WO2023279342A1 - 基于物理直连通信数据信道的通信方法、装置及存储介质 - Google Patents

基于物理直连通信数据信道的通信方法、装置及存储介质 Download PDF

Info

Publication number
WO2023279342A1
WO2023279342A1 PCT/CN2021/105328 CN2021105328W WO2023279342A1 WO 2023279342 A1 WO2023279342 A1 WO 2023279342A1 CN 2021105328 W CN2021105328 W CN 2021105328W WO 2023279342 A1 WO2023279342 A1 WO 2023279342A1
Authority
WO
WIPO (PCT)
Prior art keywords
direct communication
data channel
communication data
physical direct
mini
Prior art date
Application number
PCT/CN2021/105328
Other languages
English (en)
French (fr)
Inventor
赵文素
赵群
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to EP21948838.4A priority Critical patent/EP4369845A1/en
Priority to PCT/CN2021/105328 priority patent/WO2023279342A1/zh
Priority to CN202180002080.2A priority patent/CN113632582B/zh
Publication of WO2023279342A1 publication Critical patent/WO2023279342A1/zh
Priority to US18/405,972 priority patent/US20240147455A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/23Manipulation of direct-mode connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular to a communication method, device and storage medium based on a physical direct communication data channel.
  • sidelink terminal direct communication
  • the limited licensed spectrum can no longer meet the potential diverse application scenarios and requirements in the future, so it is necessary to research and design a sidelink-unlicensed technology that can be applied in the unlicensed frequency band.
  • LBT listen before talk
  • Data can only be sent when the channel is detected to be idle.
  • the introduction of the LBT mechanism makes it possible to send the sidelink signal only when the channel is detected to be idle. Even if there is an opportunity to send the sidelink signal, if the channel is not detected to be idle, the sidelink signal cannot be sent, that is, the sidelink signal exists. Uncertainty. In order to solve the uncertainty brought by the LBT mechanism and make the sending time of control information and data more flexible, the design of sidelink-unlicensed physical channels and physical signals needs certain enhancements.
  • the present disclosure provides a communication method, device and storage medium based on a physical direct communication data channel.
  • a communication method based on a physical direct communication data channel which is applied to a terminal, and the communication method based on a physical direct communication data channel includes:
  • Determining a physical direct communication data channel the physical direct communication data channel including a plurality of starting positions of the direct communication signal; based on the plurality of starting positions, transmitting the direct communication signal on an unlicensed frequency band.
  • the physical direct communication data channel includes a plurality of micro-slot scheduling data channel resources, and the number of micro-slots in the physical direct communication data channel is related to the number of positions where the direct communication signal starts to be sent. equal, the first symbol in each of the plurality of mini-slots is an automatic gain control symbol, the last symbol is a guard interval symbol, and the symbol between the automatic gain control symbol and the guard interval symbol Used to transmit direct communication signals.
  • the number of mini-slots is determined based on the number of symbols used to transmit direct communication signals and the length of symbols supported by the mini-slots.
  • the number of mini-slots is determined based on the number of symbols used to transmit direct communication signals, the symbol length supported by the mini-slots, and physical direct feedback channel resources.
  • the determining the physical direct communication data channel includes:
  • each of the multiple physical direct communication data channels includes There are a plurality of micro-slots, each micro-slot has a start position, and the number of micro-slots included in each physical direct communication data channel is different.
  • determining the physical direct communication data channel includes:
  • the physical direct communication data channel used in a single transmission is determined, and the number of each type of mini-slot corresponds to a physical direct communication data channel.
  • a communication method based on a physical direct communication data channel which is applied to a network device, and the communication method based on a physical direct communication data channel includes:
  • the physical direct communication data channel includes a plurality of start sending positions of the direct communication signal; sending indication information, the indication information is used to indicate based on the multiple start sending positions, in Send direct communication signals on unlicensed frequency bands.
  • the physical direct communication data channel includes a plurality of micro-slot scheduling data channel resources, and the number of micro-slots in the physical direct communication data channel is related to the number of positions where the direct communication signal starts to be sent. equal, the first symbol in each of the plurality of mini-slots is an automatic gain control symbol, the last symbol is a guard interval symbol, and the symbol between the automatic gain control symbol and the guard interval symbol Used to transmit direct communication signals.
  • the number of mini-slots is determined based on the number of symbols used to transmit direct communication signals and the length of symbols supported by the mini-slots.
  • the number of mini-slots is determined based on the number of symbols used to transmit direct communication signals, the symbol length supported by the mini-slots, and physical direct-connection feedback channel resources.
  • the configuring the physical direct communication data channel includes:
  • each of the multiple physical direct communication data channels includes a plurality of micro-slots, and each micro-slot has a start sending position , and the number of mini-slots included in each physical direct communication data channel is different; the indication information is used to indicate the physical direct communication data channel used in a single transmission.
  • the sending indication information includes:
  • the radio resource control information is used to indicate the number of mini-slots, and the number of each mini-slot corresponds to a physical direct communication data channel.
  • a communication device based on a physical direct communication data channel including:
  • the processing unit is configured to determine a physical direct communication data channel, and the physical direct communication data channel includes a plurality of start sending positions of the direct communication signal; the sending unit is configured to, based on the plurality of start sending positions, Send direct communication signals on unlicensed frequency bands.
  • the physical direct communication data channel includes a plurality of micro-slot scheduling data channel resources, and the number of micro-slots in the physical direct communication data channel is related to the number of positions where the direct communication signal starts to be sent. equal, the first symbol in each of the plurality of mini-slots is an automatic gain control symbol, the last symbol is a guard interval symbol, and the symbol between the automatic gain control symbol and the guard interval symbol Used to transmit direct communication signals.
  • the number of mini-slots is determined based on the number of symbols used to transmit direct communication signals and the length of symbols supported by the mini-slots.
  • the number of mini-slots is determined based on the number of symbols used to transmit direct communication signals, the symbol length supported by the mini-slots, and physical direct-connection feedback channel resources.
  • the processing unit determines the physical direct communication data channel used in a single transmission among the configured multiple physical direct communication data channels; each of the multiple physical direct communication data channels Each physical direct communication data channel includes a plurality of micro-slots, each micro-slot has a start position, and the number of micro-slots included in each physical direct communication data channel is different.
  • the processing unit determines the physical direct communication data channel used in a single transmission based on the number of mini-slots indicated by the radio resource control information, and the number of each type of mini-slot corresponds to a physical direct communication data channel. Connect communication data channel.
  • a communication device based on a physical direct communication data channel including:
  • the processing unit is configured to configure a physical direct communication data channel, and the physical direct communication data channel includes a plurality of start sending positions of the direct communication signal; the sending unit is configured to send indication information, and the indication information is used to indicate Based on the plurality of starting positions, the direct communication signal is sent on an unlicensed frequency band.
  • the physical direct communication data channel includes a plurality of micro-slot scheduling data channel resources, and the number of micro-slots in the physical direct communication data channel is related to the number of positions where the direct communication signal starts to be sent. equal, the first symbol in each of the plurality of mini-slots is an automatic gain control symbol, the last symbol is a guard interval symbol, and the symbol between the automatic gain control symbol and the guard interval symbol Used to transmit direct communication signals.
  • the number of mini-slots is determined based on the number of symbols used to transmit direct communication signals and the symbol length supported by the mini-slots.
  • the number of mini-slots is determined based on the number of symbols used to transmit direct communication signals, the symbol length supported by the mini-slots, and physical direct-connection feedback channel resources.
  • the processing unit is configured with multiple physical direct communication data channels; each of the multiple physical direct communication data channels includes a plurality of micro-slots, each There is one start position in each micro-slot, and the number of micro-slots included in each physical direct communication data channel is different; the indication information is used to indicate the physical direct communication data channel used in a single transmission.
  • the sending unit sends radio resource control information, where the radio resource control information is used to indicate the number of mini-slots, and each type of mini-slot number corresponds to a physical direct communication data channel.
  • a communication device based on a physical direct communication data channel including:
