WO2021007759A1 - 控制信道的传输方法、装置及存储介质 - Google Patents

控制信道的传输方法、装置及存储介质 Download PDF

Info

Publication number
WO2021007759A1
WO2021007759A1 PCT/CN2019/096047 CN2019096047W WO2021007759A1 WO 2021007759 A1 WO2021007759 A1 WO 2021007759A1 CN 2019096047 W CN2019096047 W CN 2019096047W WO 2021007759 A1 WO2021007759 A1 WO 2021007759A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
cot
search space
space set
monitoring
Prior art date
Application number
PCT/CN2019/096047
Other languages
English (en)
French (fr)
Inventor
吴作敏
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP19937728.4A priority Critical patent/EP3972358A4/en
Priority to PCT/CN2019/096047 priority patent/WO2021007759A1/zh
Priority to CN201980092596.3A priority patent/CN113455071B/zh
Publication of WO2021007759A1 publication Critical patent/WO2021007759A1/zh
Priority to US17/550,814 priority patent/US20220110118A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a transmission method, device and storage medium of a control channel.
  • the new radio-based access to unlicensed spectrum (NR-U) system on the unlicensed spectrum supports the channel access method of frame-based equipment (FBE).
  • FBE frame-based equipment
  • the frame structure appears periodically, a frame structure has a fixed frame period, and a fixed frame period includes channel occupancy time (COT) and idle time.
  • COT channel occupancy time
  • the communication device performs in idle time Channel detection, if the channel detection result is that the channel is idle, the communication device can perform signal transmission, otherwise, it cannot perform signal transmission.
  • the terminal equipment will continue to monitor the downlink control channel within the channel occupation time of a fixed frame period. As a result, the terminal equipment performs information monitoring for a long time, and there is a problem of large power consumption and a waste of resources.
  • the embodiments of the present application provide a control channel transmission method, device, and storage medium, which solves the problem of large power consumption and waste of resources due to long-term blind monitoring of terminal equipment in the FBE-based channel access mode.
  • an embodiment of the present application provides a control channel transmission method, including:
  • the terminal device determines the first search space set in the channel occupation time COT of the fixed frame period
  • the terminal device monitors a first physical downlink control channel PDCCH according to the first search space set, the first PDCCH is used to transmit time slot structure indication information, and the time slot structure indication information is used to determine the time of the COT Gap structure.
  • an embodiment of the present application provides a control channel transmission method, including:
  • the network device determines the first search space set in the channel occupation time COT of the fixed frame period
  • the network device determines that the resources in the COT can be used, the network device sends a first physical downlink control channel PDCCH in the first search space set, and the first PDCCH is used to transmit a slot structure indicator Information, the time slot structure indication information is used to determine the time slot structure of the COT; and/or
  • the network device determines that the resources in the COT cannot be used, the network device does not transmit downlink channels or downlink signals in the COT.
  • an embodiment of the present application provides a control channel transmission device, including: a determination module and a monitoring module;
  • the determining module is configured to determine a first search space set in the channel occupation time COT of a fixed frame period
  • the monitoring module is configured to monitor a first physical downlink control channel PDCCH according to the first search space set.
  • the first PDCCH is used to transmit time slot structure indication information, and the time slot structure indication information is used to determine the COT time slot structure.
  • an embodiment of the present application provides a control channel transmission device, including: a determining module and a sending module;
  • the determining module is configured to determine a first search space set in the channel occupation time COT of a fixed frame period
  • the sending module is configured to send a first physical downlink control channel PDCCH in the first search space set when the determining module determines that the resources in the COT can be used, and the first PDCCH is used for transmission Time slot structure indication information, where the time slot structure indication information is used to determine the time slot structure of the COT; and/or
  • the determining module is further configured to determine that no downlink channel or downlink signal is transmitted in the COT when it is determined that the resources in the COT cannot be used.
  • an embodiment of the present application provides a control channel transmission device, including:
  • Processor memory, transceiver, and interface for communication with network equipment;
  • the memory stores computer execution instructions
  • the processor executes the computer-executable instructions stored in the memory, so that the processor executes the method described in the first aspect.
  • the foregoing processor may be a chip.
  • an embodiment of the present application provides a control channel transmission device, including:
  • Processor memory, transceiver, and interface for communication with terminal equipment;
  • the memory stores computer execution instructions
  • the processor executes the computer-executable instructions stored in the memory, so that the processor executes the method described in the above second aspect.
  • the foregoing processor may be a chip.
  • the embodiments of the present application may provide a computer-readable storage medium having computer-executable instructions stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, they are used to implement the first aspect. The method described.
  • the embodiments of the present application may provide a computer-readable storage medium having a computer-executable instruction stored in the computer-readable storage medium, and when the computer-executable instruction is executed by a processor, it is used to implement what is described in the second aspect. The method described.
  • an embodiment of the present application provides a program, which is used to execute the method described in the first aspect when the program is executed by a processor.
  • an embodiment of the present application provides a program, which is used to execute the method described in the second aspect when the program is executed by a processor.
  • an embodiment of the present application provides a computer program product, including program instructions, which are used to implement the method described in the first aspect.
  • an embodiment of the present application provides a computer program product, including program instructions, which are used to implement the method described in the second aspect.
  • an embodiment of the present application provides a chip, including a processing module and a communication interface, and the processing module can execute the method described in the first aspect.
  • the chip also includes a storage module (eg, memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute the first aspect The method described.
  • a storage module eg, memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to execute the first aspect The method described.
  • an embodiment of the present application provides a chip including a processing module and a communication interface, and the processing module can execute the method described in the second aspect.
  • the chip also includes a storage module (eg, memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute the second aspect The method described.
  • a storage module eg, memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to execute the second aspect The method described.
  • a fifteenth aspect of this application provides a communication system, including: terminal equipment and network equipment;
  • the terminal device is the device described in the third aspect
  • the network device is the device described in the fourth aspect.
  • the network device determines the first search space set in the COT with a fixed frame period, and when it is determined that the resources in the COT can be used, the first search The first PDCCH is sent in the space set.
  • the first PDCCH is used to transmit time slot structure indication information.
  • the time slot structure indication information is used to determine the time slot structure of the COT. When it is determined that the resources in the COT cannot be used, No downlink channel or downlink signal is transmitted in the COT.
  • the terminal device monitors the first PDCCH according to the first search space set to determine whether it can be obtained
  • the time slot structure indication information used to determine the time slot structure of the COT can assist the detection of downlink control information to a certain extent, avoiding the problem of resource waste caused by long-term detection.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • Figure 2 is a schematic diagram of the PDCCH monitoring position determined based on the search space set and CORESET;
  • Figure 3 is a schematic diagram of CCEs to be monitored in a search space set
  • Figure 4 is a schematic diagram of time domain resources when a network device performs downlink transmission
  • Figure 5 is a schematic diagram of the frame structure in the FBE-based channel access mode
  • Embodiment 6 is a schematic flowchart of Embodiment 1 of a control channel transmission method provided by this application;
  • FIG. 7 is a schematic diagram of the location of the first monitoring resource included in the first search space set in this application.
  • FIG. 8 is a schematic diagram of the location of the second monitoring resource included in the first search space set in this application.
  • FIG. 9 is a schematic diagram of the positions of the first monitoring resource and the second monitoring resource included in the first search space set in this application.
  • Embodiment 10 is a schematic flowchart of Embodiment 2 of a control channel transmission method provided by this application;
  • FIG. 11 is a schematic diagram of whether the terminal device monitors the second PDCCH based on the monitoring result of the first PDCCH;
  • FIG. 13 is a schematic structural diagram of Embodiment 1 of a control channel transmission apparatus provided by this application.
  • Embodiment 14 is a schematic structural diagram of Embodiment 2 of a control channel transmission apparatus provided by this application;
  • Embodiment 15 is a schematic structural diagram of Embodiment 3 of a control channel transmission apparatus provided by this application;
  • FIG. 16 is a schematic structural diagram of Embodiment 4 of a control channel transmission apparatus provided by this application.
  • the radio frequency spectrum is the carrier of mobile communication signals. It is a limited, non-renewable natural resource and a valuable strategic resource of the country. Therefore, all countries have special management agencies for the radio frequency spectrum and issue special policies and regulations to realize the radio frequency spectrum. Unified planning and management. At present, most countries' spectrum management adopts a fixed spectrum allocation strategy, that is, spectrum resources are managed by government authorities and allocated to fixed authorized users, which can ensure that users avoid excessive mutual interference and make better use of spectrum resources. Currently, spectrum resources can be divided into two categories: licensed spectrum and unlicensed spectrum.
  • the authorized spectrum is strictly restricted and protected. Only authorized users and their qualified devices are allowed to access, and users have to pay for this.
  • important departments such as public security, railways, civil aviation, radio and television, and telecommunications all have certain authorized spectrum.
  • the communication of equipment in these departments is running on their authorized spectrum, especially in the telecommunications industry.
  • Terminal equipment such as mobile phones is through operators.
  • the three major operators all have dedicated frequency bands authorized by the National Radio Administration to protect the public mobile communications from interference.
  • Unlicensed spectrum is the spectrum that can be used for radio equipment communication divided by the country and region. This spectrum is usually considered to be a shared spectrum, that is, the communication equipment in different communication systems can meet the regulatory requirements set by the country or region on the spectrum. To access and use the spectrum, there is no need to apply for a proprietary spectrum authorization from the government. For example, WiFi and Bluetooth, which are often used in daily life, are transmitted through unlicensed spectrum.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • the communication system may include a network device 110 and a plurality of terminal devices 120 located within the coverage area of the network device 110.
  • FIG. 1 exemplarily shows one network device 110 and two terminal devices 120.
  • the communication system may include multiple network devices 110, and the coverage of each network device may include other numbers of terminal devices 120.
  • the embodiment of the present application may include network devices 110 and terminal devices included in the communication system.
  • the number of 120 is not limited.
  • the terminal device 120 is connected to the network device 110 in a wireless manner.
  • the network device 110 and the multiple terminal devices 120 may use unlicensed spectrum for wireless communication.
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminal devices 120.
  • Figure 1 is only a schematic diagram.
  • the communication system may also include other network equipment, such as core network equipment, wireless relay equipment, and wireless backhaul equipment, or may include other networks such as network controllers and mobility management entities. Entity, the embodiment of this application is not limited to this.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD LTE Time division duplex
  • LTE-A advanced long term evolution
  • NR new radio
  • evolution system of NR system LTE on unlicensed frequency bands (LTE-based access to unlicensed spectrum, LTE-U) system, NR (NR-based access to unlicensed spectrum, NR-U) system on unlicensed frequency bands, universal mobile telecommunication system (UMTS), global Connected microwave access (worldwide interoperability for microwave access, WiMAX) communication systems, wireless local area networks (WLAN), wireless fidelity (WiFi), next-generation communication systems or other communication systems, etc.
  • WiMAX wireless local area networks
  • WiFi wireless fidelity
  • next-generation communication systems or other communication systems etc.
  • D2D device to device
  • M2M machine-to-machine
  • MTC machine type communication
  • V2V vehicle-to-vehicle
  • the network equipment involved in the embodiments of this application may be a common base station (such as a NodeB or eNB or gNB), a new radio controller (NR controller), a centralized network element (centralized unit), a new radio base station, Radio remote module, micro base station, relay, distributed unit, reception point (transmission reception point, TRP), transmission point (transmission point, TP), or any other equipment.
  • a common base station such as a NodeB or eNB or gNB
  • NR controller new radio controller
  • a centralized network element centralized unit
  • a new radio base station Radio remote module
  • micro base station relay, distributed unit, reception point (transmission reception point, TRP), transmission point (transmission point, TP), or any other equipment.
  • TRP transmission reception point
  • TP transmission point
  • the terminal device may be any terminal, for example, the terminal device may be a user equipment of machine type communication. That is to say, the terminal equipment can also be called user equipment (UE), mobile station (mobile station, MS), mobile terminal (mobile terminal), terminal (terminal), etc.
  • the terminal equipment can be connected via wireless
  • the radio access network (RAN) communicates with one or more core networks.
  • the terminal device may be a mobile phone (or called a "cellular" phone), a computer with a mobile terminal, etc., for example, the terminal device may also They are portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices that exchange language and/or data with the wireless access network.
  • RAN radio access network
  • network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on the water; they can also be deployed on airborne aircraft, balloons, and satellites.
  • the embodiments of the present application do not limit the application scenarios of network equipment and terminal equipment.
  • communication between network equipment and terminal equipment and between terminal equipment and terminal equipment can be carried out through licensed spectrum, or through unlicensed spectrum, or through licensed spectrum and Unlicensed spectrum for communication.
  • Network equipment and terminal equipment and between terminal equipment and terminal equipment can communicate through the spectrum below 7 gigahertz (gigahertz, GHz), or through the spectrum above 7 GHz, and can also use the frequency spectrum below 7 GHz.
  • the frequency spectrum above 7GHz communicates.
  • the embodiment of the present application does not limit the spectrum resource used between the network device and the terminal device.
  • each search space set includes one or more aggregation level search spaces.
  • the search space set corresponds to the time domain configuration information.
  • the terminal device can monitor the physical downlink control channel (PDCCH) candidates according to the position of the configured search space set in the time domain, and there is no need to resemble LTE in each downlink subframe. Both monitor PDCCH candidates.
  • the time domain configuration information of the search space set includes monitoring period, slot offset, number of slots, symbol position, and control resource set index.
  • the method for terminal equipment to monitor PDCCH candidates in the search space can be divided into two steps: the first step is to determine the PDCCH candidate in the configured PDCCH candidate set according to the configuration information of the search space set in the control resource set (CORESET). Control channel element (CCE) index; the second step is to determine the PDCCH candidate set to be monitored in the configured candidate PDCCH set according to preset rules, where the PDCCH candidate set to be monitored is the configured candidate PDCCH set or configuration A subset of the candidate PDCCH set.
  • CCE Control channel element
  • the search space set in the embodiment of the present application may be configured through high-level signaling, where the configuration information indicated by the high-level signaling may indicate at least one of the following:
  • the monitoring period and offset are used to determine the monitoring period for monitoring the PDCCH and the monitoring time slot in which the PDCCH needs to be monitored in the monitoring period.
  • the monitoring period may include an integer number of time slots; the symbol position in the time slot is used to determine the monitoring The starting symbol position of the PDCCH in the time slot.
  • the aggregation level may include at least one of 1, 2, 4, 8, and 16.
  • the CORESET in the embodiment of the present application may be configured through high-layer signaling, where the configuration information indicated by the high-layer signaling may indicate at least one of the following:
  • the location and size of the frequency domain resource are used to determine the location and size of the frequency domain resource for monitoring the PDCCH; the time domain length is used to determine the number of PDCCH symbols corresponding to the monitoring of the PDCCH.
  • one search space set may correspond to one or more CORESETs
  • one CORESET may correspond to one or more search space sets.
  • the terminal device can determine the PDCCH resource location to be monitored according to the search space set and CORESET configured by the high-level signaling.
  • FIG. 2 is a schematic diagram of the PDCCH monitoring position determined based on the search space set and CORESET.
  • the monitoring location may also be called a monitoring resource.
  • the monitoring period of the PDCCH is a time slot
  • the starting symbol position of the PDCCH in the monitoring time slot is the third symbol in each time slot.
  • the start position of the monitoring resource included in the search space set shown in FIG. 2 is the third symbol in each time slot.
  • aggregation level may refer to multiple consecutive CCEs used to transmit one PDCCH. For example, if the aggregation level is 2, it means that one PDCCH is transmitted through 2 consecutive CCEs, and the aggregation level is 8, which means that one PDCCH is transmitted through 8 consecutive CCEs.
  • an aggregation level and the number of PDCCH candidates corresponding to it can be considered to form a search space.
  • one search space set includes at least one search space.
  • Figure 3 is a schematic diagram of CCEs that need to be monitored in a search space set.
  • the CCE numbers in the CCE set shown in Figure 2 are CCE 0 to CCE 15, and the monitoring start position is CCE 0 (the monitoring start position can be determined by formula calculation or determined by hash function or Determined by other methods, here is an example), where for aggregation level 1, assuming that there are 6 PDCCH candidates, the CCEs that the terminal device needs to monitor are CCE 0 to CCE 5; for aggregation level 2, assuming that there are 4 PDCCH candidates When the terminal equipment needs to monitor the CCEs from CCE 0 to CCE 7; for aggregation level 4, assuming that there are 3 PDCCH candidates, the terminal equipment needs to monitor CCEs from CCE 0 to CCE 11; for aggregation level 8 and aggregation level 16, Assuming that all PDCCH candidates are 0, the terminal device does not monitor CCEs under
  • the terminal device may be configured with multiple search space sets.
  • the search space set may include a common search space set (CSS set) and a terminal device-specific search space set (UE-specific search space set, USS set).
