WO2023273909A1 - 电池包的装配方法、电池包及车辆 - Google Patents

电池包的装配方法、电池包及车辆 Download PDF

Info

Publication number
WO2023273909A1
WO2023273909A1 PCT/CN2022/099306 CN2022099306W WO2023273909A1 WO 2023273909 A1 WO2023273909 A1 WO 2023273909A1 CN 2022099306 W CN2022099306 W CN 2022099306W WO 2023273909 A1 WO2023273909 A1 WO 2023273909A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery module
battery pack
battery
insulating bag
cavity
Prior art date
Application number
PCT/CN2022/099306
Other languages
English (en)
French (fr)
Inventor
鲁鹏
彭青波
鲁志佩
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to CA3214002A priority Critical patent/CA3214002A1/en
Priority to EP22831727.7A priority patent/EP4300685A1/en
Priority to JP2023559042A priority patent/JP2024518248A/ja
Priority to KR1020237032064A priority patent/KR20230148215A/ko
Publication of WO2023273909A1 publication Critical patent/WO2023273909A1/zh
Priority to US18/475,769 priority patent/US20240021861A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the disclosure belongs to the technical field of battery pack production, and specifically relates to a method for assembling a battery pack, a battery pack, and a vehicle.
  • the size of the box body is usually designed to be equivalent to the size of the battery module group, but this makes the assembly of the battery pack very difficult, and it is difficult to install the battery pack by manpower.
  • the battery module is inserted into the case. If mechanical tooling is used to apply mechanical force, on the one hand, it is easy to cause damage to the box body or the battery module; on the other hand, it also increases the difficulty of assembly and disassembly and reduces the efficiency of assembly and disassembly.
  • the size of the box body is set to be much larger than that of the battery module, so as to facilitate the assembly of the battery module.
  • a box cannot give the battery module a good pre-tightening force, and reduces the volume utilization of the battery pack, increases the volume of the battery pack, causes the battery pack to occupy a large space at the bottom of the vehicle, and reduces the practicality of the battery pack. sex.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art. For this reason, the present disclosure proposes a method for assembling a battery pack.
  • the battery pack assembled by the method for assembling a battery pack can ensure that the box body can continuously apply a pretightening force to the battery module while improving the assembly efficiency, which solves the problem of
  • the battery pack is difficult to assemble, the box body cannot give the battery module a good pre-tightening force after the battery pack is assembled, and the battery pack volume utilization rate is low.
  • the second objective of the present disclosure is to provide a battery pack.
  • a third object of the present disclosure is to propose a vehicle.
  • the battery pack includes a box and a battery module, the box is provided with a cavity, the battery module includes foam and a plurality of batteries, The foam is arranged between adjacent cells, and the assembly method includes the following steps: putting the battery module into an insulating bag; vacuumizing the insulating bag so that the foam It is compressed to reduce the volume of the battery module; after inserting the reduced-volume battery module into the cavity, the vacuum state is released, and the positive and negative electrodes of the battery module are exposed.
  • the battery module is first assembled into the insulating bag before the battery module is assembled in the cavity, and the insulating bag
  • the foam in the battery module is compressed by vacuuming, thereby reducing the volume of the entire battery module, facilitating the assembly of the battery module into the box, and improving assembly efficiency.
  • the foam can use its own high resilience to restore the original volume of the battery module, and the battery module is abutted against the inside of the box to achieve zero-gap assembly, improve the volume utilization of the battery pack, and ensure that the box
  • the pre-tightening force can be continuously applied to the battery module, and the size of the box body can be designed to be equivalent to the size of the battery module group through the above arrangement, so as to reduce the volume of the box body, thereby reducing the volume of the battery pack, and improving practicability.
  • the insulating bag is provided with a to-be-teared portion, so that the to-be-teared portion is damaged to release the vacuum state.
  • the part to be torn is formed in a ring shape, and the part to be torn is broken to remove a part of the insulating bag to expose the positive and negative electrodes.
  • a handle is provided on the insulating bag, and the part to be torn is broken by pulling the handle.
  • the insulating bag is coated with a fireproof layer.
  • a battery pack comprising: a box, a cavity is provided in the box; a battery module, the battery module is arranged in the cavity, and the battery module includes a bubble Cotton and a plurality of electric cores, the foam is arranged between the adjacent electric cores, the battery module is covered with an insulating bag, and the positive and negative electrodes of the battery module protrude from the insulating bag.
  • the box by arranging the battery module in the cavity formed by the box, the box can protect the battery module, prolong the service life of the battery module and improve the safety of the battery module.
  • the foam is installed between the adjacent battery cells, and the elastic deformation force of the foam can be used to change the volume of the battery module. While improving the assembly efficiency of the battery pack, it can also ensure that the box can continuously exert pressure on the battery module.
  • the pre-tightening force extends the positive and negative poles of the battery module out of the insulating bag to facilitate connection with other battery modules to form a battery pack.
  • the battery pack of the present disclosure is simple to assemble, small in size and light in weight.
  • a plurality of sequentially arranged cavities are provided in the box, and each of the cavities is provided with the battery module covered with an insulating bag.
  • the insulating bag is clamped between the inner wall of the cavity and the battery module.
  • a vehicle according to an embodiment of the present disclosure includes the aforementioned battery pack.
  • the battery pack does not occupy too much space at the bottom of the vehicle, and can realize the lightweight of the vehicle, increase the cruising range of the vehicle and improve the driving experience.
  • FIG. 1 is a flowchart of an assembly method of a battery pack according to an embodiment of the present disclosure.
  • FIG. 2 is an exploded view between a battery module and an insulating bag according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a battery pack according to an embodiment of the present disclosure.
  • FIG. 4 is a partially enlarged view of area I in FIG. 3 .
  • 300 insulating bag; 310, the place to be torn; 320, the handle position.
  • the battery pack 1000 includes a box body 100 and a battery module 200 , and a cavity 110 is provided in the box body 100 .
  • the battery module 200 includes a foam 210 and a plurality of battery cells 220 , and the foam 210 is arranged between adjacent battery cells 220 .
  • the assembly method of the battery pack 1000 includes the following steps:
  • Step S1 Put the battery module 200 into the insulating bag 300 .
  • Step S2 vacuumize the insulating bag 300 so that the foam 210 is compressed to reduce the volume of the battery module 200 .
  • Step S3 After inserting the reduced-sized battery module 200 into the cavity 110, the vacuum state is released, and the positive and negative electrodes of the battery module 200 are exposed.
  • the present disclosure utilizes the characteristics of the foam 210 itself to put the battery module 200 into the insulating bag 300 before assembling the battery module 200 in the cavity 110, and by pumping the insulating bag 300 Compress the gap between the foam 210 in the battery module 200 and the adjacent battery cells 220 in a vacuum way, so as to reduce the volume of the foam 210, thereby reducing the distance between the adjacent battery cells 220,
  • the overall size of the battery module 200 is reduced; during the specific assembly process of the battery pack 1000, the smaller battery module 200 can be smoothly assembled into the cavity 110 of the box body 100, which improves the assembly efficiency and reduces the size of the battery module.
  • the friction between the group 200 and the case 100 reduces wear and prolongs the service life of the battery module 200 and the case 100 .
  • the vacuum state of the insulating bag 300 is released.
  • the foam 210 can use its own high resilience to restore its original size and shape, thereby increasing the gap between adjacent battery cells 220. The distance allows the battery module 200 to return to its original volume, and the battery module 200 can abut against the inside of the box body 100 to achieve zero-gap assembly and improve the volume utilization rate of the battery pack 1000.
  • the sidewall of the box body 100 can give the battery module 200 a good pre-tightening force, so that the position of the battery module 200 is stable.
  • the size of the box body 100 can be produced to be equivalent to the size of the battery module 200 during the production process of the box body 100, and there is no need to deliberately produce a larger size.
  • the box body 100 can also quickly and accurately assemble the battery module 200 into the box body 100, which reduces the difficulty of assembly and at the same time reduces the volume of the box body 100. First, it reduces the materials used in the box body 100 and saves production costs.
  • the volume of the battery pack 1000 can be reduced, and the battery pack 1000 can be installed on the vehicle without taking up too much space at the bottom of the vehicle, and the practicability of the battery pack 1000 can be improved; the third aspect can also reduce the battery pack 1000. Weight, realize the lightweight of the battery pack 1000, and improve the cruising range of the vehicle.
  • the battery module 200 By exposing the positive and negative poles of the battery module 200 , it is convenient to connect the battery module 200 with the adjacent battery modules 200 through the positive and negative poles to form the battery pack 1000 .
  • the battery pack 1000 can improve the assembly efficiency of the battery pack 1000 while ensuring that the box 100 can give the battery module 200 a good pre-tightening force, realize zero-gap assembly, improve the volume utilization rate of the battery pack 1000, and reduce the volume of the battery pack 1000 .
  • one end of the insulating bag 300 is provided with an opening (not shown in the figure), and a sealing structure is provided at the opening.
  • the sealing structure is used to open or close the opening.
  • the opening is opened through the sealing structure, and the battery module 200 is put into the inside of the insulating bag 300 through the opening; , the opening is closed by the sealing structure, so that the insulating bag 300 forms a closed structure, which facilitates subsequent vacuuming of the insulating bag 300 .
  • an air valve (not shown) is provided on the insulating bag 300.
  • an air pump can be used.
  • the air pump is connected to the air valve.
  • the air pump The air in the insulation bag 300 can be extracted by this action.
  • the main principle is to take away the air inside the foam 210 and use the atmospheric pressure to flatten the expanded foam 210, so that the volume of the foam 210 becomes smaller, thereby reducing the distance between adjacent battery cells 220, so that The overall size of the battery module 200 is reduced to ensure smooth insertion of the battery module 200 into the cavity 110 and improve the assembly efficiency of the battery pack 1000 .
  • the air valve is a one-way suction valve to ensure that the air in the insulating bag 300 can only be drawn in one direction through the air valve to prevent the gas in the insulating bag 300 from flowing back. It is ensured that when the vacuum state of the insulating bag 300 is not released, the insulating bag 300 is always in a vacuum state, which is convenient for inserting the battery module 200 into the cavity 110 .
  • the insulating bag 300 may be made of insulating materials such as polypropylene, polyethylene terephthalate or polyimide.
  • the above materials can ensure that the insulation bag 300 has a good insulation effect, and ensure that the two adjacent battery modules 200 will not contact and cause an internal short circuit when the battery pack 1000 is moving or collided, thereby extending the length of the battery module 200. service life, and improve the safety of the battery module 200.
  • the insulating bag 300 is provided with a torn portion 310 , so that the torn portion 310 is broken to release the vacuum state. That is to say, after inserting the reduced-volume battery module 200 into the cavity 110, if it is necessary to release the vacuum state of the insulating bag 300, at this time, only the part 310 to be torn is damaged, and the insulating bag 300 can release the vacuum. In this state, the foam 210 recovers its original size and shape by utilizing its high resilience, so that the battery module 200 returns to its original volume, and zero-gap assembly of the battery module 200 and the box body 100 is realized.
  • a sealing structure is provided at the opening.
  • the opening can also be opened through the sealing structure.
  • the external air can enter the interior of the insulating bag 300 through the opening to release the vacuum state of the insulating bag 300, and the foam 210 returns to its original size. and shape, so that the battery module 200 returns to its original volume.
  • releasing the vacuum state of the insulating bag 300 through the part to be torn 310 is mainly to remove a part of the insulating bag 300 to ensure that when the insulating bag 300 is released from the vacuum state, the positive and negative electrodes of the battery module 200 can be exposed to the insulating
  • the outside of the bag 300 is convenient for connecting adjacent battery modules 200 through positive and negative electrodes.
  • the part to be torn 310 is formed in a ring shape, and the part to be torn 310 is broken to remove a part of the insulating bag 300 to expose the positive and negative electrodes.
  • the annular shape mentioned here means that the part to be torn 310 is arranged around the circumference of the insulating bag 300.
  • the above-mentioned damaged part 310 to be torn and the part 310 to be torn are broken are two different states, and the damaged part 310 to be torn refers to a hole in the insulating bag 300 at the part to be torn 310 , when the part to be torn 310 starts to break, the vacuum state of the insulating bag 300 is released but the positive and negative electrodes of the battery module 200 will not be exposed outside the insulating bag 300; when the part to be torn 310 is switched from damaged to broken, The positive and negative electrodes of the battery module 200 are exposed outside the insulating bag 300 .
  • a handle 320 is provided on the insulation bag 300 , and the handle 320 is pulled so that the part 310 to be torn is broken and broken.
  • the handle position 320 increases the contact area between the user and the insulating bag 300, and the user can apply force on the insulating bag 300 through the handle position 320 to ensure that the tearing part 310 can be smoothly damaged, to release the vacuum state of the insulating bag 300, and then the user continues to apply force, so that the to-be-torn part 310 switches from the damaged state to the broken state, so as to separate the insulating bag 300 located on both sides of the to-be-torn part 310, and the battery module
  • the positive and negative electrodes of 200 can be exposed outside the insulating bag 300 .
  • the handle 320 is disposed at one end of the insulating bag 300 and extends away from the insulating bag 300 .
  • Increasing the area of the handle 320 is convenient for the user to touch the handle 320 and apply a force through the handle 320 to damage and break the part 310 to be torn, so that the part 310 to be torn can be damaged and broken smoothly.
  • the part 310 to be torn is disposed at one end of the insulating bag 300 and close to the handle 320 . Reduce the distance between the part to be torn 310 and the handle 320.
  • the part to be torn 310 can be damaged and broken; on the other hand, because the battery module 200 is inserted into the Pull the handle 320 after entering the cavity 110 to damage the part 310 to be torn.
  • the battery module 200 will abut against the inner wall of the box body 100.
  • the battery module 200 will drive The insulation bag 300 abuts against the inner wall of the box body 100 together.
  • the contact area between the insulation bag 300 and the box body 100 between the to-be-teared portion 310 and the handle position 320 can be reduced, ensuring that the to-be-teared portion 310 is broken
  • the insulating bag 300 located between the part to be torn 310 and the handle 320 can be smoothly removed from the box body 100 to expose the positive and negative electrodes of the battery module 200 .
  • the distance between the part to be torn 310 and the handle position 320 should not be too small.
  • the distance between the part to be torn 310 and the handle 320 is too small, the positive and negative electrodes of the battery module 200 cannot be exposed after the insulating bag 300 between the part to be torn 310 and the handle 320 is removed.
  • the distance between the part to be torn 310 and the handle position 320 is not specifically limited, as long as the insulation bag 300 located between the part to be torn 310 and the handle position 320 is guaranteed to be It can be smoothly removed from the box body 100 and the positive and negative electrodes of the battery module 200 can be exposed outside the insulating bag 300 .
  • the thickness of the insulation bag 300 at the to-be-teared location 310 can be set to be smaller than the thickness of other locations of the insulation bag 300 to form the to-be-teared location 310 . It is ensured that when the user pulls the handle 320 , the insulation bag 300 can be damaged and broken from the part 310 to be torn.
  • the insulating bag 300 is coated with a fireproof layer.
  • the fireproof layer can effectively block the propagation path of thermal runaway.
  • the insulating bag 300 coated with the fireproof layer can effectively prevent the spread of flame and heat, improve the safety of the battery module 200, and act as a cell
  • the insulating bag 300 can effectively ensure that the flame and heat will not be transmitted to the outside of the battery module 200, and will not endanger the safety of the user.
  • the surface of the insulating bag 300 can be sprayed with Teflon or coated with mica paper to form a high temperature fireproof layer on the surface of the insulating bag 300 . Effectively block heat transfer.
  • the battery pack 1000 of the embodiment of the present disclosure will be described below with reference to the accompanying drawings.
  • a battery pack 1000 according to an embodiment of the present disclosure as shown in FIG. 2 and FIG. Inside.
  • the battery module 200 includes a foam 210 and a plurality of battery cells 220 , and the foam 210 is arranged between adjacent battery cells 220 .
  • the battery module 200 is covered with an insulating bag 300 , and the positive and negative electrodes of the battery module 200 extend out of the insulating bag 300 . That is to say, the positive and negative electrodes of the battery module 200 extend out of the insulating bag 300 .
  • the battery pack 1000 of the embodiment of the present disclosure provides a space for avoiding the installation of the battery module 200 by providing a cavity 110 in the box body 100 to ensure that the battery module 200 can be assembled in the box body 100 Inside, the battery module 200 is assembled in the cavity 110. On the one hand, the cavity 110 can protect the battery module 200.
  • the cavity 110 collapses and absorbs energy, and the box body 100 utilizes its own strength and rigidity to absorb part of the impact force, thereby reducing damage to the battery module 200 by the impact force; on the other hand, the cavity 110 provides an installation space for the battery module 200 and limits the maximum Move the position to prevent the battery module 200 from dislocation and moving to other parts of the battery pack 1000 when the battery pack 1000 is hit, and improve the positional stability of the battery module 200 .
  • the foam 210 can act as a buffer during the assembly of the battery module 200 to ensure that no collision occurs between the adjacent cells 220.
  • the service life of the battery cells 220 is extended, and the foam 210 can not only provide a fixed pre-tightening force when a plurality of battery cells 220 are assembled in the initial stage, but also absorb the expansion force generated by the battery cells 220 in the later use of the battery module 200 .
  • the volume of the battery module 200 can be reduced by using the foam 210, so that the battery module 200 can be easily inserted into the cavity 110 formed by the box body 100, and the battery module 200 and the box body 100 can be improved.
  • the battery module 200 can also be restored to its original volume by using the foam 210, so that the battery module 200 abuts against the inner wall of the box body 100, and the side wall of the box body 100 can give the battery module 200 a good pre-tightening force, making the position of the battery module 200 stable, and realizing zero-gap assembly, improving the volume utilization of the battery pack 1000 Rate.
  • An insulating bag 300 is placed outside the battery module 200.
  • two adjacent battery modules 200 will not contact to cause an internal short circuit, prolong the service life of the battery module 200, and improve Safety of the battery module 200.
  • the positive and negative poles of the battery module 200 extend out of the insulating bag 300 , and the battery modules 200 in the battery pack 1000 can be connected through the positive and negative poles to form the battery pack 1000 .
  • the battery cell 220 and the foam 210 may be bonded with structural adhesive to limit the position between the battery cell 220 and the foam 210 and improve the structural stability of the battery module 200 .
  • a plurality of sequentially arranged cavities 110 are provided in the box body 100 , and a battery module 200 covered with an insulating bag 300 is provided in each cavity 110 .
  • the box 100 of the present disclosure is provided with a plurality of battery modules 200 , and the plurality of cavities 110 separate the plurality of battery modules 200 to ensure that when the battery pack 1000 is working, two adjacent The two battery modules 200 will not be in contact, which improves the safety of the battery module 200, and the battery module 200 is also covered with an insulating bag 300, which further increases the safety of the battery module 200, and the present disclosure
  • the insulating bag 300 is sandwiched between the inner wall of the cavity 110 and the battery module 200 . That is to say, when the battery module 200 is inserted into the cavity 110, the insulating bag 300 wrapped outside the battery module 200 will not be removed, which reduces the difficulty of assembling the battery pack 1000 on the one hand;
  • the insulating bag 300 outside the battery pack 200 can also function as insulation, improving the safety of the battery module 200 .
  • a vehicle according to an embodiment of the present disclosure includes the aforementioned battery pack 1000 .
  • the vehicle of the embodiment of the present disclosure adopts the aforementioned battery pack 1000, the battery pack 1000 will not occupy too much space at the bottom of the vehicle, and can realize the lightweight of the vehicle, improve the driving experience and the cruising range of the vehicle .
  • a battery pack 1000 as shown in FIG. 2 and FIG. 3 , includes a box body 100 and a battery module 200 , the box body 100 is provided with a cavity 110 , and the battery module 200 is set in the cavity 110 .
  • the battery module 200 includes a foam 210 and a plurality of battery cells 220 , and the foam 210 is arranged between adjacent battery cells 220 .
  • the battery module 200 is covered with an insulating bag 300.
  • the battery module 200 is put into the insulating bag 300, and the insulating bag 300 is vacuumized so that the foam 210 Compressed to reduce the volume of the battery module 200 , after inserting the reduced-volume battery module 200 into the cavity 110 , the vacuum state is released, and the positive and negative electrodes of the battery module 200 extend out of the insulating bag 300 .
  • a battery pack 1000 On the basis of Embodiment 1, the insulating bag 300 is provided with a handle 320, and the insulating bag 300 is provided with a part 310 to be torn.
  • the part 310 to be torn is formed in a ring shape.
  • the part to be torn 310 is broken to remove a part of the insulating bag 300 to expose the positive and negative electrodes of the battery module 200 .
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integrated Ground connection; either mechanical or electrical.
  • the assembly method of the battery pack 1000 according to the embodiment of the present disclosure, the battery pack 1000 and other components of the vehicle such as the principle of vacuuming the insulating bag 300 are known to those of ordinary skill in the art and will not be described in detail here .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

一种采用电池包的装配方法的电池包及车辆。该电池包包括箱体和电池模组,箱体内设有空腔,电池模组包括泡棉和多个电芯,相邻的电芯之间设有泡棉。该电池包的装配方法包括如下步骤:将电池模组装入到绝缘袋内;对绝缘袋进行抽真空使得泡棉被压缩以缩小电池模组的体积;将缩小体积的电池模组***到空腔内后,解除真空状态,电池模组的正负极外露。

Description

电池包的装配方法、电池包及车辆
本公开要求于2021年06月28日提交中国专利局,申请号为202110721306.6,申请名称为“电池包的装配方法、电池包及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开属于电池包生产技术领域,具体是一种电池包的装配方法、电池包及车辆。
背景技术
电池包在生产的过程中,通常将多个电芯组合形成电池模组,电池模组装配在箱体内形成电池包,优秀的箱体需要同时满足电池模组装配容易、且能够给予电池模组良好预紧力两方面的要求。
现有技术中,为了使箱体能够对电池模组持续施加预紧力,通常将箱体的尺寸设计成与电池模组的尺寸相当,但是导致电池包的装配十分困难,靠人力很难将电池模组***箱体内。如果使用机械工装施加机械力,一方面容易导致箱体或电池模组损坏;另一方面,也增加了装拆难度并降低装拆效率。
为了解决上述问题,设置箱体的尺寸远大于电池模组的尺寸,便于电池模组装配。但是这样的箱体无法给予电池模组良好的预紧力,且降低了电池包的体积利用率,增加了电池包的体积,导致电池包在车辆底部的占用空间较大,降低电池包的实用性。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一。为此,本公开提出一种电池包的装配方法,通过该电池包的装配方法装配的电池包,在提高装配效率的同时还可保证箱体能够对电池模组持续施加预紧力,解决了现有技术中电池包装配困难、电池包装配完成后箱体无法给予电池模组良好的预紧力,且电池包体积利用率低的技术问题。
本公开的第二目的在于提出一种电池包。
本公开的第三目的在于提出一种车辆。
根据本公开实施例的一种电池包的装配方法,所述电池包包括箱体和电池模组,所述箱体内设有空腔,所述电池模组包括泡棉和多个电芯,相邻的所述电芯之间设有所述泡棉,所述装配方法包括如下步骤:将所述电池模组装入到绝缘袋内;对所述绝缘袋进行抽真空使得所述泡棉被压缩以缩小所述电池模组的体积;将缩小体积的所述电池模组***到所述空腔内后,解除真空状态,所述电池模组的正负极外露。
根据本公开实施例的电池包的装配方法,因相邻的电芯之间设置有泡棉,在将电池模组装配在空腔前先将电池模组装入绝缘袋内,通过对绝缘袋进行抽真空的方式对电池模组中的泡棉进行压缩,进而减小整个电池模组的体积,便于电池模组装配至箱体内,提高装配效率,当电池模组装配在空腔内后,解除真空状态,此时泡棉可利用自身的高回弹性使电池模组恢复原有体积,电池模组抵接在箱体内部,实现零间隙装配,提高电池包的体积利用率,保证箱体能够对电池模组持续施加预紧力,且通过上述设置可将箱体的尺寸设计成与电池模组的尺寸相当,减小箱体的体积,进而减小电池包的体积,提高实用性。
根据本公开一个实施例的电池包的装配方法,所述绝缘袋上设有待撕裂处,使得所述待撕裂处破损以解除真空状态。
根据本公开一个实施例,所述待撕裂处形成为环状,所述待撕裂处断裂以去除所述绝缘袋的一部分以外露所述正负极。
根据本公开一个实施例,所述绝缘袋上设有把手位,通过拉扯所述把手位以使得所述待撕裂处破损。
根据本公开一个实施例的电池包的装配方法,所述绝缘袋上涂覆有防火层。
根据本公开实施例的一种电池包,包括:箱体,所述箱体内设有空腔;电池模组,所述电池模组设在所述空腔内,所述电池模组包括泡棉和多个电芯,相邻的所述电芯之间设有所述泡棉,所述电池模组外套有绝缘袋,所述电池模组的正负极伸出所述绝缘袋。
根据本公开实施例的电池包,通过将电池模组设置在箱体形成的空腔内,箱体可起到保护电池模组的作用,延长电池模组的使用寿命并提高电池模组的安全性,且相邻的电芯之间设置有泡棉,可利用泡棉的弹性变形 力改变电池模组的体积,在提高电池包装配效率的同时还可保证箱体能够对电池模组持续施加预紧力,将电池模组的正负极伸出绝缘袋便于与其他的电池模组连接形成电池包。本公开的电池包,装配简单、体积小且重量轻。
根据本公开一个实施例的电池包,所述箱体内设有多个顺序排布的空腔,每个所述空腔内设有外套有绝缘袋的所述电池模组。
根据本公开一个实施例,所述绝缘袋夹持在所述空腔的内壁和所述电池模组之间。
根据本公开实施例的一种车辆,包括前述的电池包。
根据本公开实施例的车辆,通过采用前述的电池包,电池包不会占用车辆底部过多的空间,且可实现车辆的轻量化,提升车辆的续航里程并提升驾乘体验。
本公开的附加方面和优点将在下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开一个实施例的电池包的装配方法的流程图。
图2为本公开一个实施例的电池模组与绝缘袋之间的***图。
图3为本公开一个实施例的电池包的结构示意图。
图4为图3中区域Ⅰ的局部放大图。
附图标记:
1000、电池包;
100、箱体;110、空腔;
200、电池模组;210、泡棉;220、电芯;
300、绝缘袋;310、待撕裂处;320、把手位。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功 能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
在本公开的描述中,需要理解的是,术语“厚度”、“上”、“下”、“前”、“后”、“顶”、“底”、“内”、“外”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
下面参考说明书附图描述本公开实施例的电池包1000的装配方法。
根据本公开实施例的一种电池包1000的装配方法,结合图2和图3所示,电池包1000包括箱体100和电池模组200,箱体100内设有空腔110。
如图2所示,电池模组200包括泡棉210和多个电芯220,相邻的电芯220之间设有泡棉210。
如图1所示,电池包1000的装配方法包括如下步骤:
步骤S1:将电池模组200装入到绝缘袋300内。
步骤S2:对绝缘袋300进行抽真空使得泡棉210被压缩以缩小电池模组200的体积。
步骤S3:将缩小体积的电池模组200***到空腔110内后,解除真空状态,电池模组200的正负极外露。
由上述方法可知,本公开实施例的电池包1000的装配方法,因相邻的电芯220之间设置有泡棉210,泡棉210在外力作用下会发生形变,当外力消除后还能恢复原来的大小和形状,因此,本公开利用泡棉210自身的特性,在将电池模组200装配在空腔110前先将电池模组200装入绝缘袋300内,通过对绝缘袋300进行抽真空的方式对电池模组200中的泡棉210以及相邻的电芯220之间的间隙进行压缩,以减小泡棉210的体积,进而减小相邻的电芯220之间的距离,使得电池模组200的整体尺寸减小;在电池包1000具体装配的过程中,体积较小的电池模组200可顺利装配至箱体100的空腔110内,提高装配效率并减小电池模组200和箱体100之间的摩擦,降低磨损,延长电池模组200和箱体100的使用寿命。
当电池模组200装配在空腔110内后,解除绝缘袋300的真空状态,此时泡棉210可利用自身的高回弹性恢复原来的大小和形状,进而增加相邻的电芯220之间的距离,使得电池模组200恢复至原有体积,电池模组200可抵接在箱体100的内部,实现零间隙装配,提高电池包1000的体积 利用率。
因电池模组200抵接在箱体100的内部,箱体100的侧壁能够给予电池模组200良好的预紧力,使得电池模组200的位置稳定。
需要说明的是,通过采用上述的装配方法装配电池包1000,在箱体100生产的过程中,可将箱体100的尺寸生产成与电池模组200的尺寸相当,无需特意生产尺寸较大的箱体100也能将电池模组200快速准确地装配至箱体100内,在降低装配难度的同时还可减小箱体100的体积,第一方面减少箱体100的用料,节约生产成本;第二方面可减小电池包1000的体积,将电池包1000安装在车辆上,不会占用车辆底部过多的空间,提高电池包1000的实用性;第三方面还可减轻电池包1000的重量,实现电池包1000的轻量化,提升车辆的续航里程。
通过将电池模组200的正负极外露,方便电池模组200与相邻的电池模组200通过正负极连接以形成电池包1000。
可以理解的是,采用本公开的电池包1000的装配方法装配电池包1000,不会出现装配困难或箱体100无法给予电池模组200良好预紧力的技术问题,采用上述装配方法装配的电池包1000,在提高电池包1000装配效率的同时还可保证箱体100能够给予电池模组200良好预紧力,实现零间隙装配,提高电池包1000的体积利用率,减小电池包1000的体积。
在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
根据本公开一个实施例,绝缘袋300的一端设有开口(图中未示出),开口处设有封合结构。封合结构用于打开或关闭开口。当需要将电池模组200装入到绝缘袋300内时,通过封合结构打开开口,电池模组200通过开口装入绝缘袋300的内部;当电池模组200装入绝缘袋300的内部后,通过封合结构关闭开口,使得绝缘袋300形成封闭结构,便于后续对绝缘袋300进行抽真空。
根据本公开一个实施例,绝缘袋300上设置有气阀(图中未示出),在对绝缘袋300进行抽真空的过程中,可利用抽气泵,抽气泵连接在气阀处,抽气泵动作即可抽出绝缘袋300中的空气。
主要原理是把泡棉210内部的空气抽走,利用大气压把本来膨胀的泡棉210压扁,从而使泡棉210的体积变小,进而减小相邻的电芯220之间的距离,使得电池模组200的整体尺寸减小,保证电池模组200***空腔 110时顺畅,提高电池包1000的装配效率。
根据本公开一个实施例,气阀为单向抽气阀门,确保只能通过气阀单向抽取绝缘袋300内的空气,防止绝缘袋300内的气体回流。保证当未解除绝缘袋300的真空状态时,绝缘袋300始终处于真空状态,便于将电池模组200***空腔110内。
根据本公开一个实施例,绝缘袋300可选用聚丙烯、聚对苯二甲酸乙二醇酯或聚酰亚胺等绝缘材料制作。上述材料均可保证绝缘袋300具有良好的绝缘效果,保证电池包1000在移动的过程中或受到碰撞时,相邻的两个电池模组200不会接触而导致内部短路,延长电池模组200的使用寿命,并提高电池模组200的安全性。
在本公开的一些实施例中,如图2和图3所示,绝缘袋300上设有待撕裂处310,使得待撕裂处310破损以解除真空状态。也就是说,当将缩小体积的电池模组200***到空腔110内后,若需要解除绝缘袋300的真空状态,此时只需将待撕裂处310破损,绝缘袋300即可解除真空状态,泡棉210利用自身的高回弹性恢复原来的大小和形状,使得电池模组200恢复至原有体积,实现电池模组200和箱体100零间隙装配。
当然,因绝缘袋300的一端设有开口,开口处设有封合结构。当需要解除绝缘袋300的真空状态时,也可通过封合结构打开开口,此时外部空气可通过开口进入绝缘袋300的内部,以解除绝缘袋300的真空状态,泡棉210恢复原来的大小和形状,使得电池模组200恢复至原有体积。
需要说明的是,通过待撕裂处310解除绝缘袋300的真空状态主要是为了去除绝缘袋300的一部分,保证当绝缘袋300解除真空状态时,电池模组200的正负极可外露在绝缘袋300的外部,以便于相邻的电池模组200通过正负极连接。
根据本公开一个实施例,待撕裂处310形成为环状,待撕裂处310断裂以去除绝缘袋300的一部分以外露正负极。这里所说的环状是指待撕裂处310绕绝缘袋300周向一圈设置,当待撕裂处310断裂时,位于待撕裂处310两侧的绝缘袋300分离,去除靠近电池模组200正负极的绝缘袋300,使得电池模组200的正负极外露。
需要说明的是,上述所说的待撕裂处310破损和待撕裂处310断裂是两种不同的状态,待撕裂处310破损是指绝缘袋300在待撕裂处310处出现破洞,当待撕裂处310开始破损时,绝缘袋300即解除真空状态但电池 模组200的正负极不会外露在绝缘袋300的外部;当待撕裂处310由破损切换至断裂时,电池模组200的正负极才会外露在绝缘袋300的外部。
根据本公开一个实施例,如图4所示,绝缘袋300上设有把手位320,通过拉扯把手位320以使得待撕裂处310破损且断裂。当用户需要将绝缘袋300解除真空状态时,把手位320增加了用户与绝缘袋300的接触面积,用户可通过把手位320施加作用在绝缘袋300上的力,保证待撕裂处310可顺利破损,以解除绝缘袋300的真空状态,随后用户继续施加作用力,使得待撕裂处310由破损切换至断裂状态,以将位于待撕裂处310两侧的绝缘袋300分离,电池模组200的正负极可裸露在绝缘袋300的外部。
根据本公开一个实施例,如图4所示,把手位320设置在绝缘袋300的一端并朝向远离绝缘袋300的方向延伸。增加把手位320的面积,方便用户接触把手位320并通过把手位320施加使待撕裂处310破损且断裂的力,待撕裂处310可顺利破损且断裂。
根据本公开一个实施例,结合图3和图4所示,待撕裂处310设置在绝缘袋300的一端并靠近把手位320。减小待撕裂处310与把手位320之间的距离,一方面,当用户拉扯把手位320时,可顺利将待撕裂处310破损且断裂;另一方面,因电池模组200***到空腔110内后才拉扯把手位320使待撕裂处310破损,当待撕裂处310破损时,电池模组200会抵接在箱体100的内壁上,此时电池模组200会带动绝缘袋300一起抵接在箱体100的内壁上,通过上述设置可减小待撕裂处310和把手位320之间的绝缘袋300与箱体100的接触面积,保证待撕裂处310断裂后,位于待撕裂处310与把手位320之间的绝缘袋300可顺利从箱体100内去除,以外露电池模组200的正负极。
当然,待撕裂处310与把手位320之间的距离也不易过小。当待撕裂处310与把手位320之间的距离过小时,会导致当位于待撕裂处310与把手位320之间的绝缘袋300去除后,电池模组200的正负极无法外露。
需要说明的是,待撕裂处310与把手位320之间的距离不做具体限制,只要保证当待撕裂处310断裂后,位于待撕裂处310与把手位320之间的绝缘袋300可顺利从箱体100内去除且电池模组200的正负极可裸露在绝缘袋300的外部即可。
根据本公开一个实施例,在绝缘袋300生产的过程中,可将位于待撕裂处310的绝缘袋300的厚度设置成小于绝缘袋300其他位置的厚度,以 形成为待撕裂处310。保证当用户拉扯把手位320时,绝缘袋300可从待撕裂处310处破损且断裂。
在本公开的一些实施例中,绝缘袋300上涂覆有防火层。防火层能够有效阻断热失控传播路径,当电池包1000发生热失控时,涂覆有防火层的绝缘袋300可有效阻止火焰和热量蔓延,提高电池模组200的安全性,且当电芯220发生热失控时,绝缘袋300还能有效保证火焰和热量不会传递至电池模组200的外部,不会危及用户的完全。
根据本公开一个实施例,在电池模组200生产的过程中,可在绝缘袋300的表面喷涂铁氟龙或贴覆云母纸,以在绝缘袋300的表面形成高温防火层。有效阻隔热量的传递。
下面参考说明书附图描述本公开实施例的电池包1000。
根据本公开实施例的一种电池包1000,结合图2和图3所示,包括箱体100和电池模组200,箱体100内设有空腔110,电池模组200设在空腔110内。
如图2所示,电池模组200包括泡棉210和多个电芯220,相邻的电芯220之间设有泡棉210。
结合图2和图3所示,电池模组200外套有绝缘袋300,电池模组200的正负极伸出绝缘袋300。也就是说,电池模组200的正负极伸出至绝缘袋300的外部。
由上述结构可知,本公开实施例的电池包1000,通过在箱体100内设置空腔110,空腔110为电池模组200的设置提供避让空间,保证电池模组200可装配在箱体100的内部,将电池模组200装配在空腔110内,一方面,空腔110可起到保护电池模组200的作用,在电池包1000受到撞击时,空腔110溃缩吸能,箱体100利用自身的强度和刚度吸收一部分撞击力,进而减少撞击力对电池模组200的破坏;另一方面,空腔110为电池模组200提供了安装空间,并限制了电池模组200的最大移动位置,防止电池包1000受到撞击时电池模组200错位移动到电池包1000的其他部位,提高电池模组200的位置稳定性。
通过在相邻的电芯220之间设有泡棉210,在电池模组200组装的过程中,泡棉210可起到缓冲的作用,保证相邻的电芯220之间不会发生碰撞,延长电芯220的寿命,且泡棉210既可在多个电芯220初期组装提供固定的预紧力,也可在电池模组200使用后期对电芯220产生的膨胀力进行吸 收。
在电池模组200与箱体100装配的过程中,可利用泡棉210减小电池模组200的体积,方便电池模组200***箱体100形成的空腔110内,提高电池模组200和箱体100之间的装配效率,并降低装配难度;当电池模组200与箱体100装配完成后,还可利用泡棉210将电池模组200恢复至原有的体积,以将电池模组200抵接在箱体100的内壁上,箱体100的侧壁能够给予电池模组200良好预紧力,使得电池模组200的位置稳定,并实现零间隙装配,提高电池包1000的体积利用率。
在电池模组200的外部套绝缘袋300,在电池包1000移动或受到碰撞时,相邻的两个电池模组200不会接触而导致内部短路,延长电池模组200的使用寿命,并提高电池模组200的安全性。
将电池模组200的正负极伸出至绝缘袋300的外部,电池包1000内的电池模组200可通过正负极连接以形成电池包1000。
根据本公开一个实施例,电芯220和泡棉210之间可采用结构胶粘接,以限定电芯220和泡棉210之间的位置,提高电池模组200的结构稳定性。
在本公开的一些实施例中,如图3所示,箱体100内设有多个顺序排布的空腔110,每个空腔110内设有外套有绝缘袋300的电池模组200。也就是说,本公开的箱体100内设置有多个电池模组200,多个空腔110将多个电池模组200分隔开,保证在电池包1000工作的过程中,相邻的两个电池模组200不会发生接触,提高电池模组200的安全性,且电池模组200的外部还套有绝缘袋300,绝缘袋300进一步增加了电池模组200的安全性,且本公开通过设置在电池包1000内设置多个电池模组200,可满足车辆对大容量、高电压电池的需求,提升车辆的续航里程。
在本公开的一些实施例中,绝缘袋300夹持在空腔110的内壁和电池模组200之间。也就是说,当电池模组200***到空腔110内后,不会将包裹在电池模组200外部的绝缘袋300去除,一方面降低电池包1000的装配难度;另一方面包裹在电池模组200外部的绝缘袋300还可起到绝缘的作用,提高电池模组200的安全性。
下面描述本公开实施例的车辆。
根据本公开实施例的一种车辆,包括前述的电池包1000。
由上述结构可知,本公开实施例的车辆,通过采用前述的电池包1000,电池包1000不会占用车辆底部过多的空间,且可实现车辆的轻量化,提升 驾乘体验和车辆的续航里程。
下面结合说明书附图描述本公开的具体实施例中电池包1000的具体结构。本公开的实施例可以为前述的多个技术方案进行组合后的所有实施例,而不局限于下述具体实施例,这些都落在本公开的保护范围内。
实施例1
一种电池包1000,结合图2和图3所示,包括箱体100和电池模组200,箱体100内设有空腔110,电池模组200设在空腔110内。
如图2所示,电池模组200包括泡棉210和多个电芯220,相邻的电芯220之间设有泡棉210。
结合图2和图3所示,电池模组200外套有绝缘袋300,在装配电池包1000时,将电池模组200装入到绝缘袋300内,对绝缘袋300进行抽真空使得泡棉210被压缩以缩小电池模组200的体积,将缩小体积的电池模组200***到空腔110内后,解除真空状态,电池模组200的正负极伸出绝缘袋300。
实施例2
一种电池包1000,在实施例1的基础上,绝缘袋300上设有把手位320,绝缘袋300上设有待撕裂处310,待撕裂处310形成为环状,通过拉扯把手位320以使得待撕裂处310破损,破损以解除绝缘袋300的真空状态。
待撕裂处310断裂以去除绝缘袋300的一部分以外露电池模组200的正负极。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
根据本公开实施例的电池包1000的装配方法、电池包1000及车辆的其他构成例如对绝缘袋300进行抽真空的原理对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本说明书的描述中,参考术语“实施例”、“示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或 者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (9)

  1. 一种电池包(1000)的装配方法,其特征在于,所述电池包(1000)包括箱体(100)和电池模组(200),所述箱体(100)内设有空腔(110),所述电池模组(200)包括泡棉(210)和多个电芯(220),相邻的所述电芯(220)之间设有所述泡棉(210),所述装配方法包括如下步骤:
    将所述电池模组(200)装入到绝缘袋(300)内;
    对所述绝缘袋(300)进行抽真空使得所述泡棉(210)被压缩以缩小所述电池模组(200)的体积;以及
    将缩小体积的所述电池模组(200)***到所述空腔(110)内后,解除真空状态,所述电池模组(200)的正负极外露。
  2. 根据权利要求1所述的电池包(1000)的装配方法,其特征在于,所述绝缘袋(300)上设有待撕裂处(310),使得所述待撕裂处(310)破损以解除真空状态。
  3. 根据权利要求2所述的电池包(1000)的装配方法,其特征在于,所述待撕裂处(310)形成为环状,所述待撕裂处(310)断裂以去除所述绝缘袋(300)的一部分以外露所述正负极。
  4. 根据权利要求2所述的电池包(1000)的装配方法,其特征在于,所述绝缘袋(300)上设有把手位(320),通过拉扯所述把手位(320)以使得所述待撕裂处(310)破损。
  5. 根据权利要求1-4中任一项所述的电池包(1000)的装配方法,其特征在于,所述绝缘袋(300)上涂覆有防火层。
  6. 一种电池包(1000),其特征在于,包括:
    箱体(100),所述箱体(100)内设有空腔(110);
    电池模组(200),所述电池模组(200)设在所述空腔(110)内,所述电池模组(200)包括泡棉(210)和多个电芯(220),相邻的所述电芯(220)之间设有所述泡棉(210),所述电池模组(200)外套有绝缘袋(300), 所述电池模组(200)的正负极伸出所述绝缘袋(300)。
  7. 根据权利要求6所述的电池包(1000),其特征在于,所述箱体(100)内设有多个顺序排布的空腔(110),每个所述空腔(110)内设有外套有绝缘袋(300)的所述电池模组(200)。
  8. 根据权利要求6所述的电池包(1000),其特征在于,所述绝缘袋(300)夹持在所述空腔(110)的内壁和所述电池模组(200)之间。
  9. 一种车辆,其特征在于,包括根据权利要求6-8中任一项所述的电池包(1000)。
PCT/CN2022/099306 2021-06-28 2022-06-17 电池包的装配方法、电池包及车辆 WO2023273909A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3214002A CA3214002A1 (en) 2021-06-28 2022-06-17 Method for assembling battery pack, battery pack and vehicle
EP22831727.7A EP4300685A1 (en) 2021-06-28 2022-06-17 Assembling method for battery pack, battery pack and vehicle
JP2023559042A JP2024518248A (ja) 2021-06-28 2022-06-17 電池パックの組立方法、電池パック及び車両
KR1020237032064A KR20230148215A (ko) 2021-06-28 2022-06-17 배터리 팩의 조립 방법, 배터리 팩 및 차량
US18/475,769 US20240021861A1 (en) 2021-06-28 2023-09-27 Assembling method for battery pack, battery pack and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110721306.6 2021-06-28
CN202110721306.6A CN115602976A (zh) 2021-06-28 2021-06-28 电池包的装配方法、电池包及车辆

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/475,769 Continuation US20240021861A1 (en) 2021-06-28 2023-09-27 Assembling method for battery pack, battery pack and vehicle

Publications (1)

Publication Number Publication Date
WO2023273909A1 true WO2023273909A1 (zh) 2023-01-05

Family

ID=84690739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099306 WO2023273909A1 (zh) 2021-06-28 2022-06-17 电池包的装配方法、电池包及车辆

Country Status (7)

Country Link
US (1) US20240021861A1 (zh)
EP (1) EP4300685A1 (zh)
JP (1) JP2024518248A (zh)
KR (1) KR20230148215A (zh)
CN (1) CN115602976A (zh)
CA (1) CA3214002A1 (zh)
WO (1) WO2023273909A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3178852U (ja) * 2012-07-23 2012-10-04 李佳原 車用電池
CN103840214A (zh) * 2012-11-20 2014-06-04 通用汽车环球科技运作有限责任公司 利用真空预压缩泡沫以便在hv电池模块组装期间***电池
CN204067518U (zh) * 2014-05-28 2014-12-31 广东亿纬赛恩斯新能源***有限公司 带有散热装置的电池模块
CN206742405U (zh) * 2017-02-21 2017-12-12 万向一二三股份公司 一种盒装式电池模组
CN108305967A (zh) * 2018-01-18 2018-07-20 北京集研科技有限公司 软包电池模组的制作方法、软包电池模组及动力电池***
CN213026293U (zh) * 2020-04-24 2021-04-20 比亚迪股份有限公司 电池包及电动车

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3178852U (ja) * 2012-07-23 2012-10-04 李佳原 車用電池
CN103840214A (zh) * 2012-11-20 2014-06-04 通用汽车环球科技运作有限责任公司 利用真空预压缩泡沫以便在hv电池模块组装期间***电池
CN204067518U (zh) * 2014-05-28 2014-12-31 广东亿纬赛恩斯新能源***有限公司 带有散热装置的电池模块
CN206742405U (zh) * 2017-02-21 2017-12-12 万向一二三股份公司 一种盒装式电池模组
CN108305967A (zh) * 2018-01-18 2018-07-20 北京集研科技有限公司 软包电池模组的制作方法、软包电池模组及动力电池***
CN213026293U (zh) * 2020-04-24 2021-04-20 比亚迪股份有限公司 电池包及电动车

Also Published As

Publication number Publication date
CN115602976A (zh) 2023-01-13
EP4300685A1 (en) 2024-01-03
KR20230148215A (ko) 2023-10-24
JP2024518248A (ja) 2024-05-01
CA3214002A1 (en) 2023-01-05
US20240021861A1 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
JP7470801B2 (ja) 電池、電池モジュール、電池パック及び自動車
WO2022006895A1 (zh) 电池及其相关装置、制备方法和制备设备
CN103081161B (zh) 具有改进稳定性的二次电池袋、使用这种二次电池袋的袋型二次电池以及中大型电池组
KR101272524B1 (ko) 배터리 셀용 방열판 및 이를 갖는 배터리 모듈
WO2021143561A1 (zh) 一种电池包和电动车
TWI747654B (zh) 一種電池、電池模組、電池包和電動車
JP4890795B2 (ja) フィルム外装電池及びそれが集合した組電池
WO2022042744A1 (zh) 电池单体、电池、用电设备和电池单体的制造方法
WO2023274208A1 (zh) 电池以及电子设备
CN104241591A (zh) 二次电池及包括该二次电池的二次电池组
WO2021164559A1 (zh) 电池、电池模组、电池包和电动车
WO2021003781A1 (zh) 二次电池
CN212625802U (zh) 一种电池包和电动车
WO2023061105A1 (zh) 电池单体、电池、用电设备、电池单体的制造装置和方法
WO2023273909A1 (zh) 电池包的装配方法、电池包及车辆
JP7510509B2 (ja) 電池ケース、電池、電池パック、電池モジュール及び車両
WO2023004833A1 (zh) 电池单体、电池、用电装置及制备电池单体的方法和设备
CN218274802U (zh) 电池及用电装置
WO2020133674A1 (zh) 电池模组以及电池包
WO2023245501A1 (zh) 热管理部件、热管理***、电池及用电装置
CN115832564A (zh) 电池包及用电装置
WO2021164568A1 (zh) 电池包及车辆
WO2023077743A1 (zh) 电池箱、电池及用电装置
CN221353022U (zh) 电池包壳体、电池包和用电设备
CN221282304U (zh) 电池单体、电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831727

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237032064

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237032064

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2023559042

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022831727

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 3214002

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202327065186

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2022831727

Country of ref document: EP

Effective date: 20230927

NENP Non-entry into the national phase

Ref country code: DE