WO2023280286A1 - 热泵***除霜过程中电子膨胀阀的控制方法及存储介质 - Google Patents

热泵***除霜过程中电子膨胀阀的控制方法及存储介质 Download PDF

Info

Publication number
WO2023280286A1
WO2023280286A1 PCT/CN2022/104503 CN2022104503W WO2023280286A1 WO 2023280286 A1 WO2023280286 A1 WO 2023280286A1 CN 2022104503 W CN2022104503 W CN 2022104503W WO 2023280286 A1 WO2023280286 A1 WO 2023280286A1
Authority
WO
WIPO (PCT)
Prior art keywords
expansion valve
electronic expansion
actual temperature
outdoor
temperature
Prior art date
Application number
PCT/CN2022/104503
Other languages
English (en)
French (fr)
Inventor
张尧
高远昊
Original Assignee
青岛海尔空调电子有限公司
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2023280286A1 publication Critical patent/WO2023280286A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the technical field of heat pumps, and specifically provides a control method and a storage medium for an electronic expansion valve in the defrosting process of a heat pump system.
  • a heat pump system is a device that uses high-level energy to make heat flow from a low-level heat source to a high-level heat source.
  • compressors outdoor heat exchangers, indoor heat exchangers, electronic expansion valves and four-way reversing valves in the heat pump system.
  • an electronic expansion valve is connected between one end of the outdoor heat exchanger and one end of the indoor heat exchanger, and the other end of the outdoor heat exchanger and the other end of the indoor heat exchanger are respectively connected to two different ports of the four-way reversing valve.
  • the suction port and exhaust port of the compressor are also respectively connected to the other two interface ports of the four-way reversing valve.
  • the four-way reversing valve controls the refrigerant to flow out from the exhaust port of the compressor and then pass through the indoor heat exchanger, electronic expansion valve and outdoor heat exchanger in turn, and finally return to the suction port of the compressor.
  • the outdoor heat exchanger acts as an evaporator to absorb heat from the outdoor environment
  • the indoor heat exchanger acts as a condenser to release heat to the indoor environment.
  • the water vapor in the outdoor environment will frost on the outer surface of the outdoor heat exchanger when it meets the lower temperature.
  • the frost layer on the outer surface of the outdoor heat exchanger accumulates to a certain thickness, it will affect the performance of the heat pump system. Heating effect. At this time, it is necessary to defrost the outdoor heat exchanger.
  • the four-way reversing valve controls the refrigerant to flow out from the exhaust port of the compressor and pass through the outdoor heat exchanger, electronic expansion valve and indoor heat exchanger in sequence, and finally return to the suction port of the compressor.
  • the indoor heat exchanger acts as an evaporator to naturally absorb heat from the indoor environment and the indoor fan is turned off at this time, and the outdoor heat exchanger acts as a condenser to release heat to melt the frost layer on its outer surface.
  • the electronic expansion valve generally adopts a method of fixing the opening degree, that is, the opening degree of the electronic expansion valve is not adjusted during the defrosting process.
  • the opening of the electronic expansion valve constant under different indoor temperature conditions will cause the throttle state and flow rate of the refrigerant to be different, resulting in the inability to ensure that the refrigerant returning to the compressor is in a gaseous state, making the compressor prone to liquid shock Even damage and other issues.
  • the present invention aims to solve the above-mentioned technical problems, that is, to solve the problem that the electronic expansion valve generally adopts a fixed opening method in the defrosting process of the existing heat pump system, which makes it impossible to ensure that the refrigerant returning to the compressor is in a gaseous state, making the compressor prone to liquid shock Phenomenon or even damage and other issues.
  • the present invention provides a method for controlling the electronic expansion valve during the defrosting process of the heat pump system.
  • the control method includes: obtaining the actual temperature T w of the outdoor environment and the actual temperature of the indoor environment during the defrosting process of the heat pump system T n ; input the actual temperature T w of the outdoor environment and the actual temperature T n of the indoor environment as independent variables into the pre-trained calculation model to determine the expected opening degree E px of the electronic expansion valve; based on the The electronic expansion valve is controlled by the predicted opening E px of the electronic expansion valve.
  • the step of "controlling the electronic expansion valve based on the predicted opening E px of the electronic expansion valve” includes: setting the predicted opening of the electronic expansion valve to The opening E px is compared with the set minimum opening value E min and the set maximum opening value E max ; when E px ⁇ E min , adjust the opening value of the electronic expansion valve to E min ; when E When min ⁇ E px ⁇ E max , the opening value of the electronic expansion valve is adjusted to E px ; when E px >E max , the opening value of the electronic expansion valve is adjusted to E max .
  • the training method of the calculation model includes: acquiring a batch of actual temperature T w of the outdoor environment, the actual temperature T n of the indoor environment and all A data set of the predicted opening E px of the electronic expansion valve; input the data set into the selected calculation model to be trained, and obtain the solution parameters in the calculation model to be trained.
  • the method for obtaining the calculation model includes: acquiring multiple trained calculation models and their evaluation indicators; according to the evaluation indicators of multiple trained calculation models in The one with the highest accuracy is selected from the multiple trained calculation models and determined as the calculation model.
  • the calculation model takes the actual temperature difference between the actual temperature Tn of the indoor environment and the actual temperature Tw of the outdoor environment as an independent variable, and Taking the expected opening E px of the electronic expansion valve as the dependent variable; or, the calculation model takes the actual temperature T n of the indoor environment and the actual temperature T w of the outdoor environment as two independent variables, and uses The predicted opening E px of the electronic expansion valve is a dependent variable.
  • the calculation model includes multiple outdoor environment temperature intervals, each outdoor environment temperature interval corresponds to multiple indoor environment temperature intervals, and one outdoor environment temperature interval and one The indoor ambient temperature range corresponds to the expected opening of an electronic expansion valve.
  • the calculation model is obtained under the condition that the specifications of the compressor power, outdoor fan power, indoor heat exchanger and outdoor heat exchanger remain unchanged .
