WO2023277076A1 - 光ファイバ製造装置および光ファイバ製造方法 - Google Patents

光ファイバ製造装置および光ファイバ製造方法 Download PDF

Info

Publication number
WO2023277076A1
WO2023277076A1 PCT/JP2022/025999 JP2022025999W WO2023277076A1 WO 2023277076 A1 WO2023277076 A1 WO 2023277076A1 JP 2022025999 W JP2022025999 W JP 2022025999W WO 2023277076 A1 WO2023277076 A1 WO 2023277076A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
moment
drawing tower
tower
fiber preform
Prior art date
Application number
PCT/JP2022/025999
Other languages
English (en)
French (fr)
Inventor
正 榎本
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2023532026A priority Critical patent/JPWO2023277076A1/ja
Priority to CN202280038834.4A priority patent/CN117412933A/zh
Publication of WO2023277076A1 publication Critical patent/WO2023277076A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating

Definitions

  • the present disclosure relates to an optical fiber manufacturing apparatus and an optical fiber manufacturing method.
  • This application claims priority based on Japanese application No. 2021-110795 filed on July 2, 2021, and incorporates all the descriptions described in the Japanese application.
  • Patent Document 1 an optical fiber preform and a dummy preform for the optical fiber preform are attached to a drawing tower, and the vibration of the optical fiber preform is activated by controlling a damping device based on the vibration of the dummy preform.
  • a damped optical fiber drawing apparatus is disclosed.
  • An optical fiber manufacturing apparatus for achieving the above object, a drawing tower, a drawing furnace mounted on the drawing tower for heating and melting an optical fiber preform to spin an optical fiber; an imparting mechanism mounted on the drawing tower for imparting a second moment to the drawing tower in a direction opposite to the acting direction of the first moment imparted to the drawing tower by the optical fiber preform.
  • the imparting mechanism can reduce the second moment as the optical fiber preform becomes smaller.
  • an optical fiber manufacturing method for achieving the above object, heating and melting an optical fiber preform in a drawing furnace mounted on a drawing tower to spin the optical fiber; A second moment in a direction opposite to the direction of action of the first moment applied to the drawing tower by the optical fiber preform is applied to the drawing tower while decreasing as the optical fiber preform becomes smaller. and a step.
  • FIG. 1 is a schematic configuration diagram of an optical fiber manufacturing apparatus according to the first embodiment, showing a state immediately after a drawing process is started.
  • FIG. 2 is a schematic configuration diagram of the optical fiber manufacturing apparatus according to the first embodiment, showing a state after a while since the drawing process was started.
  • FIG. 3 is a graph showing the relationship between the weight of the optical fiber preform and the magnitude of the first moment.
  • FIG. 4 is a schematic configuration diagram of an optical fiber manufacturing apparatus according to the second embodiment.
  • the drawing tower may bend due to the weight of the base material, for example. If the draw tower is flexed, there is a risk that the actual running position of the glass fiber will deviate from the intended running position. Therefore, in the manufacture of optical fibers, it is important to suppress the deflection of the drawing tower so that the actual running position and the planned running position do not deviate.
  • An object of the present disclosure is to provide an optical fiber manufacturing apparatus and an optical fiber manufacturing method capable of suppressing bending of a drawing tower.
  • An optical fiber manufacturing apparatus includes (1) a drawing tower; a drawing furnace mounted on the drawing tower for heating and melting an optical fiber preform to spin an optical fiber; an imparting mechanism mounted on the drawing tower for imparting a second moment to the drawing tower in a direction opposite to the acting direction of the first moment imparted to the drawing tower by the optical fiber preform.
  • the imparting mechanism can reduce the second moment as the optical fiber preform becomes smaller.
  • the applying mechanism applies the second moment to the drawing tower in a direction opposite to the acting direction of the first moment applied to the drawing tower by the optical fiber preform. Since the imparting mechanism can reduce the second moment as the optical fiber preform becomes smaller, the optical fiber manufacturing apparatus according to the above configuration can suppress the bending of the drawing tower.
  • the applying mechanism includes a moving mechanism capable of moving in a predetermined direction and a weight body supported by the moving mechanism;
  • the center of gravity of the weight moves toward or away from the center of the drawing tower as the movement mechanism moves.
  • the center of gravity of the weight provided in the applying mechanism moves toward or away from the center of the drawing tower as the movement mechanism moves. Therefore, for example, by moving the moving mechanism in accordance with the change in the first moment over time, the movement of the moving mechanism can change the second moment over time.
  • the drawing tower has a grounding part that is grounded on the surface on which the drawing tower is arranged;
  • the center of gravity of the weight body is located outside the outer periphery of the ground contact portion when viewed from above. According to this configuration, the second moment can be effectively applied to the drawing tower.
  • the height of the position where the applying mechanism applies the second moment to the drawing tower is 0.8 times or more the height of the position of the drawing furnace. If the height of the position where the applying mechanism applies the second moment to the drawing tower is less than 0.8 times the height of the position of the drawing furnace, the second moment is effectively applied to the drawing tower. cannot effectively cancel out the first moment from the second moment. Therefore, the height of the position where the applying mechanism applies the second moment to the drawing tower is preferably 0.8 times or more the height of the position of the drawing furnace.
  • the height of the drawing furnace is 12 m or more.
  • an optical fiber manufacturing method includes: (6) heating and melting the optical fiber preform in a drawing furnace mounted on a drawing tower to spin the optical fiber; A second moment in a direction opposite to the direction of action of the first moment applied to the drawing tower by the optical fiber preform is applied to the drawing tower while decreasing as the optical fiber preform becomes smaller. and a step.
  • the second moment in the direction opposite to the direction of action of the first moment applied to the drawing tower by the optical fiber base material is applied to the drawing tower while decreasing as the base material becomes smaller. Therefore, bending of the drawing tower can be suppressed.
  • an optical fiber manufacturing method includes: (7) reducing the second moment by moving the center of gravity of the weight toward or away from the center of the draw tower; According to this configuration, the center of gravity of the weight moves toward or away from the center of the drawing tower, so the second moment can be changed over time.
  • an optical fiber manufacturing method includes: (8) Move the center of gravity of the weight body outside the outer circumference of the grounding portion of the drawing tower when viewed from above. According to this configuration, the second moment can be effectively applied to the drawing tower.
  • an optical fiber manufacturing method includes: (9) Applying the second moment to the drawing tower at a height that is 0.8 times or more the height of the drawing furnace. Effectively imparting the second moment to the drawing tower if the height location where the second moment is imparted to the drawing tower is less than 0.8 times the height of the location of the drawing furnace cannot effectively cancel out the first moment from the second moment. Therefore, it is preferable to apply the second moment to the drawing tower at a height that is at least 0.8 times the height of the drawing furnace.
  • an optical fiber manufacturing method includes: (10) Spinning the optical fiber for 1000 km or more per one preform while reducing the second moment.
  • FIG. 1 is a schematic configuration diagram illustrating an optical fiber manufacturing apparatus 1. As shown in FIG. FIG. 1 illustrates the state immediately after the wire drawing process is started.
  • an optical fiber manufacturing apparatus 1 includes a drawing tower 2, a chuck 3, a control unit 4, a drawing furnace 5, an outer diameter measuring device 8, a forced cooling device 9, a coating It comprises a device 10 , a direct roller 11 , a winding device 12 , a applying mechanism 13 and a capstan device 14 .
  • the horizontal direction in FIG. are referred to as Z-axis directions, respectively, and the center position of the drawing tower 2 is defined as the zero point of each axis.
  • the optical fiber manufacturing apparatus 1 has a chuck 3 for gripping the support rod 6a of the optical fiber preform 6 on the upper part of the drawing tower 2.
  • the chuck 3 is cantilevered on the drawing tower 2 by a chuck support 3a.
  • the drawing tower 2 can be placed, for example, inside the building.
  • the drawing tower 2 includes a grounding portion 21 that is grounded on the floor surface F of the building (an example of the surface on which the drawing tower 2 is arranged). It is preferable that the drawing tower 2 is independently built on the foundation without being connected to surrounding buildings.
  • the chuck 3 is movable in the horizontal direction (X-axis direction, Y-axis direction). Thereby, the chuck 3 can horizontally adjust the position (gripping position) at which the support rod 6a of the optical fiber preform 6 is gripped. Moreover, the chuck supporting portion 3a is slidable in the vertical direction (Z-axis direction) by a slide portion 3b provided on the upper portion of the drawing tower 2 along the vertical direction. As a result, after the support rod 6a is gripped by the chuck 3, the chuck support portion 3a can be slid downward to accommodate the optical fiber preform 6 inside the drawing furnace 5.
