WO2023281998A1 - 窒化物半導体装置 - Google Patents

窒化物半導体装置 Download PDF

Info

Publication number
WO2023281998A1
WO2023281998A1 PCT/JP2022/023968 JP2022023968W WO2023281998A1 WO 2023281998 A1 WO2023281998 A1 WO 2023281998A1 JP 2022023968 W JP2022023968 W JP 2022023968W WO 2023281998 A1 WO2023281998 A1 WO 2023281998A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nitride semiconductor
semiconductor device
gate
type transistor
Prior art date
Application number
PCT/JP2022/023968
Other languages
English (en)
French (fr)
Inventor
浩隆 大嶽
毅 舘
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to DE112022002944.7T priority Critical patent/DE112022002944T5/de
Priority to JP2023533487A priority patent/JPWO2023281998A1/ja
Priority to CN202280045854.4A priority patent/CN117581385A/zh
Publication of WO2023281998A1 publication Critical patent/WO2023281998A1/ja
Priority to US18/393,713 priority patent/US20240162300A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8252Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7838Field effect transistors with field effect produced by an insulated gate without inversion channel, e.g. buried channel lateral MISFETs, normally-on lateral MISFETs, depletion-mode lateral MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/0883Combination of depletion and enhancement field effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface

Definitions

  • the present disclosure relates to nitride semiconductor devices.
  • HEMTs high electron mobility transistors
  • nitride semiconductors nitride semiconductors
  • a normally-off operation that cuts off a current path (channel) between the source and the drain at zero bias is required from the viewpoint of fail-safe.
  • Patent Document 1 discloses a cascode transistor in which an enhancement-type silicon MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor) and a depression-type gallium nitride HEMT are connected in series.
  • an enhancement-type silicon MOSFET is combined to switch the depression-type gallium nitride HEMT, thereby realizing a normally-off operation.
  • a cascode transistor in which an enhancement-type silicon MOSFET and a depletion-type gallium nitride HEMT are connected in series, as described in Patent Document 1, has a relatively large temperature dependency of on-resistance. For example, as the operating temperature rises from room temperature to 150° C., the on-resistance of cascode transistors can more than double. Such an increase in on-resistance increases conduction loss and may lead to a further rise in chip temperature, so it is desirable to reduce the temperature dependence of on-resistance.
  • a nitride semiconductor device includes a depletion transistor including a first gate terminal, a first source terminal, and a first drain terminal, and a second gate terminal, a second source terminal, and a second drain terminal. and enhancement mode transistors.
  • the second drain terminal is connected to the first source terminal and the second source terminal is connected to the first gate terminal.
  • the depletion type transistor includes an electron transit layer made of a nitride semiconductor containing aluminum in a crystal composition, and a nitride semiconductor formed on the electron transit layer and containing aluminum having a composition larger than that of the electron transit layer. and a coated electron supply layer.
  • FIG. 1 is a schematic circuit diagram of an exemplary nitride semiconductor device according to one embodiment.
  • FIG. 2 is a schematic cross-sectional view of an exemplary depletion mode transistor according to one aspect of the disclosure.
  • FIG. 3 is a schematic cross-sectional view of an exemplary enhancement mode transistor according to one aspect of the present disclosure;
  • FIG. 4 is a schematic cross-sectional view of an exemplary depletion mode transistor according to another aspect of the disclosure.
  • FIG. 5 is a schematic circuit diagram showing an application example of the nitride semiconductor device of the present disclosure.
  • FIG. 6 is a schematic circuit diagram showing another application example of the nitride semiconductor device of the present disclosure.
  • FIG. 1 is a schematic circuit diagram of an exemplary nitride semiconductor device 10 according to one embodiment.
  • the nitride semiconductor device 10 includes a depletion mode transistor 20 and an enhancement mode transistor 30 .
  • Depletion mode transistor 20 includes a first gate terminal 22 , a first source terminal 24 and a first drain terminal 26 .
  • Enhancement mode transistor 30 includes a second gate terminal 32 , a second source terminal 34 and a second drain terminal 36 .
  • the second drain terminal 36 is connected to the first source terminal 24 and the second source terminal 34 is connected to the first gate terminal 22 . Therefore, nitride semiconductor device 10 is configured by cascode connection of depletion type transistor 20 and enhancement type transistor 30 . Enhancement type transistor 30 included in the cascode connection enables normally-off operation of nitride semiconductor device 10 .
  • the on-resistance of the nitride semiconductor device 10 configured by cascode-connecting the depletion-type transistor 20 and the enhancement-type transistor 30 corresponds to the sum of the on-resistance of the depletion-type transistor 20 and the on-resistance of the enhancement-type transistor 30 .
  • the temperature dependence of the on-resistance of the entire nitride semiconductor device 10 can be reduced by using the depletion type transistor 20 whose on-resistance has low temperature dependence.
  • FIG. 2 is a schematic cross-sectional view of an exemplary depletion mode transistor 20 according to one aspect of the present disclosure.
  • Depletion mode transistor 20 is, in one example, a nitride semiconductor-based high electron mobility transistor (HEMT).
  • the depletion type transistor 20 includes an electron transit layer 56 made of a nitride semiconductor containing aluminum in the crystal composition, and a nitride semiconductor formed on the electron transit layer 56 and containing aluminum having a composition larger than that of the electron transit layer 56. and a structured electron supply layer 58 .
  • the depletion type transistor 20 includes a substrate 52, a buffer layer 54 formed on the substrate 52, an electron transit layer 56 formed on the buffer layer 54, and an electron transit layer 56 formed on the An electron supply layer 58 may be included.
  • Substrate 52 may be formed of silicon (Si), aluminum nitride (AlN), aluminum oxide ( Al2O3 ) , or other substrate material.
  • the substrate 52 may be a Qromis' Substrate Technology (QST) substrate containing amorphous AlN and Si formed on the surface of the amorphous AlN.
  • QST Qromis' Substrate Technology
  • the thickness of the substrate 52 can be, for example, 200 ⁇ m or more and 1500 ⁇ m or less.
  • the Z direction of the mutually orthogonal XYZ axes shown in FIG. 2 is the direction orthogonal to the surface of the substrate 52 on which the device is formed. It should be noted that layer thicknesses referred to herein refer to dimensions along the Z-direction, unless explicitly stated otherwise.
  • the buffer layer 54 is located between the substrate 52 and the electron transit layer 56 and can be made of any material that can alleviate the lattice mismatch between the substrate 52 and the electron transit layer 56 .
  • the buffer layer 54 can include one or more nitride semiconductor layers, such as at least one of an aluminum gallium nitride (AlGaN) layer, an AlN layer, and graded AlGaN layers with different aluminum compositions. may contain.
  • the electron transit layer 56 is made of a nitride semiconductor containing aluminum in its crystal composition.
  • the expression "aluminum is included in the crystal composition” is intended to exclude configurations in which aluminum is included as a trace amount of impurity. In one example, "including aluminum in the crystal composition” means including at least 10% aluminum in the composition, but is not limited thereto.
  • the thickness of the electron transit layer 56 can be, for example, 300 nm or more and 400 nm or less. In one example, the electron transit layer 56 has a thickness of 350 nm.
  • the electron supply layer 58 is made of a nitride semiconductor containing aluminum with a composition larger than that of the electron transit layer 56 .
  • the electron supply layer 58 may have a thickness of 20 nm to 30 nm. In one example, electron supply layer 58 has a thickness of 25 nm.
  • the electron transit layer 56 and the electron supply layer 58 are composed of nitride semiconductors having different aluminum compositions and therefore different lattice constants.
  • the lattice-mismatched junction between the electron transit layer 56 and the electron supply layer 58 gives strain to the electron supply layer 58, and this strain causes electrons to spread two-dimensionally in the electron transit layer 56, that is, a two-dimensional electron gas.
  • (2DEG) 60 is induced.
  • the 2DEG 60 extends in the electron transit layer 56 at a position near the heterojunction interface between the electron transit layer 56 and the electron supply layer 58 (for example, a distance of several nanometers from the interface). This 2DEG 60 functions as a current path (channel) of the depletion type transistor 20 .
  • the electron supply layer 58 of the depletion mode transistor 20 can have a greater thickness than the later-described second electron supply layer 108 of the enhancement mode transistor 30 . As a result, it is possible to suppress the occurrence of current collapse in the depletion type transistor 20 .
  • the current collapse refers to a phenomenon in which when a high voltage is applied between the drain and source while the transistor is in the off state, the on-resistance increases when the transistor is next switched to the on state.
  • This can be attributed to the fact that electrons are trapped in crystal defects or layer interfaces inside the transistor, for example, in the electron transit layer or on the surface of the electron supply layer, and these electrons inhibit the generation of two-dimensional electron gas. Since the electron supply layer 58 of the depletion-type transistor 20 has a relatively large thickness, the surface of the electron supply layer 58 can be kept away from the 2DEG 60, so that current collapse can be suppressed.
  • Depletion mode transistor 20 further includes a gate insulating layer 62 formed over electron supply layer 58 , a source electrode 64 and a drain electrode 66 .
  • the gate insulating layer 62 can be made of any material that can insulate the electron supply layer 58 from the gate electrode 72, which will be described later.
  • gate insulating layer 62 may include at least one of silicon nitride (SiN) and AlN.
  • the gate insulating layer 62 can include a SiN layer and an AlN layer formed on the SiN layer.
  • the gate insulating layer 62 has a first opening 62A and a second opening 62B that expose the surface of the electron supply layer 58.
  • the source electrode 64 fills the first opening 62A and contacts the electron supply layer 58 through the first opening 62A.
  • the drain electrode 66 fills the second opening 62B and contacts the electron supply layer 58 through the second opening 62B.
  • Each of the source electrode 64 and the drain electrode 66 is formed of one or more metal layers (eg, a titanium (Ti) layer, a titanium nitride (TiN) layer, an aluminum (Al) layer, an aluminum silicon copper alloy (AlSiCu) layer, and a aluminum copper alloy (AlCu) layers, etc.).
  • each of source electrode 64 and drain electrode 66 includes a Ti layer, a TiN layer formed on the Ti layer, an AlCu layer formed on the TiN layer, and a TiN layer formed on the AlCu layer.
  • the source electrode 64 and the drain electrode 66 are in ohmic contact with the 2DEG 60 immediately below the electron supply layer 58 through the first opening 62A and the second opening 62B, respectively.
  • the depletion type transistor 20 includes a first passivation layer 68 covering the gate insulating layer 62, the source electrode 64 and the drain electrode 66, a second passivation layer 70 formed on the first passivation layer 68, and a gate electrode 72.
  • a first passivation layer 68 and a second passivation layer 70 partially cover the source electrode 64 and the drain electrode 66, respectively.
  • the first passivation layer 68 has an opening 68A that exposes the gate insulating layer 62 .
  • a second passivation layer 70 formed on the first passivation layer 68 has an opening 70A having a width along the X direction greater than that of the opening 68A. When viewed from above along the Z direction, the opening 68A is located inside the opening 70A. Also, the openings 68A and 70A are located closer to the source electrode 64 than the drain electrode 66 is.
  • the first passivation layer 68 and the second passivation layer 70 can be made of SiN. Although not shown, an AlN layer may be formed between the first passivation layer 68 and the second passivation layer 70 as an etching stop layer.
  • a gate electrode 72 is formed on the second passivation layer 70 and fills the openings 68A and 70A. Gate electrode 72 is in contact with gate insulating layer 62 through opening 68A and opening 70A.
  • the gate electrode 72 When viewed along the Z direction, the gate electrode 72 consists of a gate contact portion 72A formed in the region of the opening 68A and a first gate field plate portion 72B formed in a region of the opening 70A excluding the opening 68A. and a second gate field plate portion 72C formed in a region outside the opening 70A.
  • the second gate field plate portion 72C has a width greater than that of the opening 70A along the X direction. Therefore, second gate field plate portion 72C extends closer to source electrode 64 and drain electrode 66 than first gate field plate portion 72B. The second gate field plate portion 72C is separated from the source electrode 64 and the drain electrode 66. As shown in FIG.
  • the first gate field plate portion 72B and the second gate field plate portion 72C suppress electric field concentration particularly between the gate and the drain when the voltage between the gate and the source is zero and the voltage between the drain and the source is relatively high. work to
  • the first passivation layer 68 and/or the second passivation layer 68 under the first gate field plate portion 72B and the second gate field plate portion 72C.
  • An electric field is also applied to the two passivation layers 70 , and this electric field is higher the closer to the drain electrode 66 .
  • both the first passivation layer 68 and the second passivation layer 70 are provided under the second gate field plate portion 72C located relatively close to the drain electrode 66.
  • the thickness of the entire passivation layer is increased by the thickness of the second passivation layer 70, so that the dielectric breakdown resistance of the first passivation layer 68 and the second passivation layer 70 is improved. be able to.
  • the gate electrode 72, the source electrode 64, and the drain electrode 66 are connected to the first gate terminal 22, the first source terminal 24, and the first drain terminal 26 shown in FIG. 1, respectively.
  • the depletion-type transistor 20 includes the electron transit layer 56 made of a nitride semiconductor containing aluminum in the crystal composition, and the electron transit layer 56 formed on the electron transit layer 56 with aluminum having a composition larger than that of the electron transit layer 56. and an electron supply layer 58 made of a nitride semiconductor containing
  • the 2DEG 60 is less susceptible to the reduction in electron mobility due to lattice vibration and reduces the temperature dependence of the on-resistance, compared to the case where the electron transit layer 56 does not contain aluminum in the crystal composition. be able to.
  • GaN gallium nitride
  • the maximum rated voltage between the drain and the source of the depletion-type transistor 20 is the enhancement-type transistor. It may be greater than the maximum rated drain-to-source voltage of transistor 30 .
  • depletion mode transistor 20 can have a higher on-resistance than enhancement mode transistor 30 .
  • the depletion-type transistor 20 can have an on-resistance greater than ten times the on-resistance of the enhancement-type transistor 30. In such a case, the on-resistance of the nitride semiconductor device 10 is The ratio of on-resistance is 90% or more.