  • the calculation model meets the following requirements: under the condition that the actual temperature T n of the indoor environment remains unchanged, the actual temperature T w of the outdoor environment exceeds lower, the smaller the expected opening E px of the electronic expansion valve; and/or, under the condition that the actual temperature T w of the outdoor environment remains unchanged, the higher the actual temperature T n of the indoor environment, the higher the The larger the predicted opening E px of the electronic expansion valve is.
  • the present invention also provides a storage medium, which is characterized in that the storage medium stores a control program of the electronic expansion valve during the defrosting process of the heat pump system, and when the control program is executed by the processor, the following The control method described in any one of the technical solutions in the first aspect.
  • the present invention can input the actual temperature of the outdoor environment and the actual temperature of the indoor environment as independent variables into the pre-trained calculation model to determine the expected opening degree of the electronic expansion valve, and based on the electronic expansion valve The expected opening degree controls the electronic expansion valve.
  • the opening value of the electronic expansion valve can be adjusted in real time to ensure that the refrigerant returning to the compressor is in a gaseous state, avoiding problems such as liquid shock or even damage to the compressor .
  • the refrigerant flow can be adjusted, and the refrigerant flowing back to the compressor is guaranteed to be in a gaseous state, which avoids problems such as liquid shock or even damage to the compressor.
  • Fig. 1 is the structural representation of the heat pump system of this embodiment
  • FIG. 2 is a schematic flowchart of a method for controlling an electronic expansion valve during defrosting of a heat pump system according to this embodiment.
  • the terms “first”, “second”, and “third” are used for description purposes only, and should not be understood as indicating or implying relative importance.
  • the terms “installation”, “connection” and “connection” should be understood in a broad sense, for example, it can be a fixed connection or a It is a detachable connection or an integral connection; it may be a mechanical connection or an electrical connection; it may be a direct connection or an indirect connection through an intermediary, and it may be the internal communication of two components.
  • the specific meanings of the above terms in the present invention can be understood according to specific situations.
  • a refrigerant circulation loop is formed among a compressor 1 , an electronic expansion valve 4 , an indoor heat exchanger 3 and an outdoor heat exchanger 2 .
  • the exhaust port of the compressor 1 communicates with the first end of the four-way reversing valve 5 (end d of the four-way reversing valve 5 in the figure), and the inlet port of the compressor 1 communicates with the four-way reversing valve 5.
  • the third end of the reversing valve 5 (the s end of the four-way reversing valve 5 in the figure) communicates, and the first end of the indoor heat exchanger 3 is connected with the second end of the four-way reversing valve 5 (the four-way reversing valve in the figure).
  • the end e of the valve 5) communicates, the first end of the outdoor heat exchanger 2 communicates with the fourth end of the four-way reversing valve 5 (end c of the four-way reversing valve 5 in the figure); the first end of the indoor heat exchanger 3
  • the two ends communicate with the second end of the outdoor heat exchanger 2 through an electronic expansion valve 4 .
  • the controller of the heat pump air-conditioning system can switch the refrigerant circulation route between the heating mode and the defrosting mode by controlling the four-way reversing valve 5 .
  • the controller guides the first end of the four-way reversing valve 5 (end d of the four-way reversing valve 5 in the figure) to the fourth end (end c of the four-way reversing valve 5 in the figure). Pass, and the second end of the four-way reversing valve 5 (the e end of the four-way reversing valve 5 in the figure) is connected with the third end (the s end of the four-way reversing valve 5 in the figure).
  • the refrigerant enters the indoor heat exchanger 3 from the discharge port of the compressor 1 and returns to the suction port of the compressor 1 through the electronic expansion valve 4 and the outdoor heat exchanger 2 in sequence.
  • the outdoor heat exchanger 2 acts as an evaporator to absorb heat from the outdoor environment
  • the indoor heat exchanger 3 acts as a condenser to release heat to the indoor environment.
  • the water vapor in the outdoor environment will frost on the outer surface of the outdoor heat exchanger 2 when it meets the lower temperature.
  • the frost layer on the outer surface of the outdoor heat exchanger 2 accumulates to a certain thickness, it will affect the heat pump. heating effect of the system. At this time, it is necessary to defrost the outdoor heat exchanger 2 .
  • the controller guides the first end of the four-way reversing valve 5 (end d of the four-way reversing valve 5 in the figure) to the second end (end e of the four-way reversing valve 5 in the figure). Connect, and connect the third end of the four-way reversing valve 5 (the s end of the four-way reversing valve 5 in the figure) with the fourth end (the c end of the four-way reversing valve 5 in the figure).
  • the refrigerant enters the outdoor heat exchanger 2 from the discharge port of the compressor 1 and returns to the suction port of the compressor 1 through the electronic expansion valve 4 and the indoor heat exchanger 3 in sequence.
  • the indoor heat exchanger 3 acts as an evaporator to naturally absorb heat from the indoor environment and the indoor fan is turned off, and the outdoor heat exchanger 2 acts as a condenser to release heat to melt the frost layer on its outer surface.
  • the opening degree of the electronic expansion valve 4 is generally fixed, that is, the opening degree of the electronic expansion valve 4 is not adjusted during the defrosting process.
  • keeping the opening of the electronic expansion valve 4 constant under different indoor temperature conditions will cause the throttle state and flow rate of the refrigerant to be different, resulting in the inability to ensure that the refrigerant returning to the compressor 1 is in a gaseous state, making the compressor 1 prone to failure. Liquid hammer phenomenon or even damage and other problems.
  • This embodiment aims to solve the above-mentioned technical problems, that is, to solve the problem that the electronic expansion valve 4 generally adopts a fixed opening degree in the defrosting process of the existing heat pump system, which makes it impossible to ensure that the refrigerant returned to the compressor 1 is in a gaseous state, so that the compressor 1 It is prone to problems such as liquid hammer phenomenon and even damage.
  • this embodiment provides a method for controlling the electronic expansion valve 4 during the defrosting process of the heat pump system. As shown in FIG. 2 , the control method includes:
  • the outdoor unit of the heat pump system is usually composed of compressor 1, outdoor heat exchanger 2 and outdoor fan (not shown in the figure), and the indoor unit of the heat pump system is usually composed of indoor heat exchanger 3 and indoor fan (not shown in the figure) and other components.
