WO2023103945A1 - 一种天线结构和电子设备 - Google Patents

一种天线结构和电子设备 Download PDF

Info

Publication number
WO2023103945A1
WO2023103945A1 PCT/CN2022/136513 CN2022136513W WO2023103945A1 WO 2023103945 A1 WO2023103945 A1 WO 2023103945A1 CN 2022136513 W CN2022136513 W CN 2022136513W WO 2023103945 A1 WO2023103945 A1 WO 2023103945A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna structure
radiator
slit
metal layer
slot
Prior art date
Application number
PCT/CN2022/136513
Other languages
English (en)
French (fr)
Inventor
朱乃达
王汉阳
姚羽
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023103945A1 publication Critical patent/WO2023103945A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas

Definitions

  • the present application relates to the field of wireless communication, and in particular to an antenna structure and electronic equipment.
  • the millimeter wave can provide a solution for high-speed wireless communication.
  • broadband and high-gain performance are required to achieve high-speed data transmission, low latency and high reliability.
  • the millimeter-wave antenna in the electronic device needs to have dual-polarization performance at the same time, so as to receive communication information from different directions; at the same time, due to the limited space of the electronic device, it will be caused by the insufficient compact antenna structure.
  • the increase in the size of the whole machine has strict requirements on the miniaturization design of the antenna.
  • Embodiments of the present application provide an antenna structure and an electronic device, and horizontally polarized radiation and vertically polarized radiation can be generated respectively by using the slots provided on the metal cavity of the antenna structure.
  • the working bandwidth of the antenna structure can be expanded through the radiator arranged above the slot, so that the working frequency band of the antenna structure includes more communication frequency bands.
  • the width of the antenna structure provided by the embodiment of the present application may be smaller than the frame width of the electronic device, which is beneficial for application in the electronic device.
  • an antenna structure including: a metal cavity, the metal cavity includes a first metal layer and a second metal layer oppositely arranged, and a metal layer connecting the first metal layer and the second metal layer A metal wall; a first radiator, the first radiator is opposite to the metal cavity and arranged at intervals, and the first radiator is located on the side of the first metal layer away from the second metal layer; wherein, The first metal layer is provided with a first slit and a second slit, the first end of the second slit is connected to the first slit; the first slit, the second slit and the first radiation
  • the projections of the body in the first direction are at least partially coincident, and the first direction is a direction perpendicular to the first metal layer; the first slit is provided with a first feeding point; the second slit is provided with a second feed point.
  • the second metal layer is used as the floor of the antenna structure, and at the same time, horizontally polarized and vertically polarized electromagnetic waves can be generated by using the T-shaped slots provided on the first metal layer. Since the horizontally polarized electromagnetic wave is orthogonal to the vertically polarized electromagnetic wave, the coupling between the two can be greatly reduced. Therefore, the antenna structure can be applied to the MIMO system.
  • the antenna structure is provided with a first radiator, which can generate an additional resonant frequency band by coupling with the T-shaped slot, which can be used to expand the working frequency band of the antenna structure and make it applicable to more communication frequency bands.
  • the first radiator is provided with a third slit, and an extending direction of the third slit is parallel to an extending direction of the first slit.
  • the first radiator is provided with a third slit, an additional magnetic current is generated through the third slit when the first metal layer resonates, which can make more electromagnetic waves in the working frequency band radiate outward, reducing the The current flow on the small ground (second metal layer), thereby improving the radiation characteristics of the antenna structure.
  • the first radiator is divided into a first part and a second part separated by the third slit.
  • the first part includes a bent radiator and bends toward the direction of the first metal layer; the second part includes a bent radiator body, and bend toward the direction of the first metal layer.
  • the first radiator of the planar structure is folded into a three-dimensional structure, so as to reduce the width of the first radiator, thereby reducing the width of the antenna structure, and realizing the miniaturization of the antenna structure so that it can be installed in the electronic inside the device.
  • the second radiator is opposite to the first radiator and arranged at intervals, and the second radiator is located in the first radiator.
  • the radiator is away from the side of the metal cavity.
  • the second radiator is added to the antenna structure, which can be used to generate additional resonance frequency bands, and can expand the working frequency band of the antenna structure to include more communication frequency bands.
  • the first feeding point is disposed at a connection between the first slot and the second slot.
  • the first slot has the same length on both sides of the first feeding point.
  • the radiation characteristics of the antenna structure can be improved.
  • the antenna structure further includes: a first feeding stub, a second feeding stub, the first feeding stub and the second feeding stub Set in the metal cavity; projections of the first feeding branch and the first slot in the first direction at least partially overlap; projections of the second feeding branch and the second slot in the first direction at least partially coincident.
  • the first feeding unit and the second feeding unit can feed the antenna structure at the first feeding point and the second feeding point through coupling feeding, which can expand the antenna structure working frequency band.
  • the first feeding stub is L-shaped, and the second feeding stub is linear.
  • the application does not limit the specific shapes of the first feeder branch and the second feeder branch, for example, the first feeder branch and the second feeder branch can be rectangles, circles, broken lines Regular or irregular shapes such as harpoon type and harpoon type, the specific shapes of the first feeder branch and the second feeder branch can be adjusted according to the shape or design requirements of the metal cavity.
  • the antenna structure further includes at least one metal post; at least one of the metal posts is disposed on any side of the circumference of the first radiator; the The metal pillar is electrically connected with the first metal layer.
  • the metal post can be used to expand the floor (second metal layer) of the antenna structure to increase the current path on the floor, thereby reducing the impact of the impedance of the antenna structure due to the small floor area , so as to improve the radiation characteristics (eg, working bandwidth) of the antenna structure 100 .
  • an extending direction of the first slit is perpendicular to an extending direction of the second slit.
  • the physical length of the first slit is 1/2 ⁇ 10% of the first wavelength
  • the physical length of the second slit is 1/2 of the first wavelength
  • the first wavelength is the working wavelength of the antenna structure.
  • the radiation generated by the T-shaped slot is mainly generated by the first slot.
  • the electrical length of the first slot can be 1/2 of the first wavelength, so that the antenna structure utilizes the first slot to work in the 1/2 wavelength mode.
  • the radiation generated by the T-shaped slot is mainly composed of The second gap and part of the first gap are generated.
  • the electrical length of the second slot can be a quarter of the first wavelength, so that the antenna structure works in a quarter wavelength mode by using the second slot. Since the electrical length of the second slit is less than half of the first wavelength, the antenna has a compact structure and is more favorable for being arranged in electronic equipment.
  • the first metal layer is provided with a fourth slit, and the fourth slit is connected to the second end of the second slit.
  • the fourth slit can be used to increase the magnetic current path at the second end of the second slit, so that when the second feed unit feeds power, the magnetic current path in the T-shaped slit remains unchanged.
  • the length of the second slot is further shortened, so that the width of the first metal layer is further reduced, thereby reducing the width of the antenna structure.
  • the width of the antenna structure is less than 3.5 mm.
  • the width of the antenna structure may be less than 0.3 low-frequency wavelengths, for example, the low-frequency wavelength may be the wavelength corresponding to the lowest frequency of the working frequency band.
  • the width L2 of the antenna structure may be less than 3.5 mm.
  • the length of the antenna structure is less than 4.5 mm.
  • the length of the antenna structure can be less than 0.4 low-frequency wavelengths.
  • the length L1 of the antenna structure can be less than 4.5mm, so that the same number can be set The length of the frame occupied by the antenna structure is shorter.
  • the working frequency band of the antenna structure includes 24.25 GHz-29.5 GHz.
  • the working frequency band of the antenna structure includes 37GHz-43.5GHz.
  • the antenna structure can work in the millimeter wave frequency band.
  • an electronic device including the antenna structure described in any one of the first aspect.
  • the electronic device further includes a frame; the frame is provided with a fifth slot; at least a part of the antenna structure is provided on both sides of the fifth slot between conductors.
  • the electronic device further includes a first dielectric plate disposed between the first metal layer and the first radiator .
  • the electronic device further includes a second dielectric plate, and the second dielectric plate is disposed between the first radiator and the second radiator .
  • the electronic device further includes a third dielectric board and a fourth dielectric board; wherein at least a part of the third dielectric board and the fourth dielectric board At least a part of them is stacked in the metal cavity in the first direction; the first feeder branch and the second feeder branch are arranged between the third dielectric board and the fourth dielectric board between.
  • FIG. 1 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of a millimeter wave antenna provided by an embodiment of the present application.
  • Fig. 3 is different views of the antenna structure 100 provided by the embodiment of the present application.
  • Fig. 4 is an exploded view of the antenna structure 100 provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram of the first metal layer 111 provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of a frame of an electronic device provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of electric field distribution when the antenna structure 100 shown in FIG. 3 is fed by the first feeding unit.
  • FIG. 8 is a schematic diagram of electric field distribution when the antenna structure 100 shown in FIG. 3 is fed by the second feeding unit.
  • FIG. 9 is a schematic structural diagram of a first metal layer 111 provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another antenna structure 200 provided by an embodiment of the present application.
  • Fig. 11 is a schematic diagram of the magnetic current distribution generated when the first radiator resonates according to the embodiment of the present application.
  • FIG. 12 is a diagram of simulation results of S parameters of the antenna structure shown in FIG. 10 .
  • FIG. 13 is a graph of simulation results of the gain of the antenna structure shown in FIG. 10 .
  • FIG. 14 is a schematic structural diagram of another antenna structure 300 provided by an embodiment of the present application.
  • FIG. 15 is a simulation result diagram of S parameters of the antenna structure shown in FIG. 14 .
  • connection can be understood as the physical contact and electrical conduction of components; Copper foil or wires and other physical lines that can transmit electrical signals are connected; it can also be understood as the electrical conduction through the air through indirect coupling.
  • Coupling can be understood as the electrical conduction through indirect coupling. Among them, those skilled in the art can understand that the coupling phenomenon refers to the close relationship between the input and output of two or more circuit elements or electrical networks. The phenomenon of cooperation and mutual influence, and the transfer of energy from one side to the other through the interaction. Both “connection” and “connection” can refer to a mechanical or physical connection relationship.
  • connection between A and B or the connection between A and B can mean that there are fastening components (such as screws, bolts, etc.) between A and B. rivets, etc.), or A and B are in contact with each other and A and B are difficult to separate.
  • fastening components such as screws, bolts, etc.
  • Antenna gain refers to the actual antenna and the ideal radiating unit (since the ideal radiating unit does not exist, it is replaced by a dipole antenna (dipole) in practical applications) at the same point in space under the condition of equal input power
  • the ratio of the power density of the resulting signal It quantitatively describes the degree to which an antenna concentrates the input power and radiates it.
  • the electric field strength E is a one-variable function of time t.
  • the vector endpoints periodically draw a trajectory in space. If the trajectory is straight and vertical to the ground (the plane where the floor is located), it is called vertical polarization, and if it is horizontal to the ground, it is called horizontal polarization.
  • the vibration directions of the horizontally polarized and vertically polarized electromagnetic waves are perpendicular to each other, the coupling between the horizontally polarized electromagnetic wave and the vertically polarized electromagnetic wave is relatively low, and the isolation is relatively good.
  • Antenna return loss It can be understood as the ratio of the signal power reflected back to the antenna port through the antenna circuit and the transmit power of the antenna port. The smaller the reflected signal, the larger the signal radiated to the space through the antenna, and the greater the radiation efficiency of the antenna. The larger the reflected signal, the smaller the signal radiated to the space through the antenna, and the smaller the radiation efficiency of the antenna.
  • the return loss of the antenna can be expressed by the S11 parameter, and the S11 is one of the S parameters.
  • S11 represents the reflection coefficient, which can characterize the quality of the antenna's emission efficiency.
  • the S11 parameter is usually a negative number. The smaller the S11 parameter, the smaller the return loss of the antenna, and the smaller the energy reflected back by the antenna itself, which means that the more energy actually enters the antenna, and the higher the system efficiency of the antenna; the S11 parameter The larger is, the greater the return loss of the antenna is, and the lower the system efficiency of the antenna is.
  • the S11 value of -4dB is generally used as a standard.
  • the S11 value of the antenna is less than -4dB, it can be considered that the antenna can work normally, or it can be considered that the transmission efficiency of the antenna is relatively good.
  • Ground can generally refer to at least a part of any ground layer, or ground plate, or ground metal layer in an electronic device (such as a mobile phone), or any combination of any of the above ground layers, or ground plates, or ground components, etc.
  • ground can be used to ground components within electronic equipment.
  • the "ground” may be the ground layer of the circuit board of the electronic device, or the ground plane formed by the middle frame of the electronic device or the ground metal layer formed by the metal film under the screen.
  • the circuit board may be a printed circuit board (PCB), such as an 8-layer, 10-layer or 12-14 layer board with 8, 10, 12, 13 or 14 layers of conductive material, or a printed circuit board such as A dielectric or insulating layer, such as fiberglass, polymer, etc., that separates and electrically insulates components.
  • the circuit board includes a dielectric substrate, a ground layer and a wiring layer, and the wiring layer and the ground layer are electrically connected through via holes.
  • components such as displays, touch screens, input buttons, transmitters, processors, memory, batteries, charging circuits, system on chip (SoC) structures, etc. may be mounted on or connected to a circuit board; or electrically connected to trace and/or ground planes in the circuit board.
  • the radio frequency source is set on the wiring layer.
  • the conductive material can be any one of the following materials: copper, aluminum, stainless steel, brass and their alloys, copper foil on an insulating substrate, aluminum foil on an insulating substrate, gold foil on an insulating substrate, Silver-plated copper, silver-plated copper foil on insulating substrate, silver foil and tin-plated copper on insulating substrate, cloth impregnated with graphite powder, graphite-coated substrate, copper-plated substrate, brass-plated substrate sheets and aluminum-coated substrates.
  • the ground layer/ground plate/ground metal layer can also be made of other conductive materials.
  • the technical solutions provided in the embodiments of the present application are applicable to electronic devices using one or more of the following communication technologies: Bluetooth (blue-tooth, BT) communication technology, global positioning system (global positioning system, GPS) communication technology, wireless fidelity (wireless fidelity, WiFi) communication technology, global system for mobile communications (GSM) communication technology, wideband code division multiple access (wideband code division multiple access, WCDMA) communication technology, long term evolution (long term evolution, LTE) ) communication technology, 5G communication technology and other communication technologies in the future.
  • the electronic device in the embodiment of the present application may be a mobile phone, a tablet computer, a notebook computer, a smart home, a smart bracelet, a smart watch, a smart helmet, smart glasses, and the like.
  • the electronic device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, electronic devices in the 5G network or electronic devices in the future evolution of the public land mobile network (PLMN), etc., this
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • FIG. 1 exemplarily shows an electronic device provided by an embodiment of the present application, and the electronic device is a mobile phone for illustration.
  • the electronic device 10 may include: a cover plate (cover) 13, a display screen/module (display) 15, a printed circuit board (printed circuit board, PCB) 17, a middle frame (middle frame) 19 and a rear cover (rear cover)21.
  • the cover plate 13 can be a glass cover plate (cover glass), and can also be replaced by a cover plate of other materials, such as an ultra-thin glass material cover plate, PET (Polyethylene terephthalate, polyterephthalate Ethylene formate) material cover plate, etc.
  • the cover plate 13 can be arranged close to the display module 15 , and can be mainly used for protecting and dustproofing the display module 15 .
  • the display module 15 may include a liquid crystal display panel (liquid crystal display, LCD), a light emitting diode (light emitting diode, LED) display panel or an organic light emitting semiconductor (organic light-emitting diode, OLED) display panel, etc. , this application does not limit it.
  • liquid crystal display panel liquid crystal display, LCD
  • light emitting diode light emitting diode, LED
  • organic light emitting semiconductor organic light-emitting diode, OLED
  • the middle frame 19 mainly plays a supporting role of the whole machine. It is shown in Fig. 1 that the PCB 17 is arranged between the middle frame 19 and the rear cover 21. It should be understood that, in one embodiment, the PCB 17 can also be arranged between the middle frame 19 and the display module 15, and this application does not Do limit.
  • the printed circuit board PCB 17 may use a flame-resistant material (FR-4) dielectric board, or a Rogers (Rogers) dielectric board, or a mixed media board of Rogers and FR-4, and so on.
  • FR-4 is a code name for a flame-resistant material grade
  • Rogers dielectric board is a high-frequency board.
  • the PCB 17 carries electronic components, for example, radio frequency chips and the like.
  • a metal layer may be disposed on the printed circuit board PCB17.
  • the metal layer can be used for grounding of electronic components carried on the printed circuit board PCB17, and can also be used for grounding of other components, such as bracket antennas, frame antennas, etc.
  • the metal layer can be called a floor, or a ground plane, or a ground layer.
  • the metal layer can be formed by etching metal on the surface of any dielectric board in the PCB 17 .
  • the metal layer for grounding can be disposed on the side of the printed circuit board PCB17 close to the middle frame 19 .
  • the edges of the printed circuit board PCB 17 can be considered as the edges of its ground plane.
  • the metal middle frame 19 may also be used for grounding the above components.
  • the electronic device 10 may also have other ground/ground planes/ground layers, as mentioned above, which will not be repeated here.
  • the electronic device 10 may also include a battery (not shown in the figure).
  • the battery can be disposed between the middle frame 19 and the rear cover 21 , or between the middle frame 19 and the display module 15 , which is not limited in the present application.
  • the PCB 17 is divided into a main board and a sub-board, and the battery can be arranged between the main board and the sub-board, wherein the main board can be arranged between the middle frame 19 and the upper edge of the battery, and the sub-board can be arranged on the Between the middle frame 19 and the lower edge of the battery.
  • the electronic device 10 may further include a frame 11, and the frame 11 may be formed of a conductive material such as metal.
  • the frame 11 can be disposed between the display module 15 and the back cover 21 and extend around the periphery of the electronic device 10 .
  • the frame 11 can have four sides surrounding the display module 15 to help fix the display module 15 .
  • the frame 11 made of metal material can be directly used as the metal frame of the electronic device 10 to form the appearance of a metal frame, which is suitable for metal industrial design (ID).
  • the outer surface of the frame 11 may also be made of non-metallic material, such as a plastic frame, to form the appearance of a non-metallic frame, which is suitable for a non-metallic ID.
  • the middle frame 19 may include a frame 11, and the middle frame 19 including the frame 11 as an integral part may support the electronic devices in the whole machine.
  • the cover plate 13 and the rear cover 21 are respectively covered along the upper and lower edges of the frame to form a housing or housing of the electronic device.
  • the cover plate 13 , the rear cover 21 , the frame 11 and/or the middle frame 19 may be collectively referred to as a housing or a shell of the electronic device 10 .
  • “outer shell or shell” can be used to refer to any part or all of the cover plate 13, the rear cover 21, the frame 11 or the middle frame 19, or to refer to the cover plate 13, the rear cover 21, the frame 11 Or part or all of any combination in the middle frame 19.
  • the frame 11 may not be regarded as a part of the middle frame 19 .
  • the frame 11 can be connected with the middle frame 19 and integrally formed.
  • the frame 11 may include a protruding piece extending inward to connect with the middle frame 19 , for example, by means of spring clips, screws, welding, and the like.
  • the protruding part of the frame 11 can also be used to receive a feed signal, so that at least a part of the frame 11 acts as a radiator of the antenna to receive/transmit radio frequency signals.
  • the back cover 21 may be a back cover made of a metal material, or a back cover made of a non-conductive material, such as a non-metal back cover such as a glass back cover or a plastic back cover.
  • FIG. 1 only schematically shows some components included in the electronic device 10 , and the actual shape, actual size and actual configuration of these components are not limited by FIG. 1 .
  • the surface of the electronic device where the display screen is located is the front side
  • the side where the rear cover is located is the back side
  • the side where the frame is located is the side surface
  • the second generation (2G) mobile communication system mainly supported the call function, and electronic equipment was only a tool for people to send and receive short messages and voice communication.
  • the wireless Internet access function uses the voice channel for data transmission.
  • the fifth generation (5G) mobile communication system the low frequencies of the radio spectrum have tended to be saturated.
  • the millimeter wave frequency band has abundant spectrum resources. Therefore, millimeter wave can provide a solution for high-speed wireless communication with low latency and high reliability.
  • the millimeter-wave antenna in the electronic device needs to have dual-polarization performance at the same time, so as to receive communication information from different directions; at the same time, due to the limited space of the electronic device, it will be caused by the insufficient compact antenna structure.
  • the increase in the size of the whole machine has strict requirements on the miniaturization design of the antenna.
  • Fig. 2 is a schematic structural diagram of a millimeter wave antenna provided by an embodiment of the present application.
  • two feed points set on the radiation patch can be used to generate radiation polarized in two directions, such as horizontally polarized and vertically polarized radiation, so that the millimeter wave
  • the antenna can be applied to a multi-input multi-output (MIMO) system.
  • MIMO multi-input multi-output
  • the width of the radiation patch is about 0.4 working wavelength, and the relative bandwidth of the antenna structure is about 10%.
  • FIG. 3 to FIG. 5 are structural schematic diagrams of an antenna structure 100 provided by an embodiment of the present application, which may be applied to the electronic device shown in FIG. 1 .
  • FIG. 3 is a different view of the antenna structure 100 provided by the embodiment of the present application.
  • Fig. 4 is an exploded view of the antenna structure 100 provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram of a first metal layer provided by an embodiment of the present application.
  • the antenna structure provided in the embodiment of the present application can generate horizontally polarized radiation and vertically polarized radiation respectively by using the slots provided on the metal cavity. At the same time, the working bandwidth of the antenna structure can be expanded through the radiator arranged above the slot, so that its working frequency band includes more communication frequency bands.
  • the width of the antenna structure provided by the embodiment of the present application may be smaller than the frame width of the electronic device, which is beneficial for application in the electronic device.
  • the antenna structure 100 may include a metal cavity 110 and a first radiator 120 .
  • the metal cavity 110 includes a first metal layer 111 , a second metal layer 112 , and a metal wall 113 connecting the first metal layer 111 and the second metal layer 112 , as shown in (a) of FIG. 3 .
  • the metal walls 113 are respectively connected to the first metal layer 111 and the second metal layer 112 .
  • the metal wall 113 is connected to the first metal layer 111 and the second metal layer 112 at the edge of the first metal layer 111 and the edge of the second metal layer 112 respectively.
  • the first metal layer 111 , the second metal layer 112 and the metal wall 113 enclose the metal cavity 110 .
  • a closed cavity structure is formed by the first metal layer 111 , the second metal layer 112 and the metal wall 113 , as shown in FIG. 4 .
  • the first radiator is opposite to the metal cavity and arranged at intervals, and the first radiator 120 is located on a side of the first metal layer 111 away from the second metal layer 112 . In one embodiment, the first radiator 120 is disposed above the first metal layer 111 .
  • the antenna structure 100 may further include a first dielectric plate 130 .
  • the first dielectric plate 130 is disposed between the metal cavity 110 and the first radiator 120 , and one side of the first dielectric plate 130 is in contact with the first metal layer 111 for supporting the first radiator 120 .
  • the first metal layer 111 is provided with a first slit 101 and a second slit 102 .
  • the first end 1021 of the second slot 102 is connected to the first slot 101 , so that the first slot 101 and the second slot 102 are connected.
  • the first slot 101 is provided with a first feed point 141
  • the second slot 102 is provided with a second feed point 142, both the first feed point 141 and the second feed point 142 are used to feed the antenna structure, so that the antenna The structure resonates.
  • the first slit 101 and the second slit 102 form a closed slit or a closed slit. In one embodiment, neither the first slit 101 nor the second slit 102 extends to the edge of the first metal layer 111 .
  • projections of the first slot 101 , the second slot 102 and the first radiator 120 in a first direction are at least partially coincident, and the first direction is a direction perpendicular to the first metal layer 111 .
  • the first direction is the z direction.
  • the second metal layer is used as the floor of the antenna structure, and at the same time, the T-shaped slot provided on the first metal layer can be used to feed power at the first feeding point and the second feeding point , generating electromagnetic waves with two different polarization directions, for example, a horizontally polarized electromagnetic wave and a vertically polarized electromagnetic wave. Since the horizontally polarized electromagnetic wave is orthogonal to the vertically polarized electromagnetic wave, the coupling between the two can be greatly reduced. Therefore, the isolation between the two is relatively high, so that the antenna structure can be applied to the MIMO system.
  • the antenna structure is provided with a first radiator, which can generate an additional resonant frequency band by coupling with the T-shaped slot, which can be used to expand the working frequency band of the antenna structure and make it applicable to more communication frequency bands.
  • the first metal layer 111 and the second metal layer 112 are rectangular for illustration, that is, the metal cavity 110 is a cuboid.
  • the first metal layer 111 and the second metal layer 112 may be triangular, circular, etc., which is not limited in the present application.
  • the first radiator 120 may also be in any shape, for example, rectangle, circle, triangle, etc., which is not limited in the present application.
  • the metal wall 113 may be referred to as a short-circuit metal wall.
  • the metal wall 113 is disposed between the first metal layer 111 and the second metal layer 112. One side of the metal wall 113 is along the edge of the first metal layer 111. Connected with the first metal layer 111, the other side of the metal wall 113 is connected with the second metal layer 112 along the edge of the second metal layer 112, so that the space between the first metal layer 111 and the second metal layer 112 is at its circumference Closed in the direction to form a closed metal cavity 110 .
  • the short-circuit metal wall 113 may include a plurality of metal vias 1131, one end of each of the plurality of metal vias 1131 is electrically connected to the first metal layer 111, and the other end of each metal via is electrically connected to the first metal layer 111. One end is electrically connected to the second metal layer 112 , as shown in (a) of FIG. 3 .
  • the distance D between any two adjacent metal vias in the plurality of metal vias 1131 is less than the first threshold, it can be considered that the plurality of metal vias 1131 form the metal wall 113, and the first metal layer 111 and the second metal The space between the layers 112 is closed in its circumferential direction, forming a closed metal cavity 110 .
  • the first threshold When the frequency of the working frequency band of the antenna structure is higher, the first threshold is smaller, and the higher the frequency of the working frequency band of the antenna structure is, the closer the distance between any two adjacent metal through holes among the plurality of metal through holes 1131 is, or , when the diameter of the metal via 1131 is smaller, the first threshold is smaller, and the smaller the diameter of the metal via 1131 is, the closer the distance between any two adjacent metal vias 1131 is.
  • the first threshold in frequency bands n257 and n258 (24.25-29.5 GHz), the first threshold may be 0.2 mm when the diameter of the metal via 1131 is 0.075 mm.
  • the extending direction of the first slit 101 may be perpendicular to the extending direction of the second slit 102 .
  • the extending direction of the first slit 101 can be understood as the length direction of the first slit 101
  • the extending direction of the second slit 102 can also be understood accordingly. Since the space inside the electronic device is increasingly tight, the arrangement of the antenna structure needs to be adjusted according to the internal space of the electronic device. It should be noted that the qualifiers on the relative positional relationship, such as parallel and vertical, mentioned in the embodiments of the present application are all aimed at the current technological level, rather than absolute and strict definitions in the mathematical sense, allowing a small amount of Deviation, both approximately parallel and approximately perpendicular are acceptable.
  • a and B are parallel, which means that A and B are parallel or nearly parallel. In one embodiment, A and B are parallel, which means that the angle between A and B is between 0° and 10°. In one embodiment, A and B are perpendicular, which means that A and B are perpendicular or nearly perpendicular. In one embodiment, A and B are perpendicular, which means that the angle between A and B is between 80 degrees and 100 degrees.
  • the first feeding point 141 may be disposed at the junction of the first slot 101 and the second slot 102 .
  • the first feeding point 141 may be disposed in the central area of the first slot 101 , and the lengths of the first slots 101 on both sides of the first feeding point 141 are the same. It should be understood that as the symmetry of the antenna structure 100 increases, the radiation characteristics of the antenna structure 100 can be improved.
  • the first feeding unit and the second feeding unit can feed the antenna structure 100 at the first feeding point 141 and the second feeding point 142 by means of coupled feeding, which can expand the antenna structure 100 working frequency band.
  • the antenna structure 100 may further include a first feeding stub 143 and a second feeding stub 144 , as shown in FIG. 4 .
  • the first feeding stub 143 and the second feeding stub 144 can be disposed in the metal cavity 110 .
  • the projections of the first feeding stub 143 and the first slot 101 in the first direction (z direction) at least partially overlap, and the overlapping area includes the first feeding point 141, the first feeding stub 143 is coupled and connected to the first metal layer 111 at the first feeding point 141 , as shown in FIG. 5 .
  • the projections of the second feeding stub 144 and the second slot 102 in the first direction (z direction) are at least partially overlapped, and the overlapping area includes the second feeding point 142, and the second feeding stub 144 is at The second feeding point 142 is coupled to the first metal layer 111 , as shown in FIG. 5 .
  • one end of the first feeding stub 143 and one end of the second feeding stub 144 may be electrically connected to the first feeding unit and the second feeding unit, respectively, for feeding electrical signals to the antenna structure 100 .
  • the antenna structure may further include a third dielectric plate and a fourth dielectric plate, at least a part of the third dielectric plate and at least a part of the fourth dielectric plate may be stacked and arranged in the metal cavity 110 in the first direction,
  • the first feeding branch 143 and the second feeding branch 144 are arranged between the third dielectric board and the fourth dielectric board, so that the first feeding branch 143 and the second feeding branch 144 form a stripline structure, which can be Under the condition that the electrical lengths of the first feeding branch 143 and the second feeding branch 144 are kept constant, the lengths of the first feeding branch 143 and the second feeding branch 144 are further reduced.
  • the metal cavity 110 may also include more dielectric plates, which is not limited in the present application.
  • the second dielectric board and the third dielectric board can be made of the same dielectric material as the first dielectric board 130, or the first dielectric board 130, the second dielectric board and the third dielectric board can use different dielectric materials respectively , this application does not limit it.
  • the electrical length may refer to the physical length (that is, mechanical length or geometric length) multiplied by the transmission time of an electrical or electromagnetic signal in a medium and the signal required to pass the same distance as the physical length of the medium in free space Expressed as a ratio of time, the electrical length can satisfy the following formula:
  • L is the physical length
  • a is the transmission time of the electric or electromagnetic signal in the medium
  • b is the transmission time in free space.
  • the electrical length can also refer to the ratio of the physical length (i.e. mechanical length or geometric length) to the wavelength of the transmitted electromagnetic wave, and the electrical length can satisfy the following formula:
  • L is the physical length
  • is the working wavelength of the electromagnetic wave.
  • the first feeding branch 143 is L-shaped, and the second feeding branch 144 is linear. It should be understood that the L-shaped or straight-line shape is only the main shape of the feeder branch, and recesses or protrusions may also be provided in some areas of the feeder branch. This application does not limit the first feeder branch 143 and the second feeder branch.
  • the specific shape of the feeding branch 144 for example, the first feeding branch 143 and the second feeding branch 144 can be regular or irregular shapes such as rectangle, circle, broken line, and harpoon, and the first feeding branch 143
  • the specific shape of the second feeding stub 144 can be adjusted according to the shape or design requirements of the metal cavity 110 .
  • the first feeding unit and the second feeding unit feed power to the antenna structure 100 at the first feeding point 141 and the second feeding point 142 through coupling feeding.
  • the first feeding unit and the second feeding unit may feed power to the antenna structure 100 at the first feeding point 141 and the second feeding point 142 through direct feeding.
  • the first feeding unit may be electrically connected to the conductors on both sides of the first slot 101 at the first feeding point 141 .
  • the second feeding unit may be electrically connected to the conductors on both sides of the second slot 102 at the second feeding point 142 .
  • the first feeding unit and the second feeding unit may be different radio frequency channels in a radio frequency chip disposed inside the antenna structure 100 .
  • the antenna structure 100 further includes at least one metal post 151 , as shown in FIG. 4 .
  • the metal post 151 may be disposed on the first dielectric board 130 , and one end of the metal post 151 is electrically connected to the first metal layer 111 .
  • the metal post 151 may be called a matching metal post, and the metal post 151 may be disposed on the side of the first dielectric plate 130 (the surface in the thickness direction of the first dielectric plate, for example, the surface in the z direction) or in a Metal vias are disposed inside the first dielectric board 130 .
  • the first radiator 120 and the metal posts 141 are respectively disposed on the surface of the first dielectric plate 130 .
  • the metal post 141 is disposed on any side of the first radiator 120 in the circumferential direction, and is not connected to the first radiator 120 .
  • the first radiator 141 is disposed on the surface of the first dielectric plate 130 away from the metal cavity 110, the metal post 141 can be a bent structure, and the two bent parts of the metal post 141 are respectively It is arranged on the adjacent side of the first dielectric board 130 .
  • the antenna structure 100 includes a plurality of metal pillars 141
  • the plurality of metal pillars 141 are arranged at different positions in the circumferential direction of the first radiator 120, so that the first radiator 120 is arranged on a plurality of metal pillars.
  • At least one metal post 151 can be used to expand the floor of the antenna structure 100 (second metal layer 112), increase the current path on the floor, thereby reducing the impact of the impedance of the antenna structure 100 due to the small floor area (floor area If it is too small, the electromagnetic wave generated by the current on the floor cannot be bound, thereby causing interference to the electromagnetic wave in the working frequency band of the antenna structure), thereby improving the radiation characteristics (eg, working bandwidth) of the antenna structure 100 .
  • this application only uses the antenna structure including four matching metal posts 151 arranged at the four corners of the first dielectric plate 130 as an example for illustration.
  • the number of matching metal posts 151 included in the antenna structure 100 can be adjusted.
  • the number and the position of the matching metal posts 151 are not limited in this application.
  • the working frequency bands of the antenna structure 100 may include frequency bands n257 and n258 (24.25-29.5 GHz). In actual design or production, adjustments can be made according to actual needs, which is not limited in this application.
  • the antenna structure 100 may further include a casing, and the metal cavity 110, the first radiator 120 and the first dielectric plate 130 may be disposed in a space surrounded by the casing.
  • the frame 11 of the electronic device may be provided with at least one third slit 103 , as shown in FIG. 6 .
  • At least a part of the antenna structure 100 may be disposed in the third slot 103, where the antenna structure 100 disposed in the third slot 103 may be understood as at least a part of the antenna structure 100 is disposed between the conductors on both sides of the slot 103.
  • at least part of the antenna structure 100 is embedded in the frame 11 .
  • the width L2 of the antenna structure 100 is smaller than the width of the frame 11 so that the antenna structure 100 can be disposed in the third slot 103 opened by the frame 11 . Therefore, the key dimension of the miniaturized antenna structure 100 is the width L2.
  • the width L2 of the antenna structure 100 may be less than 0.3 low-frequency wavelengths, for example, the low-frequency wavelength may be the wavelength corresponding to the lowest frequency of the working frequency band. Taking the antenna structure 100 working in the n257 and n258 frequency bands as an example, the width L2 of the antenna structure 100 may be less than 3.5 mm.
  • the electronic device may include multiple antenna structures 100, and the multiple antenna structures 100 may be arranged in different third slots 103 respectively, and the multiple antenna structures 100 correspond to the multiple third slots 103, as shown in FIG. 6 As shown in (a) of FIG. 6 , alternatively, multiple antenna structures 100 may also be arranged in a third slot, as shown in (b) of FIG. 6 , which is not limited in this application.
  • the length L1 of the antenna structure 100 may be less than 0.4 low-frequency wavelengths. Taking the antenna structure 100 operating in the n257 and n258 frequency bands as an example, the length L1 of the antenna structure 100 may be less than 4.5mm, so that the same The length of the frame occupied by the number of antenna structures is shorter.
  • the length L1 of the antenna structure 100 can be 3.5 mm, the width L2 can be 2.8 mm, and the height L3 can be 1 mm, as shown in (c ) shown.
  • FIG. 7 and 8 are schematic diagrams of the electric field distribution of the antenna structure 100 shown in FIG. 3 .
  • FIG. 7 is a schematic diagram of the electric field distribution of the antenna structure 100 shown in FIG. 3 when the first feeding unit feeds power.
  • FIG. 8 is a schematic diagram of electric field distribution when the antenna structure 100 shown in FIG. 3 is fed by the second feeding unit.
  • the magnetic current in the T-shaped gap is antisymmetrically distributed along the y direction (the amplitude is the same, the phase difference is about 180°, for example, the phase difference is 180° ⁇ 45°).
  • the first radiator when the first feed unit feeds power, the first radiator is coupled to the T-shaped slot, and the current on the first radiator flows along the x direction (most of the current (70% The current of the above) and the x direction are at ⁇ 45° or 180° ⁇ 45°), which can generate the first resonant frequency band.
  • the first resonant frequency band generated by the first radiator can be used to expand the working bandwidth of the antenna structure when the first feeding unit feeds power.
  • the first feed unit feeds In the case of , the polarization mode of the antenna structure is horizontal polarization.
  • the magnetic current in the T-shaped gap is symmetrically distributed along the y direction (the amplitude is the same, and the phase difference is about 0°, for example, the phase difference is ⁇ 45°) .
  • the first radiator when the second feed unit feeds power, the first radiator is coupled to the T-shaped slot, and the current on the first radiator flows along the y direction (most of the current (70% The current of the above) and the y direction are ⁇ 45° or 180° ⁇ 45°), which can generate the second resonant frequency band.
  • the second resonant frequency band generated by the first radiator can be used to expand the working bandwidth of the antenna structure when the second feeding unit feeds power.
  • the second feed unit feeds In the case of , the polarization mode of the antenna structure is vertical polarization.
  • the antenna structure when fed by the first feed unit and the second feed unit, the antenna structure can generate horizontally polarized electromagnetic waves and vertically polarized electromagnetic waves respectively, and the horizontally polarized electromagnetic waves and the vertically polarized electromagnetic waves are in the far field
  • the inner product is zero (integral quadrature) and does not affect each other. Therefore, good isolation can be obtained between horizontally polarized electromagnetic waves and vertically polarized electromagnetic waves, which can be applied to MIMO systems.
  • the radiation generated by the T-shaped slot is mainly generated by the first slot.
  • the physical length of the first slit can be 1/2 ⁇ 10% of the first wavelength, so that the antenna structure can use the first slit to work in the 1/2 wavelength mode, and the first wavelength is the wavelength corresponding to the working frequency band of the antenna structure, for example
  • the first wavelength may be the wavelength corresponding to the center frequency of the working frequency band, or may be the wavelength corresponding to the frequency of the resonance point in the working frequency band.
  • the radiation generated by the T-shaped slot is mainly generated by the second slot and part of the first slot.
  • the physical length of the second slot can be 1/4 ⁇ 10% of the first wavelength, so that the antenna structure can work in the 1/4 wavelength mode by utilizing the second slot. Since the electrical length of the second slit is less than half of the first wavelength, the size of the antenna structure (for example, in the width direction) is more compact, which is more favorable for being arranged in the electronic device.
  • FIG. 9 is a schematic structural diagram of a first metal layer 111 provided by an embodiment of the present application.
  • the first metal layer 111 can be provided with a fourth slit 104, the fourth slit 104 is connected with the second end 1022 of the second slit 102, so that the second slit 102 and the fourth slit 104 connected.
  • the first slit, the second slit, and the fourth slit form a closed slit or a closed slit.
  • an I-shaped gap is provided on the first metal layer 111 .
  • the widths of some of the I-shaped slits may be different, or recessed parts or raised parts may be provided in part of the slit areas, which is not limited in the present application.
  • the fourth slit 104 can be used to increase the magnetic current path of the second end 1022 of the second slit 102, so that when the second feed unit feeds power, the magnetic current path in the T-shaped slit remains unchanged, and further shortens
  • the length of the second slot 102 is such that the width of the first metal layer 111 is further reduced, thereby reducing the width of the antenna structure.
  • the length of the first slit 101 provided on the first metal layer 111 can also be reduced in this manner, as shown in (b) and (c) in FIG. 9 .
  • FIG. 10 is a schematic structural diagram of another antenna structure 200 provided by an embodiment of the present application.
  • the first radiator 220 of the antenna structure 200 is provided with a fifth slot 201 .
  • the extending direction of the fifth slit 201 may be parallel to the extending direction of the first slit disposed on the first metal layer 211 , as shown in (b) of FIG. 10 .
  • the bottleneck of miniaturization is that the size of the floor is too small, it is difficult to restrain the electromagnetic waves generated by the current on the floor, and the electromagnetic waves generated by the current on the floor will interfere with the electromagnetic waves in the working frequency band of the antenna structure, reducing the Radiation characteristics of antenna structures.
  • FIG. 11 it is a schematic diagram of the magnetic current distribution generated when the first radiator in the antenna structure shown in Figure 4 resonates, when the first radiator resonates, it passes through the gap formed by both sides and the first metal layer Two magnetic currents are generated respectively, and then electromagnetic waves are radiated outward.
  • FIG. 10 it is a schematic diagram of the magnetic current distribution generated when the first radiator in the antenna structure shown in Figure 10 resonates, since the first radiator is provided with a fifth slit 201, the first metal layer resonates When an additional magnetic current is generated through the fifth slot 201, more electromagnetic waves in the working frequency band can be radiated outward, reducing the current on the floor (second metal layer), thereby improving the radiation characteristics of the antenna structure.
  • the fifth slit 201 is arranged on the first radiator 220, the electrical length of the first radiator 220 in the width direction (y direction) of the antenna structure is reduced. Therefore, the width of the first radiator 220 in the antenna structure should be increased. direction, but this would lead to an increase in the width of the antenna structure.
  • the fifth slit 201 may be a slit with both ends open.
  • the first radiator 220 includes a first part 221 and a second part 222 which are separated by the third slit 201 .
  • the first part 221 may include a bent radiator 223 , and the bent radiator 223 is bent toward the first metal layer 211 .
  • the second portion 222 includes a bent radiator 224 , and the bent radiator 224 is bent toward the first metal layer 211 .
  • the first radiator 220 of planar structure is folded into a three-dimensional structure to reduce the width of the first radiator 220 to reduce the width of the antenna structure and realize the miniaturization of the antenna structure so as to be arranged in the electronic device.
  • the first portion 221 in the first bending region 223 and the second portion 222 in the second bending region 224 can be realized by means of metal holes.
  • the first part 221 and the second part 222 of the first radiator 220 may include a metal layer disposed on the surface of the first dielectric plate and a plurality of metal holes connected to the metal layer and disposed in the first dielectric plate.
  • the antenna structure 200 shown in FIG. The second end is connected to the slot) to further reduce the size of the antenna structure, and its size is reduced from 3.5mm ⁇ 2.8mm ⁇ 1mm of the antenna structure 100 shown in FIG. 4 to 3.5mm ⁇ 2.6mm ⁇ 1mm (L1 ⁇ L2 ⁇ L3), the width L2 of the antenna structure 200 is reduced from 2.8 mm to 2.6 mm.
  • the width of the antenna structure 200 can be further reduced.
  • the width L2 of the antenna structure 200 can be reduced from 2.6 mm to 2 mm.
  • FIG. 12 and FIG. 13 are simulation result diagrams of the antenna structure shown in FIG. 10 .
  • FIG. 12 is a simulation result diagram of S parameters of the antenna structure shown in FIG. 10 .
  • FIG. 13 is a graph of simulation results of the gain of the antenna structure shown in FIG. 10 .
  • the resonant frequency bands generated can include n257 and n258 frequency bands (24.25-29.5GHz), the antenna structure
  • the relative bandwidth is about 19.6%.
  • the antenna structure radiates horizontally polarized electromagnetic waves and vertically polarized electromagnetic waves respectively. Therefore, when the first feed unit and the second feed unit feed power, the isolation (S12 and S21) between them is less than -30dB, which has good isolation and can be applied to MIMO systems.
  • the antenna structure has a gain of 3.1-5dBi when fed by the first feed unit and the second feed unit, which has a good gain and can meet Communication needs.
  • FIG. 14 is a schematic structural diagram of another antenna structure 300 provided by an embodiment of the present application.
  • the antenna structure 300 may include a metal cavity 310 , a first radiator 320 and a second radiator 330 .
  • the second radiator 330 is opposite to the first radiator 320 and arranged at intervals, and the second radiator 330 is located on a side of the first radiator 320 away from the metal cavity 310 .
  • the first radiator 320 and the second radiator 330 may be disposed above the first metal layer 311 of the metal cavity 310 , as shown in (a) of FIG. 14 .
  • the antenna structure 300 may include a first dielectric plate 340 and a second dielectric plate 350 .
  • the first dielectric plate 340 may be disposed between the first metal layer 311 and the first radiator 320 for supporting the first radiator 320 .
  • the second dielectric plate 350 may be disposed between the first radiator 320 and the second radiator 330 for supporting the second radiator 330 .
  • the antenna structure 300 shown in FIG. It includes more communication frequency bands, for example, frequency bands n257 and n258 (24.25-29.5GHz) and frequency bands n259 and n260 (37-43.5GHz) can be included at the same time.
  • frequency bands n257 and n258 24.25-29.5GHz
  • frequency bands n259 and n260 37-43.5GHz
  • the dielectric materials of the first dielectric board 340 and the second dielectric board 350 may be the same or different, and may be adjusted according to actual production or design, which is not limited in this application.
  • the size of the first radiator 320 and the second radiator 330 may be different, and the area of the first radiator 320 is larger than that of the second radiator 330 .
  • FIG. 15 is a simulation result diagram of S parameters of the antenna structure shown in FIG. 14 .
  • the embodiment of the present application assumes that the size of the antenna structure shown in FIG. 14 is 3.5mm ⁇ 2.6mm ⁇ 1.4mm (L1 ⁇ L2 ⁇ L3). This application does not limit this.
  • the antenna structure since the antenna structure includes a second radiator, when the antenna structure is fed by the first feed unit (S11) and the second feed unit (S22), additional resonance frequency bands can be generated at high frequencies , so that the working frequency bands of the antenna structure can include frequency bands n257 and n258 (24.25-29.5 GHz) and frequency bands n259 and n260 (37-43.5 GHz).
  • the antenna structure when the first feeding unit and the second feeding unit are feeding power, the antenna structure radiates horizontally polarized electromagnetic waves and vertically polarized electromagnetic waves respectively. Therefore, when the first feed unit and the second feed unit feed power, the isolation (S12) between the two is less than -10dB, which has good isolation and can be applied to a MIMO system.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection between devices or units may be in electrical or other forms.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

本申请实施例提供了一种天线结构和电子设备,天线结构包括:金属腔和第一辐射体;其中,金属腔的第一金属层设置有第一缝隙和第二缝隙,第二缝隙的第一端与第一缝隙连接;第一缝隙设置有第一馈电点;第二缝隙设置有第二馈电点。利用金属腔上设置的缝隙可以分别产生水平极化和垂直极化的辐射。同时,通过缝隙上方设置的第一辐射体可以拓展天线结构的工作带宽,使其工作频段包括更多的通信频段。本申请实施例提供的该天线结构的宽度可以小于电子设备的边框宽度,有利于在电子设备中的应用。

Description

一种天线结构和电子设备
本申请要求于2021年12月9日提交中国专利局、申请号为202111495734.8、申请名称为“一种天线结构和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及一种天线结构和电子设备。
背景技术
随着无线通信技术的高速发展,无线电频谱的低频率已趋于饱和,而毫米波频段具有丰富的频谱资源,因此,毫米波可以为高速无线通信提供解决方案。对于毫米波天线要求宽带和高增益性能,以实现高速数据传输,低时延和高可靠性。为了更好地接收和发射信号,电子设备内的毫米波天线需要同时具备双极化的性能,以便接收来自不同方向的通信信息;同时由于电子设备的空间有限,会因不够紧凑的天线结构造成整机尺寸的增加,对天线小型化设计有着严格的要求。
发明内容
本申请实施例提供了一种天线结构和电子设备,利用天线结构的金属腔上设置的缝隙可以分别产生水平极化和垂直极化的辐射。同时,通过缝隙上方设置的辐射体可以拓展天线结构的工作带宽,使天线结构的工作频段包括更多的通信频段。并且,本申请实施例提供的天线结构的宽度可以小于电子设备的边框宽度,有利于在电子设备中的应用。
第一方面,提供了一种天线结构,包括:金属腔,所述金属腔包括相向设置的第一金属层和第二金属层,以及连接所述第一金属层和所述第二金属层的金属墙;第一辐射体,所述第一辐射体与所述金属腔相向并间隔设置,所述第一辐射***于所述第一金属层远离所述第二金属层的一侧;其中,所述第一金属层设置有第一缝隙和第二缝隙,所述第二缝隙的第一端与所述第一缝隙连接;所述第一缝隙,所述第二缝隙和所述第一辐射体在第一方向的投影至少部分重合,所述第一方向为垂直于所述第一金属层的方向;所述第一缝隙设置有第一馈电点;所述第二缝隙设置有第二馈电点。
根据本申请实施例的技术方案,第二金属层作为天线结构的地板使用,同时利用第一金属层上设置的T型缝隙可以产生水平极化和垂直极化的电磁波。由于水平极化的电磁波和垂直极化的电磁波之间正交,可以大大降低两者之间的耦合,因此,天线结构可以应用于MIMO***。并且,天线结构中设置有第一辐射体,可以通过与T型缝隙耦合连接产生额外的谐振频段,可以用于拓展天线结构的工作频段,使其应用于更多的通信频段。
结合第一方面,在第一方面的某些实现方式中,所述第一辐射体设置有第三缝隙,所述第三缝隙的延伸方向和所述第一缝隙的延伸方向平行。
根据本申请实施例的技术方案,由于第一辐射体设置有第三缝隙,第一金属层谐振时 通过第三缝隙额外产生一条磁流,可以使更多的工作频段的电磁波向外辐射,减小地板(第二金属层)上的电流,从而提升天线结构的辐射特性。
结合第一方面,在第一方面的某些实现方式中,所述第一辐射体由所述第三缝隙分成间隔开的第一部分和第二部分。
结合第一方面,在第一方面的某些实现方式中,所述第一部分包括弯折的辐射体,并向所述第一金属层的方向弯折;所述第二部分包括弯折的辐射体,并向所述第一金属层的方向弯折。
根据本申请实施例的技术方案,将平面结构的第一辐射体折叠为立体结构,以减小第一辐射体的宽度,以减小天线结构的宽度,实现天线结构的小型化以便设置于电子设备内。
结合第一方面,在第一方面的某些实现方式中,第二辐射体,所述第二辐射体与所述第一辐射体相向并间隔设置,所述第二辐射***于所述第一辐射体远离所述金属腔的一侧。
根据本申请实施例的技术方案,天线结构增加了第二辐射体,可以用于产生额外的谐振频段,可以拓展天线结构的工作频段,使其包括更多的通信频段。
结合第一方面,在第一方面的某些实现方式中,所述第一馈电点设置于所述第一缝隙和所述第二缝隙的连接处。
结合第一方面,在第一方面的某些实现方式中,所述第一缝隙在所述第一馈电点两侧的长度相同。
根据本申请实施例的技术方案,随着天线结构的对称性的增加,可以提升天线结构的辐射特性。
结合第一方面,在第一方面的某些实现方式中,所述天线结构还包括:第一馈电枝节,第二馈电枝节,所述第一馈电枝节和所述第二馈电枝节设置于所述金属腔内;所述第一馈电枝节和所述第一缝隙在第一方向的投影至少部分重合;所述第二馈电枝节和所述第二缝隙在第一方向的投影至少部分重合。
根据本申请实施例的技术方案,第一馈电单元和第二馈电单元可以通过耦合馈电的方式在第一馈电点和第二馈电点处为天线结构馈电,可以拓展天线结构的工作频段。
结合第一方面,在第一方面的某些实现方式中,所述第一馈电枝节呈L型,所述第二馈电枝节呈直线型。
根据本申请实施例的技术方案,本申请并不限制第一馈电枝节和第二馈电枝节的具体形状,例如,第一馈电枝节和第二馈电枝节可以为矩形,圆形,折线型,鱼叉型等规则或不规则的形状,第一馈电枝节和第二馈电枝节的具体形状可以根据金属腔的形状或设计需求进行调整。
结合第一方面,在第一方面的某些实现方式中,所述天线结构还包括至少一个金属柱;至少一个所述金属柱设置于所述第一辐射体周向的任意一侧;所述金属柱与所述第一金属层电连接。
根据本申请实施例的技术方案,金属柱可以用于拓展天线结构的地板(第二金属层),增加地板上的电流路径,从而减小由于地板面积过小对天线结构的阻抗带来的影响,从而提升天线结构100的辐射特性(例如,工作带宽)。
结合第一方面,在第一方面的某些实现方式中,所述第一缝隙的延伸方向和所述第二缝隙的延伸方向垂直。
结合第一方面,在第一方面的某些实现方式中,所述第一缝隙的物理长度为第一波长 的二分之一±10%,所述第二缝隙的物理长度为所述第一波长的四分之一±10%,所述第一波长为所述天线结构的工作波长。
根据本申请实施例的技术方案,第一馈电单元馈电时,T型缝隙产生的辐射主要由第一缝隙产生。第一缝隙的电长度可以为第一波长的二分之一,使天线结构利用第一缝隙工作在二分之一波长模式,第二馈电单元馈电时,T型缝隙产生的辐射主要由第二缝隙和部分第一缝隙产生。第二缝隙的电长度可以为第一波长的四分之一,使天线结构利用第二缝隙工作在四分之一波长模式。由于第二缝隙的电长度小于第一波长的二分之一,使天线结构紧凑,更有利于设置于电子设备内。
结合第一方面,在第一方面的某些实现方式中,所述第一金属层设置有第四缝隙,所述第四缝隙与所述第二缝隙的第二端连接。
根据本申请实施例的技术方案,第四缝隙可以用于增加第二缝隙的第二端的磁流路径,以使第二馈电单元馈电时,在T型缝隙内的磁流路径不变的情况下,进一步缩短第二缝隙的长度,以使第一金属层的宽度进一步减小,进而减小天线结构的宽度。
结合第一方面,在第一方面的某些实现方式中,所述天线结构的宽度小于3.5mm。
根据本申请实施例的技术方案,天线结构的宽度可以小于0.3个低频波长,例如,低频波长可以是工作频段的最低频率对应的波长。以天线结构的工作在n257、n258频段为例,天线结构的宽度L2可以小于3.5mm。
结合第一方面,在第一方面的某些实现方式中,所述天线结构的长度小于4.5mm。
根据本申请实施例的技术方案,天线结构的长度可以小于0.4个低频波长,以天线结构的工作在n257、n258频段为例,天线结构的长度L1可以小于4.5mm,以便可以在设置相同个数的天线结构所占用的边框的长度更短。
结合第一方面,在第一方面的某些实现方式中,所述天线结构的工作频段包括24.25GHz-29.5GHz。
结合第一方面,在第一方面的某些实现方式中,所述天线结构的工作频段包括37GHz-43.5GHz。
根据本申请实施例的技术方案,天线结构可以工作在毫米波频段。
第二方面,提供了一种电子设备,包括第一方面中任一项所述的天线结构。
结合第二方面,在第二方面的某些实现方式中,所述电子设备还包括边框;所述边框设置有第五缝隙;所述天线结构的至少一部分设置于所述第五缝隙两侧的导体之间。
结合第二方面,在第二方面的某些实现方式中,所述电子设备还包括第一介质板,所述第一介质板设置于所述第一金属层和所述第一辐射体之间。
结合第二方面,在第二方面的某些实现方式中,所述电子设备还包括第二介质板,所述第二介质板设置于所述第一辐射体和所述第二辐射体之间。
结合第二方面,在第二方面的某些实现方式中,所述电子设备还包括第三介质板和第四介质板;其中,所述第三介质板的至少一部分和所述第四介质板的至少一部分在所述第一方向上堆叠设置于所述金属腔内;所述第一馈电枝节和所述第二馈电枝节设置于所述第三介质板和所述第四介质板之间。
附图说明
图1是本申请实施例提供的电子设备的示意图。
图2是本申请实施例提供的一种毫米波天线的结构示意图。
图3是本申请实施例提供的天线结构100的不同视图。
图4是本申请实施例提供的天线结构100的***图。
图5是本申请实施例提供的第一金属层111的示意图。
图6是本申请实施例提供的电子设备的边框的示意图。
图7是图3所示天线结构100在第一馈电单元馈电时的电场分布示意图。
图8是图3所示天线结构100在第二馈电单元馈电时的电场分布示意图。
图9是本申请实施例提供的一种第一金属层111的结构示意图。
图10是本申请实施例提供的另一种天线结构200的结构示意图。
图11是本申请实施例提供的第一辐射体谐振时产生的磁流分布示意图。
图12是图10所示天线结构的S参数的仿真结果图。
图13是图10所示天线结构的增益的仿真结果图。
图14是本申请实施例提供的另一种天线结构300的结构示意图。
图15是图14所示天线结构的S参数的仿真结果图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
应理解,在本申请的实施例中,“电连接”可理解为元器件物理接触并电导通;也可理解为线路构造中不同元器件之间通过印制电路板(printed circuit board,PCB)铜箔或导线等可传输电信号的实体线路进行连接的形式;也可理解为通过间接耦合的方式,隔空电导通。“耦合”可理解为通过间接耦合的方式隔空电导通,其中,本领域人员可以理解的是,耦合现象即指两个或两个以上的电路元件或电网络的输入与输出之间存在紧密配合与相互影响,并通过相互作用从一侧向另一侧传输能量的现象。“连接”、“相连”均可以指一种机械连接关系或物理连接关系,例如,A与B连接或A与B相连可以指,A与B之间存在紧固的构件(如螺钉、螺栓、铆钉等),或者A与B相互接触且A与B难以被分离。
天线增益:是指在输入功率相等的条件下,实际天线与理想的辐射单元(由于理想的辐射单元并不存在,实际应用上都是用偶极子天线(dipole)代替)在空间同一点处所产生的信号的功率密度之比。它定量地描述一个天线把输入功率集中辐射的程度。
天线的水平极化和垂直极化:在空间给定点上,电场强度E(矢量)是时间t的一元函数,随着时间的推移,矢量端点在空间周期性地描绘出轨迹。该轨迹直线垂直地面(地板所在平面),称垂直极化,如果水平于地面,称水平极化。同时,由于水平极化和垂直极化的电磁波的震动方向相互垂直,因此,水平极化的电磁波和垂直极化的电磁波之间的耦合较低,隔离度较好。
天线回波损耗:可以理解为经过天线电路反射回天线端口的信号功率与天线端口发射功率的比值。反射回来的信号越小,说明通过天线向空间辐射出去的信号越大,天线的辐射效率越大。反射回来的信号越大,说明通过天线向空间辐射出去的信号越小,天线的辐射效率越小。
天线回波损耗可以用S11参数来表示,S11属于S参数中的一种。S11表示反射系数,此参数能够表征天线发射效率的优劣。S11参数通常为负数,S11参数越小,表示天线回波损耗越小,天线本身反射回来的能量越小,也就是代表实际上进入天线的能量就越多, 天线的***效率越高;S11参数越大,表示天线回波损耗越大,天线的***效率越低。
需要说明的是,工程上一般以S11值为-4dB作为标准,当天线的S11值小于-4dB时,可以认为该天线可正常工作,或可认为该天线的发射效率较好。
地(地板):可泛指电子设备(比如手机)内任何接地层、或接地板、或接地金属层等的至少一部分,或者上述任何接地层、或接地板、或接地部件等的任意组合的至少一部分,“地”可用于电子设备内元器件的接地。一个实施例中,“地”可以是电子设备的电路板的接地层,也可以是电子设备中框形成的接地板或屏幕下方的金属薄膜形成的接地金属层。一个实施例中,电路板可以是印刷电路板(printed circuit board,PCB),例如具有8、10、12、13或14层导电材料的8层、10层或12至14层板,或者通过诸如玻璃纤维、聚合物等之类的介电层或绝缘层隔开和电绝缘的元件。一个实施例中,电路板包括介质基板、接地层和走线层,走线层和接地层通过过孔进行电连接。一个实施例中,诸如显示器、触摸屏、输入按钮、发射器、处理器、存储器、电池、充电电路、片上***(system on chip,SoC)结构等部件可以安装在电路板上或连接到电路板;或者电连接到电路板中的走线层和/或接地层。例如,射频源设置于走线层。
上述任何接地层、或接地板、或接地金属层由导电材料制得。一个实施例中,该导电材料可以采用以下材料中的任一者:铜、铝、不锈钢、黄铜和它们的合金、绝缘基片上的铜箔、绝缘基片上的铝箔、绝缘基片上的金箔、镀银的铜、绝缘基片上的镀银铜箔、绝缘基片上的银箔和镀锡的铜、浸渍石墨粉的布、涂覆石墨的基片、镀铜的基片、镀黄铜的基片和镀铝的基片。本领域技术人员可以理解,接地层/接地板/接地金属层也可由其它导电材料制得。
本申请实施例提供的技术方案适用于采用以下一种或多种通信技术的电子设备:蓝牙(blue-tooth,BT)通信技术、全球定位***(global positioning system,GPS)通信技术、无线保真(wireless fidelity,WiFi)通信技术、全球移动通讯***(global system for mobile communications,GSM)通信技术、宽频码分多址(wideband code division multiple access,WCDMA)通信技术、长期演进(long term evolution,LTE)通信技术、5G通信技术以及未来其他通信技术等。本申请实施例中的电子设备可以是手机、平板电脑、笔记本电脑、智能家居、智能手环、智能手表、智能头盔、智能眼镜等。电子设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助手(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备,5G网络中的电子设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的电子设备等,本申请实施例对此并不限定。图1示例性示出了本申请实施例提供的电子设备,以电子设备为手机进行说明。
如图1所示,电子设备10可以包括:盖板(cover)13、显示屏/模组(display)15、印刷电路板(printed circuit board,PCB)17、中框(middle frame)19和后盖(rear cover)21。应理解,在一些实施例中,盖板13可以是玻璃盖板(cover glass),也可以被替换为其他材料的盖板,例如超薄玻璃材料盖板,PET(Polyethylene terephthalate,聚对苯二甲酸乙二酯)材料盖板等。
其中,盖板13可以紧贴显示模组15设置,可主要用于对显示模组15起到保护、防尘作用。
在一个实施例中,显示模组15可以包括液晶显示面板(liquid crystal display,LCD),发光二极管(light emitting diode,LED)显示面板或者有机发光半导体(organic light-emitting diode,OLED)显示面板等,本申请对此并不做限制。
中框19主要起整机的支撑作用。图1中示出PCB17设于中框19与后盖21之间,应可理解,在一个实施例中,PCB17也可设于中框19与显示模组15之间,本申请对此并不做限制。其中,印刷电路板PCB17可以采用耐燃材料(FR-4)介质板,也可以采用罗杰斯(Rogers)介质板,也可以采用Rogers和FR-4的混合介质板,等等。这里,FR-4是一种耐燃材料等级的代号,Rogers介质板是一种高频板。PCB17上承载电子元件,例如,射频芯片等。在一个实施例中,印刷电路板PCB17上可以设置一金属层。该金属层可用于印刷电路板PCB17上承载的电子元件接地,也可用于其他元件接地,例如支架天线、边框天线等,该金属层可以称为地板,或接地板,或接地层。在一个实施例中,该金属层可以通过在PCB17中的任意一层介质板的表面蚀刻金属形成。在一个实施例中,用于接地的该金属层可以设置在印刷电路板PCB17上靠近中框19的一侧。在一个实施例中,印刷电路板PCB17的边缘可以看作其接地层的边缘。可以在一个实施例中,金属中框19也可用于上述元件的接地。电子设备10还可以具有其他地板/接地板/接地层,如前所述,此处不再赘述。
其中,电子设备10还可以包括电池(图中未示出)。电池可以设置于设于中框19与后盖21之间,或者可设于中框19与显示模组15之间,本申请对此并不做限制。在一些实施例中,PCB17分为主板和子板,电池可以设于所述主板和所述子板之间,其中,主板可以设置于中框19和电池的上边沿之间,子板可以设置于中框19和电池的下边沿之间。
电子设备10还可以包括边框11,边框11可以由金属等导电材料形成。边框11可以设于显示模组15和后盖21之间并绕电子设备10的***周向延伸。边框11可以具有包围显示模组15的四个侧边,帮助固定显示模组15。在一种实现方式中,金属材料制成的边框11可以直接用作电子设备10的金属边框,形成金属边框的外观,适用于金属工业设计(industrial design,ID)。在另一种实现方式中,边框11的外表面还可以为非金属材料,例如塑料边框,形成非金属边框的外观,适用于非金属ID。
中框19可以包括边框11,包括边框11的中框19作为一体件,可以对整机中的电子器件起支撑作用。盖板13、后盖21分别沿边框的上下边沿盖合从而形成电子设备的外壳或壳体(housing)。在一个实施例中,盖板13、后盖21、边框11和/或中框19,可以统称为电子设备10的外壳或壳体。应可理解,“外壳或壳体”可以用于指代盖板13、后盖21、边框11或中框19中任一个的部分或全部,或者指代盖板13、后盖21、边框11或中框19中任意组合的部分或全部。
或者,可以不将边框11看做中框19的一部分。在一个实施例中,边框11可以和中框19连接并一体成型。在另一实施例中,边框11可以包括向内延伸的突出件,以与中框19相连,例如,通过弹片、螺丝、焊接等方式相连。边框11的突出件还可以用来接收馈电信号,使得边框11的至少一部分作为天线的辐射体收/发射频信号。作为辐射体的这一部分边框,与中框30之间可以存在间隙42,从而保证天线辐射体具有良好的辐射环境,使得天线具有良好的信号传输功能。
其中,后盖21可以是金属材料制成的后盖,也可以是非导电材料制成的后盖,如玻璃后盖、塑料后盖等非金属后盖。
图1仅示意性的示出了电子设备10包括的一些部件,这些部件的实际形状、实际大小和实际构造不受图1限定。
应理解,在本申请的实施例中,可以认为电子设备的显示屏所在的面为正面,后盖所在的面为背面,边框所在的面为侧面。
应理解,在本申请的实施例中,认为用户握持(通常是竖向并面对屏幕握持)电子设备时,电子设备所在的方位具有顶部、底部、左侧部和右侧部。
随着无线通信技术的快速发展,过去第二代(second generation,2G)移动通信***主要支持通话功能,电子设备只是人们用来收发简讯以及语音沟通的工具,无线上网功能由于数据传输利用语音信道来传送,速度极为缓慢。随着第五代(fifthgeneration,5G)移动通信***的发展,无线电频谱的低频率已趋于饱和。而毫米波频段具有丰富的频谱资源,因此,毫米波可以为高速无线通信提供解决方案,具有低时延和高可靠性。为了更好地接收和发射信号,电子设备内的毫米波天线需要同时具备双极化的性能,以便接收来自不同方向的通信信息;同时由于电子设备的空间有限,会因不够紧凑的天线结构造成整机尺寸的增加,对天线小型化设计有着严格的要求。
图2是本申请实施例提供的一种毫米波天线的结构示意图。
在图2所示的毫米波天线中,可以利用辐射贴片上设置的两个馈电点分别产生两个方向极化的辐射,例如水平极化和垂直极化的辐射,以使该毫米波天线可以应用于输入多输出(multi-input multi-output,MIMO)***。
在图2所示的天线结构中,辐射贴片的宽度约为0.4个工作波长,天线结构的相对带宽约为10%左右。
图3至图5是本申请实施例提供的一种天线结构100的结构示意图,可以应用于图1所示的电子设备中。其中,图3是本申请实施例提供的天线结构100的不同视图。图4是本申请实施例提供的天线结构100的***图。图5是本申请实施例提供的第一金属层的示意图。
本申请实施例提供的天线结构,利用金属腔上设置的缝隙可以分别产生水平极化和垂直极化的辐射。同时,通过缝隙上方设置的辐射体可以拓展天线结构的工作带宽,使其工作频段包括更多的通信频段。本申请实施例提供的天线结构的宽度可以小于电子设备的边框宽度,有利于在电子设备中的应用。
如图3所示,天线结构100可以包括金属腔110和第一辐射体120。
其中,金属腔110包括相对设置的第一金属层111,第二金属层112,以及连接第一金属层111和第二金属层112的金属墙113,如图3中的(a)所示。金属墙113分别与第一金属层111和第二金属层112连接。在一个实施例中,金属墙113分别在第一金属层111的边沿和第二金属层112的边沿与第一金属层111和第二金属层112连接。在一个实施例中,第一金属层111、第二金属层112和金属墙113围成金属腔110。在一个实施例中,通过第一金属层111、第二金属层112和金属墙113形成封闭的腔体结构,如图4所示。在一个实施例中,第一辐射体与金属腔相向并间隔设置,第一辐射体120位于第一金属层111远离第二金属层112的一侧。在一个实施例中,第一辐射体120设置于第一金属层111上方。
在一个实施例中,天线结构100还可以包括第一介质板130。在一个实施例中,第一介质板130设置于金属腔110和第一辐射体120之间,第一介质板130的一侧与第一金属 层111接触,用于支撑第一辐射体120。
如图5所示,第一金属层111设置有第一缝隙101和第二缝隙102。第二缝隙102的第一端1021与第一缝隙101连接,使第一缝隙101和第二缝隙102之间连通。第一缝隙101设置有第一馈电点141,第二缝隙102设置有第二馈电点142,第一馈电点141和第二馈电点142均用于为天线结构馈电,使天线结构产生谐振。在一个实施例中,第一缝隙101和第二缝隙102形成一个封闭缝隙或闭合缝隙。在一个实施例中,第一缝隙101和第二缝隙102都未延伸至第一金属层111的边沿处。
在一个实施例中,第一缝隙101,第二缝隙102和第一辐射体120在第一方向的投影至少部分重合,第一方向为垂直于第一金属层111的方向。在一个实施例中,在图3所示的天线结构100的示意图中,第一方向为z方向。
在本申请实施例提供的天线结构中,第二金属层作为天线结构的地板使用,同时利用第一金属层上设置的T型缝隙可以在第一馈电点和第二馈电点馈电时,产生两个不同极化方向的电磁波,例如,水平极化的电磁波和垂直极化的电磁波。由于水平极化的电磁波和垂直极化的电磁波之间正交,可以大大降低两者之间的耦合,因此,两者之间的隔离度较高,使天线结构可以应用于MIMO***。并且,天线结构中设置有第一辐射体,可以通过与T型缝隙耦合连接产生额外的谐振频段,可以用于拓展天线结构的工作频段,使其应用于更多的通信频段。
应理解,在本申请实施例中,为论述的简洁,仅以第一金属层111和第二金属层112为矩形进行说明,即金属腔110为长方体,在实际的应用中,可以根据电子设备的内部空间或设计需求进行调整,例如,第一金属层111和第二金属层112可以为三角形,圆形等,本申请对此并不做限制。同样的,第一辐射体120也可以为任意形状,例如,矩形,圆形,三角形等,本申请对此并不做限制。
在一个实施例中,金属墙113,可称为短路金属墙,金属墙113设置在第一金属层111和第二金属层112之间,金属墙113的一侧沿第一金属层111的边沿与第一金属层111连接,金属墙113的另一侧沿第二金属层112的边沿与第二金属层112连接,使第一金属层111和第二金属层112之间的空间在其周向方向上封闭,以围成封闭的金属腔110。
在一个实施例中,短路金属墙113可以包括多个金属通孔1131,多个金属通孔1131中的每个金属通孔的一端与第一金属层111电连接,每个金属通孔的另一端与第二金属层112电连接,如图3中的(a)所示。当多个金属通孔1131中任意两个相邻的金属通孔之间的距离D小于第一阈值时,可以认为多个金属通孔1131形成金属墙113,第一金属层111和第二金属层112之间的空间在其周向方向上封闭,形成了封闭的金属腔110。当天线结构的工作频段的频率越高,第一阈值越小,天线结构的工作频段的频率越高多个金属通孔1131中任意两个相邻的金属通孔之间的距离越近,或者,当金属通孔1131的孔径越小,第一阈值越小,金属通孔1131的孔径越小多个金属通孔1131中任意两个相邻的金属通孔之间的距离越近。例如,在n257、n258频段(24.25-29.5GHz),金属通孔1131的孔径为0.075mm的情况下,第一阈值可以为0.2mm。
在一个实施例中,第一缝隙101的延伸方向可以和第二缝隙102的延伸方向垂直。其中,第一缝隙101的延伸方向可以理解为第一缝隙101的长度方向,第二缝隙102的延伸方向也可以相应理解。由于在电子设备内部的空间日益紧张,天线结构的设置需要根据电子设备的内部空间进行调整。需要说明的是,本申请实施例中所提及的平行和垂直等关于 相对位置关系的限定词,均是针对当前工艺水平而言的,而不是数学意义上绝对的严格的定义,允许存在少量偏差,近似于平行和近似于垂直均可以。例如,在一个实施例中,A与B平行,是指A与B之间平行或者近似于平行。在一个实施例中,A与B平行,是指A与B之间的夹角在0度~10度之间。在一个实施例中,A与B垂直,是指A与B之间垂直或者近似于垂直。在一个实施例中,A与B垂直,是指A与B之间的夹角在80度~100度之间。
在一个实施例中,第一馈电点141可以设置于第一缝隙101和第二缝隙102的连接处。
在一个实施例中,第一馈电点141可以设置于第一缝隙101的中心区域,第一馈电点141两侧的第一缝隙101的长度相同。应理解,随着天线结构100的对称性的增加,可以提升天线结构100的辐射特性。
在一个实施例中,第一馈电单元和第二馈电单元可以通过耦合馈电的方式在第一馈电点141和第二馈电点142处为天线结构100馈电,可以拓展天线结构100的工作频段。在一个实施例中,天线结构100还可以包括第一馈电枝节143和第二馈电枝节144,如图4所示。第一馈电枝节143和第二馈电枝节144可以设置于金属腔110内。在一个实施例中,第一馈电枝节143和所述第一缝隙101在第一方向(z方向)的投影至少部分重合,该重合的区域包括第一馈电点141,第一馈电枝节143在第一馈电点141处与第一金属层111耦合连接,如图5所示。在一个实施例中,第二馈电枝节144和第二缝隙102在第一方向(z方向)的投影至少部分重合,该重合的区域包括第二馈电点142,第二馈电枝节144在第二馈电点142处与第一金属层111耦合连接,如图5所示。在一个实施例中,第一馈电枝节143的一端和第二馈电枝节144的一端可以分别与第一馈电单元和第二馈电单元电连接,用于为天线结构100馈入电信号。
在一个实施例中,天线结构还可以包括第三介质板和第四介质板,第三介质板的至少一部分和第四介质板的至少一部分可以在第一方向上堆叠设置于金属腔110内,第一馈电枝节143和第二馈电枝节144设置于第三介质板和第四介质板之间,以使第一馈电枝节143和第二馈电枝节144形成带状线结构,可以在保证第一馈电枝节143和第二馈电枝节144的电长度不变的情况下,进一步减小第一馈电枝节143和第二馈电枝节144的长度。应理解,在实际的生产或设计中,金属腔110内也可以包括更多数量的介质板,本申请对此并不做限制。
在一个实施例中,第二介质板和第三介质板可以与第一介质板130相同的介质材料,或者第一介质板130,第二介质板和第三介质板可以分别采用不同的介质材料,本申请对此并不做限制。
其中,电长度可以是指,物理长度(即机械长度或几何长度)乘以电或电磁信号在媒介中的传输时间与这一信号在自由空间中通过跟媒介物理长度一样的距离时所需的时间的比来表示,电长度可以满足以下公式:
Figure PCTCN2022136513-appb-000001
其中,L为物理长度,a为电或电磁信号在媒介中的传输时间,b为在自由空间中的传输时间。
或者,电长度也可以是指物理长度(即机械长度或几何长度)与所传输电磁波的波长之比,电长度可以满足以下公式:
Figure PCTCN2022136513-appb-000002
其中,L为物理长度,λ为电磁波的工作波长。
在一个实施例中,第一馈电枝节143呈L型,第二馈电枝节144呈直线型。应可理解,L型或直线型仅作为馈电枝节的主体形状,也可以在馈电枝节的部分区域设置有凹陷部或凸起部,本申请并不限制第一馈电枝节143和第二馈电枝节144的具体形状,例如,第一馈电枝节143和第二馈电枝节144可以为矩形,圆形,折线型,鱼叉型等规则或不规则的形状,第一馈电枝节143和第二馈电枝节144的具体形状可以根据金属腔110的形状或设计需求进行调整。
在上述实施例中,第一馈电单元和第二馈电单元通过耦合馈电的方式为在第一馈电点141和第二馈电点142处为天线结构100馈电。在一个实施例中,第一馈电单元和第二馈电单元可以通过直接馈电的方式在第一馈电点141和第二馈电点142处为天线结构100馈电。在一个实施例中,第一馈电单元可以在第一馈电点141处与第一缝隙101两侧的导体电连接。第二馈电单元可以在第二馈电点142处与第二缝隙102两侧的导体电连接。
在一个实施例中,第一馈电单元和第二馈电单元可以是天线结构100内部设置的射频芯片中的不同的射频通道。
在一个实施例中,天线结构100还包括至少一个金属柱151,如图4所示。在一个实施例中,金属柱151可以设置于第一介质板130上,金属柱151的一端与第一金属层111电连接。在一个实施例中,金属柱151可以称为匹配金属柱,金属柱151可以设置于第一介质板130的侧面(第一介质板厚度方向上的表面,例如,z方向上的表面)或者以金属通孔的形式设置于第一介质板130的内部。在一个实施例中,第一辐射体120和金属柱141分别设置于第一介质板130的表面。在一个实施例中,金属柱141设置于第一辐射体120的周向的任意一侧,且不与第一辐射体120连接。例如,在图4所示的天线结构中,第一辐射体141设置在第一介质板130远离金属腔110的表面,金属柱141可以为弯折型结构,金属柱141弯折的两部分分别设置在第一介质板130相邻的侧面上。在一个实施例中,当天线结构100包括多个金属柱141时,多个金属柱141分别设置于第一辐射体120的周向的不同位置,以使第一辐射体120设置于多个金属柱131围成的虚拟空间内。至少一个金属柱151可以用于拓展天线结构100的地板(第二金属层112),增加地板上的电流路径,从而减小由于地板面积过小对天线结构100的阻抗带来的影响(地板面积过小会导致无法束缚地板上电流产生的电磁波,从而导致对天线结构的工作频段的电磁波的干扰),从而提升天线结构100的辐射特性(例如,工作带宽)。
应理解,本申请仅以天线结构包括4个匹配金属柱151设置在第一介质板130的四角为例进行说明,在实际的生产或设计中,可以调整天线结构100包括的匹配金属柱151的数量以及匹配金属柱151的位置,本申请对此并不做限制。
在一个实施例中,天线结构100的工作频段可以包括n257、n258频段(24.25-29.5GHz)。在实际的设计或生产中,可以根据实际的需求进行调整,本申请对此并不做限制。
在一个实施例中,天线结构100还可以包括外壳,金属腔110、第一辐射体120和第一介质板130可以设置于外壳围成的空间内。
在一个实施例中,电子设备的边框11可以开设有至少一个第三缝隙103,如图6所示。天线结构100的至少一部分可以设置于第三缝隙103内,其中,天线结构100设置在 第三缝隙103内可以理解为,天线结构100的至少一部分设置在缝隙103两侧的导体之间。在一个实施例中,天线结构100的至少部分嵌入边框11。天线结构100的宽度L2小于边框11的宽度,以使天线结构100可以设置于边框11开设的第三缝隙103内,因此,小型化的天线结构100中关键尺寸为宽度L2。对于日益轻薄的电子设备来说,天线结构100的宽度L2可以小于0.3个低频波长,例如,低频波长可以是工作频段的最低频率对应的波长。以天线结构100的工作在n257、n258频段为例,天线结构100的宽度L2可以小于3.5mm。应理解,电子设备可以包括多个天线结构100,多个天线结构100可以分别设置于不同的第三缝隙103内,多个天线结构100和多个第三缝隙103一一对应,如图6中的(a)所示,或者,多个天线结构100也可以设置于一个第三缝隙内,如图6中的(b)所示,本申请对此并不做限制。
在一个实施例中,天线结构100的长度L1可以小于0.4个低频波长,以天线结构100的工作在n257、n258频段为例,天线结构100的长度L1可以小于4.5mm,以便可以在设置相同个数的天线结构所占用的边框的长度更短。
在一个实施例中,以天线结构100工作在n257、n258频段为例,天线结构100的长度L1可以为3.5mm,宽度L2可以为2.8mm,高度L3可以为1mm,如图3中的(c)所示。
图7和图8是图3所示天线结构100的电场分布示意图。其中,图7是图3所示天线结构100在第一馈电单元馈电时的电场分布示意图。图8是图3所示天线结构100在第二馈电单元馈电时的电场分布示意图。
如图7中的(a)所示,第一馈电单元馈电时,T型缝隙内的磁流沿y方向呈反对称分布(幅度相同,相位相差180°左右,例如相位相差180°±45°)。
如图7中的(b)所示,第一馈电单元馈电时,第一辐射体与T型缝隙耦合连接,第一辐射体上的电流沿x方向流动(电流的大部分(70%以上)的电流与x方向呈±45°或180°±45°),可以产生第一谐振频段。第一辐射体产生的第一谐振频段可以用于拓展第一馈电单元馈电时天线结构的工作带宽。
对于如图7中的(a)所示的T型缝隙内的电场和磁流分布以及如图7中的(b)所示的第一辐射体的电流分布,在第一馈电单元馈电的情况下,天线结构的极化方式为水平极化。
如图8中的(a)所示,第二馈电单元馈电时,T型缝隙内的磁流沿y方向呈对称分布(幅度相同,相位相差0°左右,例如相位相差±45°)。
如图8中的(b)所示,第二馈电单元馈电时,第一辐射体与T型缝隙耦合连接,第一辐射体上的电流沿y方向流动(电流的大部分(70%以上)的电流与y方向呈±45°或180°±45°),可以产生第二谐振频段。第一辐射体产生的第二谐振频段可以用于拓展第二馈电单元馈电时天线结构的工作带宽。
对于如图8中的(a)所示的T型缝隙内的电场和磁流分布以及如图8中的(b)所示的第一辐射体的电流分布,在第二馈电单元馈电的情况下,天线结构的极化方式为垂直极化。
应理解,在第一馈电单元和第二馈电单元馈电时,天线结构可以分别产生水平极化的电磁波和垂直极化的电磁波,水平极化的电磁波和垂直极化的电磁波在远场内积为零(积分正交),相互并不影响,因此,水平极化的电磁波和垂直极化的电磁波之间可以获得良 好的隔离度,可以应用于MIMO***。
同时,如图7中的(a)所示,第一馈电单元馈电时,T型缝隙产生的辐射主要由第一缝隙产生。第一缝隙的物理长度可以为第一波长的二分之一±10%,使天线结构利用第一缝隙工作在二分之一波长模式,第一波长为天线结构的工作频段对应的波长,例如,第一波长可以是工作频段的中心频率对应的波长,或者,可以是工作频段中谐振点的频率对应的波长。如图8中的(a)所示,第二馈电单元馈电时,T型缝隙产生的辐射主要由第二缝隙和部分第一缝隙产生。第二缝隙的物理长度可以为第一波长的四分之一±10%,使天线结构利用第二缝隙工作在四分之一波长模式。由于第二缝隙的电长度小于第一波长的二分之一,使天线结构的尺寸(例如宽度方向)更加紧凑,更有利于设置于电子设备内。
图9是本申请实施例提供的一种第一金属层111的结构示意图。
如图9中的(a)所示,第一金属层111可以设置有第四缝隙104,第四缝隙104与第二缝隙102的第二端1022连接,使第二缝隙102与第四缝隙104连通。在一个实施例中,第一缝隙、第二缝隙、第四缝隙形成一个封闭缝隙或闭合缝隙。在一个实施例中,第一金属层111上设置工字型缝隙。在一个实施例中,工字型缝隙中部分缝隙的宽度可以不同,或者,可以在部分缝隙区域设置凹陷部或凸起部,本申请对此并不做限制。第四缝隙104可以用于增加第二缝隙102的第二端1022的磁流路径,以使第二馈电单元馈电时,在T型缝隙内的磁流路径不变的情况下,进一步缩短第二缝隙102的长度,以使第一金属层111的宽度进一步减小,进而减小天线结构的宽度。
同样的,也可以通过该方式减小第一金属层111上设置的第一缝隙101的长度,如图9中的(b)和(c)所示。
图10是本申请实施例提供的另一种天线结构200的结构示意图。
如图10中(a)所示,天线结构200的第一辐射体220设置有第五缝隙201。第五缝隙201的延伸方向可以与第一金属层211上设置的第一缝隙的延伸方向平行,如图10中的(b)所示。
应理解,对于天线结构来说,小型化的瓶颈在于地板尺寸过小,很难束缚住地板上的电流产生的电磁波,地板上电流产生的电磁波会对天线结构的工作频段的电磁波产生干扰,降低天线结构的辐射特性。
如图11中的(a)所示,为图4所示的天线结构中第一辐射体谐振时产生的磁流分布示意图,第一辐射体谐振时通过两侧与第一金属层形成的缝隙分别产生两条磁流,进而向外辐射电磁波。如图11中的(b)所示,为图10所示的天线结构中第一辐射体谐振时产生的磁流分布示意图,由于第一辐射体设置有第五缝隙201,第一金属层谐振时通过第五缝隙201额外产生一条磁流,可以使更多的工作频段的电磁波向外辐射,减小地板(第二金属层)上的电流,从而提升天线结构的辐射特性。
由于第一辐射体220上设置有第五缝隙201,使第一辐射体220在天线结构的宽度方向(y方向)的电长度减小,因此,要增加第一辐射体220在天线结构的宽度方向的尺寸,但这样会导致天线结构的宽度增加。
在一个实施例中,第五缝隙201可以是两端开放的缝隙。第一辐射体220包括由第三缝隙201分成间隔开的第一部分221和第二部分222。第一部分221可以包括弯折的辐射体223,弯折的辐射体223向第一金属层211方向弯折。第二部分222包括弯折的辐射体224,弯折的辐射体224向第一金属层211方向弯折。将平面结构的第一辐射体220折叠 为立体结构,以减小第一辐射体220的宽度,以减小天线结构的宽度,实现天线结构的小型化以便设置于电子设备内。
在一个实施例中,第一弯折区域223内的第一部分221和第二弯折区域224内的第二部分222可以通过金属孔的方式实现。第一辐射体220的第一部分221和第二部分222可以包括设置在第一介质板表面的金属层以及与金属层相连的设置在第一介质板内的多个金属孔。
应理解,相较于图4所示的天线结构100,图10所示的天线结构200通过向第一金属面折叠第一辐射体以及在第一金属面设置工字型缝隙(第二缝隙的第二端连接缝隙)的方式进一步减小天线结构的尺寸,其大小由图4所示的天线结构100的3.5mm×2.8mm×1mm减小至3.5mm×2.6mm×1mm(L1×L2×L3),天线结构200的宽度L2由2.8mm减小至2.6mm。
当增加天线结构200的高度L3,以使第一弯折区域223内的第一部分221的高度L4增加,可以进一步减小天线结构200的宽度。当天线结构200的高度L3由1mm增加至1.5mm时,天线结构200的宽度L2可以由2.6mm减小至2mm。
图12和图13是图10所示天线结构的仿真结果图。其中,图12是图10所示天线结构的S参数的仿真结果图。图13是图10所示天线结构的增益的仿真结果图。
如图12所示,天线结构在第一馈电单元(S11)和第二馈电单元(S22)馈电时,产生的谐振频段均可以包括n257、n258频段(24.25-29.5GHz),天线结构的相对带宽约为19.6%。同时,由于第一馈电单元和第二馈电单元馈电时,天线结构分别辐射水平极化的电磁波和垂直极化的电磁波。因此,第一馈电单元和第二馈电单元馈电时,两者之间的隔离度(S12和S21)小于-30dB,具有良好的隔离度,可以应用于MIMO***。
如图13所示,在n257、n258频段(24.25-29.5GHz),天线结构在第一馈电单元和第二馈电单元馈电时的增益为3.1-5dBi,具有较好的增益,可以满足通信的需求。
图14是本申请实施例提供的另一种天线结构300的结构示意图。
如图14所示,天线结构300可以包括金属腔310,第一辐射体320和第二辐射体330。
其中,在一个实施例中,第二辐射体330与第一辐射体320相向并间隔设置,第二辐射体330位于第一辐射体320远离金属腔310的一侧。在一个实施例中,第一辐射体320和第二辐射体330可以设置于金属腔310的第一金属层311的上方,如图14中的(a)所示。
在一个实施例中,天线结构300可以包括第一介质板340和第二介质板350。第一介质板340可以设置于第一金属层311和第一辐射体320之间,用于支撑第一辐射体320。第二介质板350可以设置于第一辐射体320和第二辐射体330之间,用于支撑第二辐射体330。
应理解,相较于图4所示的天线结构100,图14所示的天线结构300增加了第二辐射体320,可以用于产生额外的谐振频段,可以拓展天线结构300的工作频段,使其包括更多的通信频段,例如,可以同时包括n257、n258频段(24.25-29.5GHz)以及n259、n260频段(37-43.5GHz)。
在一个实施例中,第一介质板340和第二介质板350的介质材料可以相同,也可以不同,可以根据实际的生产或设计进行调整,本申请对此并不做限制。
在一个实施例中,第一辐射体320和第二辐射体330的大小可以不同,第一辐射体 320的面积大于第二辐射体330的面积。
图15是图14所示天线结构的S参数的仿真结果图。
应理解,为了论述的简洁,本申请实施例以图14所示的天线结构的尺寸为3.5mm×2.6mm×1.4mm(L1×L2×L3)进行说明,在实际的生产或设计进行调整,本申请对此并不做限制。
如图15所示,由于天线结构包括第二辐射体,天线结构在第一馈电单元(S11)和第二馈电单元(S22)馈电时,在高频处均可以产生额外的谐振频段,使天线结构的工作频段均可以包括n257、n258频段(24.25-29.5GHz)以及n259、n260频段(37-43.5GHz)。同时,由于第一馈电单元和第二馈电单元馈电时,天线结构分别辐射水平极化的电磁波和垂直极化的电磁波。因此,第一馈电单元和第二馈电单元馈电时,两者之间的隔离度(S12)小于-10dB,具有良好的隔离度,可以应用于MIMO***。
本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的之间接耦合或通信连接,可以是电性或其它的形式。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种天线结构,其特征在于,包括:
    金属腔,所述金属腔包括相向设置的第一金属层和第二金属层,以及连接所述第一金属层和所述第二金属层的金属墙;
    第一辐射体,所述第一辐射体与所述金属腔相向并间隔设置,所述第一辐射***于所述第一金属层远离所述第二金属层的一侧;
    其中,所述第一金属层设置有第一缝隙和第二缝隙,所述第二缝隙的第一端与所述第一缝隙连接;
    所述第一缝隙,所述第二缝隙和所述第一辐射体在第一方向的投影至少部分重合,所述第一方向为垂直于所述第一金属层的方向;
    所述第一缝隙设置有第一馈电点,所述第二缝隙设置有第二馈电点。
  2. 根据权利要求1所述的天线结构,其特征在于,
    所述第一辐射体设置有第三缝隙,所述第三缝隙的延伸方向和所述第一缝隙的延伸方向平行。
  3. 根据权利要求2所述的天线结构,其特征在于,
    所述第一辐射体包括由所述第三缝隙分成间隔开的第一部分和第二部分。
  4. 根据权利要求3所述的天线结构,其特征在于,
    所述第一部分包括弯折的辐射体,并向所述第一金属层的方向弯折;
    所述第二部分包括弯折的辐射体,并向所述第一金属层的方向弯折。
  5. 根据权利要求1至4中任一项所述的天线结构,其特征在于,所述天线结构还包括:
    第二辐射体,所述第二辐射体与所述第一辐射体相向并间隔设置,所述第二辐射***于所述第一辐射体远离所述金属腔的一侧。
  6. 根据权利要求1至5中任一项所述的天线结构,其特征在于,所述第一馈电点设置于所述第一缝隙和所述第二缝隙的连接处。
  7. 根据权利要求1至6中任一项所述的天线结构,其特征在于,所述第一缝隙在所述第一馈电点两侧的长度相同。
  8. 根据权利要求1至7中任一项所述的天线结构,其特征在于,所述天线结构还包括:
    第一馈电枝节,第二馈电枝节,所述第一馈电枝节和所述第二馈电枝节设置于所述金属腔内;
    所述第一馈电枝节和所述第一缝隙在第一方向的投影至少部分重合;
    所述第二馈电枝节和所述第二缝隙在第一方向的投影至少部分重合。
  9. 根据权利要求8所述的天线结构,其特征在于,所述第一馈电枝节呈L型,所述第二馈电枝节呈直线型。
  10. 根据权利要求1至9中任一项所述的天线结构,其特征在于,所述天线结构还包括至少一个金属柱;
    至少一个所述金属柱设置于所述第一辐射体周向的任意一侧;
    所述金属柱与所述第一金属层电连接。
  11. 根据权利要求1至10中任一项所述的天线结构,其特征在于,所述第一缝隙的延伸方向和所述第二缝隙的延伸方向垂直。
  12. 根据权利要求1至11中任一项所述的天线结构,其特征在于,所述第一缝隙的物理长度为第一波长的二分之一±10%,所述第二缝隙的物理长度为所述第一波长的四分之一,所述第一波长为所述天线结构的工作波长±10%。
  13. 根据权利要求1至12中任一项所述的天线结构,其特征在于,所述第一金属层设置有第四缝隙,所述第四缝隙与所述第二缝隙的第二端连接。
  14. 根据权利要求1至13中任一项所述的天线结构,其特征在于,所述天线结构的宽度小于3.5mm,和/或所述天线结构的长度小于4.5mm。
  15. 根据权利要求1至14中任一项所述的天线结构,其特征在于,所述天线结构的工作频段包括24.25GHz-29.5GHz,和/或所述天线结构的工作频段包括37GHz-43.5GHz。
  16. 一种电子设备,其特征在于,包括如上述权利要求1至15中任一项所述的天线结构。
  17. 根据权利要求16所述的电子设备,其特征在于,所述电子设备还包括边框;
    所述边框设置有第五缝隙;
    所述天线结构的至少一部分设置于所述第五缝隙两侧的导体之间。
  18. 根据权利要求16或17所述的电子设备,其特征在于,所述电子设备还包括第一介质板,所述第一介质板设置于所述第一金属层和所述第一辐射体之间。
  19. 根据权利要求16至18中任一项所述的电子设备,其特征在于,所述电子设备还包括第二介质板,所述第二介质板设置于所述第一辐射体和所述第二辐射体之间。
  20. 根据权利要求16至19中任一项所述的电子设备,其特征在于,所述电子设备还包括第三介质板和第四介质板;
    其中,所述第三介质板的至少一部分和所述第四介质板的至少一部分在所述第一方向上堆叠设置于所述金属腔内;
    所述第一馈电枝节和所述第二馈电枝节设置于所述第三介质板和所述第四介质板之间。
PCT/CN2022/136513 2021-12-09 2022-12-05 一种天线结构和电子设备 WO2023103945A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111495734.8A CN116259956A (zh) 2021-12-09 2021-12-09 一种天线结构和电子设备
CN202111495734.8 2021-12-09

Publications (1)

Publication Number Publication Date
WO2023103945A1 true WO2023103945A1 (zh) 2023-06-15

Family

ID=86679700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136513 WO2023103945A1 (zh) 2021-12-09 2022-12-05 一种天线结构和电子设备

Country Status (2)

Country Link
CN (1) CN116259956A (zh)
WO (1) WO2023103945A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117543185A (zh) * 2023-11-14 2024-02-09 荣耀终端有限公司 一种天线增强器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116938276B (zh) * 2023-09-14 2023-12-22 成都锐芯盛通电子科技有限公司 一种双极化多通道相控阵sip模块

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109066079A (zh) * 2018-08-21 2018-12-21 深圳市信维通信股份有限公司 适用于5g通信的毫米波双极化缝隙天线***及移动终端
US10283832B1 (en) * 2017-12-26 2019-05-07 Vayyar Imaging Ltd. Cavity backed slot antenna with in-cavity resonators
CN111244623A (zh) * 2020-03-04 2020-06-05 南京锐码毫米波太赫兹技术研究院有限公司 用于移动终端的宽带双极化边射缝隙耦合贴片天线阵
CN113054425A (zh) * 2021-03-17 2021-06-29 东南大学 一种毫米波双频双极化滤波天线
CN113555692A (zh) * 2020-04-23 2021-10-26 华为技术有限公司 一种电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10283832B1 (en) * 2017-12-26 2019-05-07 Vayyar Imaging Ltd. Cavity backed slot antenna with in-cavity resonators
CN109066079A (zh) * 2018-08-21 2018-12-21 深圳市信维通信股份有限公司 适用于5g通信的毫米波双极化缝隙天线***及移动终端
CN111244623A (zh) * 2020-03-04 2020-06-05 南京锐码毫米波太赫兹技术研究院有限公司 用于移动终端的宽带双极化边射缝隙耦合贴片天线阵
CN113555692A (zh) * 2020-04-23 2021-10-26 华为技术有限公司 一种电子设备
CN113054425A (zh) * 2021-03-17 2021-06-29 东南大学 一种毫米波双频双极化滤波天线

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117543185A (zh) * 2023-11-14 2024-02-09 荣耀终端有限公司 一种天线增强器

Also Published As

Publication number Publication date
CN116259956A (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
EP4047746A1 (en) Antenna module and electronic device
WO2023103945A1 (zh) 一种天线结构和电子设备
WO2022042147A1 (zh) 一种天线结构及电子设备
WO2022156550A1 (zh) 一种电子设备
JP7228720B2 (ja) ハウジングアセンブリ、アンテナデバイス及び電子機器
CN211350966U (zh) 一种超低剖面双频uwb天线及通信设备
US11855334B2 (en) Antenna module and electronic device using the same
WO2022083398A1 (zh) 一种电子设备
TWI769878B (zh) 天線結構及具有該天線結構之電子設備
WO2022017220A1 (zh) 一种电子设备
CN117060051A (zh) 天线馈入耦合模块及电子装置
WO2023016353A1 (zh) 一种天线结构和电子设备
WO2024046200A1 (zh) 一种电子设备
WO2024046199A1 (zh) 一种电子设备
WO2024120287A1 (zh) 一种天线结构和电子设备
WO2023246690A1 (zh) 一种电子设备
US20220399645A1 (en) Antenna structure and electronic device using same
WO2023221876A1 (zh) 一种电子设备
WO2024007996A1 (zh) 天线单元及电子设备
WO2023246694A1 (zh) 一种电子设备
WO2024022281A1 (zh) 一种电子设备
TWI787874B (zh) 射頻訊號收發模組及電子設備
WO2024041357A1 (zh) 一种天线***及电子设备
CN215933823U (zh) 一种全向天线和电子设备
WO2024022297A1 (zh) 一种电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903367

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022903367

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022903367

Country of ref document: EP

Effective date: 20240522