  • the maximum rated drain-source voltage of the depletion type transistor 20 may be 500V or higher, and the maximum rated drain-source voltage of the enhancement type transistor 30 may be 30V or higher. In one example, the maximum rated voltage between the drain and the source of the enhancement transistor 30 may be 100 V or less.
  • FIG. 3 is a schematic cross-sectional view of an exemplary enhancement-mode transistor 30 according to one aspect of the present disclosure, where enhancement-mode transistor 30 is a nitride semiconductor-based HEMT.
  • the enhancement-mode transistor 30 includes a substrate 102, a buffer layer 104 formed on the substrate 102, an electron transit layer 106 formed on the buffer layer 104, and an electron supply layer 108 formed on the electron transit layer 106.
  • Buffer layer 104 is also referred to as a second buffer layer to distinguish it from buffer layer 54 of depletion mode transistor 20 .
  • the electron transit layer 106 is also called a second electron transit layer to distinguish it from the electron transit layer 56 of the depletion type transistor 20 .
  • Electron supply layer 108 is also referred to as a second electron supply layer to distinguish it from electron supply layer 58 of depletion mode transistor 20 .
  • the substrate 102 can be made of silicon (Si), silicon carbide (SiC), GaN, sapphire, or other substrate materials.
  • substrate 102 is a Si substrate.
  • the substrate 102 of the enhancement-type transistor 30 may be made of the same material as the substrate 52 of the depletion-type transistor 20, or may be made of a material different from that of the substrate 52 of the depletion-type transistor 20.
  • each of substrate 52 and substrate 102 may be a Si substrate.
  • substrate 52 may be a semiconductor substrate comprising Al and substrate 102 may be a Si substrate.
  • the thickness of the substrate 102 can be, for example, 200 ⁇ m or more and 1500 ⁇ m or less.
  • the Z direction of the mutually orthogonal XYZ axes shown in FIG. 3 is the direction orthogonal to the surface of the substrate 102 on which the device is formed.
  • the buffer layer 104 is located between the substrate 102 and the electron transit layer 106 and can be made of any material that can alleviate the lattice mismatch between the substrate 102 and the electron transit layer 106 .
  • the buffer layer 104 may include one or more nitride semiconductor layers, and may include, for example, at least one of AlN layers, AlGaN layers, and graded AlGaN layers having different aluminum compositions.
  • the buffer layer 104 may be formed by a single AlN layer, a single AlGaN layer, a layer having an AlGaN/GaN superlattice structure, a layer having an AlN/AlGaN superlattice structure, or a layer having an AlN/GaN superlattice structure. may be configured.
  • the buffer layer 104 can include a first buffer layer that is an AlN layer formed on the substrate 102 and a second buffer layer that is an AlGaN layer formed on the AlN layer.
  • the first buffer layer may be, for example, an AlN layer having a thickness of 200 nm
  • the second buffer layer may have, for example, a structure in which multiple AlGaN layers are laminated.
  • an impurity may be introduced into a part of the buffer layer 104 to make it semi-insulating.
  • the impurity is, for example, carbon (C) or iron (Fe), and the impurity concentration can be, for example, 4 ⁇ 10 16 cm ⁇ 3 or higher.
  • the electron transit layer 106 is composed of a nitride semiconductor, and may be, for example, a GaN layer.
  • the electron transit layer 106 can be composed of a nitride semiconductor having a smaller bandgap than the electron transit layer 56 of the depletion type transistor 20 .
  • the thickness of the electron transit layer 106 can be, for example, 300 nm or more and 2 ⁇ m or less, and more preferably 300 nm or more and 400 nm or less. In one example, the electron transit layer 106 has a thickness of 350 nm.
  • an impurity may be introduced into a part of the electron transit layer 106 to make the electron transit layer 106 semi-insulating except for the surface layer region.
  • the impurity is, for example, C
  • the impurity concentration can be, for example, 1 ⁇ 10 19 cm ⁇ 3 or higher in peak concentration.
  • the electron transit layer 106 can include a plurality of GaN layers with different impurity concentrations, for example, a C-doped GaN layer and a non-doped GaN layer.
  • the C concentration in the C-doped GaN layer can be 9 ⁇ 10 18 cm ⁇ 3 or more and 9 ⁇ 10 19 cm ⁇ 3 or less.
  • the electron supply layer 108 is made of a nitride semiconductor having a bandgap larger than that of the electron transit layer 106, and may be an AlGaN layer, for example. Since the bandgap increases as the Al composition increases, the electron supply layer 108, which is an AlGaN layer, has a larger bandgap than the electron transit layer 106, which is a GaN layer.
  • the electron supply layer 108 can have a thickness of 5 nm to 20 nm. In one example, the electron supply layer 108 can have a thickness between 8 nm and 15 nm.
  • the electron transit layer 106 and the electron supply layer 108 are composed of nitride semiconductors having lattice constants different from each other.
  • the lattice-mismatched junction between the electron transit layer 106 and the electron supply layer 108 gives strain to the electron supply layer 108 , and this strain induces a two-dimensional electron gas (2DEG) 110 in the electron transit layer 106 .
  • the 2DEG 110 spreads in the electron transit layer 106 at a position close to the heterojunction interface between the electron transit layer 106 and the electron supply layer 108 (for example, a distance of several nanometers from the interface). This 2DEG 110 functions as a current path (channel) of the enhancement transistor 30 .
  • the enhancement-type transistor 30 covers the gate layer 112 formed on the electron supply layer 108, the gate electrode 114 formed on the gate layer 112, the electron supply layer 108, the gate layer 112, and the gate electrode 114, and A passivation layer 116 having a first opening 116A and a second opening 116B, a source electrode 118 in contact with the electron supply layer 108 through the first opening 116A, and a source electrode 118 in contact with the electron supply layer 108 through the second opening 116B. and a drain electrode 120 .
  • the gate layer 112 is formed on part of the electron supply layer 108 and is made of a nitride semiconductor containing acceptor-type impurities.
  • Gate layer 112 may be composed of any material having a smaller bandgap than electron supply layer 108, for example an AlGaN layer.
  • the gate layer 112 is a GaN layer (p-type GaN layer) doped with acceptor-type impurities.
  • Acceptor-type impurities can include at least one of zinc (Zn), magnesium (Mg), and carbon (C).
  • the maximum concentration of the acceptor-type impurity in the gate layer 112 is, for example, 7 ⁇ 10 18 cm ⁇ 3 or more and 1 ⁇ 10 20 cm ⁇ 3 or less.
  • the gate layer 112 includes a bottom surface 112A in contact with the electron supply layer 108 and a top surface 112B opposite the bottom surface 112A.
  • Gate electrode 114 is formed on top surface 112B of gate layer 112 .
  • Gate layer 112 may have a rectangular, trapezoidal, or ridge-shaped cross section in the ZX plane in FIG.
  • the gate layer 112 includes a ridge portion 122 including an upper surface 112B on which the gate electrode 114 is formed, and two extension portions 124 and 126 (first extension portions) extending outside the ridge portion 122 in plan view. extension 124 and second extension 126).
  • planar view means viewing the enhancement transistor 30 from above along the Z direction.
  • the first extending portion 124 extends from the ridge portion 122 toward the first opening 116A in plan view.
  • the first extending portion 124 is separated from the first opening 116A.
  • the second extension portion 126 extends from the ridge portion 122 toward the second opening 116B in plan view.
  • the second extension 126 is spaced apart from the second opening 116B.
  • the ridge portion 122 is between the first extension portion 124 and the second extension portion 126 and is integrally formed with the first extension portion 124 and the second extension portion 126 . Due to the presence of the first extension 124 and the second extension 126, the bottom surface 112A of the gate layer 112 may have a larger area than the top surface 112B. In the example shown in FIG. 3, the second extension portion 126 extends longer toward the outside of the ridge portion 122 than the first extension portion 124 in plan view.
  • the ridge portion 122 corresponds to a relatively thick portion of the gate layer 112 and may have a thickness of 80 nm or more and 150 nm or less.
  • the thickness of the gate layer 112, particularly the ridge portion 122, can be determined by considering parameters including the gate threshold voltage.
  • gate layer 112 (ridge portion 122) has a thickness greater than 110 nm.
  • Each of the first extension portion 124 and the second extension portion 126 has a thickness smaller than the thickness of the ridge portion 122 . In one example, each of first extension 124 and second extension 126 has a thickness less than or equal to half the thickness of ridge 122 .
  • each of the first extension portion 124 and the second extension portion 126 is a flat portion having a substantially constant thickness.
  • substantially constant thickness means that the thickness is within a manufacturing variation (for example, 20%).
  • each of the first extension portion 124 and the second extension portion 126 may include a tapered portion having a thickness that tapers away from the ridge portion 122 in a region adjacent to the ridge portion 122, A region more than a predetermined distance away from the ridge 122 may include a flat portion having a substantially constant thickness.
  • the flat portion may have a thickness between 5 nm and 25 nm.
  • the gate electrode 114 is formed on the top surface 112B of the gate layer 112 . Since the ridge portion 122 includes the upper surface 112B of the gate layer 112, it can be said that the gate electrode 114 is formed on the ridge portion 122 of the gate layer 112.
  • the gate electrode 114 is composed of one or more metal layers, one example being a TiN layer. Alternatively, the gate electrode 114 may be composed of a first metal layer made of Ti and a second metal layer made of TiN provided on the first metal layer. The thickness of the gate electrode 114 may be, for example, 50 nm or more and 200 nm or less. Gate electrode 114 forms a Schottky junction with gate layer 112 .
  • the passivation layer 116 covers the electron supply layer 108, the gate layer 112, and the gate electrode 114, and has a first opening 116A and a second opening 116B. Each of the first opening 116A and the second opening 116B in the passivation layer 116 is spaced apart from the gate layer 112, and the gate layer 112 is located between the first opening 116A and the second opening 116B. More specifically, the gate layer 112 may be located between the first opening 116A and the second opening 116B and closer to the first opening 116A than the second opening 116B. Passivation layer 116 extends along the top surface of electron supply layer 108, the sides and top surface 112B of gate layer 112, and the sides and top surface of gate electrode 114, and thus has a non-flat surface.
  • the source electrode 118 and the drain electrode 120 can be composed of one or more metal layers (for example, any combination of Ti layer, TiN layer, Al layer, AlSiCu layer, AlCu layer, etc.). At least part of the source electrode 118 is filled in the first opening 116A. At least part of the drain electrode 120 is filled in the second opening 116B. The source electrode 118 and the drain electrode 120 are in ohmic contact with the 2DEG 110 immediately below the electron supply layer 108 through the first opening 116A and the second opening 116B, respectively.
  • the source electrode 118 includes a source contact portion 118A filling the first opening 116A and a source field plate portion 118B covering the passivation layer 116.
  • the source field plate portion 118B is continuous with the source contact portion 118A and is formed integrally with the source contact portion 118A.
  • the source field plate portion 118B includes an end portion 118C positioned between the second opening 116B and the gate layer 112 in plan view.
  • Source field plate portion 118B extends along the surface of passivation layer 116 from source contact portion 118A to end portion 118C toward drain electrode 120, but is spaced apart from drain electrode 120.
  • Source field plate portion 118B extends along the non-planar surface of passivation layer 116 and thus has a non-planar surface as well.
  • the source field plate portion 118B has a function of alleviating electric field concentration near the edge of the gate electrode 114 when a drain voltage is applied to the drain electrode 120 during a zero bias period in which no gate voltage is
  • the gate electrode 114, the source electrode 118 and the drain electrode 120 are connected to the second gate terminal 32, the second source terminal 34 and the second drain terminal 36 also shown in FIG. 1, respectively.
  • the enhancement-mode transistor 30 is a nitride semiconductor-based high electron mobility transistor (HEMT) as described above, the maximum rated voltage between the gate and source of the enhancement-mode transistor 30 can be 8V or higher.
  • HEMT high electron mobility transistor
  • enhancement mode transistor 30 is a nitride semiconductor based HEMT, but enhancement mode transistor 30 may be a silicon based metal oxide semiconductor field effect transistor (silicon MOSFET). Please understand that it is good. Enhancement mode transistor 30 may be selected from any suitable device that allows normally-off operation.
  • the temperature dependence of the on-resistance of the enhancement-type transistor 30 may be greater than that of the depletion-type transistor 20 .
  • the ratio of the on-resistance of the depletion-type transistor 20 to the on-resistance of the entire nitride semiconductor device 10 is relatively small (for example, less than 10%), and the effect on temperature dependence is sufficiently small.
  • Nitride semiconductor device 10 is configured by cascode connection of depletion type transistor 20 and enhancement type transistor 30 .
  • the on-resistance of nitride semiconductor device 10 configured by cascode-connecting depletion-type transistor 20 and enhancement-type transistor 30 corresponds to the sum of the on-resistance of depletion-type transistor 20 and the on-resistance of enhancement-type transistor 30 . Therefore, by using the depletion type transistor 20 whose on-resistance has low temperature dependence, it is possible to reduce the temperature dependence of the on-resistance of the entire nitride semiconductor device 10 while ensuring the normally-off operation.
  • the depletion type transistor 20 includes an electron transit layer 56 made of a nitride semiconductor containing aluminum in the crystal composition, and a nitride semiconductor formed on the electron transit layer 56 and containing aluminum having a composition larger than that of the electron transit layer 56. and a structured electron supply layer 58 .
  • the 2DEG 60 is less susceptible to the reduction in electron mobility due to lattice vibration and reduces the temperature dependence of the on-resistance, compared to the case where the electron transit layer 56 does not contain aluminum in the crystal composition. be able to.
  • the on-resistance of the depletion-type transistor 20 accounts for a large proportion of the on-resistance of the nitride semiconductor device 10, reducing the temperature dependence of the on-resistance of the depletion-type transistor 20 is It is effective in improving the temperature dependence of on-resistance.
  • the nitride semiconductor device 10 of the first embodiment has the following advantages.
  • the nitride semiconductor device 10 is configured by cascode-connecting a depletion-mode transistor 20 and an enhancement-mode transistor 30.
  • the depletion-mode transistor 20 has an electron transit layer 56 made of a nitride semiconductor containing aluminum in its crystal composition.