  • processor ; memory for storing instructions executable by the processor;
  • the processor is configured to: execute the communication method based on the physical direct communication data channel described in the first aspect or any implementation manner of the first aspect.
  • a communication device based on a physical direct communication data channel including:
  • processor ; memory for storing instructions executable by the processor;
  • the processor is configured to: execute the communication method based on the physical direct communication data channel described in the second aspect or any implementation manner of the second aspect.
  • a storage medium stores instructions, and when the instructions in the storage medium are executed by the processor of the terminal, the terminal can execute the first aspect or the first The communication method based on the physical direct communication data channel described in any one of the implementation manners of the aspect.
  • a storage medium stores instructions, and when the instructions in the storage medium are executed by the processor of the network device, the network device can execute the second aspect or The communication method based on the physical direct communication data channel described in any one of the implementation manners of the second aspect.
  • the physical direct communication data channel includes multiple starting positions of the direct communication signal, and based on the multiple starting positions, the direct transmission is performed on the unlicensed frequency band.
  • the connection communication signal can increase the transmission opportunity of the physical direct connection communication data channel after the LBT is successful.
  • Fig. 1 is a schematic diagram of a wireless communication system according to an exemplary embodiment.
  • Fig. 2 shows the PSSCH transmission structure of NR sidelink in the related art.
  • Fig. 3 shows the PSSCH transmission structure of NR sidelink in the related art.
  • Fig. 4 is a flowchart showing a PSSCH-based communication method according to an exemplary embodiment.
  • Fig. 5 is a PSSCH structure shown by an exemplary embodiment of the present disclosure.
  • Fig. 6 is a PSSCH structure shown by an exemplary embodiment of the present disclosure.
  • Fig. 7 is a flowchart showing a PSSCH-based communication method according to an exemplary embodiment.
  • Fig. 8 is a flowchart showing a PSSCH-based communication method according to an exemplary embodiment.
  • Fig. 9 is a flowchart showing a PSSCH-based communication method according to an exemplary embodiment.
  • Fig. 10 is a block diagram of a PSSCH-based communication device according to an exemplary embodiment.
  • Fig. 11 is a block diagram of a PSSCH-based communication device according to an exemplary embodiment.
  • Fig. 12 is a block diagram showing a device for PSSCH-based communication according to an exemplary embodiment.
  • Fig. 13 is a block diagram showing a device for PSSCH-based communication according to an exemplary embodiment.
  • the communication method based on the physical direct communication data channel provided by the embodiment of the present disclosure may be applied to the direct communication system shown in FIG. 1 .
  • the network device configures various transmission parameters for data transmission for the direct communication device 1 .
  • the direct communication device 1, the direct communication device 2 and the direct communication device 3 perform direct communication. There may be obstacles between the direct communication device 2 and the direct communication device 3 .
  • the link for communication between the network device and the direct communication device is an uplink and downlink, and the link between the direct communication device and the direct communication device is a direct link (Sidelink).
  • the communication scenario of direct communication between directly connected communication devices may be a vehicle wireless communication technology (Vehicle to Everything, V2X) business scenario.
  • V represents the on-board device
  • X represents any object that interacts with the on-board device.
  • X mainly includes in-vehicle devices, handheld devices, traffic roadside infrastructure and networks.
  • the information mode of V2X interaction includes: between vehicle equipment and vehicle equipment (Vehicle to Vehicle, V2V), between vehicle equipment and roadside equipment (Vehicle to Infrastructure, V2I), between vehicle equipment and handheld equipment (Vehicle to Pedestrian, V2P), the interaction between vehicle equipment and network (Vehicle to Network, V2N).
  • 5G NR technology is used in 3GPP Rel-16 to support new V2x communication services and scenarios, such as Vehicles Platooning, Extended Sensors, advanced Driving (Advanced Driving), and remote driving (Remote Driving), etc.
  • V2x Sidelink can provide higher communication rate, shorter communication delay, and more reliable communication quality.
  • the communication scenario of direct communication between directly connected communication devices may also be a device-to-device (Device to Device, D2D) communication scenario.
  • the direct communication devices for direct communication in the embodiments of the present disclosure may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of user Equipment (User Equipment, UE), mobile station (Mobile station, MS), terminal (terminal), terminal equipment (Terminal Equipment) and so on.
  • UE user Equipment
  • MS mobile station
  • terminal terminal equipment
  • Terminal Equipment Terminal Equipment
  • sidelink performs communication transmission based on Physical Sidelink Shared Channel (PSSCH)/Physical Sidelink Control Channel (PSCCH).
  • PSSCH Physical Sidelink Shared Channel
  • PSCCH Physical Sidelink Control Channel
  • Figure 2 and Figure 3 show the PSSCH transmission structure of NR sidelink in the related art.
  • resources for sidelink that is, sidelink resources for transmitting direct communication signals
  • AGC automatic gain control
  • GP guard interval
  • the LBT mechanism is also used for channel monitoring. Data can only be sent when the channel is detected to be idle.
  • the introduction of the LBT mechanism makes the transmission of direct communication signals in sidelink-unlicensed only when the AGC symbols configured in the time slot and the channel are detected to be idle. Even if the channel is detected to be idle, the configuration in the time slot is not detected. If the AGC symbol is used, the direct communication signal cannot be sent, that is, there is uncertainty in the sending of the sidelink signal.
  • the AGC symbol is monitored at the third symbol, but the LBT fails and the channel is not detected to be idle, then the PSSCH transmission will not be possible, and the position of the AGC symbol can be understood as sideink transmission Start sending location.
  • an embodiment of the present disclosure provides a communication method based on PSSCH.
  • a PSSCH structure is provided, and the PSSCH includes a plurality of start transmission positions, that is, the sidelink where the direct communication signal is transmitted
  • the resource includes a plurality of starting positions of the direct communication signal, and based on the plurality of starting positions, the direct communication signal is transmitted in an unlicensed frequency band.
  • Fig. 4 is a flow chart of a PSSCH-based communication method according to an exemplary embodiment. As shown in Fig. 4, the PSSCH-based communication method is used in a terminal and includes the following steps.
  • step S11 the PSSCH is determined, and the PSSCH includes a plurality of starting positions of the direct communication signal.
  • step S12 the direct communication signal is transmitted on the unlicensed frequency band based on multiple transmission starting positions.
  • the PSSCH including multiple start transmission positions of the direct communication signal can be understood as introducing multiple (more than one) PSSCH start transmission positions in the sidelink time slot.
  • Sending direct-connection communication signals based on multiple starting positions in the unlicensed frequency band can increase the possibility of PSSCH transmission after successful LBT, thereby increasing the probability of successful PSSCH transmission of direct-connection communication signals on the unlicensed frequency band.
  • 3GPP R16 has completed the technical solution and working mechanism of terminal direct link communication (NR sidelink) and cellular unlicensed band communication (NR-U). Therefore, for sidelink-unlicensed in the embodiments of the present disclosure, reference and review Use part of the technical solutions and working mechanisms of 3GPP R16NR sidelink and NR-U.
  • NR sidelink terminal direct link communication
  • NR-U cellular unlicensed band communication
  • a mini slot can be introduced into the sidelink-unlicensed, and multiple mini slots are included in the PSSCH, that is, one time slot contains multiple mini slots.
  • the number of mini-slots in the physical direct communication data channel is equal to the number of starting positions of the direct communication signal.
  • the first symbol is an AGC symbol
  • the last symbol is a GP symbol
  • the symbols between the AGC symbols and the GP symbols are used to transmit direct communication signals.
  • the mini slot structure is introduced into the unlicensed frequency band, and each mini slot contains the starting position of a PSSCH transmission, which is the position where the AGC symbol starts.
  • the first symbol is AGC
  • the period from the second symbol to the last symbol is the PSSCH/PSCCH transmission symbol
  • the last symbol is GP.
  • the number of mini slots included in the PSSCH in this embodiment of the present disclosure may be determined based on the number of symbols used to transmit direct communication signals and the length of symbols supported by the mini slots.
  • the number of symbols used to transmit the direct communication signal may be determined based on the direct communication start symbol (sl-StartSymbol) and the direct communication symbol length (sl-LengthSymbols).
  • the sl-StartSymbol information field is configured by Radio Resource Control (RRC), reuses the existing parameters in R16, and indicates the start symbol that can be used for the sidelink symbol in a time slot, and the value is ⁇ 0 ,1,2,3,4,5,6,7 ⁇ .
  • RRC Radio Resource Control
  • the sl-LengthSymbols information field is configured by RRC, reuses the existing parameters in R16, and indicates the symbol length that can be used for sidelink in a time slot, and the value is: ⁇ 7,8,9,10,11,12,13, 14 ⁇ .
  • the symbol length supported by the mini slot in the embodiment of the present disclosure may reuse the length of the mini slot in NR-U.
  • PSFCH Physical Sidelink Feedback Channel
  • PSFCH Physical Sidelink Feedback Channel