  • the terminal device can monitor the public PDCCH and /Or the terminal equipment dedicated PDCCH, the terminal equipment dedicated PDCCH can be monitored through the terminal equipment dedicated search space collection.
  • the network equipment can ensure that the complexity of blind detection of the public search space set does not exceed the capabilities of the terminal equipment.
  • the PDCCH of the search space set configured by the broadcast information may be mainly used to indicate the reception of system information, random access responses, and paging messages. Since the information carried in the broadcast information is limited, the time domain position, aggregation level, number of candidate control channels, and associated control resource set of this search space set can be configured in a predefined or implicit way.
  • the aggregation level of the search space set configured by the broadcast information may be predefined as ⁇ aggregation level 4, aggregation level 8, aggregation level 16 ⁇ , and the number of corresponding PDCCH candidates are ⁇ 4, 2, 1 ⁇ , respectively.
  • the PDCCH related information in the embodiments of the present application has been introduced above, and the following will introduce how the terminal device implements PDCCH monitoring.
  • the network equipment needs to perform LBT (or channel detection) before sending the PDCCH. Only the LBT can be transmitted successfully, and the LBT cannot be transmitted if it fails. Therefore, the unlicensed spectrum is opportunistic transmission.
  • LBT or channel detection
  • the unlicensed spectrum is opportunistic transmission.
  • a smaller time granularity for example, a 2-symbol-length mini-slot
  • a larger time granularity for example, a time slot
  • FIG. 4 is a schematic diagram of time domain resources when a network device performs downlink transmission.
  • the scheduling behavior of network equipment includes the following stages:
  • Stage A Network equipment uses a smaller time granularity (for example, mini-slots) to prepare data transmission outside of the channel occupation time;
  • Stage B The network equipment uses a smaller time granularity (for example, mini-slots) for data transmission in the initial stage of the channel occupation time;
  • Stage C The network equipment uses a larger time granularity (for example, time slot) for data transmission during the channel occupation time and other than the initial stage;
  • the blind PDCCH monitoring behavior of terminal equipment also includes the following stages:
  • Phase A In addition to the channel occupation time of the network equipment, the terminal equipment uses a smaller time granularity (for example, mini-slots) for PDCCH monitoring
  • Stage B In the initial stage of the channel occupation time of the network equipment, the terminal equipment uses a smaller time granularity (for example, mini-slots) to perform PDCCH monitoring;
  • Stage C During the time excluding the initial stage during the channel occupation time of the network device, the terminal device uses a larger time granularity (for example, a time slot) to perform PDCCH monitoring.
  • a larger time granularity for example, a time slot
  • the network device can configure two PDCCH monitoring periods for the terminal device.
  • one type of PDCCH has a relatively small monitoring period, such as a mini-slot
  • one type of PDCCH has a relatively large monitoring cycle, such as a time slot.
  • the terminal equipment uses a smaller PDCCH monitoring period, namely mini-slots, to perform PDCCH monitoring
  • the terminal equipment uses a larger PDCCH monitoring cycle, namely, time slots to perform PDCCH monitoring.
  • it can not only ensure that the network device can perform downlink transmission as soon as possible after seizing the channel, but also can reduce the monitoring complexity of the UE during the channel occupation time of the network device.
  • the above-mentioned PDCCH monitoring method is suitable for the channel access method of load-based equipment (LBE), that is, network equipment can perform channel monitoring on the unlicensed spectrum after the service arrives, and start after the channel monitoring is successful Signal sending.
  • LBE load-based equipment
  • FIG. 5 is a schematic diagram of the frame structure in the channel access method based on FBE.
  • the frame structure appears periodically.
  • a frame structure includes a fixed frame period (the length does not exceed 200ms) and the channel occupation time COT (the length does not exceed the fixed frame period). 95%), idle time (the length is at least 5% of the channel occupation time, the minimum value is 100us, and it is located at the end of the fixed frame period).
  • the communication device performs channel clear channel assessment (CCA) during the gap time, for example, before the start of COT. If the channel detection is successful, the channel will be occupied in the next fixed frame period. Time COT can be used to transmit signals; if channel detection fails, the channel occupation time COT in the next fixed frame period cannot be used to transmit signals. That is, in this implementation manner, the channel resource opportunities that the communication device can use for service transmission appear periodically.
  • CCA channel clear channel assessment
  • the embodiment of the present application provides another control channel transmission method.
  • the terminal device determines a first search space set in the channel occupation time COT of a fixed frame period, and monitors the first PDCCH according to the first search space set.
  • the first PDCCH is used to transmit time slot structure indication information, and the time slot structure indication information is used to determine the time slot structure of the COT.
  • the terminal device uses the determined first search space set to monitor the first PDCCH, and the time slot structure indication information transmitted by the first PDCCH can be used to determine the time slot structure of the COT, so that the terminal device can be based on the determined
  • the time slot structure of COT performs the detection of control information, which can assist the detection of downlink control information to a certain extent, avoiding the problem of resource waste caused by long-term detection.
  • FIG. 6 is a schematic flowchart of Embodiment 1 of the control channel transmission method provided by this application.
  • the execution subject of this method is a device with the function of a terminal device, or a terminal device.
  • the method may include the following steps:
  • Step 61 The terminal device determines the first search space set in the channel occupation time COT of the fixed frame period.
  • At least one of the starting position of the fixed frame period, the length of the fixed frame period, the maximum length of the COT in the fixed period, and other information may be preset or the network device may pass high-level information.
  • the instructions given to the terminal equipment may also be agreed upon by the network equipment and the terminal equipment, for example based on an agreement or a legal agreement.
  • the network device may configure a search space set for terminal devices located within its service range, and send corresponding high-level signaling to the terminal device side.
  • the network device may configure the first search space set for the terminal device in the COT of each fixed frame period through high-level signaling, so that the terminal device can monitor based on the configured first search space set PDCCH.
  • the high-level signaling includes radio resource control (radio resource control, RRC) information or media access control (media access control, MAC) control element (CE) information.
  • RRC radio resource control
  • MAC media access control
  • CE control element
  • the first search space set is preset, or the first search space set is agreed upon by the network device and the terminal device.
  • Step 62 The terminal device monitors the first PDCCH according to the first search space set.
  • the first PDCCH is used to transmit time slot structure indication information, and the time slot structure indication information is used to determine the time slot structure of the COT.
  • the terminal device may detect whether the first PDCCH exists according to the first search space set. It is understandable that the first PDCCH here is a candidate PDCCH, because the network device can send the first PDCCH through the first search space set or not through the first search space set (for example, network device channel detection If it fails, the first PDCCH cannot be sent through the configured first search space set).
  • the terminal device may determine the first PDCCH candidate to be monitored according to the CORESET and the first search space set configured by high-layer signaling.
  • the network device may first detect the channel on the unlicensed spectrum before communicating with the terminal device to determine whether the resources in the COT in the next fixed frame period can be used, If it can be used, the first PDCCH may be sent according to the first search space set in the COT, so as to send the time slot structure indication information used to determine the time slot structure of the COT to the terminal device.
  • the terminal device can monitor whether the network device has sent the first PDCCH according to the determined first search space set, so as to determine whether it can obtain the slot structure indication information in the first PDCCH for determining the slot structure of the COT .
  • the first PDCCH may be a common PDCCH (for example, it may be a group common GC PDCCH (GC-PDCCH)).
  • GC-PDCCH group common GC PDCCH
  • the NR-U system supports a flexible time slot format, where the time slot format can be expressed as information about downlink (Downlink) symbols, flexible (Flexible) symbols, and uplink (Uplink) symbols included in a time slot.
  • the time slot format can be expressed as information about downlink (Downlink) symbols, flexible (Flexible) symbols, and uplink (Uplink) symbols included in a time slot.
  • Such a time slot configuration may be referred to as a different slot format (SF).
  • the time slot format supported by the NR protocol can be up to 256.
  • Table 1 shows 26 time slot formats.
  • one row represents a time slot format
  • "D" represents downlink symbols
  • "U” represents uplink symbols
  • "F” represents flexible symbols.
  • slot format 0 means that all 14 symbols in a slot are downlink symbols
  • slot format 1 means that all 14 symbols in a slot are uplink symbols
  • slot format 20 means the front of a slot. Two symbols are configured as downlink symbols, the last symbol is configured as uplink symbols, and the middle 11 symbols are configured as flexible symbols.
  • the first PDCCH is used to transmit time slot structure indication information.
  • the slot structure indicator information may be slot format indicator (SFI) information.
  • the first PDCCH may be used to transmit SFI information of at least one cell, and an SFI index (SFI-index) field in the first PDCCH may be used to indicate a slot format combination, where a slot format combination includes at least one slot Format instructions.
  • the cyclic redundancy check (CRC) of the first PDCCH may be scrambled by the slot format indication-radio network temporary identity (slot format indication radio network temporary identity, SFI-RNTI), where SFI -RNTI can be configured by higher layers.
  • SFI-RNTI slot format indication radio network temporary identity
  • the terminal device monitors the first PDCCH using the determined first search space set, and the time slot structure indication information transmitted by the first PDCCH can be used to determine the time slot structure of the COT, so that The terminal device can perform control information detection based on the determined COT time slot structure, which can assist the detection of downlink control information to a certain extent, avoiding the problem of resource waste caused by long-term detection.
  • the length or end position of the COT in the fixed frame period may be pre-configured or indicated by higher layer signaling, or the length or end position of the COT in the fixed frame period may be determined by the time slot structure indication information of.
  • the COT in the fixed frame period may include resources used for downlink transmission, resources used for uplink transmission, resources used for sideline transmission (such as direct terminal transmission) and resources not used for transmission (such as gaps) At least one resource in.
  • the BWP of the terminal device may include one subband or multiple subbands.
  • the subband may be an LBT subband, or in other words, the subband size is the size of the frequency band during LBT detection.
  • the BWP of the terminal device includes multiple subbands, since different subbands can perform LBT independently, the LBT results on different subbands may be different.
  • the BWP0 configured by the network device for the terminal device includes the first subband and the second subband, and the first subband and the second subband are both LBT subbands.
  • the LBT fails in some subbands.
  • the LBT result of the first subband indicates success
  • the LBT result of the second subband indicates failure.
  • the network device can only pass the first subband where LBT is successful
  • the first PDCCH is transmitted, or the LBT result of the first subband indicates failure, and the LBT result of the second subband indicates success. At this time, the network device can only transmit the first PDCCH through the second subband with successful LBT.
  • the subband of the LBT failure also belongs to the frequency resource included in the BWP0 configured by the network device for the terminal device. Therefore, the network device needs to notify the terminal of the information that the subband of the LBT failure cannot be used in the COT. The device (or the network device needs to notify the terminal device of the LBT successful subband in the COT) so that the terminal device does not perform PDCCH monitoring on the LBT failed subband in the COT.
  • the first PDCCH may also be used to transmit frequency domain resource indication information, and the frequency domain resource indication information is used to determine the frequency domain resource usage of the COT.
  • the network equipment since the network equipment is prepared in advance when performing downlink transmission, the downlink transmission in the COT is performed immediately after the LBT is successful, but the information on whether frequency domain resources are available is after the end of the LBT (or the time when the COT starts) ). Therefore, the network device needs a certain processing time to send the frequency domain resource indication information to the terminal device.
  • the first search space set includes a first monitoring resource, the first monitoring resource is located in the COT, and the start position of the first monitoring resource and the start position of the COT There is an offset value between.
  • the first search space set includes a first monitoring resource with an offset value between the start position and the start position of the COT.
  • the network device can use the first monitoring resource to transmit the time slot structure
  • the first PDCCH indicating the information is transmitted to the terminal device. Therefore, when the terminal device monitors in the COT of the fixed frame period, it can determine whether the fixed frame period is available based on whether the first PDCCH is monitored in the first monitoring resource.
  • the first search space set includes a first monitoring resource with an offset value between the start position and the start position of the COT.
  • the network device can use the first monitoring resource to transmit frequency domain
  • the first PDCCH of the resource indication information is transmitted to the terminal device. Therefore, when the terminal device monitors in the COT of the fixed frame period, it can determine the frequency domain available in the COT based on the first PDCCH monitored on the first monitoring resource Resources.
  • FIG. 7 is a schematic diagram of the location of the first monitoring resource included in the first search space set in this application.
  • the network device can indicate whether the frequency domain resources of the COT are available through frequency domain resource indication information. Specifically, when the first monitoring resource is located in the COT, and the start position of the first monitoring resource is consistent with the COT When there is an offset value between the start positions, the network device may transmit on the first monitoring resource the first PDCCH that also includes frequency domain resource indication information.
  • the BWP0 configured by the network device for the terminal device includes a first subband and a second subband, and the first subband and the second subband are both LBT subbands, for example, the LBT result of the first subband Different from the LBT result of the second subband, at this time, in this embodiment, the frequency domain resource indication information used to determine the frequency domain resource usage of the COT and the time slot structure used to determine the time slot structure of the COT The indication information can be sent to the terminal device through the first PDCCH together.
  • the network device can only succeed through LBT.
  • the first subband transmits the first PDCCH, and the terminal device can monitor the first PDCCH on the first monitoring resource with an offset value between the first subband and the COT start position, and then according to the frequency domain resource indication of the first PDCCH transmission
  • the information determines that the first subband is available and the second subband is not available.
  • the first PDCCH transmitted by the first monitoring resource can also be used to determine the first PDCCH.
  • One subband is not available, and the second subband is available.
  • this type of embodiment of the present application can be applied to a scenario where it is necessary to indicate whether frequency domain resources are available, or in other words, to a scenario where frequency domain resources include at least two subbands.
  • the first monitoring resource is the first monitoring resource in the COT set in the first search space.
  • the network device after determining the frequency domain resource indication information, the network device sends the first PDCCH carrying the time slot structure indication information and the frequency domain resource indication information to the terminal device through the first monitoring resource.
  • the time slot structure indication information is used to indicate the time slot structure starting from the start position of the COT in the fixed frame period, or the time slot structure indication information is used to indicate the time starting from the first monitoring resource in the fixed frame period. Gap structure.
  • the resource corresponding to the offset value can be considered as a downlink resource, or in other words, the network device is determining the resource in the COT After it is available, downlink transmission can be performed through the resources between the start position of the COT and the start position of the first monitoring resource.
  • the first monitoring resource with an offset value between the start position included in the first search space set and the start position of the COT is used to transmit the first PDCCH, and the first PDCCH is also used to transmit the frequency domain.
  • Resource indication information so that the network device can have enough time to prepare and send frequency domain resource indication information.
  • the aforementioned offset value is greater than or equal to the length of one time unit, or the offset value is determined according to the processing time of the network device.
  • the time unit can be a symbol, a time slot, or a subframe.
  • the offset value between the start position of the first monitoring resource and the start position of the COT may be greater than or equal to one symbol
  • the size of the offset value is determined according to the processing time of the network device to ensure that the network device has enough time to prepare the frequency domain resource indication information.
  • the processing time of the network device refers to the time required for the network device to determine whether the COT can be used to generate frequency domain resource indication information.
  • the processing time can be sent to the terminal device, for example, in the form of broadcast to the terminal device, so that the terminal device can calculate the bias based on the received processing time of the network device. The size of the shift.
  • the terminal device can obtain accurate frequency domain resource indication information by monitoring the first PDCCH at the first monitoring resource, thereby ensuring the acquisition The frequency domain resource usage of the COT obtained is correct.
  • the offset value is one time slot
  • the start position of the monitoring resource included in the first search space set includes the first symbol on the second time slot of the COT.
  • the fixed frame period includes 10 time slots
  • the COT in the fixed frame period includes the first 9 time slots of the 10 time slots, for example, at least part of the resources in time slot 0 to time slot 9 are labeled
  • the monitoring period of the space set is 5 time slots
  • the monitoring time slot in the monitoring period is the second time slot in the monitoring period, that is, time slot 1 and time slot 6 in the COT, and the monitoring resources on the monitoring time slot
  • the start symbol of is the first symbol. Therefore, the start symbols of the monitoring resources included in the first search space set in the fixed frame period are the first symbol in slot 1 and the first symbol in slot 6.
  • the start symbol of the first monitoring resource is the first symbol on time slot 1.
  • the offset value is preset, or the offset value is sent by the network device to the terminal device through instruction information.
  • the above-mentioned indication information for determining the offset value may be high-layer signaling.
  • the offset value may be determined by the network device based on the processing time required from determining whether the COT can be used to generating frequency domain resource indication information.
  • the determined offset value may be sent to the terminal device, for example, in the form of high-level signaling (for example, RRC signaling or MAC signaling) to the terminal device.