  • an electron supply layer 58 formed on the electron transit layer 56 and made of a nitride semiconductor containing aluminum having a composition larger than that of the electron transit layer 56 .
  • the 2DEG 60 generated in the depletion-type transistor 20 is less likely to be affected by the decrease in electron mobility due to lattice vibration, so the temperature dependence of the on-resistance of the depletion-type transistor 20 can be reduced. As a result, the temperature dependence of the on-resistance of the entire nitride semiconductor device 10 can be reduced while ensuring the normally-off operation.
  • the enhancement-type transistor 30 is formed on the second electron transit layer 106 made of a nitride semiconductor having a bandgap smaller than that of the electron transit layer 56 of the depletion-mode transistor 20 and the second electron transit layer 106. , a second electron supply layer 108 made of a nitride semiconductor having a bandgap larger than that of the second electron transit layer 106; and a nitride containing an acceptor-type impurity formed on a part of the second electron supply layer and a gate layer 112 composed of a semiconductor.
  • both the depletion type transistor 20 and the enhancement type transistor 30 are nitride semiconductor HEMTs that do not have a pn antiparallel diode, so good reverse recovery characteristics at high temperatures can be achieved.
  • the electron supply layer 58 of the depletion mode transistor 20 can have a greater thickness than the second electron supply layer 108 of the enhancement mode transistor 30; According to this configuration, in the depletion type transistor 20, the surface of the electron supply layer 58 can be kept away from the 2DEG 60, and the occurrence of current collapse can be suppressed.
  • the gate layer 112 includes the ridge portion 122 including the upper surface 112B on which the gate electrode 114 is formed, and the gate layer 112 extending outside the ridge portion 122 in a plan view and having a thickness of 1/2 or less of the thickness of the ridge portion 122. and extensions 126 (and/or 124) having
  • the area of the bottom surface 112A of the gate layer 112 can be increased by the extension portion 126 (and/or 124) as compared with the case where the gate layer 112 includes only the ridge portion 122.
  • the density of holes accumulated at the interface between the gate layer 112 and the electron supply layer 108 can be reduced, and leak current can be reduced.
  • the maximum rating of the voltage between the gate and the source of the enhancement type transistor 30 may be 8V or higher. According to this configuration, since the maximum rated voltage between the gate and the source of the enhancement-type transistor 30 to be gate-driven is relatively high, the reliability of the operation of the nitride semiconductor device 10 can be enhanced.
  • Each of the depletion mode transistor 20 and the enhancement mode transistor 30 may contain a Si substrate. According to this configuration, since each of depletion type transistor 20 and enhancement type transistor 30 is manufactured using a Si substrate, the manufacturing cost of nitride semiconductor device 10 can be reduced.
  • the enhancement mode transistor 30 may contain a Si substrate, and the depletion mode transistor 20 may contain a semiconductor substrate containing Al. According to this configuration, the depression-type transistor 20 is manufactured using a substrate having a relatively high rigidity. It is possible to form a thick film while suppressing the thickness.
  • the depletion mode transistor 20 may have a higher on-resistance than the enhancement mode transistor 30 . According to this configuration, the ON resistance of the depletion type transistor 20 accounts for a large proportion of the ON resistance of the nitride semiconductor device 10, so that the temperature dependency of the ON resistance of the nitride semiconductor device 10 is effectively reduced. be able to.
  • FIG. 4 is a schematic cross-sectional view of a depletion transistor 40 according to a modification.
  • the depletion type transistor 40 can be included in the nitride semiconductor device 10 instead of the depletion type transistor 20 shown in FIG. 3 to form a cascade connection.
  • the depletion-type transistor 40 includes a nitride semiconductor layer 202 containing donor-type impurities formed on the electron supply layer 58 .
  • the depletion type transistor 40 differs from the depletion type transistor 20 shown in FIG. 3 in that it includes a nitride semiconductor layer 202 between the electron supply layer 58 and the gate insulating layer 62 .
  • the same reference numerals are given to the same components as the depletion type transistor 20 shown in FIG. Further, in FIG. 4, detailed description of the same components as the depletion type transistor 20 will be omitted.
  • the nitride semiconductor layer 202 is formed on the electron supply layer 58 .
  • the nitride semiconductor layer 202 is composed of a nitride semiconductor containing donor-type impurities.
  • the nitride semiconductor layer 202 may be a GaN layer containing donor-type impurities.
  • nitride semiconductor layer 202 may be an AlGaN layer containing donor-type impurities.
  • the nitride semiconductor layer 202 has an opening 202A through which the electron supply layer 58 is exposed.
  • the opening 202A is formed within the region of the opening 70A when viewed from above along the Z direction.
  • the gate insulating layer 62 is formed on the nitride semiconductor layer 202 and along the opening 202A and the electron supply layer 58 exposed in the opening 202A. Opening 202 A is filled with gate insulating layer 62 and gate electrode 72 .
  • FIG. 5 is a schematic circuit diagram showing an application example of the nitride semiconductor device 10 of the present disclosure.
  • FIG. 5 shows an LLC type DC/DC converter 300 using the nitride semiconductor device 10 (see FIG. 1) of the present disclosure.
  • the DC/DC converter 300 is configured to convert a DC input voltage V in supplied from a DC input power supply 302 into a DC output voltage V out to power a load 304 (eg, battery).
  • the DC/DC converter 300 may include four nitride semiconductor devices 10 a , 10 b , 10 c , 10 d in full bridge configuration, a resonant inductor 306 and a resonant capacitor 308 .
  • Nitride semiconductor devices 10a, 10b, 10c, and 10d respectively correspond to nitride semiconductor device 10 (see FIG. 1) of the present disclosure.
  • Resonant inductor 306 and resonant capacitor 308 are connected to a node between nitride semiconductor devices 10a and 10b and a node between nitride semiconductor devices 10c and 10d, respectively.
  • the DC/DC converter 300 includes two nitride semiconductor devices 10 having a half-bridge configuration instead of the four nitride semiconductor devices 10a, 10b, 10c, and 10d having a full-bridge configuration. good too.
  • Nitride semiconductor devices 10a, 10b, 10c, and 10d are switched according to drive signals supplied from drive circuit 310 so as to convert DC input voltage Vin into AC voltage.
  • DC/DC converter 300 further includes a transformer 312 having a primary winding and a secondary winding, the AC voltage being supplied to the primary winding of transformer 312 .
  • the DC/DC converter 300 further includes rectifying elements 314 and 316 respectively connected to two ends of the secondary winding of the transformer 312 and a smoothing capacitor 318 connected to the center tap of the secondary winding of the transformer 312. contains.
  • the rectifying elements 314, 316 may be, for example, synchronous rectifying transistors or diodes. As shown in FIG. 5, when the rectifying elements 314, 316 are synchronous rectifying transistors, the rectifying elements 314, 316 can operate according to the signals S1, S2, respectively. As a result, the AC voltage output from the transformer 312 is rectified and smoothed to generate the DC output voltage Vout .
  • the depletion-type transistor 20 and/or the enhancement-type transistor 30 included in the nitride semiconductor device 10 are nitride semiconductor HEMTs, the nitride semiconductor device 10 has good reverse recovery characteristics, so that the DC loss is relatively small.
  • /DC converter 300 can be implemented.
  • FIG. 6 is a schematic circuit diagram showing another application example of the nitride semiconductor device 10 of the present disclosure.
  • FIG. 6 shows a totem-pole type power factor correction (PFC) circuit 400 using the nitride semiconductor device 10 (see FIG. 1) of the present disclosure.
  • the PFC circuit 400 is configured to improve the power factor by reducing the phase difference between the AC input voltage Vin supplied from the AC input power supply 402 and the input current.
  • an AC input voltage V in is converted to a DC output voltage V out to provide a DC output to load 404 .
  • the PFC circuit 400 may include an inductor 406 for boosting, four nitride semiconductor devices 10e, 10f, 10g, and 10h, and a smoothing capacitor 408.
  • Nitride semiconductor devices 10e, 10f, 10g, and 10h respectively correspond to nitride semiconductor device 10 (see FIG. 1) of the present disclosure.
  • Inductor 406 is connected to a node between nitride semiconductor device 10e and nitride semiconductor device 10f.
  • AC input power supply 402 is connected between inductor 406 and a node between nitride semiconductor devices 10g and 10h.
  • Nitride semiconductor devices 10e, 10f, 10g, and 10h are switched according to a drive signal supplied from drive circuit 410 in order to perform synchronous rectification.
  • the depletion type transistor 20 and/or the enhancement type transistor 30 included in the nitride semiconductor device 10 are nitride semiconductor HEMTs, the nitride semiconductor device 10 has good reverse recovery characteristics, so the loss is relatively small.
  • a PFC circuit 400 can be implemented.
  • the DC/DC converter 300 shown in FIG. 5 and the PFC circuit 400 shown in FIG. 6 can be applied to, for example, an on board charger (OBC).
  • OBC on board charger
  • the gate layer 112 may include only one of the first extension portion 124 and the second extension portion 126 .
  • the gate layer 112 may include the ridge portion 122 and the second extension portion 126 and not include the first extension portion 124 .
  • gate layer 112 may include ridge portion 122 and not first extension portion 124 and second extension portion 126 .
  • the gate electrode 114 is illustrated as being formed on a portion of the top surface 112B of the gate layer 112, the gate electrode 114 may be formed to cover the entire top surface 112B of the gate layer 112. .
  • the electron supply layer 58 of the depletion mode transistor 20 may have the same thickness as the second electron supply layer 108 of the enhancement mode transistor 30, or have a thickness less than the second electron supply layer 108; may be
  • the electron transit layer 56 may be laminated on the substrate 52 with the buffer layer 54 interposed therebetween, or may be laminated on the substrate 52 without the buffer layer 54 interposed therebetween.
  • the electron transit layer 106 may be laminated on the substrate 102 with the buffer layer 104 interposed therebetween, or may be laminated on the substrate 102 without the buffer layer 104 interposed therebetween.
  • the term “on” as used in this disclosure includes the meanings of “on” and “above” unless the context clearly indicates otherwise.
  • the phrase “a first layer is formed over a second layer” means that in some embodiments the first layer may be disposed directly on the second layer in contact with the second layer, but in other implementations The configuration contemplates that the first layer may be positioned above the second layer without contacting the second layer. That is, the term “on” does not exclude structures in which other layers are formed between the first and second layers.
  • the structure in which the electron supply layer 108 is formed on the electron transit layer 106 is a structure in which an intermediate layer is positioned between the electron supply layer 108 and the electron transit layer 106 in order to stably form the 2DEG 110. may contain
  • the Z direction used in the present disclosure does not necessarily have to be the vertical direction, nor does it have to match the vertical direction perfectly.
  • the Z directions "top” and “bottom” described herein are the vertical directions “top” and “bottom”. is not limited to
  • the X direction may be vertical, or the Y direction may be vertical.
  • a depletion mode transistor (20) comprising a first gate terminal (22), a first source terminal (24) and a first drain terminal (26); an enhancement mode transistor (30) comprising a second gate terminal (32), a second source terminal (34) and a second drain terminal (36); said second drain terminal (36) is connected to said first source terminal (24) and said second source terminal (34) is connected to said first gate terminal (22);
  • the depletion type transistor (20) is an electron transit layer (56) made of a nitride semiconductor containing aluminum in its crystal composition; an electron supply layer (58) formed on the electron transit layer (56) and made of a nitride semiconductor containing aluminum having a composition larger than that of the electron transit layer (56); Nitride semiconductor device.
  • the electron transit layer (56) is made of Al x Ga 1-x N
  • the electron supply layer (58) is formed of Al y Ga 1-y N; 0.1 ⁇ x ⁇ 0.2, 0.25 ⁇ y ⁇ 0.4, and x ⁇ y 1.
  • the enhancement type transistor (30) a second electron transit layer (106) made of a nitride semiconductor having a bandgap smaller than that of the electron transit layer (56) of the depletion type transistor (20); a second electron supply layer (108) formed on the second electron transit layer (106) and made of a nitride semiconductor having a bandgap larger than that of the second electron transit layer (106); and a gate layer (112) formed on a portion of the second electron supply layer (108) and made of a nitride semiconductor containing acceptor-type impurities.
  • the nitride semiconductor device as described.
  • the gate layer (112) has a thickness of 110 nm or more; the enhancement mode transistor (30) further comprising a gate electrode (114) forming a Schottky junction with the gate layer (112); 6.
  • the gate layer (112) comprises: a ridge portion (122) including a top surface (112B) on which the gate electrode (114) is formed; an extension (126) extending outside the ridge (122) in plan view and having a thickness of 1/2 or less of the thickness of the ridge,
  • each of said depletion type transistor (20) and said enhancement type transistor (30) further includes a Si substrate (52 or 102).
  • each of said depletion mode transistor (20) and said enhancement mode transistor (30) further comprising a buffer layer (54 or 104) formed on said Si substrate (52 or 102); 10 or 12.
  • the depletion mode transistor (20) further comprises a semiconductor substrate (52) comprising Al
  • the enhancement mode transistor (30) further comprises a Si substrate (102),
  • the electron transit layer (56) is formed on the Al-containing semiconductor substrate (52), 14.
  • the depletion mode transistor (20) further includes a buffer layer (54) formed on the Al-containing semiconductor substrate (52),
  • the enhancement mode transistor (30) further comprises a second buffer layer (104) formed on the Si substrate (102),
  • the electron transit layer (56) is laminated on the semiconductor substrate (52) containing Al via the buffer layer (54), 15.
  • Appendix 16 any one of Appendices 1 to 15, wherein the maximum rated drain-source voltage of the depletion mode transistor (20) is greater than the maximum rated drain-source voltage of the enhancement mode transistor (30)
  • the nitride semiconductor device as described.
  • the maximum rated drain-source voltage of the enhancement type transistor (30) is 30 V or higher, and the maximum rated drain-source voltage of the depletion type transistor (20) is 500 V or higher.
  • Appendices 1 to 16 The nitride semiconductor device according to any one of
  • Appendix 18 18. The nitride semiconductor device according to any one of Appendices 1 to 17, wherein the depletion type transistor (20) has a higher on-resistance than the enhancement type transistor (30).
  • Appendix 20 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

窒化物半導体装置(10)は、第1ゲート端子(22)、第1ソース端子(24)、および第1ドレイン端子(26)を含むディプレッション型トランジスタ(20)と、第2ゲート端子(32)、第2ソース端子(34)、および第2ドレイン端子(36)を含むエンハンスメント型トランジスタ(30)とを備えている。第2ドレイン端子(36)は、第1ソース端子(24)に接続され、第2ソース端子(34)は、第1ゲート端子(22)に接続されている。ディプレッション型トランジスタ(20)は、アルミニウムを結晶組成に含む窒化物半導体によって構成された電子走行層と、電子走行層上に形成され、電子走行層よりも大きい組成のアルミニウムを含む窒化物半導体によって構成された電子供給層とを含んでいる。

Description

窒化物半導体装置
 本開示は、窒化物半導体装置に関する。
 現在、窒化物半導体を用いた高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)の製品化が進んでいる。HEMTをパワーデバイスに適用する場合、フェールセーフの観点から、ゼロバイアス時にソース・ドレイン間の電流経路(チャネル)を遮断するノーマリーオフ動作が求められる。
 特許文献1には、エンハンスメント型のシリコンMOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)と、ディプレッション型の窒化ガリウムHEMTとが直列接続されたカスコードトランジスタが開示されている。特許文献1のカスコードトランジスタでは、ディプレッション型の窒化ガリウムHEMTをスイッチングするために、エンハンスメント型のシリコンMOSFETが組み合わせられて、ノーマリーオフ動作を実現している。
特開2015-61265号公報
 特許文献1に記載されるような、エンハンスメント型のシリコンMOSFETと、ディプレッション型の窒化ガリウムHEMTとが直列接続されたカスコードトランジスタでは、オン抵抗の温度依存性が比較的大きい。例えば、動作温度が室温から150℃にまで上昇すると、カスコードトランジスタのオン抵抗は2倍以上に増加し得る。このようなオン抵抗の増加は、導通損失を増大させ、チップ温度のさらなる上昇を招く可能性があるため、オン抵抗の温度依存性を低減することが望ましい。
 本開示の一態様による窒化物半導体装置は、第1ゲート端子、第1ソース端子、および第1ドレイン端子を含むディプレッション型トランジスタと、第2ゲート端子、第2ソース端子、および第2ドレイン端子を含むエンハンスメント型トランジスタとを備えている。前記第2ドレイン端子は、前記第1ソース端子に接続され、前記第2ソース端子は、前記第1ゲート端子に接続されている。前記ディプレッション型トランジスタは、アルミニウムを結晶組成に含む窒化物半導体によって構成された電子走行層と、前記電子走行層上に形成され、前記電子走行層よりも大きい組成のアルミニウムを含む窒化物半導体によって構成された電子供給層とを含む。
 本開示の窒化物半導体装置によれば、オン抵抗の温度依存性を低減することができる。
図1は、一実施形態による例示的な窒化物半導体装置の概略回路図である。 図2は、本開示の一態様による例示的なディプレッション型トランジスタの概略断面図である。 図3は、本開示の一態様による例示的なエンハンスメント型トランジスタの概略断面図である。 図4は、本開示の他の態様による例示的なディプレッション型トランジスタの概略断面図である。 図5は、本開示の窒化物半導体装置の応用例を示す概略回路図である。 図6は、本開示の窒化物半導体装置の別の応用例を示す概略回路図である。
 以下、添付図面を参照して本開示の窒化物半導体装置の実施形態を説明する。なお、説明を簡単かつ明確にするために、図面に示される構成要素は必ずしも一定の縮尺で描かれていない。また、理解を容易にするために、断面図では、ハッチング線が省略されている場合がある。添付の図面は、本開示の実施形態を例示するに過ぎず、本開示を制限するものとみなされるべきではない。
 以下の詳細な記載は、本開示の例示的な実施形態を具体化する装置、システム、および方法を含む。この詳細な記載は本来説明のためのものに過ぎず、本開示の実施形態またはこのような実施形態の適用および使用を限定することを意図しない。
 図1は、一実施形態による例示的な窒化物半導体装置10の概略回路図である。窒化物半導体装置10は、ディプレッション型(depletion mode)トランジスタ20と、エンハンスメント型(enhancement mode)トランジスタ30とを備えている。ディプレッション型トランジスタ20は、第1ゲート端子22、第1ソース端子24、および第1ドレイン端子26を含む。エンハンスメント型トランジスタ30は、第2ゲート端子32、第2ソース端子34、および第2ドレイン端子36を含む。第2ドレイン端子36は、第1ソース端子24に接続され、第2ソース端子34は、第1ゲート端子22に接続されている。したがって、窒化物半導体装置10は、ディプレッション型トランジスタ20およびエンハンスメント型トランジスタ30のカスコード接続によって構成されている。カスコード接続に含まれるエンハンスメント型トランジスタ30により、窒化物半導体装置10のノーマリーオフ動作が可能となる。
 ディプレッション型トランジスタ20およびエンハンスメント型トランジスタ30のカスコード接続によって構成された窒化物半導体装置10のオン抵抗は、ディプレッション型トランジスタ20のオン抵抗と、エンハンスメント型トランジスタ30のオン抵抗との合計に相当する。以下にさらに詳細に説明するように、オン抵抗の温度依存性が小さいディプレッション型トランジスタ20を用いることにより、窒化物半導体装置10全体のオン抵抗の温度依存性を低減することができる。
 図2は、本開示の一態様による例示的なディプレッション型トランジスタ20の概略断面図である。ディプレッション型トランジスタ20は、一例では、窒化物半導体ベースの高電子移動度トランジスタ(HEMT)である。ディプレッション型トランジスタ20は、アルミニウムを結晶組成に含む窒化物半導体によって構成された電子走行層56と、電子走行層56上に形成され、電子走行層56よりも大きい組成のアルミニウムを含む窒化物半導体によって構成された電子供給層58とを含む。
 より詳細には、ディプレッション型トランジスタ20は、基板52と、基板52上に形成されたバッファ層54と、バッファ層54上に形成された電子走行層56と、電子走行層56上に形成された電子供給層58とを含むことができる。
 基板52は、シリコン(Si)、窒化アルミニウム(AlN)、酸化アルミニウム(Al)、または他の基板材料で形成することができる。基板52は、アモルファスAlNと、アモルファスAlNの表面に形成されたSiとを含むQST(Qromis’ Substrate Technology)基板であってもよい。基板52の厚さは、例えば200μm以上1500μm以下とすることができる。図2に示される互いに直交するXYZ軸のZ方向は、デバイスが形成される基板52の面と直交する方向である。なお、本明細書において言及される層の厚さとは、明示的に別段の記載がない限り、Z方向に沿った寸法を指す。
 バッファ層54は、基板52と電子走行層56との間に位置し、基板52と電子走行層56との間の格子不整合を緩和することができる任意の材料によって構成され得る。バッファ層54は、1つまたは複数の窒化物半導体層を含むことができ、例えば、窒化アルミニウムガリウム(AlGaN)層、AlN層、および異なるアルミニウム組成を有するグレーテッドAlGaN層のうちの少なくとも1つを含んでもよい。
 電子走行層56は、アルミニウムを結晶組成に含む窒化物半導体によって構成されている。例えば、電子走行層56は、AlGa1-xNから形成され、0.1<x<0.2であってよい。一例では、x=0.15である。本開示において、「アルミニウムを結晶組成に含む」という表現は、アルミニウムが、微量の不純物として含まれる構成を排除することを意図するものである。一例では、「アルミニウムを結晶組成に含む」とは、アルミニウムを少なくとも10%の組成で含むことを意味するが、これに限定されない。電子走行層56の厚さは、例えば、300nm以上400nm以下とすることができる。一例では、電子走行層56の厚さは、350nmである。
 電子供給層58は、電子走行層56よりも大きい組成のアルミニウムを含む窒化物半導体によって構成されている。例えば、電子供給層58は、AlGa1-yNから形成され、0.25<y<0.4であってよい。一例では、y=0.35である。電子供給層58は電子走行層56よりも大きい組成のアルミニウムを含むため、x<yである。また、アルミニウム組成が大きいほどバンドギャップが大きくなるため、電子供給層58は、電子走行層56よりも大きなバンドギャップを有している。電子供給層58は、20nm以上30nm以下の厚さを有することができる。一例では、電子供給層58は、25nmの厚さを有している。
 電子走行層56と電子供給層58とは、互いに異なるアルミニウム組成を有し、したがって異なる格子定数を有する窒化物半導体によって構成されている。電子走行層56と電子供給層58との格子不整合系の接合は、電子供給層58に歪みを与え、この歪みが、電子走行層56中に二次元状に広がる電子、すなわち二次元電子ガス(2DEG)60を誘起する。2DEG60は、電子走行層56中、電子走行層56と電子供給層58とのヘテロ接合界面に近い位置(例えば、界面から数nm程度の距離)に広がっている。この2DEG60が、ディプレッション型トランジスタ20の電流経路(チャネル)として機能する。
 ディプレッション型トランジスタ20の電子供給層58は、エンハンスメント型トランジスタ30の後述する第2電子供給層108よりも大きな厚さを有することができる。これにより、ディプレッション型トランジスタ20において、電流コラプスの発生を抑制することができる。
 なお、電流コラプスとは、トランジスタのオフ状態において、ドレイン・ソース間に高電圧が印加されると、次にトランジスタをオン状態にスイッチさせたときにオン抵抗が増大する現象を指す。これは、トランジスタ内部の結晶欠陥や層界面、例えば、電子走行層内、または電子供給層表面に電子がトラップされ、それらの電子が二次元電子ガスの発生を阻害することに起因し得る。ディプレッション型トランジスタ20の電子供給層58が比較的大きい厚さを有することにより、2DEG60から電子供給層58の表面を遠ざけることができるため、電流コラプスの発生を抑制することが可能となる。
 ディプレッション型トランジスタ20は、電子供給層58上に形成されたゲート絶縁層62と、ソース電極64と、ドレイン電極66とをさらに含む。
 ゲート絶縁層62は、電子供給層58と後述するゲート電極72とを絶縁することができる任意の材料によって形成することができる。例えば、ゲート絶縁層62は、窒化シリコン(SiN)およびAlNのうちの少なくとも一方を含んでいてよい。一例では、ゲート絶縁層62は、SiN層と、SiN層上に形成されたAlN層とを含むことができる。
 ゲート絶縁層62は、電子供給層58の表面を露出させる第1開口62Aおよび第2開口62Bを有している。ソース電極64は、第1開口62Aを充填しており、第1開口62Aを介して電子供給層58に接している。ドレイン電極66は、第2開口62Bを充填しており、第2開口62Bを介して電子供給層58に接している。
 ソース電極64およびドレイン電極66の各々は、1つまたは複数の金属層(例えば、チタン(Ti)層、窒化チタン(TiN)層、アルミニウム(Al)層、アルミニウムシリコン銅合金(AlSiCu)層、およびアルミニウム銅合金(AlCu)層などの任意の組み合わせから成る)によって構成することができる。一例では、ソース電極64およびドレイン電極66の各々は、Ti層と、Ti層上に形成されたTiN層と、TiN層上に形成されたAlCu層と、AlCu層上に形成されたTiN層とを含むことができる。ソース電極64およびドレイン電極66は、それぞれ第1開口62Aおよび第2開口62Bを介して電子供給層58直下の2DEG60とオーミック接触している。
 ディプレッション型トランジスタ20は、ゲート絶縁層62、ソース電極64、およびドレイン電極66を覆う第1パッシベーション層68と、第1パッシベーション層68上に形成された第2パッシベーション層70と、ゲート電極72とをさらに含むことができる。第1パッシベーション層68および第2パッシベーション層70は、ソース電極64およびドレイン電極66の各々を部分的に覆っている。
 第1パッシベーション層68は、ゲート絶縁層62を露出する開口68Aを有している。第1パッシベーション層68上に形成された第2パッシベーション層70は、開口68AよりもX方向に沿って大きい幅を有する開口70Aを有している。Z方向に沿って上方から視た場合、開口68Aは、開口70Aの内側に位置している。また、開口68Aおよび開口70Aは、ドレイン電極66よりもソース電極64の近くに位置している。
 第1パッシベーション層68および第2パッシベーション層70は、SiNによって構成することができる。図示を省略するが、第1パッシベーション層68と第2パッシベーション層70との間にエッチングストップ層としてAlN層が形成されていてもよい。
 ゲート電極72は、第2パッシベーション層70上に形成されるとともに、開口68Aおよび開口70Aを充填している。ゲート電極72は、開口68Aおよび開口70Aを介してゲート絶縁層62に接している。
 Z方向に沿って視た場合、ゲート電極72は、開口68Aの領域に形成されたゲートコンタクト部72Aと、開口70Aの領域から開口68Aを除いた領域に形成された第1ゲートフィールドプレート部72Bと、開口70Aよりも外側の領域に形成された第2ゲートフィールドプレート部72Cとを含むことができる。
 第2ゲートフィールドプレート部72Cは、X方向に沿って開口70Aよりも大きな幅を有している。したがって、第2ゲートフィールドプレート部72Cは、第1ゲートフィールドプレート部72Bと比較して、ソース電極64およびドレイン電極66の近くまで延びている。なお、第2ゲートフィールドプレート部72Cは、ソース電極64およびドレイン電極66からは離間されている。
 第1ゲートフィールドプレート部72Bおよび第2ゲートフィールドプレート部72Cは、ゲート・ソース間電圧がゼロであり、かつドレイン・ソース間電圧が比較的高い場合に、特にゲート・ドレイン間の電界集中を抑制する働きをする。
 ゲート・ソース間電圧がゼロであり、かつドレイン・ソース間電圧が比較的高い場合、第1ゲートフィールドプレート部72Bおよび第2ゲートフィールドプレート部72Cの下にある第1パッシベーション層68および/または第2パッシベーション層70にも電界がかかり、この電界は、ドレイン電極66に近いほど高くなる。
 図2の例では、ドレイン電極66の比較的近くに位置する第2ゲートフィールドプレート部72Cの下には、第1パッシベーション層68および第2パッシベーション層70の両方が設けられている。第2ゲートフィールドプレート部72Cの下において、第2パッシベーション層70の厚さの分だけパッシベーション層全体の厚さが増えるため、第1パッシベーション層68および第2パッシベーション層70の絶縁破壊耐性を向上させることができる。
 ゲート電極72、ソース電極64、およびドレイン電極66は、図1にも示した第1ゲート端子22、第1ソース端子24、および第1ドレイン端子26にそれぞれ接続されている。
 以上説明したように、ディプレッション型トランジスタ20は、アルミニウムを結晶組成に含む窒化物半導体によって構成された電子走行層56と、電子走行層56上に形成され、電子走行層56よりも大きい組成のアルミニウムを含む窒化物半導体によって構成された電子供給層58とを含んでいる。この構成によれば、電子走行層56がアルミニウムを結晶組成に含まない場合と比較して、2DEG60は、格子振動による電子移動度低下の影響を受けにくくなり、オン抵抗の温度依存性を低減することができる。例えば窒化ガリウム(GaN)層が電子走行層として用いられたGaNチャネルHEMTと比較して、ディプレッション型トランジスタ20のオン抵抗の温度依存性は小さい。
 ノーマリーオフ動作をエンハンスメント型トランジスタ30によって保証しつつ、窒化物半導体装置10の耐圧をディプレッション型トランジスタ20によって向上させるという観点から、ディプレッション型トランジスタ20のドレイン・ソース間電圧の最大定格は、エンハンスメント型トランジスタ30のドレイン・ソース間電圧の最大定格よりも大きくてよい。同様の観点から、ディプレッション型トランジスタ20は、エンハンスメント型トランジスタ30よりも大きいオン抵抗を有することができる。例えば、ディプレッション型トランジスタ20は、エンハンスメント型トランジスタ30のオン抵抗の10倍よりも大きいオン抵抗を有することができ、このような場合、窒化物半導体装置10のオン抵抗のうち、ディプレッション型トランジスタ20のオン抵抗の占める割合は、90%以上である。
 一例では、ディプレッション型トランジスタ20のドレイン・ソース間電圧の最大定格は、500V以上であり、エンハンスメント型トランジスタ30のドレイン・ソース間電圧の最大定格は、30V以上であってよい。また、一例では、エンハンスメント型トランジスタ30のドレイン・ソース間電圧の最大定格は、100V以下であってよい。
 図3は、本開示の一態様による例示的なエンハンスメント型トランジスタ30の概略断面図であり、ここでは、エンハンスメント型トランジスタ30は、窒化物半導体ベースのHEMTである。
 エンハンスメント型トランジスタ30は、基板102と、基板102上に形成されたバッファ層104と、バッファ層104上に形成された電子走行層106と、電子走行層106上に形成された電子供給層108とを含むことができる。バッファ層104は、ディプレッション型トランジスタ20のバッファ層54と区別するため、第2バッファ層とも呼ばれる。電子走行層106は、ディプレッション型トランジスタ20の電子走行層56と区別するために、第2電子走行層とも呼ばれる。電子供給層108は、ディプレッション型トランジスタ20の電子供給層58と区別するために、第2電子供給層とも呼ばれる。
 基板102は、シリコン(Si)、シリコンカーバイド(SiC)、GaN、サファイア、または他の基板材料で形成することができる。一例では、基板102は、Si基板である。
 なお、エンハンスメント型トランジスタ30の基板102は、ディプレッション型トランジスタ20の基板52と同じ材料で形成されていてもよく、あるいは、ディプレッション型トランジスタ20の基板52とは異なる材料で形成されていてもよい。基板52および基板102が同じ材料で形成される一例では、基板52および基板102の各々は、Si基板であってよい。基板52および基板102が異なる材料で形成される別の例では、基板52は、Alを含む半導体基板であり、基板102は、Si基板であってよい。
 基板102の厚さは、例えば200μm以上1500μm以下とすることができる。図3に示される互いに直交するXYZ軸のZ方向は、デバイスが形成される基板102の面と直交する方向である。
 バッファ層104は、基板102と電子走行層106との間に位置し、基板102と電子走行層106との間の格子不整合を緩和することができる任意の材料によって構成され得る。バッファ層104は、1つまたは複数の窒化物半導体層を含むことができ、例えば、AlN層、AlGaN層、および異なるアルミニウム組成を有するグレーテッドAlGaN層のうちの少なくとも1つを含んでもよい。例えば、バッファ層104は、単一のAlN層、単一のAlGaN層、AlGaN/GaN超格子構造を有する層、AlN/AlGaN超格子構造を有する層、またはAlN/GaN超格子構造を有する層によって構成されてもよい。
 一例において、バッファ層104は、基板102上に形成されたAlN層である第1バッファ層と、AlN層上に形成されたAlGaN層である第2バッファ層を含むことができる。第1バッファ層は、例えば、200nmの厚さを有するAlN層であってよく、第2バッファ層は、例えば、複数のAlGaN層が積層された構造を有していてもよい。なお、バッファ層104におけるリーク電流を抑制するために、バッファ層104の一部に不純物を導入して半絶縁性にしてもよい。その場合、不純物は、例えば炭素(C)または鉄(Fe)であり、不純物の濃度は、例えば4×1016cm-3以上とすることができる。
 電子走行層106は、窒化物半導体によって構成されており、例えば、GaN層であってよい。電子走行層106は、ディプレッション型トランジスタ20の電子走行層56よりも小さなバンドギャップを有する窒化物半導体によって構成することができる。電子走行層106の厚さは、例えば、300nm以上2μm以下とすることができ、より好ましくは、300nm以上400nm以下であってよい。一例では、電子走行層106の厚さは、350nmである。
 なお、電子走行層106におけるリーク電流を抑制するために、電子走行層106の一部に不純物を導入して電子走行層106の表層領域以外を半絶縁性にしてもよい。その場合、不純物は、例えばCであり、不純物の濃度は、例えばピーク濃度で1×1019cm-3以上とすることができる。すなわち、電子走行層106は、不純物濃度の異なる複数のGaN層、一例では、CドープGaN層と、ノンドープGaN層とを含むことができる。CドープGaN層中のC濃度は、9×1018cm-3以上9×1019cm-3以下とすることができる。
 電子供給層108は、電子走行層106よりも大きなバンドギャップを有する窒化物半導体によって構成されており、例えば、AlGaN層であってよい。Al組成が大きいほどバンドギャップが大きくなるため、AlGaN層である電子供給層108は、GaN層である電子走行層106よりも大きなバンドギャップを有している。一例においては、電子供給層108は、AlGa1-zNによって構成され、zは0.1<z<0.4であり、より好ましくは、0.2<z<0.3である。一例では、z=0.25である。電子供給層108は、5nm以上20nm以下の厚さを有することができる。一例では、電子供給層108は、8nm以上15nm以下の厚さを有することができる。
 電子走行層106と電子供給層108とは、互いに異なる格子定数を有する窒化物半導体によって構成されている。電子走行層106と電子供給層108との格子不整合系の接合は、電子供給層108に歪みを与え、この歪みが、電子走行層106中に二次元電子ガス(2DEG)110を誘起する。2DEG110は、電子走行層106中、電子走行層106と電子供給層108とのヘテロ接合界面に近い位置(例えば、界面から数nm程度の距離)に広がっている。この2DEG110が、エンハンスメント型トランジスタ30の電流経路(チャネル)として機能する。
 エンハンスメント型トランジスタ30は、電子供給層108上に形成されたゲート層112と、ゲート層112上に形成されたゲート電極114と、電子供給層108、ゲート層112、およびゲート電極114を覆うとともに、第1開口116Aおよび第2開口116Bを有するパッシベーション層116と、第1開口116Aを介して電子供給層108に接しているソース電極118と、第2開口116Bを介して電子供給層108に接しているドレイン電極120とをさらに含む。
 ゲート層112は、電子供給層108の一部上に形成され、アクセプタ型不純物を含む窒化物半導体によって構成されている。ゲート層112は、例えばAlGaN層である電子供給層108よりも小さなバンドギャップを有する任意の材料によって構成され得る。一例では、ゲート層112は、アクセプタ型不純物がドーピングされたGaN層(p型GaN層)である。アクセプタ型不純物は、亜鉛(Zn)、マグネシウム(Mg)、および炭素(C)のうちの少なくとも1つを含むことができる。ゲート層112中のアクセプタ型不純物の最大濃度は、一例では、7×1018cm-3以上1×1020cm-3以下である。
 ゲート層112は、電子供給層108に接している底面112Aと、底面112Aの反対側の上面112Bとを含む。ゲート電極114は、ゲート層112の上面112Bに形成される。ゲート層112は、図3におけるZX平面において、矩形状、台形状、またはリッジ状の断面を有することができる。
 図3に示す例においては、ゲート層112は、ゲート電極114が形成される上面112Bを含むリッジ部122と、平面視でリッジ部122の外側に延びる2つの延在部124,126(第1延在部124および第2延在部126)を含んでいる。なお、平面視とは、Z方向に沿って上方からエンハンスメント型トランジスタ30を視ることを意味する。
 第1延在部124は、平面視でリッジ部122から第1開口116Aに向けて延びている。第1延在部124は、第1開口116Aからは離間されている。
 第2延在部126は、平面視でリッジ部122から第2開口116Bに向けて延びている。第2延在部126は、第2開口116Bからは離間されている。
 リッジ部122は、第1延在部124と第2延在部126との間にあり、第1延在部124および第2延在部126と一体に形成されている。第1延在部124および第2延在部126の存在により、ゲート層112の底面112Aは、上面112Bよりも大きな面積を有していてもよい。図3に示す例では、第2延在部126は、第1延在部124よりも、平面視でリッジ部122の外側に向けて長く延びている。
 リッジ部122は、ゲート層112の比較的厚い部分に相当し、80nm以上150nm以下の厚さを有することができる。ゲート層112、特にリッジ部122の厚さは、ゲート閾値電圧を含むパラメータを考慮して定めることができる。一例では、ゲート層112(リッジ部122)は、110nmよりも大きい厚さを有している。
 第1延在部124および第2延在部126の各々は、リッジ部122の厚さよりも小さい厚さを有している。一例では、第1延在部124および第2延在部126の各々は、リッジ部122の厚さの1/2以下の厚さを有している。
 なお、図3に示す例においては、第1延在部124および第2延在部126の各々は、略一定の厚さを有する平坦な部分である。なお、本明細書において「略一定の厚さ」とは、厚さが製造上のばらつき(例えば、20%)の範囲内にあることを指す。代替的に、第1延在部124および第2延在部126の各々は、リッジ部122に隣接する領域では、リッジ部122から遠ざかるほど漸減する厚さを有するテーパ部を含んでいてよく、リッジ部122から所定の距離を越えて離れた領域においては略一定の厚さを有する平坦部を含んでいてもよい。一例では、平坦部は、5nm以上25nm以下の厚さを有していてもよい。
 ゲート電極114は、ゲート層112の上面112Bに形成されている。リッジ部122は、ゲート層112の上面112Bを含んでいるため、ゲート電極114は、ゲート層112のリッジ部122上に形成されているということもできる。ゲート電極114は、1つまたは複数の金属層によって構成されており、一例ではTiN層である。あるいは、ゲート電極114は、Tiからなる第1金属層と、第1金属層上に設けられTiNからなる第2金属層とによって構成されていてもよい。ゲート電極114の厚さは、例えば、50nm以上200nm以下であってよい。ゲート電極114は、ゲート層112とショットキー接合を形成している。
 パッシベーション層116は、電子供給層108、ゲート層112、およびゲート電極114を覆うとともに、第1開口116Aおよび第2開口116Bを有している。パッシベーション層116の第1開口116Aおよび第2開口116Bの各々は、ゲート層112から離間されており、ゲート層112は、第1開口116Aと第2開口116Bとの間に位置している。より詳細には、ゲート層112は、第1開口116Aと第2開口116Bとの間であって、第2開口116Bよりも第1開口116Aに近い位置にあってよい。パッシベーション層116は、電子供給層108の上面と、ゲート層112の側面および上面112Bと、ゲート電極114の側面および上面とに沿って延びているため、非平坦な表面を有している。
 ソース電極118およびドレイン電極120は、1つまたは複数の金属層(例えば、Ti層、TiN層、Al層、AlSiCu層、AlCu層などの任意の組み合わせから成る)によって構成することができる。ソース電極118の少なくとも一部は、第1開口116A内に充填されている。ドレイン電極120の少なくとも一部は、第2開口116B内に充填されている。ソース電極118およびドレイン電極120は、それぞれ第1開口116Aおよび第2開口116Bを介して電子供給層108直下の2DEG110とオーミック接触している。
 ソース電極118は、第1開口116Aに充填されたソースコンタクト部118Aと、パッシベーション層116を覆うソースフィールドプレート部118Bとを含む。ソースフィールドプレート部118Bは、ソースコンタクト部118Aと連続しており、ソースコンタクト部118Aと一体に形成されている。ソースフィールドプレート部118Bは、平面視で第2開口116Bとゲート層112との間に位置する端部118Cを含む。ソースフィールドプレート部118Bは、パッシベーション層116の表面に沿って、ソースコンタクト部118Aから端部118Cまで、ドレイン電極120に向かって延びているが、ドレイン電極120とは離間されている。ソースフィールドプレート部118Bは、パッシベーション層116の非平坦な表面に沿って延びているため、同様に非平坦な表面を有している。ソースフィールドプレート部118Bは、ゲート電極114にゲート電圧が印加されていないゼロバイアスの間にドレイン電極120にドレイン電圧が印加された場合に、ゲート電極114の端部近傍の電界集中を緩和する役割を果たしている。
 ゲート電極114、ソース電極118、およびドレイン電極120は、図1にも示した第2ゲート端子32、第2ソース端子34、および第2ドレイン端子36にそれぞれ接続されている。
 エンハンスメント型トランジスタ30が、上述のような窒化物半導体ベースの高電子移動度トランジスタ(HEMT)である場合、エンハンスメント型トランジスタ30のゲート・ソース間電圧の最大定格を8V以上とすることができる。
 図3を参照して説明した例では、エンハンスメント型トランジスタ30は窒化物半導体ベースのHEMTであるが、エンハンスメント型トランジスタ30は、シリコンベースの金属酸化膜半導体電界効果トランジスタ(シリコンMOSFET)であってもよいことを理解されたい。エンハンスメント型トランジスタ30は、ノーマリーオフ動作を可能にする任意の適切なデバイスから選択することができる。
 なお、エンハンスメント型トランジスタ30のオン抵抗の温度依存性は、ディプレッション型トランジスタ20よりも大きい可能性がある。しかしながら、窒化物半導体装置10全体のオン抵抗に占めるディプレッション型トランジスタ20のオン抵抗の割合は比較的小さく(例えば10%未満)、温度依存性への影響は十分小さい。
 (作用)
 以下、本実施形態の窒化物半導体装置10の作用について説明する。
 窒化物半導体装置10は、ディプレッション型トランジスタ20およびエンハンスメント型トランジスタ30のカスコード接続によって構成されている。ディプレッション型トランジスタ20およびエンハンスメント型トランジスタ30のカスコード接続によって構成された窒化物半導体装置10のオン抵抗は、ディプレッション型トランジスタ20のオン抵抗と、エンハンスメント型トランジスタ30のオン抵抗との合計に相当する。したがって、オン抵抗の温度依存性が小さいディプレッション型トランジスタ20を用いることにより、ノーマリーオフ動作を保証しつつ、窒化物半導体装置10全体のオン抵抗の温度依存性を低減することができる。
 ディプレッション型トランジスタ20は、アルミニウムを結晶組成に含む窒化物半導体によって構成された電子走行層56と、電子走行層56上に形成され、電子走行層56よりも大きい組成のアルミニウムを含む窒化物半導体によって構成された電子供給層58とを含む。この構成によれば、電子走行層56がアルミニウムを結晶組成に含まない場合と比較して、2DEG60は、格子振動による電子移動度低下の影響を受けにくくなり、オン抵抗の温度依存性を低減することができる。
 特に、窒化物半導体装置10のオン抵抗のうち、ディプレッション型トランジスタ20のオン抵抗が占める割合が大きい場合、ディプレッション型トランジスタ20のオン抵抗の温度依存性を低減することは、窒化物半導体装置10のオン抵抗の温度依存性の改善に効果的である。
 (効果)
 第1実施形態の窒化物半導体装置10は、以下の利点を有する。
 (1)窒化物半導体装置10は、ディプレッション型トランジスタ20およびエンハンスメント型トランジスタ30のカスコード接続によって構成され、ディプレッション型トランジスタ20は、アルミニウムを結晶組成に含む窒化物半導体によって構成された電子走行層56と、電子走行層56上に形成され、電子走行層56よりも大きい組成のアルミニウムを含む窒化物半導体によって構成された電子供給層58とを含む。
 この構成によれば、ディプレッション型トランジスタ20にて発生する2DEG60は、格子振動による電子移動度低下の影響を受けにくくなるため、ディプレッション型トランジスタ20のオン抵抗の温度依存性を低減することができる。この結果、ノーマリーオフ動作を保証しつつ、窒化物半導体装置10全体のオン抵抗の温度依存性を低減することができる。
 (2)エンハンスメント型トランジスタ30は、ディプレッション型トランジスタ20の電子走行層56よりも小さなバンドギャップを有する窒化物半導体によって構成された第2電子走行層106と、第2電子走行層106上に形成され、第2電子走行層106よりも大きなバンドギャップを有する窒化物半導体によって構成された第2電子供給層108と、第2電子供給層108上の一部に形成され、アクセプタ型不純物を含む窒化物半導体によって構成されたゲート層112とを含むことができる。
 この構成によれば、ディプレッション型トランジスタ20およびエンハンスメント型トランジスタ30の両方が、pn逆並列ダイオードを持たない窒化物半導体HEMTであるため、高温時の良好な逆回復特性を実現することができる。
 (3)ディプレッション型トランジスタ20の電子供給層58は、エンハンスメント型トランジスタ30の第2電子供給層108よりも大きな厚さを有することができる。
 この構成によれば、ディプレッション型トランジスタ20において、2DEG60から電子供給層58の表面を遠ざけることができ、電流コラプスの発生を抑制することができる。
 (4)ゲート層112は、ゲート電極114が形成される上面112Bを含むリッジ部122と、平面視でリッジ部122の外側に延びるとともにリッジ部122の厚さの1/2以下の厚さを有する延在部126(および/または124)とを含むことができる。
 この構成によれば、ゲート層112がリッジ部122のみを含む場合と比較して、延在部126(および/または124)の分だけゲート層112の底面112Aの面積を増加させることができる。この結果、ゲート層112と電子供給層108との界面に蓄積されるホール密度を低減して、リーク電流を低減することができる。
 (5)エンハンスメント型トランジスタ30のゲート・ソース間電圧の最大定格は、8V以上であってよい。
 この構成によれば、ゲート駆動対象であるエンハンスメント型トランジスタ30のゲート・ソース間電圧の最大定格が比較的高いため、窒化物半導体装置10の動作の信頼性を高めることができる。
 (6)ディプレッション型トランジスタ20およびエンハンスメント型トランジスタ30の各々は、Si基板を含んでいてもよい。
 この構成によれば、ディプレッション型トランジスタ20およびエンハンスメント型トランジスタ30の各々はSi基板を用いて製造されるため、窒化物半導体装置10の製造コストを低減することができる。
 (7)エンハンスメント型トランジスタ30は、Si基板を含み、ディプレッション型トランジスタ20は、Alを含む半導体基板を含んでいてもよい。
 この構成によれば、ディプレッション型トランジスタ20が、比較的高い剛性を有する基板を用いて製造されるため、アルミニウムを結晶組成に含む窒化物半導体によって構成された電子走行層56を、クラックの発生を抑制しながら厚く形成することが可能となる。
 (8)ディプレッション型トランジスタ20は、エンハンスメント型トランジスタ30よりも大きいオン抵抗を有していてよい。
 この構成によれば、窒化物半導体装置10のオン抵抗のうち、ディプレッション型トランジスタ20のオン抵抗が占める割合が大きくなるため、窒化物半導体装置10のオン抵抗の温度依存性を効果的に低減することができる。
 [ディプレッション型トランジスタの変更例]
 図4は、変更例によるディプレッション型トランジスタ40の概略断面図である。ディプレッション型トランジスタ40は、図3に示すディプレッション型トランジスタ20の代わりに窒化物半導体装置10に含まれて、カスケード接続を構成することができる。
 ディプレッション型トランジスタ40は、電子供給層58上に形成された、ドナー型不純物を含む窒化物半導体層202を含んでいる。ディプレッション型トランジスタ40は、電子供給層58とゲート絶縁層62との間に窒化物半導体層202を含むという点で、図3に示すディプレッション型トランジスタ20と相違している。図4のディプレッション型トランジスタ40において、図3に示すディプレッション型トランジスタ20と同様の構成要素には同じ符号が付されている。また、図4において、ディプレッション型トランジスタ20と同様な構成要素については詳細な説明を省略する。
 窒化物半導体層202は、電子供給層58上に形成されている。窒化物半導体層202は、ドナー型不純物を含む窒化物半導体によって構成されている。一例では、窒化物半導体層202は、ドナー型不純物を含むGaN層であってよい。別の例においては、窒化物半導体層202は、ドナー型不純物を含むAlGaN層であってよい。
 窒化物半導体層202は、電子供給層58を露出する開口202Aを有している。開口202Aは、Z方向に沿って上方から視た場合、開口70Aの領域内に形成されている。ゲート絶縁層62は、窒化物半導体層202上に形成されるとともに、開口202Aおよび開口202A内に露出された電子供給層58に沿って形成されている。開口202Aは、ゲート絶縁層62およびゲート電極72によって埋設されている。
 この構成によれば、2DEG60から窒化物半導体層202の表面を遠ざけることができるため、電流コラプスの発生を抑制することができる。
 [窒化物半導体装置の応用例]
 図5は、本開示の窒化物半導体装置10の応用例を示す概略回路図である。図5には、本開示の窒化物半導体装置10(図1参照)を用いたLLC方式のDC/DCコンバータ300が示されている。DC/DCコンバータ300は、直流入力電源302から供給される直流入力電圧Vinを直流出力電圧Voutに変換して、負荷304(例えば、バッテリー)に電力を供給するように構成されている。
 DC/DCコンバータ300は、フルブリッジ構成の4つの窒化物半導体装置10a,10b,10c,10dと、共振インダクタ306と、共振コンデンサ308とを含んでいてよい。窒化物半導体装置10a,10b,10c,10dは、それぞれ本開示の窒化物半導体装置10(図1参照)に対応している。共振インダクタ306および共振コンデンサ308は、窒化物半導体装置10aと窒化物半導体装置10bとの間のノード、および窒化物半導体装置10cと窒化物半導体装置10dとの間のノードにそれぞれ接続されている。なお、別の例では、DC/DCコンバータ300は、フルブリッジ構成の4つの窒化物半導体装置10a,10b,10c,10dの代わりに、ハーフブリッジ構成の2つの窒化物半導体装置10を含んでいてもよい。
 窒化物半導体装置10a,10b,10c,10dは、直流入力電圧Vinを交流電圧に変換するように、駆動回路310から供給される駆動信号に応じてスイッチングされる。DC/DCコンバータ300は、一次巻線および二次巻線を有するトランス312をさらに含み、上記交流電圧が、トランス312の一次巻線に供給される。
 DC/DCコンバータ300は、トランス312の二次巻線の2つの端にそれぞれ接続された整流素子314,316と、トランス312の二次巻線のセンタータップに接続された平滑コンデンサ318とをさらに含んでいる。整流素子314,316は、例えば、同期整流トランジスタまたはダイオードであってよい。図5に示すように、整流素子314,316が同期整流トランジスタである場合、整流素子314,316は、それぞれ信号S1,S2に応じて動作することができる。この結果、トランス312から出力される交流電圧が整流および平滑化されて、直流出力電圧Voutを生成することができる。
 窒化物半導体装置10に含まれるディプレッション型トランジスタ20および/またはエンハンスメント型トランジスタ30が窒化物半導体HEMTである場合、窒化物半導体装置10は良好な逆回復特性を備えていため、損失が比較的小さいDC/DCコンバータ300を実現することができる。