  • the control unit 4 controls the optical fiber manufacturing apparatus 1. For example, the control unit 4 controls the movement of the chuck 3 in the horizontal direction to horizontally adjust the position (gripping position) at which the support rod 6a of the optical fiber preform 6 is gripped. Also, the control unit 4 measures or calculates the weight of the optical fiber preform 6 . This weight may be measured with a weight scale or calculated from the diameter and length of the optical fiber preform 6 . For example, an operator inputs the numerical values of the diameter and length of the optical fiber preform 6 to be drawn on a touch panel or the like (not shown), or the diameter and length of the optical fiber preform 6 are input by a sensor (not shown). By sensing the length, the controller 4 can calculate the weight of the optical fiber preform 6 . The control unit 4 calculates the moment applied to the drawing tower 2 and the bending amount of the drawing tower 2 based on the calculated weight of the optical fiber preform 6 .
  • the drawing furnace 5 is supported on the upper part of the drawing tower 2 .
  • the height H of the position of the drawing furnace 5 (that is, the height H from the floor surface F to the center of the drawing furnace 5 (the middle position between the upper end and the lower end of the drawing furnace 5)) is 12 m. That's it.
  • the drawing furnace 5 is equipped with a heater, and the heater heats the optical fiber preform 6 accommodated therein. An optical fiber preform 6 heated and melted in a drawing furnace 5 is drawn into an optical fiber 7 with its tip exposed.
  • the optical fiber preform 6 is made of, for example, silica-based glass.
  • the optical fiber preform 6 has a predetermined weight.
  • the outer diameter measuring instrument 8 is, for example, a laser beam type measuring instrument provided below the drawing furnace 5 .
  • the outer diameter measuring device 8 measures the outer diameter of the optical fiber 7 .
  • the outer diameter measuring device 8 controls driving of, for example, the capstan device 14 so that the outer diameter value of the optical fiber 7 measured by the outer diameter measuring device 8 falls within a predetermined range during wire drawing. A signal is generated and the control signal is sent to the capstan device 14 .
  • the forced cooling device 9 has an insertion hole through which the hot optical fiber 7 drawn in the drawing furnace 5 is passed.
  • the forced cooling device 9 forcibly cools the optical fiber 7 inserted through the insertion hole by sending cooling gas into the forced cooling device 9 .
  • the coating device 10 coats the optical fiber 7 cooled by the forced cooling device 9 with resin. If the resin is an ultraviolet curing resin, an ultraviolet irradiation device may be provided below the coating device 10 to irradiate the optical fiber 7 with ultraviolet rays to cure the resin. After the resin hardens, the optical fiber 7 passes through the roller 11 and the capstan device 14 and is taken up by the take-up device 12 with a constant tension. The capstan device 14 is controlled based on a control signal from the outer diameter measuring device 8, whereby an optical fiber 7 having a predetermined glass outer diameter is obtained.
  • the drawing tower 2 bends.
  • the chuck 3 and the optical fiber preform 6 tilt toward the lower left in FIG. If the chuck 3 and the optical fiber preform 6 are tilted, the position through which the drawn optical fiber 7 passes deviates from the position of the aligned pass line, and as a result, the optical fiber 7 contacts the forced cooling device 9 or the like. However, disconnection may occur.
  • the optical fiber manufacturing apparatus 1 includes the imparting mechanism 13 capable of imparting the second moment M2 to the drawing tower 2 .
  • the imparting mechanism 13 is located opposite the optical fiber preform 6 with respect to the center line CR of the drawing tower 2 on the X axis.
  • the applying mechanism 13 applies a second moment M2 to the drawing tower 2 in a direction opposite to the acting direction of the first moment M1 applied to the drawing tower 2 by the optical fiber preform 6 .
  • the applying mechanism 13 includes a plate-like portion 131 , a moving mechanism 132 and a weight body 133 .
  • the plate-like portion 131 is, for example, a substantially rectangular flat plate member extending in the horizontal direction (X-axis direction, Y-axis direction).
  • the height h at the position of the plate-like portion 131 (that is, the height h from the floor surface F to the lower end of the plate-like portion 131) is 0.8 times or more the height H at the position of the drawing furnace 5. is preferable.
  • the moving mechanism 132 moves on the plate-shaped part 131 in a predetermined direction, for example, in a direction approaching or away from the center of the drawing tower 2 .
  • the center of the drawing tower 2 is, for example, the center position P (the position of the zero point described above) of the three axes (X-axis, Y-axis and Z-axis) in the drawing tower 2 .
  • the moving mechanism 132 moves in the X-axis direction.
  • the moving mechanism 132 is, for example, electrically connected to the controller 4 and moves based on an instruction signal from the controller 4 .
  • the movement of the moving mechanism 132 can also be realized by means other than such electrical control.
  • the moving mechanism 132 may be moved to a desired position by mechanical control, or may be manually moved to a desired position by an operator. Further, the moving mechanism 132 may always move, or may move intermittently at predetermined time intervals.
  • the weight body 133 is, for example, a weight having a predetermined weight.
  • the weight of the weight body 133 can be arbitrarily set by the operator.
  • the weight body 133 is supported by the moving mechanism 132 . Therefore, when the moving mechanism 132 moves, the weight body 133 moves along with the movement of the moving mechanism 132 . Therefore, the center of gravity 133a of the weight body 133 moves in either direction of the X-axis (horizontal direction in FIG. 1) as the moving mechanism 132 moves. That is, the center of gravity 133a of the weight body 133 moves toward or away from the center (position P) of the drawing tower 2 .
  • the center of gravity 133a of the weight body 133 is located outside the outer circumference of the ground contact portion 21 in top view during wire drawing. In other words, the center of gravity 133a of the weight body 133 is located outside the area V inside the drawing tower 2 in top view during the drawing.
  • the second moment M2 imparted by the imparting mechanism 13 having such a configuration is controlled by the control unit 4 to obtain a total weight G2 which is the sum of the weight of the moving mechanism 132 and the weight of the weight body 133, and the distance D2 from the center of gravity 133a of the weight to the center line CR of the drawing tower 2 (B is a constant).
  • G2 is the sum of the weight of the moving mechanism 132 and the weight of the weight body 133, and the distance D2 from the center of gravity 133a of the weight to the center line CR of the drawing tower 2 (B is a constant).
  • FIG. FIG. 2 exemplifies the state when some time has passed since the wire drawing process was started.
  • the optical fiber manufacturing method of this embodiment uses the optical fiber manufacturing apparatus 1 illustrated in FIGS. be.
  • the chuck supporting portion 3a is slid upward by the sliding portion 3b, and the chuck 3 grips the supporting rod 6a of the optical fiber preform 6 used for drawing. After the support rod 6a is gripped by the chuck 3, the chuck support portion 3a is slid downward, and the optical fiber preform 6 is suspended inside the drawing furnace 5 and accommodated.
  • An optical fiber preform 6 housed inside a drawing furnace 5 is heated by a heater.
  • the tip of the optical fiber preform 6 is heated to a predetermined temperature (for example, 2000° C.) to melt the optical fiber preform 6, and the glass block at the tip is pulled down to extract the lead. Subsequently, drawing is performed while reducing the diameter of the glass. As the drawing progresses, the optical fiber 7 is drawn from the tip of the optical fiber preform 6 by gradually sliding the chuck supporting portion 3a downward.
  • the positions of the chuck 3 and the direct-lower roller 11, the central axes of the drawing furnace 5, the forced cooling device 9, the coating device 10, etc. are aligned in advance before drawing, and the drawn optical fiber 7 is It is necessary to align the path lines to be passed. This alignment of the pass lines is normally performed in a state in which the optical fiber preform 6 is not suspended.
  • the optical fiber preform 6 becomes smaller as the drawing progresses, so the weight of the optical fiber preform 6 decreases as the drawing progresses.
  • the weight of the optical fiber preform 6 and the magnitude of the first moment M1 are in a linearly proportional relationship. Therefore, the first moment M1 decreases as the drawing progresses. Therefore, in order to suppress the bending of the drawing tower 2, the inventor applies the second moment M2 according to the first moment M1, and changes the second moment M2 according to the change of the first moment M1. I noticed a good thing.
  • the inventor got the idea of moving the moving mechanism 132 that supports the weight body 133 to reduce the second moment M2 in accordance with the weight reduction of the optical fiber preform 6 .
  • the control unit 4 calculates the first moment M1, calculates the distance D2 where the first moment M1 and the second moment M2 are equal, and moves the moving mechanism 132 to the position corresponding to the distance D2. move.
  • the control unit 4 calculates the first moment m1.
  • the control unit 4 calculates the first moment m1, calculates the distance d2 where the first moment m1 and the second moment m2 are equal, and moves the moving mechanism 132 to the position corresponding to the distance d2.
  • the second moment m2 is calculated from the total weight G2, which is the sum of the weight of the moving mechanism 132 and the weight body 133, and the center of gravity 133a of the combined weight body of the moving mechanism 132 and the weight body 133. and the distance d2 to the center line CR of , based on the equation (4).