  • the terminal device can directly obtain the offset value. Therefore, the terminal device can accurately indicate the frequency domain resource usage of the COT by monitoring the frequency domain resource indication information acquired by the first PDCCH at the first monitoring resource.
  • the offset value between the start position of the first monitoring resource and the start position of the COT may be preset, for example, the terminal device and the network device are agreed in advance.
  • the offset value between the start position of the first monitoring resource and the start position of the COT may also be determined by the network device and sent to the terminal device through instruction information in advance, that is, the terminal device is in The offset value is known before monitoring the first PDCCH.
  • the network device may configure a first search space set for the terminal device through high-level signaling.
  • the start symbol of the monitoring resource included in the first search space set does not include the start symbol of the COT in the fixed frame period. Start position.
  • the first search space set includes a second monitoring resource, and the start position of the second monitoring resource is the same as the start position of the COT.
  • the terminal device since the terminal device needs to determine the COT time slot structure according to whether the first PDCCH is monitored in the first search space set, the sooner the network device transmits the first PDCCH in the first COT, so that The sooner the terminal device can learn the COT time slot structure, the sooner it can assist the terminal device in monitoring the second PDCCH.
  • the second PDCCH is another PDCCH except the first PDCCH.
  • FIG. 8 is a schematic diagram of the location of the second monitoring resource included in the first search space set in this application.
  • the first search space set includes the second monitoring resource whose start position is the same as the start position of COT.
  • the first PDCCH used to transmit the slot structure indication information The second monitoring resource may be transmitted to the terminal device.
  • the terminal device monitors in the COT of the fixed frame period, it may determine whether the fixed frame period is available based on whether the first PDCCH is monitored in the first monitoring resource .
  • the second monitoring resource includes the first symbol on the first time slot of the COT.
  • the second monitoring resource is configured at the start position of the COT.
  • the start position of the first monitoring resource (that is, the second monitoring resource) in the COT set in the first search space includes the first monitoring resource of the COT.
  • the first symbol on a time slot That is, the network device may send the first PDCCH immediately after the LBT performed before the start of the COT is successful, or the network device may not send the first PDCCH in the first COT after the LBT fails.
  • the network equipment when the start position of the second monitoring resource is the same as the start position of COT, that is, when the second monitoring resource of the first search space set is configured at the start position of COT, the network equipment is The downlink transmission is prepared in advance. The downlink transmission is performed immediately after the LBT is successful, but the information about whether the frequency domain resources are available is determined after the end of the LBT. Therefore, when the downlink transmission is just started, the network equipment is not ready yet Frequency resource indication information used to determine whether the subband is available or unavailable.
  • this type of embodiment of the present application may be applied to a scenario where it is not necessary to indicate whether the frequency domain resource is available, or applied to a scenario where the frequency domain resource includes one subband.
  • the first search space set includes a first monitoring resource and a second monitoring resource
  • the start position of the first monitoring resource has an offset value from the start position of the COT
  • the start position of the second monitoring resource is the same as the start position of COT.
  • FIG. 9 is a schematic diagram of the positions of the first monitoring resource and the second monitoring resource included in the first search space set in this application.
  • the first PDCCH transmitted on the second monitoring resource is not used to transmit frequency domain resource indication information; or
  • the first PDCCH transmitted on the second monitoring resource is used to transmit frequency domain resource indication information, and the frequency domain resource indication information is not used to determine the frequency domain resource usage of the COT.
  • the first search space set includes at least two monitoring resources in the COT, that is, at least two time domain locations that can be monitored.
  • the start position is the same as the start position of the COT.
  • a second monitoring resource since the network device is not yet ready for the frequency resource indication information used to determine whether the subband is available or unavailable at the beginning of the downlink transmission, the start position is the same as the start position of the COT. A second monitoring resource.
  • the first PDCCH transmitted on the second monitoring resource is not used to transmit frequency domain resource indication information, that is, the first PDCCH transmitted on the second monitoring resource is not used to indicate the first subband and the second subband Whether it is available, or the frequency domain resource indication information transmitted by the first PDCCH transmitted on the second monitoring resource is not used to determine the frequency domain resource usage of the COT, so as to prevent the terminal device from acquiring wrong frequency resource indication information.
  • other monitoring resources included in the first search space set can be used to indicate effective frequency domain resource indication information, for example, the first PDCCH transmitted on the first monitoring resource that has an offset from the start position of the COT can be used to indicate Whether the first subband and the second subband are available.
  • the frequency domain resource indication information includes N bits
  • the first PDCCH is transmitted on the first monitoring resource and the second monitoring resource
  • the second monitoring resource is located before the first monitoring resource.
  • the downlink control information transmitted by the first PDCCH on the first monitoring resource includes N bits of frequency domain resource indication information, and the N bits of frequency domain resource indication information is used to determine available or unavailable frequency domain resources in the COT.
  • the network device may not have prepared the frequency domain resource indication information when sending the first PDCCH on the second monitoring resource, although the downlink control information transmitted by the first PDCCH on the second monitoring resource also includes the N-bit Frequency domain resource indication information, but the N-bit frequency domain indication information is not used to determine the available or unavailable frequency domain resources in the COT.
  • the N-bit frequency domain indication information is in a special state (for example, all 0s). The status is used to indicate that the network device has not yet prepared the frequency domain indication information. Or, another possible way is that the N-bit frequency domain resource indication information may not be included in the downlink control information transmitted by the first PDCCH on the second monitoring resource.
  • the solution is also applied to scenarios that need to indicate whether frequency domain resources are available, in other words, the solution is applied to scenarios where the frequency domain includes at least two subbands.
  • the first monitoring resource and the second monitoring resource included in the first search space set are monitoring resources in the same time slot.
  • the fixed frame period includes 10 time slots
  • the COT in the fixed frame period includes the first 9 time slots of the 10 time slots, for example, at least part of the resources in time slot 0 to time slot 9 are labeled
  • the first search space The monitoring period of the collection is 5 time slots.
  • the monitoring time slot in the monitoring period is the first time slot in the monitoring period, namely time slot 0 and time slot 5 in the COT.
  • the start symbol includes the first symbol and the eighth symbol. Therefore, the start symbols of the monitoring resources included in the first search space set in the fixed frame period are symbol 0 in slot 0, symbol 7 in slot 0, symbol 0 in slot 5, and symbol 0 in slot 5.
  • Symbol 7 The start symbol of the second monitoring resource is symbol 0 on time slot 0, and the start symbol of the first monitoring resource may include symbol 7 on time slot 0, and the offset value is 7 symbols.
  • the first monitoring resource and the second monitoring resource included in the first search space set are monitoring resources on different time slots.
  • the fixed frame period includes 10 time slots
  • the COT in the fixed frame period includes the first 9 time slots of the 10 time slots, for example, at least part of the resources in time slot 0 to time slot 9 are labeled
  • the first search space The monitoring period of the collection is 5 time slots.
  • the monitoring time slot in the monitoring period is the first time slot in the monitoring period, namely time slot 0 and time slot 5 in the COT.
  • the start symbol is the first symbol. Therefore, the start symbols of the monitoring resources included in the first search space set in the fixed frame period are symbol 0 on time slot 0 and symbol 0 on time slot 5.
  • the start symbol of the second monitoring resource is symbol 0 on slot 0, the start symbol of the first monitoring resource is symbol 0 on slot 5, and the offset value is 5 slots.
  • the fixed frame period includes 10 time slots
  • the COT in the fixed frame period includes the first 9 time slots of the 10 time slots, for example, at least part of the resources in time slot 0 to time slot 9 are labeled
  • the first search The monitoring period of the space collection is 5 time slots
  • the monitoring time slots in the monitoring period are the first and second time slots in the monitoring period, namely, time slot 0, time slot 1, and time slot in COT 5.
  • Slot 6 the start symbol of the monitoring resource on the monitoring slot is the first symbol. Therefore, the start symbols of the monitoring resources included in the first search space set in the fixed frame period are symbol 0 in slot 0, symbol 0 in slot 1, symbol 0 in slot 5, and symbol 0 in slot 6.
  • the start symbol of the second monitoring resource is symbol 0 on time slot 0, and the start symbol of the first monitoring resource may include symbol 0 on time slot 1, and the offset value is 1 time slot.
  • the network device configures multiple monitoring resources for detecting and transmitting the first PDCCH in the COT, and prepares After obtaining the frequency domain resource indication information, the first PDCCH is transmitted through subsequent monitoring resources, and then the frequency domain resource indication information used to determine the frequency domain resource usage of the COT is transmitted to the terminal device.
  • the information transmitted in the first PDCCH transmitted on different monitoring resources may be different, or the information transmitted in the first PDCCH transmitted on different monitoring resources may be the same but the content indicated by the information different.
  • the first monitoring position is offset from the starting position of the COT, and the starting position of the second monitoring resource is the same as the starting position of the COT.
  • the first PDCCH sent on the second monitoring resource includes time slot structure indication information; the first PDCCH sent on the first monitoring resource includes time slot structure indication information and frequency domain resource indication information.
  • the first PDCCH sent on the second monitoring resource includes slot structure indication information and frequency domain resource indication information, where the frequency domain resource indication information is not used to determine the frequency domain resource usage of COT; first monitoring The first PDCCH sent on the resource includes slot structure indication information and frequency domain resource indication information, where the frequency domain resource indication information is used to determine the frequency domain resource usage of the COT.
  • the monitoring period of the first search space set is less than or equal to the fixed frame period.
  • the fixed frame period is an integer multiple of the monitoring period of the first search space set.
  • the integer multiple can be 1 time, 2 times, 4 times and other different values.
  • the specific value of the integer multiple can be determined according to the actual situation and will not be repeated here.
  • the monitoring period of the first search space set by configuring the monitoring period of the first search space set to be less than or equal to the fixed frame period, it can be ensured that there are control resources for transmitting time slot structure indication information and/or frequency domain resources in each fixed frame period. Indication information, so that the terminal device can determine the time slot structure in the COT and/or the frequency domain resource usage in the COT according to the information.
  • FIG. 10 is a schematic flowchart of Embodiment 2 of the control channel transmission method provided by this application. As shown in FIG. 10, in this embodiment, the method may also include at least part of the following content:
  • Step 101 Based on the monitoring result of the first PDCCH, the terminal device determines whether to monitor the second PDCCH according to the second search space set, where the second PDCCH is different from the first PDCCH.
  • the terminal device after the terminal device monitors the first PDCCH according to the first search space set, it can determine the monitoring result of the first PDCCH, and based on the monitoring result, determine whether to monitor the first PDCCH according to the second search space set. Two PDCCH.
  • the second PDCCH is different from the first PDCCH, and includes at least one of the following:
  • the second search space set is different from the first search space set.
  • the first PDCCH needs to be monitored based on the first search space set
  • the second PDCCH needs to be monitored based on the second search space set.
  • Different PDCCHs can be determined according to different search space sets.
  • the search space corresponding to the second PDCCH is different from the search space corresponding to the first PDCCH.
  • the monitoring period and offset corresponding to the second PDCCH, the symbol position in the monitoring slot are all different from the monitoring period and offset corresponding to the first PDCCH, and the symbol position in the monitoring slot; and/or, the second The aggregation level corresponding to the PDCCH and the number of corresponding PDCCH candidates are different from the aggregation level corresponding to the first PDCCH and the number of corresponding PDCCH candidates.
  • the downlink control information format corresponding to the second PDCCH is different from the downlink control information format corresponding to the first PDCCH.
  • the format corresponding to the first PDCCH is format 2-0
  • the format corresponding to the second PDCCH is format 0-0, format 0-1, format 1-0, format 1-1, format 2-1, format 2-2 , One of the formats 2-3.
  • the PDCCH detected according to different formats is different.
  • the radio network temporary identifier (RNTI) used by the cyclic redundancy check (CRC) scrambling code of the second PDCCH is different from the RNTI used by the CRC scrambling code of the first PDCCH.
  • the RNTI used by the CRC scrambling code of the first PDCCH is SFI-RNTI
  • the RNTI used by the CRC scrambling code of the second PDCCH is not SFI-RNTI.
  • the RNTI used by the CRC scrambling code of the second PDCCH is cell RNTI (cell RNTI).
  • C-RNTI configured scheduling RNTI (configured scheduling RNTI, CS-RNTI), modulation and coding scheme C-RNTI (modulation and coding scheme C-RNTI, MCS-C-RNTI), semi-persistent CSI-RNTI (semi-persistent CSI RNTI, SP-CSI-RNTI), temporary C-RNTI (temporary C-RNTI, TC-RNTI), paging RNTI (paging RNTI, P-RNTI), system information RNTI (system information RNTI, SI-RNTI), Random access RNTI (random access RNTI, RA-RNTI), common control RNTI (common control RNTI, CC-RNTI), group RNTI (group RNTI, G-RNTI), interruption RNTI (interruption RNTI, INT-RNTI), PUSCH Power control RNTI (transmit power control-PUSCH-RNTI, TPC-PUSCH-RNTI), PUCCH power control RNTI (transmit power control RN
  • the second PDCCH is a dedicated PDCCH for terminal equipment, and the first PDCCH is a common PDCCH.
  • the format corresponding to the first PDCCH is one of format 2-0, format 2-1, format 2-2, and format 2-3
  • the format corresponding to the second PDCCH is format 0-0, format 0-1, One of format 1-0 and format 1-1.
  • the first PDCCH is a group public PDCCH
  • the control information transmitted on the first PDCCH is used to indicate the time slot format in the COT
  • the control information transmitted on the second PDCCH is a downlink grant for scheduling terminal equipment to receive downlink, or scheduling The terminal device performs an uplink authorization for uplink transmission.
  • this step can be implemented in the following ways:
  • the terminal device monitors the second PDCCH in the COT according to the slot structure indication information and the second search space set.
  • FIG. 11 is a schematic diagram of whether the terminal device monitors the second PDCCH based on the monitoring result of the first PDCCH. As shown in FIG. 11, in this embodiment, if the LBT of the network device succeeds, at this time, the network device can transmit the first PDCCH by using monitoring resources with the same starting position as the COT starting position.
  • the behavior of the terminal device includes: determining the first COT according to the time slot structure indication information in the first PDCCH Time slot structure, and monitor the second PDCCH according to the determined downlink resource in the time slot structure and the configured second search space set until the first COT ends.
  • the terminal device when the first PDCCH is not monitored, the terminal device does not monitor the second PDCCH in the COT.
  • the behavior of the terminal device includes: no longer performing the second PDCCH in the first COT monitor.
  • the terminal device that executes such an example may include a terminal device configured with an energy-saving function for the network device and/or a terminal device that reports to the network device that energy-saving is required.
  • the terminal device that executes this embodiment is also the terminal device after the network device is configured with the first search space set, and the first PDCCH monitored according to the first search space set is used to transmit time slot structure indication information.
  • the slot structure indication information is used to determine the slot structure of the COT.
  • the terminal device determines whether to perform the second PDCCH monitoring in the COT according to whether the first PDCCH carrying the time slot structure indication information is monitored, which reduces the complexity of blind detection of the terminal device and achieves power saving Effect.
  • the terminal device monitors the second PDCCH according to the second search space set in the COT.
  • the behavior of the terminal device at this time may include: performing second PDCCH monitoring in the COT according to the configured second search space set, until the first COT ends .
  • terminal devices that execute this example include terminal devices that are not configured with energy-saving functions and/or terminal devices that do not report energy-saving functions to network devices; at the same time, terminal devices that execute this example are also network devices that are configured with A terminal device after a search space collection.
  • the terminal device if it does not monitor the first PDCCH, it still monitors the second PDCCH according to the configured second search space set. Since the monitoring of the second PDCCH is independent of the first PDCCH, to a certain extent The power saving effect can be achieved, and the performance loss caused by the missed detection of the first PDCCH can also be reduced.
  • the first search space set is configured, and the first search space set includes the first monitor that is located in the COT and has an offset value between the start position and the start position of the COT Resource.
  • the terminal device can perform downlink signals or downlinks on the resource between the start position of the COT and the start position of the first monitoring resource in a fixed frame period Channel detection.
  • the terminal device can be in the first time period Perform the second PDCCH monitoring.
  • the terminal device may start monitoring from the next fixed frame period, and / or,
  • the terminal device monitors the second PDCCH in the first time period, or monitors the first PDCCH on the first monitoring resource, the terminal device needs to monitor the entire frame period, that is, in the fixed frame period The second PDCCH is monitored in COT until the end of COT.
  • the terminal device detects the second monitoring resource at the starting position of the COT A PDCCH, then the second PDCCH in the COT is monitored according to the first PDCCH. If the terminal device does not monitor the first PDCCH at the start position of the first COT, then the second PDCCH is not monitored in the first COT.
  • the terminal device does not detect the first PDCCH on the monitoring resource with the first time domain position among the multiple monitoring resources, then The second PDCCH monitoring is no longer performed in the COT; or, the first PDCCH monitoring is performed on other monitoring resources in the COT, and the second PDCCH monitoring is performed after the first PDCCH is monitored.
  • the aggregation level corresponding to the first PDCCH is greater than or equal to the preset aggregation level.
  • the first PDCCH is used to determine the transmission time slot structure indication information of the COT time slot structure, and because the greater the aggregation level used, the greater the transmission accuracy rate. Therefore, the first PDCCH The aggregation level used for PDCCH transmission needs to be greater than or equal to the preset aggregation level.
  • the preset aggregation level may be 8.
  • the aggregation level corresponding to the first PDCCH may be an aggregation level of 8 or 16. Or, if the aggregation level corresponding to the first PDCCH is an aggregation level including 8 and 16, then it can be considered that the preset aggregation level is 8.
  • the network device in order to avoid the situation where the network device sends the first PDCCH but the terminal device cannot receive the first PDCCH correctly, the network device can use a higher aggregation level, such as aggregation level 8 or 16, to send the first PDCCH.
  • a higher aggregation level such as aggregation level 8 or 16
  • the terminal device performs COT according to the default behavior Within the second PDCCH monitoring.
  • the terminal device monitors the configured second search space set in the COT until the COT ends. If the terminal device detects the second PDCCH, the terminal device’s behavior includes: downlink reception or uplink transmission according to the second PDCCH ; If the terminal device does not monitor the second PDCCH, then the behavior of the terminal device includes: performing second PDCCH monitoring in the COT according to the configured second search space set until the COT ends.
  • the terminal device can monitor the second PDCCH according to the second search space set, and perform corresponding operations based on the monitoring results, for example When the second PDCCH is detected, downlink reception or uplink transmission is performed according to the second PDCCH, and when the second PDCCH is not monitored, the second PDCCH monitoring is performed in the COT according to the configured second search space set until the COT ends , It can still achieve control channel transmission.
  • FIG. 12 is a schematic flowchart of Embodiment 3 of a control channel transmission method provided by this application.
  • the execution subject of the method is a device with the function of a network device, or a network device.
  • the method may include at least part of the following content:
  • Step 121 The network device determines the first search space set in the COT of the fixed frame period.
  • the network device may configure a search space set for terminal devices located within its service range, and send corresponding high-level signaling to the terminal device side.
  • the network device may configure the first search space set for the terminal device in the COT of the fixed frame period through high-level signaling, so that the terminal device monitors the PDCCH based on the configured first search space set.
  • the first search space set is preset, or the first search space set is agreed upon by the network device and the terminal device.
  • Step 122 The network device determines that the resources in the COT can be used; if yes, execute step 123, and/or, if not, execute 124.
  • the network device performs channel detection on the channel within the COT gap time of the previous fixed frame period before the fixed frame period. If the channel detection is successful, the COT in the fixed frame period is considered The resource can be used for signal transmission, correspondingly, step 123 is executed; or, if the channel detection fails, it is considered that the COT resource within the fixed frame period cannot be used for signal transmission, and accordingly, step 124 is executed.
  • Step 123 The network device sends a first PDCCH in the first search space set, where the first PDCCH is used to transmit time slot structure indication information, and the time slot structure indication information is used to determine the time slot structure of the COT.
  • the network device determines that the resources in the COT of the fixed frame period can be used, then the network device can send the first search space on the resources in the first search space set when the fixed frame period arrives.
  • the PDCCH correspondingly, in order for the terminal device to learn the structure of the COT, the first PDCCH may be used to transmit time slot structure indication information for determining the time slot structure of the COT.
  • Step 124 The network device does not transmit downlink channels or downlink signals in the COT.
  • the network device determines that the resources in the COT cannot be used, for example, the channel detection of the network device fails, at this time, the network device does not transmit the downlink channel or downlink signal in the COT, and then continues to check the channel before the next fixed frame period based on LBT Perform testing.
  • the network device determines the first search space set in the COT of a fixed frame period, and when it is determined that the resources in the COT can be used, the first search space set is sent in the first search space set.
  • PDCCH the first PDCCH is used to transmit time slot structure indication information
  • the time slot structure indication information is used to determine the time slot structure of the COT.
  • the network device when the network device determines that the COT of the fixed frame period is available, it can send the time slot structure indication information used to determine the time slot structure of the COT to the terminal device, which can assist the downlink control information to a certain extent. Detection avoids the waste of resources caused by long-term detection of terminal equipment.
  • the first search space set includes a first monitoring resource, the first monitoring resource is located in the COT, and the start position of the first monitoring resource is the same as that of the COT. There is an offset value between the start positions.
  • the first PDCCH transmitted on the first monitoring resource is also used to transmit frequency domain resource indication information, and the frequency domain resource indication information is used to determine the frequency domain resource usage of the COT.
  • the offset value is greater than or equal to the length of one symbol, or the offset value is determined according to the processing time of the network device.
  • the offset value is preset, or the offset value is sent by the network device to the terminal device through instruction information.
  • the first search space set includes a second monitoring resource, and the starting position of the second monitoring resource is the same as the starting position of the COT.
  • the second monitoring resource includes the first symbol on the first time slot of the COT.
  • the first PDCCH transmitted on the second monitoring resource is not used to transmit frequency domain resource indication information
  • the first PDCCH transmitted on the second monitoring resource is used to transmit frequency domain resource indication information, and the frequency domain resource indication information is not used to determine the frequency domain resource usage of the COT.
  • the monitoring period of the first search space set is less than or equal to the fixed frame period.
  • the fixed frame period is an integer multiple of the monitoring period of the first search space set.
  • the method may further include the following steps:
  • the network device sends the second PDCCH in the second search search space set, where the second PDCCH is different from the first PDCCH.
  • the second PDCCH is different from the first PDCCH and includes at least one of the following:
  • the second search space set is different from the first search space set
  • the search space corresponding to the second PDCCH is different from the search space corresponding to the first PDCCH;
  • the downlink control information format corresponding to the second PDCCH is different from the downlink control information format corresponding to the first PDCCH;
  • the RNTI used by the CRC scrambling code of the second PDCCH is different from the RNTI used by the CRC scrambling code of the first PDCCH.
  • the aggregation level corresponding to the first PDCCH is greater than or equal to the preset aggregation level.
  • FIG. 13 is a schematic structural diagram of Embodiment 1 of a control channel transmission apparatus provided by this application.
  • the device can be integrated in a terminal device or a terminal device. As shown in FIG. 13, the device may include: a determining module 131 and a monitoring module 132.
  • the determining module 131 is configured to determine the first search space set in the channel occupation time COT of the fixed frame period;
  • the monitoring module 132 is configured to monitor a first physical downlink control channel PDCCH according to the first search space set.
  • the first PDCCH is used to transmit time slot structure indication information, and the time slot structure indication information is used to determine the COT time slot structure.
  • the first search space set includes a first monitoring resource, the first monitoring resource is located in the COT, and the start position of the first monitoring resource is the same as the COT Has an offset value between the starting positions.
  • the first PDCCH transmitted on the first monitoring resource is also used to transmit frequency domain resource indication information, and the frequency domain resource indication information is used to determine the frequency domain resource usage of the COT.
  • the offset value is greater than or equal to the length of one symbol, or the offset value is determined according to the processing time of the network device.
  • the offset value is preset, or the offset value is sent by the network device to the terminal device through instruction information.
  • the first search space set includes a second monitoring resource, and the starting position of the second monitoring resource is the same as the starting position of the COT.
  • the second monitoring resource includes the first symbol on the first time slot of the COT.
  • the first PDCCH transmitted on the second monitoring resource is not used to transmit frequency domain resource indication information
  • the first PDCCH transmitted on the second monitoring resource is used to transmit frequency domain resource indication information, and the frequency domain resource indication information is not used to determine the frequency domain resource usage of the COT.
  • the monitoring period of the first search space set is less than or equal to the fixed frame period.
  • the fixed frame period is an integer multiple of the monitoring period of the first search space set.
  • the determining module 121 is further configured to determine whether to monitor the second PDCCH according to the second search space set based on the monitoring result of the first PDCCH, where the second PDCCH and The first PDCCH is different.
  • the second PDCCH is different from the first PDCCH and includes at least one of the following:
  • the second search space set is different from the first search space set
  • the search space corresponding to the second PDCCH is different from the search space corresponding to the first PDCCH;
  • the downlink control information format corresponding to the second PDCCH is different from the downlink control information format corresponding to the first PDCCH;
  • the radio network temporary identifier RNTI used by the cyclic redundancy check CRC scrambling code of the second PDCCH is different from the RNTI used by the CRC scrambling code of the first PDCCH.
  • the determining module is specifically used for:
  • the first PDCCH determines to monitor the second PDCCH in the COT according to the slot structure indication information and the second search space set; or,
  • the first PDCCH In a case where the first PDCCH is not monitored, it is determined to monitor the second PDCCH according to the second search space set in the COT.
  • the determining module is further configured to monitor the second PDCCH according to the slot structure indication information and the second search space set in the COT, and then according to the slot structure indication Information to determine the downlink resource in the COT;
  • the monitoring module is further configured to monitor the second PDCCH according to the downlink resources in the COT and the second search space set.
  • the aggregation level corresponding to the first PDCCH is greater than or equal to the preset aggregation level.
  • the device provided in this embodiment is used to implement the technical solution on the terminal device side in the foregoing method embodiment, and its implementation principles and technical effects are similar, and will not be repeated here.
  • FIG. 14 is a schematic structural diagram of Embodiment 2 of a control channel transmission apparatus provided by this application.
  • the device can be integrated in a network device or a network device. As shown in FIG. 14, the device may include: a determining module 141 and a sending module 142.
  • the determining module 141 is configured to determine the first search space set in the channel occupation time COT of the fixed frame period;
  • the sending module 142 is configured to send a first physical downlink control channel PDCCH in the first search space set when the determining module 141 determines that the resources in the COT can be used, and the first PDCCH is used for Transmitting time slot structure indication information, where the time slot structure indication information is used to determine the time slot structure of the COT; and/or
  • the determining module 141 is further configured to determine not to transmit downlink channels or downlink signals in the COT when it is determined that the resources in the COT cannot be used.
  • the first search space set includes a first monitoring resource, the first monitoring resource is located in the COT, and the start position of the first monitoring resource is the same as the COT Has an offset value between the starting positions.
  • the first PDCCH transmitted on the first monitoring resource is also used to transmit frequency domain resource indication information, and the frequency domain resource indication information is used to determine the frequency domain resource usage of the COT.
  • the offset value is greater than or equal to the length of one symbol, or the offset value is determined according to the processing time of the network device.
  • the offset value is preset, or the offset value is sent by the network device to the terminal device through instruction information.
  • the first search space set includes a second monitoring resource, and the starting position of the second monitoring resource is the same as the starting position of the COT.
  • the second monitoring resource includes the first symbol on the first time slot of the COT.
  • the first PDCCH transmitted on the second monitoring resource is not used to transmit frequency domain resource indication information
  • the first PDCCH transmitted on the second monitoring resource is used to transmit frequency domain resource indication information, and the frequency domain resource indication information is not used to determine the frequency domain resource usage of the COT.
  • the monitoring period of the first search space set is less than or equal to the fixed frame period.
  • the fixed frame period is an integer multiple of the monitoring period of the first search space set.
  • the sending module 142 is further configured to send the second PDCCH in the second search search space set after sending the first physical downlink control channel PDCCH in the first search space set, Wherein, the second PDCCH is different from the first PDCCH.
  • the second PDCCH is different from the first PDCCH and includes at least one of the following:
  • the second search space set is different from the first search space set
  • the search space corresponding to the second PDCCH is different from the search space corresponding to the first PDCCH;
  • the downlink control information format corresponding to the second PDCCH is different from the downlink control information format corresponding to the first PDCCH;
  • the radio network temporary identifier RNTI used by the cyclic redundancy check CRC scrambling code of the second PDCCH is different from the RNTI used by the CRC scrambling code of the first PDCCH.
  • the aggregation level corresponding to the first PDCCH is greater than or equal to the preset aggregation level.
  • the device provided in this embodiment is used to implement the technical solution on the network device side in the foregoing method embodiment, and its implementation principles and technical effects are similar, and will not be repeated here.
  • the division of the various modules of the above device is only a division of logical functions, and may be fully or partially integrated into a physical entity in actual implementation, or may be physically separated.
  • these modules can all be implemented in the form of software called by processing elements; they can also be implemented in the form of hardware; some modules can be implemented in the form of calling software by processing elements, and some of the modules can be implemented in the form of hardware.
  • the processing module may be a separately established processing element, or it may be integrated in a chip of the above-mentioned device for implementation.
  • each step of the above method or each of the above modules can be completed by hardware integrated logic circuits in the processor element or instructions in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as one or more application specific integrated circuit (ASIC), or one or more microprocessors (digital signal processor, DSP), or, one or more field programmable gate arrays (FPGA), etc.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • FPGA field programmable gate arrays
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call program codes.
  • CPU central processing unit
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • FIG. 15 is a schematic structural diagram of Embodiment 3 of a control channel transmission apparatus provided by this application.
  • the device can be integrated in a terminal device or a terminal device.
  • the apparatus may include: a processor 151, a memory 152, a transceiver 153, and an interface 154 for communicating with network equipment.
  • the memory 152 stores computer execution instructions
  • the processor 151 executes the computer-executable instructions stored in the memory 152, so that the processor executes the technical solution of the control channel transmission method on the terminal device side in any of the foregoing method embodiments.
  • FIG. 16 is a schematic structural diagram of Embodiment 4 of a control channel transmission apparatus provided by this application.
  • the device can be integrated in a network device or a network device.
  • the apparatus may include: a processor 161, a memory 162, a transceiver 163, and an interface 164 for communicating with a terminal device.
  • the memory 162 stores computer execution instructions
  • the processor 161 executes the computer-executable instructions stored in the memory 162, so that the processor 161 executes the technical solution of the control channel transmission method on the network device side in any of the foregoing method embodiments.
  • the present application also provides a computer-readable storage medium in which computer-executable instructions are stored.
  • the computer-executable instructions are executed by a processor, they are used to implement the terminal device side in any of the foregoing method embodiments.
  • This application also provides a computer-readable storage medium in which computer-executable instructions are stored. When the computer-executable instructions are executed by a processor, they are used to implement the network device side in any of the foregoing method embodiments.
  • the embodiment of the present application also provides a program, when the program is executed by the processor, it is used to execute the technical solution on the terminal device side in the foregoing method embodiment.
  • the embodiment of the present application also provides a program, when the program is executed by the processor, it is used to execute the technical solution on the network device side in the foregoing method embodiment.
  • the embodiments of the present application also provide a computer program product, including program instructions, which are used to implement the technical solutions on the terminal device side in the foregoing method embodiments.
  • the embodiments of the present application also provide a computer program product, including program instructions, which are used to implement the technical solutions on the network device side in the foregoing method embodiments.
  • the embodiment of the present application also provides a chip, which includes a processing module and a communication interface, and the processing module can execute the technical solution of the UE in the foregoing method embodiment.
  • the chip also includes a storage module (such as a memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute the terminal device side Technical solutions.
  • a storage module such as a memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to execute the terminal device side Technical solutions.
  • An embodiment of the present application also provides a chip, which includes a processing module and a communication interface, and the processing module can execute the technical solution on the network device side in the foregoing method embodiment.
  • the chip also includes a storage module (such as a memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute the network device side Technical solutions.
  • a storage module such as a memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to execute the network device side Technical solutions.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, both A and B exist, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship; in the formula, the character “/” indicates that the associated objects before and after are in a “division” relationship.
  • “The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple One.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not be implemented in this application.
  • the implementation process of the example constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种控制信道的传输方法、装置及存储介质,网络设备确定固定帧周期的COT内的第一搜索空间集合,并在确定该COT内的资源能被使用时,在第一搜索空间集合内发送第一PDCCH,该第一PDCCH用于传输时隙结构指示信息,该时隙结构指示信息用于确定该COT的时隙结构,在确定该COT内的资源不能被使用时,在该COT内不传输下行信道或下行信号,相应的,终端设备确定出固定帧周期的COT内的第一搜索空间集合后,根据该第一搜索空间集合监测第一PDCCH,从而确定能否获取到用于确定COT的时隙结构的时隙结构指示信息,其能够在一定程度上辅助下行控制信息的检测,避免了长时间检测造成的资源浪费问题。

Description

控制信道的传输方法、装置及存储介质 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种控制信道的传输方法、装置及存储介质。
背景技术
随着通信技术的迅速发展,非授权频谱上的新空口(new radio based access to unlicensed spectrum,NR-U)***支持基于帧结构的设备(frame based equipment,FBE)的信道接入方式。在FBE的信道接入方式中,帧结构是周期出现的,一个帧结构具有固定帧周期,一个固定帧周期包括信道占用时间(channel occupancy time,COT)和空闲时间,通信设备在空闲时间内进行信道检测,若信道检测结果为信道空闲,则通信设备可以进行信号发送,否则,不能进行信号发送。
然而,如果基于现有技术中终端设备对下行控制信道进行监测的方案,不管网络设备是否传输下行控制信道,该终端设备均会在固定帧周期的信道占用时间内持续进行下行控制信道的监测,导致终端设备长时间进行信息监测,存在耗电量大,浪费资源的问题。
发明内容
本申请实施例提供一种控制信道的传输方法、装置及存储介质,解决了基于FBE的信道接入方式中由于终端设备长时间进行盲监测,存在的耗电量大,浪费资源问题。
第一方面,本申请实施例提供一种控制信道的传输方法,包括:
终端设备确定固定帧周期的信道占用时间COT内的第一搜索空间集合;
所述终端设备根据所述第一搜索空间集合监测第一物理下行控制信道PDCCH,所述第一PDCCH用于传输时隙结构指示信息,所述时隙结构指示信息用于确定所述COT的时隙结构。
第二方面,本申请实施例提供一种控制信道的传输方法,包括:
网络设备确定固定帧周期的信道占用时间COT内的第一搜索空间集合;
若所述网络设备确定所述COT内的资源能被使用,所述网络设备在所述第一搜索空间集合内发送第一物理下行控制信道PDCCH,所述第一PDCCH用于传输时隙结构指示信息,所述时隙结构指示信息用于确定所述COT的时隙结构;和/或
若所述网络设备确定所述COT内的资源不能被使用,所述网络设备在所述COT内不传输下行信道或下行信号。
第三方面,本申请实施例提供一种控制信道的传输装置,包括:确定模块和监测模块;
所述确定模块,用于确定固定帧周期的信道占用时间COT内的第一搜索空间集合;
所述监测模块,用于根据所述第一搜索空间集合监测第一物理下行控制信道PDCCH,所述第一PDCCH用于传输时隙结构指示信息,所述时隙结构指示信息用于确定所述COT的时隙结构。
第四方面,本申请实施例提供一种控制信道的传输装置,包括:确定模块和发送模块;
所述确定模块,用于确定固定帧周期的信道占用时间COT内的第一搜索空间集合;
所述发送模块,用于在所述确定模块确定所述COT内的资源能被使用时,在所述第一搜索空间集合内发送第一物理下行控制信道PDCCH,所述第一PDCCH用于传输时隙结构指示信息,所述时隙结构指示信息用于确定所述COT的时隙结构;和/或
所述确定模块,还用于在确定所述COT内的资源不能被使用时,确定在所述COT内不传输下行信道或下行信号。
第五方面,本申请实施例提供一种控制信道的传输装置,包括:
处理器、存储器、收发器,以及与网络设备进行通信的接口;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如上述第一方面所述的方法。
可选地,上述处理器可以为芯片。
第六方面,本申请实施例提供一种控制信道的传输装置,包括:
处理器、存储器、收发器,以及与终端设备进行通信的接口;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如上述第二方面所述的方 法。
可选地,上述处理器可以为芯片。
第七方面,本申请实施例可提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现第一方面所述的方法。
第八方面,本申请实施例可提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现第二方面所述的方法。
第九方面,本申请实施例提供一种程序,当该程序被处理器执行时,用于执行如第一方面所述的方法。
第十方面,本申请实施例提供一种程序,当该程序被处理器执行时,用于执行如第二方面所述的方法。
第十一方面,本申请实施例提供一种计算机程序产品,包括程序指令,程序指令用于实现如第一方面所述的方法。
第十二方面,本申请实施例提供一种计算机程序产品,包括程序指令,程序指令用于实现如第二方面所述的方法。
第十三方面,本申请实施例提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行第一方面所述的方法。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行第一方面所述的方法。
第十四方面,本申请实施例提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行第二方面所述的方法。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行第二方面所述的方法。
本申请第十五方面提供一种通信***,包括:终端设备和网络设备;
所述终端设备为上述第三方面所述的装置,所述网络设备为上述第四方面所述的装置。
本申请实施例提供的控制信道的传输方法、装置及存储介质,网络设备确定固定帧周期的COT内的第一搜索空间集合,并在确定该COT内的资源能被使用时,在第一搜索空间集合内发送第一PDCCH,该第一PDCCH用于传输时隙结构指示信息,该时隙结构指示信息用于确定该COT的时隙结构,在确定该COT内的资源不能被使用时,在该COT内不传输下行信道或下行信号,相应的,终端设备确定出固定帧周期的COT内的第一搜索空间集合后,根据该第一搜索空间集合监测第一PDCCH,从而确定能否获取到用于确定COT的时隙结构的时隙结构指示信息,其能够在一定程度上辅助下行控制信息的检测,避免了长时间检测造成的资源浪费问题。
附图说明
图1为本申请实施例提供的一种通信***的结构示意图;
图2为基于搜索空间集合和CORESET确定的PDCCH的监测位置的示意图;
图3为一个搜索空间集合中需要监测的CCE的示意图;
图4为网络设备进行下行传输时的时域资源示意图;
图5为基于FBE的信道接入方式中帧结构的示意图;
图6为本申请提供的控制信道的传输方法实施例一的流程示意图;
图7为本申请中第一搜索空间集合包括的第一监测资源的位置示意图;
图8为本申请中第一搜索空间集合包括的第二监测资源的位置示意图;
图9为本申请中第一搜索空间集合包括的第一监测资源和第二监测资源的位置示意图;
图10为本申请提供的控制信道的传输方法实施例二的流程示意图;
图11为终端设备基于第一PDCCH的监测结果是否执行监测第二PDCCH的示意图;
图12为本申请提供的控制信道的传输方法实施例三的流程示意图;
图13为本申请提供的控制信道的传输装置实施例一的结构示意图;
图14为本申请提供的控制信道的传输装置实施例二的结构示意图;
图15为本申请提供的控制信道的传输装置实施例三的结构示意图;
图16为本申请提供的控制信道的传输装置实施例四的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申 请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的说明书、权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述之外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
无线电频谱是移动通信信号传播的载体,其是一个有限、不可再生的自然资源,也是国家宝贵的战略资源,因此,各国对于无线电频谱有专门的管理机构,出台专门的政策法规,实现无线电频谱的统一规划管理。目前,各国的频谱管理大多数采用固定频谱分配策略,即频谱资源由政府主管部门管理并分配给固定的授权用户,这样能够确保各用户之间避免过多相互干扰,更好利用频谱资源。目前频谱资源可分为两类:授权频谱(licensed spectrum)和非授权频谱(unlicensed spectrum)。
授权频谱受到严格的限制和保护,只允许授权用户及其符合规范的设备接入,而且用户要为此进行付费。目前,公安、铁路、民航、广电、电信等重要的部门均拥有一定的授权频谱,这些部门内设备的通信是运行在其授权频谱上的,尤其是电信行业,手机等终端设备就是通过运营商拥有的授权频谱来通信的,三大运营商都拥有国家无线电管理局授权的专用频段,保障公众移动通信不受干扰。
非授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱通常被认为是共享频谱,即不同通信***中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以接入和使用该频谱,不需要向政府申请专有的频谱授权。例如,日常生活中经常使用的WiFi、蓝牙均是通过非授权频谱进行传输。
为了让使用非授权频谱进行无线通信的各个通信***在该频谱上能够友好共存,一些国家或地区规定了使用非授权频谱必须满足的法规要求。例如,通信设备遵循“先听后说(listen before talk,LBT)”原则,即通信设备在非授权频谱的信道上进行信号发送前,需要先进行信道检测,只有当信道检测结果为信道空闲时,该通信设备才能进行信号发送;如果通信设备在非授权频谱的信道上的信道检测结果为信道忙,该通信设备不能进行信号发送。为了保证公平性,在一次传输中,通信设备使用非授权频谱的信道进行信号传输的时长不能超过最大信道占用时间(maximum channel occupancy time,MCOT)。
下面首先简要介绍一下本申请实施例适用的一种通信***的架构示意图。
图1为本申请实施例提供的一种通信***的结构示意图。如图1所示,该通信***可以包括网络设备110和位于网络设备110覆盖范围内的多个终端设备120。图1示例性地示出了一个网络设备110和两个终端设备120。
可选地,该通信***可以包括多个网络设备110,并且每个网络设备的覆盖范围内可以包括其它数量的终端设备120,本申请实施例对该通信***中包括的网络设备110和终端设备120的数量不做限定。
如图1所示,终端设备120通过无线的方式与网络设备110相连。例如,网络设备110和多个终端设备120之间均可以使用非授权频谱进行无线通信。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可以理解的是,图1只是示意图,该通信***中还可以包括其它网络设备,例如,核心网设备、无线中继设备和无线回传设备,或者可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例不限于此。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(global system of mobile communication,GSM)***、码分多址(code division multiple access,CDMA)***、宽带码分多址(wideband code division multiple access,WCDMA)***、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)***、先进的长期演进(advanced long term evolution,LTE-A)***、新无线(new radio,NR)***、NR***的演进***、非授权频段上的LTE(LTE-based access to unlicensed spectrum,LTE-U)***、非授权频段上的NR(NR-based access to unlicensed spectrum,NR-U)***、通用移动通信***(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***、无线局域网(wireless local area networks,WLAN)、无线保真(wireless fidelity,WiFi)、下一代通信***或其他通信***等。
通常来说,传统的通信***支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信***将不仅支持传统的通信,还将支持例如,设备到设备(device to device,D2D)通信,机器到机 器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及车辆间(vehicle to vehicle,V2V)通信等,本申请实施例也可以应用于这些通信***。
本申请实施例描述的***架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例中涉及的网络设备,可以是普通的基站(如NodeB或eNB或者gNB)、新无线控制器(new radio controller,NR controller)、集中式网元(centralized unit)、新无线基站、射频拉远模块、微基站、中继(relay)、分布式网元(distributed unit)、接收点(transmission reception point,TRP)、传输点(transmission point,TP)或者任何其它设备。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。为方便描述,本申请所有实施例中,上述为终端设备提供无线通信功能的装置统称为网络设备。
在本申请实施例中,终端设备可以是任意的终端,比如,终端设备可以是机器类通信的用户设备。也就是说,该终端设备也可称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal)、终端(terminal)等,该终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,例如,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。本申请实施例中不做具体限定。
可选的,网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
可选的,网络设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端设备之间以及终端设备和终端设备之间可以通过7吉兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过7GHz以上的频谱进行通信,还可以同时使用7GHz以下的频谱和7GHz以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
在NR中,针对服务小区的每个下行带宽部分(band width part,BWP),最多可配置10个搜索空间集合,其中,每个搜索空间集合包括一个或多个聚合等级的搜索空间。另外,搜索空间集合对应时域配置信息,终端设备可以根据配置的搜索空间集合在时域的位置监测物理下行控制信道(physical downlink control channel,PDCCH)候选,进而无须类似LTE在每个下行子帧都监测PDCCH候选。其中,搜索空间集合的时域配置信息包括监测周期、时隙偏移、时隙数量、符号位置和控制资源集合索引。
终端设备监测搜索空间中的PDCCH候选的方式可以分两步:第一步根据搜索空间集合的配置信息确定配置的PDCCH候选集合中每个PDCCH候选在控制资源集(control resource set,CORESET)内的控制信道单元(control channel element,CCE)索引;第二步根据预设的规则在配置的候选PDCCH集合中确定待监测的PDCCH候选集合,其中待监测的PDCCH候选集合为配置的候选PDCCH集合或配置的候选PDCCH集合的子集。
本申请实施例中的搜索空间集合可以通过高层信令来配置,其中,该高层信令指示的配置信息可以指示以下中的至少一种:
1)监测周期(也即监测PDCCH的周期)及偏移、在时隙中的符号位置;
其中,监测周期及偏移用于确定监测PDCCH的监测周期和该监测周期中需要监测PDCCH的监测时隙,其中,监测周期可以包括整数个时隙;在时隙中的符号位置用于确定监测时隙中PDCCH的起始符号位置。
2)聚合等级及其对应的PDCCH候选个数。
其中,聚合等级可以包括1、2、4、8、16中的至少一种。
本申请实施例的CORESET可以通过高层信令来配置,其中,该高层信令指示的配置信息可以指示以下中的至少一种:
频域资源的位置及大小,时域长度;
其中,该频域资源的位置及大小用于确定监测PDCCH的频域资源位置和大小;时域长度用于确定监测PDCCH时对应的PDCCH符号个数。
在本申请实施例中,一个搜索空间集合可以对应一个或多个CORESET,一个CORESET可以对应一个或多个搜索空间集合。
在本申请实施例中,终端设备可以根据高层信令配置的搜索空间集合和CORESET,确定需要监测的PDCCH资源位置。作为示例,图2为基于搜索空间集合和CORESET确定的PDCCH的监测位置的示意图。可选的,该监测位置也可以称为监测资源。如图2所示,PDCCH的监测周期为一个时隙,PDCCH在监测时隙中的起始符号位置为每个时隙中的第3个符号。或者说,图2所示的搜索空间集合包括的监测资源的起始位置为每个时隙中的第3个符号。
如图2所示,假设斜线填充部分的资源大小在频域包括48个RB(可以是6的整数倍),时域包括2个符号。由于1个资源单元组(resource element group,REG)=12个子载波*1个符号,1个CCE=6REG,所以上述斜线填充部分的资源包括16个CCE,其中一个CCE是可以传输PDCCH的最小资源单元。其中,CCE和REG之间可以具有映射关系,例如,交织映射或非交织映射。
在本申请实施例中,聚合等级(aggregation level)可以指连续的多个CCE用于传输一个PDCCH。例如,聚合等级为2,说明一个PDCCH通过2个连续的CCE传输,聚合等级为8,说明一个PDCCH通过8个连续的CCE传输。在本申请实施例中,一个聚合等级及其对应的PDCCH候选个数可以认为组成一个搜索空间。
可选的,一个搜索空间集合中包括至少一个搜索空间。图3为一个搜索空间集合中需要监测的CCE的示意图。如图3所示,假设上述图2所示的CCE集合中CCE的编号为CCE 0到CCE 15,监测起始位置为CCE 0(监测起始位置可以通过公式计算确定或根据哈希函数确定或别的方式确定,这里是一个示例),其中,对于聚合等级1,假设PDCCH候选为6个时,终端设备需要监测的CCE为CCE 0至CCE 5;对于聚合等级2,假设PDCCH候选为4个时,终端设备需要监测的CCE为CCE 0至CCE 7;对于聚合等级4,假设PDCCH候选为3个时,终端设备需要监测的CCE为CCE 0至CCE 11;对于聚合等级8和聚合等级16,假设PDCCH候选均为0个,终端设备不监测该聚合等级下的CCE。因此,可以认为该搜索空间集合中包括聚合等级为1、2、4的搜索空间。
在本申请实施例中,终端设备可以被配置多个搜索空间集合。搜索空间集合可以包括公共搜索空间集合(common search space set,CSS set)和终端设备专用的搜索空间集合(UE-specific search space set,USS set),终端设备可以通过公共搜索空间集合监测公共PDCCH和/或终端设备专用PDCCH,可以通过终端设备专用搜索空间集合监测终端设备专用PDCCH。网络设备可以确保公共搜索空间集合的盲检测的复杂度不超过终端设备的能力。
广播信息配置的搜索空间集合的PDCCH可以主要用于指示接收***信息、随机接入响应以及寻呼消息。由于广播信息中携带的信息有限,此搜索空间集合的时域位置、聚合等级、候选控制信道数量,以及关联的控制资源集合可以采用预定义或隐式获取的方式进行配置。广播信息配置的搜索空间集合的聚合等级可以预定义为{聚合等级4、聚合等级8、聚合等级16},且对应的候选PDCCH的数量分别为{4、2、1}。
以上对本申请实施例中的PDCCH的相关信息进行了介绍,以下将介绍终端设备如何实现PDCCH的监测。在非授权频谱上,网络设备在发送PDCCH前需要先进行LBT(或者说,信道检测),只有LBT成功才能传输,LBT失败不能传输。因此,非授权频谱上是机会性传输。为了使网络设备能尽快使用非授权频谱资源进行PDCCH传输,一种方式是网络设备在抢占信道时使用较小的时间粒度(例如,2符号长度的微时隙)进行PDCCH的准备和传输,在抢占到信道后,再在信道占用时间内使用较大的时间粒度(例如,时隙)进行PDCCH的准备和传输。
例如,图4为网络设备进行下行传输时的时域资源示意图。如图4所示,网络设备的调度行为包括以下几个阶段:
阶段A:网络设备在信道占用时间外,使用较小的时间粒度(例如,微时隙)准备数据传输;
阶段B:网络设备在信道占用时间的初始阶段,使用较小的时间粒度(例如,微时隙)进行数据传输;
阶段C:网络设备在信道占用时间内且除初始阶段外的时间,使用较大的时间粒度(例如,时隙)进行数据传输;
相应地,终端设备的PDCCH盲监测行为也包括以下几个阶段:
阶段A:在网络设备的信道占用时间外,终端设备使用较小的时间粒度(例如,微时隙)进行PDCCH监测
阶段B:在网络设备的信道占用时间初始阶段,终端设备使用较小的时间粒度(例如,微时隙)进行PDCCH监测;
阶段C:在网络设备的信道占用时间内除初始阶段外的时间,终端设备使用较大的时间粒度(例如,时隙)进行PDCCH监测。
具体地,网络设备可以为终端设备配置两种PDCCH监测周期。其中,一种PDCCH监测周期较小,例如为微时隙,一种PDCCH监测周期较大,例如为时隙。如图4所示,在阶段A和阶段B,终端设备使用较小的PDCCH监测周期即微时隙进行PDCCH监测,在阶段C,终端设备使用较大的PDCCH监测周期即时隙进行PDCCH监测。通过这种方式,既能保证网络设备在抢占到信道后能尽快进行下行传输,也能减少UE在网络设备信道占用时间内的监测复杂度。
上述PDCCH的监测方式适用于基于负载的设备(load based equipment,LBE)的信道接入方式,也即,网络设备可以在业务到达后进行非授权频谱上的信道监测,并在信道监测成功后开始信号的发送。
值得说明的是,在非授权频谱上的NR***中还可以支持基于帧结构的设备(Frame based equipment,FBE)的信道接入方式。例如,图5为基于FBE的信道接入方式中帧结构的示意图。如图5所示,在基于FBE的信道接入方式中,帧结构是周期出现的,在一个帧结构内包括固定帧周期(长度不超过200ms)、信道占用时间COT(长度不超过固定帧周期的95%)、空闲时间(长度至少为信道占用时间的5%,最小值为100us,且位于固定帧周期的尾部)。
在实际应用中,如图5所示,通信设备在空隙时间内例如COT开始前对信道做信道空闲检测(Clear Channel Assessment,CCA),如果信道检测成功,则下一个固定帧周期内的信道占用时间COT可以用于传输信号;如果信道检测失败,下一个固定帧周期内的信道占用时间COT不能用于传输信号。也即,该种实现方式中,通信设备可以用于业务发送的信道资源机会是周期性出现的。
现有技术中,在基于FBE的信道接入方式中,终端设备如何进行PDCCH的监测目前没有确定的方案。一种可能的实现方式是不管网络设备是否发送下行控制信息,该终端设备均会在固定帧周期的信道占用时间内一直进行下行控制信息的监测,但是这样会导致终端设备长时间进行信息监测,存在耗电量大,浪费资源的问题。
针对上述问题,本申请实施例提供了另一种控制信道的传输方法,终端设备确定固定帧周期的信道占用时间COT内的第一搜索空间集合,根据该第一搜索空间集合监测第一PDCCH,该第一PDCCH用于传输时隙结构指示信息,该时隙结构指示信息用于确定COT的时隙结构。该技术方案中,终端设备利用确定的第一搜索空间集合监测第一PDCCH,且该第一PDCCH传输的时隙结构指示信息可以用于确定COT的时隙结构,使得该终端设备可以基于确定的COT的时隙结构执行控制信息的检测,其能够在一定程度上辅助下行控制信息的检测,避免了长时间检测造成的资源浪费问题。
下面,通过具体实施例对本申请的技术方案进行详细说明。需要说明的是,本申请的技术方案可以包括以下内容中的部分或全部,下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
图6为本申请提供的控制信道的传输方法实施例一的流程示意图。该方法的执行主体为具有终端设备功能的装置,也可以是终端设备。在本实施例中,该方法可以包括如下步骤:
步骤61:终端设备确定固定帧周期的信道占用时间COT内的第一搜索空间集合。
可选地,在本申请实施例中,固定帧周期的起始位置、固定帧周期的长度、固定周期内COT的最大长度等信息中的至少一项可以是预设的或网络设备通过高层信令指示给终端设备的,也可以是网络设备和终端设备约定的例如基于协议或法规约定的。
可选地,在本申请实施例中,网络设备可以为位于其所服务范围内的终端设备配置搜索空间集合,并将对应的高层信令发送至终端设备侧。
可选地,在本申请实施例中,网络设备可以通过高层信令在每个固定帧周期的COT内为终端设备配置第一搜索空间集合,以使终端设备基于配置的第一搜索空间集合监测PDCCH。
可选地,在本申请实施例中,高层信令包括无线资源控制(radio resource control,RRC)信息或媒体接入控制(media access control,MAC)控制单元(control element,CE)信息。
可选地,在本申请实施例中,第一搜索空间集合是预设的,或第一搜索空间集合是网络设备和终端设备约定的。
步骤62:终端设备根据第一搜索空间集合监测第一PDCCH,该第一PDCCH用于传输时隙结构指示信息,该时隙结构指示信息用于确定该COT的时隙结构。
可选地,在本实施例中,终端设备确定出第一搜索空间集合之后,可以根据第一搜索空间集合检测是否存在第一PDCCH。可以理解的是,此处的第一PDCCH是候选的PDCCH,因为网络设备可以通过第一搜索空间集合发送第一PDCCH,也可以不通过第一搜索空间集合发送第一PDCCH(例如网络设备信道检测失败,则不能通过配置的第一搜索空间集合发送第一PDCCH)。
可选地,在本申请实施例中,终端设备可以根据高层信令配置的CORESET和第一搜索空间集合,确定待监测的第一PDCCH候选。
可选的,在本申请的实施例中,网络设备在与终端设备进行通信之前可以先检测非授权频谱上的信 道,以确定该下一个固定帧周期内的COT内的资源是否可被使用,如果能被使用,则可以根据该COT内的第一搜索空间集合发送第一PDCCH,以将用于确定该COT的时隙结构的时隙结构指示信息发送至终端设备。
相应的,终端设备可以根据确定的第一搜索空间集合监测网络设备是否发送了第一PDCCH,从而确定是否可以获取到第一PDCCH中的用于确定该COT的时隙结构的时隙结构指示信息。
可选地,第一PDCCH可以是公共PDCCH(例如,可以是组公共(group common GC)PDCCH(GC-PDCCH))。
应理解,NR-U***支持灵活的时隙格式,其中,时隙格式可以表示为一个时隙中包括的下行(Downlink)符号,灵活(Flexible)符号,上行(Uplink)符号的信息。这样的时隙构成可以称为不同的时隙格式(slot format,SF)。
目前NR协议支持的时隙格式最多可以有256种,表1示出了其中的26种时隙格式。在表1中,一行表示一个时隙格式,“D”表示下行符号,“U”表示上行符号,“F”表示灵活符号。可以看到,时隙格式0表示一个时隙中的14个符号都为下行符号,时隙格式1表示一个时隙中的14个符号都为上行符号,时隙格式20表示一个时隙的前2个符号配置为下行符号,最后1个符号配置为上行符号,中间的11个符号配置为灵活符号。
表1
Figure PCTCN2019096047-appb-000001
Figure PCTCN2019096047-appb-000002
可选地,第一PDCCH用于传输时隙结构指示信息。作为示例,时隙结构指示信息可以为时隙格式指示(slot format indicator,SFI)信息。第一PDCCH可以用于传输至少一个小区的SFI信息,第一PDCCH中的一个SFI索引(SFI-index)域可以用于指示一个时隙格式组合,其中,一个时隙格式组合包括至少一个时隙格式指示。
可选地,第一PDCCH的循环冗余校验(cyclic redundancy check,CRC)可以通过时隙格式指示-无线网络临时标识(slot format indication radio network temporary identity,SFI-RNTI)加扰,其中,SFI-RNTI可以是高层配置的。
本申请实施例提供的控制信道的传输方法,终端设备利用确定的第一搜索空间集合监测第一PDCCH,且该第一PDCCH传输的时隙结构指示信息可以用于确定COT的时隙结构,使得该终端设备可以基于确定的COT的时隙结构执行控制信息的检测,其能够在一定程度上辅助下行控制信息的检测,避免了长时间检测造成的资源浪费问题。
可选地,固定帧周期内的COT的长度或结束位置可以是预配置的或通过高层信令指示的,或者,固定帧周期内的COT的长度或结束位置可以是通过时隙结构指示信息确定的。
可选地,固定帧周期内的COT可以包括用于下行传输的资源,用于上行传输的资源,用于侧行传输(例如终端直连传输)的资源和不用于传输的资源(例如空隙)中的至少一种资源。
在实际应用中,例如在NR-U***中,终端设备的BWP可以包括一个子带或多个子带。其中,子带可以为LBT子带,或者说,子带大小为进行LBT检测时的频带大小。当终端设备的BWP包括多个子带时,由于不同的子带可以独立进行LBT,因此不同子带上的LBT结果可能不同。
作为示例,网络设备给终端设备配置的BWP0包括第一子带和第二子带,且第一子带和第二子带均为LBT子带,在每个LBT子带进行信道检测时,可能出现部分子带LBT失败的情况,例如,第一子带的LBT结果指示成功,而第二子带的LBT结果指示失败,在这种情况下,网络设备只能通过LBT成功的第一子带传输第一PDCCH,或者,第一子带的LBT结果指示失败,而第二子带的LBT结果指示成功,此时,网络设备只能通过LBT成功的第二子带传输第一PDCCH。
但是,对于终端设备来说,LBT失败的子带也属于网络设备给终端设备配置的BWP0包括的频率资源,因此,网络设备需要将LBT失败的子带在该COT内不能使用的信息通知给终端设备(或者网络设备需要将该COT内LBT成功的子带的信息通知给终端设备),以使终端设备在该COT内对该LBT失败的子带不进行PDCCH监测。
可选的,在本申请实施例中,第一PDCCH还可以用于传输频域资源指示信息,该频域资源指示信息用于确定该COT的频域资源使用情况。
应理解,由于网络设备在进行下行传输时是提前准备的,LBT成功后立即进行该COT内的下行传输,但对于频域资源是否可用的信息是LBT结束后(或者说,该COT开始的时刻)才确定的,所以,网络设备需要一定的处理时间才能向终端设备发送频域资源指示信息。
可选的,在本申请的一实施例中,该第一搜索空间集合包括第一监测资源,该第一监测资源位于该COT内,且第一监测资源的起始位置与COT的起始位置之间具有偏移值。
作为一种示例,第一搜索空间集合包括起始位置与COT的起始位置之间具有偏移值的第一监测资源,这时网络设备可以在该第一监测资源将用于传输时隙结构指示信息的第一PDCCH传输给终端设备,因而,终端设备在该固定帧周期的COT内监测时,可以基于是否在第一监测资源监测到第一PDCCH来确定该固定帧周期的是否可用。
作为另一种示例,第一搜索空间集合包括起始位置与COT的起始位置之间具有偏移值的第一监测资源,这时网络设备可以在该第一监测资源将用于传输频域资源指示信息的第一PDCCH传输给终端设备,因而,终端设备在该固定帧周期的COT内监测时,可以基于在第一监测资源上监测到的第一PDCCH来确定该COT内可用的频域资源。
在本实施例中,图7为本申请中第一搜索空间集合包括的第一监测资源的位置示意图。如图7所示,网络设备可以通过频域资源指示信息指示该COT的频域资源是否可用,具体的,当第一监测资源位于该COT内,且第一监测资源的起始位置与COT的起始位置之间具有偏移值时,网络设备可以在第一监测资源上传输还包括频域资源指示信息的第一PDCCH。
参照图7所示,网络设备给终端设备配置的BWP0包括第一子带和第二子带,且第一子带和第二子带均为LBT子带,例如,第一子带的LBT结果和第二子带的LBT结果不同,这时,在本实施例中,用于确定该COT的频域资源使用情况的频域资源指示信息和用于确定该COT的时隙结构的时隙结构指示信息可以一起通过第一PDCCH发送被终端设备。
例如,参照图7所示,在第一个固定帧周期内,若第一子带的LBT结果指示成功,而第二子带的 LBT结果指示失败,这时,网络设备只能通过LBT成功的第一子带传输第一PDCCH,终端设备通过在第一子带与COT起始位置具有偏移值的第一监测资源上可以监测到第一PDCCH,进而根据第一PDCCH传输的频域资源指示信息确定第一子带可用,而第二子带不可用。相应的,在第二个固定帧周期内,在第一子带的LBT结果指示失败,而第二子带的LBT结果指示成功时,同样可以通过第一监测资源传输的第一PDCCH确定出第一子带不可用,而第二子带可用。
可选地,本申请的该种实施例可以应用于需要指示频域资源是否可用的场景,或者说,应用于频域资源包括至少两个子带的场景。
可选的,在本申请的一实施例中,第一监测资源为第一搜索空间集合在COT内的第一个监测资源。或者说,网络设备在确定频域资源指示信息后,才通过第一监测资源向终端设备发送携带时隙结构指示信息和频域资源指示信息的第一PDCCH。
可选地,时隙结构指示信息用于指示固定帧周期内从COT的起始位置开始的时隙结构,或者,时隙结构指示信息用于指示固定帧周期内从第一监测资源开始的时隙结构。
可选地,由于第一监测资源的起始位置与COT的起始位置之间具有偏移值,该偏移值对应的资源可以认为是下行资源,或者说,网络设备在确定COT内的资源可用后,可以通过COT的起始位置和第一监测资源的起始位置之间的资源进行下行传输。
本实施例中,利用第一搜索空间集合包括的起始位置与COT的起始位置之间具有偏移值的第一监测资源来传输第一PDCCH,且该第一PDCCH还用于传输频域资源指示信息,这样可以使网络设备可以有足够时间来准备和发送频域资源指示信息。
可选的,上述偏移值大于或等于一个时间单元的长度,或,偏移值是根据网络设备的处理时间确定的。其中,时间单元可以为符号或时隙或子帧等。
作为一种示例,为了保证网络设备有足够的处理时间确定出终端设备的频率资源是否可用,第一监测资源的起始位置与COT的起始位置之间的偏移值可以大于或等于一个符号的长度,或者,根据网络设备的处理时间来确定偏移值的大小,以保证网络设备有足够时间来准备频域资源指示信息。
在本实施例中,网络设备的处理时间是指网络设备在确定该COT是否能被使用到生成频域资源指示信息所需要的时间。可选的,网络设备与终端设备进行通信之前,可以将该处理时间发送给终端设备,例如,广播的形式发送给终端设备,这样终端设备可以根据接收到的该网络设备的处理时间,计算偏移值的大小。
由于该处理时间是网络设备生成频域资源指示信息所需的时间,所以,终端设备通过在第一监测资源处监测第一PDCCH,可以获取到信息准确的频域资源指示信息,进而保证了获取到的COT的频域资源使用情况是正确的。
例如,偏移值为一个时隙,该第一搜索空间集合包括的监测资源的起始位置包括该COT的第二个时隙上的第一个符号。
举例说明,固定帧周期包括10个时隙,固定帧周期内的COT包括该10个时隙中的前9个时隙例如标号为时隙0~时隙9中的至少部分资源,第一搜索空间集合的监测周期为5个时隙,在监测周期内的监测时隙为监测周期内的第2个时隙,即COT内的时隙1和时隙6,在监测时隙上的监测资源的起始符号为第一个符号。因此,第一搜索空间集合在固定帧周期内包括的监测资源的起始符号为时隙1上的第一个符号和时隙6上的第一个符号。第一监测资源的起始符号为时隙1上的第一个符号。
作为另一种示例,该偏移值是预设的,或,该偏移值是网络设备通过指示信息发送给终端设备的。
可选地,上述用于确定偏移值的指示信息可以是高层信令。
在本实施例中,该偏移值可以网络设备基于其从确定该COT是否能被使用到生成频域资源指示信息所需要的处理时间确定的。可选的,网络设备与终端设备进行通信之前,可以将确定的偏移值发送给终端设备,例如,通过高层信令(例如,RRC信令或MAC信令)的形式发送给终端设备,这样终端设备可以直接获取该偏移值。因而,终端设备通过在第一监测资源处监测第一PDCCH获取到的频域资源指示信息可以准确的指示该COT的频域资源使用情况。
在本实施例中,可选的,该第一监测资源的起始位置与COT的起始位置之间的偏移值可以是预先设定的,例如,终端设备与网络设备预先约定好的。
可选的,该第一监测资源的起始位置与COT的起始位置之间的偏移值还可以是网络设备确定的,并事先通过指示信息发送给终端设备的,也即,终端设备在监测第一PDCCH之前已知该偏移值。
作为示例,网络设备可以通过高层信令为终端设备配置第一搜索空间集合,该第一搜索空间集合包括的监测资源的起始符号在固定帧周期中不包括该固定帧周期内的COT的起始位置。
可选的,在本申请的另一种实施例中,第一搜索空间集合包括第二监测资源,该第二监测资源的起始位置与COT的起始位置相同。
在本实施例中,由于终端设备需要根据是否在第一搜索空间集合内监测到第一PDCCH来确定COT的时隙结构,因此,在第一COT内,网络设备越早发送第一PDCCH,使得终端设备能够越早获知COT的时隙结构,从而能够越早辅助终端设备进行第二PDCCH的监测,可选的,该第二PDCCH为除第一PDCCH外的其他PDCCH。
例如,图8为本申请中第一搜索空间集合包括的第二监测资源的位置示意图。如图8所示,因此,在本实施例中,第一搜索空间集合包括起始位置与COT的起始位置相同的第二监测资源,这时用于传输时隙结构指示信息的第一PDCCH可以在该第二监测资源被传输给终端设备,这时,终端设备在该固定帧周期的COT内监测时,可以基于是否在第一监测资源监测到第一PDCCH来确定该固定帧周期是否可用。
可选的,在本实施例中,第二监测资源包括COT的第一个时隙上的第一个符号。
例如,第二监测资源配置在该COT的起始位置处,例如,该第一搜索空间集合在COT内的第一个监测资源(即第二监测资源)的起始位置包括该COT的第一个时隙上的第一个符号。也即,网络设备在COT开始前执行的LBT成功后,可以立即发送第一PDCCH,或者网络设备在LBT失败后,不在第一COT内发送第一PDCCH。
在本实施例中,当第二监测资源的起始位置与COT的起始位置相同,也即,第一搜索空间集合的第二监测资源配置在COT的起始位置处时,由于网络设备在进行下行传输时是提前准备的,LBT成功后立即进行下行传输,但对于频域资源是否可用的信息是LBT结束后才确定的,因此,在下行传输刚开始的时候,网络设备还不能准备好用于确定子带可用或不可用的频率资源指示信息。可选地,本申请的该种实施例可以应用于不需要指示频域资源是否可用的场景,或者,应用于频域资源包括一个子带的场景。
可选的,在本申请的另一种实施例中,第一搜索空间集合包括第一监测资源和第二监测资源,该第一监测资源的起始位置与COT的起始位置具有偏移值,该第二监测资源的起始位置与COT的起始位置相同。
可选的,图9为本申请中第一搜索空间集合包括的第一监测资源和第二监测资源的位置示意图。如图9所示,该第二监测资源上传输的第一PDCCH不用于传输频域资源指示信息;或
该第二监测资源上传输的第一PDCCH用于传输频域资源指示信息,且该频域资源指示信息不用于确定COT的频域资源使用情况。
可选的,在本实施例中,第一搜索空间集合在该COT内包括至少两个监测资源,也即,至少两个可以被监测的时域位置。参照图9所示,由于在下行传输刚开始的时候,网络设备还不能准备好用于确定子带可用或不可用的频率资源指示信息,所以,对于起始位置与COT的起始位置相同的第二监测资源,该第二监测资源上传输的第一PDCCH不用于传输频域资源指示信息,也即,第二监测资源上传输的第一PDCCH不用于指示第一子带和第二子带是否可用,或者,该第二监测资源上传输的第一PDCCH传输的频域资源指示信息不用于确定COT的频域资源使用情况,以避免终端设备获取到错误的频率资源指示信息。但是可以利用该第一搜索空间集合包括的其他监测资源来指示有效的频域资源指示信息,例如,利用与COT的起始位置具有偏移值的第一监测资源上传输的第一PDCCH来指示第一子带和第二子带是否可用。
例如,假设频域资源指示信息包括N比特,第一监测资源和第二监测资源上均传输了第一PDCCH,第二监测资源位于第一监测资源之前。第一监测资源上的第一PDCCH传输的下行控制信息中包括N比特的频域资源指示信息,该N比特的频域资源指示信息用于确定该COT内可用或不可用的频域资源。但由于网络设备在第二监测资源上发送第一PDCCH时可能还没有准备好频域资源指示信息,因此,第二监测资源上的第一PDCCH传输的下行控制信息中虽然也包括该N比特的频域资源指示信息,但该N比特的频域指示信息不用于确定该COT内可用或不可用的频域资源,例如,该N比特频域指示信息为特殊状态(例如全0),该特殊状态用于表示网络设备暂时还没有准备好频域指示信息。或者,另外一种可能的方式是第二监测资源上的第一PDCCH传输的下行控制信息中可以不包括该N比特的频域资源指示信息。
可选地,该方案同样应用于需要指示频域资源是否可用的场景,或者说,该方案应用于频域包括至少两个子带的场景。
可选地,该第一搜索空间集合包括的第一监测资源和第二监测资源为同一个时隙上的监测资源。
例如,固定帧周期包括10个时隙,固定帧周期内的COT包括该10个时隙中的前9个时隙例如标号为时隙0~时隙9中的至少部分资源,第一搜索空间集合的监测周期为5个时隙,在监测周期内的监测时隙为监测周期内的第1个时隙,即COT内的时隙0和时隙5,在监测时隙上的监测资源的起始符号包括第一个符号和第八个符号。因此,第一搜索空间集合在固定帧周期内包括的监测资源的起始符号 为时隙0上的符号0、时隙0上的符号7、时隙5上的符号0、时隙5上的符号7。第二监测资源的起始符号为时隙0上的符号0,第一监测资源的起始符号可以包括时隙0上的符号7,偏移值为7个符号。
可选地,该第一搜索空间集合包括的第一监测资源和第二监测资源为不同时隙上的监测资源。
例如,固定帧周期包括10个时隙,固定帧周期内的COT包括该10个时隙中的前9个时隙例如标号为时隙0~时隙9中的至少部分资源,第一搜索空间集合的监测周期为5个时隙,在监测周期内的监测时隙为监测周期内的第1个时隙,即COT内的时隙0和时隙5,在监测时隙上的监测资源的起始符号为第一个符号。因此,第一搜索空间集合在固定帧周期内包括的监测资源的起始符号为时隙0上的符号0和时隙5上的符号0。第二监测资源的起始符号为时隙0上的符号0,第一监测资源的起始符号为时隙5上的符号0,偏移值为5个时隙。
又例如,固定帧周期包括10个时隙,固定帧周期内的COT包括该10个时隙中的前9个时隙例如标号为时隙0~时隙9中的至少部分资源,第一搜索空间集合的监测周期为5个时隙,在监测周期内的监测时隙为监测周期内的第1个时隙和第2个时隙,即COT内的时隙0、时隙1、时隙5、时隙6,在监测时隙上的监测资源的起始符号为第一个符号。因此,第一搜索空间集合在固定帧周期内包括的监测资源的起始符号为时隙0上的符号0、时隙1上的符号0、时隙5上的符号0、时隙6上的符号0。第二监测资源的起始符号为时隙0上的符号0,第一监测资源的起始符号可以包括时隙1上的符号0,偏移值为1个时隙。
在本实施例中,考虑到网络设备需要一定的处理时间才能向终端设备发送频域资源指示信息,因此,网络设备通过在COT内配置多个用于检测传输第一PDCCH的监测资源,在准备好频域资源指示信息后通过后续的监测资源来传输第一PDCCH,进而向终端设备传输用于确定COT的频域资源使用情况的频域资源指示信息。
可选地,在本实施例中,在不同的监测资源上传输的第一PDCCH中传输的信息可能不同,或者在不同的监测资源上传输的第一PDCCH中传输的信息相同但信息指示的内容不同。
例如,在本实施例中,第一监测位置距离COT的起始位置有偏移值,第二监测资源的起始位置与COT的起始位置相同。
作为一种示例,第二监测资源上发送的第一PDCCH包括时隙结构指示信息;第一监测资源上发送的第一PDCCH包括时隙结构指示信息和频域资源指示信息。
作为另一种示例,第二监测资源上发送的第一PDCCH包括时隙结构指示信息和频域资源指示信息,其中,频域资源指示信息不用于确定COT的频域资源使用情况;第一监测资源上发送的第一PDCCH包括时隙结构指示信息和频域资源指示信息,其中,频域资源指示信息用于确定COT的频域资源使用情况。
可选的,在上述任意一种实施例中,第一搜索空间集合的监测周期小于或等于该固定帧周期。
可选的,该固定帧周期为第一搜索空间集合的监测周期的整数倍。
例如,该整数倍可以为1倍、2倍、4倍等不同的取值。关于整数倍的具体取值可以根据实际情况确定,此处不再赘述。
在本实施例中,通过配置第一搜索空间集合的监测周期小于或等于该固定帧周期,能够保证每个固定帧周期内都有控制资源用于传输时隙结构指示信息和/或频域资源指示信息,以使终端设备可以根据该信息确定COT内的时隙结构和/或COT内的频域资源使用情况。
可选的,在上述实施例的基础上,图10为本申请提供的控制信道的传输方法实施例二的流程示意图。如图10所示,在本实施例中,该方法还可以包括如下内容中的至少部分内容:
步骤101:基于对第一PDCCH的监测结果,该终端设备确定是否根据第二搜索空间集合监测第二PDCCH,其中,该第二PDCCH和第一PDCCH不同。
可选地,在本实施例中,终端设备根据第一搜索空间集合监测第一PDCCH之后,可以确定出对第一PDCCH的监测结果,并基于该监测结果确定是否根据第二搜索空间集合监测第二PDCCH。
可选的,在本实施例中,第二PDCCH和第一PDCCH不同,包括以下至少一种:
1)第二搜索空间集合和第一搜索空间集合不同。
在本实施例中,第一PDCCH需要根据第一搜索空间集合监测,而第二PDCCH需要根据第二搜索空间集合监测。根据不同的搜索空间集合可以确定出不同的PDCCH。
2)第二PDCCH对应的搜索空间和第一PDCCH对应的搜索空间不同。
例如,第二PDCCH对应的监测周期及偏移、在监测时隙中的符号位置均与第一PDCCH对应的监测周期及偏移、在监测时隙中的符号位置不同;和/或,第二PDCCH对应的聚合等级及其对应的PDCCH候选个数与第一PDCCH对应的聚合等级及其对应的PDCCH候选个数不同。
3)第二PDCCH对应的下行控制信息格式和第一PDCCH对应的下行控制信息格式不同。
例如,第一PDCCH对应的格式为格式2-0,第二PDCCH对应的格式为格式0-0、格式0-1、格式1-0、格式1-1、格式2-1、格式2-2、格式2-3中的一种。根据不同的格式检测的PDCCH不同。
4)第二PDCCH的循环冗余校验(cyclic redundancy check,CRC)扰码使用的无线网络临时标识(radio network temporary identifier,RNTI)和第一PDCCH的CRC扰码使用的RNTI不同。
例如,第一PDCCH的CRC扰码使用的RNTI是SFI-RNTI,第二PDCCH的CRC扰码使用的RNTI不是SFI-RNTI,例如,第二PDCCH的CRC扰码使用的RNTI是小区RNTI(cell RNTI,C-RNTI)、配置调度RNTI(configured scheduling RNTI,CS-RNTI)、调制编码方案C-RNTI(modulation and coding scheme C-RNTI,MCS-C-RNTI)、半持续CSI-RNTI(semi-persistent CSI RNTI,SP-CSI-RNTI)、临时C-RNTI(temporary C-RNTI,TC-RNTI)、寻呼RNTI(paging RNTI,P-RNTI)、***信息RNTI(system information RNTI,SI-RNTI)、随机接入RNTI(random access RNTI,RA-RNTI)、公共控制RNTI(common control RNTI,CC-RNTI)、组RNTI(group RNTI,G-RNTI)、中断RNTI(interruption RNTI,INT-RNTI)、PUSCH功控RNTI(transmit power control-PUSCH-RNTI,TPC-PUSCH-RNTI)、PUCCH功控RNTI(transmit power control-PUCCH-RNTI,TPC-PUCCH-RNTI)、SRS功控RNTI(transmit power control-sounding reference symbols-RNTI,TPC-SRS-RNTI)、侧行链路RNTI(sidelink RNTI,SL-RNTI)等中的一种。根据不同的RNTI检测的PDCCH不同。
5)第二PDCCH是终端设备专用PDCCH,第一PDCCH是公共PDCCH。
例如,第一PDCCH对应的格式为格式2-0、格式2-1、格式2-2、格式2-3中的一种,第二PDCCH对应的格式为格式0-0、格式0-1、格式1-0、格式1-1中的一种。
又例如,第一PDCCH是组公共PDCCH,第一PDCCH上传输的控制信息用于指示COT内的时隙格式,第二PDCCH上传输的控制信息是调度终端设备进行下行接收的下行授权,或调度终端设备进行上行发送的上行授权。
可选的,该步骤具体可以通过如下方式实现:
作为一种示例,在监测到第一PDCCH的情况下,终端设备在该COT内根据时隙结构指示信息和第二搜索空间集合监测该第二PDCCH。
例如,图11为终端设备基于第一PDCCH的监测结果是否执行监测第二PDCCH的示意图。如图11所示,在本实施例中,若网络设备的LBT成功,这时,网络设备可以利用起始位置与COT起始位置相同的监测资源传输第一PDCCH。
如果终端设备监测到第一PDCCH,那么可以说明网络设备LBT成功进行了下行信号发送,因此,该终端设备的行为包括:根据第一PDCCH中的时隙结构指示信息,确定该第一COT内的时隙结构,并根据确定的时隙结构中的下行资源和配置的第二搜索空间集合监测第二PDCCH,直到该第一COT结束。
作为另一种示例,在没有监测到第一PDCCH的情况下,终端设备在该COT内不监测第二PDCCH。
可选的,如果终端设备没有监测到第一PDCCH,那么大概率是因为网络设备LBT失败没有进行下行信号发送,因此,该终端设备的行为包括:在该第一COT内不再进行第二PDCCH监测。
在本实施例中,执行这种示例的终端设备可以包括网络设备配置了节能功能的终端设备和/或向网络设备上报了需要节能的终端设备。同时,执行该种实施例的终端设备也是网络设备配置了第一搜索空间集合后的终端设备,且根据该第一搜索空间集合监测到的第一PDCCH用于传输时隙结构指示信息,该时隙结构指示信息用于确定COT的时隙结构。
在本实施例中,终端设备根据是否监测到携带时隙结构指示信息的第一PDCCH来确定是否在该COT内执行第二PDCCH的监测,减少了终端设备的盲检测复杂度,达到了省电的效果。
作为再一种示例,在没有监测到该第一PDCCH的情况下,终端设备在该COT内根据第二搜索空间集合监测第二PDCCH。
在本实施例中,如果终端设备没有监测到第一PDCCH,这时终端设备的行为可以包括:在该COT内根据被配置的第二搜索空间集合进行第二PDCCH监测,直到该第一COT结束。
可选的,执行这种示例的终端设备包括网络设备没有配置节能功能的终端设备和/或没有向网络设备上报需要节能的终端设备;同时,执行这种示例的终端设备也是网络设备配置了第一搜索空间集合后的终端设备。
在本实施例中,终端设备如果没有监测到第一PDCCH,则仍根据配置的第二搜索空间集合来进行第二PDCCH的监测,由于第二PDCCH的监测独立于第一PDCCH,在一定程度上可以达到省电的效果,也可以减少第一PDCCH漏检导致的性能损失。
可选的,在本实施例中,对于配置了第一搜索空间集合,且第一搜索空间集合包括了位于COT内 且起始位置与COT的起始位置之间具有偏移值的第一监测资源,其中第一监测资源为COT内的第一个监测资源时,终端设备可以在固定帧周期的COT的起始位置和第一监测资源的起始位置之间的资源上进行下行信号或下行信道的检测。
例如,如果终端设备的第二搜索空间集合中的监测资源包括固定帧周期的COT的起始位置开始至偏移值结束的第一时间段内的资源,终端设备可以在该第一时间段内进行第二PDCCH的监测。
可选的,如果终端设备在该第一时间段内没有监测到第二PDCCH,且在该第一监测资源上没有监测到第一PDCCH,那么该终端设备可以从下一个固定帧周期开始监测,和/或,
如果终端设备在该第一时间段内监测到第二PDCCH,或在该第一监测资源上监测到第一PDCCH,那么该终端设备需要监测完整个帧周期,也即,在该固定帧周期的COT内一直监测第二PDCCH,直到COT结束。
可选的,对于配置了第一搜索空间集合,且第一搜索空间集合包括起始位置与COT的起始位置相同的第二监测资源时,如果终端设备在COT的起始位置处监测到第一PDCCH,那么则根据第一PDCCH进行该COT内的第二PDCCH的监测。如果终端设备在第一COT的起始位置处没有监测到第一PDCCH,那么在第一COT内不进行第二PDCCH的监测。
可选的,对于第一搜索空间集合包括多个监测资源的情况,如果终端设备在多个监测资源中的时域位置排在第一位的监测资源上没有监测到第一PDCCH,则在该COT内不再进行第二PDCCH监测;或者,在该COT内的其他监测资源上进行第一PDCCH监测,并在监测到第一PDCCH后进行第二PDCCH的监测。
可选的,在本申请的实施例中,第一PDCCH对应的聚合等级大于或等于预设聚合等级。
可选的,在本实施例中,由于第一PDCCH用于确定COT的时隙结构的传输时隙结构指示信息,且由于使用的聚合等级越大,传输准确率越大,因此,该第一PDCCH传输使用的聚合等级需要大于或等于预设聚合等级。
可选的,该预设聚合等级可以为8,这时,该第一PDCCH对应的聚合等级可以为8或16的聚合等级。或者,该第一PDCCH对应的聚合等级为包括8和16的聚合等级,那么可以认为预设的聚合等级为8。
本实施例中,为了尽量避免出现网络设备发送第一PDCCH,但终端设备不能正确接收第一PDCCH的情况,网络设备可以使用较高的聚合等级例如聚合等级8或16等来发送第一PDCCH,提高了第一PDCCH正确传输的概率。
可选地,在本申请的实施例中,对于没有被配置第一搜索空间集合的终端设备,也即,终端设备没有被配置时隙结构指示信息的情况下,终端设备根据默认的行为进行COT内的第二PDCCH监测。
具体的,终端设备在COT内监测被配置的第二搜索空间集合,直到该COT结束,如果终端设备监测到第二PDCCH,那么该终端设备的行为包括:根据第二PDCCH进行下行接收或上行发送;如果终端设备没有监测到第二PDCCH,那么该终端设备的行为包括:在该COT内根据被配置的第二搜索空间集合进行第二PDCCH监测直到该COT结束。
本申请实施例提供的控制信道的传输方法,对于没有被配置第一搜索空间集合的终端设备,终端设备可以根据第二搜索空间集合监测第二PDCCH,并基于监测的结果执行对应的操作,例如,在检测到第二PDCCH时,根据第二PDCCH进行下行接收或上行发送,没有监测到第二PDCCH时,在该COT内根据被配置的第二搜索空间集合进行第二PDCCH监测直到该COT结束,其仍然可以实现控制信道的传输。
图12为本申请提供的控制信道的传输方法实施例三的流程示意图。该方法的执行主体为具有网络设备功能的装置,也可以是网络设备。在本实施例中,该方法可以包括如下内容中的至少部分内容:
步骤121:网络设备确定固定帧周期的COT内的第一搜索空间集合。
可选地,网络设备可以为位于其所服务范围内的终端设备配置搜索空间集合,并将对应的高层信令发送至终端设备侧。
可选地,网络设备可以通过高层信令在固定帧周期的COT内为终端设备配置第一搜索空间集合,以使终端设备基于配置的第一搜索空间集合监测PDCCH。
可选地,第一搜索空间集合是预设的,或第一搜索空间集合是网络设备和终端设备约定的。
步骤122:网络设备判定该COT内的资源能被使用;若是,执行步骤123,和/或,若否,执行124。
可选的,在本实施例中,网络设备在该固定帧周期之前的前一个固定帧周期的COT内空隙时间内对信道做信道检测,如果信道检测成功,则认为该固定帧周期内的COT资源可以用于传输信号,相应的,执行步骤123;或者,如果信道检测失败,认为该固定帧周期内的COT资源不能用于传输信号, 相应的,执行步骤124。
步骤123:网络设备在第一搜索空间集合内发送第一PDCCH,该第一PDCCH用于传输时隙结构指示信息,该时隙结构指示信息用于确定该COT的时隙结构。
在本实施例中,若网络设备确定该固定帧周期的COT内的资源能被使用,这时网络设备可以在该固定帧周期到来时,则在第一搜索空间集合内的资源上发送第一PDCCH,相应的,为了使得终端设备获知该COT的结构,该第一PDCCH可以用于传输用于确定该COT的时隙结构的时隙结构指示信息。
步骤124:网络设备在该COT内不传输下行信道或下行信号。
若网络设备确定该COT内的资源不能被使用,例如网络设备的信道检测失败,此时,网络设备在该COT内不传输下行信道或下行信号,进而继续基于LBT在下一个固定帧周期前对信道进行检测。
本申请实施例提供的控制信道的传输方法,网络设备确定固定帧周期的COT内的第一搜索空间集合,在确定该COT内的资源能被使用时,在第一搜索空间集合内发送第一PDCCH,该第一PDCCH用于传输时隙结构指示信息,该时隙结构指示信息用于确定该COT的时隙结构,在确定该COT内的资源不能被使用时,在该COT内不传输下行信道或下行信号。该技术方案中,网络设备在确定固定帧周期的COT可用时,可以将用于确定该COT的时隙结构的时隙结构指示信息发送给终端设备,其能够在一定程度上辅助下行控制信息的检测,避免了终端设备长时间检测造成的资源浪费问题。
可选的,在本申请的一种实施例中,该第一搜索空间集合包括第一监测资源,该第一监测资源位于该COT内,且该第一监测资源的起始位置与COT的起始位置之间具有偏移值。
可选的,该第一监测资源上传输的第一PDCCH还用于传输频域资源指示信息,该频域资源指示信息用于确定该COT的频域资源使用情况。
作为一种示例,该偏移值大于或等于一个符号的长度,或,该偏移值是根据网络设备的处理时间确定的。
作为另一种示例,该偏移值是预设的,或,该偏移值是网络设备通过指示信息发送给该终端设备的。
在本申请的另一种实施例中,该第一搜索空间集合包括第二监测资源,该第二监测资源的起始位置与所述COT的起始位置相同。
可选的,第二监测资源包括所述COT的第一个时隙上的第一个符号。
在本实施例中,第二监测资源上传输的第一PDCCH不用于传输频域资源指示信息;或
第二监测资源上传输的所述第一PDCCH用于传输频域资源指示信息,且所述频域资源指示信息不用于确定所述COT的频域资源使用情况。
在本申请的再一种实施例中,第一搜索空间集合的监测周期小于或等于所述固定帧周期。
例如,所述固定帧周期为所述第一搜索空间集合的监测周期的整数倍。
在本申请的又一种实施例中,网络设备在第一搜索空间集合内发送第一物理下行控制信道PDCCH之后,该方法还可以包括如下步骤:
网络设备在第二搜索搜索空间集合内发送第二PDCCH,其中,该第二PDCCH和第一PDCCH不同。
其中,第二PDCCH和第一PDCCH不同,包括以下至少一种:
所述第二搜索空间集合和所述第一搜索空间集合不同;
所述第二PDCCH对应的搜索空间和所述第一PDCCH对应的搜索空间不同;
所述第二PDCCH对应的下行控制信息格式和所述第一PDCCH对应的下行控制信息格式不同;
所述第二PDCCH的CRC扰码使用的RNTI和所述第一PDCCH的CRC扰码使用的RNTI不同。
在本申请的又一种实施例中,第一PDCCH对应的聚合等级大于或等于预设聚合等级。
关于网络设备侧的实现方案和未详述的细节均可以参见上述终端设备侧的记载,此处不再赘述。
图13为本申请提供的控制信道的传输装置实施例一的结构示意图。该装置可以集成在终端设备中,也可以为终端设备。如图13所示,该装置可以包括:确定模块131和监测模块132。
其中,该确定模块131,用于确定固定帧周期的信道占用时间COT内的第一搜索空间集合;
该监测模块132,用于根据所述第一搜索空间集合监测第一物理下行控制信道PDCCH,所述第一PDCCH用于传输时隙结构指示信息,所述时隙结构指示信息用于确定所述COT的时隙结构。
在本申请的一种实施例中,所述第一搜索空间集合包括第一监测资源,所述第一监测资源位于所述COT内,且所述第一监测资源的起始位置与所述COT的起始位置之间具有偏移值。
可选的,所述第一监测资源上传输的所述第一PDCCH还用于传输频域资源指示信息,所述频域资源指示信息用于确定所述COT的频域资源使用情况。
可选的,所述偏移值大于或等于一个符号的长度,或,所述偏移值是根据网络设备的处理时间确定的。
可选的,所述偏移值是预设的,或,所述偏移值是网络设备通过指示信息发送给终端设备的。
在本申请的另一种实施例中,所述第一搜索空间集合包括第二监测资源,所述第二监测资源的起始位置与所述COT的起始位置相同。
可选的,所述第二监测资源包括所述COT的第一个时隙上的第一个符号。
在本申请的实施例中,所述第二监测资源上传输的所述第一PDCCH不用于传输频域资源指示信息;或
所述第二监测资源上传输的所述第一PDCCH用于传输频域资源指示信息,且所述频域资源指示信息不用于确定所述COT的频域资源使用情况。
在本申请的再一种实施例中,所述第一搜索空间集合的监测周期小于或等于所述固定帧周期。
可选的,所述固定帧周期为所述第一搜索空间集合的监测周期的整数倍。
在本申请的又一种实施例中,确定模块121,还用于基于对所述第一PDCCH的监测结果,确定是否根据第二搜索空间集合监测第二PDCCH,其中,所述第二PDCCH和所述第一PDCCH不同。
其中,所述第二PDCCH和所述第一PDCCH不同,包括以下至少一种:
所述第二搜索空间集合和所述第一搜索空间集合不同;
所述第二PDCCH对应的搜索空间和所述第一PDCCH对应的搜索空间不同;
所述第二PDCCH对应的下行控制信息格式和所述第一PDCCH对应的下行控制信息格式不同;
所述第二PDCCH的循环冗余校验CRC扰码使用的无线网络临时标识RNTI和所述第一PDCCH的CRC扰码使用的RNTI不同。
在本实施例中,所述确定模块,具体用于:
在监测到所述第一PDCCH的情况下,确定在所述COT内根据所述时隙结构指示信息和所述第二搜索空间集合监测所述第二PDCCH;或,
在没有监测到所述第一PDCCH的情况下,确定在所述COT内不监测所述第二PDCCH;或,
在没有监测到所述第一PDCCH的情况下,确定在所述COT内根据所述第二搜索空间集合监测所述第二PDCCH。
可选的,所述确定模块,还用于在确定在所述COT内根据所述时隙结构指示信息和所述第二搜索空间集合监测所述第二PDCCH之后,根据所述时隙结构指示信息确定所述COT中的下行资源;
所述监测模块,还用于根据所述COT中的下行资源和所述第二搜索空间集合监测所述第二PDCCH。
在本申请的上述任意实施例中,所述第一PDCCH对应的聚合等级大于或等于预设聚合等级。
本实施例提供的装置,用于执行前述方法实施例中终端设备侧的技术方案,其实现原理和技术效果类似,此处不再赘述。
图14为本申请提供的控制信道的传输装置实施例二的结构示意图。该装置可以集成在网络设备中,也可以为网络设备。如图14所示,该装置可以包括:确定模块141和发送模块142。
其中,该确定模块141,用于确定固定帧周期的信道占用时间COT内的第一搜索空间集合;
该发送模块142,用于在所述确定模块141确定所述COT内的资源能被使用时,在所述第一搜索空间集合内发送第一物理下行控制信道PDCCH,所述第一PDCCH用于传输时隙结构指示信息,所述时隙结构指示信息用于确定所述COT的时隙结构;和/或
该确定模块141,还用于在确定所述COT内的资源不能被使用时,确定在所述COT内不传输下行信道或下行信号。
在本申请的一种实施例中,所述第一搜索空间集合包括第一监测资源,所述第一监测资源位于所述COT内,且所述第一监测资源的起始位置与所述COT的起始位置之间具有偏移值。
可选的,所述第一监测资源上传输的所述第一PDCCH还用于传输频域资源指示信息,所述频域资源指示信息用于确定所述COT的频域资源使用情况。
可选的,所述偏移值大于或等于一个符号的长度,或,所述偏移值是根据网络设备的处理时间确定的。
可选的,所述偏移值是预设的,或,所述偏移值是所述网络设备通过指示信息发送给所述终端设备的。
在本申请的另一种实施例中,所述第一搜索空间集合包括第二监测资源,所述第二监测资源的起始位置与所述COT的起始位置相同。
可选的,所述第二监测资源包括所述COT的第一个时隙上的第一个符号。
可选的,所述第二监测资源上传输的所述第一PDCCH不用于传输频域资源指示信息;或
所述第二监测资源上传输的所述第一PDCCH用于传输频域资源指示信息,且所述频域资源指示信息不用于确定所述COT的频域资源使用情况。
在本申请的再一种实施例中,所述第一搜索空间集合的监测周期小于或等于所述固定帧周期。
可选的,所述固定帧周期为所述第一搜索空间集合的监测周期的整数倍。
在本申请的又一种实施例中,发送模块142,还用于在所述第一搜索空间集合内发送第一物理下行控制信道PDCCH之后,在第二搜索搜索空间集合内发送第二PDCCH,其中,所述第二PDCCH和所述第一PDCCH不同。
其中,所述第二PDCCH和所述第一PDCCH不同,包括以下至少一种:
所述第二搜索空间集合和所述第一搜索空间集合不同;
所述第二PDCCH对应的搜索空间和所述第一PDCCH对应的搜索空间不同;
所述第二PDCCH对应的下行控制信息格式和所述第一PDCCH对应的下行控制信息格式不同;
所述第二PDCCH的循环冗余校验CRC扰码使用的无线网络临时标识RNTI和所述第一PDCCH的CRC扰码使用的RNTI不同。
在本申请的上述任意一种实施例中,所述第一PDCCH对应的聚合等级大于或等于预设聚合等级。
本实施例提供的装置,用于执行前述方法实施例中网络设备侧的技术方案,其实现原理和技术效果类似,此处不再赘述。
需要说明的是,应理解以上装置的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,处理模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上***(system-on-a-chip,SOC)的形式实现。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。
图15为本申请提供的控制信道的传输装置实施例三的结构示意图。该装置可以集成在终端设备中,也可以为终端设备。如图15所示,该装置可以包括:处理器151、存储器152、收发器153,以及与网络设备进行通信的接口154。
其中,存储器152存储计算机执行指令;
处理器151执行所述存储器152存储的计算机执行指令,使得所述处理器执行如前述任一方法实施例中的终端设备侧的控制信道的传输方法的技术方案。
图16为本申请提供的控制信道的传输装置实施例四的结构示意图。该装置可以集成在网络设备中,也可以为网络设备。如图16所示,该装置可以包括:处理器161、存储器162、收发器163,以及与终端设备进行通信的接口164。
其中,存储器162存储计算机执行指令;
处理器161执行所述存储器162存储的计算机执行指令,使得所述处理器161执行如前述任一方法实施例中的网络设备侧的控制信道的传输方法的技术方案。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现前述任一方法实施例中终端设备侧的技术方案。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现前述任一方法实施例中网络设备侧的技术方案。
本申请实施例还提供一种程序,当该程序被处理器执行时,用于执行前述方法实施例中终端设备侧的技术方案。
本申请实施例还提供一种程序,当该程序被处理器执行时,用于执行前述方法实施例中网络设备侧的技术方案。
本申请实施例还提供一种计算机程序产品,包括程序指令,程序指令用于实现前述方法实施例中终端设备侧的技术方案。
本申请实施例还提供一种计算机程序产品,包括程序指令,程序指令用于实现前述方法实施例中网络设备侧的技术方案。
本申请实施例还提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行前述方法实施例中UE的技术方案。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行终端设备侧的技术方案。
本申请实施例还提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行前述方法实施例中网络设备侧的技术方案。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行网络设备侧的技术方案。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中,a,b,c可以是单个,也可以是多个。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。
可以理解的是,在本申请的实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。

Claims (60)

  1. 一种控制信道的传输方法,其特征在于,包括:
    终端设备确定固定帧周期的信道占用时间COT内的第一搜索空间集合;
    所述终端设备根据所述第一搜索空间集合监测第一物理下行控制信道PDCCH,所述第一PDCCH用于传输时隙结构指示信息,所述时隙结构指示信息用于确定所述COT的时隙结构。
  2. 根据权利要求1所述的方法,其特征在于,所述第一搜索空间集合包括第一监测资源,所述第一监测资源位于所述COT内,且所述第一监测资源的起始位置与所述COT的起始位置之间具有偏移值。
  3. 根据权利要求2所述的方法,其特征在于,所述第一监测资源上传输的所述第一PDCCH还用于传输频域资源指示信息,所述频域资源指示信息用于确定所述COT的频域资源使用情况。
  4. 根据权利要求2或3所述的方法,其特征在于,所述偏移值大于或等于一个符号的长度,或,所述偏移值是根据网络设备的处理时间确定的。
  5. 根据权利要求2-4任一项所述的方法,其特征在于,所述偏移值是预设的,或,所述偏移值是网络设备通过指示信息发送给所述终端设备的。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一搜索空间集合包括第二监测资源,所述第二监测资源的起始位置与所述COT的起始位置相同。
  7. 根据权利要求6所述的方法,其特征在于,所述第二监测资源包括所述COT的第一个时隙上的第一个符号。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第二监测资源上传输的所述第一PDCCH不用于传输频域资源指示信息;或
    所述第二监测资源上传输的所述第一PDCCH用于传输频域资源指示信息,且所述频域资源指示信息不用于确定所述COT的频域资源使用情况。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述第一搜索空间集合的监测周期小于或等于所述固定帧周期。
  10. 根据权利要求9所述的方法,其特征在于,所述固定帧周期为所述第一搜索空间集合的监测周期的整数倍。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述方法还包括:
    基于对所述第一PDCCH的监测结果,所述终端设备确定是否根据第二搜索空间集合监测第二PDCCH,其中,所述第二PDCCH和所述第一PDCCH不同。
  12. 根据权利要求11所述的方法,其特征在于,所述第二PDCCH和所述第一PDCCH不同,包括以下至少一种:
    所述第二搜索空间集合和所述第一搜索空间集合不同;
    所述第二PDCCH对应的搜索空间和所述第一PDCCH对应的搜索空间不同;
    所述第二PDCCH对应的下行控制信息格式和所述第一PDCCH对应的下行控制信息格式不同;
    所述第二PDCCH的循环冗余校验CRC扰码使用的无线网络临时标识RNTI和所述第一PDCCH的CRC扰码使用的RNTI不同;
    所述第二PDCCH是终端设备专用PDCCH,所述第一PDCCH是公共PDCCH。
  13. 根据权利要求11或12所述的方法,其特征在于,所述基于对所述第一PDCCH的监测结果,所述终端设备确定是否根据第二搜索空间集合监测第二PDCCH,包括:
    在监测到所述第一PDCCH的情况下,所述终端设备确定在所述COT内根据所述时隙结构指示信息和所述第二搜索空间集合监测所述第二PDCCH;或,
    在没有监测到所述第一PDCCH的情况下,所述终端设备确定在所述COT内不监测所述第二PDCCH;或,
    在没有监测到所述第一PDCCH的情况下,所述终端设备确定在所述COT内根据所述第二搜索空间集合监测所述第二PDCCH。
  14. 根据权利要求13所述的方法,其特征在于,在所述终端设备确定在所述COT内根据所述时隙结构指示信息和所述第二搜索空间集合监测所述第二PDCCH之后,所述方法还包括:
    所述终端设备根据所述时隙结构指示信息确定所述COT中的下行资源;
    所述终端设备根据所述COT中的下行资源和所述第二搜索空间集合监测所述第二PDCCH。
  15. 根据权利要求1-14任一项所述的方法,其特征在于,所述第一PDCCH对应的聚合等级大于或等于预设聚合等级。
  16. 一种控制信道的传输方法,其特征在于,包括:
    网络设备确定固定帧周期的信道占用时间COT内的第一搜索空间集合;
    若所述网络设备确定所述COT内的资源能被使用,所述网络设备在所述第一搜索空间集合内发送第一物理下行控制信道PDCCH,所述第一PDCCH用于传输时隙结构指示信息,所述时隙结构指示信息用于确定所述COT的时隙结构;和/或,
    若所述网络设备确定所述COT内的资源不能被使用,所述网络设备在所述COT内不传输下行信道或下行信号。
  17. 根据权利要求16所述的方法,其特征在于,所述第一搜索空间集合包括第一监测资源,所述第一监测资源位于所述COT内,且所述第一监测资源的起始位置与所述COT的起始位置之间具有偏移值。
  18. 根据权利要求17所述的方法,其特征在于,所述第一监测资源上传输的所述第一PDCCH还用于传输频域资源指示信息,所述频域资源指示信息用于确定所述COT的频域资源使用情况。
  19. 根据权利要求17或18所述的方法,其特征在于,所述偏移值大于或等于一个符号的长度,或,所述偏移值是根据网络设备的处理时间确定的。
  20. 根据权利要求17-19任一项所述的方法,其特征在于,所述偏移值是预设的,或,所述偏移值是所述网络设备通过指示信息发送给终端设备的。
  21. 根据权利要求16-20任一项所述的方法,其特征在于,所述第一搜索空间集合包括第二监测资源,所述第二监测资源的起始位置与所述COT的起始位置相同。
  22. 根据权利要求21所述的方法,其特征在于,所述第二监测资源包括所述COT的第一个时隙上的第一个符号。
  23. 根据权利要求21或22所述的方法,其特征在于,所述第二监测资源上传输的所述第一PDCCH不用于传输频域资源指示信息;或
    所述第二监测资源上传输的所述第一PDCCH用于传输频域资源指示信息,且所述频域资源指示信息不用于确定所述COT的频域资源使用情况。
  24. 根据权利要求16-23任一项所述的方法,其特征在于,所述第一搜索空间集合的监测周期小于或等于所述固定帧周期。
  25. 根据权利要求24所述的方法,其特征在于,所述固定帧周期为所述第一搜索空间集合的监测周期的整数倍。
  26. 根据权利要求16-25任一项所述的方法,其特征在于,若所述网络设备确定所述COT内的资源能被使用,所述方法还包括:
    所述网络设备在第二搜索搜索空间集合内发送第二PDCCH,其中,所述第二PDCCH和所述第一PDCCH不同。
  27. 根据权利要求26所述的方法,其特征在于,所述第二PDCCH和所述第一PDCCH不同,包括以下至少一种:
    所述第二搜索空间集合和所述第一搜索空间集合不同;
    所述第二PDCCH对应的搜索空间和所述第一PDCCH对应的搜索空间不同;
    所述第二PDCCH对应的下行控制信息格式和所述第一PDCCH对应的下行控制信息格式不同;
    所述第二PDCCH的循环冗余校验CRC扰码使用的无线网络临时标识RNTI和所述第一PDCCH的CRC扰码使用的RNTI不同;
    所述第二PDCCH是终端设备专用PDCCH,所述第一PDCCH是公共PDCCH。
  28. 根据权利要求16-27任一项所述的方法,其特征在于,所述第一PDCCH对应的聚合等级大于或等于预设聚合等级。
  29. 一种控制信道的传输装置,其特征在于,包括:确定模块和监测模块;
    所述确定模块,用于确定固定帧周期的信道占用时间COT内的第一搜索空间集合;
    所述监测模块,用于根据所述第一搜索空间集合监测第一物理下行控制信道PDCCH,所述第一PDCCH用于传输时隙结构指示信息,所述时隙结构指示信息用于确定所述COT的时隙结构。
  30. 根据权利要求29所述的装置,其特征在于,所述第一搜索空间集合包括第一监测资源,所述第一监测资源位于所述COT内,且所述第一监测资源的起始位置与所述COT的起始位置之间具有偏移值。
  31. 根据权利要求30所述的装置,其特征在于,所述第一监测资源上传输的所述第一PDCCH还用于传输频域资源指示信息,所述频域资源指示信息用于确定所述COT的频域资源使用情况。
  32. 根据权利要求30或31所述的装置,其特征在于,所述偏移值大于或等于一个符号的长度,或,所述偏移值是根据网络设备的处理时间确定的。
  33. 根据权利要求30-32任一项所述的装置,其特征在于,所述偏移值是预设的,或,所述偏移值是网络设备通过指示信息发送给终端设备的。
  34. 根据权利要求29-33任一项所述的装置,其特征在于,所述第一搜索空间集合包括第二监测资源,所述第二监测资源的起始位置与所述COT的起始位置相同。
  35. 根据权利要求34所述的装置,其特征在于,所述第二监测资源包括所述COT的第一个时隙上的第一个符号。
  36. 根据权利要求34或35所述的装置,其特征在于,所述第二监测资源上传输的所述第一PDCCH不用于传输频域资源指示信息;或
    所述第二监测资源上传输的所述第一PDCCH用于传输频域资源指示信息,且所述频域资源指示信息不用于确定所述COT的频域资源使用情况。
  37. 根据权利要求29-36任一项所述的装置,其特征在于,所述第一搜索空间集合的监测周期小于或等于所述固定帧周期。
  38. 根据权利要求37所述的装置,其特征在于,所述固定帧周期为所述第一搜索空间集合的监测周期的整数倍。
  39. 根据权利要求29-38任一项所述的装置,其特征在于,所述确定模块,还用于基于对所述第一PDCCH的监测结果,确定是否根据第二搜索空间集合监测第二PDCCH,其中,所述第二PDCCH和所述第一PDCCH不同。
  40. 根据权利要求39所述的装置,其特征在于,所述第二PDCCH和所述第一PDCCH不同,包括以下至少一种:
    所述第二搜索空间集合和所述第一搜索空间集合不同;
    所述第二PDCCH对应的搜索空间和所述第一PDCCH对应的搜索空间不同;
    所述第二PDCCH对应的下行控制信息格式和所述第一PDCCH对应的下行控制信息格式不同;
    所述第二PDCCH的循环冗余校验CRC扰码使用的无线网络临时标识RNTI和所述第一PDCCH的CRC扰码使用的RNTI不同;
    所述第二PDCCH是终端设备专用PDCCH,所述第一PDCCH是公共PDCCH。
  41. 根据权利要求39或40所述的装置,其特征在于,所述确定模块,具体用于:
    在监测到所述第一PDCCH的情况下,确定在所述COT内根据所述时隙结构指示信息和所述第二搜索空间集合监测所述第二PDCCH;或,
    在没有监测到所述第一PDCCH的情况下,确定在所述COT内不监测所述第二PDCCH;或,
    在没有监测到所述第一PDCCH的情况下,确定在所述COT内根据所述第二搜索空间集合监测所述第二PDCCH。
  42. 根据权利要求41所述的装置,其特征在于,所述确定模块,还用于在确定在所述COT内根据所述时隙结构指示信息和所述第二搜索空间集合监测所述第二PDCCH之后,根据所述时隙结构指示信息确定所述COT中的下行资源;
    所述监测模块,还用于根据所述COT中的下行资源和所述第二搜索空间集合监测所述第二PDCCH。
  43. 根据权利要求29-42任一项所述的装置,其特征在于,所述第一PDCCH对应的聚合等级大于或等于预设聚合等级。
  44. 一种控制信道的传输装置,其特征在于,包括:确定模块和发送模块;
    所述确定模块,用于确定固定帧周期的信道占用时间COT内的第一搜索空间集合;
    所述发送模块,用于在所述确定模块确定所述COT内的资源能被使用时,在所述第一搜索空间集合内发送第一物理下行控制信道PDCCH,所述第一PDCCH用于传输时隙结构指示信息,所述时隙结构指示信息用于确定所述COT的时隙结构;和/或
    所述确定模块,还用于在确定所述COT内的资源不能被使用时,确定在所述COT内不传输下行信道或下行信号。
  45. 根据权利要求44所述的装置,其特征在于,所述第一搜索空间集合包括第一监测资源,所述第一监测资源位于所述COT内,且所述第一监测资源的起始位置与所述COT的起始位置之间具有偏移值。
  46. 根据权利要求45所述的装置,其特征在于,所述第一监测资源上传输的所述第一PDCCH还用于传输频域资源指示信息,所述频域资源指示信息用于确定所述COT的频域资源使用情况。
  47. 根据权利要求45或46所述的装置,其特征在于,所述偏移值大于或等于一个符号的长度, 或,所述偏移值是根据网络设备的处理时间确定的。
  48. 根据权利要求45-47任一项所述的装置,其特征在于,所述偏移值是预设的,或,所述偏移值是网络设备通过指示信息发送给终端设备的。
  49. 根据权利要求44-48任一项所述的装置,其特征在于,所述第一搜索空间集合包括第二监测资源,所述第二监测资源的起始位置与所述COT的起始位置相同。
  50. 根据权利要求49所述的装置,其特征在于,所述第二监测资源包括所述COT的第一个时隙上的第一个符号。
  51. 根据权利要求49或50所述的装置,其特征在于,所述第二监测资源上传输的所述第一PDCCH不用于传输频域资源指示信息;或
    所述第二监测资源上传输的所述第一PDCCH用于传输频域资源指示信息,且所述频域资源指示信息不用于确定所述COT的频域资源使用情况。
  52. 根据权利要求44-51任一项所述的装置,其特征在于,所述第一搜索空间集合的监测周期小于或等于所述固定帧周期。
  53. 根据权利要求52所述的装置,其特征在于,所述固定帧周期为所述第一搜索空间集合的监测周期的整数倍。
  54. 根据权利要求44-53任一项所述的装置,其特征在于,所述发送模块,还用于在确定所述COT内的资源能被使用之后,在第二搜索搜索空间集合内发送第二PDCCH,其中,所述第二PDCCH和所述第一PDCCH不同。
  55. 根据权利要求54所述的装置,其特征在于,所述第二PDCCH和所述第一PDCCH不同,包括以下至少一种:
    所述第二搜索空间集合和所述第一搜索空间集合不同;
    所述第二PDCCH对应的搜索空间和所述第一PDCCH对应的搜索空间不同;
    所述第二PDCCH对应的下行控制信息格式和所述第一PDCCH对应的下行控制信息格式不同;
    所述第二PDCCH的循环冗余校验CRC扰码使用的无线网络临时标识RNTI和所述第一PDCCH的CRC扰码使用的RNTI不同;
    所述第二PDCCH是终端设备专用PDCCH,所述第一PDCCH是公共PDCCH。
  56. 根据权利要求44-55任一项所述的装置,其特征在于,所述第一PDCCH对应的聚合等级大于或等于预设聚合等级。
  57. 一种控制信道的传输装置,其特征在于,包括:
    处理器、存储器、收发器,以及与网络设备进行通信的接口;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如上述权利要求1-15任一项所述的方法。
  58. 一种控制信道的传输装置,其特征在于,包括:
    处理器、存储器、收发器,以及与终端设备进行通信的接口;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求16-28任一项所述的方法。
  59. 一种存储介质,其特征在于,所述存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如权利要求1-15任一项所述的方法。
  60. 一种存储介质,其特征在于,所述存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如权利要求16-28任一项所述的方法。
PCT/CN2019/096047 2019-07-15 2019-07-15 控制信道的传输方法、装置及存储介质 WO2021007759A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19937728.4A EP3972358A4 (en) 2019-07-15 2019-07-15 METHOD AND APPARATUS FOR CONTROL CHANNEL TRANSMISSION, AND INFORMATION HOLDER
PCT/CN2019/096047 WO2021007759A1 (zh) 2019-07-15 2019-07-15 控制信道的传输方法、装置及存储介质
CN201980092596.3A CN113455071B (zh) 2019-07-15 2019-07-15 控制信道的传输方法、装置及存储介质
US17/550,814 US20220110118A1 (en) 2019-07-15 2021-12-14 Control channel transmission method and apparatus, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/096047 WO2021007759A1 (zh) 2019-07-15 2019-07-15 控制信道的传输方法、装置及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/550,814 Continuation US20220110118A1 (en) 2019-07-15 2021-12-14 Control channel transmission method and apparatus, and storage medium

Publications (1)

Publication Number Publication Date
WO2021007759A1 true WO2021007759A1 (zh) 2021-01-21

Family

ID=74210106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096047 WO2021007759A1 (zh) 2019-07-15 2019-07-15 控制信道的传输方法、装置及存储介质

Country Status (4)

Country Link
US (1) US20220110118A1 (zh)
EP (1) EP3972358A4 (zh)
CN (1) CN113455071B (zh)
WO (1) WO2021007759A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113632582A (zh) * 2021-07-08 2021-11-09 北京小米移动软件有限公司 基于物理直连通信数据信道的通信方法、装置及存储介质
WO2022213821A1 (zh) * 2021-04-06 2022-10-13 华为技术有限公司 物理下行控制信道重复传输的方法及通信装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3925155A1 (en) * 2019-02-13 2021-12-22 IDAC Holdings, Inc. Receiving control information in nr-u
JP7358649B2 (ja) * 2020-08-06 2023-10-10 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて信号の送受信方法及び装置
CN114513227B (zh) * 2022-02-24 2023-10-24 南京大鱼半导体有限公司 音频设备的信道探测方法、装置、设备及存储介质
WO2023193138A1 (en) * 2022-04-06 2023-10-12 Mediatek Singapore Pte. Ltd. Methods for sl-u communications in mode 1
CN115004818A (zh) * 2022-04-18 2022-09-02 北京小米移动软件有限公司 一种确定非授权频谱中频域资源的方法及装置
CN115190639A (zh) * 2022-07-15 2022-10-14 中国联合网络通信集团有限公司 调度方法、装置及计算机可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180027493A1 (en) * 2015-01-30 2018-01-25 Zte Corporation Data transmission method and device, base station and user equipment
CN108886818A (zh) * 2016-03-23 2018-11-23 韦勒斯标准与技术协会公司 在无线通信***中对非授权带上行链路信道接入的方法及其装置
CN109151833A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 传输控制信息的方法和装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6935426B2 (ja) * 2016-05-11 2021-09-15 コンヴィーダ ワイヤレス, エルエルシー 新しい無線ダウンリンク制御チャネル
US10362593B2 (en) * 2017-09-01 2019-07-23 Huawei Technologies Co., Ltd. Grant-free uplink transmission in unlicensed spectrum
CN109802732B (zh) * 2017-11-17 2021-02-12 华为技术有限公司 下行控制信道的监测方法和相关装置
CN111566979B (zh) * 2018-01-10 2023-08-04 交互数字专利控股公司 用于非授权频带中的新型无线电操作的信道接入方法和先听后说解决方案
US11190234B2 (en) * 2018-04-27 2021-11-30 Qualcomm Incorporated Opportunistic frequency switching for frame based equipment
US11265917B2 (en) * 2018-04-30 2022-03-01 Qualcomm Incorporated Aligned LBT gaps for single operator FBE NR-SS
US11115161B2 (en) * 2018-05-02 2021-09-07 Qualcomm Incorporated Transmission diversity for FBE idle period handling
US11026225B2 (en) * 2018-06-25 2021-06-01 Qualcomm Incorporated Subslot physical downlink control channel monitoring and downlink preemption indication
US10873440B2 (en) * 2018-07-12 2020-12-22 Qualcomm Incorporated Time division duplexing techniques in shared radio frequency spectrum
US11324016B2 (en) * 2018-07-25 2022-05-03 Qualcomm Incorporated Multi-operator shared spectrum structure compatible with frame-based equipment
EP3648365A1 (en) * 2018-11-02 2020-05-06 Panasonic Intellectual Property Corporation of America Mobile terminal and base station involved in downlink control channel operations

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180027493A1 (en) * 2015-01-30 2018-01-25 Zte Corporation Data transmission method and device, base station and user equipment
CN108886818A (zh) * 2016-03-23 2018-11-23 韦勒斯标准与技术协会公司 在无线通信***中对非授权带上行链路信道接入的方法及其装置
CN109151833A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 传输控制信息的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTER-DIGITAL, INC.: "DL signals and channels for gNB initiated COT", 3GPP TSG RAN WG1 #97, R1-1906761, 17 May 2019 (2019-05-17), XP051728212, DOI: 20200316090718X *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022213821A1 (zh) * 2021-04-06 2022-10-13 华为技术有限公司 物理下行控制信道重复传输的方法及通信装置
CN113632582A (zh) * 2021-07-08 2021-11-09 北京小米移动软件有限公司 基于物理直连通信数据信道的通信方法、装置及存储介质
WO2023279342A1 (zh) * 2021-07-08 2023-01-12 北京小米移动软件有限公司 基于物理直连通信数据信道的通信方法、装置及存储介质
CN113632582B (zh) * 2021-07-08 2024-02-27 北京小米移动软件有限公司 基于物理直连通信数据信道的通信方法、装置及存储介质

Also Published As

Publication number Publication date
US20220110118A1 (en) 2022-04-07
CN113455071B (zh) 2023-10-31
EP3972358A1 (en) 2022-03-23
EP3972358A4 (en) 2022-06-15
CN113455071A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
WO2021007759A1 (zh) 控制信道的传输方法、装置及存储介质
EP3952355A1 (en) Communication method and device
US11503543B2 (en) Signal transmission method and device
US12010728B2 (en) Random access method and device
KR102657442B1 (ko) 송신 방법 및 통신 장치
WO2021184354A1 (zh) 信息传输方法、装置、设备及存储介质
WO2018228537A1 (zh) 信息发送、接收方法及装置
EP4145750A1 (en) Positioning capabilities of reduced capability new radio devices
US20230179374A1 (en) Channel transmission method, terminal device, and network device
EP4044707A1 (en) Dynamic resource indication method and apparatus
WO2018137700A1 (zh) 一种通信方法,装置及***
WO2020164156A1 (zh) 传输带宽的确定方法、设备及存储介质
CN112106423A (zh) 用于物理下行链路控制信道监测的方法、终端设备和基站
KR102501134B1 (ko) 무선 통신들에서의 유연한 다운링크 제어 신호 모니터링
US20200178233A1 (en) Communication method, terminal device, and network device
US10306646B2 (en) Method for device-to-device communication, base station and user equipment
WO2018201936A1 (zh) 发送信息的方法、接收信息的方法、网络设备和终端设备
CN115103393B (zh) 物理信道监测方法和终端设备
WO2021088262A1 (zh) 确定时隙格式的方法及装置
CN111385880B (zh) 一种时域资源的确定方法及装置
US11108531B2 (en) Method and apparatus for setting symbol
WO2021000239A1 (zh) 无线通信方法、网络设备和终端设备
WO2020237424A1 (zh) 基于非授权频谱的通信方法、装置及存储介质
CN115865295A (zh) 信息处理方法及设备
CN115866771A (zh) 载波调度的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937728

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019937728

Country of ref document: EP

Effective date: 20211214

NENP Non-entry into the national phase

Ref country code: DE