 図6は、本開示の窒化物半導体装置10の別の応用例を示す概略回路図である。図6には、本開示の窒化物半導体装置10(図1参照)を用いたトーテムポール型の力率改善(Power Factor Correction,PFC)回路400が示されている。PFC回路400は、交流入力電源402から供給される交流入力電圧Vinと入力電流との位相差を低減して力率を向上させるように構成されている。PFC回路400では、負荷404にDC出力を供給するために、交流入力電圧Vinが直流出力電圧Voutに変換される。
 PFC回路400は、昇圧のためのインダクタ406と、4つの窒化物半導体装置10e,10f,10g,10hと、平滑コンデンサ408とを含んでいてよい。窒化物半導体装置10e,10f,10g,10hは、それぞれ本開示の窒化物半導体装置10(図1参照)に対応している。インダクタ406は、窒化物半導体装置10eと窒化物半導体装置10fとの間のノードに接続されている。交流入力電源402は、窒化物半導体装置10gと窒化物半導体装置10hとの間のノードと、インダクタ406との間に接続されている。窒化物半導体装置10e,10f,10g,10hは、同期整流を行うために、駆動回路410から供給される駆動信号に応じてスイッチングされる。
 窒化物半導体装置10に含まれるディプレッション型トランジスタ20および/またはエンハンスメント型トランジスタ30が窒化物半導体HEMTである場合、窒化物半導体装置10は良好な逆回復特性を備えているため、損失が比較的小さいPFC回路400を実現することができる。
 図5に示すDC/DCコンバータ300および図6に示すPFC回路400は、例えばオンボードチャージャー(on board charger,OBC)に適用することができる。
 [他の変更例]
 上記実施形態および変更例の各々は、以下のように変更して実施することができる。
 ・ゲート層112は、リッジ部122に加えて、第1延在部124および第2延在部126のうちの一方のみを含んでいてもよい。例えば、ゲート層112は、リッジ部122と、第2延在部126とを含み、第1延在部124を含んでいなくてもよい。さらに別の例では、ゲート層112は、リッジ部122を含み、第1延在部124および第2延在部126を含んでいなくてもよい。
 ・ゲート電極114は、ゲート層112の上面112Bの一部に形成されるように図示されているが、ゲート電極114は、ゲート層112の上面112Bのすべてを覆うように形成されていてもよい。
 ・ディプレッション型トランジスタ20の電子供給層58は、エンハンスメント型トランジスタ30の第2電子供給層108と同じ厚さを有していてもよく、または第2電子供給層108よりも小さい厚さを有していてもよい。
 ・電子走行層56は、バッファ層54を介して基板52上に積層されてもよく、あるいはバッファ層54を介することなく、基板52上に積層されてもよい。
 ・電子走行層106は、バッファ層104を介して基板102上に積層されてもよく、あるいはバッファ層104を介することなく、基板102上に積層されてもよい。
 本明細書に記載の様々な例のうちの1つまたは複数を、技術的に矛盾しない範囲で組み合わせることができる。
 本明細書において、「AおよびBのうちの少なくとも1つ」とは、「Aのみ、または、Bのみ、または、AおよびBの両方」を意味するものとして理解されるべきである。
 本開示で使用される「~上に」という用語は、文脈によって明らかにそうでないことが示されない限り、「~上に」と「~の上方に」の意味を含む。したがって、「第1層が第2層上に形成される」という表現は、或る実施形態では第1層が第2層に接触して第2層上に直接配置され得るが、他の実施形態では第1層が第2層に接触することなく第2層の上方に配置され得ることが意図される。すなわち、「~上に」という用語は、第1層と第2層との間に他の層が形成される構造を排除しない。例えば、電子供給層108が電子走行層106上に形成されている構造は、2DEG110を安定して形成するために電子供給層108と電子走行層106との間に中間層が位置している構造を含んでいてもよい。
 本開示で使用される「垂直」、「水平」、「上方」、「下方」、「上」、「下」、「前方」、「後方」、「縦」、「横」、「左」、「右」、「前」、「後」などの方向を示す用語は、説明および図示された装置の特定の向きに依存する。本開示においては、様々な代替的な向きを想定することができ、したがって、これらの方向を示す用語は、狭義に解釈されるべきではない。
 例えば、本開示で使用されるZ方向は必ずしも鉛直方向である必要はなく、鉛直方向に完全に一致している必要もない。したがって、本開示による種々の構造(例えば、図1に示される構造)は、本明細書で説明されるZ方向の「上」および「下」が鉛直方向の「上」および「下」であることに限定されない。例えば、X方向が鉛直方向であってもよく、またはY方向が鉛直方向であってもよい。
 [付記]
 本開示から把握できる技術的思想を以下に記載する。なお、限定する意図ではなく理解の補助のために、付記に記載される構成要素には、実施形態中の対応する構成要素の参照符号が付されている。参照符号は、理解の補助のために例として示すものであり、各付記に記載された構成要素は、参照符号で示される構成要素に限定されるべきではない。
 (付記1)
 第1ゲート端子(22)、第1ソース端子(24)、および第1ドレイン端子(26)を含むディプレッション型トランジスタ(20)と、
 第2ゲート端子(32)、第2ソース端子(34)、および第2ドレイン端子(36)を含むエンハンスメント型トランジスタ(30)と
 を備え、
 前記第2ドレイン端子(36)は、前記第1ソース端子(24)に接続され、前記第2ソース端子(34)は、前記第1ゲート端子(22)に接続され、
 前記ディプレッション型トランジスタ(20)は、
 アルミニウムを結晶組成に含む窒化物半導体によって構成された電子走行層(56)と、
 前記電子走行層(56)上に形成され、前記電子走行層(56)よりも大きい組成のアルミニウムを含む窒化物半導体によって構成された電子供給層(58)と
 を含む、
 窒化物半導体装置。
 (付記2)
 前記電子走行層(56)は、AlGa1-xNから形成され、
 前記電子供給層(58)は、AlGa1-yNから形成され、
 0.1<x<0.2であり、0.25<y<0.4であり、x<yである、
 付記1に記載の窒化物半導体装置。
 (付記3)
 前記ディプレッション型トランジスタ(40)は、前記電子供給層(58)上に形成された、ドナー型不純物を含む窒化物半導体層(202)をさらに含む、付記1または2に記載の窒化物半導体装置。
 (付記4)
 前記エンハンスメント型トランジスタ(30)は、
 前記ディプレッション型トランジスタ(20)の前記電子走行層(56)よりも小さなバンドギャップを有する窒化物半導体によって構成された第2電子走行層(106)と、
 前記第2電子走行層(106)上に形成され、前記第2電子走行層(106)よりも大きなバンドギャップを有する窒化物半導体によって構成された第2電子供給層(108)と、
 前記第2電子供給層(108)上の一部に形成され、アクセプタ型不純物を含む窒化物半導体によって構成されたゲート層(112)と
 を含む、付記1~3のうちのいずれか1つに記載の窒化物半導体装置。
 (付記5)
 前記ディプレッション型トランジスタ(20)の前記電子供給層(58)は、前記エンハンスメント型トランジスタ(30)の前記第2電子供給層(108)よりも大きな厚さを有している、付記4に記載の窒化物半導体装置。
 (付記6)
 前記ゲート層(112)は、110nm以上の厚さを有し、
 前記エンハンスメント型トランジスタ(30)は、前記ゲート層(112)とショットキー接合を形成するゲート電極(114)をさらに含む、
 付記4または5に記載の窒化物半導体装置。
 (付記7)
 前記ゲート層(112)は、
 前記ゲート電極(114)が形成される上面(112B)を含むリッジ部(122)と、
 平面視で前記リッジ部(122)の外側に延びるとともに前記リッジ部の厚さの1/2以下の厚さを有する延在部(126)と
 を含む、
 付記6に記載の窒化物半導体装置。
 (付記8)
 前記エンハンスメント型トランジスタ(30)のゲート・ソース間電圧の最大定格は、8V以上である、付記4~7のうちのいずれか1つに記載の窒化物半導体装置。
 (付記9)
 前記エンハンスメント型トランジスタ(30)は、シリコンMOSFETである、付記1~3のうちのいずれか1つに記載の窒化物半導体装置。
 (付記10)
 前記ディプレッション型トランジスタ(20)および前記エンハンスメント型トランジスタ(30)の各々は、Si基板(52または102)をさらに含む、付記1~9のうちのいずれか1つに記載の窒化物半導体装置。
 (付記11)
 前記電子走行層(56)および前記第2電子走行層(106)の各々は、前記Si基板(52または102)上に形成されている、付記10に記載の窒化物半導体装置。
 (付記12)
 前記ディプレッション型トランジスタ(20)および前記エンハンスメント型トランジスタ(30)の各々は、前記Si基板(52または102)上に形成されたバッファ層(54または104)をさらに含み、
 前記電子走行層(56)および前記第2電子走行層(106)の各々は、前記バッファ層(54または104)を介して前記Si基板(52または102)上に積層されている、付記10または11に記載の窒化物半導体装置。
 (付記13)
 前記ディプレッション型トランジスタ(20)は、Alを含む半導体基板(52)をさらに含み、
 前記エンハンスメント型トランジスタ(30)は、Si基板(102)をさらに含む、
 付記1~9のうちのいずれか1つに記載の窒化物半導体装置。
 (付記14)
 前記電子走行層(56)は、前記Alを含む半導体基板(52)上に形成され、
 前記第2電子走行層(106)は、前記Si基板(102)上に形成されている、付記13に記載の窒化物半導体装置。
 (付記15)
 前記ディプレッション型トランジスタ(20)は、前記Alを含む半導体基板(52)上に形成されたバッファ層(54)をさらに含み、
 前記エンハンスメント型トランジスタ(30)は、前記Si基板(102)上に形成された第2バッファ層(104)をさらに含み、
 前記電子走行層(56)は、前記バッファ層(54)を介して前記Alを含む半導体基板(52)上に積層され、
 前記第2電子走行層(106)は、前記第2バッファ層(104)を介して前記Si基板(102)上に積層されている、付記13または14に記載の窒化物半導体装置。
 (付記16)
 前記ディプレッション型トランジスタ(20)のドレイン・ソース間電圧の最大定格は、前記エンハンスメント型トランジスタ(30)のドレイン・ソース間電圧の最大定格よりも大きい、付記1~15のうちのいずれか1つに記載の窒化物半導体装置。
 (付記17)
 前記エンハンスメント型トランジスタ(30)のドレイン・ソース間電圧の最大定格は、30V以上であり、前記ディプレッション型トランジスタ(20)のドレイン・ソース間電圧の最大定格は、500V以上である、付記1~16のうちのいずれか1つに記載の窒化物半導体装置。
 (付記18)
 前記ディプレッション型トランジスタ(20)は、前記エンハンスメント型トランジスタ(30)よりも大きいオン抵抗を有している、付記1~17のうちのいずれか1つに記載の窒化物半導体装置。
 (付記19)
 前記ディプレッション型トランジスタ(20)は、前記エンハンスメント型トランジスタ(30)のオン抵抗の10倍よりも大きいオン抵抗を有している、付記1~18のうちのいずれか1つに記載の窒化物半導体装置。
 (付記20)
 前記エンハンスメント型トランジスタ(30)のドレイン・ソース間電圧の最大定格は、100V以下である、付記1~19のうちのいずれか1つに記載の窒化物半導体装置。
 以上の説明は単に例示である。本開示の技術を説明する目的のために列挙された構成要素および方法(製造プロセス)以外に、より多くの考えられる組み合わせおよび置換が可能であることを当業者は認識し得る。本開示は、特許請求の範囲を含む本開示の範囲内に含まれるすべての代替、変形、および変更を包含することが意図される。
 10…窒化物半導体装置
 20,40…ディプレッション型トランジスタ
 22…第1ゲート端子
 24…第1ソース端子
 26…第1ドレイン端子
 30…エンハンスメント型トランジスタ
 32…第2ゲート端子
 34…第2ソース端子
 36…第2ドレイン端子
 52,102…基板
 54…バッファ層
 56…電子走行層
 58…電子供給層
 60,110…2次元電子ガス(2DEG)
 62…ゲート絶縁層
 62A…第1開口
 62B…第2開口
 64,118…ソース電極
 66,120…ドレイン電極
 68…第1パッシベーション層
 68A…開口
 70…第2パッシベーション層
 70A…開口
 72…ゲート電極
 72A…ゲートコンタクト部
 72B…第1ゲートフィールドプレート部
 72C…第2ゲートフィールドプレート部
 104…(第2)バッファ層
 106…(第2)電子走行層
 108…(第2)電子供給層
 112…ゲート層
 112A…底面
 112B…上面
 114…ゲート電極
 116…パッシベーション層
 116A…第1開口
 116B…第2開口
 118A…ソースコンタクト部
 118B…ソースフィールドプレート部
 118C…端部
 122…リッジ部
 124,126…延在部
 202…窒化物半導体層
 202A…開口
 300…DC/DCコンバータ
 302…直流入力電源
 304…負荷
 306…共振インダクタ
 308…共振コンデンサ
 310…駆動回路
 312…トランス
 314,316…整流素子
 318…平滑コンデンサ
 400…力率改善回路
 402…交流入力電源
 404…負荷
 406…インダクタ
 408…平滑コンデンサ
 410…駆動回路