  • the outdoor temperature can be monitored by arranging an outdoor temperature monitor on the casing of the outdoor unit, and the indoor temperature can be monitored by arranging an outdoor temperature monitor on the casing of the indoor unit.
  • the specifications of the indoor heat exchanger 3 and the outdoor heat exchanger 2 are fixed, and in the defrosting mode, the indoor fan and the outdoor fan are generally not turned on and the power of the compressor 1 remains
  • the key factors that affect the state of the refrigerant in the heat pump system at this time are the outdoor ambient temperature and the indoor ambient temperature.
  • the calculation model is obtained under the condition that the power of the compressor 1 , the power of the outdoor fan, and the specifications of the indoor heat exchanger 3 and the outdoor heat exchanger 2 remain unchanged.
  • the training method of the calculation model in step S2 includes:
  • the calculation model to be trained referred to in step S202 includes any of the following:
  • E p is the opening degree of the electronic expansion valve 4 required to ensure the defrosting effect under the conditions of the reference temperature T o of the outdoor environment and the reference temperature T s of the indoor environment.
  • the outdoor ambient temperature and the indoor ambient temperature in a relatively common situation can be selected as the reference temperatures T o and T s .
  • a 1 and A 2 are parameters to be solved.
  • B 1 , B 2 and B 3 are the parameters to be solved.
  • D 1 and D 2 are the parameters to be solved.
  • the calculation model expressed in formulas (1) to (3) takes the actual temperature T n of the indoor environment and the actual temperature T w of the outdoor environment as two independent variables, and uses the expected opening degree E of the electronic expansion valve 4 px is the dependent variable.
  • the actual temperature difference between the actual temperature T n of the indoor environment and the actual temperature T w of the outdoor environment can be used as an independent variable in the calculation model expressed in equations (4) and (5), and the electronic expansion valve 4
  • the expected opening E px is the dependent variable.
  • the method for obtaining the above-mentioned calculation model includes: acquiring a plurality of trained calculation models and their evaluation indicators. For example, while obtaining the solution parameters in the formulas (1) to (5) after the training is completed, the variance of the model and other evaluation indicators that can characterize the fitting degree of the data can also be obtained. Then, according to the evaluation indicators of the multiple trained computing models, the one with the highest accuracy is selected among the multiple trained computing models and determined as the computing model.
  • the calculation model may also include multiple outdoor environment temperature intervals, and each outdoor environment temperature interval corresponds to multiple Indoor ambient temperature intervals, and an outdoor ambient temperature interval and an indoor ambient temperature interval correspond to an expected opening degree of an electronic expansion valve 4 .
  • the outdoor ambient temperature range can be found according to the actual temperature Tw of the outdoor environment
  • the indoor ambient temperature range can be found according to the actual temperature Tn of the indoor environment
  • the found outdoor ambient temperature range and indoor The expected opening degree E px of the electronic expansion valve 4 corresponding to the ambient temperature range can be determined.
  • the above calculation models all need to basically meet the following requirements: under the condition that the actual temperature T n of the indoor environment is constant, the lower the actual temperature T w of the outdoor environment is, the smaller the expected opening E px of the electronic expansion valve 4 is. and/or, under the condition that the actual temperature Tw of the outdoor environment remains unchanged, the higher the actual temperature Tn of the indoor environment is, the larger the expected opening degree Epx of the electronic expansion valve 4 is.
  • the refrigerant flow rate can be adjusted, and the refrigerant flowing back to the compressor 1 is guaranteed to be in a gaseous state, thereby avoiding problems such as liquid shock or even damage to the compressor 1 .
  • step S3 includes: comparing the expected opening degree E px of the electronic expansion valve 4 with the set minimum opening value E min and the set maximum opening value E max For comparison; when E px ⁇ E min , adjust the opening value of the electronic expansion valve 4 to E min ; when E min ⁇ E px ⁇ E max , adjust the opening value of the electronic expansion valve 4 to E px ; When E px >E max , adjust the opening value of the electronic expansion valve 4 to E max .
  • E min and E max may be the minimum opening degree and maximum opening degree of the electronic expansion valve itself, or may be the minimum opening degree and maximum opening degree required to maintain the heat pump system to realize the defrosting function.
  • this embodiment can input the actual temperature of the outdoor environment and the actual temperature of the indoor environment as independent variables into the calculation model trained in advance to determine the expected opening degree of the electronic expansion valve 4, and based on the electronic The expected opening degree of the expansion valve 4 controls the electronic expansion valve 4 .
  • the opening value of the electronic expansion valve 4 can be adjusted in real time under different outdoor ambient temperature and indoor ambient temperature conditions, so as to ensure that the refrigerant returning to the compressor 1 is in a gaseous state, avoiding the liquid hammer phenomenon of the compressor 1 or even damage etc.
  • the present invention can also be implemented as an apparatus or apparatus program (eg, PC program and PC program product) for performing a part or all of the methods described herein.
  • a program for realizing the present invention may be stored on a PC-readable medium, or may be in the form of one or more signals.
  • Such a signal may be downloaded from an Internet site, or provided on a carrier signal, or provided in any other form.
  • this embodiment also provides a storage medium, which is characterized in that the control program of the electronic expansion valve 4 during the defrosting process of the heat pump system is stored on the storage medium, and when the control program is executed by the processor, the first The control method of any one embodiment of the aspect.
  • the storage medium may be a memory in the heat pump system
  • the processor may be a controller dedicated to executing the method of the present invention, or a functional module or unit of a general controller.
  • the aforementioned storage medium includes but is not limited to U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, optical disk, flash memory, volatile Memory, non-volatile memory, serial memory, parallel memory or registers and other media that can store program codes.