  • AGC symbols for PSFCH resources, located in the penultimate symbol in a slot, and configure GP symbols on the penultimate symbol . Therefore, when determining the number of mini slots included in the PSSCH, PSFCH resources also need to be considered. That is, the number of mini slots included in the PSSCH can be determined based on the number of symbols used to transmit the direct communication signal, the symbol length supported by the mini slot, and PSFCH resource determination.
  • the number of mini slots can be determined based on the number of symbols used to transmit direct communication signals and the length of symbols supported by the mini slots.
  • sl-PSFCH-Period 0, indicating that PSFCH resources are not configured.
  • the number of mini slots can be determined based on the number of symbols used to transmit direct communication signals and the symbol length supported by the mini slot.
  • Fig. 5 is a PSSCH structure shown by an exemplary embodiment of the present disclosure.
  • the number of symbols used to transmit direct communication signals and the symbol length supported by the mini slot may be determined by sl-LengthSymbols.
  • the traditional NR sidelink resource mapping method is reused, and the frequency domain mapping is followed by the time domain mapping until all symbols are mapped.
  • the PSSCH structure shown in FIG. 5 due to two The symbols used for GP are separated between the sending positions of PSSCH. There is no transmission of control and data information on this symbol. Therefore, there are two ways of resource mapping as follows:
  • Mode 1 The symbols of the GP are mapped to resources for rate matching.
  • Mode 2 puncture the symbol of the GP.
  • in the case of configuring PSSCH resources it may be determined based on the number of symbols used to transmit direct communication signals, the length of symbols supported by mini slots, and the number of mini slots determined by PSFCH resources.
  • sl-PSFCH-Period ⁇ 0 indicates that PSFCH resources are configured.
  • the number of mini slots can be determined based on the number of symbols used to transmit direct communication signals, the symbol length supported by the mini slot, and PSFCH resources.
  • sl-PSFCH-Period ⁇ 0 when configuring PSFCH, it is necessary to consider that 3 symbols are additionally occupied, that is: 1 symbol occupied by PSFCH, and 1 symbol introduced by PSFCH is used as GP and 1 symbols are used as AGC.
  • Fig. 6 is a PSSCH structure shown by an exemplary embodiment of the present disclosure.
  • the traditional NR sidelink resource mapping method is reused, and the frequency domain mapping is followed by the time domain mapping until all symbols are mapped.
  • the PSSCH structure shown in FIG. 6 due to two The symbols used for AGC and GP are separated between the sending positions of PSSCH. There is no transmission of control and data information on the GP symbol. Therefore, there are two methods for resource mapping:
  • Mode 1 The symbols of the GP are mapped to resources for rate matching.
  • Mode 2 puncture the symbol of the GP.
  • multiple PSSCHs may be configured, and when direct communication signal transmission is performed, the PSSCH used in a single transmission required for each transmission is determined among the multiple configured PSSCHs.
  • each PSSCH among the various configured PSSCHs includes multiple mini slots, each mini slot has a starting position for transmission, and the number of mini slots included in each PSSCH is different. That is, each number of mini slots corresponds to one PSSCH.
  • each of the multiple PSSCHs includes multiple mini slots, each mini slot has a starting position for transmission, and the number of mini slots included in each PSSCH is different.
  • some PSSCHs among the multiple PSSCHs include multiple mini slots, each mini slot has a starting position for transmission, and the number of mini slots included in each PSSCH is different.
  • each of the multiple PSSCHs in the embodiments of the present disclosure is applicable to the PSSCH structure involved in the foregoing embodiments, and for details, reference may be made to relevant descriptions of the foregoing embodiments.
  • each PSSCH structure contains a different number of mini slots, and the number of mini slots is determined by the supported mini slot length and sl-PSFCH-Period (whether PSFCH resources are configured). That is, the number of mini slots is determined by the number of symbols available for sidelink transmission.
  • the terminal and the network device may be predetermined. For example, use pre-configuration.
  • the network device may configure multiple PSSCHs, and indicate the configured multiple PSSCHs to the terminal.
  • the PSSCH used in a single transmission may be determined among multiple PSSCHs based on the indication information.
  • the PSSCH used in a single transmission may be indicated based on RRC information.
  • the PSSCH includes a plurality of mini slots, and the number of mini slots is equal to the number of starting sending positions, and each type of PSSCH corresponds to a number of mini slots. Therefore, in the embodiment of the present disclosure, the PSSCH may be indicated by indicating the number of mini slots.
  • Fig. 7 is a flow chart of a PSSCH-based communication method according to an exemplary embodiment. As shown in Fig. 7, the PSSCH-based communication method is used in a terminal and includes the following steps.
  • step S21 the PSSCH used in a single transmission is determined based on the number of mini slots indicated by the RRC information, and the number of each type of mini slot corresponds to a PSSCH.
  • the PSSCH used in a single transmission includes multiple mini slots, and each mini slot contains a starting position of PSSCH transmission, that is, the position where the AGC symbol starts.
  • the first symbol is AGC
  • the second symbol is AGC.
  • From the first symbol to the last symbol is the PSSCH/PSCCH transmission symbol, and the last symbol is GP.
  • step S22 based on the determined PSSCH used in a single transmission, a direct communication signal is sent on an unlicensed frequency band.
  • the PSSCH-based communication method determines the PSSCH used in a single transmission based on the number of mini slots indicated by the RRC information, and the PSSCH used in a single transmission includes multiple starting positions for direct communication signals, Based on multiple starting positions, sending the direct connection communication signal on the unlicensed frequency band can increase the transmission opportunity of the physical direct connection communication data channel after the LBT is successful.
  • the embodiment of the present disclosure also provides a PSSCH-based communication method applied to a network device.
  • Fig. 8 is a flow chart showing a PSSCH-based communication method according to an exemplary embodiment. As shown in Fig. 8, the PSSCH-based communication method is used in a network device and includes the following steps.
  • step S31 a PSSCH is configured, and the PSSCH includes a plurality of starting positions of direct communication signals.
  • step S32 indication information is sent, and the indication information is used to indicate that the direct communication signal is to be transmitted on the unlicensed frequency band based on multiple transmission starting positions.
  • the PSSCH includes multiple mini slots to schedule data channel resources, the number of mini slots in the PSSCH is equal to the number of positions where the direct communication signal starts to be sent, and the first symbol in each mini slot in the multiple mini slots is the AGC symbol, the last symbol is the GP symbol, and the symbols between the AGC symbol and the GP symbol are used to transmit direct communication signals.
  • the number of mini slots is determined based on the number of symbols used to transmit direct communication signals and the length of symbols supported by the mini slots. In another implementation manner, the number of mini slots is determined based on the number of symbols used to transmit direct communication signals, the length of symbols supported by the mini slots, and physical direct feedback channel resources.
  • multiple PSSCHs are configured.
  • Each of the multiple PSSCHs includes multiple mini slots, and each mini slot has a starting transmission position, and the number of mini slots included in each PSSCH is different.
  • each of the multiple PSSCHs includes multiple mini slots, each mini slot has a starting position for transmission, and the number of mini slots included in each PSSCH is different.
  • some PSSCHs among the multiple PSSCHs include multiple mini slots, each mini slot has a starting position for transmission, and the number of mini slots included in each PSSCH is different.
  • the network device may indicate the PSSCH used in a single transmission through indication information.
  • sending indication information includes:
  • the RRC information is used to indicate the number of mini slots, and the number of each mini slot corresponds to a PSSCH.
  • Fig. 9 is a flow chart showing a PSSCH-based communication method according to an exemplary embodiment. As shown in Fig. 9, the PSSCH-based communication method is used in a network device and includes the following steps.
  • step S41 multiple PSSCHs are configured, and each PSSCH in the multiple PSSCHs includes multiple mini slots, each mini slot has a starting transmission position, and the number of mini slots included in each PSSCH is different.
  • step S42 RRC information is sent, and the RRC information is used to indicate the quantity of mini slots, and the quantity of each mini slot corresponds to a PSSCH structure.
  • each PSSCH structure includes multiple mini slots, and each mini slot has a PSSCH start sending position.
  • RRC information indicating the number of mini slots and indicating the PSSCH structure used in a single transmission
  • the terminal can perform direct communication signals on an unlicensed frequency band based on multiple starting positions in a PSSCH in a single transmission sent.
  • each of the multiple PSSCHs includes multiple mini slots, each mini slot has a starting position for transmission, and the number of mini slots included in each PSSCH is different.
  • some PSSCHs among the multiple PSSCHs include multiple mini slots, each mini slot has a starting position for transmission, and the number of mini slots included in each PSSCH is different.
  • the PSSCH structure involved in the PSSCH-based communication method applied to the network device in the embodiment of the present disclosure is the same as the PSSCH structure involved in the PSSCH-based communication method applied to the terminal. Therefore, for the application to the network device Where the description of the PSSCH structure involved in the PSSCH-based communication method is not detailed enough, reference may be made to the relevant descriptions of the foregoing embodiments, and no further details are given here.
  • the PSSCH-based communication method provided in the embodiments of the present disclosure is applicable to a process in which a network device interacts with a terminal to implement the PSSCH-based communication method.
  • a network device interacts with a terminal to implement the PSSCH-based communication method.
  • both the network device and the terminal have relevant functions in the foregoing embodiments, which will not be described in detail here.
  • the embodiment of the present disclosure also provides a communication device based on PSSCH.
  • the PSSCH-based communication device provided by the embodiments of the present disclosure includes corresponding hardware structures and/or software modules for performing various functions.
  • the embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the technical solutions of the embodiments of the present disclosure.
  • Fig. 10 is a block diagram of a PSSCH-based communication device according to an exemplary embodiment.
  • the PSSCH-based communication device 100 is applied to a terminal, and includes a processing unit 101 and a sending unit 102 .
  • the processing unit 101 is configured to determine a PSSCH, where the PSSCH includes multiple starting positions of the direct communication signal.
  • the sending unit 102 is configured to send the direct connection communication signal on the unlicensed frequency band based on multiple starting positions of sending.
  • the PSSCH includes multiple mini slots to schedule data channel resources, the number of mini slots in the PSSCH is equal to the number of positions where the direct communication signal starts to be sent, and the first symbol in each mini slot in the multiple mini slots is the AGC symbol, the last symbol is the GP symbol, and the symbols between the AGC symbol and the GP symbol are used to transmit direct communication signals.
  • the number of mini slots is determined based on the number of symbols used to transmit direct communication signals and the length of symbols supported by the mini slots.
  • the number of mini slots is determined based on the number of symbols used to transmit direct communication signals, the length of symbols supported by the mini slots, and PSFCH resources.
  • the processing unit 101 determines a PSSCH used in a single transmission among multiple configured PSSCHs. At least one PSSCH among the multiple PSSCHs includes multiple mini slots. Wherein, each type of PSSCH in all types of PSSCHs among the configured multiple types of PSSCHs includes multiple mini slots. There is a start sending position in each mini slot, and the number of mini slots included in each PSSCH is different.
  • the processing unit 101 determines the PSSCH used in a single transmission based on the number of mini slots indicated by the radio resource control information, and the number of each type of mini slot corresponds to a type of PSSCH.
  • Fig. 11 is a block diagram of a PSSCH-based communication device according to an exemplary embodiment.
  • the PSSCH-based communication apparatus 200 is applied to network equipment, and includes a processing unit 201 and a sending unit 202 .
  • the processing unit 201 is configured to configure a PSSCH, where the PSSCH includes multiple starting positions for direct communication signals.
  • the sending unit 202 is configured to send indication information, where the indication information is used to indicate that the direct communication signal is to be sent on an unlicensed frequency band based on multiple starting positions of transmission.
  • the PSSCH includes multiple mini slots to schedule data channel resources, the number of mini slots in the PSSCH is equal to the number of positions where the direct communication signal starts to be sent, and the first symbol in each mini slot in the multiple mini slots is the AGC symbol, the last symbol is the GP symbol, and the symbols between the AGC symbol and the GP symbol are used to transmit direct communication signals.
  • the number of mini slots is determined based on the number of symbols used to transmit direct communication signals and the length of symbols supported by the mini slots.
  • the number of mini slots is determined based on the number of symbols used to transmit direct communication signals, the length of symbols supported by the mini slots, and PSFCH resources.
  • the processing unit 201 configures multiple PSSCHs. At least one PSSCH among the multiple PSSCHs includes multiple mini slots. Wherein, each type of PSSCH in all types of PSSCHs among the configured multiple types of PSSCHs includes multiple mini slots. There is a start sending position in each mini slot, and the number of mini slots included in each PSSCH is different. The indication information is used to indicate the PSSCH used in a single transmission.
  • the sending unit 202 sends radio resource control information, where the radio resource control information is used to indicate the number of mini slots, and each type of mini slot number corresponds to a type of PSSCH.
  • Fig. 12 is a block diagram showing an apparatus 300 for PSSCH-based communication according to an exemplary embodiment.
  • the apparatus 300 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • device 300 may include one or more of the following components: processing component 302, memory 304, power component 306, multimedia component 308, audio component 310, input/output (I/O) interface 312, sensor component 314, and communication component 316 .
  • the processing component 302 generally controls the overall operations of the device 300, such as those associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 302 may include one or more processors 320 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 302 may include one or more modules that facilitate interaction between processing component 302 and other components. For example, processing component 302 may include a multimedia module to facilitate interaction between multimedia component 308 and processing component 302 .
  • the memory 304 is configured to store various types of data to support operations at the device 300 . Examples of such data include instructions for any application or method operating on device 300, contact data, phonebook data, messages, pictures, videos, and the like.
  • the memory 304 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power component 306 provides power to various components of device 300 .
  • Power components 306 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for device 300 .
  • the multimedia component 308 includes a screen that provides an output interface between the device 300 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or swipe action, but also detect duration and pressure associated with the touch or swipe action.
  • the multimedia component 308 includes a front camera and/or a rear camera. When the device 300 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 310 is configured to output and/or input audio signals.
  • the audio component 310 includes a microphone (MIC), which is configured to receive external audio signals when the device 300 is in operation modes, such as call mode, recording mode and voice recognition mode. Received audio signals may be further stored in memory 304 or sent via communication component 316 .
  • the audio component 310 also includes a speaker for outputting audio signals.
  • the I/O interface 312 provides an interface between the processing component 302 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor assembly 314 includes one or more sensors for providing various aspects of status assessment for device 300 .
  • the sensor component 314 can detect the open/closed state of the device 300, the relative positioning of components, such as the display and keypad of the device 300, and the sensor component 314 can also detect a change in the position of the device 300 or a component of the device 300 , the presence or absence of user contact with the device 300 , the device 300 orientation or acceleration/deceleration and the temperature change of the device 300 .
  • the sensor assembly 314 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 314 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 314 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 316 is configured to facilitate wired or wireless communication between the apparatus 300 and other devices.
  • the device 300 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 316 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 316 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • apparatus 300 may be programmed by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • non-transitory computer-readable storage medium including instructions, such as the memory 304 including instructions, which can be executed by the processor 320 of the device 300 to implement the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • Fig. 13 is a block diagram showing an apparatus 400 for PSSCH-based communication according to an exemplary embodiment.
  • the apparatus 400 may be provided as a server.
  • apparatus 400 includes processing component 422 , which further includes one or more processors, and a memory resource represented by memory 432 for storing instructions executable by processing component 422 , such as application programs.
  • the application program stored in memory 432 may include one or more modules each corresponding to a set of instructions.
  • the processing component 422 is configured to execute instructions to perform the above method.
  • Device 400 may also include a power component 426 configured to perform power management of device 400 , a wired or wireless network interface 450 configured to connect device 400 to a network, and an input-output (I/O) interface 458 .
  • the device 400 can operate based on an operating system stored in the memory 432, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • apparatus 400 may be programmed by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • non-transitory computer-readable storage medium including instructions, such as the memory 432 including instructions, which can be executed by the processing component 422 of the apparatus 400 to implement the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • “plurality” in the present disclosure refers to two or more, and other quantifiers are similar thereto.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B may indicate: A exists alone, A and B exist simultaneously, and B exists independently.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • the singular forms “a”, “said” and “the” are also intended to include the plural unless the context clearly dictates otherwise.
  • first, second, etc. are used to describe various information, but the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another, and do not imply a specific order or degree of importance. In fact, expressions such as “first” and “second” can be used interchangeably.
  • first information may also be called second information, and similarly, second information may also be called first information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种物理直连通信数据信道的通信方法、装置及存储介质。基于物理直连通信数据信道的通信方法,应用于终端,包括:确定物理直连通信数据信道,所述物理直连通信数据信道中包括直连通信信号的多个开始发送位置;基于所述多个开始发送位置,在非授权频段上发送直连通信信号。通过本公开基于所述多个开始发送位置,在非授权频段上发送直连通信信号,能够增加LBT成功后可以进行物理直连通信数据信道的传输机会。

Description

基于物理直连通信数据信道的通信方法、装置及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种基于物理直连通信数据信道的通信方法、装置及存储介质。
背景技术
多种新业务新应用的需求持续产生,终端直连通信(sidelink)对传输带宽、通信速率、通信时延、可靠性、可扩展性等性能要求也越来越高。其中,有限的授权频谱已无法满足未来潜在的多样化应用场景和需求,所以需要研究并设计能应用在非授权频段上的终端直连通信(sidelink-unlicensed)技术。
在非授权频段,基于先听后发(listen before talk,LBT)机制进行信道监测。在监测到信道空闲时,才能发送数据。LBT机制的引入,使得sidelink信号的发送必须在监测到信道空闲的时候才能发送,即使存在sidelink信号发送时机,但是若未监测到信道空闲,也不能进行sidelink信号的发送,即sidelink信号的发送存在不确定性。为了解决LBT机制带来的不确定性,使得控制信息和数据的发送时间更加灵活,sidelink-unlicensed的物理信道和物理信号的设计需要一定的增强。
发明内容
为克服相关技术中存在的问题,本公开提供一种基于物理直连通信数据信道的通信方法、装置及存储介质。
根据本公开实施例的第一方面,提供一种基于物理直连通信数据信道的通信方法,应用于终端,所述基于物理直连通信数据信道的通信方法包括:
确定物理直连通信数据信道,所述物理直连通信数据信道中包括直连通信信号的多个开始发送位置;基于所述多个开始发送位置,在非授权频段上发送直连通信信号。
一种实施方式中,所述物理直连通信数据信道包括多个微小时隙调度数据信道的资源,所述物理直连通信数据信道中微小时隙的数量与直连通信信号开始发送位置的数量相等,所述多个微小时隙中的每一微小时隙中首个符号为自动增益控制符号,最后一个符号为保护间隔符号,所述自动增益控制符号和所述保护间隔符号之间的符号用于传输直连通信信号。
一种实施方式中,所述微小时隙的数量基于用于传输直连通信信号的符号数量,以及所述微小时隙支持的符号长度来确定。
一种实施方式中,所述微小时隙的数量基于用于传输直连通信信号的符号数量,所述 微小时隙支持的符号长度,以及物理直连反馈信道资源确定。
一种实施方式中,所述确定物理直连通信数据信道,包括:
在配置的多种物理直连通信数据信道中,确定单次传输中使用的物理直连通信数据信道;所述多种物理直连通信数据信道中每一种物理直连通信数据信道中均包括多个微小时隙,每个微小时隙中有一个开始发送位置,且各物理直连通信数据信道中包括的微小时隙的数量不同。
一种实施方式中,确定物理直连通信数据信道,包括:
基于无线资源控制信息指示的微小时隙的数量,确定单次传输中使用的物理直连通信数据信道,每一种微小时隙的数量对应一种物理直连通信数据信道。
根据本公开实施例的第二方面,提供一种基于物理直连通信数据信道的通信方法,应用于网络设备,所述基于物理直连通信数据信道的通信方法包括:
配置物理直连通信数据信道,所述物理直连通信数据信道中包括直连通信信号的多个开始发送位置;发送指示信息,所述指示信息用于指示基于所述多个开始发送位置,在非授权频段上发送直连通信信号。
一种实施方式中,所述物理直连通信数据信道包括多个微小时隙调度数据信道的资源,所述物理直连通信数据信道中微小时隙的数量与直连通信信号开始发送位置的数量相等,所述多个微小时隙中的每一微小时隙中首个符号为自动增益控制符号,最后一个符号为保护间隔符号,所述自动增益控制符号和所述保护间隔符号之间的符号用于传输直连通信信号。
一种实施方式中,所述微小时隙的数量基于用于传输直连通信信号的符号数量,以及所述微小时隙支持的符号长度来确定。
一种实施方式中,所述微小时隙的数量基于用于传输直连通信信号的符号数量,所述微小时隙支持的符号长度,以及物理直连反馈信道资源确定。
一种实施方式中,所述配置物理直连通信数据信道,包括:
配置多种物理直连通信数据信道;所述多种物理直连通信数据信道中每一种物理直连通信数据信道中均包括多个微小时隙,每个微小时隙中有一个开始发送位置,且各物理直连通信数据信道中包括的微小时隙的数量不同;所述指示信息用于指示单次传输中使用的物理直连通信数据信道。
一种实施方式中,所述发送指示信息,包括:
发送无线资源控制信息,所述无线资源控制信息用于指示微小时隙的数量,每一种微 小时隙的数量对应一种物理直连通信数据信道。
根据本公开实施例第三方面,提供一种基于物理直连通信数据信道的通信装置,包括:
处理单元,被配置为确定物理直连通信数据信道,所述物理直连通信数据信道中包括直连通信信号的多个开始发送位置;发送单元,被配置为基于所述多个开始发送位置,在非授权频段上发送直连通信信号。
一种实施方式中,所述物理直连通信数据信道包括多个微小时隙调度数据信道的资源,所述物理直连通信数据信道中微小时隙的数量与直连通信信号开始发送位置的数量相等,所述多个微小时隙中的每一微小时隙中首个符号为自动增益控制符号,最后一个符号为保护间隔符号,所述自动增益控制符号和所述保护间隔符号之间的符号用于传输直连通信信号。
一种实施方式中,所述微小时隙的数量基于用于传输直连通信信号的符号数量,以及所述微小时隙支持的符号长度来确定。
一种实施方式中,所述微小时隙的数量基于用于传输直连通信信号的符号数量,所述微小时隙支持的符号长度,以及物理直连反馈信道资源确定。
一种实施方式中,所述处理单元在配置的多种物理直连通信数据信道中,确定单次传输中使用的物理直连通信数据信道;所述多种物理直连通信数据信道中每一种物理直连通信数据信道中均包括多个微小时隙,每个微小时隙中有一个开始发送位置,且各物理直连通信数据信道中包括的微小时隙的数量不同。
一种实施方式中,所述处理单元基于无线资源控制信息指示的微小时隙的数量,确定单次传输中使用的物理直连通信数据信道,每一种微小时隙的数量对应一种物理直连通信数据信道。
根据本公开实施例第四方面,提供一种基于物理直连通信数据信道的通信装置,包括:
处理单元,用于配置物理直连通信数据信道,所述物理直连通信数据信道中包括直连通信信号的多个开始发送位置;发送单元,用于发送指示信息,所述指示信息用于指示基于所述多个开始发送位置,在非授权频段上发送直连通信信号。
一种实施方式中,所述物理直连通信数据信道包括多个微小时隙调度数据信道的资源,所述物理直连通信数据信道中微小时隙的数量与直连通信信号开始发送位置的数量相等,所述多个微小时隙中的每一微小时隙中首个符号为自动增益控制符号,最后一个符号为保护间隔符号,所述自动增益控制符号和所述保护间隔符号之间的符号用于传输直连通信信号。
一种实施方式中,所述微小时隙的数量基于用于传输直连通信信号的符号数量,以及 所述微小时隙支持的符号长度来确定。
一种实施方式中,所述微小时隙的数量基于用于传输直连通信信号的符号数量,所述微小时隙支持的符号长度,以及物理直连反馈信道资源确定。
一种实施方式中,所述处理单元配置多种物理直连通信数据信道;所述多种物理直连通信数据信道中每一种物理直连通信数据信道中均包括多个微小时隙,每个微小时隙中有一个开始发送位置,且各物理直连通信数据信道中包括的微小时隙的数量不同;所述指示信息用于指示单次传输中使用的物理直连通信数据信道。
一种实施方式中,所述发送单元发送无线资源控制信息,所述无线资源控制信息用于指示微小时隙的数量,每一种微小时隙的数量对应一种物理直连通信数据信道。
根据本公开实施例第五方面,提供一种基于物理直连通信数据信道的通信装置,包括:
处理器;用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:执行第一方面或者第一方面任意一种实施方式中所述的基于物理直连通信数据信道的通信方法。
根据本公开实施例第六方面,提供一种基于物理直连通信数据信道的通信装置,包括:
处理器;用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:执行第二方面或者第二方面任意一种实施方式中所述的基于物理直连通信数据信道的通信方法。
根据本公开实施例第七方面,提供一种存储介质,所述存储介质中存储有指令,当所述存储介质中的指令由终端的处理器执行时,使得终端能够执行第一方面或者第一方面任意一种实施方式中所述的基于物理直连通信数据信道的通信方法。
根据本公开实施例第八方面,提供一种存储介质,所述存储介质中存储有指令,当所述存储介质中的指令由网络设备的处理器执行时,使得网络设备能够执行第二方面或者第二方面任意一种实施方式中所述的基于物理直连通信数据信道的通信方法。
本公开的实施例提供的技术方案可以包括以下有益效果:物理直连通信数据信道中包括直连通信信号的多个开始发送位置,基于所述多个开始发送位置,在非授权频段上发送直连通信信号,能够增加LBT成功后可以进行物理直连通信数据信道的传输机会。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种无线通信***示意图。
图2示出了相关技术中NR sidelink的PSSCH传输结构。
图3示出了相关技术中NR sidelink的PSSCH传输结构。
图4是根据一示例性实施例示出的一种基于PSSCH的通信方法的流程图。
图5是本公开一示例性实施例示出的一种PSSCH结构。
图6是本公开一示例性实施例示出的一种PSSCH结构。
图7是根据一示例性实施例示出的一种基于PSSCH的通信方法的流程图。
图8是根据一示例性实施例示出的一种基于PSSCH的通信方法的流程图。
图9是根据一示例性实施例示出的一种基于PSSCH的通信方法的流程图。
图10是根据一示例性实施例示出的一种基于PSSCH的通信装置框图。
图11是根据一示例性实施例示出的一种基于PSSCH的通信装置框图。
图12是根据一示例性实施例示出的一种用于基于PSSCH的通信的装置的框图。
图13是根据一示例性实施例示出的一种用于基于PSSCH的通信的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
本公开实施例提供的基于物理直连通信数据信道的通信方法可应用于图1所示的直连通信***。参阅图1所示,直连通信设备之间进行直连通信的场景中,网络设备为直连通信设备1配置各种用于数据传输的传输参数。直连通信设备1,直连通信设备2和直连通信设备3进行直连通信。直连通信设备2和直连通信设备3之间可以存在障碍物。网络设备与直连通信设备之间进行通信的链路为上下行链路,直连通信设备与直连通信设备之间的链路是直连链路(Sidelink)。
本公开中,直连通信设备之间直接通信的通信场景可以是车用无线通信技术(Vehicle to Everything,V2X)业务场景。其中,V代表车载设备,X代表任何与车载设备交互的对象。当前X主要包含车载设备、手持设备、交通路侧基础设施和网络。V2X交互的信息模式包括:车载设备与车载设备之间(Vehicle to Vehicle,V2V)、车载设备与路边设备之间(Vehicle to Infrastructure,V2I)、车载设备与手持设备之间(Vehicle to Pedestrian,V2P)、车载设备与网络之间(Vehicle to Network,V2N)的交互。
随着新一代5G移动通信技术的发展,在3GPP Rel-16中利用5G NR技术实现了对新 的V2x通信服务和场景的支持,如车队管理(Vehicles Platooning),感知扩展(Extended Sensors),先进驾驶(Advanced Driving),和远程驾驶(Remote Driving)等。总体来说,5G V2x Sidelink能够提供更高的通信速率,更短的通信延时,更可靠的通信质量。
直连通信设备之间直接通信的通信场景也可以是终端到终端(Device to Device,D2D)的通信场景。本公开实施例中进行直接通信的直连通信设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile station,MS),终端(terminal),终端设备(Terminal Equipment)等等。为方便描述,本公开实施例以下以直连通信设备为终端为例进行说明,其中,终端和UE有时会交替使用,但本领域技术人员应理解其含义的一致性。
相关技术中,sidelink中进行基于物理直连通信数据信道(Physical Sidelink Shared Channel,PSSCH)/物理直连通信控制信道(Physical Sidelink Control Channel,PSCCH)的通信传输。图2和图3示出了相关技术中NR sidelink的PSSCH传输结构。参阅图2和图3所示,传统技术中基于PSSCH通信时,分配用于sidelink的资源(即传输直连通信信号的sidelink资源)。通常传输直连通信信号的sidelink资源的首个符号为自动增益控制(automatic gain control,AGC)符号,最后一个符号为保护间隔(gap protect,GP)符号在进行直连通信信号传输时,通常是在检测到AGC符号后,复制该AGC符号后开始PSSCH传输。
相关技术中,研究并设计能应用在非授权频段上的终端直连通信(sidelink-unlicensed)技术。sidelink-unlicensed中,同样采用LBT机制进行信道监测。在监测到信道空闲时,才能发送数据。LBT机制的引入,使得sidelink-unlicensed中直连通信信号的发送必须在监测到时隙中配置的AGC符号和信道空闲的时候才能发送,即使监测到信道空闲,但是并没有监测到时隙中配置的AGC符号,则也不能发送直连通信信号,即sidelink信号的发送存在不确定性。例如参阅图2和图3所示,在第三个符号处监测到AGC符号,但是LBT失败,未监测到信道空闲,则将不能进行PSSCH传输,AGC符号的位置可以理解为是为sideink传输的开始发送位置。
有鉴于此,本公开实施例提供一种基于PSSCH的通信方法,在该通信方法中,提供一种PSSCH结构,在该PSSCH中包括多个开始发送位置,即,在传输直连通信信号的sidelink资源中包括直连通信信号的多个开始发送位置,基于该多个开始发送位置,在非授权频段上发送直连通信信号。
图4是根据一示例性实施例示出的一种基于PSSCH的通信方法的流程图,如图4所 示,基于PSSCH的通信方法用于终端中,包括以下步骤。
在步骤S11中,确定PSSCH,PSSCH中包括直连通信信号的多个开始发送位置。
在步骤S12中,基于多个开始发送位置,在非授权频段上发送直连通信信号。
本公开实施例中,PSSCH中包括直连通信信号的多个开始发送位置可以理解为是在sidelink时隙中引入多个(大于1个)PSSCH的开始发送位置。在非授权频段中基于多个开始发送位置发送直连通信信号,能够增大LBT成功后可以进行PSSCH传输的可能性,进而提高非授权频段上PSSCH传输直连通信信号成功的概率。
目前,3GPP R16已完成的终端直通链路通信(NR sidelink)和蜂窝免许可频段通信(NR-U)的技术方案和工作机制,故,本公开实施例中针对sidelink-unlicensed,可以参考和复用部分3GPP R16NR sidelink和NR-U的技术方案和工作机制。
一种实施方式中,本公开实施例中可以在sidelink-unlicensed中引入微小时隙(mini slot),在PSSCH中包括多个mini slot,即一个时隙中含有多个mini slot。在一个时隙内,物理直连通信数据信道中微小时隙的数量与直连通信信号开始发送位置的数量相等。且多个微小时隙中的每一微小时隙中首个符号为AGC符号,最后一个符号为GP符号,AGC符号GP符号之间的符号用于传输直连通信信号。
一示例中,将mini slot的结构引入到非授权频段中,每1个mini slot中含有1个PSSCH的开始发送位置,即AGC符号开始的位置,每个mini slot中,第一个符号为AGC,第二个符号到最后一个符号之间为PSSCH/PSCCH传输符号,最后一个符号为GP。
本公开实施例PSSCH中包括的mini slot的数量可以基于用于传输直连通信信号的符号数量,以及mini slot支持的符号长度来确定。
本公开实施例中用于传输直连通信信号的符号数量可以基于直连通信起始符号(sl-StartSymbol)和直连通信符号长度(sl-LengthSymbols)确定。其中,sl-StartSymbol信息字段由无线资源控制(Radio Resource Control,RRC)配置,重用R16中已有的参数,表示可以在一个时隙中可以用于sidelink的symbol的起始symbol,取值{0,1,2,3,4,5,6,7}。sl-LengthSymbols信息字段由RRC配置,重用R16中已有的参数,表示可以在一个时隙中可以用于sidelink的symbol长度,取值:{7,8,9,10,11,12,13,14}。
本公开实施例中mini slot支持的符号长度可以复用NR-U中的mini slot的长度。
更进一步的,本公开实施例中分配给直连通信信号传输的资源中还可能存在物理直连反馈信道(Physical Sidelink feedback Channel,PSFCH)资源。PSFCH通常占用一个符号,位于一个时隙的倒数第二个符号,并且需要为PSFCH资源的配置AGC符号,在一个时隙中位于倒数第三个符号,并且在倒数第四个符号上配置GP符号。故,在进行PSSCH中包 括的mini slot的数量确定时,还需要考虑PSFCH资源。即,PSSCH中包括的mini slot的数量可以基于用于传输直连通信信号的符号数量,mini slot支持的符号长度来确定,以及PSFCH资源确定。
换言之,本公开实施例中在没有配置PSFCH资源的情况下,可以基于用于传输直连通信信号的符号数量,以及mini slot支持的符号长度来确定mini slot数量。
一示例中,sl-PSFCH-Period=0,表示没有配置PSFCH资源。在sl-PSFCH-Period=0,没有配置PSFCH资源的情况下,可以基于用于传输直连通信信号的符号数量,以及mini slot支持的符号长度来确定mini slot数量。
图5是本公开一示例性实施例示出的一种PSSCH结构。参阅图5所示,在进行PSSCH配置时,考虑传输直连通信信号的符号数量,以及mini slot支持的符号长度。其中,直连通信信号的符号数量可以由sl-LengthSymbols确定。其中,本公开实施例中设sl-LengthSymbols=8,可支持的mini slot长度为4个symbol,所以PSSCH配置时可以引入2个mini slot,即包括两个PSSCH开始传输的位置。本公开实施例中,在资源映射时,复用传统的NR sidelink资源映射方式,先频域映射后时域映射,直到映射完所有的符号,在图5所示的PSSCH结构中,由于两个PSSCH的发送位置之间,间隔了用于GP的符号,这个符号上没有控制和数据信息的传输,所以,资源映射时,有如下两种方式:
方式1:该GP的符号在资源映射,进行速率匹配。
方式2:将该GP的符号进行打孔(puncture)。
本公开另一实施例中,在配置PSSCH资源的情况下,可以基于用于传输直连通信信号的符号数量,mini slot支持的符号长度来确定,以及PSFCH资源确定mini slot数量。
一示例中,sl-PSFCH-Period≠0,表示配置有PSFCH资源。在sl-PSFCH-Period≠0,配置PSFCH资源的情况下,可以基于用于传输直连通信信号的符号数量,mini slot支持的符号长度,以及PSFCH资源确定mini slot数量。换言之,sl-PSFCH-Period≠0的情况下,在配置PSFCH时,需要考虑3个符号被额外占用,即:PSFCH占用的1个符号,另外因PSFCH而引入的1个符号用作GP和1个符号用作AGC。
图6是本公开一示例性实施例示出的一种PSSCH结构。参阅图6所示,在进行PSSCH配置时,考虑用于传输直连通信信号的符号数量,mini slot支持的符号长度,以及PSFCH资源。直连通信信号的符号数量可以由sl-LengthSymbols确定。其中,本公开实施例中设sl-LengthSymbols=11,可支持的mini slot长度为4个symbol,PSFCH占用一个符号。其中,所以引入2个mini slot,引入两个PSSCH开始传输的位置。两个PSSCH的发送位置之间,间隔了用于AGC和GP的符号。
本公开实施例中,在资源映射时,复用传统的NR sidelink资源映射方式,先频域映射后时域映射,直到映射完所有的符号,在图6所示的PSSCH结构中,由于两个PSSCH的发送位置之间,间隔了用于AGC和GP的符号,GP这个符号上没有控制和数据信息的传输,所以,资源映射时,有如下两种方式:
方式1:该GP的符号在资源映射,进行速率匹配。
方式2:将该GP的符号进行打孔(puncture)。
进一步的,本公开实施例中可以配置多种PSSCH,在进行直连通信信号传输时,在配置的多种PSSCH中确定每次传输时所需的单次传输中使用的PSSCH。
本公开实施例中,配置的多种PSSCH中每一种PSSCH均包括多个mini slot,每个mini slot中有一个开始发送位置,且各PSSCH中包括的mini slot的数量不同。即,每一数量的mini slot对应一种PSSCH。
在一些可能的实现方式中,多种PSSCH中每一种PSSCH中均包括多个mini slot,每个mini slot中有一个开始发送位置,且各PSSCH中包括的mini slot的数量不同。在另一些可能的实现方式中,多种PSSCH中的一部分PSSCH中包括多个mini slot,每个mini slot中有一个开始发送位置,且各PSSCH中包括的mini slot的数量不同。
可以理解的是,本公开实施例中多种PSSCH中每一种PSSCH均适用于上述实施例中涉及的PSSCH结构,具体可参阅上述实施例的相关描述。
一示例中,配置多种PSSCH的结构,每种PSSCH的结构含有不同数量的mini slot,mini slot的数量由可支持的mini slot长度、以及sl-PSFCH-Period(是否配置PSFCH资源)确定。即,mini slot的数量由可用于sidelink传输的符号数量来决定。
本公开实施例中,针对配置的多种PSSCH,终端和网络设备可以是预先确定的。比如,采用预配置方式。
一种实施方式中,本公开实施例中可以由网络设备配置多种PSSCH,并将配置的多种PSSCH指示给终端。
在进行单次传输中使用的PSSCH确定时,可以是基于指示信息在多种PSSCH中确定单次传输中使用的PSSCH。
一种实施方式中,可以基于RRC信息指示单次传输中使用的PSSCH。
其中,PSSCH中包括有多个mini slot,mini slot数量与开始发送位置数量相等,每一种PSSCH对应一种mini slot数量。故,本公开实施例中可以通过指示mini slot数量指示PSSCH。
图7是根据一示例性实施例示出的一种基于PSSCH的通信方法的流程图,如图7所 示,基于PSSCH的通信方法用于终端中,包括以下步骤。
在步骤S21中,基于RRC信息指示的mini slot的数量,确定单次传输中使用的PSSCH,每一种mini slot的数量对应一种PSSCH。
其中,单次传输中使用的PSSCH包括多个mini slot,每个mini slot含有1个PSSCH的开始发送位置,即AGC符号开始的位置,每个mini slot中,第一个符号为AGC,第二个符号到最后一个符号之间为PSSCH/PSCCH传输符号,最后一个符号为GP。
在步骤S22中,基于确定的单次传输中使用的PSSCH,在非授权频段上发送直连通信信号。
本公开实施例提供的基于PSSCH的通信方法,基于RRC信息指示的mini slot的数量,确定单次传输中使用的PSSCH,单次传输中使用的PSSCH包括直连通信信号的多个开始发送位置,基于多个开始发送位置,在非授权频段上发送直连通信信号,能够增加LBT成功后可以进行物理直连通信数据信道的传输机会。
基于相同的发明构思,本公开实施例还提供一种应用于网络设备的基于PSSCH的通信方法。
图8是根据一示例性实施例示出的一种基于PSSCH的通信方法的流程图,如图8所示,基于PSSCH的通信方法用于网络设备中,包括以下步骤。
在步骤S31中,配置PSSCH,PSSCH中包括直连通信信号的多个开始发送位置。
在步骤S32中,发送指示信息,指示信息用于指示基于多个开始发送位置,在非授权频段上发送直连通信信号。
一种实施方式中,PSSCH包括多个mini slot调度数据信道的资源,PSSCH中mini slot的数量与直连通信信号开始发送位置的数量相等,多个mini slot中的每一mini slot中首个符号为AGC符号,最后一个符号为GP符号,AGC符号和GP符号之间的符号用于传输直连通信信号。
一种实施方式中,mini slot的数量基于用于传输直连通信信号的符号数量,以及mini slot支持的符号长度来确定。另一种实施方式中,mini slot的数量基于用于传输直连通信信号的符号数量,mini slot支持的符号长度,以及物理直连反馈信道资源确定。
一种实施方式中,配置多种PSSCH。多种PSSCH中每一种PSSCH中均包括多个mini slot,每个mini slot中有一个开始发送位置,且各PSSCH中包括的mini slot的数量不同。
在一些可能的实现方式中,多种PSSCH中每一种PSSCH中均包括多个mini slot,每个mini slot中有一个开始发送位置,且各PSSCH中包括的mini slot的数量不同。在另一些可能的实现方式中,多种PSSCH中的一部分PSSCH中包括多个mini slot,每个mini slot 中有一个开始发送位置,且各PSSCH中包括的mini slot的数量不同。
本公开实施例中,配置多种PSSCH的情况下,网络设备可以通过指示信息指示单次传输中使用的PSSCH。
一种实施方式中,发送指示信息,包括:
发送RRC信息,RRC信息用于指示mini slot的数量,每一种mini slot的数量对应一种PSSCH。
图9是根据一示例性实施例示出的一种基于PSSCH的通信方法的流程图,如图9所示,基于PSSCH的通信方法用于网络设备中,包括以下步骤。
在步骤S41中,配置多种PSSCH,多种PSSCH中每一种PSSCH中均包括多个mini slot,每个mini slot中有一个开始发送位置,且各PSSCH中包括的mini slot的数量不同。
在步骤S42中,发送RRC信息,RRC信息用于指示mini slot的数量,每一种mini slot的数量对应一种PSSCH结构。
本公开实施例中,配置多种PSSCH结构,每一种PSSCH结构中均包括多个mini slot,每个mini slot中有一个PSSCH开始发送位置。通过发送指示mini slot数量的RRC信息,指示单次传输中使用的PSSCH结构,可以使终端在单次传输中基于一种PSSCH中的多个开始发送位置,在非授权频段上进行直连通信信号的发送。
在一些可能的实现方式中,多种PSSCH中每一种PSSCH中均包括多个mini slot,每个mini slot中有一个开始发送位置,且各PSSCH中包括的mini slot的数量不同。在另一些可能的实现方式中,多种PSSCH中的一部分PSSCH中包括多个mini slot,每个mini slot中有一个开始发送位置,且各PSSCH中包括的mini slot的数量不同。
可以理解的是,本公开实施例中应用于网络设备的基于PSSCH的通信方法中涉及的PSSCH结构,与应用于终端的基于PSSCH的通信方法中涉及的PSSCH结构相同,故,对于应用于网络设备的基于PSSCH的通信方法中涉及的PSSCH结构描述不够详尽的地方,可参阅上述实施例相关描述,在此不再详述。
进一步可以理解的是,本公开实施例中提供的基于PSSCH的通信方法适用于网络设备与终端交互实现基于PSSCH的通信方法的过程。其中,网络设备与终端交互实现PSSCH的通信过程中,网络设备和终端均具备上述实施例中相关功能,在此不再详述。
需要说明的是,本领域内技术人员可以理解,本公开实施例上述涉及的各种实施方式/实施例中可以配合前述的实施例使用,也可以是独立使用。无论是单独使用还是配合前述的实施例一起使用,其实现原理类似。本公开实施中,部分实施例中是以一起使用的实施方式进行说明的。当然,本领域内技术人员可以理解,这样的举例说明并非对本公开实施 例的限定。
基于相同的构思,本公开实施例还提供一种基于PSSCH的通信装置。
可以理解的是,本公开实施例提供的基于PSSCH的通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开实施例中所公开的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图10是根据一示例性实施例示出的一种基于PSSCH的通信装置框图。参照图10,该基于PSSCH的通信装置100应用于终端,包括处理单元101和发送单元102。
处理单元101,被配置为确定PSSCH,PSSCH中包括直连通信信号的多个开始发送位置。发送单元102,被配置为基于多个开始发送位置,在非授权频段上发送直连通信信号。
一种实施方式中,PSSCH包括多个mini slot调度数据信道的资源,PSSCH中mini slot的数量与直连通信信号开始发送位置的数量相等,多个mini slot中的每一mini slot中首个符号为AGC符号,最后一个符号为GP符号,AGC符号和GP符号之间的符号用于传输直连通信信号。
一种实施方式中,mini slot的数量基于用于传输直连通信信号的符号数量,以及mini slot支持的符号长度来确定。
一种实施方式中,mini slot的数量基于用于传输直连通信信号的符号数量,mini slot支持的符号长度,以及PSFCH资源确定。
一种实施方式中,处理单元101在配置的多种PSSCH中,确定单次传输中使用的PSSCH。多种PSSCH中至少一种PSSCH均包括多个mini slot。其中,可以是配置的多种PSSCH中的全部种类PSSCH中的每一种PSSCH均包括多个mini slot。每个mini slot中有一个开始发送位置,且各PSSCH中包括的mini slot的数量不同。
一种实施方式中,处理单元101基于无线资源控制信息指示的mini slot的数量,确定单次传输中使用的PSSCH,每一种mini slot的数量对应一种PSSCH。
图11是根据一示例性实施例示出的一种基于PSSCH的通信装置框图。参照图11,该基于PSSCH的通信装置200应用于网络设备,包括处理单元201和发送单元202。
处理单元201,用于配置PSSCH,PSSCH中包括直连通信信号的多个开始发送位置。发送单元202,用于发送指示信息,指示信息用于指示基于多个开始发送位置,在非授权频段上发送直连通信信号。
一种实施方式中,PSSCH包括多个mini slot调度数据信道的资源,PSSCH中mini slot的数量与直连通信信号开始发送位置的数量相等,多个mini slot中的每一mini slot中首个符号为AGC符号,最后一个符号为GP符号,AGC符号和GP符号之间的符号用于传输直连通信信号。
一种实施方式中,mini slot的数量基于用于传输直连通信信号的符号数量,以及mini slot支持的符号长度来确定。
一种实施方式中,mini slot的数量基于用于传输直连通信信号的符号数量,mini slot支持的符号长度,以及PSFCH资源确定。
一种实施方式中,处理单元201配置多种PSSCH。多种PSSCH中至少一种PSSCH均包括多个mini slot。其中,可以是配置的多种PSSCH中的全部种类PSSCH中的每一种PSSCH均包括多个mini slot。每个mini slot中有一个开始发送位置,且各PSSCH中包括的mini slot的数量不同。指示信息用于指示单次传输中使用的PSSCH。
一种实施方式中,发送单元202发送无线资源控制信息,无线资源控制信息用于指示mini slot的数量,每一种mini slot的数量对应一种PSSCH。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图12是根据一示例性实施例示出的一种用于基于PSSCH的通信的装置300的框图。例如,装置300可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图12,装置300可以包括以下一个或多个组件:处理组件302,存储器304,电力组件306,多媒体组件308,音频组件310,输入/输出(I/O)接口312,传感器组件314,以及通信组件316。
处理组件302通常控制装置300的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件302可以包括一个或多个处理器320来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件302可以包括一个或多个模块,便于处理组件302和其他组件之间的交互。例如,处理组件302可以包括多媒体模块,以方便多媒体组件308和处理组件302之间的交互。
存储器304被配置为存储各种类型的数据以支持在装置300的操作。这些数据的示例包括用于在装置300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM), 可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件306为装置300的各种组件提供电力。电力组件306可以包括电源管理***,一个或多个电源,及其他与为装置300生成、管理和分配电力相关联的组件。
多媒体组件308包括在所述装置300和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件308包括一个前置摄像头和/或后置摄像头。当装置300处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜***或具有焦距和光学变焦能力。
音频组件310被配置为输出和/或输入音频信号。例如,音频组件310包括一个麦克风(MIC),当装置300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器304或经由通信组件316发送。在一些实施例中,音频组件310还包括一个扬声器,用于输出音频信号。
I/O接口312为处理组件302和***接口模块之间提供接口,上述***接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件314包括一个或多个传感器,用于为装置300提供各个方面的状态评估。例如,传感器组件314可以检测到装置300的打开/关闭状态,组件的相对定位,例如所述组件为装置300的显示器和小键盘,传感器组件314还可以检测装置300或装置300一个组件的位置改变,用户与装置300接触的存在或不存在,装置300方位或加速/减速和装置300的温度变化。传感器组件314可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件314还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件314还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件316被配置为便于装置300和其他设备之间有线或无线方式的通信。装置300可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件316经由广播信道接收来自外部广播管理***的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件316还包括近场通信(NFC)模块,以促进短 程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置300可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器304,上述指令可由装置300的处理器320执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图13是根据一示例性实施例示出的一种用于基于PSSCH的通信的装置400的框图。例如,装置400可以被提供为一服务器。参照图13,装置400包括处理组件422,其进一步包括一个或多个处理器,以及由存储器432所代表的存储器资源,用于存储可由处理组件422的执行的指令,例如应用程序。存储器432中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件422被配置为执行指令,以执行上述方法。
装置400还可以包括一个电源组件426被配置为执行装置400的电源管理,一个有线或无线网络接口450被配置为将装置400连接到网络,和一个输入输出(I/O)接口458。装置400可以操作基于存储在存储器432的操作***,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
在示例性实施例中,装置400可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器432,上述指令可由装置400的处理组件422执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
进一步可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
进一步可以理解的是,术语“第一”、“第二”等用于描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开,并不表示特定的顺序或者重要程度。实际上,“第一”、“第二”等表述完全可以互换使用。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利范围来限制。

Claims (18)

  1. 一种基于物理直连通信数据信道的通信方法,其特征在于,应用于终端,所述基于物理直连通信数据信道的通信方法包括:
    确定物理直连通信数据信道,所述物理直连通信数据信道中包括直连通信信号的多个开始发送位置;
    基于所述多个开始发送位置,在非授权频段上发送直连通信信号。
  2. 根据权利要求1所述的基于物理直连通信数据信道的通信方法,其特征在于,所述物理直连通信数据信道包括多个微小时隙调度数据信道的资源,所述物理直连通信数据信道中微小时隙的数量与直连通信信号开始发送位置的数量相等,
    所述多个微小时隙中的每一微小时隙中首个符号为自动增益控制符号,最后一个符号为保护间隔符号,所述自动增益控制符号和所述保护间隔符号之间的符号用于传输直连通信信号。
  3. 根据权利要求2所述的基于物理直连通信数据信道的通信方法,其特征在于,所述微小时隙的数量基于用于传输直连通信信号的符号数量,以及所述微小时隙支持的符号长度来确定。
  4. 根据权利要求2所述的基于物理直连通信数据信道的通信方法,其特征在于,所述微小时隙的数量基于用于传输直连通信信号的符号数量,所述微小时隙支持的符号长度,以及物理直连反馈信道资源确定。
  5. 根据权利要求1至4中任意一项所述的基于物理直连通信数据信道的通信方法,其特征在于,所述确定物理直连通信数据信道,包括:
    在配置的多种物理直连通信数据信道中,确定单次传输中使用的物理直连通信数据信道;
    所述多种物理直连通信数据信道中每一种物理直连通信数据信道中均包括多个微小时隙,每个微小时隙中有一个开始发送位置,且各物理直连通信数据信道中包括的微小时隙的数量不同。
  6. 根据权利要求5所述的基于物理直连通信数据信道的通信方法,其特征在于,确定物理直连通信数据信道,包括:
    基于无线资源控制信息指示的微小时隙的数量,确定单次传输中使用的物理直连通信数据信道,每一种微小时隙的数量对应一种物理直连通信数据信道。
  7. 一种基于物理直连通信数据信道的通信方法,其特征在于,应用于网络设备,所 述基于物理直连通信数据信道的通信方法包括:
    配置物理直连通信数据信道,所述物理直连通信数据信道中包括直连通信信号的多个开始发送位置;
    发送指示信息,所述指示信息用于指示基于所述多个开始发送位置,在非授权频段上发送直连通信信号。
  8. 根据权利要求根据权利要求7所述的基于物理直连通信数据信道的通信方法,其特征在于,所述物理直连通信数据信道包括多个微小时隙调度数据信道的资源,所述物理直连通信数据信道中微小时隙的数量与直连通信信号开始发送位置的数量相等,
    所述多个微小时隙中的每一微小时隙中首个符号为自动增益控制符号,最后一个符号为保护间隔符号,所述自动增益控制符号和所述保护间隔符号之间的符号用于传输直连通信信号。
  9. 根据权利要求8所述的基于物理直连通信数据信道的通信方法,其特征在于,所述微小时隙的数量基于用于传输直连通信信号的符号数量,以及所述微小时隙支持的符号长度来确定。
  10. 根据权利要求8所述的基于物理直连通信数据信道的通信方法,其特征在于,所述微小时隙的数量基于用于传输直连通信信号的符号数量,所述微小时隙支持的符号长度,以及物理直连反馈信道资源确定。
  11. 根据权利要求7至10中任意一项所述的基于物理直连通信数据信道的通信方法,其特征在于,所述配置物理直连通信数据信道,包括:
    配置多种物理直连通信数据信道;
    所述多种物理直连通信数据信道中每一种物理直连通信数据信道中均包括多个微小时隙,每个微小时隙中有一个开始发送位置,且各物理直连通信数据信道中包括的微小时隙的数量不同;
    所述指示信息用于指示单次传输中使用的物理直连通信数据信道。
  12. 根据权利要求11所述的基于物理直连通信数据信道的通信方法,其特征在于,所述发送指示信息,包括:
    发送无线资源控制信息,所述无线资源控制信息用于指示微小时隙的数量,每一种微小时隙的数量对应一种物理直连通信数据信道。
  13. 一种基于物理直连通信数据信道的通信装置,其特征在于,包括:
    处理单元,被配置为确定物理直连通信数据信道,所述物理直连通信数据信道中包括 直连通信信号的多个开始发送位置;
    发送单元,被配置为基于所述多个开始发送位置,在非授权频段上发送直连通信信号。
  14. 一种基于物理直连通信数据信道的通信装置,其特征在于,包括:
    处理单元,用于配置物理直连通信数据信道,所述物理直连通信数据信道中包括直连通信信号的多个开始发送位置;
    发送单元,用于发送指示信息,所述指示信息用于指示基于所述多个开始发送位置,在非授权频段上发送直连通信信号。
  15. 一种基于物理直连通信数据信道的通信装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求1至6中任意一项所述的基于物理直连通信数据信道的通信方法。
  16. 一种基于物理直连通信数据信道的通信装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求7至12中任意一项所述的基于物理直连通信数据信道的通信方法。
  17. 一种存储介质,其特征在于,所述存储介质中存储有指令,当所述存储介质中的指令由终端的处理器执行时,使得终端能够执行权利要求1至6中任意一项所述的基于物理直连通信数据信道的通信方法。
  18. 一种存储介质,其特征在于,所述存储介质中存储有指令,当所述存储介质中的指令由网络设备的处理器执行时,使得终端能够执行权利要求7至12中任意一项所述的基于物理直连通信数据信道的通信方法。
PCT/CN2021/105328 2021-07-08 2021-07-08 基于物理直连通信数据信道的通信方法、装置及存储介质 WO2023279342A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21948838.4A EP4369845A1 (en) 2021-07-08 2021-07-08 Communication method and apparatus based on physical sidelink data channel, and storage medium
PCT/CN2021/105328 WO2023279342A1 (zh) 2021-07-08 2021-07-08 基于物理直连通信数据信道的通信方法、装置及存储介质
CN202180002080.2A CN113632582B (zh) 2021-07-08 2021-07-08 基于物理直连通信数据信道的通信方法、装置及存储介质
US18/405,972 US20240147455A1 (en) 2021-07-08 2024-01-05 Method and device for communication based on physical sidelink shared channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/105328 WO2023279342A1 (zh) 2021-07-08 2021-07-08 基于物理直连通信数据信道的通信方法、装置及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/405,972 Continuation US20240147455A1 (en) 2021-07-08 2024-01-05 Method and device for communication based on physical sidelink shared channel

Publications (1)

Publication Number Publication Date
WO2023279342A1 true WO2023279342A1 (zh) 2023-01-12

Family

ID=78391347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105328 WO2023279342A1 (zh) 2021-07-08 2021-07-08 基于物理直连通信数据信道的通信方法、装置及存储介质

Country Status (4)

Country Link
US (1) US20240147455A1 (zh)
EP (1) EP4369845A1 (zh)
CN (1) CN113632582B (zh)
WO (1) WO2023279342A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230224830A1 (en) * 2022-01-11 2023-07-13 Qualcomm Incorporated Sidelink slots with multiple automatic gain control symbols
US20230262702A1 (en) * 2022-02-16 2023-08-17 Qualcomm Incorporated Slot structure for automatic gain control for high subcarrier spacing
CN116981076A (zh) * 2022-04-14 2023-10-31 维沃移动通信有限公司 资源确定、配置方法、终端及网络侧设备
CA3198177A1 (en) * 2022-04-28 2023-10-28 Comcast Cable Communications, Llc Automatic gain control for sidelink communications
CN117320158A (zh) * 2022-06-21 2023-12-29 维沃移动通信有限公司 传输方法、设备及可读存储介质
CN117320159A (zh) * 2022-06-21 2023-12-29 维沃移动通信有限公司 传输方法、设备及可读存储介质
WO2024016208A1 (zh) * 2022-07-20 2024-01-25 Oppo广东移动通信有限公司 信道传输方法及装置、终端、网络设备
WO2024065126A1 (zh) * 2022-09-26 2024-04-04 北京小米移动软件有限公司 一种连续多时隙的传输方法、装置及存储介质
WO2024094866A1 (en) * 2022-11-04 2024-05-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sidelink slot structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200106588A1 (en) * 2018-09-28 2020-04-02 Qualcomm Incorporated Noise tracking within transmission time intervals in wireless communications
CN111373824A (zh) * 2017-11-27 2020-07-03 瑞典爱立信有限公司 用于在通信***中调度子时隙的方法
CN111756476A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 通信方法及装置
CN111757459A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 一种通信方法及装置
WO2021007759A1 (zh) * 2019-07-15 2021-01-21 Oppo广东移动通信有限公司 控制信道的传输方法、装置及存储介质
CN112514303A (zh) * 2018-05-10 2021-03-16 瑞典爱立信有限公司 用数据子载波内正交覆盖码的物理上行链路控制信道频分复用
CN112713974A (zh) * 2019-10-25 2021-04-27 成都华为技术有限公司 资源映射方法、设备及存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151915A1 (en) * 2018-02-02 2019-08-08 Telefonaktiebolaget Lm Ericsson (Publ) Wireless node for receiving a wireless signal and method thereof
JP2022510552A (ja) * 2018-10-11 2022-01-27 日本電気株式会社 サイドリンク通信のための方法、端末デバイス及びコンピュータ読み取り可能な媒体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111373824A (zh) * 2017-11-27 2020-07-03 瑞典爱立信有限公司 用于在通信***中调度子时隙的方法
CN112514303A (zh) * 2018-05-10 2021-03-16 瑞典爱立信有限公司 用数据子载波内正交覆盖码的物理上行链路控制信道频分复用
US20200106588A1 (en) * 2018-09-28 2020-04-02 Qualcomm Incorporated Noise tracking within transmission time intervals in wireless communications
CN111756476A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 通信方法及装置
CN111757459A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 一种通信方法及装置
CN112713962A (zh) * 2019-03-29 2021-04-27 华为技术有限公司 通信方法及装置
WO2021007759A1 (zh) * 2019-07-15 2021-01-21 Oppo广东移动通信有限公司 控制信道的传输方法、装置及存储介质
CN112713974A (zh) * 2019-10-25 2021-04-27 成都华为技术有限公司 资源映射方法、设备及存储介质

Also Published As

Publication number Publication date
US20240147455A1 (en) 2024-05-02
CN113632582A (zh) 2021-11-09
EP4369845A1 (en) 2024-05-15
CN113632582B (zh) 2024-02-27

Similar Documents

Publication Publication Date Title
WO2023279342A1 (zh) 基于物理直连通信数据信道的通信方法、装置及存储介质
WO2022151488A1 (zh) 一种带宽部分确定方法、带宽部分确定装置及存储介质
US20230413234A1 (en) Method and device for resource selection, and storage medium
WO2019191948A1 (zh) 下行控制信息格式大小的确定方法及装置
WO2020258080A1 (zh) 随机接入方法、装置及存储介质
WO2022133826A1 (zh) 资源选择方法、资源选择装置及存储介质
CN114762381A (zh) 一种无线感知方法、无线感知装置及存储介质
CN115004764A (zh) PScell添加或改变的成功报告的记录方法、装置
US20220346083A1 (en) Methods and apparatuses for determining network allocation vector, and storage media
WO2020164052A1 (zh) 资源确定方法及装置
WO2023077271A1 (zh) 一种bwp确定方法、装置及存储介质
WO2023279262A1 (zh) 一种消息配置方法、消息配置装置及存储介质
WO2022120649A1 (zh) 接入控制方法、装置、通信设备和介质
WO2022133665A1 (zh) 辅助资源集确定方法、装置及存储介质
WO2022126555A1 (zh) 一种传输方法、传输装置及存储介质
WO2021179126A1 (zh) 控制信令检测方法、控制信令检测装置及存储介质
CN109451803B (zh) 数据传输方法及装置
CN115336331A (zh) 一种发送、接收下行控制信道的方法、装置、设备及介质
CN110786035A (zh) 控制资源集合的处理方法、装置及计算机存储介质
CN114503693B (zh) 终端的功率配置方法、装置、通信设备及存储介质
WO2023077318A1 (zh) 基于辅助资源集进行通信的方法、装置及存储介质
WO2023201484A1 (zh) 一种基于辅助资源集进行通信的方法、装置及存储介质
WO2023028926A1 (zh) 基于辅助信息进行资源选择的方法、装置及存储介质
WO2022241622A1 (zh) 一种发现信号传输窗口确定方法、装置及存储介质
WO2023279309A1 (zh) 一种监测方法、监测装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948838

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021948838

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE