WO2023246694A1 - 一种电子设备 - Google Patents

一种电子设备 Download PDF

Info

Publication number
WO2023246694A1
WO2023246694A1 PCT/CN2023/101042 CN2023101042W WO2023246694A1 WO 2023246694 A1 WO2023246694 A1 WO 2023246694A1 CN 2023101042 W CN2023101042 W CN 2023101042W WO 2023246694 A1 WO2023246694 A1 WO 2023246694A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
antenna
inductor
resonance
metal layer
Prior art date
Application number
PCT/CN2023/101042
Other languages
English (en)
French (fr)
Inventor
张志华
施佑霖
李建铭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023246694A1 publication Critical patent/WO2023246694A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/35Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using two or more simultaneously fed points

Definitions

  • the present application relates to the field of wireless communications, and in particular, to an electronic device.
  • the second generation (2G) mobile communication system mainly supported the call function.
  • Electronic devices were just tools for people to send and receive text messages and voice communication.
  • the wireless Internet function used the voice channel for data transmission. To transmit, the speed is extremely slow.
  • electronic devices can also be used to listen to music online, watch online movies, real-time videos, etc., covering various applications in people's lives such as phone calls, film and television entertainment, and e-commerce.
  • a variety of functional applications require wireless networks to upload and download data, so high-speed data transmission becomes extremely important.
  • MIMO multiple-input multiple-output
  • LTE Long Term Evolution
  • 5G Fifth Generation
  • NR New Radio
  • Embodiments of the present application provide an electronic device, including an antenna.
  • the antenna can expand the isolation bandwidth of the antenna through a T-shaped circuit provided between two feed points to meet communication needs.
  • an electronic device including: an antenna, the antenna including the radiator, the radiator including a first feed point and a second feed point; and a floor, through which the antenna passes Grounded; wherein, the antenna further includes a first capacitor, a second capacitor, a first feeding unit and a second feeding unit, the first end of the first capacitor and the radiator are at the first feeding point Electrically connected, the second end of the first capacitor is electrically connected to the first feeding unit, the first end of the second capacitor is electrically connected to the radiator at the second feeding point, the third The second ends of the two capacitors are electrically connected to the second feeding unit; the antenna also includes a first inductor, a second inductor and a third capacitor, and the first end of the first inductor is located between the first capacitor and the first inductor.
  • the second end of the first inductor is electrically connected to the first end of the second inductor, and the second end of the second inductor is located on the second between the second end of the capacitor and the second feeding unit, the first end of the third capacitor is located between the second end of the first inductor and the first end of the second inductor, The second terminal of the third capacitor is connected to ground.
  • the first inductor and the second inductor connected in series can be used to adjust the impedance curve corresponding to the DM mode in the antenna.
  • the third capacitor is used to adjust the impedance curve corresponding to the CM mode in the antenna. Therefore, the impedance curve corresponding to the DM mode in the antenna can be adjusted through the first inductor and the second inductor connected in series, and the impedance curve corresponding to the CM mode in the antenna can be adjusted through the third capacitor, so that the impedance curve corresponding to the CM mode is consistent with the DM mode.
  • the corresponding impedance curves are closer to each other, thereby improving the isolation bandwidth of the antenna.
  • the capacitance value L1 of the first inductor satisfies: 1nH ⁇ L1 ⁇ 8nH; and/or the capacitance value L2 of the second inductor satisfies: 1nH ⁇ L2 ⁇ 8nH; and/or, the capacitance value C3 of the third capacitor satisfies: 0.1pF ⁇ C3 ⁇ 5pF.
  • this application only takes the above-mentioned 5G frequency band as an example for explanation.
  • the capacitance value of the above-mentioned capacitor and the inductance value of the inductor can be adjusted according to design requirements.
  • the first feed point and the second feed point are symmetrical along the virtual axis of the radiator; the radiators on both sides of the virtual axis of the same length.
  • the inductance value of the first inductor and the inductance value of the second inductor same.
  • the radiation characteristics (eg, bandwidth) of the antenna are improved.
  • the antenna when the first feeding unit feeds power, the antenna generates a first resonance and a second resonance, and the resonant frequency of the first resonance is lower than the first resonance.
  • the resonant frequency band of the second resonance and the resonant frequency band of the fourth resonance are at the same frequency.
  • the first feeding unit indirectly couples and feeds the electrical signal through the first capacitor, so that the first antenna unit can operate in two different modes and generate two resonances to expand the operating bandwidth of the antenna.
  • the situation where the second feeding unit indirectly couples and feeds the electrical signal through the second capacitor can also be understood accordingly.
  • the capacitance value C1 of the first capacitor satisfies: 0.3pF ⁇ C1 ⁇ 1pF; and/or the capacitance value C2 of the second capacitor satisfies: 0.3 pF ⁇ C2 ⁇ 1pF.
  • this application only takes the above-mentioned 5G frequency band as an example for explanation.
  • the capacitance value of the first capacitor and the capacitance value of the second capacitor can be adjusted according to the design requirements to adjust the feed radiation. body electrical signals.
  • the first capacitor includes at least one of a lumped capacitor device and a distributed capacitor device; the second capacitor includes a lumped capacitor device, and At least one of the distributed capacitive devices.
  • the forms of the first capacitor and the second capacitor can be adjusted according to the internal layout of the electronic device, and the embodiment of the present application does not limit this.
  • the first capacitor includes a first metal layer and a second metal layer, and the first metal layer and the second metal layer are spaced apart along a first direction. , and the projections of the first metal layer and the second metal layer along the first direction on the plane where the floor is located at least partially overlap, the first metal layer and the radiator are on the first feed
  • the electrical point is electrically connected, the second metal layer is electrically connected to the first feeding unit, and the first direction is a direction perpendicular to the plane of the floor;
  • the second capacitor includes a third metal layer and A fourth metal layer, the third metal layer and the fourth metal layer are spaced apart along the first direction, and the third metal layer and the fourth metal layer are on the floor along the first direction.
  • the projections on the plane at least partially overlap, the third metal layer and the radiator are electrically connected at the second feed point, and the fourth metal layer is electrically connected to the second feed unit;
  • the first end of the first inductor is electrically connected to the second metal layer; the second end of the second inductor is electrically connected to the fourth metal layer.
  • the electrical parameters of the first capacitor for example, the relative dielectric constant of the medium filled between the first metal layer 1311 and the second metal layer 1312 or the electrical parameters of the second capacitor can be adjusted.
  • the capacitance value of the first capacitor or the second capacitor is used to adjust the radiation characteristics of the antenna.
  • the working frequency band of the antenna includes at least part of the following frequency bands: 3300MHz-42000MHz, 3300MHz-3800MHz or 4400MHz-5000MHz.
  • the working frequency band of the antenna may include at least part of the frequency bands of N77 (3300MHz-42000MHz), N78 (3300MHz-3800MHz) or N79 (4400MHz-5000MHz).
  • the electronic device further includes: a conductive frame, the frame has a first position and a second position, and the frame is provided with a third position at the first position.
  • a gap, a second gap is set at the second position, the frame between the first position and the second position is a first frame, and the first frame serves as the radiator.
  • the antenna may be a frame antenna in the electronic device.
  • an electronic device including: an antenna, the antenna includes the radiator, the radiator includes a slot, a first feed point and a second feed point, the slot is disposed on the Between the first feeding point and the second feeding point; the floor, the antenna is grounded through the floor; wherein the antenna further includes a first capacitor, a second capacitor, a first feeding unit and a second Feeding unit, the first end of the first capacitor is electrically connected to the radiator at the first feeding point, the second end of the first capacitor is electrically connected to the first feeding unit, the The first end of the second capacitor is electrically connected to the radiator at the second feed point, and the second end of the second capacitor is electrically connected to the second feed unit; the antenna also includes a first inductor , the second inductor and the third capacitor, the first end of the first inductor is located between the second end of the first capacitor and the first feeding unit, the second end of the first inductor is between The first end of the second inductor is electrically connected, the second end of the second inductor is electrically connected,
  • the capacitance value L1 of the first inductor satisfies: 1nH ⁇ L1 ⁇ 8nH; and/or the capacitance value L2 of the second inductor satisfies: 1nH ⁇ L2 ⁇ 8nH; and/or, the capacitance value C3 of the third capacitor satisfies: 0.1pF ⁇ C3 ⁇ 5pF.
  • the first feed point and the second feed point are symmetrical along the virtual axis of the radiator; the radiators on both sides of the virtual axis of the same length.
  • the gap is provided in a central area of the radiator.
  • the inductance value of the first inductor and the inductance value of the second inductor are the same.
  • the antenna when the first feeding unit feeds power, the antenna generates a first resonance and a second resonance, and the resonant frequency of the first resonance is lower than the second resonance.
  • the resonant frequency band of the second resonance and the resonant frequency band of the fourth resonance are at the same frequency.
  • the capacitance value C1 of the first capacitor satisfies: 0.3pF ⁇ C1 ⁇ 1pF; and/or the capacitance value C2 of the second capacitor satisfies: 0.3 pF ⁇ C2 ⁇ 1pF.
  • the first capacitor includes at least one of a lumped capacitor device and a distributed capacitor device; the second capacitor includes a lumped capacitor device, and At least one of the distributed capacitive devices.
  • the first capacitor includes a first metal layer, one end of the first metal layer is electrically connected to the first feeding unit, and the first The metal layer is indirectly coupled to the radiator at the first feed point;
  • the second capacitor includes a second metal layer, and one end of the second metal layer is electrically connected to the second feed unit, so The second metal layer is indirectly coupled to the radiator at the second feed point; the first end of the first inductor is electrically connected to the first metal layer; the second end of the second inductor electrically connected to the second metal layer.
  • the working frequency band of the antenna includes at least part of the following frequency bands: 3300MHz-42000MHz, 3300MHz-3800MHz or 4400MHz-5000MHz.
  • the electronic device further includes: a conductive frame, the frame has a first position and a second position, and the frame is between the first position and the second position.
  • the second position is grounded, the frame between the first position and the second position is a first frame, and the first frame serves as the radiator.
  • Figure 1 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of the common-mode structure of a wire antenna provided by this application and the corresponding current and electric field distribution.
  • Figure 3 is a schematic diagram of the differential mode structure of a wire antenna provided by this application and the corresponding current and electric field distribution.
  • Figure 4 is a common mode structure of the slot antenna provided by this application and the corresponding distribution diagram of current, electric field, and magnetic current.
  • Figure 5 is the structure of the differential mode of the slot antenna provided by this application and the corresponding distribution diagram of current, electric field, and magnetic current.
  • Figure 6 is a schematic structural diagram of an antenna.
  • FIG. 7 is a simulation result diagram of the antenna structure shown in (a) in FIG. 6 .
  • Figure 8 is a simulation result diagram of the antenna structure shown in (b) in Figure 6.
  • Figure 9 is a simulation result diagram of the antenna structure shown in (c) in Figure 6.
  • FIG. 10 is a schematic structural diagram of an electronic device 100 provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram of current distribution provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of current distribution provided by an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a distributed capacitor provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another electronic device 100 provided by an embodiment of the present application.
  • Figure 15 is a schematic structural diagram of a set of antennas provided by an embodiment of the present application.
  • FIG. 16 is a graph of S parameters and impedance curves of the antenna shown in (a) of FIG. 15 .
  • FIG. 17 is a graph of S parameters and impedance of the antenna shown in (b) of FIG. 15 .
  • FIG. 18 is a graph of S parameters and impedance curves of the antenna shown in (c) in FIG. 15 .
  • FIG. 19 is a graph of S parameters and impedance of the antenna shown in (d) in FIG. 15 .
  • FIG. 20 is a simulation result diagram of the system efficiency and radiation efficiency of the antenna shown in (d) in FIG. 15 .
  • Figure 21 is a schematic diagram of an electronic device 200 provided by an embodiment of the present application.
  • Figure 22 is a schematic diagram of an impedance curve provided by an embodiment of the present application.
  • FIG. 23 shows S parameters of the antenna in the electronic device 200 shown in FIG. 21 .
  • FIG. 24 is an impedance curve of the antenna in the electronic device 200 shown in FIG. 21 .
  • Figure 25 is a schematic structural diagram of a set of antennas provided by an embodiment of the present application.
  • FIG. 26 is a graph of S parameters and impedance of the antenna shown in (a) of FIG. 15 .
  • FIG. 27 is a graph of S parameters and impedance curves of the antenna shown in (b) of FIG. 15 .
  • FIG. 28 is a graph of S parameters and impedance curves of the antenna shown in (c) of FIG. 15 .
  • FIG. 29 is a schematic structural diagram of an electronic device 300 provided by an embodiment of the present application.
  • Figure 30 is a schematic diagram of the structure of an antenna provided by an embodiment of the present application.
  • Figure 31 is the S parameters of the antenna shown in Figure 29 and the antenna shown in Figure 30.
  • Figure 32 is the impedance curve of the antenna shown in Figure 29 and the antenna shown in Figure 30 from 2.5GHz to 3GHz.
  • Figure 33 is the impedance curve of the antenna shown in Figure 29 and the antenna shown in Figure 30 from 4.8GHz to 5.8GHz.
  • Coupling can be understood as direct coupling and/or indirect coupling, and "coupling connection” can be understood as direct coupling connection and/or indirect coupling connection.
  • Direct coupling can also be called “electrical connection”, which is understood as the physical contact and electrical conduction of components; it can also be understood as the printed circuit board (PCB) copper foil or wires between different components in the circuit structure.
  • PCB printed circuit board
  • indirect coupling can be understood as two conductors being electrically connected through space/non-contact.
  • indirect coupling may also be called capacitive coupling, for example, signal transmission is achieved by forming an equivalent capacitance through coupling between a gap between two conductive members.
  • Connection/connection It can refer to a mechanical connection relationship or a physical connection relationship.
  • the connection between A and B or the connection between A and B can refer to the existence of fastening components (such as screws, bolts, rivets, etc.) between A and B. Or A and B are in contact with each other and A and B are difficult to separate.
  • Capacitance can be understood as lumped capacitance and/or distributed capacitance.
  • Lumped capacitance refers to capacitive components, such as capacitor components; distributed capacitance (or distributed capacitance) refers to the equivalent capacitance formed by two conductive parts separated by a certain gap.
  • Resonance frequency is also called resonance frequency.
  • the resonant frequency can refer to the frequency at which the imaginary part of the antenna input impedance is zero.
  • the resonant frequency can have a frequency range, that is, the frequency range in which resonance occurs.
  • the frequency corresponding to the strongest resonance point is the center frequency point frequency.
  • the return loss characteristics of the center frequency can be less than -20dB.
  • Resonance frequency band/communication frequency band/working frequency band No matter what type of antenna, it always works within a certain frequency range (frequency band width).
  • the working frequency band of an antenna that supports the B40 frequency band includes frequencies in the range of 2300MHz to 2400MHz, or in other words, the working frequency band of the antenna includes the B40 frequency band.
  • the frequency range that meets the index requirements can be regarded as the working frequency band of the antenna.
  • Electrical length It can refer to the ratio of physical length (i.e. mechanical length or geometric length) to the wavelength of the transmitted electromagnetic wave.
  • the electrical length can satisfy the following formula:
  • L is the physical length
  • is the wavelength of the electromagnetic wave.
  • Wavelength or working wavelength, which can be the wavelength corresponding to the center frequency of the resonant frequency or the center frequency of the working frequency band supported by the antenna.
  • the operating wavelength can be the wavelength calculated using the frequency of 1955MHz.
  • "working wavelength” can also refer to the wavelength corresponding to the resonant frequency or non-center frequency of the working frequency band.
  • the middle (position) of the conductor can be a conductor section including the midpoint on the conductor, or a conductor section of one-eighth wavelength including the midpoint of the conductor, where the wavelength can be corresponding to the working frequency band of the antenna.
  • the wavelength can be the wavelength corresponding to the center frequency of the working frequency band, or the wavelength corresponding to the resonance point.
  • the middle (location) of the conductor may be a portion of the conductor on the conductor that is less than a predetermined threshold (eg, 1 mm, 2 mm, or 2.5 mm) from the midpoint.
  • symmetry for example, axial symmetry, or central symmetry, etc.
  • parallel, perpendicular identical (for example, the same length, the same width, etc.) are all based on the current technology level. , rather than an absolutely strict determination in the mathematical sense righteous. For example, there may be a predetermined angle (eg ⁇ 5°, ⁇ 10°) deviation between two antenna units that are parallel or perpendicular to each other.
  • Antenna radiation efficiency refers to the ratio of the power radiated by the antenna to space (that is, the power of the electromagnetic wave effectively converted) and the active power input to the antenna.
  • the active power input to the antenna the input power of the antenna - the loss power;
  • the loss power mainly includes the return loss power and the ohmic loss power of the metal and/or the dielectric loss power.
  • Radiation efficiency is a measure of the radiation ability of an antenna. Metal loss and dielectric loss are both influencing factors of radiation efficiency.
  • efficiency is generally expressed as a percentage, and there is a corresponding conversion relationship between it and dB. The closer the efficiency is to 0dB, the better the efficiency of the antenna is.
  • Antenna return loss It can be understood as the ratio of the signal power reflected back to the antenna port through the antenna circuit and the transmit power of the antenna port. The smaller the reflected signal is, the greater the signal radiated to space through the antenna is, and the greater the antenna's radiation efficiency is. The larger the reflected signal is, the smaller the signal radiated to space through the antenna is, and the smaller the antenna's radiation efficiency is.
  • Antenna return loss can be represented by the S11 parameter, which is one of the S parameters.
  • S11 represents the reflection coefficient, which can characterize the antenna's emission efficiency.
  • the S11 parameter is usually a negative number. The smaller the S11 parameter, the smaller the return loss of the antenna, and the smaller the energy reflected back by the antenna itself, which means that more energy actually enters the antenna, and the higher the system efficiency of the antenna is. S11 parameter The larger the value, the greater the antenna return loss and the lower the antenna system efficiency.
  • the S11 value of -6dB is generally used as a standard.
  • the S11 value of an antenna is less than -6dB, it can be considered that the antenna can work normally, or the antenna's radiation efficiency can be considered to be good.
  • Ground, or floor can generally refer to at least part of any ground layer, or ground plate, or ground metal layer, etc. in an electronic device (such as a mobile phone), or any combination of any of the above ground layers, or ground plates, or ground components, etc. At least in part, “ground” can be used to ground components within electronic equipment. In one embodiment, "ground” may be the grounding layer of the circuit board of the electronic device, or it may be the grounding plate formed by the middle frame of the electronic device or the grounding metal layer formed by the metal film under the screen.
  • the circuit board may be a printed circuit board (PCB), such as an 8-, 10-, or 12- to 14-layer board with 8, 10, 12, 13, or 14 layers of conductive material, or by a circuit board such as Components separated and electrically insulated by dielectric or insulating layers such as fiberglass, polymer, etc.
  • the circuit board includes a dielectric substrate, a ground layer and a wiring layer, and the wiring layer and the ground layer are electrically connected through via holes.
  • components such as a display, touch screen, input buttons, transmitter, processor, memory, battery, charging circuit, system on chip (SoC) structure, etc. may be mounted on or connected to the circuit board; Or electrically connected to trace and/or ground planes in the circuit board.
  • SoC system on chip
  • PEC Ideal electric conductor
  • Ideal magnetic conductor (perfect magnetic conductor, PMC): On the surface of an ideal magnetic conductor, all magnetic fields are perpendicular to the PMC (the electric fields are parallel to the PMC).
  • the resonant frequency band of the first resonance and the resonant frequency band of the second resonance (also called the same frequency, the same) mentioned in this article can be understood as any one of the following situations:
  • the resonant frequency band of the first resonance and the resonant frequency band of the second resonance include the same communication frequency band.
  • the first resonance and the second resonance may be applied to the MIMO antenna system, and the resonant frequency band of the first resonance and the resonant frequency band of the second resonance both include In the sub6G frequency band in 5G, it can be considered that the resonant frequency band of the first resonance and the resonant frequency band of the second resonance are at the same frequency.
  • the resonant frequency band of the first resonance and the resonant frequency band of the second resonance have partial frequency overlap.
  • the resonant frequency band of the first resonance includes B35 (1.85-1.91GHz) in LTE
  • the resonant frequency band of the second resonance includes B39 ( 1.88-1.92GHz)
  • the resonant frequency band of the first resonance and the resonant frequency band of the second resonance partially overlap, then it can be considered that the resonant frequency band of the first resonance and the resonant frequency band of the second resonance are of the same frequency.
  • ground layers, or ground plates, or ground metal layers are made of conductive materials.
  • the conductive material can be any of the following materials: copper, aluminum, stainless steel, brass and their alloys, copper foil on an insulating substrate, aluminum foil on an insulating substrate, gold foil on an insulating substrate, Silver-plated copper, silver-plated copper foil on an insulating substrate, silver foil and tin-plated copper on an insulating substrate, cloth impregnated with graphite powder, graphite-coated substrate, copper-plated substrate, brass-plated substrate sheet and aluminized substrate.
  • the ground layer/ground plate/ground metal layer can also be made of other conductive materials.
  • the electronic device 10 may include: a cover 13, a display/module (display) 15, a printed circuit board (PCB) 17, a middle frame 19 and a rear panel. rear cover21.
  • the cover 13 can be a glass cover (cover glass), or can be replaced with a cover made of other materials, such as an ultra-thin glass material cover, PET (Polyethylene terephthalate, polyethylene terephthalate) Material cover etc.
  • the cover 13 can be placed close to the display module 15 and can be mainly used to protect the display module 15 and prevent dust.
  • the display module 15 may include a liquid crystal display panel (LCD), a light emitting diode (LED) display panel or an organic light-emitting semiconductor (organic light-emitting diode, OLED) display panel, etc. , the embodiment of the present application does not limit this.
  • LCD liquid crystal display panel
  • LED light emitting diode
  • OLED organic light-emitting semiconductor
  • the middle frame 19 mainly plays a supporting role of the whole machine.
  • Figure 1 shows that the PCB 17 is disposed between the middle frame 19 and the back cover 21. It should be understood that in one embodiment, the PCB 17 can also be disposed between the middle frame 19 and the display module 15.
  • the printed circuit board PCB17 can use a flame-resistant material (FR-4) dielectric board, a Rogers dielectric board, or a mixed dielectric board of Rogers and FR-4, etc.
  • FR-4 is the code for a flame-resistant material grade
  • Rogers dielectric board is a high-frequency board.
  • PCB17 carries electronic components, such as radio frequency chips, etc.
  • a metal layer may be provided on the printed circuit board PCB 17 .
  • This metal layer can be used for grounding the electronic components carried on the printed circuit board PCB17, and can also be used for grounding other components, such as bracket antennas, frame antennas, etc.
  • the metal layer can be called a floor, a ground plate, or a ground layer.
  • the metal layer may be formed by etching metal on the surface of any dielectric board in the PCB 17 .
  • the metal layer used for grounding may be disposed on a side of the printed circuit board PCB 17 close to the middle frame 19 .
  • the edge of the printed circuit board PCB 17 can be regarded as the edge of its ground plane.
  • the metal middle frame 19 can also be used for grounding the above components.
  • the electronic device 10 may also have other floors/ground plates/ground layers, as mentioned above, which will not be described again here.
  • the electronic device 10 may also include a battery (not shown in the figure).
  • the battery may be disposed between the middle frame 19 and the back cover 21 , or may be disposed between the middle frame 19 and the display module 15 , which is not limited in the embodiment of the present application.
  • the PCB 17 is divided into a main board and a sub-board.
  • the battery can be disposed between the main board and the sub-board.
  • the main board can be disposed between the middle frame 19 and the upper edge of the battery, and the sub-board can be disposed between the main board and the sub-board. Between the middle frame 19 and the lower edge of the battery.
  • the electronic device 10 may also include a frame 11, and the frame 11 may be formed of a conductive material such as metal.
  • the frame 11 may be disposed between the display module 15 and the back cover 21 and extend circumferentially around the periphery of the electronic device 10 .
  • the frame 11 may have four sides surrounding the display module 15 to help fix the display module 15 .
  • the frame 11 made of metal material can be directly used as the metal frame of the electronic device 10 to form the appearance of a metal frame, which is suitable for metal industrial design (ID).
  • the outer surface of the frame 11 can also be made of non-metal material, such as a plastic frame, to form the appearance of a non-metal frame, which is suitable for non-metal IDs.
  • the middle frame 19 may include a frame 11 , and the middle frame 19 including the frame 11 may act as an integral part to support electronic devices in the entire machine.
  • the cover 13 and the back cover 21 are respectively covered along the upper and lower edges of the frame to form a shell or housing of the electronic device.
  • the cover 13 , the back cover 21 , the frame 11 and/or the middle frame 19 can be collectively referred to as the casing or housing of the electronic device 10 .
  • casing or housing can be used to refer to part or all of any one of the cover 13 , the back cover 21 , the frame 11 or the middle frame 19 , or to refer to the cover 13 , the back cover 21 , or the frame 11 or any combination of part or all of box 19.
  • the frame 11 on the middle frame 19 can be at least partially used as an antenna radiator to receive/transmit frequency signals. There can be a gap between this part of the frame as the radiator and other parts of the middle frame 19, thereby ensuring that the antenna radiator has good performance. radiation environment.
  • the middle frame 19 may be provided with an aperture at this part of the frame serving as a radiator to facilitate radiation of the antenna.
  • the frame 11 may not be regarded as a part of the middle frame 19 .
  • the frame 11 can be connected to the middle frame 19 and formed integrally.
  • the frame 11 may include an inwardly extending protruding piece to be connected to the middle frame 19 , for example, through elastic pieces, screws, welding, etc.
  • the protruding parts of the frame 11 can also be used to receive feed signals, so that at least a part of the frame 11 acts as a radiator of the antenna to receive/transmit frequency signals. There may be a gap between this part of the frame as the radiator and the middle frame 30 , thereby ensuring that the antenna radiator has a good radiation environment and the antenna has a good signal transmission function.
  • the back cover 21 can be a back cover made of metal material; it can also be a back cover made of non-conductive materials, such as glass back cover, plastic back cover and other non-metal back covers; or it can also include both conductive materials and non-conductive materials. Material back cover.
  • the antenna of the electronic device 10 can also be disposed in the frame 11 .
  • the antenna radiator can be located in the electronic device 10 and arranged along the frame 11 .
  • the antenna radiator is arranged close to the frame 11 to minimize the volume occupied by the antenna radiator and to be closer to the outside of the electronic device 10 to achieve better signal transmission effects.
  • the arrangement of the antenna radiator close to the frame 11 means that the antenna radiator can be arranged close to the frame 11 or close to the frame 11 . For example, there can be a certain tiny gap between the antenna radiator and the frame 11 .
  • the antenna of the electronic device 10 may also be disposed in the housing, such as a bracket antenna, a millimeter wave antenna, etc. (not shown in FIG. 1 ). set up
  • the clearance for the antenna in the housing can be obtained by the slits/openings on any one of the middle frame, and/or the frame, and/or the back cover, and/or the display screen, or by the slits/openings formed between any of them.
  • the clearance setting of the antenna can ensure the radiation performance of the antenna.
  • the clearance of the antenna may be a non-conductive area formed by any conductive component in the electronic device 10, and the antenna radiates signals to the external space through the non-conductive area.
  • the antenna 40 may be in the form of a flexible printed circuit (FPC)-based antenna, a laser-direct-structuring (LDS)-based antenna, or a microstrip disk antenna. , MDA) and other antenna forms.
  • the antenna may also adopt a transparent structure embedded inside the screen of the electronic device 10 , so that the antenna is a transparent antenna unit embedded inside the screen of the electronic device 10 .
  • FIG. 1 only schematically shows some components included in the electronic device 10 , and the actual shapes, actual sizes and actual structures of these components are not limited by FIG. 1 .
  • the side where the display screen of the electronic device is located can be considered to be the front, the side where the back cover is located is the back, and the side where the frame is located is the side.
  • the orientation of the electronic device has a top, a bottom, a left side, and a right side.
  • FIG. 2 is a schematic diagram of the common mode mode structure of a wire antenna provided by the present application and the corresponding current and electric field distribution.
  • FIG. 3 is a schematic diagram of the differential mode structure of another linear antenna provided by the present application and the corresponding current and electric field distribution.
  • Figure 4 is a schematic diagram of the common-mode structure of a slot antenna provided by this application and the corresponding distribution of current, electric field, and magnetic current.
  • FIG. 5 is a schematic diagram of the differential mode structure of another slot antenna provided by this application and the corresponding distribution of current, electric field, and magnetic current.
  • FIG. 2 shows that the radiator of the wire antenna 40 is connected to the ground (for example, the floor, which may be a PCB) through the feeder line 42.
  • the linear antenna 40 is connected to a feed unit (not shown) at the middle position 41, and adopts symmetrical feed.
  • the feeding unit may be connected to the middle position 41 of the line antenna 40 through the feeding line 42 .
  • symmetrical feeding can be understood as one end of the feeding unit is connected to the radiator and the other end is grounded.
  • the connection point (feeding point) between the feeding unit and the radiator is located at the center of the radiator.
  • the center of the radiator may be, for example, a collective structure.
  • the midpoint of the electrical length or the area within a certain range near the above midpoint).
  • the central position 41 of the wire antenna 40 may be the geometric center of the wire antenna, or the midpoint of the electrical length of the radiator, such as the connection point between the feeder line 42 and the wire antenna 40 covering the central position 41 .
  • FIG. 2 shows the current and electric field distribution of the wire antenna 40.
  • the current is distributed in opposite directions on both sides of the middle position 41 , for example, symmetrically distributed; the electric field is distributed in the same direction on both sides of the middle position 41 .
  • the current at the feeder line 42 exhibits a codirectional distribution. Based on the co-directional current distribution at the feed line 42, the feed shown in (a) in FIG. 2 can be called the CM feed of the wire antenna.
  • the line antenna mode shown in (b) in Figure 2 can be called the CM mode of the line antenna (also referred to as the CM line antenna for short). ).
  • the current and electric field shown in (b) in FIG. 2 can be respectively called the current and electric field of the CM mode of the wire antenna.
  • the current and electric field in the CM mode of the wire antenna are generated by the two branches (for example, two horizontal branches) of the wire antenna 40 on both sides of the central position 41 as antennas operating in the quarter-wavelength mode.
  • the current is strong at the middle position 41 of the line antenna 40 and weak at both ends of the line antenna 40 .
  • the electric field is weak at the middle position 41 of the line antenna 40 and is strong at both ends of the line antenna 40 .
  • the two radiators of the wire antenna 50 are connected to the ground (for example, the floor, which may be a PCB) through the feeder line 52 .
  • the wire antenna 50 is connected to the feed unit at the intermediate position 51 between the two radiators, and adopts anti-symmetrical feed.
  • One end of the feed unit is connected to one of the radiators through a feed line 52
  • the other end of the feed unit is connected to the other of the radiators through a feed line 52 .
  • the intermediate position 51 may be the geometric center of the wire antenna, or the gap formed between the radiators.
  • center antisymmetric feeding mentioned in this application can be understood as the positive and negative poles of the feeding unit are respectively connected to two connection points near the above-mentioned midpoint of the radiator.
  • the signals output by the positive and negative poles of the feed unit have the same amplitude but opposite phases, for example, the phase difference is 180° ⁇ 10°.
  • FIG. 3 shows the current and electric field distribution of the wire antenna 50.
  • the current is distributed in the same direction on both sides of the middle position 51 of the line antenna 50 , for example, asymmetrically distributed; the electric field is distributed in opposite directions on both sides of the middle position 51 .
  • the current at the feeder line 52 exhibits reverse distribution. Based on the reverse distribution of current at the feed line 52, this feed shown in (a) in Figure 3 can be called a wire antenna DM feed.
  • the line antenna mode shown in (b) in Figure 3 can be called the DM mode of the line antenna (it can also be referred to as the DM line antenna for short).
  • the current and electric field shown in (b) in FIG. 3 can be respectively called the current and electric field of the DM mode of the wire antenna.
  • the current and electric field of the DM mode of the wire antenna are generated by the entire wire antenna 50 as an antenna operating in the half-wavelength mode.
  • the current is strong at the middle position 51 of the line antenna 50 and weak at both ends of the line antenna 50 .
  • the electric field is weak at the middle position 51 of the line antenna 50 and is strong at both ends of the line antenna 50 .
  • the radiator of the linear antenna can be understood as a metal structural member that generates radiation, and its number can be one piece, as shown in Figure 2, or two pieces, as shown in Figure 3, which can be determined according to actual conditions. The design or production needs to be adjusted.
  • two radiators can also be used as shown in Figure 3. The two ends of the two radiators are set opposite each other and separated by a gap, and symmetrical feeding is used at the two ends close to each other, for example If the same feed signal is fed into the two ends of the two radiators that are close to each other, an effect similar to the antenna structure shown in Figure 2 can also be obtained.
  • a radiator can also be used as shown in Figure 2.
  • Two feed points are set in the middle of the radiator and an anti-symmetrical feeding method is used.
  • symmetry on the radiator If two feed points feed signals with the same amplitude and opposite phases respectively, similar effects to the antenna structure shown in Figure 3 can also be obtained.
  • the slot antenna 60 shown in (a) of Figure 4 may be formed by having a hollow slot or slit 61 in the radiator of the slot antenna, or it may be that the radiator of the slot antenna is connected to the ground (for example, the floor).
  • PCB surrounds the groove or slot 61.
  • the groove 61 may be formed by cutting a groove in the floor.
  • An opening 62 is provided on one side of the groove 61, and the opening 62 can be specifically opened in the middle position of this side.
  • the middle position of this side of the slot 61 may be, for example, the geometric midpoint of the slot antenna, or the middle point of the electrical length of the radiator, for example, the area where the opening 62 is opened on the radiator covers the middle position of this side.
  • the opening 62 can be connected to a feeding unit, and anti-symmetrical feeding is adopted.
  • anti-symmetrical feeding can be understood as the positive and negative poles of the feeding unit are respectively connected to both ends of the radiator.
  • the signals output by the positive and negative poles of the feed unit have the same amplitude but opposite phases, for example, the phase difference is 180° ⁇ 10°.
  • FIG. 4 shows the current, electric field, and magnetic current distribution of the slot antenna 60.
  • the current is distributed in the same direction around the slot 61 on the conductors (such as the floor, and/or the radiator 60) around the slot 61, and the electric field is reversed on both sides of the middle position of the slot 61.
  • Distribution, the magnetic current is distributed in opposite directions on both sides of the middle position of the slot 61.
  • the electric fields at the opening 62 (for example, the feeding point) are in the same direction, and the magnetic flows at the opening 62 (for example, the feeding point) are in the same direction.
  • the feeding shown in (a) in FIG. 4 can be called slot antenna CM feeding.
  • the slot antenna mode shown can be called the CM mode of the slot antenna (it can also be referred to as CM slot antenna or CM slot antenna for short).
  • the electric field, current, and magnetic current distribution shown in (b) of FIG. 4 can be called the electric field, current, and magnetic current of the CM mode of the slot antenna.
  • the current and electric field in the CM mode of the slot antenna are generated by the slot antenna bodies on both sides of the middle position of the slot antenna 60 acting as antennas operating in the half-wavelength mode.
  • the magnetic field is weak at the middle position of the slot antenna 60 and strong at both ends of the slot antenna 60 .
  • the electric field is strong at the middle position of the slot antenna 60 and weak at both ends of the slot antenna 60 .
  • the slot antenna 70 shown in (a) of Figure 5 may be formed by having a hollow slot or slit 72 in the radiator of the slot antenna, or it may be that the radiator of the slot antenna is connected to the ground (for example, the floor).
  • PCB surrounds the groove or groove 72 and is formed.
  • the slot 72 may be formed by slotting in the floor.
  • the middle position 71 of the slot 72 is connected to the feeding unit, and symmetrical feeding is adopted. It should be understood that symmetrical feeding can be understood as one end of the feeding unit is connected to the radiator and the other end is grounded.
  • the connection point (feeding point) between the feeding unit and the radiator is located at the center of the radiator.
  • the center of the radiator may be, for example, a collective structure.
  • the midpoint of the electrical length (or the area within a certain range near the above midpoint).
  • the middle position of one side of the slot 72 is connected to the positive electrode of the feed unit, and the middle position of the other side of the slot 72 is connected to the negative electrode of the feed unit.
  • the middle position of the side of the slot 72 may be, for example, the middle position of the slot antenna 60/the middle position of the ground, such as the geometric midpoint of the slot antenna, or the midpoint of the electrical length of the radiator, such as the midpoint of the feed unit and the radiator.
  • the connection covers the middle position 51 of this side.
  • FIG. 5 shows the current, electric field, and magnetic current distribution of the slot antenna 70.
  • the current is distributed around the slot 72, and is distributed in opposite directions on both sides of the middle position of the slot 72.
  • the electric field is distributed in the same direction on both sides of the intermediate position 71
  • the magnetic current is distributed in the same direction on both sides of the intermediate position 71 .
  • the magnetic current at the feed unit is distributed in reverse direction (not shown). Based on the reverse distribution of magnetic current at the feeding unit, the feeding shown in (a) in Figure 5 can be called slot antenna DM feeding.
  • the slot antenna pattern shown can be called It is the DM mode of the slot antenna (also referred to as DM slot antenna or DM slot antenna).
  • the electric field, current, and magnetic current distribution shown in (b) in FIG. 5 can be called the electric field, current, and magnetic current of the DM mode of the slot antenna.
  • the current and electric field in the slot antenna's DM mode are generated by the entire slot antenna 70 acting as an antenna operating in a one-wavelength mode.
  • the current is weak at the middle position of the slot antenna 70 and strong at both ends of the slot antenna 70 .
  • the electric field is strong at the middle position of the slot antenna 70 and weak at both ends of the slot antenna 70 .
  • antennas working in CM mode and antennas working in DM mode usually have high isolation, and usually the frequency bands of CM mode and DM mode antennas tend to be single-mode resonance, making it difficult to cover the many frequency bands required for communication.
  • the space left for antenna structures in electronic equipment is decreasing day by day.
  • a single antenna structure is required to cover multiple frequency bands. Therefore, multi-mode resonance antennas with high isolation at the same time have high research and practical value.
  • the radiator of the slot antenna can be understood as a metal structural member that generates radiation (for example, including a part of the floor), which may include an opening, as shown in Figure 4, or may be a complete ring, as shown in Figure 5 display, which can be adjusted according to actual design or production needs.
  • a complete ring radiator can also be used as shown in Figure 5.
  • Two feed points are set in the middle of the radiator on one side of the slot 61 and an antisymmetric feeding method is used. , for example, by feeding signals with the same amplitude and opposite phase at both ends of the original opening position, an effect similar to the antenna structure shown in Figure 4 can also be obtained.
  • a radiator including an opening can also be used as shown in Figure 4, and a symmetrical feeding method is used at both ends of the opening position.
  • the two ends of the radiator on both sides of the opening are fed separately.
  • the above antenna structures can produce two working modes (the electric field is symmetrically distributed or antisymmetrically distributed) in which the electric field is orthogonal (the electric field product in the far field is zero (integral orthogonality)), the two working modes of this antenna structure
  • the isolation between modes is good and can be applied to multi-input multi-output (MIMO) antenna systems in electronic equipment.
  • MIMO multi-input multi-output
  • Figure 6 is a schematic structural diagram of an antenna.
  • CM mode and DM mode can be generated through different feeding methods, so that there can be good isolation between antennas operating in the CM mode and the DM mode.
  • the antenna structure shown in Figure 6 cannot provide a large isolation bandwidth (for example, S21 ⁇ -10dB).
  • the isolation between the first antenna unit and the second antenna unit cannot meet the communication needs in the entire frequency band.
  • the embodiment of the present application provides an electronic device, including an antenna.
  • the antenna uses part of the conductive frame of the electronic device as the radiator of the antenna.
  • the isolation of the antenna can be expanded through a T-shaped circuit provided between two feed points of the antenna. Bandwidth to meet communication needs.
  • FIG. 10 is a schematic structural diagram of an electronic device 100 provided by an embodiment of the present application.
  • the electronic device may include a floor 110 , a frame 11 and an antenna 120 .
  • the frame 11 has a first position 101 and a second position 102.
  • the frame 11 is provided with a first gap 103 at the first position 101 and a second gap 104 at the second position 102.
  • Between the first position 101 and the second position 102 The frame 11 between them is the first frame 105 .
  • the first frame 105 includes a ground point 106 disposed in a central area of the first frame 105 .
  • the radiator of the antenna 120 can also be any metal component within the electronic device, for example, a metal part on the bracket of the device, or on the back cover of the electronic device through a floating metal (FLM) process.
  • FLM floating metal
  • the central area of the first frame 105 can be understood as the area within 5 mm from the center of the first frame 105.
  • the center of the first frame 105 can be the center (geometric center) of the physical length of the first frame 105 or the electrical length. center of.
  • the antenna 120 may include a first frame 105, and the first frame 105 serves as a radiator.
  • the first frame 105 may include a first feed point 121 and a second feed point 122 .
  • the antenna 120 may further include a first capacitor 131, a second capacitor 132, a first feeding unit 141 and a second feeding unit 142.
  • the first end of the first capacitor 131 is electrically connected to the first frame 105 at the first feeding point 121
  • the second end of the first capacitor 131 is electrically connected to the first feeding unit 141 .
  • the first end of the second capacitor 132 is electrically connected to the first frame 105 at the second feeding point 122
  • the second end of the second capacitor 132 is electrically connected to the second feeding unit 142 .
  • the antenna 120 may further include an inductor 151.
  • the first end of the inductor 151 is located between the second end of the first capacitor 131 and the first feeding unit 141.
  • the second end of the inductor 151 is located between the second end of the second capacitor 132 and the first feeding unit 141. between the two feeding units 142.
  • the impedance curve corresponding to the DM mode in the antenna 120 can be adjusted through the inductor 151 so that it can be closer to the impedance curve corresponding to the CM mode, thereby improving the isolation bandwidth of the antenna 120 .
  • the antenna 120 when the first feeding unit 141 feeds power, the antenna 120 may serve as the first antenna unit.
  • the first antenna unit may generate a first resonance and a second resonance, the first resonance having a lower resonance frequency than the second resonance.
  • the antenna 120 When the second feeding unit 142 feeds power, the antenna 120 may serve as the second antenna unit.
  • the second antenna unit may generate a third resonance and a fourth resonance, and the resonant frequency band of the first resonance and the resonant frequency band of the third resonance are the same frequency (for example, the resonant frequency band of the first resonance and the resonant frequency band of the third resonance both include the first frequency band ), the resonant frequency band of the second resonance and the resonant frequency band of the fourth resonance are of the same frequency (for example, the resonant frequency band of the second resonance and the resonant frequency band of the fourth resonance both include the second frequency band).
  • the first feeding unit 141 indirectly couples and feeds an electrical signal through the first capacitor 131, the first antenna unit excites the first resonance in the first frequency band and the second resonance in the second frequency band.
  • the first capacitor 131 can be in an open circuit state in the first frequency band and in a short circuit state in the second frequency band.
  • the first antenna unit When the first capacitor 131 is in an open-circuit state, the current on the frame between the first position and the second position is as shown in Figure 11.
  • the first feed point is the current zero point area, corresponding to the electric field intensity point area.
  • a feed point presents a boundary condition of a large electric field.
  • the first antenna unit has a linear antenna structure and can operate in a half-wavelength mode.
  • the first antenna unit When the first capacitor 131 is in a short-circuit state, the current on the frame between the first position and the first feed point is as shown in Figure 12.
  • the first feed point is the current strong point area, corresponding to the electric field zero point area. Boundary conditions for high currents are present at the first feed point.
  • the first antenna unit has a slotted hole structure and can operate in a quarter-wavelength mode.
  • the first feeding unit 141 indirectly couples and feeds the electrical signal through the first capacitor 131 so that the first antenna unit operates in two different modes and generates two resonances to expand the operating bandwidth of the antenna 120 .
  • the situation that the second feeding unit 142 indirectly couples and feeds the electrical signal through the second capacitor 132 can also be understood accordingly.
  • the first feed point 121 and the second feed point 122 are symmetrical along the virtual axis of the first frame 105, and the lengths of the first frame 105 on both sides of the virtual axis are the same (the virtual axis is the length of the first frame 105). Symmetry axis). It should be understood that as the symmetry of the structure of antenna 120 increases, the radiation characteristics of antenna 120 improve.
  • the working frequency band of the antenna 120 may include at least part of the frequency bands N77 (3300MHz-42000MHz), N78 (3300MHz-3800MHz) or N79 (4400MHz-5000MHz).
  • the capacitance value C1 of the first capacitor 131 satisfies: 0.3pF ⁇ C1 ⁇ 1pF.
  • the capacitance value C2 of the second capacitor 132 satisfies: 0.3pF ⁇ C2 ⁇ 1pF.
  • the inductance value L1 of the inductor 151 satisfies: 1nH ⁇ L1 ⁇ 8nH.
  • the first capacitor 131 includes at least one of a lumped capacitor device and a distributed capacitor device.
  • the second capacitor 132 includes at least one of a lumped capacitive device and a distributed capacitive device.
  • the first capacitor when the first capacitor is a distributed capacitor, the first capacitor includes a first metal layer 1311 and a second metal layer 1312, as shown in (a) in Figure 13.
  • the first metal layer 1311 and the second metal layer 1312 are spaced apart along the first direction, and the projections of the first metal layer 1311 and the second metal layer 1312 along the first direction on the plane where the floor 110 is located at least partially overlap.
  • the first metal layer 1311 and the first frame 105 are electrically connected at the first feed point 121, as shown in (b) of Figure 13 .
  • the second metal layer 1312 is electrically connected to the first feeding unit 141, as shown in (c) of FIG. 13 .
  • the first direction is a direction perpendicular to the plane where the floor 110 is located, such as the z direction.
  • the second capacitor when the second capacitor is a distributed capacitor, the second capacitor includes a third metal layer 1321 and a fourth metal layer 1322.
  • the third metal layer 1321 and the fourth metal layer 1322 are spaced apart along the first direction, and the projections of the third metal layer 1321 and the fourth metal layer 1322 along the first direction on the plane where the floor 110 is located at least partially overlap.
  • the third metal layer 1321 is electrically connected to the first frame 105 at the second feed point 122, as shown in (b) of Figure 13 .
  • the fourth metal layer 1322 is electrically connected to the second power feeding unit 142, as shown in (c) of FIG. 13 .
  • the inductor 151 may be connected in series between the second metal layer 1312 and the fourth metal layer 1322.
  • is the relative dielectric constant of the medium filled between the two polar plates (for example, the first metal layer 1311 and the second metal layer 1312); ⁇ is the absolute dielectric constant in vacuum; k is the electrostatic force constant; S is The facing area of the two electrode plates, such as the relative area of the first metal layer 1311 and the second metal layer 1312 in the embodiment of the present application (the first metal layer 1311 and the second metal layer 1312 are on the plane where the floor 110 is located along the first direction. The area of the overlapping portion of the projection); d is the vertical distance between the two electrode plates, such as the distance along the first direction (z direction) between the first metal layer 1311 and the second metal layer 1312 in the embodiment of the present application.
  • the capacitance value of the first capacitor 131 or the second capacitor 132 can be adjusted by controlling the electrical parameters of the first capacitor 131 or the second capacitor 132, thereby adjusting the radiation characteristics of the antenna.
  • first metal layer 1311 and the third metal layer 1321 may be disposed on the first surface of the PCB 17 .
  • the second metal layer 1312 and the fourth metal layer 1322 may be disposed on the second surface of the PCB 17 .
  • first surface and the second surface of the PCB 17 may be the upper surface and the lower surface of the PCB 17 , or may be any surface of a plurality of dielectric boards stacked in the PCB (for example, the first metal layer may be provided anywhere in the PCB 17 between two adjacent dielectric plates), the embodiment of the present application does not limit this.
  • the antenna 120 may further include a first matching circuit 161 and a second matching circuit 162, as shown in FIG. 14 .
  • the first matching circuit 161 may be disposed between the first capacitor 131 and the first feeding unit 141 to adjust the impedance of the antenna 120 at the first feeding point so that the impedance at the first feeding point is consistent with the first feeding point.
  • the impedance matching of the circuit at the unit 141 improves the radiation characteristics of the antenna 120 (first antenna unit) when the first feeding unit 141 feeds an electrical signal.
  • the second matching circuit 162 may be disposed between the second capacitor 132 and the second feeding unit 142 to adjust the impedance of the antenna 120 at the second feeding point so that the impedance at the second feeding point is consistent with the second feeding point.
  • the impedance matching of the circuit at the unit 142 improves the radiation characteristics of the antenna 120 (second antenna unit) when the second feeding unit 142 feeds an electrical signal.
  • Figure 15 is a schematic structural diagram of a set of antennas provided by an embodiment of the present application.
  • the radiator includes two feed points. Capacitors are set between the radiator and the feed unit at the two feed points to feed the electric power through indirect coupling. signal, there is no grounding point on the radiator. As shown in (b) of Figure 15 , compared with the antenna shown in (a) of Figure 15 , the difference is that a grounding point is provided in the central area of the radiator, and the ground is grounded through the floor at this position.
  • the structure of the antenna is the same as the antenna 120 shown in Figure 10 (for simplicity of discussion, the embodiment of this application only assumes that the length of the first frame 105 is 30.5mm, and the clearance of the antenna (frame) 11 and the floor 110) is 2mm, the size of the floor 110 is 80mm ⁇ 30mm, and the inductance value of the inductor 151 is 3nH.
  • the above electrical parameters can be adjusted according to the actual design.
  • This application does not (without limitation), compared with the antenna shown in (b) in Figure 15, the difference lies in that an inductor is provided between two feed points.
  • the difference is that a matching circuit is added between the feed point and the radiator to improve the radiation performance of the antenna.
  • FIG. 16 is a graph of S parameters and impedance of the antenna shown in (a) in FIG. 15 .
  • FIG. 17 is a graph of S parameters and impedance of the antenna shown in (b) of FIG. 15 .
  • FIG. 18 is a graph of S parameters and impedance curves of the antenna shown in (c) in FIG. 15 .
  • FIG. 19 is a graph of S parameters and impedance of the antenna shown in (d) in FIG. 15 .
  • S21 ⁇ -10dB is the limit, and the bandwidth of the isolation between the two antenna units in the antenna shown in (a) of Figure 15 is only 1000MHz.
  • the antenna shown in (b) in Figure 15 has a grounding point through the central area of the radiator, and the impedance curve corresponding to the CM mode in the antenna can be adjusted so that it can correspond to the DM mode.
  • the impedance curves are brought closer to each other, thereby increasing the isolation bandwidth between the two antenna units, as shown in (a) in Figure 17.
  • the antenna shown in (c) in Figure 15 can adjust the impedance curve corresponding to the DM mode in the antenna so that it can be directed toward the CM by setting an inductor between the two feed points.
  • the impedance curves corresponding to the modes are close to each other, thereby increasing the bandwidth of the isolation between the two antenna units, as shown in (a) in Figure 18.
  • the antenna shown in (d) in Figure 15 adds a matching circuit based on the antenna shown in (c) in Figure 15 to optimize the radiation performance of the antenna to S11/ S22 ⁇ -10dB is the limit.
  • the resonant frequency bands of the first antenna unit (when the first feed point feeds the electrical signal) and the second antenna unit (when the second feed point feeds the electrical signal) can include 2.92GHz to 5.03 GHz, its working frequency bands can include the N77, N78 and N79 frequency bands of 5G.
  • the impedance curve corresponding to the CM mode is closer to the impedance curve corresponding to the DM mode, as shown in (b) in Figure 19.
  • the isolation degree (S21) of the first antenna unit and the second antenna unit is both greater than 12dB, and the bandwidth of the isolation degree between the two antenna units is Greater than 3000MHz.
  • FIG. 20 is a simulation result diagram of the system efficiency and radiation efficiency of the antenna shown in (d) in FIG. 15 .
  • the system efficiency (greater than -1dB) and radiation efficiency (greater than -1dB) of the first antenna unit and the second antenna unit can meet the communication needs.
  • Figure 21 is a schematic diagram of an electronic device 200 provided by an embodiment of the present application.
  • the electronic device may include a floor 210 , a frame 11 and an antenna 220 .
  • the frame 11 has a first position 201 and a second position 202.
  • the frame 11 is provided with a first gap 203 at the first position 201 and a second gap 204 at the second position 202.
  • Between the first position 201 and the second position 202 The frame 11 in between is the first frame 205.
  • the antenna 220 may include a first frame 205, and the first frame 205 serves as a radiator.
  • the first frame 205 may include a first feed point 221 and a second feed point 222.
  • the antenna 220 may further include a first capacitor 231, a second capacitor 232, a first feeding unit 241 and a second feeding unit 242.
  • the first end of the first capacitor 231 is electrically connected to the first frame 205 at the first feeding point 221 , and the second end of the first capacitor 231 is electrically connected to the first feeding unit 241 .
  • the first end of the second capacitor 232 is electrically connected to the first frame 205 at the second feeding point 222 , and the second end of the second capacitor 232 is electrically connected to the second feeding unit 242 .
  • the antenna 220 may also include a first inductor 251 , a second inductor 252 and a third capacitor 233 .
  • the first end of the first inductor 251 is located between the second end of the first capacitor 231 and the first feeding unit 241.
  • the second end of the first inductor 251 is electrically connected to the first end of the second inductor 252.
  • the second inductor The second end of 252 is located between the second end of the second capacitor 232 and the second feed unit 242 (the first inductor 251 and the second inductor 252 are connected in series between the first feed point 221 and the second feed point 222 ).
  • the first terminal of the third capacitor 233 is located between the second terminal of the first inductor 251 and the first terminal of the second inductor 252 , and the second terminal of the third capacitor 233 is connected to ground.
  • the difference between the antenna 220 shown in FIG. 21 and the antenna 120 shown in FIG. 10 is that there is no grounding point provided on the first frame 205, and a grounding point is formed by using the first inductor 251, the second inductor 252 and the third capacitor 233.
  • the T-shaped structure replaces the series inductor. Since there is no need to provide a grounding point on the first frame 205, the actual structure of the antenna 220 is simpler.
  • the first inductor 251 and the second inductor 252 connected in series can be used to adjust the impedance curve corresponding to the DM mode in the antenna 220, as shown in (a) of Figure 22.
  • the third capacitor 233 is used to adjust the impedance curve corresponding to the CM mode in the antenna 220, as shown in (b) of Figure 22 .
  • the impedance curve corresponding to the DM mode in the antenna 220 can be adjusted through the first inductor 251 and the second inductor 252 connected in series, and the impedance curve corresponding to the CM mode in the antenna 220 can be adjusted through the third capacitor 233, so that the impedance curve corresponding to the CM mode The impedance curve is close to the impedance curve corresponding to the DM mode, thereby increasing the isolation bandwidth of the antenna 220 .
  • the antenna 220 when the first feeding unit 241 feeds power, the antenna 220 may serve as the first antenna unit.
  • the first antenna unit may generate a first resonance and a second resonance, the first resonance having a lower resonance frequency than the second resonance.
  • the antenna 220 When the second feeding unit 242 feeds power, the antenna 220 may serve as the second antenna unit.
  • the second antenna unit may generate a third resonance and a fourth resonance, and the resonant frequency band of the first resonance and the resonant frequency band of the third resonance are the same frequency (for example, the resonant frequency band of the first resonance and the resonant frequency band of the third resonance both include the first frequency band ), the resonant frequency band of the second resonance and the resonant frequency band of the fourth resonance are the same frequency (for example, the resonant frequency band of the second resonance and the resonant frequency band of the fourth resonance Both include the second band).
  • the first feeding unit 241 indirectly couples and feeds an electrical signal through the first capacitor 231, the first antenna unit excites the first resonance in the first frequency band and the second resonance in the second frequency band.
  • the first capacitor 231 can be in an open circuit state in the first frequency band and in a short circuit state in the second frequency band. Therefore, the first feeding unit 241 indirectly couples and feeds the electrical signal through the first capacitor 231 so that the first antenna unit operates in two different modes and generates two resonances to expand the operating bandwidth of the antenna 220 .
  • the situation where the second feeding unit 242 indirectly couples and feeds the electrical signal through the second capacitor 232 can also be understood accordingly.
  • the first feed point 221 and the second feed point 222 are symmetrical along the virtual axis of the first frame 205, and the lengths of the first frame 205 on both sides of the virtual axis are the same (the virtual axis is the length of the first frame 205). Symmetry axis). It should be understood that as the symmetry of the structure of antenna 220 increases, the radiation characteristics of antenna 220 improve.
  • the working frequency band of the antenna 220 may include at least part of the frequency bands N77 (3300MHz-42000MHz), N78 (3300MHz-3800MHz) or N79 (4400MHz-5000MHz).
  • the capacitance value C1 of the first capacitor 231 satisfies: 0.3pF ⁇ C1 ⁇ 1pF.
  • the capacitance value C2 of the second capacitor 232 satisfies: 0.3pF ⁇ C2 ⁇ 1pF.
  • the inductance value L1 of the first inductor 251 satisfies: 1nH ⁇ L1 ⁇ 8nH.
  • the inductance value L2 of the second inductor 252 satisfies: 1nH ⁇ L1 ⁇ 8nH.
  • the capacitance value C3 of the third capacitor 233 satisfies: 0.1pF ⁇ C2 ⁇ 5pF.
  • the inductance value L1 of the first inductor 251 and the inductance value L2 of the second inductor 252 may be the same.
  • the first capacitor 231 includes at least one of a lumped capacitive device and a distributed capacitive device.
  • the second capacitor 232 includes at least one of a lumped capacitive device and a distributed capacitive device.
  • the first capacitor when the first capacitor is a distributed capacitor, includes a first metal layer and a second metal layer.
  • the first metal layer and the second metal layer are spaced apart along the first direction, and the projections of the first metal layer and the second metal layer along the first direction on a plane where the floor is located at least partially overlap.
  • the first metal layer and the first frame are electrically connected at the first feeding point.
  • the second metal layer is electrically connected to the first power feeding unit.
  • the first direction is a direction perpendicular to the plane of the floor, such as the z direction.
  • the second capacitor when the second capacitor is a distributed capacitor, the second capacitor includes a third metal layer and a fourth metal layer.
  • the third metal layer and the fourth metal layer are spaced apart along the first direction, and the projections of the third metal layer and the fourth metal layer along the first direction on a plane where the floor is located at least partially overlap.
  • the third metal layer is electrically connected to the first frame at the second feeding point.
  • the fourth metal layer is electrically connected to the second feeding unit.
  • the first inductor and the second inductor may be connected in series between the second metal layer and the fourth metal layer.
  • is the relative dielectric constant of the medium filled between the two electrode plates (for example, the first metal layer and the second metal layer); ⁇ is the absolute dielectric constant in vacuum; k is the electrostatic force constant; S is the two electrode plates.
  • the facing area such as the relative area of the first metal layer and the second metal layer in the embodiment of the present application (the area of the overlapping portion of the projection of the first metal layer and the second metal layer along the first direction on the plane where the floor is located) ); d is the vertical distance between the two electrode plates, such as the distance along the first direction (z direction) between the first metal layer and the second metal layer in the embodiment of the present application.
  • the capacitance value of the first capacitor or the second capacitor can be adjusted by controlling the electrical parameters of the first capacitor or the second capacitor, thereby adjusting the radiation characteristics of the antenna.
  • the first metal layer and the third metal layer may be disposed on a first surface of a PCB disposed on the electronic device.
  • the second metal layer and the fourth metal layer may be disposed on the second surface of the PCB.
  • first surface and the second surface of the PCB can be the upper surface and the lower surface of the PCB, or can be any surface of a plurality of dielectric boards stacked in the PCB (for example, the first metal layer can be provided anywhere in the PCB. between two adjacent dielectric plates), the embodiment of the present application does not limit this.
  • the antenna 220 may further include a first matching circuit and a second matching circuit.
  • the first matching circuit may be disposed between the first capacitor and the first feeding unit for adjusting the impedance of the antenna at the first feeding point so that the impedance at the first feeding point is consistent with the first feeding unit.
  • the impedance matching of the circuit at the electrical unit improves the radiation characteristics of the antenna (first antenna unit) when the first feeding unit feeds an electrical signal.
  • the second matching circuit may be disposed between the second capacitor and the second feeding unit for adjusting the impedance of the antenna at the second feeding point so that the impedance at the second feeding point is consistent with the circuit at the second feeding unit. Impedance matching improves the radiation characteristics of the antenna (second antenna unit) when the second feeding unit feeds electrical signals.
  • FIG. 23 and 24 are simulation result diagrams of the antenna in the electronic device 200 shown in FIG. 21 .
  • FIG. 23 is the S parameter of the antenna in the electronic device 200 shown in FIG. 21 .
  • FIG. 24 is an impedance curve of the antenna in the electronic device 200 shown in FIG. 21 .
  • the inductance value L1 of the first inductor 251 and the inductance value L2 of the second inductor 252 are both 2.5nH, and the capacitance value C3 of the third capacitor 233 is 1.8pF.
  • the embodiment of the present application only uses the above-mentioned capacitance value. The parameters are explained as an example. In actual design, they can be adjusted according to needs.
  • the first antenna unit when the first feed point feeds an electrical signal
  • the second antenna unit when the second feed point feeds an electrical signal
  • the resonant frequency bands can include 2.92GHz to 5.03GHz, and their working frequency bands can include the N77, N78 and N79 frequency bands of 5G.
  • the impedance curve corresponding to the CM mode is closer to the impedance curve corresponding to the DM mode, as shown in Figure 24.
  • the isolation degree (S21) of the first antenna unit and the second antenna unit is both greater than 10dB, and the bandwidth of the isolation degree between the two antenna units is greater than 2900MHz.
  • Figure 25 is a schematic structural diagram of a set of antennas provided by an embodiment of the present application.
  • the radiator includes two feed points.
  • a first capacitor and a second capacitor are respectively provided between the radiator and the feed unit at the two feed points.
  • the electrical signal is fed through indirect coupling.
  • a first inductor and a second inductor are provided in series between two feed points.
  • a third capacitor connected in parallel to ground is added between the first inductor and the second inductor in series. to improve the radiation performance of the antenna.
  • FIG. 26 is a graph of S parameters and impedance of the antenna shown in (a) in FIG. 15 .
  • FIG. 27 is a graph of S parameters and impedance curves of the antenna shown in (b) of FIG. 15 .
  • FIG. 28 is a graph of S parameters and impedance curves of the antenna shown in (c) of FIG. 15 .
  • the impedance curve corresponding to the CM mode and the impedance curve corresponding to the DM mode in the antenna are far apart.
  • the bandwidth of the isolation between the two antenna units in the antenna shown in (a) of FIG. 25 is narrow.
  • the antenna shown in (b) in Figure 25 can adjust the impedance curve corresponding to the DM mode in the antenna by setting a first inductor and a second inductor in series between two feed points. , so that it can approach the impedance curve corresponding to the CM mode.
  • the bandwidth of the isolation between the two antenna units in the antenna is improved.
  • adding a third capacitor connected in parallel to ground between the first inductor and the second inductor in series can adjust the impedance curve corresponding to the CM mode in the antenna so that it can be adjusted to the impedance curve corresponding to the DM mode.
  • the impedance curve is close.
  • taking S21 ⁇ -10dB as the limit compared with the antenna shown in (b) of Figure 25, the bandwidth of the isolation between the two antenna units in the antenna is further improved.
  • the impedance curve corresponding to the DM mode in the antenna can be adjusted through the first inductor and the second inductor connected in series, and the impedance curve corresponding to the CM mode in the antenna can be adjusted through the third capacitor.
  • the impedance curve corresponding to the CM mode and the impedance curve corresponding to the DM mode in the antenna are close to each other, there can be better isolation between the two antenna units in the antenna.
  • FIG. 29 is a schematic structural diagram of an electronic device 300 provided by an embodiment of the present application.
  • the electronic device 300 may include a floor 310 , a frame 11 and an antenna 320 .
  • the frame 11 has a first position 301 and a second position 302.
  • the frame 11 is grounded through the floor 310 at the first position 301 and the second position 302.
  • the frame 11 between the first position 301 and the second position 302 is the first position. Border 303.
  • the antenna 320 may include a first frame 303 , and the antenna 320 is a slot antenna formed by a gap formed between the first frame 303 and the floor 310 .
  • the first frame 303 includes a gap 304 , a first feed point 321 and a second feed point 322 .
  • the gap 304 is disposed between the first feed point 321 and the second feed point 322 .
  • the antenna 320 may further include a first capacitor 331, a second capacitor 332, a first feeding unit 341 and a second feeding unit 342.
  • the first end of the first capacitor 331 is electrically connected to the first frame 303 at the first feed point 321, and the second end of the first capacitor 331 is electrically connected to the first feed unit. Yuan 341 electrical connection.
  • the first end of the second capacitor 332 is electrically connected to the first frame 303 at the second feeding point 322 , and the second end of the second capacitor 332 is electrically connected to the second feeding unit 342 .
  • the antenna 320 may also include a first inductor 351, a second inductor 352, and a third capacitor 333.
  • the first end of the first inductor 351 is located between the second end of the first capacitor 331 and the first feeding unit 341.
  • the second end of the first inductor 351 is electrically connected to the first end of the second inductor 352.
  • the second inductor The second end of 352 is located between the second end of the second capacitor 332 and the second feed unit 342 (the first inductor 351 and the second inductor 352 are connected in series between the first feed point 321 and the second feed point 322 ).
  • the first terminal of the third capacitor 333 is located between the second terminal of the first inductor 351 and the first terminal of the second inductor 352 , and the second terminal of the third capacitor 333 is connected to ground.
  • the antenna 320 when the first feeding unit 341 feeds power, the antenna 320 may serve as the first antenna unit.
  • the first antenna unit may generate a first resonance and a second resonance, the first resonance having a lower resonance frequency than the second resonance.
  • the antenna 320 When the second feeding unit 342 feeds power, the antenna 320 may serve as the second antenna unit.
  • the second antenna unit may generate a third resonance and a fourth resonance, and the resonant frequency band of the first resonance and the resonant frequency band of the third resonance are the same frequency (for example, the resonant frequency band of the first resonance and the resonant frequency band of the third resonance both include the first frequency band ), the resonant frequency band of the second resonance and the resonant frequency band of the fourth resonance are of the same frequency (for example, the resonant frequency band of the second resonance and the resonant frequency band of the fourth resonance both include the second frequency band).
  • the first feeding unit 341 indirectly couples and feeds an electrical signal through the first capacitor 331, the first antenna unit excites the first resonance in the first frequency band and the second resonance in the second frequency band.
  • the first capacitor 331 can be in an open circuit state in the first frequency band and in a short circuit state in the second frequency band. Therefore, the first feeding unit 341 indirectly couples and feeds the electrical signal through the first capacitor 331 so that the first antenna unit operates in two different modes and generates two resonances to expand the operating bandwidth of the antenna 320 .
  • the situation that the second feeding unit 342 indirectly couples and feeds the electrical signal through the second capacitor 332 can also be understood accordingly.
  • the first feed point 321 and the second feed point 322 are symmetrical along the virtual axis of the first frame 303, and the lengths of the first frame 303 on both sides of the virtual axis are the same (the virtual axis is the length of the first frame 303). Symmetry axis).
  • the gap 304 may be provided in the central area of the first frame 303 .
  • the working frequency band of the antenna 320 may include at least part of the frequency bands N77 (3300MHz-42000MHz), N78 (3300MHz-3800MHz) or N79 (4400MHz-5000MHz).
  • the capacitance value C1 of the first capacitor 331 satisfies: 0.3pF ⁇ C1 ⁇ 1pF.
  • the capacitance value C2 of the second capacitor 332 satisfies: 0.3pF ⁇ C2 ⁇ 1pF.
  • the inductance value L1 of the first inductor 351 satisfies: 1nH ⁇ L1 ⁇ 8nH.
  • the inductance value L2 of the second inductor 352 satisfies: 1nH ⁇ L1 ⁇ 8nH.
  • the capacitance value C3 of the third capacitor 333 satisfies: 0.1pF ⁇ C2 ⁇ 5pF.
  • the inductance value L1 of the first inductor 351 and the inductance value L2 of the second inductor 352 may be the same.
  • the first capacitor 331 includes at least one of a lumped capacitive device and a distributed capacitive device.
  • the second capacitor 332 includes at least one of a lumped capacitive device and a distributed capacitive device.
  • the first capacitor when the first capacitor is a distributed capacitor, the first capacitor includes a first metal layer 3311, as shown in (b) of FIG. 29 .
  • One end of the first metal layer 3311 is electrically connected to the first feeding unit 341, and the first metal layer 3311 is indirectly coupled to the first frame 303 at the first feeding point.
  • the first metal layer 3311 and the first frame 303 are spaced apart along the first direction, and the projections of the first metal layer 3311 and the first frame 303 along the first direction on the plane where the floor is located at least partially overlap.
  • a first capacitor is formed between the first metal layer 3311 and the first frame 303 .
  • the first direction is a direction perpendicular to the plane of the floor, such as the z direction.
  • the second capacitor when the second capacitor is a distributed capacitor, the second capacitor includes a second metal layer 3321, as shown in (b) of FIG. 29 .
  • One end of the second metal layer 3321 is electrically connected to the second feeding unit 342, and the second metal layer 3321 is indirectly coupled to the first frame 303 at the second feeding point.
  • the second metal layer 3321 and the first frame 303 are spaced apart along the first direction, and the projections of the second metal layer 3321 and the first frame 303 along the first direction on the plane where the floor is located at least partially overlap.
  • a second capacitor is formed between the second metal layer 3321 and the first frame 303 .
  • the first inductor 351 and the second inductor 352 may be connected in series between the first metal layer 3311 and the second metal layer 3321.
  • is the relative dielectric constant of the medium filled between the two pole plates (for example, the first metal layer 3311 and the first frame 303); ⁇ is the absolute dielectric constant in vacuum; k is the electrostatic force constant; S is the two poles.
  • the area facing the board such as the relative area of the first metal layer 3311 and the first frame 303 in the embodiment of the present application (the overlap of the projections of the first metal layer 3311 and the first frame 303 along the first direction on the plane where the floor is located) area of the portion); d is the vertical distance between the two electrode plates, such as the distance along the first direction (z direction) between the first metal layer 3311 and the first frame 303 in the embodiment of the present application.
  • the capacitance value of the first capacitor or the second capacitor can be adjusted by controlling the electrical parameters of the first capacitor or the second capacitor, thereby adjusting the radiation characteristics of the antenna.
  • Figure 30 is a schematic diagram of the structure of an antenna provided by an embodiment of the present application.
  • the T-shaped circuit (the first inductor, the second inductor 352 and the third capacitor 333 ) is not provided.
  • FIG. 31 to 33 are simulation result diagrams of the antenna in the electronic device 300 shown in FIG. 29 and the antenna shown in FIG. 30 .
  • Fig. 31 shows the S parameters of the antenna shown in Fig. 29 and the antenna shown in Fig. 30.
  • Figure 32 is the impedance curve of the antenna shown in Figure 29 and the antenna shown in Figure 30 from 2.5GHz to 3GHz.
  • Figure 33 is the impedance curve of the antenna shown in Figure 29 and the antenna shown in Figure 30 from 4.8GHz to 5.8GHz.
  • the inductance value L1 of the first inductor 351 and the inductance value L2 of the second inductor 352 are both 4nH
  • the capacitance value C3 of the third capacitor 333 is 0.1pF
  • the size of the floor 310 is 80mm ⁇ 40mm
  • the size of the gap 304 is 3mm ⁇ 3mm
  • the distance between the first metal layer 3311 and the first frame 303 is 0.2mm (coupling distance)
  • the distance between the first frame 303 and the floor 310 is 2mm
  • the length of the first frame 303 is 28mm.
  • the embodiments of this application only take the above electrical parameters as an example for description. In actual design, they can be adjusted according to needs.
  • the antenna can resonate near 3 GHz and 5.3 GHz.
  • the resonant frequency bands of the first antenna unit (when the first feed point feeds the electrical signal) and the second antenna unit (when the second feed point feeds the electrical signal) can both include WiFi
  • the 2.4G frequency band and 5G frequency band can also include the N79 frequency band of 5G.
  • the impedance curve corresponding to the CM mode and the impedance curve corresponding to the DM mode in the antenna shown in Figure 30 between the 2.5GHz and 3GHz frequency bands are shown.
  • the impedance curve corresponding to the CM mode and the impedance curve corresponding to the DM mode in the antenna shown in Figure 30 in the frequency band between 4.8GHz and 5.8GHz are shown.
  • the CM mode in the antenna corresponds to The impedance curve is close to the impedance curve corresponding to the DM mode.
  • the isolation between the two antenna units is significantly improved by more than 10dB (S21 ⁇ -10dB).
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection between devices or units may be in electrical or other forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请实施例提供了一种电子设备,包括天线,该天线通过两个馈电点之间设置的T型电路可以拓展天线的隔离度带宽,满足通信需要。天线包括第一电感,第二电感和电容,第一电感和第二电感串联在天线的两个馈电点之间,电容的一端位于第一电感与第二电感之间,电容的另一端接地。

Description

一种电子设备
本申请要求于2022年6月23日提交中国专利局、申请号为202210718978.6、申请名称为“一种电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及一种电子设备。
背景技术
随着无线通信技术的快速发展,过去第二代(second generation,2G)移动通信***主要支持通话功能,电子设备只是人们用于收发简讯以及语音沟通的工具,无线上网功能由于数据传输利用语音信道来传送,速度极为缓慢。现今,电子设备除了用于通话、发送短信、拍照之外,更可用于在线听音乐、观看网络影片、实时视频等,涵盖了人们生活中通话、影视娱乐以及电子商务等各式应用,在这之中,多种功能应用都需要无线网络上传及下载数据,因此,数据的高速传输变得极为重要。
而在众多研究当中,多输入多输出***(multiple-input multiple-output,MIMO)是一项被广泛采用的核心技术,MIMO***可以同时具备空间多样(spatial diversity)及空间多任务(spatial multiplexing),藉由在发射端与接收端架设多路天线所提供的空间自由度来提升通讯***的频谱效率,进而达到改善通讯质量与提升传输速率的目标。目前在电子设备日益紧凑的布局中实现长期演进(long term evolution,LTE)/第五代(fifth generation,5G)新空口(New Radio,NR)的MIMO***的多天线具有很大挑战。
发明内容
本申请实施例提供了一种电子设备,包括天线,该天线通过两个馈电点之间设置的T型电路可以拓展天线的隔离度带宽,满足通信需要。
第一方面,提供了一种电子设备,包括:天线,所述天线包括所述辐射体,所述辐射体包括第一馈电点和第二馈电点;地板,所述天线通过所述地板接地;其中,所述天线还包括第一电容,第二电容,第一馈电单元和第二馈电单元,所述第一电容的第一端与所述辐射体在第一馈电点处电连接,所述第一电容的第二端与所述第一馈电单元电连接,所述第二电容的第一端与所述辐射体在第二馈电点处电连接,所述第二电容的第二端与所述第二馈电单元电连接;所述天线还包括第一电感,第二电感和第三电容,所述第一电感的第一端位于所述第一电容的第二端与所述第一馈电单元之间,所述第一电感的第二端与所述第二电感的第一端电连接,所述第二电感的第二端位于所述第二电容的第二端与所述第二馈电单元之间,所述第三电容的第一端位于所述第一电感的第二端与所述第二电感的第一端之间,所述第三电容的第二端接地。
根据本申请实施例,可以利用串联的第一电感和第二电感调整天线中的DM模式对应的阻抗曲线。利用第三电容调整天线中的CM模式对应的阻抗曲线。因此,可以通过串联的第一电感和第二电感调整天线中的DM模式对应的阻抗曲线,可以通过第三电容调整天线中的CM模式对应的阻抗曲线,使CM模式对应的阻抗曲线和DM模式对应的阻抗曲线靠近,从而提升天线的隔离度的带宽。
结合第一方面,在第一方面的某些实现方式中,所述第一电感的电容值L1满足:1nH≤L1≤8nH;和/或,所述第二电感的电容值L2满足:1nH≤L2≤8nH;和/或,所述第三电容的电容值C3满足:0.1pF≤C3≤5pF。
根据本申请实施例,为论述的简洁,本申请仅以上述5G频段为例进行说明,在实际的应用中,可以根据设计需求对上述电容的电容值和电感的电感值进行调整。
结合第一方面,在第一方面的某些实现方式中,所述第一馈电点和所述第二馈电点沿所述辐射体的虚拟轴线对称;所述虚拟轴线两侧的辐射体的长度相同。
结合第一方面,在第一方面的某些实现方式中,所述第一电感的电感值和所述第二电感的电感值 相同。
根据本申请实施例,随着天线的结构的对称性增加,天线的辐射特性(例如带宽)随之改善。
结合第一方面,在第一方面的某些实现方式中,所述第一馈电单元馈电时,所述天线产生第一谐振和第二谐振,所述第一谐振的谐振频率低于所述第二谐振的谐振频率;所述第二馈电单元馈电时,所述天线产生第三谐振和第四谐振,所述第一谐振的谐振频段和所述第三谐振的谐振频段同频,所述第二谐振的谐振频段和所述第四谐振的谐振频段同频。
根据本申请实施例,第一馈电单元通过第一电容间接耦合馈入电信号可以使第一天线单元工作在两种不同的模式下,产生两个谐振,以拓展天线的工作带宽。第二馈电单元通过第二电容间接耦合馈入电信号的情况也可以相应理解。
结合第一方面,在第一方面的某些实现方式中,所述第一电容的电容值C1满足:0.3pF≤C1≤1pF;和/或,所述第二电容的电容值C2满足:0.3pF≤C2≤1pF。
根据本申请实施例,本申请仅以上述5G频段为例进行说明,在实际的应用中,可以根据设计需求对第一电容的电容值以及第二电容的电容值进行调整,以调整馈入辐射体的电信号。
结合第一方面,在第一方面的某些实现方式中,所述第一电容包括集总电容器件,和分布式电容器件中的至少一种;所述第二电容包括集总电容器件,和分布式电容器件中的至少一种。
根据本申请实施例,可以根据电子设备内部的布局调整第一电容和第二电容的形式,本申请实施例对此并不做限制。
结合第一方面,在第一方面的某些实现方式中,所述第一电容包括第一金属层和第二金属层,所述第一金属层和所述第二金属层沿第一方向间隔,且所述第一金属层和所述第二金属层沿所述第一方向在所述地板所在的平面上的投影至少部分重叠,所述第一金属层与所述辐射体在第一馈电点处电连接,所述第二金属层与所述第一馈电单元电连接,所述第一方向为垂直于所述地板所在平面的方向;所述第二电容包括第三金属层和第四金属层,所述第三金属层和所述第四金属层沿所述第一方向间隔,且所述第三金属层和所述第四金属层沿所述第一方向在所述地板所在的平面上的投影至少部分重叠,所述第三金属层与所述辐射体在第二馈电点处电连接,所述第四金属层与所述第二馈电单元电连接;所述第一电感的第一端与所述第二金属层电连接;所述第二电感的第二端与所述第四金属层电连接。
根据本申请实施例,可以通过控制上述第一电容的电参数(例如,第一金属层1311和第二金属层1312之间填充的介质的相对介电常数)或第二电容的电参数,调整第一电容或第二电容的电容值,从而调整天线的辐射特征。
结合第一方面,在第一方面的某些实现方式中,所述天线的工作频段包括下列频段中的至少部分频段:3300MHz-42000MHz,3300MHz-3800MHz或4400MHz-5000MHz。
根据本申请实施例,天线的工作频段可以包括N77(3300MHz-42000MHz),N78(3300MHz-3800MHz)或N79(4400MHz-5000MHz)中的至少部分频段。
结合第一方面,在第一方面的某些实现方式中,所述电子设备还包括:导电边框,所述边框上具有第一位置和第二位置,所述边框在所述第一位置设置第一缝隙,在所述第二位置设置第二缝隙,所述第一位置和所述第二位置之间的边框为第一边框,所述第一边框作为所述辐射体。
根据本申请实施例,天线可以为电子设备内的边框天线。
第二方面,提供了一种电子设备,包括:天线,所述天线包括所述辐射体,所述辐射体包括缝隙,第一馈电点和第二馈电点,所述缝隙设置于所述第一馈电点和所述第二馈电点之间;地板,所述天线通过所述地板接地;其中,所述天线还包括第一电容,第二电容,第一馈电单元和第二馈电单元,所述第一电容的第一端与所述辐射体在第一馈电点处电连接,所述第一电容的第二端与所述第一馈电单元电连接,所述第二电容的第一端与所述辐射体在第二馈电点处电连接,所述第二电容的第二端与所述第二馈电单元电连接;所述天线还包括第一电感,第二电感和第三电容,所述第一电感的第一端位于所述第一电容的第二端与所述第一馈电单元之间,所述第一电感的第二端与所述第二电感的第一端电连接,所述第二电感的第二端位于所述第二电容的第二端与所述第二馈电单元之间,所述第三电容的第一端位于所述第一电感的第二端与所述第二电感的第一端之间,所述第三电容的第二端接地。
结合第二方面,在第二方面的某些实现方式中,所述第一电感的电容值L1满足:1nH≤L1≤8nH;和/或,所述第二电感的电容值L2满足:1nH≤L2≤8nH;和/或,所述第三电容的电容值C3满足:0.1pF ≤C3≤5pF。
结合第二方面,在第二方面的某些实现方式中,所述第一馈电点和所述第二馈电点沿所述辐射体的虚拟轴线对称;所述虚拟轴线两侧的辐射体的长度相同。
结合第二方面,在第二方面的某些实现方式中,所述缝隙设置于所述辐射体的中心区域。
结合第二方面,在第二方面的某些实现方式中,所述第一电感的电感值和所述第二电感的电感值相同。
结合第二方面,在第二方面的某些实现方式中,所述第一馈电单元馈电时,所述天线产生第一谐振和第二谐振,所述第一谐振的谐振频率低于所述第二谐振的谐振频率;所述第二馈电单元馈电时,所述天线产生第三谐振和第四谐振,所述第一谐振的谐振频段和所述第三谐振的谐振频段同频,所述第二谐振的谐振频段和所述第四谐振的谐振频段同频。
结合第二方面,在第二方面的某些实现方式中,所述第一电容的电容值C1满足:0.3pF≤C1≤1pF;和/或,所述第二电容的电容值C2满足:0.3pF≤C2≤1pF。
结合第二方面,在第二方面的某些实现方式中,所述第一电容包括集总电容器件,和分布式电容器件中的至少一种;所述第二电容包括集总电容器件,和分布式电容器件中的至少一种。
结合第二方面,在第二方面的某些实现方式中,所述第一电容包括第一金属层,所述第一金属层的一端与所述第一馈电单元电连接,所述第一金属层在所述第一馈电点处与所述辐射体间接耦合;所述第二电容包括第二金属层,所述第二金属层的一端与所述第二馈电单元电连接,所述第二金属在所述第二馈电点处层与所述辐射体间接耦合;所述第一电感的第一端与所述第一金属层电连接;所述第二电感的第二端与所述第二金属层电连接。
结合第二方面,在第二方面的某些实现方式中,所述天线的工作频段包括下列频段中的至少部分频段:3300MHz-42000MHz,3300MHz-3800MHz或4400MHz-5000MHz。
结合第二方面,在第二方面的某些实现方式中,所述电子设备还包括:导电边框,所述边框上具有第一位置和第二位置,所述边框在所述第一位置和所述第二位置接地,所述第一位置和所述第二位置之间的边框为第一边框,所述第一边框作为所述辐射体。
附图说明
图1是本申请实施例提供的电子设备的示意图。
图2是本申请提供的一种线天线的共模模式的结构及对应的电流、电场的分布示意图。
图3是本申请提供的一种线天线的差模模式的结构及对应的电流、电场的分布示意图。
图4是本申请提供的槽天线的共模模式的结构及对应的电流、电场、磁流的分布图。
图5是本申请提供的槽天线的差模模式的结构及对应的电流、电场、磁流的分布图。
图6是一种天线的结构示意图。
图7是图6中的(a)所示天线结构的仿真结果图。
图8是图6中的(b)所示天线结构的仿真结果图。
图9是图6中的(c)所示天线结构的仿真结果图。
图10是本申请实施例提供的一种电子设备100的结构示意图。
图11是本申请实施例提供的电流分布示意图。
图12是本申请实施例提供的电流分布示意图。
图13是本申请实施例提供的分布式电容的结构示意图。
图14是本申请实施例提供的另一种电子设备100的结构示意图。
图15是本申请实施例提供的一组天线的结构示意图。
图16是图15中的(a)所示的天线的S参数和阻抗曲线图。
图17是图15中的(b)所示的天线的S参数和阻抗曲线图。
图18是图15中的(c)所示的天线的S参数和阻抗曲线图。
图19是图15中的(d)所示的天线的S参数和阻抗曲线图。
图20是图15中的(d)所示的天线的***效率和辐射效率的仿真结果图。
图21是本申请实施例提供的一种电子设备200的示意图。
图22是本申请实施例提供的阻抗曲线示意图。
图23是图21所示的电子设备200中的天线的S参数。
图24是图21所示的电子设备200中的天线的阻抗曲线。
图25是本申请实施例提供的一组天线的结构示意图。
图26是图15中的(a)所示的天线的S参数和阻抗曲线图。
图27是图15中的(b)所示的天线的S参数和阻抗曲线图。
图28是图15中的(c)所示的天线的S参数和阻抗曲线图。
图29是本申请实施例提供的电子设备300的结构示意图。
图30是本申请实施例提供的一种天线的结构的示意图。
图31是图29所示的天线和图30所示天线的S参数。
图32是图29所示的天线和图30所示天线在2.5GHz至3GHz的阻抗曲线。
图33是图29所示的天线和图30所示天线在4.8GHz至5.8GHz的阻抗曲线。
具体实施方式
以下,对本申请实施例可能出现的术语进行解释。
耦合:可理解为直接耦合和/或间接耦合,“耦合连接”可理解为直接耦合连接和/或间接耦合连接。直接耦合又可以称为“电连接”,理解为元器件物理接触并电导通;也可理解为线路构造中不同元器件之间通过印制电路板(printed circuit board,PCB)铜箔或导线等可传输电信号的实体线路进行连接的形式;“间接耦合”可理解为两个导体通过隔空/不接触的方式电导通。在一个实施例中,间接耦合也可以称为电容耦合,例如通过两个导电件间隔的间隙之间的耦合形成等效电容来实现信号传输。
连接/相连:可以指一种机械连接关系或物理连接关系,例如,A与B连接或A与B相连可以指,A与B之间存在紧固的构件(如螺钉、螺栓、铆钉等),或者A与B相互接触且A与B难以被分离。
电容:可理解为集总电容和/或分布电容。集总电容指的是呈容性的元器件,例如电容元件;分布电容(或分布式电容)指的是两个导电件间隔一定间隙而形成的等效电容。
谐振/谐振频率:谐振频率又叫共振频率。谐振频率可以指天线输入阻抗虚部为零处的频率。谐振频率可以有一个频率范围,即,发生共振的频率范围。共振最强点对应的频率就是中心频率点频率。中心频率的回波损耗特性可以小于-20dB。
谐振频段/通信频段/工作频段:无论何种类型的天线,总是在一定的频率范围(频段宽度)内工作。例如,支持B40频段的天线,其工作频段包括2300MHz~2400MHz范围内的频率,或者是说,该天线的工作频段包括B40频段。满足指标要求的频率范围可以看作天线的工作频段。
电长度:可以是指物理长度(即机械长度或几何长度)与所传输电磁波的波长之比,电长度可以满足以下公式:
其中,L为物理长度,λ为电磁波的波长。
波长:或者工作波长,可以是谐振频率的中心频率对应的波长或者天线所支持的工作频段的中心频率。例如,假设B1上行频段(谐振频率为1920MHz至1980MHz)的中心频率为1955MHz,那工作波长可以为利用1955MHz这个频率计算出来的波长。不限于中心频率,“工作波长”也可以是指谐振频率或工作频段的非中心频率对应的波长。
本申请实施例中提及的中间或中间位置等这类关于位置、距离的限定,均是针对当前工艺水平而言的,而不是数学意义上绝对严格的定义。例如,导体的中间(位置)可以是指导体上包括中点的一段导体部分,可以是包括该导体中点的一段八分之一波长的导体部分,其中,波长可以是天线的工作频段对应的波长,可以是工作频段的中心频率对应的波长,或者,谐振点对应的波长。又例如,导体的中间(位置)可以是指导体上距离中点小于预定阈值(例如,1mm,2mm,或2.5mm)的一段导体部分。
本申请实施例中提及的对称(例如,轴对称、或中心对称等)、平行、垂直、相同(例如,长度相同、宽度相同等等)等这类限定,均是针对当前工艺水平而言的,而不是数学意义上绝对严格的定 义。例如,相互平行或垂直的两个天线单元之间可以存在预定角度(例如±5°,±10°)的偏差。
天线辐射效率(radiation efficiency):指天线向空间辐射出去的功率(即有效地转换电磁波部分的功率)和输入到天线的有功功率之比。其中,输入到天线的有功功率=天线的输入功率-损耗功率;损耗功率主要包括回波损耗功率和金属的欧姆损耗功率和/或介质损耗功率。辐射效率是衡量天线辐射能力的值,金属损耗、介质损耗均是辐射效率的影响因素。
本领域技术人员可以理解,效率一般是用百分比来表示,其与dB之间存在相应的换算关系,效率越接近0dB,表征该天线的效率越优。
天线回波损耗:可以理解为经过天线电路反射回天线端口的信号功率与天线端口发射功率的比值。反射回来的信号越小,说明通过天线向空间辐射出去的信号越大,天线的辐射效率越大。反射回来的信号越大,说明通过天线向空间辐射出去的信号越小,天线的辐射效率越小。
天线回波损耗可以用S11参数来表示,S11属于S参数中的一种。S11表示反射系数,此参数能够表征天线发射效率的优劣。S11参数通常为负数,S11参数越小,表示天线回波损耗越小,天线本身反射回来的能量越小,也就是代表实际上进入天线的能量就越多,天线的***效率越高;S11参数越大,表示天线回波损耗越大,天线的***效率越低。
需要说明的是,工程上一般以S11值为-6dB作为标准,当天线的S11值小于-6dB时,可以认为该天线可正常工作,或可认为该天线的发射效率较好。
地,或地板:可泛指电子设备(比如手机)内任何接地层、或接地板、或接地金属层等的至少一部分,或者上述任何接地层、或接地板、或接地部件等的任意组合的至少一部分,“地”可用于电子设备内元器件的接地。一个实施例中,“地”可以是电子设备的电路板的接地层,也可以是电子设备中框形成的接地板或屏幕下方的金属薄膜形成的接地金属层。一个实施例中,电路板可以是印刷电路板(printed circuit board,PCB),例如具有8、10、12、13或14层导电材料的8层、10层或12至14层板,或者通过诸如玻璃纤维、聚合物等之类的介电层或绝缘层隔开和电绝缘的元件。一个实施例中,电路板包括介质基板、接地层和走线层,走线层和接地层通过过孔进行电连接。一个实施例中,诸如显示器、触摸屏、输入按钮、发射器、处理器、存储器、电池、充电电路、片上***(system on chip,SoC)结构等部件可以安装在电路板上或连接到电路板;或者电连接到电路板中的走线层和/或接地层。例如,射频源设置于走线层。
理想电导体(perfect electric conductor,PEC):在理想电导体表面,所有电场均与PEC垂直(磁场均与PMC平行)。
理想磁导体(perfect magnetic conductor,PMC):在理想磁导体表面,所有磁场均与PMC垂直(电场均与PMC平行)。
应理解,本文中提到的,第一谐振的谐振频段和第二谐振的谐振频段(也称为同频,相同)可以理解为下列情况中的任意一种:
第一谐振的谐振频段和第二谐振的谐振频段包括相同的通信频段,例如,第一谐振和第二谐振可以应用于MIMO天线***,第一谐振的谐振频段和第二谐振的谐振频段均包括5G中的sub6G频段,则可以认为第一谐振的谐振频段和第二谐振的谐振频段同频。
第一谐振的谐振频段和第二谐振的谐振频段存在部分频率重合,例如,第一谐振的谐振频段包括LTE中的B35(1.85-1.91GHz),第二谐振的谐振频段包括LTE中的B39(1.88-1.92GHz),第一谐振的谐振频段和第二谐振的谐振频段的频率部分重合,则可以认为第一谐振的谐振频段和第二谐振的谐振频段同频。
上述任何接地层、或接地板、或接地金属层由导电材料制得。一个实施例中,该导电材料可以采用以下材料中的任一者:铜、铝、不锈钢、黄铜和它们的合金、绝缘基片上的铜箔、绝缘基片上的铝箔、绝缘基片上的金箔、镀银的铜、绝缘基片上的镀银铜箔、绝缘基片上的银箔和镀锡的铜、浸渍石墨粉的布、涂覆石墨的基片、镀铜的基片、镀黄铜的基片和镀铝的基片。本领域技术人员可以理解,接地层/接地板/接地金属层也可由其它导电材料制得。
下面将结合附图,对本申请实施例的技术方案进行描述。
如图1所示,电子设备10可以包括:盖板(cover)13、显示屏/模组(display)15、印刷电路板(printed circuit board,PCB)17、中框(middle frame)19和后盖(rear cover)21。应理解,在一些实 施例中,盖板13可以是玻璃盖板(cover glass),也可以被替换为其他材料的盖板,例如超薄玻璃材料盖板,PET(Polyethylene terephthalate,聚对苯二甲酸乙二酯)材料盖板等。
其中,盖板13可以紧贴显示模组15设置,可主要用于对显示模组15起到保护、防尘作用。
在一个实施例中,显示模组15可以包括液晶显示面板(liquid crystal display,LCD),发光二极管(light emitting diode,LED)显示面板或者有机发光半导体(organic light-emitting diode,OLED)显示面板等,本申请实施例对此并不做限制。
中框19主要起整机的支撑作用。图1中示出PCB17设于中框19与后盖21之间,应可理解,在一个实施例中,PCB17也可设于中框19与显示模组15之间,本申请实施例对此并不做限制。其中,印刷电路板PCB17可以采用耐燃材料(FR-4)介质板,也可以采用罗杰斯(Rogers)介质板,也可以采用Rogers和FR-4的混合介质板,等等。这里,FR-4是一种耐燃材料等级的代号,Rogers介质板是一种高频板。PCB17上承载电子元件,例如,射频芯片等。在一个实施例中,印刷电路板PCB17上可以设置一金属层。该金属层可用于印刷电路板PCB17上承载的电子元件接地,也可用于其他元件接地,例如支架天线、边框天线等,该金属层可以称为地板,或接地板,或接地层。在一个实施例中,该金属层可以通过在PCB17中的任意一层介质板的表面蚀刻金属形成。在一个实施例中,用于接地的该金属层可以设置在印刷电路板PCB17上靠近中框19的一侧。在一个实施例中,印刷电路板PCB17的边缘可以看作其接地层的边缘。可以在一个实施例中,金属中框19也可用于上述元件的接地。电子设备10还可以具有其他地板/接地板/接地层,如前所述,此处不再赘述。
其中,电子设备10还可以包括电池(图中未示出)。电池可以设置于设于中框19与后盖21之间,或者可设于中框19与显示模组15之间,本申请实施例对此并不做限制。在一些实施例中,PCB17分为主板和子板,电池可以设于所述主板和所述子板之间,其中,主板可以设置于中框19和电池的上边沿之间,子板可以设置于中框19和电池的下边沿之间。
电子设备10还可以包括边框11,边框11可以由金属等导电材料形成。边框11可以设于显示模组15和后盖21之间并绕电子设备10的***周向延伸。边框11可以具有包围显示模组15的四个侧边,帮助固定显示模组15。在一种实现方式中,金属材料制成的边框11可以直接用作电子设备10的金属边框,形成金属边框的外观,适用于金属工业设计(industrial design,ID)。在另一种实现方式中,边框11的外表面还可以为非金属材料,例如塑料边框,形成非金属边框的外观,适用于非金属ID。
中框19可以包括边框11,包括边框11的中框19作为一体件,可以对整机中的电子器件起支撑作用。盖板13、后盖21分别沿边框的上下边沿盖合从而形成电子设备的外壳或壳体(housing)。在一个实施例中,盖板13、后盖21、边框11和/或中框19,可以统称为电子设备10的外壳或壳体。应可理解,“外壳或壳体”可以用于指代盖板13、后盖21、边框11或中框19中任一个的部分或全部,或者指代盖板13、后盖21、边框11或中框19中任意组合的部分或全部。
中框19上的边框11可以至少部分地作为天线辐射体以收/发射频信号,作为辐射体的这一部分边框,与中框19的其他部分之间可以存在间隙,从而保证天线辐射体具有良好的辐射环境。在一个实施例中,中框19在作为辐射体的这一部分边框处可以设置孔径,以利于天线的辐射。
或者,可以不将边框11看做中框19的一部分。在一个实施例中,边框11可以和中框19连接并一体成型。在另一实施例中,边框11可以包括向内延伸的突出件,以与中框19相连,例如,通过弹片、螺丝、焊接等方式相连。边框11的突出件还可以用来接收馈电信号,使得边框11的至少一部分作为天线的辐射体收/发射频信号。作为辐射体的这一部分边框,与中框30之间可以存在间隙,从而保证天线辐射体具有良好的辐射环境,使得天线具有良好的信号传输功能。
其中,后盖21可以是金属材料制成的后盖;也可以是非导电材料制成的后盖,如玻璃后盖、塑料后盖等非金属后盖;还可以是同时包括导电材料和非导电材料制成的后盖。
电子设备10的天线还可以设置于边框11内。当电子设备10的边框11为非导电材料时,天线辐射体可以位于电子设备10内并延边框11设置。例如,天线辐射体贴靠边框11设置,以尽量减小天线辐射体占用的体积,并更加的靠近电子设备10的外部,实现更好的信号传输效果。需要说明的是,天线辐射体贴靠边框11设置是指天线辐射体可以紧贴边框11设置,也可以为靠近边框11设置,例如天线辐射体与边框11之间能够具有一定的微小缝隙。
电子设备10的天线还可以设置于外壳内,例如支架天线、毫米波天线等(图1中未示出)。设置 于壳体内的天线的净空可以由中框、和/或边框、和/或后盖、和/或显示屏中任一个上的开缝/开孔来得到,或者由任几个之间形成的非导电缝隙/孔径来得到,天线的净空设置可以保证天线的辐射性能。应可理解,天线的净空可以是由电子设备10内的任意导电元器件来形成的非导电区域,天线通过该非导电区域向外部空间辐射信号。在一个实施例中,天线40的形式可以为基于柔性主板(flexible printed circuit,FPC)的天线形式,基于激光直接成型(laser-direct-structuring,LDS)的天线形式或者微带天线(microstrip disk antenna,MDA)等天线形式。在一个实施例中,天线也可采用嵌设于电子设备10的屏幕内部的透明结构,使得该天线为嵌设于电子设备10的屏幕内部的透明天线单元。
图1仅示意性的示出了电子设备10包括的一些部件,这些部件的实际形状、实际大小和实际构造不受图1限定。
应理解,在本申请的实施例中,可以认为电子设备的显示屏所在的面为正面,后盖所在的面为背面,边框所在的面为侧面。
应理解,在本申请的实施例中,认为用户握持(通常是竖向并面对屏幕握持)电子设备时,电子设备所在的方位具有顶部、底部、左侧部和右侧部。
首先,由图2至图5来介绍本申请将涉及四个天线模式。其中,图2是本申请提供的一种线天线的共模模式的结构及对应的电流、电场的分布示意图。图3是本申请提供的另一种线天线的差模模式的结构及对应的电流、电场的分布示意图。图4是本申请提供的一种槽天线的共模模式的结构及对应的电流、电场、磁流的分布示意图。图5是本申请提供的另一种槽天线的差模模式的结构及对应的电流、电场、磁流的分布示意图。
1、线天线的共模(common mode,CM)模式
图2中的(a)示出线天线40的辐射体通过馈电线42连接到地(例如地板,可以是PCB)。线天线40在中间位置41处连接馈电单元(图未示),并采用对称馈电(symmetrical feed)。馈电单元可以通过馈电线42连接在线天线40的中间位置41。应理解,对称馈电可以理解为馈电单元一端连接辐射体,另外一端接地,其中,馈电单元与辐射体连接点(馈电点)位于辐射体中心,辐射体中心,例如可以是集合结构的中点,或者,电长度的中点(或上述中点附近一定范围内的区域)。
线天线40的中间位置41,例如中间位置41可以是线天线的几何中心,或者,辐射体的电长度的中点,例如馈电线42与线天线40连接处覆盖中间位置41。
图2中的(b)示出了线天线40的电流、电场分布。如图2中的(b)所示,电流在中间位置41两侧呈现反向分布,例如对称分布;电场在中间位置41两侧,呈现同向分布。如图2中的(b)所示,馈电线42处的电流呈现同向分布。基于馈电线42处的电流同向分布,图2中的(a)所示的这种馈电可称为线天线的CM馈电。基于电流在辐射体与馈电线42连接处的两侧呈现对称分布,图2中的(b)所示的这种线天线模式,可以称为线天线的CM模式(也可简称为CM线天线)。图2中的(b)所示的电流、电场可分别称为线天线的CM模式的电流、电场。
线天线的CM模式的电流、电场是线天线40在中间位置41两侧的两个枝节(例如,两个水平枝节)作为工作在四分之一波长模式的天线产生的。电流在线天线40的中间位置41处强,在线天线40的两端弱。电场在线天线40的中间位置41处弱,在线天线40的两端强。
2、线天线的差模(differential mode,DM)模式
如图3中的(a)示出线天线50的两个辐射体通过馈电线52连接到地(例如地板,可以是PCB)。线天线50在两个辐射体之间的中间位置51处连接馈电单元,并采用反对称馈电(anti-symmetrical feed)。馈电单元的一端通过馈电线52与其中一个辐射体连接,馈电单元的另一端通过馈电线52与其中另一个辐射体连接。中间位置51可以是线天线的几何中心,或者,辐射体之间形成的缝隙。
应理解,本申请中提到的“中心反对称馈电”可以理解为,馈电单元的正负两极分别连接在辐射体的上述中点附近的两个连接点。馈电单元的正负极输出的信号幅度相同,相位相反,例如相位相差180°±10°。
图3中的(b)示出了线天线50的电流、电场分布。如图3中的(b)所示,电流在线天线50的中间位置51两侧呈现同向分布,例如非对称分布;电场在中间位置51两侧呈反向分布。如图3中的(b)所示,馈电线52处的电流呈现反向分布。基于馈电线52处的电流反向分布,图3中的(a)所示的这种馈电可称为线天线DM馈电。基于电流在辐射体与馈电线52连接处的两侧呈现非对称分布(例 如,同向分布),图3中的(b)所示的这种线天线模式可以称为线天线的DM模式(也可简称为DM线天线)。图3中的(b)所示的电流、电场可分别称为线天线的DM模式的电流、电场。
线天线的DM模式的电流、电场是整个线天线50作为工作在二分之一波长模式的天线产生的。电流在线天线50的中间位置51处强,在线天线50的两端弱。电场在线天线50的中间位置51处弱,在线天线50的两端强。
应理解,对于线天线的辐射体,可以理解为产生辐射的金属结构件,其数量可以是一件,如图2所示,或者,也可以是两件,如图3所示,可以根据实际的设计或生产需要进行调整。例如,对于线天线的CM模式,也可以如图3所示采用两个辐射体,两个辐射体的两端相对设置并间隔一缝隙,在相互靠近的两端采用对称馈电的方式,例如在两个辐射体相互靠近的两端分别馈入同一馈源信号,也可以获得与图2所示天线结构类似的效果。相应的,对于线天线的DM模式,也可以如图2所示采用一个辐射体,在辐射体的中间位置设置两个馈电点并采用反对称馈电的方式,例如在该辐射体上对称的两个馈电点如分别馈入幅度相同、相位相反的信号,也可以获得与图3所示天线结构类似的效果。
3、槽天线的CM模式
图4中的(a)示出的槽天线60,可以是槽天线的辐射体中具有镂空的槽或缝隙61而形成的,或者可以是,槽天线的辐射体与地(例如地板,可以是PCB)合围出该槽或槽61而形成的。槽61可通过在地板上开槽形成。槽61的一侧设有开口62,开口62可具体开设在该侧的中间位置。槽61的该侧的中间位置例如可以是槽天线的几何中点,或者,辐射体的电长度的中点,例如开口62开设在辐射体上的区域覆盖该侧的中间位置。开口62处可连接馈电单元,并采用反对称馈电。应理解,反对称馈电可以理解为,馈电单元的正负两极分别连接在辐射体的两端。馈电单元的正负极输出的信号幅度相同,相位相反,例如相位相差180°±10°。
图4中的(b)示出了槽天线60的电流、电场、磁流分布。如图4中的(b)所示,电流在槽61周围的导体(如地板,和/或辐射体60)上围绕槽61呈同向分布,电场在槽61的中间位置两侧呈现反向分布,磁流在槽61的中间位置两侧呈反向分布。如图4中的(b)所示,开口62处(例如,馈电处)的电场同向,开口62处(例如,馈电处)的磁流同向。基于开口62处(馈电处)的磁流同向,图4中的(a)所示的这种馈电可称为槽天线CM馈电。基于电流在开口62两侧的辐射体上呈现非对称分布(例如,同向分布),或者,基于电流在槽61周围的导体上围绕槽61呈同向分布,图4中的(b)所示的这种槽天线模式可以称为槽天线的CM模式(也可简称为CM槽天线或CM槽天线)。图4中的(b)所示的电场、电流、磁流分布可称为槽天线的CM模式的电场、电流、磁流。
槽天线的CM模式的电流、电场是槽天线60的中间位置两侧的槽天线体作为工作在二分之一波长模式的天线产生的。磁场在槽天线60的中间位置处弱,在槽天线60的两端强。电场在槽天线60的中间位置处强,在槽天线60的两端弱。
4、槽天线的DM模式
如图5中的(a)示出的槽天线70,可以是槽天线的辐射体中具有镂空的槽或缝隙72而形成的,或者可以是,槽天线的辐射体与地(例如地板,可以是PCB)合围出该槽或槽72而形成的。槽72可通过在地板上开槽形成。槽72的中间位置71处连接馈电单元,并采用对称馈电。应理解,对称馈电可以理解为馈电单元一端连接辐射体,另外一端接地,其中,馈电单元与辐射体连接点(馈电点)位于辐射体中心,辐射体中心,例如可以是集合结构的中点,或者,电长度的中点(或上述中点附近一定范围内的区域)。槽72的一侧边的中间位置连接馈电单元的正极,槽72的另一侧边的中间位置连接馈电单元的负极。槽72的侧边的中间位置例如可以是槽天线60的中间位置/地的中间位置,比如槽天线的几何中点,或者,辐射体的电长度的中点,例如馈电单元与辐射体的连接处覆盖该侧的中间位置51。
图5中的(b)示出了槽天线70的电流、电场、磁流分布。如图5中的(b)所示,在槽72周围的导体(如地板,和/或辐射体60)上,电流围绕槽72分布,且在槽72的中间位置两侧呈反向分布,电场在中间位置71两侧呈现同向分布,磁流在中间位置71两侧呈同向分布。馈电单元处的磁流呈反向分布(未示出)。基于馈电单元处的磁流呈反向分布,图5中的(a)所示的这种馈电可称为槽天线DM馈电。基于电流在馈电单元与辐射体的连接处两侧呈现对称分布(例如,反向分布),或者,基于电流围绕缝隙71呈现对称分布(例如,反向分布),图5中的(b)所示的这种槽天线模式可以称 为槽天线的DM模式(也可简称为DM槽天线或DM槽天线)。图5中的(b)所示的电场、电流、磁流分布可称为槽天线的DM模式的电场、电流、磁流。
槽天线的DM模式的电流、电场是整个槽天线70作为工作在一倍波长模式的天线产生的。电流在槽天线70的中间位置处弱,在槽天线70的两端强。电场在槽天线70的中间位置处强,在槽天线70的两端弱。
在天线领域中,工作在CM模式的天线和工作在DM模式的天线通常具有高隔离,且通常CM模式和DM模式的天线的频段往往是单模式谐振,难以覆盖通信所需要的众多频段。尤其电子设备留给天线结构的空间日益减少,对于MIMO***而言,需要单个天线结构实现多个频段覆盖,因此,多模式谐振同时具有高隔离的天线,具有很高的研究和实用价值。
应理解,对于槽天线的辐射体,可以理解为产生辐射的金属结构件(例如包括地板的一部分),可以包括开口,如图4所示,或者,也可以为完整的环形,如图5所示,可以根据实际的设计或生产需要进行调整。例如,对于槽天线的CM模式,也可以如图5所示采用完整的环形辐射体,在槽61的一侧上的辐射体的中间位置设置两个馈电点并采用反对称馈电的方式,例如在原本设置开口位置的两端分别馈入幅度相同、相位相反的信号,也可以获得与图4所示天线结构类似的效果。相应的,对于槽天线的DM模式,也可以如图4所示采用包括开口的辐射体,在开口位置的两端采用对称馈电的方式,例如在开口两侧的辐射体的两端分别馈入同一馈源信号,也可以获得与图5所示天线结构类似的效果。
由于上述天线结构均可以产生电场呈正交(电场在远场内积为零(积分正交))的两种工作模式(电场呈对称分布或反对称分布),这种天线结构的两种工作模式之间的隔离度较好,可以应用于电子设备中的多输入多输出(multi-input multi-output,MIMO)天线***。
图6是一种天线的结构示意图。
应理解,通过不同的馈电方式可以产生上述CM模式和DM模式,则工作在CM模式和DM模式的天线之间可以具有良好的隔离度。
如图6中的(a)所示,利用在上述CM模式和DM模式,可以使两个馈电点同时馈入电信号时,虽然复用部分辐射体,但两个馈电点之间仍能保持良好的隔离度。如图7中的(a)所示,以S11/S22<-10dB为界限,第一天线单元(馈电端口1馈入电信号时形成的天线单元)和第二天线单元(馈电端口2馈入电信号时形成的天线单元)的带宽约为600MHz,隔离度(S21<-10dB)约为1GHz,无法满足5G中的N77(3300MHz-42000MHz),N78(3300MHz-3800MHz)或N79(4400MHz-5000MHz)的通信需要。在通信频段中,第一天线单元和第二天线单元之间的相互影响较大,并不能应用于MIMO***中。如图7中的(b)所示,为天线结构中CM模式和DM模式对应的阻抗曲线,CM模式和DM模式对应的阻抗曲线相距较远。
如图6中的(b)和(c)所示,在图6中的(a)所示的天线的结构的基础上,在辐射体的中心直接接地,或者,通过电容接地。但是在这种结构下,CM模式对应的阻抗曲线发生变化,但是对DM模式对应的阻抗曲线并没有改善,如图8中的(b)所示(对应于图6中的(b)所示的天线)以及图9中的(b)所示(对应于图6中的(c)所示的天线)。并且,对带宽(S11/S22)并没有很大的帮助,如图8中的(a)所示(对应于图6中的(b)所示的天线)以及图9中的(a)所示(对应于图6中的(c)所示的天线)。
因此,在图6所示的天线的结构中,并不能提供较大的隔离度带宽(例如,S21<-10dB),在5G的频段中(例如,N77(3300MHz-42000MHz),N78(3300MHz-3800MHz)或N79(4400MHz-5000MHz)),第一天线单元和第二天线单元之间的隔离度并不能在全频段满足的通信需要。
本申请实施例提供了一种电子设备,包括天线,该天线利用电子设备的部分导电边框作为天线的辐射体,通过天线的两个馈电点之间设置的T型电路可以拓展天线的隔离度带宽,满足通信需要。
图10是本申请实施例提供的一种电子设备100的结构示意图。
如图10所示,电子设备可以包括地板110,边框11和天线120。
其中,边框11上具有第一位置101和第二位置102,边框11在第一位置101设置第一缝隙103,在第二位置102设置第二缝隙104,第一位置101和第二位置102之间的边框11为第一边框105。第一边框105包括接地点106,接地点106设置于第一边框105的中心区域。
为论述的简洁,在本申请实施例中仅以电子设备的部分边框作为辐射体,天线120为边框天线为例进行说明。在实际的应用中,天线120的辐射体也可以是电子设备内的任意金属部件,例如,设备在支架上的金属件,或者,通过浮动金属(floating metal,FLM)工艺在电子设备后盖上设置的金属件,本申请对此并不做限制。
应理解,第一边框105的中心区域可以理解与距离第一边框105的中心5mm以内的区域,第一边框105的中心可以为第一边框105的物理长度的中心(几何中心)或者,电长度的中心。
天线120可以包括第一边框105,由第一边框105作为辐射体。第一边框105可以包括第一馈电点121和第二馈电点122。
天线120还可以包括第一电容131,第二电容132,第一馈电单元141和第二馈电单元142。第一电容131的第一端与第一边框105在第一馈电点121处电连接,第一电容131的第二端与第一馈电单元141电连接。第二电容132的第一端与第一边框105在第二馈电点122处电连接,第二电容132的第二端与第二馈电单元142电连接。
天线120还可以包括电感151,电感151的第一端位于第一电容131的第二端与第一馈电单元141之间,电感151的第二端位于第二电容132的第二端与第二馈电单元142之间。
应理解,本申请实施例提供的技术方案中,可以通过电感151调整天线120中DM模式对应的阻抗曲线,使其可以向CM模式对应的阻抗曲线靠近,从而提升天线120的隔离度的带宽。
在一个实施例中,第一馈电单元141馈电时,天线120可以作为第一天线单元。第一天线单元可以产生第一谐振和第二谐振,第一谐振的谐振频率低于第二谐振的谐振频率。第二馈电单元142馈电时,天线120可以作为第二天线单元。第二天线单元可以产生第三谐振和第四谐振,第一谐振的谐振频段和第三谐振的谐振频段同频(例如,第一谐振的谐振频段和第三谐振的谐振频段均包括第一频段),第二谐振的谐振频段和第四谐振的谐振频段同频(例如,第二谐振的谐振频段和第四谐振的谐振频段均包括第二频段)。
应理解,第一馈电单元141通过第一电容131间接耦合馈入电信号时,第一天线单元在第一频段激励起激发第一谐振,在第二频段激励起第二谐振。通过调整第一电容131的电容值,可以使第一电容131在第一频段呈开路状态,在第二频段呈短路状态。
当第一电容131呈开路状态时,第一位置和第二位置之间的边框上的电流如图11所示,在第一馈电点处为电流零点区域,对应电场强点区域,在第一馈电点处呈现大电场的边界条件。第一天线单元为线天线结构,可以工作在二分之一波长模式。
当第一电容131呈短路状态时,第一位置和第一馈电点之间的边框上的电流如图12所示,在第一馈电点处为电流强点区域,对应电场零点区域,在第一馈电点处呈现大电流的边界条件。第一天线单元为开槽孔结构,可以工作在四分之一波长模式。
因此,第一馈电单元141通过第一电容131间接耦合馈入电信号可以使第一天线单元工作在两种不同的模式下,产生两个谐振,以拓展天线120的工作带宽。第二馈电单元142通过第二电容132间接耦合馈入电信号的情况也可以相应理解。
在一个实施例中,第一馈电点121和第二馈电点122沿第一边框105的虚拟轴线对称,虚拟轴线两侧的第一边框105的长度相同(虚拟轴线为第一边框105的对称轴)。应理解,随着天线120的结构的对称性增加,天线120的辐射特性随之改善。
在一个实施例中,天线120的工作频段可以包括N77(3300MHz-42000MHz),N78(3300MHz-3800MHz)或N79(4400MHz-5000MHz)中的至少部分频段。
在一个实施例中,第一电容131的电容值C1满足:0.3pF≤C1≤1pF。
在一个实施例中,第二电容132的电容值C2满足:0.3pF≤C2≤1pF。
在一个实施例中,电感151的电感值L1满足:1nH≤L1≤8nH。
应理解,为论述的简洁,本申请仅以上述5G频段为例进行说明,在实际的应用中,可以根据设计需求对第一电容的电容值以及第二电容的电容值进行调整,以调整馈入第一边框105的电信号。
在一个实施例中,第一电容131包括集总电容器件,和分布式电容器件中的至少一种。
在一个实施例中,第二电容132包括集总电容器件,和分布式电容器件中的至少一种。
在一个实施例中,当第一电容为分布式电容器时,第一电容包括第一金属层1311和第二金属层 1312,如图13中的(a)所示。第一金属层1311和第二金属层1312沿第一方向间隔,且第一金属层1311和第二金属层1312沿第一方向在地板110所在的平面上的投影至少部分重叠。第一金属层1311与第一边框105在第一馈电点121处电连接,如图13中的(b)所示。第二金属层1312与第一馈电单元141电连接,如图13中的(c)所示。其中,第一方向为垂直于地板110所在平面的方向,例如z方向。
在一个实施例中,当第二电容为分布式电容器时,第二电容包括第三金属层1321和第四金属层1322。第三金属层1321和第四金属层1322沿第一方向间隔,且第三金属层1321和第四金属层1322沿第一方向在地板110所在的平面上的投影至少部分重叠。第三金属层1321与第一边框105在第二馈电点122处电连接,如图13中的(b)所示。第四金属层1322与第二馈电单元142电连接,如图13中的(c)所示。
在一个实施例中,电感151可以串联在第二金属层1312和第四金属层1322之间。
应理解,对于分布式电容器来说,其电容值满足以下公式:
其中,ε为两极板(例如,第一金属层1311和第二金属层1312)之间填充的介质的相对介电常数;δ为真空中的绝对介电常数;k为静电力常量;S为两极板正对面积,例如本申请实施例中的第一金属层1311和第二金属层1312的相对面积(第一金属层1311和第二金属层1312沿第一方向在地板110所在的平面上的投影的重叠部分的面积);d为两极板间垂直距离,例如本申请实施例中的第一金属层1311和第二金属层1312之间的沿第一方向(z方向)的距离。
因此,可以通过控制上述第一电容131的电参数或第二电容132的电参数,调整第一电容131或第二电容132的电容值,从而调整天线的辐射特征。
在一个实施例中,第一金属层1311和第三金属1321层可以设置在设置于PCB17的第一表面。第二金属层1312和第四金属层1322可以设置于PCB17的第二表面。
应理解,PCB17的第一表面和第二表面可以是PCB17的上表面和下表面,也可以是PCB中层叠设置的多个介质板的任意表面(例如,第一金属层可以设置在PCB17中任意相邻的两个介质板之间),本申请实施例对此并不做限制。
在一个实施例中,天线120还可以包括第一匹配电路161和第二匹配电路162,如图14所示。第一匹配电路161可以设置于第一电容131和第一馈电单元141之间,用于调整第一馈电点处天线120的阻抗,使第一馈电点处的阻抗与第一馈电单元141处的电路的阻抗匹配,提升第一馈电单元141馈入电信号时天线120(第一天线单元)的辐射特性。第二匹配电路162可以设置于第二电容132和第二馈电单元142之间,用于调整第二馈电点处天线120的阻抗,使第二馈电点处的阻抗与第二馈电单元142处的电路的阻抗匹配,提升第二馈电单元142馈入电信号时天线120(第二天线单元)的辐射特性。
图15是本申请实施例提供的一组天线的结构示意图。
如图15中的(a)所示,该天线中,辐射体包括两个馈电点,两个馈电点处在辐射体和馈电单元之间设置电容,通过间接耦合的方式馈入电信号,辐射体上未设置接地点。如图15中的(b)所示,相较于图15中的(a)所示的天线,其区别在于,辐射体的中心区域设置接地点,在该位置通过地板接地。如图15中的(c)所示,天线的结构与图10所示的天线120相同(为了论述的简洁,本申请实施例仅以第一边框105的长度为30.5mm,天线的净空(边框11与地板110之间的距离)为2mm,地板110的尺寸为80mm×30mm,电感151的电感值为3nH为例进行说明,上述的电参数可以根据实际的设计进行调整,本申请对此并不做限制),相较于图15中的(b)所示的天线,其区别在于,在两个馈电点之间设置电感。如图15中的(d)所示,相较于图15中的(c)所示的天线,其区别在于,在馈电点和辐射体之间增加匹配电路,以提升天线的辐射性能。
图16至图19是图15所示多个天线的仿真结果图。其中,图16是图15中的(a)所示的天线的S参数和阻抗曲线图。图17是图15中的(b)所示的天线的S参数和阻抗曲线图。图18是图15中的(c)所示的天线的S参数和阻抗曲线图。图19是图15中的(d)所示的天线的S参数和阻抗曲线图。
如图16中的(a)所示,S21<-10dB为界限,图15中的(a)所示的天线中两个天线单元之间的隔离度的带宽仅为1000MHz。
如图17中的(b)所示,图15中的(b)所示的天线通过辐射体的中心区域设置接地点,可以调整天线中CM模式对应的阻抗曲线,使其可以向DM模式对应的阻抗曲线靠近,从而提升中两个天线单元之间的隔离度的带宽,如图17中的(a)所示。
如图18中的(b)所示,图15中的(c)所示的天线通过在两个馈电点之间设置电感,可以调整天线中DM模式对应的阻抗曲线,使其可以向CM模式对应的阻抗曲线靠近,从而提升中两个天线单元之间的隔离度的带宽,如图18中的(a)所示。
如图19中的(a)所示,图15中的(d)所示的天线在图15中的(c)所示的天线的基础上增加匹配电路,优化天线的辐射性能,以S11/S22<-10dB为界限,第一天线单元(第一馈电点馈入电信号时)和第二天线单元(第二馈电点馈入电信号时)的谐振频段均可以包括2.92GHz至5.03GHz,其工作频段均可以包括5G的N77、N78和N79频段。并且,CM模式对应的阻抗曲线与DM模式对应的阻抗曲线更加靠近,如图19中的(b)所示。在图19中的(a)所示的2.5GHz至5.5GHz的频率范围内,第一天线单元和第二天线单元的隔离度(S21)均大于12dB,两天线单元之间的隔离度的带宽大于3000MHz。
如上图所示,天线中CM模式对应的阻抗曲线和DM模式对应的阻抗曲线靠近时,天线中的两个天线单元之间可以具有更好的隔离度。
图20是图15中的(d)所示的天线的***效率和辐射效率的仿真结果图。
如图20所示,在上述谐振频段(2.92GHz至5.03GHz)内,第一天线单元和第二天线单元的***效率(大于-1dB)和辐射效率(大于-1dB)均可以满足通信需要。
图21是本申请实施例提供的一种电子设备200的示意图。
如图21所示,电子设备可以包括地板210,边框11和天线220。
其中,边框11上具有第一位置201和第二位置202,边框11在第一位置201设置第一缝隙203,在第二位置202设置第二缝隙204,第一位置201和第二位置202之间的边框11为第一边框205。
天线220可以包括第一边框205,由第一边框205作为辐射体。第一边框205可以包括第一馈电点221和第二馈电点222。
天线220还可以包括第一电容231,第二电容232,第一馈电单元241和第二馈电单元242。第一电容231的第一端与第一边框205在第一馈电点221处电连接,第一电容231的第二端与第一馈电单元241电连接。第二电容232的第一端与第一边框205在第二馈电点222处电连接,第二电容232的第二端与第二馈电单元242电连接。
天线220还可以包括第一电感251、第二电感252和第三电容233。第一电感251的第一端位于第一电容231的第二端与第一馈电单元241之间,第一电感251的第二端与第二电感252的第一端电连接,第二电感252的第二端位于第二电容232的第二端与第二馈电单元242之间(第一电感251和第二电感252串联在第一馈电点221和第二馈电点222之间)。第三电容233的第一端位于第一电感251的第二端与第二电感252的第一端之间,第三电容233的第二端接地。
应理解,图21所示的天线220与图10所示的天线120的区别在于,第一边框205上并未设置接地点,利用第一电感251、第二电感252和第三电容233形成的T型结构替代串联的电感。由于在第一边框205上不用设置接地点,因此,天线220的实际结构更为简单。
在图21所示的电子设备200中,可以利用串联的第一电感251和第二电感252调整天线220中的DM模式对应的阻抗曲线,如图22中的(a)所示。利用第三电容233调整天线220中的CM模式对应的阻抗曲线,如图22中的(b)所示。因此,可以通过串联的第一电感251和第二电感252调整天线220中的DM模式对应的阻抗曲线,可以通过第三电容233调整天线220中的CM模式对应的阻抗曲线,使CM模式对应的阻抗曲线和DM模式对应的阻抗曲线靠近,从而提升天线220的隔离度的带宽。
在一个实施例中,第一馈电单元241馈电时,天线220可以作为第一天线单元。第一天线单元可以产生第一谐振和第二谐振,第一谐振的谐振频率低于第二谐振的谐振频率。第二馈电单元242馈电时,天线220可以作为第二天线单元。第二天线单元可以产生第三谐振和第四谐振,第一谐振的谐振频段和第三谐振的谐振频段同频(例如,第一谐振的谐振频段和第三谐振的谐振频段均包括第一频段),第二谐振的谐振频段和第四谐振的谐振频段同频(例如,第二谐振的谐振频段和第四谐振的谐振频段 均包括第二频段)。
应理解,第一馈电单元241通过第一电容231间接耦合馈入电信号时,第一天线单元在第一频段激励起激发第一谐振,在第二频段激励起第二谐振。通过调整第一电容231的电容值,可以使第一电容231在第一频段呈开路状态,在第二频段呈短路状态。因此,第一馈电单元241通过第一电容231间接耦合馈入电信号可以使第一天线单元工作在两种不同的模式下,产生两个谐振,以拓展天线220的工作带宽。第二馈电单元242通过第二电容232间接耦合馈入电信号的情况也可以相应理解。
在一个实施例中,第一馈电点221和第二馈电点222沿第一边框205的虚拟轴线对称,虚拟轴线两侧的第一边框205的长度相同(虚拟轴线为第一边框205的对称轴)。应理解,随着天线220的结构的对称性增加,天线220的辐射特性随之改善。
在一个实施例中,天线220的工作频段可以包括N77(3300MHz-42000MHz),N78(3300MHz-3800MHz)或N79(4400MHz-5000MHz)中的至少部分频段。
在一个实施例中,第一电容231的电容值C1满足:0.3pF≤C1≤1pF。
在一个实施例中,第二电容232的电容值C2满足:0.3pF≤C2≤1pF。
在一个实施例中,第一电感251的电感值L1满足:1nH≤L1≤8nH。
在一个实施例中,第二电感252的电感值L2满足:1nH≤L1≤8nH。
在一个实施例中,第三电容233的电容值C3满足:0.1pF≤C2≤5pF。
应理解,为论述的简洁,本申请仅以上述5G频段为例进行说明,在实际的应用中,可以根据设计需求对上述电容的电容值和电感的电感值进行调整。
在一个实施例中,第一电感251的电感值L1和第二电感252的电感值L2可以相同。
在一个实施例中,第一电容231包括集总电容器件,和分布式电容器件中的至少一种。
在一个实施例中,第二电容232包括集总电容器件,和分布式电容器件中的至少一种。
在一个实施例中,当第一电容为分布式电容器时,第一电容包括第一金属层和第二金属层。第一金属层和第二金属层沿第一方向间隔,且第一金属层和第二金属层沿第一方向在地板所在的平面上的投影至少部分重叠。第一金属层与第一边框在第一馈电点处电连接。第二金属层与第一馈电单元电连接。其中,第一方向为垂直于地板所在平面的方向,例如z方向。
在一个实施例中,当第二电容为分布式电容器时,第二电容包括第三金属层和第四金属层。第三金属层和第四金属层沿第一方向间隔,且第三金属层和第四金属层沿第一方向在地板所在的平面上的投影至少部分重叠。第三金属层与第一边框在第二馈电点处电连接。第四金属层与第二馈电单元电连接。
在一个实施例中,第一电感和第二电感可以串联在第二金属层和第四金属层之间。
应理解,对于分布式电容器来说,其电容值满足以下公式:
其中,ε为两极板(例如,第一金属层和第二金属层)之间填充的介质的相对介电常数;δ为真空中的绝对介电常数;k为静电力常量;S为两极板正对面积,例如本申请实施例中的第一金属层和第二金属层的相对面积(第一金属层和第二金属层沿第一方向在地板所在的平面上的投影的重叠部分的面积);d为两极板间垂直距离,例如本申请实施例中的第一金属层和第二金属层之间的沿第一方向(z方向)的距离。
因此,可以通过控制上述第一电容的电参数或第二电容的电参数,调整第一电容或第二电容的电容值,从而调整天线的辐射特征。
在一个实施例中,第一金属层和第三金属层可以设置在设置于电子设备的PCB的第一表面。第二金属层和第四金属层可以设置于PCB的第二表面。
应理解,PCB的第一表面和第二表面可以是PCB的上表面和下表面,也可以是PCB中层叠设置的多个介质板的任意表面(例如,第一金属层可以设置在PCB中任意相邻的两个介质板之间),本申请实施例对此并不做限制。
在一个实施例中,天线220还可以包括第一匹配电路和第二匹配电路。第一匹配电路可以设置于第一电容和第一馈电单元之间,用于调整第一馈电点处天线的阻抗,使第一馈电点处的阻抗与第一馈 电单元处的电路的阻抗匹配,提升第一馈电单元馈入电信号时天线(第一天线单元)的辐射特性。第二匹配电路可以设置于第二电容和第二馈电单元之间,用于调整第二馈电点处天线的阻抗,使第二馈电点处的阻抗与第二馈电单元处的电路的阻抗匹配,提升第二馈电单元馈入电信号时天线(第二天线单元)的辐射特性。
图23和图24是图21所示的电子设备200中的天线的仿真结果图。其中,图23是图21所示的电子设备200中的天线的S参数。图24是图21所示的电子设备200中的天线的阻抗曲线。
应理解,第一电感251的电感值L1和第二电感252的电感值L2均为2.5nH,第三电容233的电容值C3为1.8pF,为论述的简洁,本申请实施例仅以上述电参数为例进行说明,在实际的设计中,可以根据需求进行调整。
如图23所示,以S11/S22<-10dB为界限,第一天线单元(第一馈电点馈入电信号时)和第二天线单元(第二馈电点馈入电信号时)的谐振频段均可以包括2.92GHz至5.03GHz,其工作频段均可以包括5G的N77、N78和N79频段。
并且,CM模式对应的阻抗曲线与DM模式对应的阻抗曲线更加靠近,如图24所示。在图23所示的2.6GHz至5.5GHz的频率范围内,第一天线单元和第二天线单元的隔离度(S21)均大于10dB,两天线单元之间的隔离度的带宽大于2900MHz。
图25是本申请实施例提供的一组天线的结构示意图。
如图25中的(a)所示,该天线中,辐射体包括两个馈电点,两个馈电点处在辐射体和馈电单元之间分别设置第一电容和第二电容,通过间接耦合的方式馈入电信号。如图25中的(b)所示,相较于图25中的(a)所示的天线,其区别在于在两个馈电点之间串联设置第一电感和第二电感。如图25中的(c)所示,相较于图25中的(b)所示的天线,其区别在于,在串联设置第一电感和第二电感之间增加并联接地的第三电容,以提升天线的辐射性能。
图26至图28是图25所示多个天线的仿真结果图。其中,图26是图15中的(a)所示的天线的S参数和阻抗曲线图。图27是图15中的(b)所示的天线的S参数和阻抗曲线图。图28是图15中的(c)所示的天线的S参数和阻抗曲线图。
如图26中的(b)所示,天线中CM模式对应的阻抗曲线和DM模式对应的阻抗曲线相距较远。如图26中的(a)所示,以S21<-10dB为界限,图25中的(a)所示的天线中两个天线单元之间的隔离度的带宽较窄。
如图27中的(b)所示,图25中的(b)所示的天线通过两个馈电点之间串联设置第一电感和第二电感,可以调整天线中DM模式对应的阻抗曲线,使其可以向CM模式对应的阻抗曲线靠近。如图27中的(a)所示,以S21<-10dB为界限,相较于图25中的(a)所示的天线,天线中两个天线单元之间的隔离度的带宽提升。
如图28中的(b)所示,在串联设置第一电感和第二电感之间增加并联接地的第三电容,可以调整天线中CM模式对应的阻抗曲线,使其可以向DM模式对应的阻抗曲线靠近。如图28中的(a)所示,以S21<-10dB为界限,相较于图25中的(b)所示的天线,天线中两个天线单元之间的隔离度的带宽进一步提升。
如上图所示,可以通过串联的第一电感和第二电感调整天线中的DM模式对应的阻抗曲线,可以通过第三电容调整天线中的CM模式对应的阻抗曲线。当天线中CM模式对应的阻抗曲线和DM模式对应的阻抗曲线靠近时,天线中的两个天线单元之间可以具有更好的隔离度。
图29是本申请实施例提供的电子设备300的结构示意图。
如图29中的(a)所示,电子设备300可以包括地板310,边框11和天线320。
其中,边框11上具有第一位置301和第二位置302,边框11在第一位置301和第二位置302通过地板310接地,第一位置301和第二位置302之间的边框11为第一边框303。
天线320可以包括第一边框303,天线320由第一边框303和地板310之间围成的缝隙形成缝隙天线。第一边框303包括缝隙304、第一馈电点321和第二馈电点322,缝隙304设置于第一馈电点321和第二馈电点322之间。
天线320还可以包括第一电容331,第二电容332,第一馈电单元341和第二馈电单元342。第一电容331的第一端与第一边框303在第一馈电点321处电连接,第一电容331的第二端与第一馈电单 元341电连接。第二电容332的第一端与第一边框303在第二馈电点322处电连接,第二电容332的第二端与第二馈电单元342电连接。
天线320还可以包括第一电感351、第二电感352和第三电容333。第一电感351的第一端位于第一电容331的第二端与第一馈电单元341之间,第一电感351的第二端与第二电感352的第一端电连接,第二电感352的第二端位于第二电容332的第二端与第二馈电单元342之间(第一电感351和第二电感352串联在第一馈电点321和第二馈电点322之间)。第三电容333的第一端位于第一电感351的第二端与第二电感352的第一端之间,第三电容333的第二端接地。
应理解,本申请实施例提供的技术方案不仅仅可以应用于线天线的结构(例如,图10及图21所示天线的结构),也可以应用于图29所示缝隙天线的结构。
在一个实施例中,第一馈电单元341馈电时,天线320可以作为第一天线单元。第一天线单元可以产生第一谐振和第二谐振,第一谐振的谐振频率低于第二谐振的谐振频率。第二馈电单元342馈电时,天线320可以作为第二天线单元。第二天线单元可以产生第三谐振和第四谐振,第一谐振的谐振频段和第三谐振的谐振频段同频(例如,第一谐振的谐振频段和第三谐振的谐振频段均包括第一频段),第二谐振的谐振频段和第四谐振的谐振频段同频(例如,第二谐振的谐振频段和第四谐振的谐振频段均包括第二频段)。
应理解,第一馈电单元341通过第一电容331间接耦合馈入电信号时,第一天线单元在第一频段激励起激发第一谐振,在第二频段激励起第二谐振。通过调整第一电容331的电容值,可以使第一电容331在第一频段呈开路状态,在第二频段呈短路状态。因此,第一馈电单元341通过第一电容331间接耦合馈入电信号可以使第一天线单元工作在两种不同的模式下,产生两个谐振,以拓展天线320的工作带宽。第二馈电单元342通过第二电容332间接耦合馈入电信号的情况也可以相应理解。
在一个实施例中,第一馈电点321和第二馈电点322沿第一边框303的虚拟轴线对称,虚拟轴线两侧的第一边框303的长度相同(虚拟轴线为第一边框303的对称轴)。
在一个实施例中,缝隙304可以设置于第一边框303的中心区域。
应理解,随着天线320的结构的对称性增加,天线320的辐射特性随之改善。
在一个实施例中,天线320的工作频段可以包括N77(3300MHz-42000MHz),N78(3300MHz-3800MHz)或N79(4400MHz-5000MHz)中的至少部分频段。
在一个实施例中,第一电容331的电容值C1满足:0.3pF≤C1≤1pF。
在一个实施例中,第二电容332的电容值C2满足:0.3pF≤C2≤1pF。
在一个实施例中,第一电感351的电感值L1满足:1nH≤L1≤8nH。
在一个实施例中,第二电感352的电感值L2满足:1nH≤L1≤8nH。
在一个实施例中,第三电容333的电容值C3满足:0.1pF≤C2≤5pF。
应理解,为论述的简洁,本申请仅以上述5G频段为例进行说明,在实际的应用中,可以根据设计需求对第一电容的电容值以及第二电容的电容值进行调整。
在一个实施例中,第一电感351的电感值L1和第二电感352的电感值L2可以相同。
在一个实施例中,第一电容331包括集总电容器件,和分布式电容器件中的至少一种。
在一个实施例中,第二电容332包括集总电容器件,和分布式电容器件中的至少一种。
在一个实施例中,当第一电容为分布式电容器时,第一电容包括第一金属层3311,如图29中的(b)所示。第一金属层3311的一端与第一馈电单元341电连接,第一金属层3311在第一馈电点处与第一边框303间接耦合。
第一金属层3311和第一边框303沿第一方向间隔,且第一金属层3311和第一边框303沿第一方向在地板所在的平面上的投影至少部分重叠。第一金属层3311与第一边框303之间形成第一电容。其中,第一方向为垂直于地板所在平面的方向,例如z方向。
在一个实施例中,当第二电容为分布式电容器时,第二电容包括第二金属层3321,如图29中的(b)所示。第二金属层3321的一端与第二馈电单元342电连接,第二金属层3321在第二馈电点处与第一边框303间接耦合。第二金属层3321和第一边框303沿第一方向间隔,且第二金属层3321和第一边框303沿第一方向在地板所在的平面上的投影至少部分重叠。第二金属层3321与第一边框303之间形成第二电容。
在一个实施例中,第一电感351和第二电感352可以串联在第一金属层3311和第二金属层3321之间。
应理解,对于分布式电容器来说,其电容值满足以下公式:
其中,ε为两极板(例如,第一金属层3311和第一边框303)之间填充的介质的相对介电常数;δ为真空中的绝对介电常数;k为静电力常量;S为两极板正对面积,例如本申请实施例中的第一金属层3311和第一边框303的相对面积(第一金属层3311和第一边框303沿第一方向在地板所在的平面上的投影的重叠部分的面积);d为两极板间垂直距离,例如本申请实施例中的第一金属层3311和第一边框303之间的沿第一方向(z方向)的距离。
因此,可以通过控制上述第一电容的电参数或第二电容的电参数,调整第一电容或第二电容的电容值,从而调整天线的辐射特征。
图30是本申请实施例提供的一种天线的结构的示意图。
如图30所示,其与图29所示电子设备300中天线的区别仅在于未设置T型电路(第一电感、第二电感352和第三电容333)。
图31至图33是图29所示电子设备300中天线和图30所示天线的仿真结果图。其中,图31是图29所示的天线和图30所示天线的S参数。图32是图29所示的天线和图30所示天线在2.5GHz至3GHz的阻抗曲线。图33是图29所示的天线和图30所示天线在4.8GHz至5.8GHz的阻抗曲线。
应理解,在图29所示电子设备300中,第一电感351的电感值L1和第二电感352的电感值L2均为4nH,第三电容333的电容值C3为0.1pF,地板310的尺寸为80mm×40mm,缝隙304的尺寸为3mm×3mm,第一金属层3311和第一边框303之间的距离为0.2mm(耦合间距),第一边框303与地板310之间的距离为2mm,第一边框303的长度为28mm。为论述的简洁,本申请实施例仅以上述电参数为例进行说明,在实际的设计中,可以根据需求进行调整。
如图31中的(a)所示,为图30图所示的天线的S参数,天线可以在3GHz以及5.3GHz附近产生谐振。
如图31中的(b)所示,为图29图所示的天线的S参数。以S11/S22<-6dB为界限,第一天线单元(第一馈电点馈入电信号时)和第二天线单元(第二馈电点馈入电信号时)的谐振频段均可以包括WiFi的2.4G频段以及5G频段,还可以包括5G的N79频段。
如图32中的(a)所示,为图30图所示的天线在2.5GHz至3GHz频段之间天线中的CM模式对应的阻抗曲线和DM模式对应的阻抗曲线。如图32中的(b)所示,为图29图所示的天线在2.5GHz至3GHz频段之间天线中的CM模式对应的阻抗曲线和DM模式对应的阻抗曲线。如图33中的(a)所示,为图30图所示的天线在4.8GHz至5.8GHz频段之间天线中的CM模式对应的阻抗曲线和DM模式对应的阻抗曲线。如图33中的(b)所示,为图29图所示的天线在4.8GHz至5.8GHz频段之间天线中的CM模式对应的阻抗曲线和DM模式对应的阻抗曲线。
如上图所示,在天线中增加T型电路(第一电感、第二电感352和第三电容333),在2.5GHz至3GHz以及4.8GHz至5.8GHz频段之间,天线中的CM模式对应的阻抗曲线和DM模式对应的阻抗曲线靠近,在该频段内,两个天线单元之间的隔离度提升明显大于10dB(S21<-10dB)。
本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的之间接耦合或通信连接,可以是电性或其它的形式。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领 域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种电子设备,其特征在于,包括:
    天线,所述天线包括所述辐射体,所述辐射体包括第一馈电点和第二馈电点;
    地板,所述天线通过所述地板接地;
    其中,所述天线还包括第一电容,第二电容,第一馈电单元和第二馈电单元,所述第一电容的第一端与所述辐射体在第一馈电点处电连接,所述第一电容的第二端与所述第一馈电单元电连接,所述第二电容的第一端与所述辐射体在第二馈电点处电连接,所述第二电容的第二端与所述第二馈电单元电连接;
    所述天线还包括第一电感,第二电感和第三电容,所述第一电感的第一端位于所述第一电容的第二端与所述第一馈电单元之间,所述第一电感的第二端与所述第二电感的第一端电连接,所述第二电感的第二端位于所述第二电容的第二端与所述第二馈电单元之间,所述第三电容的第一端位于所述第一电感的第二端与所述第二电感的第一端之间,所述第三电容的第二端接地。
  2. 根据权利要求1所述的电子设备,其特征在于,
    所述第一电感的电容值L1满足:1nH≤L1≤8nH;和/或,
    所述第二电感的电容值L2满足:1nH≤L2≤8nH;和/或,
    所述第三电容的电容值C3满足:0.1pF≤C3≤5pF。
  3. 根据权利要求1或2所述的电子设备,其特征在于,
    所述第一馈电点和所述第二馈电点沿所述辐射体的虚拟轴线对称;
    所述虚拟轴线两侧的辐射体的长度相同。
  4. 根据权利要求1至3中任一项所述的电子设备,其特征在于,所述第一电感的电感值和所述第二电感的电感值相同。
  5. 根据权利要求1至4中任一项所述的电子设备,其特征在于,
    所述第一馈电单元馈电时,所述天线产生第一谐振和第二谐振,所述第一谐振的谐振频率低于所述第二谐振的谐振频率;
    所述第二馈电单元馈电时,所述天线产生第三谐振和第四谐振,所述第一谐振的谐振频段和所述第三谐振的谐振频段同频,所述第二谐振的谐振频段和所述第四谐振的谐振频段同频。
  6. 根据权利要求1至5中任一项所述的电子设备,其特征在于,
    所述第一电容的电容值C1满足:0.3pF≤C1≤1pF;和/或,
    所述第二电容的电容值C2满足:0.3pF≤C2≤1pF。
  7. 根据权利要求1至6中任一项所述的电子设备,其特征在于,
    所述第一电容包括集总电容器件,和分布式电容器件中的至少一种;
    所述第二电容包括集总电容器件,和分布式电容器件中的至少一种。
  8. 根据权利要求1至7中任一项所述的电子设备,其特征在于,
    所述第一电容包括第一金属层和第二金属层,所述第一金属层和所述第二金属层沿第一方向间隔,且所述第一金属层和所述第二金属层沿所述第一方向在所述地板所在的平面上的投影至少部分重叠,所述第一金属层与所述辐射体在第一馈电点处电连接,所述第二金属层与所述第一馈电单元电连接,所述第一方向为垂直于所述地板所在平面的方向;
    所述第二电容包括第三金属层和第四金属层,所述第三金属层和所述第四金属层沿所述第一方向间隔,且所述第三金属层和所述第四金属层沿所述第一方向在所述地板所在的平面上的投影至少部分重叠,所述第三金属层与所述辐射体在第二馈电点处电连接,所述第四金属层与所述第二馈电单元电连接;
    所述第一电感的第一端与所述第二金属层电连接;
    所述第二电感的第二端与所述第四金属层电连接。
  9. 根据权利要求1至8中任一项所述的电子设备,其特征在于,
    所述天线的工作频段包括下列频段中的至少部分频段:3300MHz-42000MHz,3300MHz-3800MHz 或4400MHz-5000MHz。
  10. 根据权利要求1至9中任一项所述的电子设备,其特征在于,
    所述电子设备还包括:导电边框,所述边框上具有第一位置和第二位置,所述边框在所述第一位置设置第一缝隙,在所述第二位置设置第二缝隙,所述第一位置和所述第二位置之间的边框为第一边框,所述第一边框作为所述辐射体。
  11. 一种电子设备,其特征在于,包括:
    天线,所述天线包括辐射体,所述辐射体包括缝隙,第一馈电点和第二馈电点,所述缝隙设置于所述第一馈电点和所述第二馈电点之间;
    地板,所述天线通过所述地板接地;
    其中,所述天线还包括第一电容,第二电容,第一馈电单元和第二馈电单元,所述第一电容的第一端与所述辐射体在第一馈电点处电连接,所述第一电容的第二端与所述第一馈电单元电连接,所述第二电容的第一端与所述辐射体在第二馈电点处电连接,所述第二电容的第二端与所述第二馈电单元电连接;
    所述天线还包括第一电感,第二电感和第三电容,所述第一电感的第一端位于所述第一电容的第二端与所述第一馈电单元之间,所述第一电感的第二端与所述第二电感的第一端电连接,所述第二电感的第二端位于所述第二电容的第二端与所述第二馈电单元之间,所述第三电容的第一端位于所述第一电感的第二端与所述第二电感的第一端之间,所述第三电容的第二端接地。
  12. 根据权利要求11所述的电子设备,其特征在于,
    所述第一电感的电容值L1满足:1nH≤L1≤8nH;和/或,
    所述第二电感的电容值L2满足:1nH≤L2≤8nH;和/或,
    所述第三电容的电容值C3满足:0.1pF≤C3≤5pF。
  13. 根据权利要求11或12所述的电子设备,其特征在于,
    所述第一馈电点和所述第二馈电点沿所述辐射体的虚拟轴线对称;
    所述虚拟轴线两侧的辐射体的长度相同。
  14. 根据权利要求11至13中任一项所述的电子设备,其特征在于,所述缝隙设置于所述辐射体的中心区域。
  15. 根据权利要求11至14中任一项所述的电子设备,其特征在于,所述第一电感的电感值和所述第二电感的电感值相同。
  16. 根据权利要求11至15中任一项所述的电子设备,其特征在于,
    所述第一馈电单元馈电时,所述天线产生第一谐振和第二谐振,所述第一谐振的谐振频率低于所述第二谐振的谐振频率;
    所述第二馈电单元馈电时,所述天线产生第三谐振和第四谐振,所述第一谐振的谐振频段和所述第三谐振的谐振频段同频,所述第二谐振的谐振频段和所述第四谐振的谐振频段同频。
  17. 根据权利要求11至16中任一项所述的电子设备,其特征在于,
    所述第一电容的电容值C1满足:0.3pF≤C1≤1pF;和/或,
    所述第二电容的电容值C2满足:0.3pF≤C2≤1pF。
  18. 根据权利要求11至17中任一项所述的电子设备,其特征在于,
    所述第一电容包括集总电容器件,和分布式电容器件中的至少一种;
    所述第二电容包括集总电容器件,和分布式电容器件中的至少一种。
  19. 根据权利要求11至18中任一项所述的电子设备,其特征在于,
    所述第一电容包括第一金属层,所述第一金属层的一端与所述第一馈电单元电连接,所述第一金属层在所述第一馈电点处与所述辐射体间接耦合;
    所述第二电容包括第二金属层,所述第二金属层的一端与所述第二馈电单元电连接,所述第二金属在所述第二馈电点处层与所述辐射体间接耦合;
    所述第一电感的第一端与所述第一金属层电连接;
    所述第二电感的第二端与所述第二金属层电连接。
  20. 根据权利要求11至19中任一项所述的电子设备,其特征在于,
    所述天线的工作频段包括下列频段中的至少部分频段:3300MHz-42000MHz,3300MHz-3800MHz或4400MHz-5000MHz。
  21. 根据权利要求11至20中任一项所述的电子设备,其特征在于,
    所述电子设备还包括:导电边框,所述边框上具有第一位置和第二位置,所述边框在所述第一位置和所述第二位置接地,所述第一位置和所述第二位置之间的边框为第一边框,所述第一边框作为所述辐射体。
PCT/CN2023/101042 2022-06-23 2023-06-19 一种电子设备 WO2023246694A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210718978.6A CN117335126A (zh) 2022-06-23 2022-06-23 一种电子设备
CN202210718978.6 2022-06-23

Publications (1)

Publication Number Publication Date
WO2023246694A1 true WO2023246694A1 (zh) 2023-12-28

Family

ID=89292062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101042 WO2023246694A1 (zh) 2022-06-23 2023-06-19 一种电子设备

Country Status (2)

Country Link
CN (1) CN117335126A (zh)
WO (1) WO2023246694A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210576465U (zh) * 2019-11-29 2020-05-19 维沃移动通信有限公司 一种电子设备
CN111725618A (zh) * 2020-06-23 2020-09-29 Oppo广东移动通信有限公司 天线组件和电子设备
CN111934089A (zh) * 2019-05-13 2020-11-13 华为技术有限公司 天线装置及移动终端
CN113517557A (zh) * 2020-04-10 2021-10-19 华为技术有限公司 一种电子设备
CN113555692A (zh) * 2020-04-23 2021-10-26 华为技术有限公司 一种电子设备
WO2021244454A1 (zh) * 2020-05-30 2021-12-09 荣耀终端有限公司 天线装置及电子设备
CN114122712A (zh) * 2020-08-28 2022-03-01 华为技术有限公司 一种天线结构及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111934089A (zh) * 2019-05-13 2020-11-13 华为技术有限公司 天线装置及移动终端
CN210576465U (zh) * 2019-11-29 2020-05-19 维沃移动通信有限公司 一种电子设备
CN113517557A (zh) * 2020-04-10 2021-10-19 华为技术有限公司 一种电子设备
CN113555692A (zh) * 2020-04-23 2021-10-26 华为技术有限公司 一种电子设备
WO2021244454A1 (zh) * 2020-05-30 2021-12-09 荣耀终端有限公司 天线装置及电子设备
CN111725618A (zh) * 2020-06-23 2020-09-29 Oppo广东移动通信有限公司 天线组件和电子设备
CN114122712A (zh) * 2020-08-28 2022-03-01 华为技术有限公司 一种天线结构及电子设备

Also Published As

Publication number Publication date
CN117335126A (zh) 2024-01-02

Similar Documents

Publication Publication Date Title
CN206236793U (zh) 具高隔离度的天线***
WO2022042147A1 (zh) 一种天线结构及电子设备
WO2021169700A1 (zh) 电子设备
WO2023103945A1 (zh) 一种天线结构和电子设备
WO2021203939A1 (zh) 一种电子设备
WO2022143320A1 (zh) 一种电子设备
TWI724754B (zh) 天線結構及具有該天線結構之無線通訊裝置
CN113140892B (zh) 天线结构及具有该天线结构的无线通信装置
WO2023246694A1 (zh) 一种电子设备
WO2022151826A1 (zh) 天线装置及电子设备
CN114552171B (zh) 天线结构及具有该天线结构的电子设备
WO2023246690A1 (zh) 一种电子设备
TWI724738B (zh) 天線結構及具有該天線結構之無線通訊裝置
WO2023185940A1 (zh) 一种电子设备
WO2024046199A1 (zh) 一种电子设备
WO2024046200A1 (zh) 一种电子设备
CN114389005A (zh) 一种电子设备
WO2024055870A1 (zh) 一种天线结构和电子设备
WO2024125394A1 (zh) 一种电子设备
WO2023221876A1 (zh) 一种电子设备
WO2023116780A1 (zh) 一种电子设备
WO2023016353A1 (zh) 一种天线结构和电子设备
WO2023155648A1 (zh) 一种天线结构和电子设备
WO2023221877A1 (zh) 一种天线结构和电子设备
WO2024055868A1 (zh) 一种可穿戴设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826342

Country of ref document: EP

Kind code of ref document: A1