  • Processors include but are not limited to CPLD/FPGA, DSP, ARM processors, MIPS processors, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种热泵***除霜过程中电子膨胀阀的控制方法,包括:获取热泵***除霜过程中室外环境的实际温度T w、室内环境的实际温度T n;将室外环境的实际温度T w、室内环境的实际温度T n作为自变量输入预先训练的计算模型中,以确定电子膨胀阀的预计开度E px;基于电子膨胀阀的预计开度E px对电子膨胀阀进行控制。还提供了一种存储有热泵***除霜过程中电子膨胀阀的控制程序的存储介质。该控制方法在不同的室外环境温度和室内环境温度条件下能够对电子膨胀阀的开度值进行实时的调节,保证回流到压缩机的冷媒为气态,避免了压缩机发生液击现象甚至损坏等问题。

Description

热泵***除霜过程中电子膨胀阀的控制方法及存储介质 技术领域
本发明涉及热泵技术领域,具体提供一种热泵***除霜过程中电子膨胀阀的控制方法及存储介质。
背景技术
热泵***是一种利用高位能使热量从低位热源空气流向高位热源的装置。热泵***中有压缩机、室外换热器、室内换热器、电子膨胀阀和四通换向阀等器件。其中,室外换热的一端和室内换热器的一端之间连接有电子膨胀阀,室外换热器的另一端和室内换热器的另一端分别连接在四通换向阀的两个不同接口端上,压缩机的吸气口和排气口也分别连接在四通换向阀的另外两个接口端上。
热泵***在冬季制热时,四通换向阀控制冷媒由压缩机的排气口流出并依次经过室内换热器、电子膨胀阀和室外换热器,最后回流至压缩机的吸气口,此时室外换热器作为蒸发器吸收室外环境的热量,室内换热器作为冷凝器向室内环境释放热量。热泵***制热过程中,室外环境中的水蒸气遇到室外换热器上温度较低的外表面会结霜,当室外换热器外表面的霜层积累到一定厚度时会影响热泵***的制热效果。这时,就需要对室外换热器进行除霜。
热泵***在除霜过程中,四通换向阀控制冷媒由压缩机的排气口流出并依次经过室外换热器、电子膨胀阀和室内换热器,最后回流至压缩机的吸气口,此时室内换热器作为蒸发器从室内环境中自然吸热且此时室内风机关闭,室外换热器作为冷凝器放热来融化其外表面的霜层。
目前,热泵***除霜过程中电子膨胀阀一般采用固定开度的方法,即除霜过程中不对电子膨胀阀的开度进行调节。但是,在不同的室内温度条件下电子膨胀阀的开度保持不变会造成冷媒的节流状态和流量大小不同,导致不能保证回流到压缩机的冷媒为气态,使得压缩机容易发生 液击现象甚至损坏等问题。
相应地,本领域需要一种新的热泵***除霜过程中电子膨胀阀的控制方法来解决上述问题。
发明内容
本发明旨在解决上述技术问题,即,解决现有热泵***除霜过程中电子膨胀阀一般采用固定开度的方法,导致不能保证回流到压缩机的冷媒为气态,使得压缩机容易发生液击现象甚至损坏等问题。
在第一方面,本发明提供了一种热泵***除霜过程中电子膨胀阀的控制方法,所述控制方法包括:获取热泵***除霜过程中室外环境的实际温度T w、室内环境的实际温度T n;将所述室外环境的实际温度T w、所述室内环境的实际温度T n作为自变量输入预先训练的计算模型中,以确定所述电子膨胀阀的预计开度E px;基于所述电子膨胀阀的预计开度E px对所述电子膨胀阀进行控制。
作为本发明提供的上述控制方法的一种优选的技术方案,“基于所述电子膨胀阀的预计开度E px对所述电子膨胀阀进行控制”的步骤包括:将所述电子膨胀阀的预计开度E px与设定最小开度值E min和设定最大开度值E max进行比较;当E px<E min时,将所述电子膨胀阀的开度值调节至E min;当E min<E px<E max时,将所述电子膨胀阀的开度值调节至E px;当E px>E max时,将所述电子膨胀阀的开度值调节至E max
作为本发明提供的上述控制方法的一种优选的技术方案,所述计算模型的训练方法包括:获取批量的包含所述室外环境的实际温度T w、所述室内环境的实际温度T n和所述电子膨胀阀的预计开度E px的数据组;将所述数据组输入选定的待训练的计算模型中,并得到所述待训练的计算模型中的求解参数。
作为本发明提供的上述控制方法的一种优选的技术方案,所述计算模型的获得方法包括:获取多个训练完成的计算模型及其评价指标;根据多个训练完成的计算模型的评价指标在多个训练完成的计算模型中选择精确度最高的一个并将其确定为所述计算模型。
作为本发明提供的上述控制方法的一种优选的技术方案,所述计算 模型以所述室内环境的实际温度T n与所述室外环境的实际温度T w之间的实际温差为自变量,且以所述电子膨胀阀的预计开度E px为因变量;或者,所述计算模型以所述室内环境的实际温度T n和所述室外环境的实际温度T w为两个自变量,且以所述电子膨胀阀的预计开度E px为因变量。
作为本发明提供的上述控制方法的一种优选的技术方案,所述待训练的计算模型包括如下的任一个:E px=E p×[1+A 1×(T n-T s)+A 2×(T w-T 0)],式中E p为在室外环境的基准温度T o、室内环境的基准温度T s条件下保证除霜效果所需的电子膨胀阀的开度,A 1、A 2为待求解参数;E px=B 1×T n+ 2wT+,式中B 1、B 2和B 3为待求解参数;
Figure PCTCN2022104503-appb-000001
式中C 1、C 2和C 3为待求解参数;E px=D 1(T n-T w)+D 2,式中D 1和D 2为待求解参数;
Figure PCTCN2022104503-appb-000002
式中F 1、F 2和F 3为待求解参数。
作为本发明提供的上述控制方法的一种优选的技术方案,所述计算模型包括多个室外环境温度区间,每个室外环境温度区间对应多个室内环境温度区间,且一个室外环境温度区间和一个室内环境温度区间对应一个电子膨胀阀的预计开度。
作为本发明提供的上述控制方法的一种优选的技术方案,所述计算模型为在压缩机功率、室外风机功率、室内换热器和室外换热器的规格保持不变的条件下得出的。
作为本发明提供的上述控制方法的一种优选的技术方案,所述计算模型满足如下要求:在所述室内环境的实际温度T n不变的条件下,所述室外环境的实际温度T w越低,所述电子膨胀阀的预计开度E px越小;并且/或者,在所述室外环境的实际温度T w不变的条件下,所述室内环境的实际温度T n越高,所述电子膨胀阀的预计开度E px越大。
在第二方面,本发明还提供了一种存储介质,其特征在于,所述存储介质上存储有热泵***除霜过程中电子膨胀阀的控制程序,所述控制程序被处理器执行时实现如第一方面中任一技术方案所述的控制方法。
在采用上述技术方案的情况下,本发明能够将室外环境的实际温度以及室内环境的实际温度作为自变量输入预先训练的计算模型中,以确定电子膨胀阀的预计开度,并基于电子膨胀阀的预计开度对电子膨胀阀 进行控制。如此,在不同的室外环境温度和室内环境温度条件下能够对电子膨胀阀的开度值进行实时的调节,保证回流到压缩机的冷媒为气态,避免了压缩机发生液击现象甚至损坏等问题。
进一步,在采用上述技术方案的情况下,在室内环境的实际温度不变的条件下,室外环境的实际温度越低,电子膨胀阀的预计开度越小,以减小冷媒流量,使得冷媒在室内换热器中充分地气化;在室外环境的实际温度不变的条件下,室内环境的实际温度越高,电子膨胀阀的预计开度越大,使得冷媒在室内换热器中充分利用室内环境的温度进行气化。最终,通过改变电子膨胀阀的节流状态实现了对冷媒流量的调节,并保证回流到压缩机的冷媒为气态,避免了压缩机发生液击现象甚至损坏等问题。
附图说明
参照附图,本发明的公开内容将变得更易理解。本领域技术人员容易理解的是:这些附图仅仅用于说明的目的,而并非意在对本发明的保护范围组成限制。此外,图中类似的数字用以表示类似的部件。下面参照附图并结合热泵***来描述本发明的热泵***除霜过程中电子膨胀阀的控制方法。附图中:
图1为本实施例的热泵***的结构示意图;
图2为本实施例的热泵***除霜过程中电子膨胀阀的控制方法的流程示意图。
附图标记列表
1-压缩机;2-室外换热器;3-室内换热器;4-电子膨胀阀;5-四通换向阀。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
需要说明的是,在本发明的描述中,术语“第一”、“第二”、“第三” 仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
如图1所示,在该热泵***中,压缩机1、电子膨胀阀4、室内换热器3和室外换热器2之间形成冷媒循环回路。在该冷媒循环回路中,压缩机1的排气口与四通换向阀5的第一端(图中四通换向阀5的d端)连通,压缩机1的进气口与四通换向阀5的第三端(图中四通换向阀5的s端)连通,室内换热器3的第一端与四通换向阀5的第二端(图中四通换向阀5的e端)连通,室外换热器2的第一端与四通换向阀5的第四端(图中四通换向阀5的c端)连通;室内换热器3的第二端与室外换热器2的第二端之间通过电子膨胀阀4连通。热泵空调***的控制器能够通过控制四通换向阀5使冷媒循环路线在制热模式和除霜模式之间进行转换。
在制热模式下,控制器将四通换向阀5的第一端(图中四通换向阀5的d端)与第四端(图中四通换向阀5的c端)导通,并将四通换向阀5的第二端(图中四通换向阀5的e端)与第三端(图中四通换向阀5的s端)导通。在制热模式下的冷媒循环回路中,冷媒由压缩机1的排气口进入室内换热器3中并依次经过电子膨胀阀4、室外换热器2回到压缩机1的吸气口。此时,室外换热器2作为蒸发器吸收室外环境的热量,室内换热器3作为冷凝器向室内环境释放热量。热泵***制热过程中,室外环境中的水蒸气遇到室外换热器2上温度较低的外表面会结霜,当室外换热器2外表面的霜层积累到一定厚度时会影响热泵***的制热效果。这时,就需要对室外换热器2进行除霜。
在除霜模式下,控制器将四通换向阀5的第一端(图中四通换向阀5的d端)与第二端(图中四通换向阀5的e端)导通,并将四通换向阀5的第三端(图中四通换向阀5的s端)与第四端(图中四通换向阀5的c 端)导通。在除霜模式下的冷媒循环路线中,冷媒由压缩机1的排气口进入室外换热器2中并依次经过电子膨胀阀4、室内换热器3回到压缩机1的吸气口。此时,室内换热器3作为蒸发器从室内环境中自然吸热且此时室内风机关闭,室外换热器2作为冷凝器放热来融化其外表面的霜层。
目前,热泵***除霜过程中电子膨胀阀4一般采用固定开度的方法,即除霜过程中不对电子膨胀阀4的开度进行调节。但是,在不同的室内温度条件下电子膨胀阀4的开度保持不变会造成冷媒的节流状态和流量大小不同,导致不能保证回流到压缩机1的冷媒为气态,使得压缩机1容易发生液击现象甚至损坏等问题。
本实施例旨在解决上述技术问题,即,解决现有热泵***除霜过程中电子膨胀阀4一般采用固定开度的方法,导致不能保证回流到压缩机1的冷媒为气态,使得压缩机1容易发生液击现象甚至损坏等问题。
在第一方面,本实施例提供了一种热泵***除霜过程中电子膨胀阀4的控制方法,如图2所示,该控制方法包括:
S1、获取热泵***除霜过程中室外环境的实际温度T w、室内环境的实际温度T n
需要说明的是,热泵***的室外机通常由压缩机1、室外换热器2和室外风机(图中未示出)等器件组成,热泵***的室内机通常由室内换热器3和室内风机(图中未示出)等器件组成。可以通过在室外机的外壳上设置室外温度监测器来监测室外温度、在室内机的外壳上设置室外温度监测器来监测室内温度。
S2、将室外环境的实际温度T w、室内环境的实际温度T n作为自变量输入预先训练的计算模型中,以确定电子膨胀阀4的预计开度E px
需要说明的是,对于同一个热泵***,其室内换热器3和室外换热器2的规格是一定的,且在除霜模式下室内风机和室外风机一般均不开启且压缩机1功率保持不变,即此时影响热泵***中冷媒的状态的关键因素是室外环境温度和室内环境温度。此时,该计算模型实质上是在压缩机1功率、室外风机功率、室内换热器3和室外换热器2的规格保持不变的条件下得出的。
作为本实施例提供的上述控制方法的一种优选的实施方式,步骤S2 中计算模型的训练方法包括:
S201、获取批量的包含室外环境的实际温度T w、室内环境的实际温度T n和电子膨胀阀4的预计开度E px的数据组。需要说明的是该数据组为在特定的室外环境温度和室内环境温度条件下,保证除霜效果所需的电子膨胀阀4的开度,当满足该数据组中数据时,压缩机的运行状态良好,不会发生液击现象。
S202、将数据组输入选定的待训练的计算模型中,并得到待训练的计算模型中的求解参数。
作为本实施例提供的上述控制方法的一种优选的实施方式,步骤S202中所指的待训练的计算模型包括如下的任一个:
(1)E px=E p×[1+A 1×(T n-T s)+A 2×(T w-T 0)]
式中,E p为在室外环境的基准温度T o、室内环境的基准温度T s条件下保证除霜效果所需的电子膨胀阀4的开度。其中,可以选择将较常见的一种情况下的室外环境和室内环境温度作为基准温度T o、T s。A 1、A 2为待求解参数。
(2)E px=B 1×T n+B 2×T w+B 3
式中,B 1、B 2和B 3为待求解参数。
(3)
Figure PCTCN2022104503-appb-000003
式中,C 1、C 2和C 3为待求解参数。
(4)E px=D 1(T n-T w)+D 2
式中,D 1和D 2为待求解参数。
(5)
Figure PCTCN2022104503-appb-000004
式中,F 1、F 2和F 3为待求解参数。
可知,式子(1)至(3)中所表示的计算模型以室内环境的实际温度T n和室外环境的实际温度T w为两个自变量,且以电子膨胀阀4的预计开度E px为因变量。此外,式子(4)和(5)中所表示的计算模型中可将室内环境的实际温度T n与室外环境的实际温度T w之间的实际温差作为自变量,且以电子膨胀阀4的预计开度E px为因变量。
作为本实施例提供的上述控制方法的一种优选的实施方式,上述计算模型的获得方法包括:获取多个训练完成的计算模型及其评价指标。 例如,得到训练完成后的式子(1)至(5)中的带求解参数的同时还能得到该模型的方差以及其他的能表征数据拟合度的评价指标。然后,根据多个训练完成的计算模型的评价指标在多个训练完成的计算模型中选择精确度最高的一个并将其确定为计算模型。
除了选择函数模型作为计算模型之外,作为本实施例提供的上述控制方法的另一种优选的实施方式,该计算模型还可以包括多个室外环境温度区间,每个室外环境温度区间对应多个室内环境温度区间,且一个室外环境温度区间和一个室内环境温度区间对应一个电子膨胀阀4的预计开度。
可以理解的是,可以根据室外环境的实际温度T w查找其位于的室外环境温度区间,根据室内环境的实际温度T n查找其位于的室内环境温度区间,最终根据找到的室外环境温度区间和室内环境温度区间即可确定其对应的电子膨胀阀4的预计开度E px
实际上,上述的计算模型均需要基本满足如下要求:在室内环境的实际温度T n不变的条件下,室外环境的实际温度T w越低,电子膨胀阀4的预计开度E px越小;并且/或者,在室外环境的实际温度T w不变的条件下,室内环境的实际温度T n越高,电子膨胀阀4的预计开度E px越大。
如此,在采用上述实施方式的情况下,在室内环境的实际温度不变的条件下,室外环境的实际温度越低,电子膨胀阀4的预计开度越小,以减小冷媒流量,使得冷媒在室内换热器3中充分地气化;在室外环境的实际温度不变的条件下,室内环境的实际温度越高,电子膨胀阀4的预计开度越大,使得冷媒在室内换热器3中充分利用室内环境的温度进行气化。最终,通过改变电子膨胀阀4的节流状态实现了对冷媒流量的调节,并保证回流到压缩机1的冷媒为气态,避免了压缩机1发生液击现象甚至损坏等问题。
S3、基于电子膨胀阀4的预计开度E px对电子膨胀阀4进行控制。
作为本实施例提供的上述控制方法的一种优选的实施方式,步骤S3包括:将电子膨胀阀4的预计开度E px与设定最小开度值E min和设定最大开度值E max进行比较;当E px<E min时,将电子膨胀阀4的开度值调节至E min;当E min<E px<E max时,将电子膨胀阀4的开度值调节至E px;当E px>E max时, 将电子膨胀阀4的开度值调节至E max
可以理解的是,E min和E max可以为电子膨胀阀自身的最小开度和最大开度,也可以为保持热泵***实现除霜功能所需的最小开度和最大开度。
在采用上述实施方式的情况下,本实施例能够将室外环境的实际温度以及室内环境的实际温度作为自变量输入预先训练的计算模型中,以确定电子膨胀阀4的预计开度,并基于电子膨胀阀4的预计开度对电子膨胀阀4进行控制。如此,在不同的室外环境温度和室内环境温度条件下能够对电子膨胀阀4的开度值进行实时的调节,保证回流到压缩机1的冷媒为气态,避免了压缩机1发生液击现象甚至损坏等问题。
需要说明的是,尽管上文详细描述了本发明方法的详细步骤,但是,在不偏离本发明的基本原理的前提下,本领域技术人员可以对上述步骤进行组合、拆分及调换顺序,如此修改后的技术方案并没有改变本发明的基本构思,因此也落入本发明的保护范围之内。
当然,上述可以替换的实施方式之间、以及可以替换的实施方式和优选的实施方式之间还可以交叉配合使用,从而组合出新的实施方式以适用于更加具体的应用场景。
本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,PC程序和PC程序产品)。这样的实现本发明的程序可以存储在PC可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
在第二方面,本实施例还提供了一种存储介质,其特征在于,存储介质上存储有热泵***除霜过程中电子膨胀阀4的控制程序,控制程序被处理器执行时实现如第一方面中任一实施方式的控制方法。
需要说明的是,该存储介质可以为热泵***中的存储器,上述处理器可以是专门用于执行本发明的方法的控制器,也可以是通用控制器的一个功能模块或功能单元。
其中,前述的存储介质包括但不限于U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟、光盘、闪存、易失性存储器、非易失性存储器、串行存储 器、并行存储器或寄存器等各种可以存储程序代码的介质,处理器包括但不限于CPLD/FPGA、DSP、ARM处理器、MIPS处理器等。为了不必要地模糊本公开的实施例,这些公知的结构未在附图中示出。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的保护范围之内并且形成不同的实施例。例如,在本发明的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种热泵***除霜过程中电子膨胀阀的控制方法,其特征在于,所述控制方法包括:
    获取热泵***除霜过程中室外环境的实际温度T w、室内环境的实际温度T n
    将所述室外环境的实际温度T w、所述室内环境的实际温度T n作为自变量输入预先训练的计算模型中,以确定所述电子膨胀阀的预计开度E px
    基于所述电子膨胀阀的预计开度E px对所述电子膨胀阀进行控制。
  2. 根据权利要求1所述的控制方法,其特征在于,“基于所述电子膨胀阀的预计开度E px对所述电子膨胀阀进行控制”的步骤包括:
    将所述电子膨胀阀的预计开度E px与设定最小开度值E min和设定最大开度值E max进行比较;
    当E px<E min时,将所述电子膨胀阀的开度值调节至E min
    当E min<E px<E max时,将所述电子膨胀阀的开度值调节至E px
    当E px>E max时,将所述电子膨胀阀的开度值调节至E max
  3. 根据权利要求1所述的控制方法,其特征在于,所述计算模型的训练方法包括:
    获取批量的包含所述室外环境的实际温度T w、所述室内环境的实际温度T n和所述电子膨胀阀的预计开度E px的数据组;
    将所述数据组输入选定的待训练的计算模型中,并得到所述待训练的计算模型中的求解参数。
  4. 根据权利要求3所述的控制方法,其特征在于,所述计算模型的获得方法包括:
    获取多个训练完成的计算模型及其评价指标;
    根据多个训练完成的计算模型的评价指标在多个训练完成的计算模型中选择精确度最高的一个并将其确定为所述计算模型。
  5. 根据权利要求3所述的控制方法,其特征在于,所述计算模型以所述室内环境的实际温度T n与所述室外环境的实际温度T w之间的实际温差为自变量,且以所述电子膨胀阀的预计开度E px为因变量;或者,
    所述计算模型以所述室内环境的实际温度T n和所述室外环境的实际温度T w为两个自变量,且以所述电子膨胀阀的预计开度E px为因变量。
  6. 根据权利要求3所述的控制方法,其特征在于,所述待训练的计算模型包括如下的任一个:
    E px=E p×[1+A 1×(T n-T s)+A 2×(T w-T 0)],式中E p为在室外环境的基准温度T o、室内环境的基准温度T s条件下保证除霜效果所需的电子膨胀阀的开度,A 1、A 2为待求解参数;
    E px=B 1×T n+B 2×T w+B 3,式中B 1、B 2和B 3为待求解参数;
    Figure PCTCN2022104503-appb-100001
    式中C 1、C 2和C 3为待求解参数;
    E px=D 1(T n-T w)+D 2,式中D 1和D 2为待求解参数;
    Figure PCTCN2022104503-appb-100002
    式中F 1、F 2和F 3为待求解参数。
  7. 根据权利要求1所述的控制方法,其特征在于,所述计算模型包括多个室外环境温度区间,每个室外环境温度区间对应多个室内环境温度区间,且一个室外环境温度区间和一个室内环境温度区间对应一个电子膨胀阀的预计开度。
  8. 根据权利要求1所述的控制方法,其特征在于,所述计算模型为在压缩机功率、室外风机功率、室内换热器和室外换热器的规格保持不变的条件下得出的。
  9. 根据权利要求1所述的控制方法,其特征在于,所述计算模型满足如下要求:
    在所述室内环境的实际温度T n不变的条件下,所述室外环境的实际温度T w越低,所述电子膨胀阀的预计开度E px越小;并且/或者,
    在所述室外环境的实际温度T w不变的条件下,所述室内环境的实际温度T n越高,所述电子膨胀阀的预计开度E px越大。
  10. 一种存储介质,其特征在于,所述存储介质上存储有热泵***除霜过程中电子膨胀阀的控制程序,所述控制程序被处理器执行时实现如权利要求1至9中任一项所述的控制方法。
PCT/CN2022/104503 2021-07-09 2022-07-08 热泵***除霜过程中电子膨胀阀的控制方法及存储介质 WO2023280286A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110777920.4 2021-07-09
CN202110777920.4A CN113639410A (zh) 2021-07-09 2021-07-09 热泵***除霜过程中电子膨胀阀的控制方法及存储介质

Publications (1)

Publication Number Publication Date
WO2023280286A1 true WO2023280286A1 (zh) 2023-01-12

Family

ID=78416995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104503 WO2023280286A1 (zh) 2021-07-09 2022-07-08 热泵***除霜过程中电子膨胀阀的控制方法及存储介质

Country Status (2)

Country Link
CN (1) CN113639410A (zh)
WO (1) WO2023280286A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113639410A (zh) * 2021-07-09 2021-11-12 青岛海尔空调电子有限公司 热泵***除霜过程中电子膨胀阀的控制方法及存储介质
CN114279113B (zh) * 2021-12-29 2024-01-30 中山市爱美泰电器有限公司 一种热泵***的除霜后电子膨胀阀开度快速定位的控制方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201120384A (en) * 2009-12-02 2011-06-16 Ind Tech Res Inst Method for controlling the temperature of spilt-type air conditioning equipment
CN103234254A (zh) * 2013-04-12 2013-08-07 惠州Tcl家电集团有限公司 基于服务器的空调性能参数优化的方法、空调及服务器
CN104949413A (zh) * 2015-07-07 2015-09-30 珠海格力电器股份有限公司 获取电子膨胀阀初始开度的方法和装置
US20160091904A1 (en) * 2014-09-29 2016-03-31 International Business Machines Corporation Hvac system control integrated with demand response, on-site energy storage system and on-site energy generation system
CN107023945A (zh) * 2017-04-01 2017-08-08 青岛海尔空调电子有限公司 空调***及用于空调***的控制方法
CN107642873A (zh) * 2017-10-31 2018-01-30 海信(山东)空调有限公司 一种空调及其启动时电子膨胀阀开度控制方法
CN109520099A (zh) * 2018-11-27 2019-03-26 宁波奥克斯电气股份有限公司 一种电子膨胀阀的初始开度控制方法、装置及空调器
CN111765604A (zh) * 2019-04-01 2020-10-13 珠海格力电器股份有限公司 空调的控制方法和装置
CN111878964A (zh) * 2020-07-27 2020-11-03 宁波奥克斯电气股份有限公司 一种电子膨胀阀的控制方法、装置、空调器及存储介质
CN112443943A (zh) * 2019-08-30 2021-03-05 珠海格力电器股份有限公司 一种基于少量标记数据的模型训练方法、控制***及空调机
CN113639410A (zh) * 2021-07-09 2021-11-12 青岛海尔空调电子有限公司 热泵***除霜过程中电子膨胀阀的控制方法及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2697282B2 (ja) * 1990-10-19 1998-01-14 松下電器産業株式会社 空気調和機
JP2003185307A (ja) * 2001-12-20 2003-07-03 Fujitsu General Ltd 空気調和機の制御装置
CN106022505A (zh) * 2016-04-28 2016-10-12 华为技术有限公司 一种预测用户离网的方法及装置
CN111425992B (zh) * 2020-04-13 2021-03-26 珠海格力电器股份有限公司 一种空调化霜控制方法、装置、存储介质及空调

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201120384A (en) * 2009-12-02 2011-06-16 Ind Tech Res Inst Method for controlling the temperature of spilt-type air conditioning equipment
CN103234254A (zh) * 2013-04-12 2013-08-07 惠州Tcl家电集团有限公司 基于服务器的空调性能参数优化的方法、空调及服务器
US20160091904A1 (en) * 2014-09-29 2016-03-31 International Business Machines Corporation Hvac system control integrated with demand response, on-site energy storage system and on-site energy generation system
CN104949413A (zh) * 2015-07-07 2015-09-30 珠海格力电器股份有限公司 获取电子膨胀阀初始开度的方法和装置
CN107023945A (zh) * 2017-04-01 2017-08-08 青岛海尔空调电子有限公司 空调***及用于空调***的控制方法
CN107642873A (zh) * 2017-10-31 2018-01-30 海信(山东)空调有限公司 一种空调及其启动时电子膨胀阀开度控制方法
CN109520099A (zh) * 2018-11-27 2019-03-26 宁波奥克斯电气股份有限公司 一种电子膨胀阀的初始开度控制方法、装置及空调器
CN111765604A (zh) * 2019-04-01 2020-10-13 珠海格力电器股份有限公司 空调的控制方法和装置
CN112443943A (zh) * 2019-08-30 2021-03-05 珠海格力电器股份有限公司 一种基于少量标记数据的模型训练方法、控制***及空调机
CN111878964A (zh) * 2020-07-27 2020-11-03 宁波奥克斯电气股份有限公司 一种电子膨胀阀的控制方法、装置、空调器及存储介质
CN113639410A (zh) * 2021-07-09 2021-11-12 青岛海尔空调电子有限公司 热泵***除霜过程中电子膨胀阀的控制方法及存储介质

Also Published As

Publication number Publication date
CN113639410A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
WO2023280286A1 (zh) 热泵***除霜过程中电子膨胀阀的控制方法及存储介质
CN110425112B (zh) 防压缩机液击的空调及防压缩机液击的控制方法
WO2019128397A1 (zh) 空调的控制方法
JP4365378B2 (ja) 除霜運転制御装置および除霜運転制御方法
CN109210696B (zh) 一种空调防冻结保护的控制方法
WO2020211420A1 (zh) 热泵空调***及其除霜控制方法
CN106895623B (zh) 一种空调器的排气温度控制方法
CA2572667A1 (en) Methods for detecting and responding to freezing coils in hvac systems
CN110220269B (zh) 一种风机盘管的防冻控制方法、***及空调
WO2020133927A1 (zh) 低温制冷风阀的控制方法及其装置
CN110986326A (zh) 空调器及其控制方法
WO2021036842A1 (zh) 同时冷暖多联机空调***的控制方法
CN110762673A (zh) 冷水空调***及其防冻控制方法、存储介质和计算机设备
JP6413761B2 (ja) 雪氷利用空調システム、その制御装置
WO2023273827A1 (zh) 冷却塔的控制方法及存储介质
CN103575005A (zh) 压缩机排气温度的调节方法和装置
CN114234486B (zh) 一种热泵除霜控制方法、装置、计算机设备及存储介质
CN111412581A (zh) 空调器除霜控制方法
CN113503620A (zh) 空调***控制方法、装置、存储介质及空调***
JP2017141970A (ja) 冷房機、及び、空気調和機
WO2019171463A1 (ja) 空気調和装置
US10845107B2 (en) Variable speed compressor based AC system and control method
CN107906811A (zh) 热泵机组防冷冻控制方法
JP2014077560A (ja) 空気調和装置
CN113639491B (zh) 用于热泵设备除霜的方法、装置和热水机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE