア、14…磁石孔、15…バックヨーク、16…主極磁石、17…スポーク磁石、18…ギャップ側ブリッジ、19…磁石間ブリッジ、20…固定子、21…固定子コア、22…固定子バックヨーク、23…スロット、24…ティース、31…ギャップ側爪部、32…外周リング部、33…内周リング部、41…凸部、42…穴部、60…台車、61…支持部材、63…車軸、64…車輪、100…電動ホイール、101…回転子フレーム、102…ホイール、103…回転子カバー、104…固定子カバー、105…サスペンションアーム、106…駆動装置。 REFERENCE SIGNS LIST 1 rotating electric machine 11 rotor 12 rotor core 13 d-axis core 14 magnet hole 15 back yoke 16 main pole magnet 17 spoke magnet 18 gap side bridge 19 Bridge between magnets 20 Stator 21 Stator core 22 Stator back yoke 23 Slot 24 Teeth 31 Gap side claw 32 Outer ring 33 Inner ring , 41... Convex part 42... Hole part 60... Carriage 61... Support member 63... Axle 64... Wheel 100... Electric wheel 101... Rotor frame 102... Wheel 103... Rotor cover 104 ... Stator cover, 105 ... Suspension arm, 106 ... Driving device.

Claims (12)

  1.  磁石と当該磁石が挿入される磁石孔が形成される回転子コアとを備える回転子と、
     前記回転子に所定のギャップを介して対向する固定子と、を備える回転電機であって、
     前記磁石は、主面が前記回転電機の径方向に対向する主極磁石と、主面が前記回転電機の周方向に対向するスポーク磁石と、により構成され、
     前記回転子コアは、前記ギャップと前記主極磁石との間に形成されるd軸コアと、前記主極磁石と前記スポーク磁石との間に形成される磁石間ブリッジと、前記固定子に対向するギャップ面と、前記ギャップ面の径方向反対側に位置する反ギャップ面と、を有し、
     前記ギャップ面と前記スポーク磁石の前記反ギャップ面側の端部との間の長さが、前記ギャップ面と前記主極磁石の前記反ギャップ面側の端部との間の長さ以上となるように形成される回転電機。
    a rotor comprising a magnet and a rotor core formed with a magnet hole into which the magnet is inserted;
    A rotating electric machine comprising a stator facing the rotor with a predetermined gap therebetween,
    The magnet is composed of a main pole magnet whose main surface faces the radial direction of the rotating electric machine, and a spoke magnet whose main surface faces the circumferential direction of the rotating electric machine,
    The rotor core includes a d-axis core formed between the gap and the main pole magnet, an inter-magnet bridge formed between the main pole magnet and the spoke magnet, and facing the stator. and an anti-gap surface located radially opposite to the gap surface,
    The length between the gap surface and the end of the spoke magnet on the side opposite to the gap surface is greater than or equal to the length between the gap surface and the end of the main pole magnet on the side opposite to the gap surface. Rotating electric machine formed as.
  2.  請求項1に記載の回転電機であって、
     前記回転子コアは、前記スポーク磁石と前記ギャップとの間に、前記スポーク磁石の径方向外側の面と対向するギャップ側ブリッジを有する回転電機。
    The rotating electric machine according to claim 1,
    The rotating electric machine, wherein the rotor core has gap-side bridges between the spoke magnets and the gap that face radially outer surfaces of the spoke magnets.
  3.  請求項2に記載の回転電機であって、
     前記ギャップ側ブリッジは、前記スポーク磁石の前記径方向の外側の面の一部のみに対向する回転電機。
    The rotating electrical machine according to claim 2,
    The rotary electric machine in which the gap-side bridge faces only a part of the radially outer surface of the spoke magnet.
  4.  請求項1に記載の回転電機であって、
     前記回転子コアは、前記固定子と前記d軸コアを介して対向するバックヨークを有し、
     前記d軸コアの前記径方向の長さが、前記主極磁石の径方向の長さ以上となるよう形成される回転電機。
    The rotating electric machine according to claim 1,
    The rotor core has a back yoke facing the stator via the d-axis core,
    A rotary electric machine in which the radial length of the d-axis core is greater than or equal to the radial length of the main pole magnet.
  5.  請求項1に記載の回転電機であって、
     前記回転子コアは、前記固定子と前記d軸コアを介して対向するバックヨークと、
     前記バックヨークから前記反ギャップ面側に突出する複数の凸部と、を有し、
     前記凸部は穴部が形成され、
     前記複数の凸部のうち隣接する2つの凸部が、少なくとも前記回転子の極ピッチの2倍以上、前記回転子の周方向に離間して配置される回転電機。
    The rotating electric machine according to claim 1,
    the rotor core includes a back yoke facing the stator via the d-axis core;
    a plurality of protrusions protruding from the back yoke toward the side opposite to the gap surface;
    A hole is formed in the convex portion,
    A rotary electric machine in which two adjacent protrusions among the plurality of protrusions are spaced apart in the circumferential direction of the rotor by at least twice the pole pitch of the rotor.
  6.  請求項4に記載の回転電機であって、
     前記回転子コアは、前記固定子と前記d軸コアを介して対向するバックヨークと、
     前記バックヨークから前記反ギャップ面側に突出する複数の凸部と、を有し、
     前記凸部は穴部が形成され、
     前記複数の凸部のうち隣接する2つの凸部が、少なくとも前記回転子の極ピッチの4倍以上、前記回転子の周方向に離間して配置される回転電機。
    The rotating electric machine according to claim 4,
    the rotor core includes a back yoke facing the stator via the d-axis core;
    a plurality of protrusions protruding from the back yoke toward the side opposite to the gap surface;
    A hole is formed in the convex portion,
    A rotary electric machine in which two adjacent protrusions among the plurality of protrusions are spaced apart in the circumferential direction of the rotor by at least four times the pole pitch of the rotor.
  7.  請求項5に記載の回転電機であって、
     前記凸部は、前記回転子の磁極中心上に形成される回転電機。
    The rotating electric machine according to claim 5,
    The rotating electrical machine, wherein the convex portion is formed on the magnetic pole center of the rotor.
  8.  請求項5に記載の回転電機であって、
     前記複数の凸部は、前記回転子の磁極境界上に形成される回転電機。
    The rotating electric machine according to claim 5,
    The rotating electric machine, wherein the plurality of protrusions are formed on magnetic pole boundaries of the rotor.
  9.  請求項1に記載の回転電機であって、
     前記回転子は、18極以上の極数を有する回転電機。
    The rotating electric machine according to claim 1,
    A rotary electric machine in which the rotor has 18 or more poles.
  10.  請求項1乃至9のいずれかひとつに記載の回転電機と、
     当該回転電機の回転数と同量の回転数で回転するように機械的に接続されるホイールと、を備える
     電動ホイール。
    a rotating electric machine according to any one of claims 1 to 9;
    and a wheel mechanically connected so as to rotate at the same number of rotations as the rotating electric machine.
  11.  請求項1乃至9のいずれかひとつに記載の回転電機と、
     当該回転電機を駆動する駆動装置と、を備える電動ホイール。
    a rotating electric machine according to any one of claims 1 to 9;
    and a driving device that drives the rotating electric machine.
  12.  請求項1乃至9のいずれかひとつに記載の回転電機を備えた車両であって、
     当該回転電機の回転数と同量の回転数で回転するように機械的に接続される車輪と、
     を備える車両。
    A vehicle comprising the rotating electric machine according to any one of claims 1 to 9,
    a wheel mechanically connected so as to rotate at the same number of revolutions as that of the rotating electrical machine;
    vehicle equipped with
PCT/JP2022/025956 2021-07-15 2022-06-29 Rotating electrical machine, electric wheel, and vehicle WO2023286606A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-117315 2021-07-15
JP2021117315 2021-07-15

Publications (1)

Publication Number Publication Date
WO2023286606A1 true WO2023286606A1 (en) 2023-01-19

Family

ID=84920048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025956 WO2023286606A1 (en) 2021-07-15 2022-06-29 Rotating electrical machine, electric wheel, and vehicle

Country Status (1)

Country Link
WO (1) WO2023286606A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08275419A (en) * 1995-03-30 1996-10-18 Meidensha Corp Rotor of permanent magnet type rotary machine
JPH10191585A (en) * 1996-12-24 1998-07-21 Matsushita Electric Ind Co Ltd Motor buried with permanent magnet
JP2006211764A (en) * 2005-01-26 2006-08-10 Toyota Motor Corp In-wheel motor structure
WO2009144957A1 (en) * 2008-05-30 2009-12-03 パナソニック株式会社 Synchronous electric motor drive system
JP2012070634A (en) * 2006-11-27 2012-04-05 Honda Motor Co Ltd Manufacturing apparatus and manufacturing method of ring core
JP2020072634A (en) * 2018-10-30 2020-05-07 株式会社ヴァレオジャパン Rotor and IPM motor using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08275419A (en) * 1995-03-30 1996-10-18 Meidensha Corp Rotor of permanent magnet type rotary machine
JPH10191585A (en) * 1996-12-24 1998-07-21 Matsushita Electric Ind Co Ltd Motor buried with permanent magnet
JP2006211764A (en) * 2005-01-26 2006-08-10 Toyota Motor Corp In-wheel motor structure
JP2012070634A (en) * 2006-11-27 2012-04-05 Honda Motor Co Ltd Manufacturing apparatus and manufacturing method of ring core
WO2009144957A1 (en) * 2008-05-30 2009-12-03 パナソニック株式会社 Synchronous electric motor drive system
JP2020072634A (en) * 2018-10-30 2020-05-07 株式会社ヴァレオジャパン Rotor and IPM motor using the same

Similar Documents

Publication Publication Date Title
US8884491B2 (en) Multi-gap electric rotating machine with one-piece stator core
WO2008047942A1 (en) Stator core and rotating electrical machine
US9800125B2 (en) Reluctance rotor with mechanical stabilizing
JP4613599B2 (en) Rotor structure of axial gap type rotating electrical machine
JP5418837B2 (en) Laminated winding core, rotor provided with the same, and rotating electric machine
JP6253520B2 (en) Rotating electric machine
JP2012115124A (en) Stator of rotary electric machine
CN113994569A (en) Rotor of rotating electric machine
US20230198319A1 (en) Rotating electric machine and stator manufacturing method
WO2019077868A1 (en) Rotary electric machine and motor vehicle provided therewith
CN111384790A (en) Stator for motor and motor
WO2023286606A1 (en) Rotating electrical machine, electric wheel, and vehicle
US20230412018A1 (en) Rotor core
CN115250017A (en) Stator
US11342809B2 (en) Rotating electric machine
JP7190019B2 (en) Rotating electric machine and electric motor vehicle equipped with the same
US11894727B2 (en) Rotor and rotating electric machine
CN111684684B (en) Rotating electric machine and stator
CN110120714B (en) Outer rotor type rotating electric machine
CN112186922B (en) External rotating surface magnet rotary motor
US20240097510A1 (en) Magnetic gear device and rotating electrical machine
US20240162764A1 (en) Rotary electric machine
JP2012016112A (en) End plate of rotation electrical machine for vehicle
WO2019187440A1 (en) Rotary electric machine and vehicle
KR101070328B1 (en) Stator core of electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE