WO2021164559A1 - 电池、电池模组、电池包和电动车 - Google Patents

电池、电池模组、电池包和电动车 Download PDF

Info

Publication number
WO2021164559A1
WO2021164559A1 PCT/CN2021/075186 CN2021075186W WO2021164559A1 WO 2021164559 A1 WO2021164559 A1 WO 2021164559A1 CN 2021075186 W CN2021075186 W CN 2021075186W WO 2021164559 A1 WO2021164559 A1 WO 2021164559A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
pole core
core assembly
electrode
film
Prior art date
Application number
PCT/CN2021/075186
Other languages
English (en)
French (fr)
Inventor
胡世超
彭青波
朱燕
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to JP2022549470A priority Critical patent/JP7471433B2/ja
Priority to EP21757406.0A priority patent/EP4109651A1/en
Priority to KR1020227029993A priority patent/KR20220134771A/ko
Publication of WO2021164559A1 publication Critical patent/WO2021164559A1/zh
Priority to US17/889,346 priority patent/US20220393248A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/112Monobloc comprising multiple compartments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/122Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/197Sealing members characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This application belongs to the field of batteries, and in particular relates to a battery, a battery module, a battery pack and an electric vehicle.
  • battery packs used in electric vehicles usually include multiple batteries to increase battery capacity, and multiple batteries are installed in the battery pack housing.
  • the battery in the prior art generally includes a metal shell and a pole core encapsulated in the metal shell.
  • a plurality of pole cores are connected in series.
  • the current internal string solution has certain limitations in practical applications. Security issues.
  • This application aims to solve at least one of the technical problems existing in the prior art. For this reason, this application proposes a battery with higher safety performance.
  • This application also proposes a battery module.
  • This application further proposes a battery pack and an electric vehicle using the battery pack.
  • the battery of the present application includes a metal shell and a pole core assembly array encapsulated in the metal shell.
  • the pole core assembly array includes N rows and M columns of pole core assemblies.
  • the pole core assembly includes a packaging film and is encapsulated in At least one pole core in the packaging film; in the length direction of the battery, the pole core components are arranged in rows and each row includes M of the pole core components.
  • the pole core The components are arranged in rows and each column includes N pole core components; N pole core components in each column are connected in series to form a pole core component string; M pole core component strings are connected in series; M and N are greater than 1 Integer; the air pressure between the metal shell and the packaging film is lower than the air pressure outside the metal shell.
  • the pole core is encapsulated in the encapsulation film and then encapsulated in the metal casing for secondary sealing, so that the double-layer sealing effect of the encapsulation film and the metal casing can effectively improve the sealing effect.
  • the metal shell and the inner pole core assembly are as close as possible to reduce the internal gap and prevent the pole core assembly from moving in the metal shell.
  • a battery with a longer length can be manufactured more conveniently, which saves cost, and at the same time can ensure that the heat dissipation efficiency of the battery is improved. Therefore, through the solution of the present application, a battery with a longer length and better strength can be easily realized, so that when the battery is installed in the battery pack shell, the arrangement of supporting structures such as cross beams and longitudinal beams in the battery pack body can be reduced.
  • the battery is directly mounted on the battery pack shell using the battery itself as a support, thereby saving the internal space of the battery pack, improving the volume utilization rate of the battery pack, and reducing the weight of the battery pack.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of a battery provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of the structure of a pole core assembly array provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of electrical connection of the pole core components of the pole core component array provided by an embodiment of the present application;
  • FIG. 4 is a schematic diagram of the electrical connection of the pole core components of the pole core component array provided by the embodiment of the present application;
  • FIG. 5 is a schematic diagram of a depression formed on the first surface of a metal housing provided by an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a battery sequence provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a battery module provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a battery pack provided by an embodiment of the present application.
  • Fig. 9 is a schematic diagram of an electric vehicle provided by an embodiment of the present application.
  • the battery 100 refers to, for example, a battery 100 used to form a battery pack.
  • the battery 100 includes a metal shell 11 and a pole core assembly array 14 encapsulated in the metal shell 11.
  • the pole core assembly array 14 includes N rows and M columns of pole core assemblies 12, and the pole core assembly 12 includes an encapsulation film and is encapsulated in the encapsulation film.
  • the air pressure between the metal shell 11 and the packaging film is lower than the air pressure outside the metal shell 11.
  • the pole core is encapsulated in the packaging film and then encapsulated in the metal casing 11 for secondary sealing, so that the double-layer sealing effect of the packaging film and the metal casing 11 can effectively improve the sealing effect.
  • the metal shell 11 and the inner pole core assembly 12 are as close as possible to reduce the internal gap and prevent the pole core assembly 12 from being The movement occurs in the metal shell 11, and at the same time, it prevents the relative displacement between the pole core components 12, reduces the occurrence of current collector damage, diaphragm wrinkles, and active material shedding, improves the mechanical strength of the entire battery, and prolongs the use of the battery Life span improves the safety performance of the battery; again, through the arrangement of the pole core components of the present application, a longer-length battery can be manufactured more conveniently, which saves costs, and at the same time can ensure that the heat dissipation efficiency of the battery is improved.
  • a battery with a longer length and better strength can be easily realized, so that when the battery is installed in the battery pack shell, the arrangement of supporting structures such as cross beams and longitudinal beams in the battery pack body can be reduced.
  • the battery is directly mounted on the battery pack shell using the battery itself as a support, thereby saving the internal space of the battery pack, improving the volume utilization rate of the battery pack, and reducing the weight of the battery pack.
  • the length of the pole core assembly 12 of this embodiment extends along the length of the battery; An electrode lead-out part 121 and a second electrode lead-out part 122.
  • the number of the first electrode lead-out part 121 and the second electrode lead-out part 122 is not limited. Here, only two electrode lead-out parts with different pole cores are represented.
  • the first electrode lead-out part 121 of one of the adjacent two-pole core assemblies 12 in each column is electrically connected to the second electrode lead-out part 122 of the other electrode core assembly 12.
  • first electrode lead-out part 121 of one of the two-pole core assemblies 12 and the second electrode lead-out part 122 of the other pole core assembly 12 are located on the same side of the column, and the connection is simpler. The safety performance of the battery is further improved and the cost of the battery is reduced.
  • the connection between the first electrode lead-out component 121 and the second electrode lead-out component 122 may be direct connection or indirect connection, such as connection through a conductive member.
  • the end pole core assembly 12 of one pole core assembly string 13 of the adjacent two pole core assembly strings 13 of this embodiment is electrically connected to the end pole core assembly 12 of the other pole core assembly string 13;
  • the first pole core assembly 12 of one pole core assembly string 13 of the adjacent two pole core assembly string 13 is electrically connected to the first pole core assembly 12 of the other pole core assembly string 13, thereby realizing the connection of the pole core assembly string 13 In series.
  • the first electrode leading part 121 of the end pole core assembly 12 of one pole core assembly string 13 of the adjacent two pole core assembly string 13 is adjacent to the second electrode leading part 122 of the end pole core assembly 12 of the other pole core assembly string 13
  • the first electrode lead-out part 121 of the first pole core assembly 12 of one pole core assembly string 13 of the adjacent two pole core assembly string 13 and the second pole core assembly 12 of the first pole core assembly 12 of the other pole core assembly string 13 The electrode lead-out parts 122 are adjacent, the connection is simpler, the safety performance of the battery is further improved, and the cost of the battery is reduced.
  • the first electrode lead-out part 121 and the second electrode lead-out part 122 can be connected directly or indirectly. Connection, for example, connection through conductive elements.
  • the N pole core assemblies 12 are arranged along the thickness direction of the battery; the thickness of the pole core assemblies 12 extends along the thickness direction of the battery.
  • the pole core assembly array 14 includes a first total electrode 141 and a second total electrode 142 for drawing a series current. As shown in FIG.
  • the three pole core assemblies are connected to form an "S"-shaped pole core assembly string 13.
  • the pole core assembly string 13 formed above is the second electrode lead-out part 122 of the first pole core assembly 12 of the first pole core assembly string 13 and the first pole core assembly 12 of the second pole core assembly string 13
  • the first electrode lead-out part 121 is connected, and the two electrode lead-out parts are adjacent; then, in this second electrode core assembly string 13, the second electrode lead-out part 122 of the first electrode core assembly 12 is connected to the second electrode
  • the first electrode lead-out part 121 of the core assembly 12 is connected, and the two electrode lead-out parts are on the same side;
  • the second electrode lead-out part 122 of the second electrode core assembly 12 and the first electrode lead-out part of the third electrode core assembly 12 121 is connected, and the two electrode leading parts are on the same side;
  • the second electrode leading part 122 of the third pole core assembly 12 is used to electrically connect the next pole core assembly string 13.
  • the second electrode lead-out part 122 of the third electrode core assembly 12 of the second electrode core assembly string 13 is connected to the first electrode lead-out part 121 of the third electrode core assembly 12 of the third electrode core assembly string 13.
  • the two electrode lead-out parts are adjacent; then in sequence, in the third electrode core assembly string 13, the second electrode lead-out part 122 of the third electrode core assembly 12 and the first electrode lead-out part of the second electrode core assembly 12 121 is connected, and the two electrode lead-out parts are on the same side;
  • the second electrode lead-out part 122 of the second electrode core assembly 12 is connected to the first electrode lead-out part 121 of the first electrode core assembly 12, and the two electrode lead-out parts On the same side; the second electrode lead-out part 122 of the first pole core assembly 12 is used to lead out the second total electrode 142.
  • the first electrode lead-out part 121 of the third electrode core assembly 12 of the first electrode core assembly string 13 is used to lead out the first total electrode 141, and the first total electrode 141 and the second total electrode 142 are respectively separated from the electrode core assembly array 14
  • the diagonal extends out.
  • the connection relationship is described here only from the drawings, and the specific connection sequence during preparation is not limited in this embodiment, and can be adjusted according to actual conditions.
  • the pole core assembly array 14 obtained above can be connected in series again, the second total electrode 142 of the first pole core assembly array 14 and the first total electrode of the second pole core assembly array 14 142 connection, the two main electrodes are located on the same side and adjacent to each other best.
  • it is not limited to the series connection of two pole core assembly arrays 14, but may be a series connection of multiple pole core assembly arrays 14.
  • the number of M and N in each pole core assembly array 14 may be the same or different. That is, the number of pole core components in each pole core component array 14 may be the same or different.
  • the pole core mentioned is a pole core commonly used in the field of power batteries. It can be a pole core formed by winding or a pole core made by lamination; in general, the pole core is at least Including positive sheet, separator and negative sheet. In this application, there may be one or more pole cores in the pole core assembly, and generally, multiple pole cores are connected in parallel. It should be noted that the pole core assembly cannot be understood as the battery itself. The battery mentioned in this application is an independent single battery. It cannot be simply understood as a battery module because it contains multiple pole core assemblies. Group 300 or battery pack.
  • the first electrode lead-out part 121 and the second electrode lead-out part 122 of the pole core assembly 12 respectively extend from the packaging film. If the pole core assembly 12 only contains one pole core, the first electrode lead-out component 121 and the second electrode lead-out component 122 may be the positive and negative lugs of the pole core or the negative and positive lugs respectively. If there are multiple pole cores, the first electrode lead-out part 121 may be a lead part formed by compounding and welding the positive electrode lugs, and the second electrode lead-out part 122 may be a lead-out component formed by compounding and welding the negative electrode lugs together.
  • the first electrode lead-out part 121 may be a lead part formed by compounding and welding the negative electrode tabs
  • the second electrode lead-out part 122 may be a lead part formed by compounding and welding the positive tabs together.
  • the “first” and “second” in the first electrode lead-out part 121 and the second electrode lead-out part 122 are only used to distinguish between names and not to limit the number.
  • the first electrode lead-out part 121 may contain one or more indivual.
  • the metal shell 11 includes a shell body 111 with an opening and a cover plate 112 hermetically connected with the opening.
  • the cover plate 112 and the shell body 111 enclose a sealed accommodating chamber, and the pole core assembly array 14 is located in the accommodating chamber.
  • the first total electrode 141 and the second total electrode 142 are led out from the cover plate 112.
  • the number of cover plates 112 is not limited in the present application. It can be one or two.
  • the position of the opening of the shell body 111 and the number of cover plates 112 can be designed according to the design of the inner pole core assembly array 14.
  • the shell body 111 may be open at both ends, and the number of the cover plates 112 may be two, so that the two cover plates 112 are respectively sealedly connected with the two end openings of the shell body 111 to form a sealed accommodating chamber.
  • the first total electrode 141 and the second total electrode 142 of the pole core assembly array 14 may be led out from the same cover plate 112, or may be led out from two cover plates 112 respectively, which is not limited.
  • the shell body 111 may be provided with an opening at only one end, and the number of the cover plate 112 is one, so that one cover plate 112 is sealedly connected to the one end opening of the shell body 111. In this manner, the first total electrode 141 and the second total electrode 142 of the pole core assembly array 14 are led out from the same cover plate 112.
  • the pole core is encapsulated in a packaging film, that is, a packaging film is also provided between the metal shell 11 and the pole core. Therefore, the secondary packaging of the pole core can be achieved through the packaging film and the metal shell 11, which is beneficial to improve the sealing effect of the battery.
  • a packaging film is also provided between the metal shell 11 and the pole core. Therefore, the secondary packaging of the pole core can be achieved through the packaging film and the metal shell 11, which is beneficial to improve the sealing effect of the battery.
  • there is electrolyte in the packaging film there is electrolyte in the packaging film. Therefore, through the above method, the contact of the electrolyte with the metal casing 11 can also be avoided, and the corrosion of the metal casing 11 or the decomposition of the electrolyte can be avoided.
  • the air pressure between the metal casing 11 and the packaging film is lower than the air pressure outside the metal casing 11. In this application, "air pressure" is an abbreviation for atmospheric pressure.
  • the air pressure between the metal shell 11 and the packaging film is also the air pressure in the space between the metal shell 11 and the packaging film.
  • the air pressure is lower than the air pressure outside the metal shell 11.
  • the metal There is a negative pressure between the housing 11 and the packaging film, so that the metal housing 11 is dented or deformed under the action of atmospheric pressure, and the gap between the metal housing 11 and the pole core assembly is reduced accordingly, and the pole core assembly
  • the space for movement or mutual displacement is reduced, thereby reducing the movement of the pole core components and the relative displacement between the pole core components, improving the stability of the battery 100, the strength of the battery 100, and the safety performance of the battery 100 .
  • the space between the metal casing 11 and the packaging film can be evacuated to make the metal casing 11 and the packaging film in a negative pressure state, thereby making the metal casing 11 and the inner pole core
  • the components should be as close as possible to reduce internal gaps, prevent the pole core components from moving in the metal shell, and prevent relative displacement between the pole core components, reduce the occurrence of current collector damage, diaphragm wrinkles, and active material shedding, and improve
  • the mechanical strength of the whole battery prolongs the service life of the battery and improves the safety performance of the battery.
  • the air pressure P1 between the metal shell 11 and the packaging film, where the value of P1 can range from -100Kpa to -5Kpa,
  • the value of P1 can be -75Kpa to -20Kpa. It should be noted that the metal casing 11 and the packaging film may also be in a vacuum state.
  • the air pressure in the packaging film is P2, where the relationship between P1 and P2 satisfies: the range of P1/P2 is 0.05-0.85.
  • the value of P2 can be from -100Kpa to -20Kpa.
  • the pole core in this technology adopts a secondary sealing mode.
  • the pole core is encapsulated in the packaging film.
  • the packaging film is outside.
  • the air pressure between the metal casing 11 and the packaging film is greater than the air pressure in the packaging film.
  • the interface between the battery pole pieces is ensured, and the gap between the pole pieces is avoided. Lithium ions can conduct better.
  • the air pressure in the packaging film is lower than the air pressure between the metal casing 11 and the packaging film.
  • the arrangement method of the present application can conveniently realize the two-by-two series connection between the pole core assemblies 12, and the connection structure is simple. In addition, this arrangement makes it easier to manufacture the battery 100 with a longer length. Therefore, when the battery 100 is installed in the battery pack casing, there is no need to provide support structures such as beams and longitudinal beams, but the battery 100 itself is used.
  • the battery 100 is directly mounted on the outer shell of the battery pack with the metal shell 11 as support, thereby saving the internal space of the battery pack, improving the volume utilization rate of the battery pack, and reducing the weight of the battery pack.
  • the battery is generally a rectangular parallelepiped, and the length L of the battery is 400mm-2500mm (millimeters), for example, it can be 500mm, 1000mm, or 1500mm.
  • the length L of the battery is 400mm-2500mm (millimeters), for example, it can be 500mm, 1000mm, or 1500mm.
  • the thickness D of the battery may be greater than 10 mm, for example, may be in the range of 13 mm-75 mm. In the embodiment of the application, the ratio of the length to the thickness of the battery is 5-250.
  • the battery has two opposite first surfaces 113 along the thickness direction of the battery, and the first surface 113 is also the largest surface of the battery, that is, the "large surface” of the battery.
  • the first surface 113 is recessed toward the inside of the metal casing 11, so that the metal casing 11 and the pole core assembly can be as close as possible.
  • the depression 114 on the first surface 113 of the battery may be, for example, a depression formed when the metal casing 11 is evacuated. That is, when the space between the metal case 11 and the packaging film is evacuated so that the air pressure between the metal case 11 and the encapsulation film is lower than the air pressure outside the metal case 11, as the air extraction progresses, the battery The first surface 113 of the metal shell 11 easily forms a depression 114.
  • the battery During the normal use of the battery, the battery usually expands due to the expansion of the material itself, gas production from the electrolyte, etc., and the area with the largest expansion and deformation often lies in the large surface of the battery.
  • the large surface of the battery is limited to a slight indentation by vacuuming in the initial state of the battery, which can effectively alleviate the squeezing between the batteries after the battery expands, and improve the life and safety performance of the battery and the entire system.
  • multiple recesses 114 are formed on the first surface 113 in advance, and the location of each recess corresponds to the location of a pole core assembly.
  • the two opposite first surfaces 113 of the battery are both recessed toward the inside, so as to clamp the pole core assembly through the recessed area.
  • an exhaust hole may be provided on the metal shell 11, and the space between the metal shell 11 and the packaging film can be exhausted through the exhaust hole.
  • the vent hole needs to be sealed, so a sealing element is also provided in the vent hole to seal the vent hole.
  • the sealing member may be, for example, a plug, a rubber member, etc., which is not limited.
  • a gap is provided between the pole core assembly and the inner surface of the metal shell 11; this gap is convenient for the pole core assembly to be easily installed into the metal shell 11; After the casing 11 is evacuated, the metal casing 11 is pressed on the outer surface of the pole core assembly in the second direction to clamp the pole core assembly, thereby reducing the space for the pole core assembly to move inside the metal shell and improving the safety performance of the battery .
  • the metal shell 11 is different from the existing aluminum plastic film.
  • the aluminum plastic film has poor heat dissipation effect, low strength, and is limited by the manufacturing process. It cannot be prepared by using the aluminum plastic film as the outer shell of the battery 100.
  • the metal casing 11 has high strength and good heat dissipation effect.
  • the metal casing 11 may include, but is not limited to, an aluminum casing or a steel casing.
  • the thickness of the metal shell 11 is 0.05 mm-1 mm.
  • the thicker metal shell 11 may increase the weight of the battery 100 and reduce the capacity of the battery 100, and it is not easy to implement the present application.
  • the thickness of the metal casing 11 is selected within the above range, which not only ensures the strength of the metal casing 11, but also does not reduce the capacity of the battery 100. It can also make the metal casing 11 easier under negative pressure. The deformation occurs, reducing the distance between the metal shell 11 and the pole core assembly, thereby reducing the movement of the pole core assembly inside the metal shell 11 and the relative displacement between the pole core assemblies.
  • the packaging film is an aluminum-plastic composite film; or the packaging film includes a laminated non-metal outer film and a non-metal inner film, and the inner film is located between the outer film and the electrode core group.
  • the inner film has good chemical stability.
  • materials with anti-corrosion properties of electrolyte can be used, such as polypropylene (PP, Polypropylene), polyethylene (PE, Polyethylene) or polyethylene terephthalate (PET, Polyethyleneterephthalate), or a combination of the above materials.
  • the outer film is a protective layer. The outer film can prevent the penetration of air, especially water vapor, oxygen, etc.
  • the material can be polyethylene terephthalate, polyamide (PA, Polyamide) or polypropylene, or it can be Multiple combinations of the above materials.
  • the melting point of the outer film is greater than the melting point of the inner film, so that the outer film will not be melted during hot-melt sealing, and the inner film can be melted in time to ensure excellent sealing performance.
  • the melting point difference between the outer layer film and the inner layer film can be between 30°C and 80°C, for example, the melting point difference between the two can be 50°C or 70°C, etc.
  • the specific material selection can be determined according to actual needs.
  • the outer film and the inner film are bonded and compounded with an adhesive.
  • the material of the outer film may be PP
  • the material of the inner film may be PET
  • the adhesive for bonding the two may be, for example, a polyolefin adhesive to form a composite film.
  • a double-layer non-metal film is used to form the encapsulation film to encapsulate the pole core, which has higher tensile strength and elongation at break, which can reduce the limitation on the thickness of the battery, so that the produced battery has a larger thickness.
  • the thickness of the battery in this embodiment can be extended in a large range, for example, it can be greater than 10 mm, for example, it can be in the range of 13 mm-75 mm.
  • the battery is a lithium ion battery.
  • a battery module 300 including the battery of any of the foregoing embodiments.
  • the sealing performance is better, the assembly process is less, and the cost of the battery is lower.
  • the present application also provides a battery pack 200, including a battery sequence 21, wherein the battery sequence 21 includes a plurality of batteries 100, wherein the battery 100 is the battery 100 described in any of the above embodiments, therefore The specific structure of the battery 100 will not be repeated here.
  • the number of batteries 100 can be set according to actual needs.
  • the number of sequences 21 can also be set according to actual needs, which is not specifically limited in this application.
  • a number of batteries 100 are arranged in sequence along the thickness direction of the battery to form a battery sequence 21.
  • there is a gap between at least two adjacent batteries 100 and the ratio of the gap to the thickness of the battery 100 ranges from 0.001 to 0.15.
  • the gap between two adjacent batteries 100 will change as the working time of the battery increases, but whether it is in operation, after work or before the battery leaves the factory, as long as the gap between the batteries is satisfied
  • the thickness ratio range is within the scope defined by this application, and all fall within the protection scope of this application.
  • a certain gap is reserved between the batteries 100 to reserve a buffer space for the expansion of the batteries 100.
  • the present application limits the ratio of the gap between the batteries 100 to the thickness of the battery 100 to be 0.001-0.15, which can make full use of the space of the battery pack 200, improve the utilization rate of the battery pack 200, and also contribute to the expansion of the battery 100. Better cushioning effect.
  • the gap can also serve as a heat dissipation channel, such as an air duct.
  • the heat dissipation efficiency of 200 provides the safety performance of the battery pack 200.
  • the gap between the batteries 100 can be understood to mean that no structural components are arranged between the batteries 100, and a certain space is simply reserved. The structural parts are separated.
  • the gap between the batteries 100 should be understood as the distance between the batteries 100 on both sides of the structural member, and the distance between the structural member and the battery 100 cannot be understood.
  • the structural parts include but are not limited to aerogel, thermally conductive structural glue or thermal insulation cotton.
  • the gap should refer to the distance between two adjacent batteries 100 in the same battery sequence 21, rather than the distance between two adjacent batteries in different battery sequences 21. spacing. And in the same battery sequence 21, a certain gap may be reserved between all two adjacent batteries, or a certain gap may be reserved between part of two adjacent batteries.
  • the gap between two adjacent batteries 100 includes a first gap d1, and the first gap d1 is defined as the minimum distance between the two cover plates 112 of the two adjacent batteries along the thickness direction of the battery, where, The ratio of the first gap d1 to the thickness of the battery ranges from 0.005-0.1.
  • the cover plate 112 due to the higher strength of the cover plate 112, it is less prone to swelling than the shell body 111. Even if the battery 100 is operated for a period of time, a chemical reaction occurs internally, and the battery 100 swells and will be squeezed. For adjacent batteries 100, the first gap d1 will change (eg gradually increase), but the change is small and can be ignored, or even if it changes, the ratio of the first gap to the thickness of the battery 100 still meets the above range.
  • the two ends of the shell body 111 are respectively provided with cover plates 112, and when the batteries 100 are arranged in the battery sequence 21 along the thickness direction, the gap between the two batteries 100 may be two cover plates located at the same end of the battery sequence. The minimum distance in the thickness direction of the battery may also be the minimum distance between the two cover plates located at different ends of the battery sequence along the thickness direction of the battery.
  • the gap between two adjacent batteries 100 includes a second gap d2, and the second gap d2 is the smallest distance between two first surfaces of two adjacent batteries 100 facing each other.
  • the second gap d2 of the battery 100 before use is larger than the second gap d2 after use.
  • before use can be understood as the battery 100 is ready to leave the factory or has been shipped after the assembly is completed, but before it starts to provide power to the outside;
  • after use can be understood as after the battery 100 provides power to the outside.
  • the state before use can be understood as the state of a new car; the state after use should be the state after the vehicle has traveled for a certain distance.
  • the second gap should refer to the smallest distance between the two first surfaces of two adjacent batteries 100 opposite to each other.
  • the distance will gradually decrease with the increase of the battery usage time, mainly Because, after the battery expands, the distance between two adjacent large surfaces will gradually decrease.
  • the battery pack 200 further includes a battery cover and a tray 22, wherein the battery cover is not shown in the view of FIG. 8.
  • the battery cover and the tray 22 are hermetically connected to form a battery accommodating cavity, and the battery sequence 21 is located in the battery accommodating cavity.
  • the tray 22 includes a support 221, a support area is formed on the metal shell 11 of the battery 100, and the battery 100 is docked with the support 221 through the support area to be supported on the support 221.
  • the tray 22 contains an edge beam, which serves as a support 221, and the two ends of the battery 100 along the length direction thereof are respectively supported on the edge beams.
  • the air pressure between the metal casing 11 and the packaging film is negative pressure, which can improve the overall strength of the battery. Therefore, the battery 100 can be directly mounted on the tray 22 with its own strength as support. Therefore, it is not necessary to provide a structure such as a beam or a longitudinal beam on the tray 22 to support the battery 100, which is beneficial to improve the utilization rate of the internal space of the battery pack.
  • An electric vehicle 1000 includes the battery pack 200 described above. With the electric vehicle 1000 provided in this application, the vehicle has high endurance and low cost.
  • the length of the battery is arranged along the length of the body of the electric vehicle 1000, and the length of the body is 500mm-5200mm.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meaning of the above-mentioned terms in this application can be understood under specific circumstances.
  • the description with reference to the terms “embodiment”, “specific embodiment”, “example”, etc. means that the specific feature, structure, material, or characteristic described in combination with the embodiment or example is included in at least the application. In one embodiment or example. In this specification, the schematic representations of the above-mentioned terms do not necessarily refer to the same embodiment or example. Moreover, the described specific features, structures, materials or characteristics can be combined in any one or more embodiments or examples in a suitable manner.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

一种电池(100)、电池模组(300)、电池包(200)和电动车(1000),电池(100)包括金属壳体(11)和封装于金属壳体(11)内的极芯组件阵列(14),极芯组件阵列(14)包括N行、M列极芯组件(12),极芯组件(12)包括封装膜及封装于封装膜内的至少一个极芯;在电池(100)的长度方向上,所述极芯组件(12)成行排布且每行均包括M个所述极芯组件(12),在电池(100)的厚度或高度方向上,所述极芯组件(12)成列排布且每列均包括N个所述极芯组件(12);每列的N个极芯组件(12)串联连接形成极芯组件串(13);M个极芯组件串(13)串联连接;M、N为大于1的整数;金属壳体(11)与封装膜之间的气压低于金属壳体(11)外的气压。

Description

电池、电池模组、电池包和电动车
相关申请的交叉引用
本申请要求比亚迪股份有限公司于2020年02月18日提交的、申请名称为“一种电池、电池模组、电池包和电动车”的、中国专利申请号“202010097965.2”的优先权。
技术领域
本申请属于电池领域,尤其涉及一种电池、电池模组、电池包和电动车。
背景技术
目前,应用于电动车的电池包中通常包括有多个电池,以提高电池容量,多个电池安装在电池包外壳内。
现有技术的电池,一般包括金属壳体及封装于金属壳体内的极芯,也有为了提高电池的电压,将多个极芯串联的方案,但目前的内串方案在实际应用中却存在一定的安全问题。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请提出一种电池,所述电池的安全性能更高。
本申请还提出了一种电池模组。
本申请进一步提出了一种电池包以及采用该电池包的电动车。
本申请的电池,包括金属壳体和封装于所述金属壳体内的极芯组件阵列,所述极芯组件阵列包括N行、M列极芯组件,所述极芯组件包括封装膜及封装于封装膜内的至少一个极芯;在电池的长度方向上,所述极芯组件成行排布且每行均包括M个所述极芯组件,在电池的厚度或高度方向上,所述极芯组件成列排布且每列均包括N个所述极芯组件;每列的N个极芯组件串联连接形成极芯组件串;M个极芯组件串串联连接;M、N为大于1的整数;所述金属壳体与所述封装膜之间的气压低于金属壳体外的气压。
本申请的电池中,通过将极芯先封装在封装膜内,再封装在金属壳体内,以进行二次密封,从而利用封装膜和金属壳体的双层密封作用可以有效提高密封效果,其次,通过使金属壳体与封装膜之间的气压差低于金属壳体外的气压,使金属壳体与内部极芯组尽量贴近,减少内部空隙,防止极芯组在金属壳体内发生窜动,同时防止极芯组之间发生相对位移,减少集流体破损、隔膜打皱、和活性材料脱落等情况的发生,提高整个电池的机械强度,延长电池的使用寿命,提高电池的安全性能;再次,通过本申请的极芯组件的排列方式,可以更方便地制造出长度较长的电池,节省成本,同时又可以保证提高电池的散热效率。因此,通过本申请的方案可以很容易实现长度较长且强度较佳的电池,由此在将电池安装 进电池包外壳内时,可以减少电池包体中横梁和纵梁等支撑结构的设置,利用电池本身作支撑将电池直接安装在电池包外壳上,由此可以节省电池包内部空间,提高电池包的体积利用率,且有利于降低电池包的重量。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请实施例提供的电池的立体结构示意图;
图2是本申请实施例提供的极芯组件阵列的结构示意图;
图3是本申请实施例提供的极芯组件阵列的极芯组件电连接示意图;
图4是本申请实施例提供的极芯组件阵列的极芯组件电连接示意图;
图5是本申请实施例提供的金属壳体第一表面形成有凹陷的示意图;
图6是本申请实施例提供的电池序列的结构示意图;
图7是本申请实施例提供的电池模组的结构示意图;
图8是本申请实施例提供的电池包的结构示意图;和
图9是本申请实施例提供的电动车的示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
如图1至图4,本申请提供了一种电池100,电池100例如是指用于形成电池包的电池100。电池100包括金属壳体11和封装于金属壳体11内的极芯组件阵列14,极芯组件阵列14包括N行、M列极芯组件12,极芯组件12包括封装膜及封装于封装膜内的至少一个极芯;在电池100的长度方向上,极芯组件12成行排布且每列均包括M个极芯组件12,在电池100的厚度或高度方向上,极芯组件12成列排布且每列均包括N个极芯组件12;每列的N个极芯组件12串联连接形成极芯组件串13;M个极芯组件串13串联连接;M、N为大于1的整数;金属壳体11与封装膜之间的气压低于金属壳体11外的气压。
本申请的电池,通过将极芯封装在封装膜内,然后封装在金属壳体11内,进行了二次密封,从而利用封装膜和金属壳体11的双层密封作用可以有效提高密封效果,其次,通过使金属壳体11与封装膜之间的气压差低于金属壳体11外的气压,使金属壳体11与内部极芯组件12尽量贴近,减少内部空隙,防止极芯组件12在金属壳体11内发生窜动,同时防止极芯组件12之间发生相对位移,减少集流体破损、隔膜打皱、和活 性材料脱落等情况的发生,提高整个电池的机械强度,延长电池的使用寿命,提高电池的安全性能;再次,通过本申请的极芯组件的排列方式,可以更方便地制造出长度较长的电池,节省成本,同时又可以保证提高电池的散热效率。因此,通过本申请的方案可以很容易实现长度较长且强度较佳的电池,由此在将电池安装进电池包外壳内时,可以减少电池包体中横梁和纵梁等支撑结构的设置,利用电池本身作支撑将电池直接安装在电池包外壳上,由此可以节省电池包内部空间,提高电池包的体积利用率,且有利于降低电池包的重量。
如附图1-4所示,本实施例的极芯组件12的长度沿电池的长度方向延伸;极芯组件12包括分别从极芯组件12长度方向两端延伸出的用于引出电流的第一电极引出部件121和第二电极引出部件122,第一电极引出部件121和第二电极引出部件122的数量不受限制,此处仅代表极芯不同的两个电极引出部件。每列中相邻两极芯组件12中的一个极芯组件12的第一电极引出部件121与另一个极芯组件12的第二电极引出部件122电连接。
例如:每列中相邻两极芯组件12中的一个极芯组件12的第一电极引出部件121与另一个极芯组件12的第二电极引出部件122位于此列的同侧,连接更简单,更一步提高了电池的安全性能,降低了电池的成本,第一电极引出部件121与第二电极引出部件122的连接可以是直接连接,也可以是间接连接,例如通过导电件连接等。
如附图2-4所示,本实施例的相邻两极芯组件串13的一个极芯组件串13的末端极芯组件12与另一个极芯组件串13的末端极芯组件12电连接;或相邻两极芯组件串13的一个极芯组件串13的第1个极芯组件12与另一个极芯组件串13的第1个极芯组件12电连接,从而实现极芯组件串13的串联。相邻两极芯组件串13的一个极芯组件串13的末端极芯组件12的第一电极引出部件121与另一个极芯组件串13的末端极芯组件12的第二电极引出部件122相邻;或相邻两极芯组件串13的一个极芯组件串13的第1个极芯组件12的第一电极引出部件121与另一个极芯组件串13的第1个极芯组件12的第二电极引出部件122相邻,连接更简单,更一步提高了电池的安全性能,降低了电池的成本,第一电极引出部件121与第二电极引出部件122的连接可以是直接连接,也可以是间接连接,例如通过导电件连接等。
本申请的实施例中,N个极芯组件12沿电池厚度方向排列;极芯组件12的厚度沿电池的厚度方向延伸。通过上述串联方式,极芯组件阵列14包括用于引出串联电流的第一总电极141和第二总电极142。如附图3所示,先将三个沿厚度方向排列的极芯组件12串联,第三个极芯组件12的第二电极引出部件122与第二个极芯组件12的第一电极引出部件121连接,且此两电极引出部件在同侧;第二个极芯组件12的第二电极引出部件122与第一个极芯组件12的第一电极引出部件121连接,且此两电极引出部件在同侧,第一个极芯组件12的第二电极引出部件122用来电连接下一极芯组件串13。
如附图3所示,三个极芯组件连接成“S”型极芯组件串13。上述形成的极芯组件串13即第一个极芯组件串13的第一个极芯组件12的第二电极引出部件122与第二个 极芯组件串13的第一个极芯组件12的第一电极引出部件121连接,此两电极引出部件相邻;然后依次的,此第二个极芯组件串13中,第一个极芯组件12的第二电极引出部件122与第二个极芯组件12的第一电极引出部件121连接,且此两电极引出部件在同侧;第二个极芯组件12的第二电极引出部件122与第三个极芯组件12的第一电极引出部件121连接,且此两电极引出部件在同侧;第三个极芯组件12的第二电极引出部件122用来电连接下一极芯组件串13。
第二个极芯组件串13的第三个极芯组件12的第二电极引出部件122与第三个极芯组件串13的第三个极芯组件12的第一电极引出部件121连接,此两电极引出部件相邻;然后依次的,此第三个极芯组件串13中,第三个极芯组件12的第二电极引出部件122与第二个极芯组件12的第一电极引出部件121连接,且此两电极引出部件在同侧;第二个极芯组件12的第二电极引出部件122与第一个极芯组件12的第一电极引出部件121连接,且此两电极引出部件在同侧;第一个极芯组件12的第二电极引出部件122用于引出第二总电极142。
第一个极芯组件串13的第三个极芯组件12的第一电极引出部件121用于引出第一总电极141,第一总电极141和第二总电极142分别从极芯组件阵列14的对角延伸出。此处仅从附图描述其连接关系,其制备时的具体连接顺序本实施例不做限制,可根据实际情况进行调整。
如附图4所示,可以将上述得到的极芯组件阵列14再串联,上述的第一个极芯组件阵列14的第二总电极142与第二个极芯组件阵列14的第一总电极142连接,此两总电极位于同侧且相邻最佳。在其他实施例中,不局限于两个极芯组件阵列14的串联,可以是多个极芯组件阵列14的串联,每个极芯组件阵列14中的M、N的数可相同可不同,即每个极芯组件阵列14中的极芯组件的个数可相同可不同。
在本申请中,所提到的极芯,为动力电池领域常用的极芯,可以是卷绕形成的极芯,也可以是叠片的方式制成的极芯;一般情况下,极芯至少包括正极片、隔膜和负极片。在本申请中,极芯组件内的极芯可以是一个也可以是多个,一般多个极芯并联。需要说明的是,极芯组件不能被理解为电池本身,本申请中提到的电池,为一个独立的单体电池,不能因其包含多个极芯组件,而将其简单的理解为电池模组300或电池组。
极芯组件12的第一电极引出部件121和第二电极引出部件122分别从封装膜延伸出。如果极芯组件12仅含有一个极芯的情况下,第一电极引出部件121和第二电极引出部件122可以分别为极芯的正极耳和负极耳或者分别为负极耳和正极耳。如果含有多个极芯的情况下,第一电极引出部件121可以是由正极耳复合并焊接在一起形成的引出部件,第二电极引出部件122可以是由负极耳复合并焊接在一起形成的引出部件;或者,第一电极引出部件121可以是由负极耳复合并焊接在一起形成的引出部件,第二电极引出部件122可以是由正极耳复合并焊接在一起形成的引出部件。第一电极引出部件121和第二电极引出部件122中的“第一”和“第二”仅用于名称区分,并不用于限定数量,例如第一电极引出部件121可以含有一个也可以含有多个。
其中金属壳体11包括具有开口的壳本体111和与开口密封连接的盖板112,盖板112与壳本体111围成密封的容纳腔室,极芯组件阵列14位于该容纳腔室内。第一总电极141和第二总电极142从盖板112引出。盖板112的数量本申请没有限制,可以为一个,也可以为两个,可以根据内部极芯组件阵列14的设计来设计壳本体111开口的位置及盖板112的数量。
在一些实施方式中,壳本体111可以是两端开口,盖板112的数量可以为二,从而两个盖板112分别与壳本体111的两端开口密封连接,以形成密封的容纳腔室。此种方式中,极芯组件阵列14的第一总电极141和第二总电极142可以是从同一个盖板112引出,也可以是分别从两个盖板112引出,对此不做限定。在一些实施方式中,壳本体111上可以是仅在一端设置有开口,盖板112的数量为一,从而一个盖板112与壳本体111的一端开口密封连接。此种方式中,极芯组件阵列14的第一总电极141和第二总电极142从同一个盖板112引出。
本申请实施例中,极芯封装于封装膜内,即在金属壳体11和极芯之间还设有封装膜。由此,通过封装膜和金属壳体11可以实现对极芯的二次封装,有利于提高电池的密封效果。一般,封装膜内有电解液。因此,通过上述方式,还可以避免电解液与金属壳体11的接触,避免金属壳体11的腐蚀或者电解液的分解。其中,金属壳体11和封装膜之间的气压低于金属壳体11外的气压。在本申请中,“气压”是大气压强的简称。是作用在单位面积上的大气压力,即等于单位面积上向上延伸到大气上界的垂直空气柱的重量。金属壳体11和封装膜之间的气压也即位于金属壳体11和封装膜之间的空间内的气压,该气压低于金属壳体11外的气压,因此,本申请实施例中,金属壳体11和封装膜之间为负压状态,由此金属壳体11在大气压的作用下发生凹陷或变形,则金属壳体11和极芯组件之间的间隙随之减小,极芯组件发生窜动或者相互之间发生位移的空间减小,进而可以减少极芯组件的窜动以及极芯组件之间的相对位移,提高电池100的稳定性,以及电池100的强度以及电池100安全性能。
例如,可以通过对金属壳体11和封装膜之间的空间进行抽气处理,以使金属壳体11和封装膜之间为负压状态,由此可以使得金属壳体11和内部的极芯组件尽量贴近,减少内部空隙,防止极芯组件在金属壳体内发生窜动,同时防止极芯组件之间发生相对位移,减少集流体破损、隔膜打皱、和活性材料脱落等情况的发生,提高整个电池的机械强度,延长电池的使用寿命,提高电池的安全性能。
在一种实施方式中,金属壳体11和封装膜之间的气压P1,其中,P1的取值范围可以为-100Kpa至-5Kpa,
当然本领域的技术人员可以根据实际需要设定P1的值。例如:P1的取值可以是-75Kpa至-20Kpa。需要说明的是,金属壳体11和封装膜之间也可以为真空状态。
封装膜内的气压为P2,其中P1和P2的关系满足:P1/P2的范围为0.05-0.85。P2取值可以为-100Kpa至-20Kpa。
将P1、P2以及P1/P2限定在上述范围内,本技术中的极芯采用二次密封的模式, 先将极芯封装在封装膜内,为避免封装膜发生由于内部气压过大使封装膜外鼓造成的破损,我们选择金属壳体11与封装膜之间的气压大于封装膜内的气压。同时,我们通过大量实验验证,当P1/P2在上述范围时,较好的保证了电池二次密封的可靠性,同时,保证了电池极片之间的界面,避免了极片间间隙,使锂离子能更好的传导。
在一些实施方式中,封装膜内的气压低于金属壳体11与封装膜之间的气压。
本申请的排布方式可以较为方便地实现极芯组件12之间的两两串联,连接结构简单。另外该种排布方式可以较为方便的制造长度较长的电池100,由此在将电池100安装进电池包外壳内时,可以不需要设置横梁和纵梁等支撑结构,而是利用电池100本身的金属壳体11作支撑而将电池100直接安装在电池包外壳上,由此可以节省电池包内部空间,提高电池包的体积利用率,且有利于降低电池包的重量。
其中,电池大体为长方体,电池的长度L为400mm-2500mm(毫米),例如可以是500mm、1000mm或1500mm等。通过在电池内设置多个极芯组件,与现有只设置一个极芯的方式相比,可以更方便地制造出长度较长的电池,传统的电池中,一旦电池较长,内部用作集流体的铜铝箔的长度即会相应增加,大大提高了电池内部的电阻,无法满足当前越来越高的功率及快充的要求。在电池长度相同的情况下,本申请实施例可以极大的减小电池内部的电阻,避免高功率输出、快充等情况下电池过热等带来的问题。
其中,电池的厚度D可以是大于10mm,例如可以在13mm-75mm的范围。本申请实施例中,电池的长度和厚度比值为5-250。
本申请实施例中,电池沿电池厚度方向具有相对的两个第一表面113,该第一表面113也即电池的最大表面,也即电池的“大面”。其中,至少一个第一表面113向金属壳体11内部凹陷,由此可以使得金属壳体11与极芯组件尽量贴合。
由于金属壳体11的厚度较小,其为较薄的薄片,因此电池的第一表面113上的凹陷114例如可以是通过对金属壳体11内进行抽气时所形成的凹陷。即在对金属壳体11和封装膜之间的空间进行抽气处理以使得金属壳体11和封装膜之间的气压低于金属壳体11外的气压时,随着抽气的进行,电池的第一表面113容易向金属壳体11内形成凹陷114。
电池在正常使用的过程中,由于材料本身的膨胀,电解液产气等原因电池通常会发生膨胀,而往往膨胀形变最大的区域在于电池的大面。采用本技术,将电池初始状态时大面通过抽真空限制在略微内陷的情况,可有效缓解电池膨胀后电池之间的挤压,提高电池及整个***的寿命、安全等性能。
在其他一些实施例中,如图5所示,也可以是预先在金属壳体11的第一表面113上形成凹陷后,再对金属壳体11内进行抽气处理。其中,金属壳体11的第一表面113上的凹陷114可以有多个,例如,预先在第一表面113上形成多个凹陷114,每个凹陷的位置与一个极芯组件所在的位置对应。
其中,在一些实施方式中,电池相对的两个第一表面113上均向内部凹陷,以通过凹陷的区域夹持极芯组件。
其中,可以在金属壳体11上设置排气孔,通过该排气孔对金属壳体11和封装膜之间的空间进行抽气操作。其中,需要对该排气孔进行密封处理,因此在排气孔内还设置有密封件,以密封排气孔。该密封件例如可以是堵头、橡胶件等,对此不做限定。
在一些实施方式中,金属壳体11在抽气之前,极芯组件与金属壳体11内表面设有间隙;该间隙便于极芯组件比较方便的装入到金属壳体11内部;在对金属壳体11抽气之后,金属壳体11沿第二方向按压在极芯组件的外表面以夹持极芯组件,从而减小极芯组件在金属壳体内部窜动的空间,提高电池安全性能。
本申请实施例中,金属壳体11不同于现有的铝塑膜,铝塑膜的散热效果较差,强度低,且受限于制造工艺,采用铝塑膜作为电池100的外壳无法制备出电池厚度较大的电池100,金属壳体11的强度高,散热效果好,金属壳体11可以包括但不限于铝壳、或钢壳。
在一些实施例中,金属壳体11的厚度为0.05mm-1mm。金属壳体11的厚度较厚可能会增加电池100的重量,降低电池100的容量,且不易实现本申请。本实施例将金属壳体11厚度选取为上述范围内,不仅能保证金属壳体11强度,而且也不会降低1电池100的容量,还可以在负压的状态下,金属壳体11更加容易的发生变形,减少金属壳体11和极芯组件之间的间距,从而减少极芯组件在金属壳体11内部的窜动以及极芯组件之间的相对位移。
本申请中,封装膜为铝塑复合膜;或者封装膜包括层叠的非金属外层膜和非金属内层膜,内层膜位于外层膜和极芯组之间。内层膜具有较好的化学稳定性,例如可以采用具有抗电解液腐蚀特性的材料,比如可以是聚丙烯(PP,Polypropylene)、聚乙烯(PE,Polyethylene)或者聚对苯二甲酸乙二酯(PET,Polyethyleneterephthalate),或者可以是上述材料中的多种组合。外层膜为防护层,利用外层膜可以阻止空气尤其是水汽、氧等渗透,其材料例如可以采用聚对苯二甲酸乙二酯、聚酰胺(PA,Polyamide)或聚丙烯,或者可以是上述材料的多种组合。本实施例的封装膜中,外层膜的熔点大于内层膜的熔点,从而可以在热熔密封时,外层膜不会被熔融,而内层膜能够及时熔融以保证密封性能的优良。
外层膜和内层膜的熔点差可以在30℃-80℃之间,如两者熔点差可以是50℃或70℃等,具体的材料选择可以根据实际需要而定。其中,外层膜和内层膜之间采用胶黏剂粘结复合。例如,外层膜的材料可以是PP,内层膜的材料可以是PET,两者粘结的粘结剂例如可以是聚烯烃类粘结剂,以粘结形成复合膜。本实施例通过采用双层非金属膜形成封装膜对极芯进行封装,具有更高的拉伸强度和断裂伸长率,可以减少对电池厚度的限制,使得生产得到的电池具有更大的厚度。其中,本实施例的电池的厚度可扩展范围大,如可以大于10mm,例如可以在13mm-75mm的范围。
本申请的一个实施例中,电池为锂离子电池。
如图7所示,在本申请的另一个方面,提供了一种电池模组300包括上述任一实施例的电池。采用本申请提供的电池模组300,密封性能较佳,组装工艺少,电池的成本 较低。
参阅图6和图8,本申请还提供了一种电池包200,包括电池序列21,其中电池序列21包括若干个电池100,其中电池100为上述任一实施例中所描述的电池100,因此对于电池100的具体结构在此不做一一赘述。
电池序列21可以有1个也可以有多个,每个电池序列21中的电池100可以有1个也可以有多个,在实际生产中,电池100的数量可以根据实际需要进行设定,电池序列21的数量也可以根据实际需要进行设定,本申请对此不做具体限定。
本申请的实施例中,若干个电池100沿电池的厚度方向依次排列以形成电池序列21。其中,至少两个相邻的电池100之间具有间隙,该间隙与电池100的厚度的比例范围为0.001-0.15。
需要说明的是,两个相邻电池100的间隙会随着电池的工作时间的增加而有所变化,但无论是处于工作中还是工作后或者是电池出厂前,只要满足电池之间的间隙与厚度的比例范围在本申请限定的范围内,均落在本申请的保护范围内。
本申请通过在电池100之间预留的一定的间隙,可以给电池100的膨胀预留缓冲空间。
本申请将电池100之间的间隙与电池100的厚度的比值限定在0.001-0.15,既可以充分利用电池包200的空间,提高电池包200的利用率,同时也可以给电池100的膨胀起到较好的缓冲效果。
另外,电池100膨胀时会产生热量,电池100之间预留一定的间隙,该间隙还可以充当散热通道,例如风道,电池100面积较大的面散热效果更好,因而还可以提高电池包200的散热效率,提供电池包200的安全性能。
在上述方案中,电池100之间的间隙可以理解为电池100之间不设置任何结构件,单纯预留一定的空间,也可以理解电池100设置其他结构件使电池100与电池100之间通过该结构件隔开。
需要说明的是,当电池100之间设置结构件,电池100之间的间隙应该理解为该结构件两侧的电池100之间的距离,而不能理解该结构件与电池100之间的间距。
应当说明的是,结构件可以与该结构件两侧的电池100之间可以预留一定的间隙有可以直接接触,当结构件与位于两侧的电池100直接接触时,结构件应当具有一定的柔性,可以为电池100的膨胀起到缓冲作用。作为结构件包括但不限于气凝胶,导热结构胶或者是隔热棉。
本申请中,当电池序列21有多个时,间隙应该是指同一个电池序列21中相邻两个电池100之间的间距,而非不同电池序列21中,相邻两个电池之间的间距。且在同一个电池序列21中,可以所有相邻两个电池之间均预留一定的间隙,也可以部分相邻两个电池之间预留一定的间隙。
在一种实施方式中,两个相邻电池100之间的间隙包括第一间隙d1,第一间隙d1定义为两个相邻电池的两个盖板112沿电池厚度方向的最小距离,其中,第一间隙d1 与电池的厚度的比例范围为0.005-0.1。
在上述实施方式中,由于盖板112的强度较高,相对比壳本体111而言,不容易发生膨胀,即使,电池100在工作一段时间后,内部产生化学反应,电池100膨胀,会挤压相邻的电池100,第一间隙d1会发生变化(如逐渐增大),但该变化较小,可以忽略不计,或者即使变化,第一间隙与电池100的厚度的比例仍然满足上述范围。在上述实施方式中,壳本体111两端分别设有盖板112,电池100沿厚度方向排列成电池序列21时,两个电池100之间的间隙可以是位于电池序列同一端的两个盖板沿电池厚度方向的最小间距,也可以是位于电池序列不同端的两个盖板沿电池厚度方向的最小间距。
在一种实施方式中,两个相邻电池100之间的间隙包括第二间隙d2,第二间隙d2为两个相邻电池100面对面的两个第一表面之间的最小距离。其中,电池100在使用前的第二间隙d2大于使用后的第二间隙d2。
其中,“使用前”可以理解为电池100在装配完成后待出厂或者已出厂,但还未开始给外部提供电能之前;“使用后”可以理解为电池100给外部提供电能之后。例如,电池包200装配在电动车1000,使用前的状态可以理解为新车的状态;使用后的状态应该为,车行驶一段里程后的状态。
在该实施方式中,第二间隙应该是指两个相邻的电池100相对的两个第一表面之间的最小间距,该间距会随着电池的使用时间的增加而逐渐减小,主要是因为,电池发生膨胀后,相邻两个大面之间的间距会逐渐减小。
本申请实施例中,电池包200还包括电池盖和托盘22,其中图8的视图中未示意出电池盖。电池盖和托盘22密封连接形成电池容纳腔,电池序列21位于电池容纳腔中。其中,托盘22包括支撑件221,电池100的金属壳体11上形成有支撑区,电池100通过其支撑区与支撑件221对接以支撑于支撑件221上。
其中,托盘22含有边梁,该边梁作为支撑件221,电池100沿其长度方向的两端分别支撑在边梁上。
本申请实施例的电池100中,其金属壳体11和封装膜之间的气压为负压,可以提高电池的整体强度,因此可以将电池100利用自身的强度做支撑而直接安装在托盘22上,从而不需要在托盘22上设置横梁或纵梁等结构来支撑电池100,有利于提高电池包内部空间的利用率。
一种电动车1000包括上述的电池包200。采用本申请提供的电动车1000,车的续航能力高,成本较低。
其中,电池的长度方向沿电动车1000的车身的长度方向布置,车身长度为500mm-5200mm。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体 情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,参考术语“实施例”、“具体实施例”、“示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (31)

  1. 一种电池,其特征在于,包括金属壳体和封装于所述金属壳体内的极芯组件阵列,所述极芯组件阵列包括N行、M列极芯组件,所述极芯组件包括封装膜及封装于封装膜内的至少一个极芯;
    在电池的长度方向上,所述极芯组件成行排布且每行均包括M个所述极芯组件,在电池的厚度或高度方向上,所述极芯组件成列排布且每列均包括N个所述极芯组件;
    每列的N个极芯组件串联连接形成极芯组件串;
    M个极芯组件串串联连接;
    M、N为大于1的整数;
    所述金属壳体与所述封装膜之间的气压低于金属壳体外的气压。
  2. 根据权利要求1所述的电池,其特征在于,所述极芯组件的长度沿电池的长度方向延伸;
    所述极芯组件包括分别从极芯组件长度方向两端延伸出的用于引出电流的第一电极引出部件和第二电极引出部件;
    每列中相邻两极芯组件中的一个极芯组件的第一电极引出部件与另一个极芯组件的第二电极引出部件电连接。
  3. 根据权利要求2所述的电池,其特征在于,每列中相邻两极芯组件中的一个极芯组件的第一电极引出部件与另一个极芯组件的第二电极引出部件位于此列的同侧。
  4. 根据权利要求1-3任一项所述的电池,其特征在于,相邻两极芯组件串的一个极芯组件串的末端极芯组件与另一个极芯组件串的末端极芯组件电连接;
    或相邻两极芯组件串的一个极芯组件串的第1个极芯组件与另一个极芯组件串的第1个极芯组件电连接。
  5. 根据权利要求4所述的电池,其特征在于,所述极芯组件的长度沿电池的长度方向延伸;
    所述极芯组件包括分别从极芯组件长度方向两端延伸出的用于引出电流的第一电极引出部件和第二电极引出部件;
    相邻两极芯组件串的一个极芯组件串的末端极芯组件的第一电极引出部件与另一个极芯组件串的末端极芯组件的第二电极引出部件相邻;
    或相邻两极芯组件串的一个极芯组件串的第1个极芯组件的第一电极引出部件与另一个极芯组件串的第1个极芯组件的第二电极引出部件相邻。
  6. 根据权利要求2所述的电池,其特征在于,N个所述极芯组件沿电池厚度方向排列;所述极芯组件的厚度沿电池的厚度方向延伸;
    所述极芯组件阵列包括用于引出串联电流的第一总电极和第二总电极;
    N为奇数,第一总电极和第二总电极分别从极芯组件阵列的对角延伸出。
  7. 根据权利要求1-6任一项所述的电池,其特征在于,所述极芯组件阵列包括多个。
  8. 根据权利要求1-7任一项所述的电池,其特征在于,所述电池的长度为400mm-2500mm;所述电池的厚度为13mm-75mm。
  9. 根据权利要求1-8任一项所述的电池,其特征在于,所述封装膜内的气压低于所述金属壳体与所述封装膜之间的气压。
  10. 根据权利要求1-9任一项所述的电池,其特征在于,所述金属壳体与封装膜之间的气压P1为-100Kpa至-5Kpa。
  11. 根据权利要求10所述的电池,其特征在于,所述封装膜内的气压为P2,所述P1与P2的关系满足:P1/P2的范围为0.05-0.85。
  12. 根据权利要求11所述的电池,其特征在于,P2取值为-100Kpa至-20Kpa。
  13. 根据权利要求1-12任一项所述的电池,其特征在于,所述电池沿电池厚度方向具有相对的两个第一表面,至少一个所述第一表面向金属壳体内部凹陷。
  14. 根据权利要求13所述的电池,其特征在于,所述两个第一表面均向金属壳体内部凹陷,以夹持极芯组件阵列。
  15. 根据权利要求1-14任一项所述的电池,其特征在于,所述封装膜包括层叠的非金属外层膜和非金属内层膜,所述内层膜位于极芯和外层膜之间,所述外层膜的熔点大于所述内层膜的熔点,且所述外层膜和内层膜的熔点差在30℃-80℃之间。
  16. 根据权利要求15所述的电池,其特征在于,所述外层膜的材料为聚对苯二甲酸乙二酯、聚酰胺和聚丙烯中的其中一种或多种组合;所述内层膜的材料为聚丙烯、聚乙烯和聚对苯二甲酸乙二酯中的其中一种或多种组合。
  17. 根据权利要求16所述的电池,其特征在于,所述外层膜和内层膜粘结;所述粘结的粘结剂为聚烯烃类粘结剂。
  18. 根据权利要求1-17任一项所述的电池,其特征在于,所述封装膜为铝塑复合膜。
  19. 根据权利要求1-18任一项所述的电池,其特征在于,所述金属壳体上设置有排气孔,所述排气孔内设置有密封件。
  20. 根据权利要求1-19任一项所述的电池,其特征在于,所述金属壳体的厚度为0.05mm-1mm。
  21. 一种电池模组,其特征在于,包括权利要求1-20任一项所述的电池。
  22. 一种电池包,其特征在于,包括电池序列,所述电池序列包括若干个电池,至少一个所述电池为权利要求1-20任一项所述的电池。
  23. 根据权利要求22所述的电池包,其特征在于,若干个所述电池沿电池的厚度方向依次排列以形成所述电池序列;
    至少两个相邻的电池之间具有间隙,所述间隙与所述电池的厚度的比例范围为0.001-0.15。
  24. 根据权利要求23所述的电池包,其特征在于,所述金属壳体包括具有开口的壳本体和与开口密封连接的盖板,所述盖板与所述壳本体围成密封的容纳腔室,所述极芯组件阵列位于所述容纳腔室内;
    所述两个相邻电池之间的间隙包括第一间隙d1,所述第一间隙为所述两个相邻电池的两个盖板沿电池厚度方向的最小距离,且所述第一间隙d1与所述电池的厚度的比例范围为0.005-0.1。
  25. 根据权利要求23所述的电池包,其特征在于,所述电池沿电池厚度方向具有相对的两个第一表面,所述两个相邻电池之间的间隙包括第二间隙d2,所述第二间隙为所述两个相邻电池面对面的两个第一表面之间的最小距离。
  26. 根据权利要求25所述的电池包,其特征在于,所述电池在使用前的第二间隙d2大于使用后的第二间隙d2。
  27. 根据权利要求23所述的电池包,其特征在于,所述电池包还包括电池包盖和托盘,所述电池包盖和托盘密封连接形成电池容纳腔,所述电池序列位于电池容纳腔中,所述托盘包括支撑件,所述金属壳体上形成有支撑区,所述电池通过所述支撑区与所述支撑件对接以支撑于所述支撑件上。
  28. 根据权利要求27所述的电池包,其特征在于,所述托盘含有边梁,所述边梁为支撑件,所述电池沿长度方向的两端分别支撑在所述边梁上。
  29. 一种电动车,其特征在于,包括如权利要求22-28任一项所述的电池包。
  30. 根据权利要求29所述的电动车,其特征在于,所述电池的长度方向沿所述电动车的车身的长度方向布置。
  31. 根据权利要求30所述的电动车,其特征在于,所述车身长度为500mm-5200mm。
PCT/CN2021/075186 2020-02-18 2021-02-04 电池、电池模组、电池包和电动车 WO2021164559A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022549470A JP7471433B2 (ja) 2020-02-18 2021-02-04 電池、電池モジュール、電池パック及び電気自動車
EP21757406.0A EP4109651A1 (en) 2020-02-18 2021-02-04 Battery, battery module, battery pack, and electric vehicle
KR1020227029993A KR20220134771A (ko) 2020-02-18 2021-02-04 배터리, 배터리 모듈, 배터리 팩, 및 전기 차량
US17/889,346 US20220393248A1 (en) 2020-02-18 2022-08-16 Cell, battery module, battery pack, and electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010097965.2 2020-02-18
CN202010097965.2A CN113285149A (zh) 2020-02-18 2020-02-18 一种电池、电池模组、电池包和电动车

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/889,346 Continuation US20220393248A1 (en) 2020-02-18 2022-08-16 Cell, battery module, battery pack, and electric vehicle

Publications (1)

Publication Number Publication Date
WO2021164559A1 true WO2021164559A1 (zh) 2021-08-26

Family

ID=77274844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075186 WO2021164559A1 (zh) 2020-02-18 2021-02-04 电池、电池模组、电池包和电动车

Country Status (6)

Country Link
US (1) US20220393248A1 (zh)
EP (1) EP4109651A1 (zh)
JP (1) JP7471433B2 (zh)
KR (1) KR20220134771A (zh)
CN (1) CN113285149A (zh)
WO (1) WO2021164559A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2625266A (en) * 2022-12-08 2024-06-19 Jaguar Land Rover Ltd A vehicle traction battery pack subassembly, a vehicle traction battery pack and a vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111312964B (zh) * 2020-04-24 2022-01-07 比亚迪股份有限公司 电池包及电动车
WO2024007307A1 (zh) * 2022-07-08 2024-01-11 宁德时代新能源科技股份有限公司 电池单体、电池和用电设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201682022U (zh) * 2010-05-20 2010-12-22 江苏双登集团有限公司 12v铅酸蓄电池单体排列结构
CN108780856A (zh) * 2016-03-10 2018-11-09 日产自动车株式会社 电池组
KR20190046171A (ko) * 2017-10-25 2019-05-07 주식회사 엘지화학 전지모듈
CN110268550A (zh) * 2017-03-21 2019-09-20 奥柏里斯特科技有限公司 电池***
CN110518156A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种锂离子电池、电池模组、电池包及汽车
CN110518174A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN110828717A (zh) * 2020-01-13 2020-02-21 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5357373B2 (ja) 2004-03-19 2013-12-04 富士重工業株式会社 蓄電体の平面整列構造
KR100881640B1 (ko) 2005-06-15 2009-02-04 주식회사 엘지화학 중대형 전지팩용 전지모듈
CN102369625A (zh) 2009-04-01 2012-03-07 株式会社Lg化学 在模块结构的设计方面具有灵活性的电池模块和包括此电池模块的中大型电池组
JP6016080B2 (ja) 2012-07-17 2016-10-26 三菱自動車工業株式会社 電池モジュールの支持構造
CN104183798B (zh) * 2014-08-06 2016-09-07 江苏华东锂电技术研究院有限公司 电池单体及电池组
JP6869088B2 (ja) 2017-04-21 2021-05-12 フタムラ化学株式会社 絞り成型用ポリプロピレン系シーラントフィルム
JP6960271B2 (ja) 2017-08-10 2021-11-05 日立造船株式会社 全固体電池
JP6950486B2 (ja) 2017-11-20 2021-10-13 大日本印刷株式会社 組電池及びその外装容器
US10734618B2 (en) 2017-12-05 2020-08-04 Robert Bosch Battery Systems Llc Prismatic-pouch hybrid battery module
WO2019134697A1 (zh) * 2018-01-08 2019-07-11 比亚迪股份有限公司 电池单元、电池模组及汽车
CN209776139U (zh) 2019-04-11 2019-12-13 深圳石头新能源科技有限公司 一种新能源汽车电池箱

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201682022U (zh) * 2010-05-20 2010-12-22 江苏双登集团有限公司 12v铅酸蓄电池单体排列结构
CN108780856A (zh) * 2016-03-10 2018-11-09 日产自动车株式会社 电池组
CN110268550A (zh) * 2017-03-21 2019-09-20 奥柏里斯特科技有限公司 电池***
KR20190046171A (ko) * 2017-10-25 2019-05-07 주식회사 엘지화학 전지모듈
CN110518156A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种锂离子电池、电池模组、电池包及汽车
CN110518174A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN110828717A (zh) * 2020-01-13 2020-02-21 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2625266A (en) * 2022-12-08 2024-06-19 Jaguar Land Rover Ltd A vehicle traction battery pack subassembly, a vehicle traction battery pack and a vehicle

Also Published As

Publication number Publication date
KR20220134771A (ko) 2022-10-05
EP4109651A1 (en) 2022-12-28
CN113285149A (zh) 2021-08-20
US20220393248A1 (en) 2022-12-08
JP7471433B2 (ja) 2024-04-19
JP2023513937A (ja) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2021143668A1 (zh) 电池、电池模组、电池包及汽车
WO2021143514A1 (zh) 一种电池、电池包和电动车
WO2021143560A1 (zh) 一种电池、电池模组、电池包和电动车
WO2021143561A1 (zh) 一种电池包和电动车
WO2021164559A1 (zh) 电池、电池模组、电池包和电动车
CN212625802U (zh) 一种电池包和电动车
WO2021169721A1 (zh) 电池包及电动车
WO2021164568A1 (zh) 电池包及车辆
WO2021143625A1 (zh) 一种电池、电池模组、电池包和电动车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757406

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022549470

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227029993

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021757406

Country of ref document: EP

Effective date: 20220919