Claims (16)

  1.  第1ゲート端子、第1ソース端子、および第1ドレイン端子を含むディプレッション型トランジスタと、
     第2ゲート端子、第2ソース端子、および第2ドレイン端子を含むエンハンスメント型トランジスタと
     を備え、
     前記第2ドレイン端子は、前記第1ソース端子に接続され、前記第2ソース端子は、前記第1ゲート端子に接続され、
     前記ディプレッション型トランジスタは、
      アルミニウムを結晶組成に含む窒化物半導体によって構成された電子走行層と、
      前記電子走行層上に形成され、前記電子走行層よりも大きい組成のアルミニウムを含む窒化物半導体によって構成された電子供給層と
     を含む、
     窒化物半導体装置。
  2.  前記電子走行層は、AlGa1-xNから形成され、
     前記電子供給層は、AlGa1-yNから形成され、
     0.1<x<0.2であり、0.25<y<0.4であり、x<yである、
     請求項1に記載の窒化物半導体装置。
  3.  前記ディプレッション型トランジスタは、前記電子供給層上に形成された、ドナー型不純物を含む窒化物半導体層をさらに含む、請求項1または2に記載の窒化物半導体装置。
  4.  前記エンハンスメント型トランジスタは、
     前記ディプレッション型トランジスタの前記電子走行層よりも小さなバンドギャップを有する窒化物半導体によって構成された第2電子走行層と、
     前記第2電子走行層上に形成され、前記第2電子走行層よりも大きなバンドギャップを有する窒化物半導体によって構成された第2電子供給層と、
     前記第2電子供給層上の一部に形成され、アクセプタ型不純物を含む窒化物半導体によって構成されたゲート層と
     を含む、請求項1~3のうちのいずれか一項に記載の窒化物半導体装置。
  5.  前記ディプレッション型トランジスタの前記電子供給層は、前記エンハンスメント型トランジスタの前記第2電子供給層よりも大きな厚さを有している、請求項4に記載の窒化物半導体装置。
  6.  前記ゲート層は、110nm以上の厚さを有し、
     前記エンハンスメント型トランジスタは、前記ゲート層とショットキー接合を形成するゲート電極をさらに含む、
     請求項4または5に記載の窒化物半導体装置。
  7.  前記ゲート層は、
     前記ゲート電極が形成される上面を含むリッジ部と、
     平面視で前記リッジ部の外側に延びるとともに前記リッジ部の厚さの1/2以下の厚さを有する延在部と
     を含む、
     請求項6に記載の窒化物半導体装置。
  8.  前記エンハンスメント型トランジスタのゲート・ソース間電圧の最大定格は、8V以上である、請求項4~7のうちのいずれか一項に記載の窒化物半導体装置。
  9.  前記エンハンスメント型トランジスタは、シリコンMOSFETである、請求項1~3のうちのいずれか一項に記載の窒化物半導体装置。
  10.  前記ディプレッション型トランジスタおよび前記エンハンスメント型トランジスタの各々は、Si基板をさらに含む、請求項1~9のうちのいずれか一項に記載の窒化物半導体装置。
  11.  前記ディプレッション型トランジスタは、Alを含む半導体基板をさらに含み、
     前記エンハンスメント型トランジスタは、Si基板をさらに含む、
     請求項1~9のうちのいずれか一項に記載の窒化物半導体装置。
  12.  前記ディプレッション型トランジスタのドレイン・ソース間電圧の最大定格は、前記エンハンスメント型トランジスタのドレイン・ソース間電圧の最大定格よりも大きい、請求項1~11のうちのいずれか一項に記載の窒化物半導体装置。
  13.  前記エンハンスメント型トランジスタのドレイン・ソース間電圧の最大定格は、30V以上であり、前記ディプレッション型トランジスタのドレイン・ソース間電圧の最大定格は、500V以上である、請求項1~12のうちのいずれか一項に記載の窒化物半導体装置。
  14.  前記ディプレッション型トランジスタは、前記エンハンスメント型トランジスタよりも大きいオン抵抗を有している、請求項1~13のうちのいずれか一項に記載の窒化物半導体装置。
  15.  前記ディプレッション型トランジスタは、前記エンハンスメント型トランジスタのオン抵抗の10倍よりも大きいオン抵抗を有している、請求項1~14のうちのいずれか一項に記載の窒化物半導体装置。
  16.  前記エンハンスメント型トランジスタのドレイン・ソース間電圧の最大定格は、100V以下である、請求項1~15のうちのいずれか一項に記載の窒化物半導体装置。
PCT/JP2022/023968 2021-07-08 2022-06-15 窒化物半導体装置 WO2023281998A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112022002944.7T DE112022002944T5 (de) 2021-07-08 2022-06-15 Nitrid-halbleiterbauelement
JP2023533487A JPWO2023281998A1 (ja) 2021-07-08 2022-06-15
CN202280045854.4A CN117581385A (zh) 2021-07-08 2022-06-15 氮化物半导体装置
US18/393,713 US20240162300A1 (en) 2021-07-08 2023-12-22 Nitride semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-113581 2021-07-08
JP2021113581 2021-07-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/393,713 Continuation US20240162300A1 (en) 2021-07-08 2023-12-22 Nitride semiconductor device

Publications (1)

Publication Number Publication Date
WO2023281998A1 true WO2023281998A1 (ja) 2023-01-12

Family

ID=84800252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023968 WO2023281998A1 (ja) 2021-07-08 2022-06-15 窒化物半導体装置

Country Status (5)

Country Link
US (1) US20240162300A1 (ja)
JP (1) JPWO2023281998A1 (ja)
CN (1) CN117581385A (ja)
DE (1) DE112022002944T5 (ja)
WO (1) WO2023281998A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049358A (ja) * 2007-07-24 2009-03-05 Mitsubishi Electric Corp 半導体装置
JP2011029386A (ja) * 2009-07-24 2011-02-10 Sharp Corp 半導体装置および電子機器
JP2013153027A (ja) * 2012-01-24 2013-08-08 Fujitsu Ltd 半導体装置及び電源装置
US20210083083A1 (en) * 2019-09-12 2021-03-18 Chih-Shu Huang Epitaxial structure of ga-face group iii nitride, active device, and gate protection device thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6237038B2 (ja) 2013-09-20 2017-11-29 富士通株式会社 カスコードトランジスタ及びカスコードトランジスタの制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049358A (ja) * 2007-07-24 2009-03-05 Mitsubishi Electric Corp 半導体装置
JP2011029386A (ja) * 2009-07-24 2011-02-10 Sharp Corp 半導体装置および電子機器
JP2013153027A (ja) * 2012-01-24 2013-08-08 Fujitsu Ltd 半導体装置及び電源装置
US20210083083A1 (en) * 2019-09-12 2021-03-18 Chih-Shu Huang Epitaxial structure of ga-face group iii nitride, active device, and gate protection device thereof

Also Published As

Publication number Publication date
JPWO2023281998A1 (ja) 2023-01-12
DE112022002944T5 (de) 2024-03-28
CN117581385A (zh) 2024-02-20
US20240162300A1 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
JP4761319B2 (ja) 窒化物半導体装置とそれを含む電力変換装置
US9935625B2 (en) Gate drive circuit and power supply capable of reducing surge voltage
TWI499058B (zh) 氮化鎵二極體及積體組件
JP5793120B2 (ja) 集積されたダイオードを有するsoi基板を備える複合半導体装置
TWI427787B (zh) 常態關閉的氮化鎵場效電晶體
CN113826205A (zh) 具有辅助栅极结构的功率半导体器件
US9116533B2 (en) Cascoded semiconductor devices with gate bias circuit
US9130570B2 (en) Four quadrant bidirectional switch
JP5653326B2 (ja) 窒化物半導体装置
US8823061B2 (en) Semiconductor device
JP2010219117A (ja) 半導体装置
JP2006032552A (ja) 窒化物含有半導体装置
JP2007180143A (ja) 窒化物半導体素子
JP2008172055A (ja) 窒化物半導体装置及びそれを用いた電力変換装置
TW201421648A (zh) 半導體裝置
JP4823671B2 (ja) 窒化物半導体を用いたヘテロ構造電界効果トランジスタ
CN111312815B (zh) GaN基功率晶体管结构及其制备方法
WO2013153937A1 (ja) 半導体ダイオード装置
JP5290682B2 (ja) 窒化物半導体装置
US10249749B2 (en) Semiconductor device and method for manufacturing the same
JP6671043B2 (ja) 半導体装置
WO2023281998A1 (ja) 窒化物半導体装置
US9647105B2 (en) Semiconductor device and method of manufacturing the same
KR20140105056A (ko) 반도체 소자 및 그 제조방법
KR101870524B1 (ko) 반도체 장치 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837416

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023533487

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280045854.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112022002944

Country of ref document: DE