  • m2 G2*d2+B Expression (4)
  • the moving mechanism 132 approaches the center (position P) of the drawing tower 2 .
  • the imparting mechanism 13 can reduce the second moment M2 as the weight of the optical fiber preform 6 decreases.
  • the imparting mechanism 13 may continuously reduce the second moment M2, or may intermittently reduce the second moment M2 at predetermined time intervals. This control is continued until the entire effective portion of the optical fiber preform 6 is drawn.
  • the drawing progresses further and all the effective portions of the optical fiber preform 6 are drawn, the drawing ends.
  • a large optical fiber preform 6 is used, and the optical fiber 7 is spun for 1000 km or more per optical fiber preform 6 .
  • the imparting mechanism 13 applies the second moments M2, m2 in the direction opposite to the acting direction of the first moments M1, m1. , to the draw tower 2 . Further, the imparting mechanism 13 reduces the second moment M2 as the optical fiber preform 6 becomes smaller. Therefore, according to the optical fiber manufacturing apparatus 1 and the optical fiber manufacturing method according to the present embodiment, bending of the drawing tower 2 can be suppressed.
  • the center of gravity 133a approaches the center (position P) of the drawing tower 2 as the moving mechanism 132 moves, so the second moment M2 can be decreased over time by moving the moving mechanism 132. can be done.
  • the center of gravity 133a When the center of gravity 133a is positioned inside the outer circumference of the ground contact portion 21 in top view, the distance from the weight body 133 to the center line CR cannot be secured. cannot be given. However, in this embodiment, the center of gravity 133a of the weight body 133 is positioned outside the outer circumference of the ground contact portion 21 when viewed from above. Therefore, according to the optical fiber manufacturing apparatus 1 and the optical fiber manufacturing method according to the present embodiment, the second moments M2 and m2 can be effectively applied to the drawing tower 2 .
  • optical fiber manufacturing apparatus 1A Next, an optical fiber manufacturing apparatus 1A according to this embodiment will be described with reference to FIG.
  • the same components as those of the optical fiber manufacturing apparatus 1 according to the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • FIG. 4 is a schematic configuration diagram of the optical fiber manufacturing apparatus 1A.
  • the optical fiber manufacturing apparatus 1A includes a chuck 30, a drawing furnace 50, an outer diameter measuring device 80, a forced cooling device 90, a coating device 100, a direct roller 110, a winding device 120, and a capstan device 140. and are further provided, which is different from the optical fiber manufacturing apparatus 1 . Further, the optical fiber manufacturing apparatus 1A is capable of moving the weight member 133 not only to the right side of the drawing tower 2 in FIG. Differs from device 1. Thus, the optical fiber manufacturing apparatus 1A is an optical fiber manufacturing apparatus having two drawing lines for one drawing tower.
  • control unit 4 controls the horizontal movement of the chuck 30 to horizontally adjust the position (gripping position) at which the support rod 60a of the optical fiber preform 60 is gripped.
  • the controller 4 also measures or calculates the weight of the optical fiber preform 60 .
  • the chuck 30 may have the same configuration as the chuck 3. Also, the configuration from the wire drawing furnace 50 to the capstan device 140 may be the same configuration as the configuration from the wire drawing furnace 5 to the capstan device 14 . However, it is assumed that the weight G3 of the optical fiber preform 60 is smaller than the weight G1 of the optical fiber preform 6 in the state shown in FIG.
  • the chuck 30 includes a chuck support portion 30a having the same configuration as the chuck support portion 3a, and a slide portion 30b having the same configuration as the slide portion 3b.
  • the chuck 30 grips a support rod 60a of an optical fiber preform 60 having the same structure as the optical fiber preform 6.
  • the drawing tower 2 exerts a first force in a direction opposite to the acting direction of the first moment M1.
  • Three moments M3 are applied.
  • the third moment M3 is calculated based on the following equation (5) using the weight G3 of the optical fiber preform 60 and the distance D3 from the optical fiber preform 60 to the center line CR of the drawing tower 2. (C is a constant).
  • M3 G3*D3+C Expression (5)
  • the third moment M3 is smaller than the first moment M1. Therefore, also in this embodiment, the chuck 3 and the optical fiber preform 6 are tilted in the lower left direction in FIG. 1, and as a result, the drawing tower 2 is bent.
  • the control unit 4 calculates a distance D4 that satisfies the following formula (6), and moves the moving mechanism 132 of the imparting mechanism 13 to a position corresponding to the distance D4.
  • the distance D4 is the distance from the center of the weight (the center of gravity 133a) of the combination of the moving mechanism 132 and the weight body 133 to the center line CR of the drawing tower 2.
  • the moving mechanism 132 moves to the position corresponding to the distance D4
  • the first moment M1 becomes equal to the sum of the second moment M2 and the third moment M3, so the bending amount of the drawing tower 2 can be made substantially zero. can.
  • the present disclosure is applied to the optical fiber manufacturing apparatus 1A having two drawing lines for one drawing tower, the same effect as the first embodiment can be obtained.
  • the optical fiber 7 is spun using the optical fiber manufacturing apparatus 1 according to the present embodiment, and the positional deviation of the drawing furnace 5 and the positional deviation of the pass line at the start and end of drawing are measured. , disconnection frequency, and .
  • Tables 1 and 2 show the positional deviation of the drawing furnace 5 and the positional deviation of the pass line at the start and end of drawing under various conditions, and the wire breakage frequency.
  • the positional deviation of the drawing furnace 5 at the start and end of drawing is good when the deviation is 3.0 mm or less, and is unsatisfactory when it exceeds 3.0 mm. Therefore, the good range of the amount of positional deviation of the drawing furnace 5 is 3.0 mm or less.
  • the misalignment of the pass line at the start and end of drawing is good when the amount of misalignment is 0.3 mm or less, and is bad when it exceeds 0.3 mm. Therefore, the good range of the positional deviation amount of the pass line is 0.3 mm or less.
  • the disconnection frequency is good when it is 0.1/1000 km or less, and is bad when it exceeds 0.1/1000 km. Therefore, the good range of disconnection frequency is 0.1 cases/1000 km or less.
  • these are comprehensively judged and expressed in three grades of A, B, and C.
  • A indicates good
  • B indicates relatively good
  • C indicates bad.
  • the initial position of the moving mechanism 132 is the distance D2 from the center of gravity 133a to the center line CR of the drawing tower 2
  • the final position of the moving mechanism 132 is the distance from the center of gravity 133a to the center line CR of the drawing tower 2.
  • d2 Also, the fiber length is the length of the optical fiber 7 spun from one optical fiber preform 6 .
  • Experimental Examples 1 and 2 will be explained.
  • the distance D2 at the start of drawing and the distance d2 at the end of drawing are both 750 mm. That is, in Experimental Example 1, the moving mechanism 132 was not moved during the drawing process.
  • the distance D2 at the start of drawing is 1304 mm, but the distance d2 at the end of drawing is 754 mm. That is, in Experimental Example 2, the moving mechanism 132 is moved so as to approach the center (position P) of the drawing tower 2 during the drawing process.
  • Other parameters in Experimental Example 1 and Experimental Example 2 are the same.
  • Experimental Example 8 in which only the initial position of the moving mechanism 132 and the final position of the moving mechanism 132 differ from Experimental Example 7, and Experimental Example 9 in which only the initial position of the moving mechanism 132 and the final position of the moving mechanism 132 differ from Experimental Example 9.
  • the positional deviation of the drawing furnace 5 and the positional deviation of the pass line at the start and end of drawing, and the wire breakage frequency were all within the good range, so the evaluation was given as A.
  • the optical fiber manufacturing apparatus 1A is configured to include only the control unit 4, but may further include a control unit 40 having the same hardware configuration as the control unit 4.
  • the center of gravity 133a approaches the center (position P) of the drawing tower 2 as the movement mechanism 132 moves, but it may move away from the center of the drawing tower 2.
  • the center of gravity 133a it is preferable to move the center of gravity 133a away from the center of the drawing tower 2.
  • the movement mechanism 132 moves in the X-axis direction, but may also move in the Y-axis direction or the Z-axis direction.
  • the imparting mechanism 13 controls the second moment by moving the moving mechanism 132, but the second moment may be controlled by changing the weight of the imparting mechanism 13. good.
  • the weight of the applying mechanism 13 may be changed by putting a liquid or the like in a container provided with the applying mechanism 13 and gradually discharging the liquid from the container as the wire drawing progresses.
  • Optical fiber manufacturing device 2 Drawing towers 3, 30: Chucks 3a, 30a: Chuck supporting parts 3b, 30b: Slide parts 4, 40: Control parts 5, 50: Drawing furnaces 6, 60: Optical fibers Base material 6a, 60a: Support rod 7: Optical fiber 8, 80: Outer diameter measuring device 9, 90: Forced cooling device 10, 100: Coating device 11, 110: Directly below roller 12, 120: Winding device 13: Giving mechanism 14, 140: Capstan device 21: Ground part 131: Plate-like part 132: Moving mechanism 133: Weight body 133a: Center of gravity CR: Center lines D1, D2, D3, d2: Distance F: Floor surface H, h: Height M1, m1: first moment M2, m2: second moment M3: third moment P: position V: area

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

線引タワーと、線引タワーに搭載され、光ファイバ母材を加熱し溶融させて光ファイバを紡糸するための線引炉と、線引タワーに搭載され、光ファイバ母材により線引タワーに付与される第一モーメントの作用方向とは反対向きの第二モーメントを線引タワーに付与する付与機構と、を備え、付与機構は、光ファイバ母材が小さくなるにつれて、第二モーメントを減少させることができる、光ファイバ製造装置。

Description

光ファイバ製造装置および光ファイバ製造方法
 本開示は、光ファイバ製造装置および光ファイバ製造方法に関する。
 本出願は、2021年7月2日出願の日本出願第2021-110795号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 特許文献1は、線引タワーに光ファイバ母材とともに光ファイバ母材のダミー母材を取り付け、ダミー母材の振動に基づき制振装置を制御することで、光ファイバ母材の振動をアクティブに制振する光ファイバ線引装置を開示している。
日本国特開2004-161499号公報
 上記の目的を達成するための一態様に係る光ファイバ製造装置は、
 線引タワーと、
 前記線引タワーに搭載され、光ファイバ母材を加熱し溶融させて光ファイバを紡糸するための線引炉と、
 前記線引タワーに搭載され、前記光ファイバ母材により前記線引タワーに付与される第一モーメントの作用方向とは反対向きの第二モーメントを前記線引タワーに付与する付与機構と、を備え、
 前記付与機構は、前記光ファイバ母材が小さくなるにつれて、前記第二モーメントを減少させることができる。
 また、上記の目的を達成するための一態様に係る光ファイバ製造方法は、
 線引タワーに搭載された線引炉で光ファイバ母材を加熱して溶融させ光ファイバを紡糸するステップと、
 前記光ファイバ母材により前記線引タワーに付与される第一モーメントの作用方向とは反対向きの第二モーメントを、前記光ファイバ母材が小さくなるにつれて減少させながら、前記線引タワーに付与するステップと、を含む。
図1は、第一実施形態に係る光ファイバ製造装置の概略構成図であり、線引工程が開始された直後の様子を示す図である。 図2は、第一実施形態に係る光ファイバ製造装置の概略構成図であり、線引工程が開始されてからしばらく時間が経過したときの様子を示す図である。 図3は、光ファイバ母材の重量と第一モーメントの大きさの関係を示すグラフである。 図4は、第二実施形態に係る光ファイバ製造装置の概略構成図である。
[本開示が解決しようとする課題]
 ところで、線引タワーは、例えば母材の重量等により撓むことがある。線引タワーが撓むと、ガラスファイバの実際の走行位置と予定された走行位置とがずれてしまう虞がある。したがって、光ファイバの製造においては、実際の走行位置と予定された走行位置とがずれないように、線引タワーの撓みを抑制することが重要である。
 本開示は、線引タワーの撓みを抑制することが可能な光ファイバ製造装置および光ファイバ製造方法を提供することを目的とする。
[本開示の効果]
 本開示によれば、線引タワーの撓みを抑制することが可能な光ファイバ製造装置および光ファイバ製造方法を提供することができる。
(本開示の実施形態の説明)
 最初に本開示の実施態様を列記して説明する。
 本開示の一態様に係る光ファイバ製造装置は、
 (1) 線引タワーと、
 前記線引タワーに搭載され、光ファイバ母材を加熱し溶融させて光ファイバを紡糸するための線引炉と、
 前記線引タワーに搭載され、前記光ファイバ母材により前記線引タワーに付与される第一モーメントの作用方向とは反対向きの第二モーメントを前記線引タワーに付与する付与機構と、を備え、
 前記付与機構は、前記光ファイバ母材が小さくなるにつれて、前記第二モーメントを減少させることができる。
 この構成によれば、付与機構は、光ファイバ母材により線引タワーに付与される第一モーメントの作用方向とは反対向きの第二モーメントを、線引タワーに対して付与する。そして、付与機構は、光ファイバ母材が小さくなるにつれて、第二モーメントを減少させることができるので、上記構成に係る光ファイバ製造装置によれば、線引タワーの撓みを抑制することができる。
 また、本開示の一態様に係る光ファイバ製造装置において、
 (2) 前記付与機構は、所定の方向に移動可能な移動機構と、前記移動機構に支持された重量体と、を備え、
 前記重量体の重心が、前記移動機構の移動に伴い、前記線引タワーの中心に近づく、もしくは離れる方向に移動する。
 この構成によれば、付与機構に備わる重量体の重心は、移動機構の移動に伴い、線引タワーの中心に近づく、もしくは離れる方向に移動する。したがって、例えば第一モーメントの経時的変化に応じて移動機構を移動させることで、第二モーメントを、移動機構の移動により、経時的に変化させることができる。
 また、本開示の一態様に係る光ファイバ製造装置において、
 (3) 前記線引タワーは、前記線引タワーが配置される面に接地する接地部を備えており、
 前記重量体の重心は、上面視で前記接地部の外周より外側に位置している。
 この構成によれば、線引タワーに対して効果的に第二モーメントを付与することができる。
 また、本開示の一態様に係る光ファイバ製造装置において、
 (4) 前記線引タワーに対して前記付与機構が前記第二モーメントを付与する位置の高さは、前記線引炉の位置の高さの0.8倍以上である。
 線引タワーに対して付与機構が第二モーメントを付与する位置の高さが線引炉の位置の高さの0.8倍未満である場合、線引タワーに対して第二モーメントを効果的に付与することができないため、第二モーメントより第一モーメントを効果的に相殺できない。したがって、線引タワーに対して付与機構が第二モーメントを付与する位置の高さは、線引炉の位置の高さの0.8倍以上であると好適である。
 また、本開示の一態様に係る光ファイバ製造装置において、
 (5) 前記線引炉の位置の高さは12m以上である。
 線引炉の位置の高さが高いほど、第一モーメントが大きくなるため、線引タワーに対して第二モーメントを付与する効果が高くなり、特に線引炉の位置の高さが12m以上である場合、本開示は好適である。
 また、本開示の一態様に係る光ファイバ製造方法は、
 (6) 線引タワーに搭載された線引炉で光ファイバ母材を加熱して溶融させ光ファイバを紡糸するステップと、
 前記光ファイバ母材により前記線引タワーに付与される第一モーメントの作用方向とは反対向きの第二モーメントを、前記光ファイバ母材が小さくなるにつれて減少させながら、前記線引タワーに付与するステップと、を含む。
 この構成によれば、光ファイバ母材により線引タワーに付与される第一モーメントの作用方向とは反対向きの第二モーメントを、母材が小さくなるにつれて減少させながら、線引タワーに付与するため、線引タワーの撓みを抑制することができる。
 また、本開示の一態様に係る光ファイバ製造方法は、
 (7) 重量体の重心を前記線引タワーの中心に近づく、もしくは離れる方向に移動させることで、前記第二モーメントを減少させる。
 この構成によれば、重量体の重心は、線引タワーの中心に近づく、もしくは離れる方向に移動するので、第二モーメントを経時的に変化させることができる。
 また、本開示の一態様に係る光ファイバ製造方法は、
 (8) 上面視において、前記線引タワーの接地部の外周より外側で前記重量体の重心を移動させる。
 この構成によれば、線引タワーに対して効果的に第二モーメントを付与することができる。
 また、本開示の一態様に係る光ファイバ製造方法は、
 (9) 前記線引炉の位置の高さの0.8倍以上の高さの位置で、前記線引タワーに対して前記第二モーメントを付与する。
 線引タワーに対して第二モーメントが付与される高さの位置が線引炉の位置の高さの0.8倍未満である場合、線引タワーに対して第二モーメントを効果的に付与することができないため、第二モーメントより第一モーメントを効果的に相殺できない。したがって、線引炉の位置の高さの0.8倍以上の高さの位置で、線引タワーに対して第二モーメントを付与すると好適である。
 また、本開示の一態様に係る光ファイバ製造方法は、
 (10) 前記第二モーメントを減少させながら、一つの母材につき前記光ファイバを1000km以上紡糸する。
 紡糸される光ファイバのファイバ長が長いほど、光ファイバ母材が大型化し、第一モーメントは大きくなる。したがって、紡糸される光ファイバのファイバ長が長いほど、線引タワーに対して第二モーメントを付与する必要性が高く、特に1000km以上のファイバ長の光ファイバを紡糸する場合、本開示は好適である。
(本開示の実施形態の詳細)
 本開示の実施形態に係る光ファイバ製造装置の具体例を、以下に図面を参照して説明する。なお、本開示はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
(第一実施形態)
 図1を参照しつつ、本実施形態に係る光ファイバ製造装置1について説明する。図1は、光ファイバ製造装置1を例示する概略構成図である。図1は線引工程が開始された直後の様子を例示している。
 図1に例示するように、光ファイバ製造装置1は、線引タワー2と、チャック3と、制御部4と、線引炉5と、外径測定器8と、強制冷却装置9と、被覆装置10と、直下ローラ11と、巻取り装置12と、付与機構13と、キャプスタン装置14と、を備えている。なお、本実施形態では説明の便宜上、図1における左右方向をX軸の方向、X軸の方向と水平方向において直交する方向をY軸の方向、線引タワー2の高さ方向(図1における上下方向)をZ軸の方向、とそれぞれ呼び、線引タワー2の中心位置を、各軸のゼロ点とする。
 光ファイバ製造装置1は、線引タワー2の上部に光ファイバ母材6の支持棒6aを把持するチャック3を備えている。チャック3は、チャック支持部3aによって、線引タワー2に片持ち状に支持されている。
 線引タワー2は、例えば建屋内に配置されうる。線引タワー2は、当該建屋の床面F(線引タワー2が配置される面の一例)に接地する接地部21を備えている。なお、線引タワー2は、これを取り囲む建物等に連結されることなく、独立して基礎の上に建てられていることが好ましい。
 チャック3は、水平方向(X軸の方向、Y軸の方向)に移動可能である。これにより、チャック3は、光ファイバ母材6の支持棒6aを把持する位置(把持位置)を水平方向に調整可能である。また、チャック支持部3aは、線引タワー2の上部に上下方向に沿って設けられたスライド部3bによって鉛直方向(Z軸の方向)にスライド可能である。これにより、支持棒6aをチャック3に把持させた後、チャック支持部3aを下方にスライドさせ、光ファイバ母材6を線引炉5の内部に収容することができる。
 制御部4は、光ファイバ製造装置1を制御する。例えば制御部4は、チャック3の水平方向への移動を制御して、光ファイバ母材6の支持棒6aを把持する位置(把持位置)を水平方向に調整する。また、制御部4は、光ファイバ母材6の重量を測定、または計算する。この重量は、重量計で測定されてもよいし、光ファイバ母材6の径と長さから計算されてもよい。例えば、作業者が線引きを行う光ファイバ母材6の径と長さの数値をタッチパネル等(図示せず)で入力することにより、またはセンサ(図示せず)により光ファイバ母材6の径と長さをセンシングすることにより、制御部4は光ファイバ母材6の重量を計算することができる。制御部4は、計算した光ファイバ母材6の重量に基づいて、線引タワー2にかかるモーメントや線引タワー2の撓み量を算出する。
 線引炉5は、線引タワー2の上部で支持されている。線引炉5の位置の高さH(すなわち、床面Fから線引炉5の中心部(線引炉5の上端部と下端部との間の中間位置)までの高さH)は12m以上である。線引炉5は、ヒーターを備えており、当該ヒーターによって、内部に収容した光ファイバ母材6を加熱する。線引炉5で加熱され溶融した光ファイバ母材6は、その先端が口出しされ、光ファイバ7として線引きされる。
 光ファイバ母材6は、例えば石英系ガラスで形成されている。光ファイバ母材6は、所定の重量を有している。
 外径測定器8は、線引炉5の下方に設けられた例えばレーザ光式の測定器である。外径測定器8は、光ファイバ7の外径を測定する。外径測定器8は、線引き時において、外径測定器8により測定された光ファイバ7の外径値が所定の範囲内に収まるように、例えばキャプスタン装置14の駆動を制御するための制御信号を生成し、当該制御信号をキャプスタン装置14に送信する。
 強制冷却装置9は、線引炉5で線引きされた高温の光ファイバ7が通される挿通孔が形成されている。強制冷却装置9は、当該強制冷却装置9内に冷却ガスを送り込むことで、挿通孔に挿通された光ファイバ7を強制的に冷却する。
 被覆装置10は、強制冷却装置9で冷却された光ファイバ7に樹脂を被覆する。なお、当該樹脂が紫外線硬化樹脂である場合、被覆装置10の下に紫外線照射装置を設けて、光ファイバ7に紫外線を照射させて樹脂を硬化させるようにしてもよい。そして、樹脂が硬化した後、光ファイバ7は、直下ローラ11およびキャプスタン装置14を通過し一定張力で巻取り装置12に巻き取られる。なお、キャプスタン装置14は、外径測定器8からの制御信号に基づき制御され、これにより、所定のガラス外径の光ファイバ7が得られる。
 ところで、チャック3は線引タワー2に対して片持ち状態で支持されているため、光ファイバ母材6がチャック3によって支持されると、線引タワー2には第一モーメントM1がかかる。このとき制御部4は、光ファイバ母材6の重量G1と、光ファイバ母材6の中心から線引タワー2の中心線CRまでの距離D1とにより、以下の式(1)に基づいて、第一モーメントM1を算出する(Aは定数)。M1=G1*D1+A・・・式(1)
 線引タワー2に第一モーメントM1がかかると、線引タワー2は撓む。線引タワー2が撓むと、チャック3および光ファイバ母材6は図1の左下方向に傾く。チャック3および光ファイバ母材6が傾くと、線引きされた光ファイバ7が通過する位置が位置合わせされたパスラインの位置からずれてしまい、その結果、光ファイバ7が強制冷却装置9等に接触し、断線が生じてしまう虞がある。
 そこで発明者は、上記問題を解決する方法について検討した結果、第一モーメントM1を相殺するための第二モーメントM2を線引タワー2に対して付与することで、線引タワー2の撓みを抑制できるのではないかと考えるに至った。したがって、本実施形態に係る光ファイバ製造装置1は、第二モーメントM2を線引タワー2に対して付与することができる付与機構13を備えている。
 付与機構13は、X軸において、線引タワー2の中心線CRに対して光ファイバ母材6と反対の位置にある。付与機構13は、光ファイバ母材6により線引タワー2に付与される第一モーメントM1の作用方向とは反対向きの第二モーメントM2を線引タワー2に付与する。付与機構13は、板状部131と、移動機構132と、重量体133と、を備えている。
 板状部131は、例えば、水平方向(X軸の方向、Y軸の方向)に延びる略長方形状の平板部材である。なお、板状部131の位置の高さh(すなわち、床面Fから板状部131の下端部までの高さh)は、線引炉5の位置の高さHの0.8倍以上であると好ましい。
 移動機構132は、板状部131上を所定の方向、例えば、線引タワー2の中心に近づく、もしくは離れる方向に移動する。なお、線引タワー2の中心とは、例えば、線引タワー2における三軸(X軸、Y軸およびZ軸)の中心位置P(上記したゼロ点の位置)である。本実施形態では、移動機構132は、X軸の方向に移動する。移動機構132は、例えば、制御部4に電気的に接続されており、制御部4からの指示信号に基づき移動する。ただし、移動機構132の移動は、このような電気的制御以外の手段によっても実現されうる。例えば、移動機構132は、機械的な制御によって所望の位置まで移動させられてもよいし、作業者によって手動で所望の位置まで移動させられてもよい。また移動機構132は、常時移動してもよいし、所定の時間間隔で間欠的に移動してもよい。
 重量体133は、例えば所定の重量を有する錘である。重量体133の重量は、作業者によって任意に設定可能である。重量体133は、移動機構132に支持されている。したがって、重量体133は、移動機構132が移動すると、移動機構132の移動に合わせて移動する。このため、重量体133の重心133aは、移動機構132の移動に伴い、X軸の方向(図1における左右方向)のどちらかに移動する。つまり、重量体133の重心133aは、線引タワー2の中心(位置P)に近づく、もしくは離れる方向に移動する。なお、重量体133の重心133aは、線引き中において、上面視で接地部21の外周より外側に位置する。つまり、重量体133の重心133aは、線引き中において、上面視における線引タワー2の内側の領域Vよりも外側に位置する。
 このような構成の付与機構13によって付与される第二モーメントM2は、制御部4によって、移動機構132の重量と重量体133の重量の合計である総重量G2と、移動機構132と重量体133とを合わせたものの重量体の重心133aから線引タワー2の中心線CRまでの距離D2とにより、以下の式(2)に基づいて算出される(Bは定数)。M2=G2*D2+B・・・式(2)
 次に、図1~図2を参照しつつ、本開示の実施形態に係る光ファイバ製造方法について説明する。図2は、線引工程が開始されてからしばらく時間が経過したときの様子を例示している。本実施形態の光ファイバ製造方法は、図1~図2に例示する光ファイバ製造装置1を使用して、以下の吊下工程と線引工程とを行って、光ファイバ7を製造する方法である。
(吊下工程)
 チャック支持部3aをスライド部3bによって上方にスライドさせ、線引きに使用する光ファイバ母材6の支持棒6aをチャック3に把持させる。支持棒6aをチャック3に把持させた後、チャック支持部3aを下方にスライドさせ、光ファイバ母材6を線引炉5の内部に吊るして収容する。
(線引工程)
 線引炉5の内部に収容した光ファイバ母材6をヒーターによって加熱する。光ファイバ母材6の先端を所定の温度(例えば、2000℃)に加熱することにより光ファイバ母材6を溶融させて、先端部のガラス塊を引き落とすことにより口出しを行う。引き続いてガラスの径を細くしながら線引きを行う。そして、線引きの進行に伴い、チャック支持部3aを下方に徐々にスライドさせることにより、光ファイバ母材6の先端から光ファイバ7が線引きされていく。
 光ファイバ製造装置1では、線引きを行う前に予め、チャック3と直下ローラ11の位置、線引炉5、強制冷却装置9、被覆装置10などの中心軸を合わせ、線引きされた光ファイバ7が通過するパスラインの位置合わせを行う必要がある。このパスラインの位置合わせは、通常、光ファイバ母材6を吊るさない状態で行う。
 ところが、上述した理由から、光ファイバ母材6を吊るすと、線引きされた光ファイバ7が通過する位置が位置合わせされたパスラインの位置からずれてしまい、その結果、光ファイバ7が強制冷却装置9等に接触し、断線が生じてしまう虞がある。
 また図2に例示するように、光ファイバ母材6は、線引きが進行するにつれて小さくなるため、光ファイバ母材6の重量は、線引きが進行するにつれ減少する。図3に例示するように、光ファイバ母材6の重量と第一モーメントM1の大きさは、線形に比例する関係にある。したがって、第一モーメントM1は、線引きが進行するにつれ、減少する。このため発明者は、線引タワー2の撓みを抑制するには、第一モーメントM1に応じて第二モーメントM2を付与させつつ、第一モーメントM1の変化に合わせて第二モーメントM2を変化させると良いことに気が付いた。
 そこで発明者は、重量体133を支持する移動機構132を移動させることで、光ファイバ母材6の重量の減少に合わせて第二モーメントM2を減少させるという着想を得た。
 図1に例示する状態において、制御部4は、第一モーメントM1を算出し、第一モーメントM1と第二モーメントM2が等しくなる距離D2を計算し、移動機構132を距離D2に対応する位置まで移動させる。
 線引きが進行すると、図2に例示する状態になる。図2に例示する状態において、制御部4は、第一モーメントm1を算出する。なお、第一モーメントm1は、光ファイバ母材6の重量g1と、光ファイバ母材6から線引タワー2の中心線CRまでの距離D1とにより、以下の式(3)に基づいて算出される。なお、重量g1は重量G1より小さい。m1=g1*D1+A・・・式(3)
 制御部4は、第一モーメントm1を算出し、第一モーメントm1と第二モーメントm2が等しくなる距離d2を計算し、移動機構132を距離d2に対応する位置まで移動させる。なお、第二モーメントm2は、移動機構132の重量と重量体133の重量の合計である総重量G2と、移動機構132と重量体133とを合わせたものの重量体の重心133aから線引タワー2の中心線CRまでの距離d2とにより、式(4)に基づいて算出される。m2=G2*d2+B・・・式(4)
 重量g1は重量G1より小さいため、第一モーメントm1は第一モーメントM1より小さい。したがって、第二モーメントm2は第二モーメントM2より小さくする必要があり、距離d2は距離D2よりも短くなる。つまり、光ファイバ母材6の重量が減少するにつれて、移動機構132は線引タワー2の中心(位置P)に近づく。
 このように、付与機構13は、光ファイバ母材6の重量が小さくなるにつれて、第二モーメントM2を減少させることができる。なお、付与機構13は、継続的に第二モーメントM2を減少させてもよいし、所定の時間間隔で間欠的に第二モーメントM2を減少させてもよい。なお、この制御は、光ファイバ母材6の有効部が全て線引きされるまで継続して行われる。
 さらに線引きが進行し、光ファイバ母材6の有効部が全て線引きされると、線引きは終了する。なお、本実施形態に係る光ファイバ製造方法においては、大型の光ファイバ母材6を使用しており、一つの光ファイバ母材6につき光ファイバ7を1000km以上紡糸する。
 以上説明したように、本実施形態に係る光ファイバ製造装置1および光ファイバ製造方法においては、付与機構13によって、第一モーメントM1,m1の作用方向とは反対向きの第二モーメントM2,m2が、線引タワー2に対して付与される。また、付与機構13は、光ファイバ母材6が小さくなるにつれて、第二モーメントM2を減少させる。したがって、本実施形態に係る光ファイバ製造装置1および光ファイバ製造方法によれば、線引タワー2の撓みを抑制することができる。
 本実施形態において、重心133aは、移動機構132の移動に伴い、線引タワー2の中心(位置P)に近づくので、第二モーメントM2を、移動機構132の移動により、経時的に減少させることができる。
 重心133aが上面視で接地部21の外周より内側に位置する場合、重量体133から中心線CRまでの距離を取れないため、線引タワー2に対して第二モーメントM2,m2を効果的に付与することができない。しかしながら、本実施形態においては、重量体133の重心133aは、上面視で接地部21の外周より外側に位置する。したがって、本実施形態に係る光ファイバ製造装置1および光ファイバ製造方法によれば、線引タワー2に対して効果的に第二モーメントM2,m2を付与することができる。
(第二実施形態)
 次に、図4を参照しつつ、本実施形態に係る光ファイバ製造装置1Aについて説明する。なお、光ファイバ製造装置1Aの説明において、第一実施形態に係る光ファイバ製造装置1と同様の構成については同じ符号を付して説明し、その説明は適宜省略する。
 図4は、光ファイバ製造装置1Aの概略構成図である。光ファイバ製造装置1Aは、チャック30と、線引炉50と、外径測定器80と、強制冷却装置90と、被覆装置100と、直下ローラ110と、巻取り装置120と、キャプスタン装置140と、をさらに備えている点で光ファイバ製造装置1と異なる。また光ファイバ製造装置1Aは、付与機構13が図4の線引タワー2に向かって右側のみならず、線引タワー2の左側へも重量体133を移動させることが可能な点で光ファイバ製造装置1と異なる。このように、光ファイバ製造装置1Aは、一つの線引タワーに対して二つの線引ラインを有する光ファイバ製造装置である。なお、本実施形態において制御部4は、チャック30の水平方向への移動を制御して、光ファイバ母材60の支持棒60aを把持する位置(把持位置)を水平方向に調整する。また制御部4は、光ファイバ母材60の重量を測定、または計算する。
 チャック30は、チャック3と同様の構成であってもよい。また、線引炉50からキャプスタン装置140までの構成は、線引炉5からキャプスタン装置14までの構成と同様の構成であってもよい。ただし、本実施形態の図4に示す状態において、光ファイバ母材60の重量G3は、光ファイバ母材6の重量G1より小さいものとする。
 チャック30は、チャック支持部3aと同様の構成のチャック支持部30aと、スライド部3bと同様の構成のスライド部30bと、を備えている。チャック30は、光ファイバ母材6と同様の構成の光ファイバ母材60の支持棒60aを把持する。光ファイバ母材60は、所定の重量を有しているため、光ファイバ母材60がチャック30によって支持されると、線引タワー2には第一モーメントM1の作用方向とは反対向きの第三モーメントM3がかかる。なお、第三モーメントM3は、光ファイバ母材60の重量G3と、光ファイバ母材60から線引タワー2の中心線CRまでの距離D3とにより、以下の式(5)に基づいて算出される(Cは定数)。M3=G3*D3+C・・・式(5)
 光ファイバ母材60の重量G3は、光ファイバ母材6の重量G1より小さいので、第三モーメントM3は第一モーメントM1より小さい。したがって、本実施形態においても、チャック3および光ファイバ母材6は図1の左下方向に傾き、その結果、線引タワー2は撓む。
 制御部4は、以下の式(6)を満たす距離D4を計算し、距離D4に対応する位置に付与機構13の移動機構132を移動させる。なお、距離D4とは、移動機構132と重量体133とを合わせたものの重量の中心(重心133a)から線引タワー2の中心線CRまでの距離である。M1-M3=M2=G2*D4+B・・・式(6)
 移動機構132が距離D4に対応する位置まで移動すると、第一モーメントM1は、第二モーメントM2と第三モーメントM3の和と等しくなるため、線引タワー2の撓み量を略ゼロにすることができる。このように、一つの線引タワーに対して二つの線引ラインを有する光ファイバ製造装置1Aに対して本開示を適用しても、第一実施形態と同様の効果を得ることができる。
 次に、本実施形態の実施例について説明する。なお、本開示は以下の実施例に限定されない。
 互いに異なる諸条件の下、本実施形態に係る光ファイバ製造装置1を用いて、光ファイバ7を紡糸し、線引開始時と終了時における線引炉5の位置ずれおよびパスラインの位置ずれと、断線頻度と、を比較した。
 表1および表2は、各諸条件における線引開始時と終了時における線引炉5の位置ずれおよびパスラインの位置ずれと、断線頻度と、を示している。なお、線引開始時と終了時における線引炉5の位置ずれは、ずれ量が3.0mm以下の場合は良好であり、3.0mmを超える場合は不良である。したがって、線引炉5の位置ずれ量の良好範囲は3.0mm以下である。線引開始時と終了時におけるパスラインの位置ずれは、ずれ量0.3mm以下の場合は良好であり、0.3mmを超える場合は不良である。したがって、パスラインの位置ずれ量の良好範囲は0.3mm以下である。断線頻度は、0.1件/1000km以下の場合は良好であり、0.1件/1000kmを超える場合は不良である。したがって、断線頻度の良好範囲は0.1件/1000km以下である。評価については、これらを総合的に判断し、A,B,Cの三段階で表している。Aは良好であることを表しており、Bは比較的良好であることを表しており、Cは不良であること表している。なお、移動機構132の初期位置とは重心133aから線引タワー2の中心線CRまでの距離D2であり、移動機構132の終期位置とは重心133aから線引タワー2の中心線CRまでの距離d2である。また、ファイバ長とは、一つの光ファイバ母材6から紡糸される光ファイバ7の長さである。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
 まず初めに、実験例1と実験例2について説明する。実験例1では、線引開始時の距離D2と線引終了時の距離d2は共に750mmである。つまり、実験例1では、移動機構132を線引工程中に移動させていない。一方で実験例2では、線引開始時の距離D2は1304mmであるが、線引終了時の距離d2は754mmである。つまり、実験例2では、移動機構132を線引工程中に線引タワー2の中心(位置P)に近づくように移動させている。実験例1と実験例2におけるその他のパラメータについては同じである。
 実験例1では、線引開始時の線引炉5の位置ずれと、線引開始時のパスラインの位置ずれと、断線頻度と、は良好範囲を逸脱しているため、評価をCとした。一方で、実験例2では、線引開始時と終了時における線引炉5の位置ずれおよびパスラインの位置ずれと、断線頻度と、は全て良好範囲内であるので、評価をAとした。実験例1および実験例2から、線引工程中に、移動機構132を線引タワー2の中心(位置P)に近づくように移動させると、線引炉5の位置ずれと、パスラインの位置ずれと、断線頻度と、を低減できることが確認できた。
 次に、実験例3~実験例5について説明する。実験例3~実験例5においては、板状部131の位置の高さhが各々異なっている。また実験例3~実験例5において、重量体の重量は各々異なっているものの、略等しくしている。移動機構132の初期位置と、移動機構132の終期位置は、各々異なっている。実験例3~実験例5におけるその他のパラメータは同じである。なお、実験例3~実験例5では、いずれの例においても、移動機構132を線引工程中に線引タワー2の中心(位置P)に近づくように移動させている。表1に示すように、実験例3における板状部131の位置の高さhは15.0mであるため、線引炉5の位置の高さHの0.8倍、すなわち16.8mよりも低い。一方で、実験例4~実験例5における板状部131の位置の高さhは、それぞれ18.0m、18.5mであるため、線引炉5の位置の高さHの0.8倍、すなわち16.8mよりも高い。
 実験例3では、移動体の位置を最大限変えて制御したが、線引開始時と終了時における線引炉5の位置ずれは良好範囲内であるものの、線引開始時と終了時におけるパスラインの位置ずれおよび断線頻度は良好範囲を逸脱する結果となった。特に、断線頻度については、断線頻度の良好範囲を大きく逸脱しているため、評価をCとした。実験例4では、線引開始時と終了時における線引炉5の位置ずれと、線引終了時におけるパスラインの位置ずれは良好範囲内であるものの、線引開始時におけるパスラインの位置ずれは良好範囲を僅かに逸脱しており、断線頻度は良好範囲を逸脱しているため、評価をBとした。一方、実験例5では、線引開始時と終了時における線引炉5の位置ずれおよびパスラインの位置ずれと、断線頻度と、は全て良好範囲内であるので、評価をAとした。このように、これらの例から、板状部131の位置の高さhが線引炉5の位置の高さHの0.8倍未満である場合、第二モーメントM2,m2は線引タワー2に対して効果的に付与されないことが確認できた。換言すると、板状部131の位置の高さhは、線引炉5の位置の高さHの0.8倍以上であると好ましいことが確認できた。
 次に、実験例6~実験例10について説明する。表1および表2に示すように、実験例6~実験例10においては、線引炉5の位置の高さHと、板状部131の位置の高さhと、移動機構132の初期位置と、移動機構132の終期位置と、は各々異なっているものの、その他のパラメータは同じである。また、実験例6~実験例7および実験例9では、移動機構132を線引工程中に移動させていないが、実験例8および実験例10では、移動機構132を線引工程中に線引タワー2の中心(位置P)に近づくように移動させている。さらに、実験例6における線引炉5の位置の高さHは10.5m、すなわち12.0m未満であるのに対し、実験例7~実験例10における線引炉5の位置の高さHは12.0m以上である。
 実験例6では、線引開始時と終了時における線引炉5の位置ずれおよびパスラインの位置ずれと、断線頻度と、は全て良好範囲内であるので、評価をAとした。一方で、実験例6よりも線引炉5の位置の高さHが高い実験例7および実験例9においては、線引開始時における線引炉5の位置ずれおよびパスラインの位置ずれと、断線頻度と、が良好範囲を逸脱しているため、評価をCとした。特に、線引炉5の位置の高さHが最も高い実験例9においては、線引開始時における線引炉5の位置ずれおよびパスラインの位置ずれ量が最も多く、かつ断線頻度も最も高い。このことから、線引開始時における線引炉5の位置ずれおよびパスラインの位置ずれと、断線頻度と、は、線引炉5の位置の高さHが高いほど上昇することが確認できた。また、実験例6においては、線引開始時において既に線引炉5の位置ずれおよびパスラインの位置ずれが良好範囲内であるので、移動機構132を線引工程中に移動させる必要がないことも確認できた。
 一方で、移動機構132の初期位置と移動機構132の終期位置のみが実験例7と異なる実験例8と、移動機構132の初期位置と移動機構132の終期位置のみが実験例9と異なる実験例10と、では、線引開始時と終了時における線引炉5の位置ずれおよびパスラインの位置ずれと、断線頻度と、は全て良好範囲内であるので、評価をAとした。線引炉5の位置の高さHが高いほど、第一モーメントM1が線引タワー2に対して効果的にかかるが、これらの例から、線引炉5の位置の高さHが12m以上であるとき、本開示を適用することが有用であることが確認できた。
 次に、実験例11~実験例13について説明する。表2に示すように、移動機構132の初期位置と、移動機構132の終期位置と、光ファイバ母材6の長さと、ファイバ長と、は各々異なっているものの、その他のパラメータは同じである。また、実験例11~実験例12では、移動機構132を線引工程中に移動させていないが、実験例13では、移動機構132を線引工程中に線引タワー2の中心(位置P)に近づくように移動させている。さらに、実験例11におけるファイバ長は788km、すなわち1000km未満であるのに対し、実験例12および実験例13におけるファイバ長は1002km、すなわち1000km以上である。
 実験例11では、線引開始時と終了時における線引炉5の位置ずれおよびパスラインの位置ずれと、断線頻度と、は全て良好範囲内であるので、評価をAとした。一方で、実験例11よりもファイバ長が長い実験例12においては、線引開始時における線引炉5の位置ずれおよびパスラインの位置ずれと、断線頻度と、が良好範囲を逸脱しているため、評価をCとした。したがって、線引開始時における線引炉5の位置ずれおよびパスラインの位置ずれと、断線頻度と、は、ファイバ長が長いほど上昇することが確認できた。また、実験例11においては、線引開始時において既に線引炉5の位置ずれおよびパスラインの位置ずれが良好範囲内であるので、移動機構132を線引工程中に移動させる必要がないことも確認できた。
 一方で、移動機構132の初期位置と移動機構132の終期位置のみが実験例12と異なる実験例13では、線引開始時と終了時における線引炉5の位置ずれおよびパスラインの位置ずれと、断線頻度と、は全て良好範囲内であるので、評価をAとした。紡糸される光ファイバ7のファイバ長が長いほど、光ファイバ母材6が大型化し、第一モーメントM1は大きくなるが、これらの例から、ファイバ長が1000km以上であるとき、本開示を適用することが有用であることが確認できた。
 以上、本開示を詳細にまた特定の実施態様を参照して説明したが、本開示の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。また、上記説明した構成部材の数、位置、形状等は上記実施の形態に限定されず、本開示を実施する上で好適な数、位置、形状等に変更することができる。
 第二実施形態において、光ファイバ製造装置1Aは制御部4のみを備える構成であるが、制御部4と同様のハードウェア構成の制御部40をさらに備えていてもよい。
 上記の実施形態では、重心133aは、移動機構132の移動に伴い、線引タワー2の中心(位置P)に近づくが、線引タワー2の中心から遠ざかるように移動してもよい。例えば、光ファイバ母材6の有効部の線引きが終わって新たな光ファイバ母材6が取り付けられる場合において、重心133aを、線引タワー2の中心から遠ざかるように移動させると好適である。
 上記の実施形態において、移動機構132は、X軸の方向に移動するが、Y軸の方向またはZ軸の方向にも移動してもよい。
 また、上記の実施形態において、付与機構13は、移動機構132が移動することにより、第二モーメントを制御しているが、付与機構13の重量を変えることにより、第二モーメントを制御してもよい。例えば、付与機構13が備える容器に液体などを入れておき、線引きの進行に伴い、少しずつ容器から液体を排出することで、付与機構13の重量を変えるようにしてもよい。
 上記の実施形態では、一つの線引タワーに対して一つまたは二つの線引ラインを有する光ファイバ製造装置を用いて説明したが、本開示は、一つの線引タワーに対して三つ以上の線引ラインを有する光ファイバ製造装置等に対しても適用可能である。
 上記の実施形態では、線引炉を用いて説明したが、本開示は、抵抗炉や誘導加熱炉等に対しても適用可能である。
1,1A:光ファイバ製造装置
2:線引タワー
3,30:チャック
3a,30a:チャック支持部
3b,30b:スライド部
4,40:制御部
5,50:線引炉
6,60:光ファイバ母材
6a,60a:支持棒
7:光ファイバ
8,80:外径測定器
9,90:強制冷却装置
10,100:被覆装置
11,110:直下ローラ
12,120:巻取り装置
13:付与機構
14,140:キャプスタン装置
21:接地部
131:板状部
132:移動機構
133:重量体
133a:重心
CR:中心線
D1,D2,D3,d2:距離
F:床面
H,h:高さ
M1,m1:第一モーメント
M2,m2:第二モーメント
M3:第三モーメント
P:位置
V:領域

Claims (10)

  1.  線引タワーと、
     前記線引タワーに搭載され、光ファイバ母材を加熱し溶融させて光ファイバを紡糸するための線引炉と、
     前記線引タワーに搭載され、前記光ファイバ母材により前記線引タワーに付与される第一モーメントの作用方向とは反対向きの第二モーメントを前記線引タワーに付与する付与機構と、を備え、
     前記付与機構は、前記光ファイバ母材が小さくなるにつれて、前記第二モーメントを減少させることができる、光ファイバ製造装置。
  2.  前記付与機構は、所定の方向に移動可能な移動機構と、前記移動機構に支持された重量体と、を備え、
     前記重量体の重心が、前記移動機構の移動に伴い、前記線引タワーの中心に近づく、もしくは離れる方向に移動する、請求項1に記載の光ファイバ製造装置。
  3.  前記線引タワーは、前記線引タワーが配置される面に接地する接地部を備えており、
     前記重量体の重心は、上面視で前記接地部の外周より外側に位置する、請求項2に記載の光ファイバ製造装置。
  4.  前記線引タワーに対して前記付与機構が前記第二モーメントを付与する位置の高さは、前記線引炉の位置の高さの0.8倍以上である、請求項1から請求項3のいずれか一項に記載の光ファイバ製造装置。
  5.  前記線引炉の位置の高さは12m以上である、請求項1から請求項4のいずれか一項に記載の光ファイバ製造装置。
  6.  線引タワーに搭載された線引炉で光ファイバ母材を加熱して溶融させ光ファイバを紡糸するステップと、
     前記光ファイバ母材により前記線引タワーに付与される第一モーメントの作用方向とは反対向きの第二モーメントを、前記光ファイバ母材が小さくなるにつれて減少させながら、前記線引タワーに付与するステップと、を含む、光ファイバ製造方法。
  7.  重量体の重心を前記線引タワーの中心に近づく、もしくは離れる方向に移動させることで、前記第二モーメントを減少させる、請求項6に記載の光ファイバ製造方法。
  8.  上面視において、前記線引タワーの接地部の外周より外側で前記重量体の重心を移動させる、請求項7に記載の光ファイバ製造方法。
  9.  前記線引炉の位置の高さの0.8倍以上の高さの位置で、前記線引タワーに対して前記第二モーメントを付与する、請求項6から請求項8のいずれか一項に記載の光ファイバ製造方法。
  10.  前記第二モーメントを減少させながら、一つの光ファイバ母材につき前記光ファイバを1000km以上紡糸する、請求項6から請求項9のいずれか一項に記載の光ファイバ製造方法。
     
PCT/JP2022/025999 2021-07-02 2022-06-29 光ファイバ製造装置および光ファイバ製造方法 WO2023277076A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023532026A JPWO2023277076A1 (ja) 2021-07-02 2022-06-29
CN202280038834.4A CN117412933A (zh) 2021-07-02 2022-06-29 光纤制造装置和光纤制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021110795 2021-07-02
JP2021-110795 2021-07-02

Publications (1)

Publication Number Publication Date
WO2023277076A1 true WO2023277076A1 (ja) 2023-01-05

Family

ID=84691841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025999 WO2023277076A1 (ja) 2021-07-02 2022-06-29 光ファイバ製造装置および光ファイバ製造方法

Country Status (3)

Country Link
JP (1) JPWO2023277076A1 (ja)
CN (1) CN117412933A (ja)
WO (1) WO2023277076A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071538A (ja) * 1983-09-03 1985-04-23 エステイ−シ− ピ−エルシ− 光フアイバ引出し塔
US20070217744A1 (en) * 2003-12-30 2007-09-20 Prysmian Cavi Sistemi Energia S.R.L, Low Polarisation Mode Dispersion (PMD) Optical Fiber Link, and Method of Making the Same
US20100043953A1 (en) * 2004-05-24 2010-02-25 Kevin Riddett Process and apparatus for manufacturing an optical cable
JP2013220972A (ja) * 2012-04-17 2013-10-28 Sumitomo Electric Ind Ltd 光ファイバの製造方法
JP2014504245A (ja) * 2010-11-08 2014-02-20 コンダクティクス ヴァンプフラー フランス 改善された光ファイバガイド装置
JP2016079059A (ja) * 2014-10-15 2016-05-16 住友電気工業株式会社 光ファイバの製造方法および製造装置
JP2017088471A (ja) * 2015-11-17 2017-05-25 住友電気工業株式会社 光ファイバ製造装置、光ファイバ製造方法
WO2021019864A1 (ja) * 2019-07-31 2021-02-04 株式会社フジクラ 光ファイバの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071538A (ja) * 1983-09-03 1985-04-23 エステイ−シ− ピ−エルシ− 光フアイバ引出し塔
US20070217744A1 (en) * 2003-12-30 2007-09-20 Prysmian Cavi Sistemi Energia S.R.L, Low Polarisation Mode Dispersion (PMD) Optical Fiber Link, and Method of Making the Same
US20100043953A1 (en) * 2004-05-24 2010-02-25 Kevin Riddett Process and apparatus for manufacturing an optical cable
JP2014504245A (ja) * 2010-11-08 2014-02-20 コンダクティクス ヴァンプフラー フランス 改善された光ファイバガイド装置
JP2013220972A (ja) * 2012-04-17 2013-10-28 Sumitomo Electric Ind Ltd 光ファイバの製造方法
JP2016079059A (ja) * 2014-10-15 2016-05-16 住友電気工業株式会社 光ファイバの製造方法および製造装置
JP2017088471A (ja) * 2015-11-17 2017-05-25 住友電気工業株式会社 光ファイバ製造装置、光ファイバ製造方法
WO2021019864A1 (ja) * 2019-07-31 2021-02-04 株式会社フジクラ 光ファイバの製造方法

Also Published As

Publication number Publication date
CN117412933A (zh) 2024-01-16
JPWO2023277076A1 (ja) 2023-01-05

Similar Documents

Publication Publication Date Title
CN104936909B (zh) 光纤线的制造装置以及制造方法
US9328012B2 (en) Glass base material elongating method
CN107108313B (zh) 使用夹持器设备形成具有低弓度的细长玻璃部件
EP2660211B1 (en) Method and apparatus for elongating glass rod material
CN102187255A (zh) 光传输介质成形方法、光传输介质成形装置及光传输介质制造方法
US7788951B2 (en) Method of elongating an optical fiber base material
WO2023277076A1 (ja) 光ファイバ製造装置および光ファイバ製造方法
US5968221A (en) Method of controlling the diameter of a fiber preform including forming a gob on the end and pulling the gob
KR100817987B1 (ko) 광 파이버 모재의 연신 방법 및 연신 장치
US9256017B2 (en) Optical transmission medium bend working device and optical transmission medium bend working method
WO1999016718A1 (fr) Procede d'etirage de materiaux de verre de base
JP2006193397A (ja) ガラス母材の延伸方法及び延伸装置
JP2016079059A (ja) 光ファイバの製造方法および製造装置
JP3151387B2 (ja) 光ファイバ母材の製造方法
JP6515483B2 (ja) 光ファイバ線引装置及び光ファイバ線引方法
JP3151386B2 (ja) 光ファイバ母材の製造方法
JP6136554B2 (ja) ガラス母材の延伸装置およびガラス母材の製造方法
JP4188011B2 (ja) 光ファイバ母材の製造方法およびガラスロッドの曲がり修正方法
JP4221277B2 (ja) 光ファイバ母材の延伸方法
JP2004018341A (ja) ガラス母材の延伸方法
JP2003206147A (ja) ガラス母材の延伸方法
JPH0930826A (ja) 光ファイバ母材の製造方法
JP2006225179A (ja) 光ファイバ母材加工装置及び光ファイバ母材加工方法
JP2004175606A (ja) 光ファイバ線引装置及び線引方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833222

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280038834.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023532026

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22833222

Country of ref document: EP

Kind code of ref document: A1